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Measuring fall risk of the elderly with IMU sensors by developing a
Convolutional neural Network

Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials
Engineering, TU Delft, The Netherlands,

August 18, 2022
C. M. Claassen

Abstract— The combination of the high number
and the consequences of falls in older adults led
to the development of fall risk assessments; non-
sensor-based and sensor-based. Multiple studies used
ML for older adults’ fall risk prediction using raw
IMU data. This study’s objective was to develop a
DL algorithm that predicts the fall risk of people
living in a geriatric rehabilitation department using
raw data collected from IMUs positioned at the
ankles during the 10-m walk test. Raw IMU data
of 97 participants were used. The participants were
classified as low, increased or high fall risk based
on the Performance Oriented Mobility Assessment
(POMA). Accelerometer and gyroscope’s resultant
time-series sequences (n=1037) were used as input
for the Convolutional Neural Network (CNN) that
was optimised and trained with 80% and tested with
20% of the participants. The results were compared
with the performance of an existing portable sensor-
based fall risk assessment called the Smart Floor
(SF). The macro F1 of the unweighted (40%) and
weighted (41%) multiclass classification CNNs was
lower than the macro F1 of the SF (49%). The binary
classification CNN’s macro F1 (56%) was slightly
lower than the SF’s performance. All CNNs were
better at predicting high-risk sequences. All models
had poor performance when all three POMA fall risk
categories should have been predicted. Adjustments
to the data collection and CNN optimisation methods
should be performed to study the possibility of
predicting fall risk using raw IMU data in geriatric
rehabilitation centres.

Index Terms— fall risk assessment, older adults, geriatric
rehabilitation, inertial sensors, accelerometer, gyroscope, deep
learning, convolutional neural network, gait analysis

I. INTRODUCTION

One-third of the people of 65-years of age and older
experience a fall annually [1, 2]. A fall is defined as “an event
which results in a person coming to rest inadvertently on the

ground or floor or other low levels” [1]. The number of falls
is expected to increase progressively in the upcoming years
[2]. The elderly who have experienced a fall suffered among
others, injuries, long-term institutional care [3], fear of falling
[4], reduced activity [5, 6], and a lower quality of life [5].
Besides physical and mental health care consequences, the
medical costs of falls in the Netherlands alone consisted of
more than one billion euros in 2019 [2].
The timely detection of fall risk is beneficial to timely pre-
scribe fall risk prevention programs like exercising, using
assisting devices, wearing a protective garment or receiving
increased surveillance. Therefore, over thirty fall risk assess-
ments have been developed in the past decades [7]. Even
though there is no uniformly used definition of fall risk, fall
risk assessments can determine whether someone is prone to
falling [7, 8]. Fall risk assessments can be validated using
other fall risk assessments, retro- or prospective falls. Since
the goal is to prevent falls, future falls should be the golden
standard. However, a prospective study costs time and money,
so most fall risk assessments are validated using retrospective
falls or other assessments [7].
In a recent literature study, we categorised the fall risk
assessments as non-sensor-based and sensor-based, focusing
on clinical assessments or daily life activities (ADL) [7].
The sensors can be wearable (e.g., accelerometer, gyroscope,
magnetometer) or portable (e.g., Microsoft Kinect) [7, 8].
Smart Floor is a company that developed a portable sensor-
based fall risk assessment used in clinical assessments or ADL.
They created a ”Smart Floor” (SF) to predict fall risk in the
elderly by analysing the gait pattern. The SF is a thin (<0.2
mm) sensor foil (SFfloor) placed underneath or on top of
a floor (Figure 1) that collects data when combined with a
wearable around the ankle (SFwearable), see Figure 2 [9].
The SFwearable consists of a Radio Frequency Identification
(RFID) reader and an Inertial Measurement Unit (IMU).
The SF estimates the Performance-Oriented Mobility Assess-
ment (POMA), a non-sensor-based clinical assessment that
was first published in 1986 and has been used ever since
to predict the fall risk of the elderly [10]. The company has
chosen to use the POMA as a non-sensor-based indication of
fall risk.
The POMA consists of 16 items focussing on balance and
gait during physical tasks. All items are scored on an ordinary
scale of 0 until 1 or 0 until 2. The balance part (POMA-B)
consists of nine tasks, and participants can achieve a maximum
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of 16 points. The gait part (POMA-G) consists of seven items
with a maximum of 12 points. The total score indicates a
person’s fall risk. A detailed overview of the items and the
corresponding scoring system is displayed in Appendix-A. A
total score between 19-24 shows an increased risk, and a score
lower than 19 means a high risk of falling. If a participant has a
score higher than 24, the participant has a low risk of falling.
A score lower than 19 indicates a five times higher risk of
falling [9, 11].
The RFID reader of the SFwearable collected the data used to
determine four gait parameters: stride length, stride frequency,
gait speed, and vertical foot acceleration [9]. With multiple
logistic regression, the contribution of each parameter to the
POMA score was determined using the regression coefficient
leading to an SF fall risk score. The SF fall risk score can
also be divided into low, increased, and high fall risk profiles.
A score lower than 19 indicates a high fall risk, 19-24 an
increased fall risk and a score higher than 24 a low fall risk.
In a validation study, the SF is validated with 54 participants
aged 55 years and older, temporarily living in a rehabilitation
centre. In a rehabilitation centre, patients can recover from
injury or a severe medical event until they return to their
maximum functional potential. The SF correctly estimated the
participants’ three POMA fall risk categories with 54% [12].
Currently, the RFID data is used stand-alone to predict fall risk
in care facilities, which requires the installation of the SFfloor.
The floor installation is time-consuming and complicates fall
risk measurements at a patient’s home. Besides the RFID
reader, the SFwearable also contains an IMU, which does not
require interaction with the SFfloor. If the data collected by the
IMU, embedded in the SFwearable, could be used to predict
the fall risk, installation of the SFfloor is not required. This
enables fall risk prediction at patients’ homes.
Previous studies have shown that the prediction of fall risk
in older adults using IMU data is possible with a machine
learning (ML) or deep learning (DL) algorithm [7, 13, 14].
Smart Floor positions the SFwearable around the ankle; thus,
the input will be the data collected from the IMU positioned
at the ankle. The algorithm’s output will be the fall risk clas-
sification based on the POMA score. Therefore, this project
aims to predict fall risk of the elderly temporarily living in
a geriatric rehabilitation centre using raw data collected from
IMU sensors positioned at the ankles by developing a DL
algorithm.

A. Related work
Three studies were found that have used raw IMU data to

predict fall risk of the elderly using DL. In the study of Nait
Aicha et al. (2018), 296 participants wore an accelerometer
with a sampling frequency of 100 Hz on the lower back
for 1-week [13]. The participants were categorised as fallers
and non-fallers based on prospective falls during six months
of follow-up. The bouts of non-wearing, locomotion, sitting,
standing, and lying were identified using the manufacturer’s
activity classification algorithm. The locomotion bouts were
used in the study. They studied the performance of a Re-
current Neural Network model (RNN), specifically the Long-

Figure 1: The sensor foil on top of the existing floor of the geriatric
rehabilitation department (left) and the sensor foil covered with a
loose lay floor (right).

Figure 2: Picture of SFwearable around the ankle.

Short Term Memory (LSTM) model. They also studied the
Convolutional Neural Network (CNN) performance and the
performance of a CNN to which an LSTM layer was added,
the so-called ConvLSTM. The LSTM and ConvLSTM models
performed better than the CNN. Due to the long computation
time of the LSTM model, only the ConvLSTM model was
trained with a larger dataset. The addition of age and sex
slightly improved the performance of the ConvLSTM. They
also found that a stricter gait classification algorithm might
improve the performance. The best-performing model had
an area under the Receiver Operating Characteristic (ROC)
curve of 0.75. The ROC is the visual representation of the
performance of this classifier. The area under the ROC curve
(AUC) is a numerical representation of the binary classifier.
Tunca, Salur, and Ersoy (2020) also used raw sensor data to
predict the fall risk in older adults with an average age of 76
years [14]. They used a 3D accelerometer and 3D gyroscope
that had a sampling frequency of 100 Hz. In this study, 76
participants with neurological disorders walked back and forth
three times eight meters with the sensors on the dorsum of each
foot. The fall risk classification was based on retrospective
falls in the year prior to the assessment. Using a gait analysis
system, they extracted the stride length, clearance, stance time,
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and swing time. These parameters were used to calculate more
parameters like cycle, cadence, speed, and stance ratio. The
parameters were used for multiple sample-to-label ML models
(Support Vector Machine (SVM), Random Forest (RF), Mul-
tiLayer Perceptron (MLP)). The results were compared with
sequence-to-label DL models (Hidden Markov Model (HMM),
LSTM model). In the sequence-to-label models, LSTM and
LSTM raw sequences were used. The stride length, clearance,
stance time, and swing time parameters were calculated for
ten strides in a window and arranged in chronological order in
a sequence, leading to four-dimensional sequences of length
ten. These sequences are the LSTM sequences. The LSTM
raw sequences contained 10-stride windowed raw inertial
data and were used to determine whether the model can
implicitly learn the required features. The LSTM raw and
LTSM sequences were tested with and without windowing
and rotations as data augmentation techniques. They showed
that the performance of the LSTM model with raw data input
improved when windowing and rotations were used as data
augmentation techniques. In contrast, the LSTM model had
the best performance with only windowing. The LSTM in
which the stride length, clearance, stance time, and swing time
parameters were sequenced had the best performance of all
models, with an AUC of 0.987. The raw LSTM had an AUC
of 0.725.
In the study of Roshdibenam et al. (2021), 98 patients from an
academic geriatrics clinic with a mean age of 75 years were
classified as fallers and non-fallers using the geriatrician’s
fall risk assessment [15]. This consists of test scores from
the Timed-up and Go (TUG) test, 30-sec stand and the 4-
stage balance tests, measurement of orthostatic blood pressure,
the clinician’s observation of movement disorders, number of
medications, number of diagnoses, age, gender, BMI, and the
Staying Independent Brochure (SIB) score. The SIB is the
subjects’ report of risk factors, including subjects’ history of
falls. During the TUG, the participants wore three IMUs; two
on the lace of the right and left shoe near the midfoot and one
at the back of the neck on the subject’s clothing. The IMUs
contained a 3D accelerometer and 3D gyroscope that had a
sampling frequency of 250 Hz. The three axes of the gyroscope
and the accelerometer signals obtained during the TUG were
used as input for developing a CNN and an SVM. The
accelerometer and gyroscope data were kept separately, and
the signals were segmented into three-second signal segments
using a sliding window. The model’s performance for each
sensor and each sensor position was evaluated. The CNN
with the gyroscope at the neck showed the best performance:
an F1 score of 0.80 and an AUC of 0.75 for predicting the
fall risk based on the geriatrician’s assessment. However, they
also studied the classification performance of prospective falls
during six to twelve months of follow-up. The CNN showed a
lower performance for predicting prospective falls. The neck’s
gyroscope still had the best performance, with an F1 score of
0.41 and an AUC of 0.56.
The studies of Nait Aicha et al. (2018) and Tunca, Salur, and
Ersoy (2020) show the potential of using raw IMU data to
predict fall risk in older adults. The patient characteristics can

influence the performance of a model and sensor positions,
which makes that the data obtained by the SF are not appli-
cable in the models of the studies as mentioned earlier [16].
The patient characteristics in the study of Roshdibenam et al.
(2021) are more comparable to patient characteristics of the
SF’s dataset. However, the sensor positions are different, and
the CNN’s performance could be improved.

B. Convolutional Neural Network
This study aims to predict fall risk using raw IMU data

by developing a DL algorithm. The model should be able
to process sensor data as input and give the fall risk profile
based on the POMA as an output. Therefore, the model
should be able to recognise fall risk-related patterns from
the input data. A Convolutional Neural Network (CNN) is a
type of ANN used for pattern recognition in, for example,
image or language recognition. A CNN is a DL model, thus
consisting of feature extraction and classification. The feature
extraction part consists of convolution and pooling layers, and
the classification part consists of a fully connected layer and
the output. Because of the pattern recognition characteristics
and the faster computation time compared to an LSTM [13],
there is chosen for using a CNN.
Explaining CNNs can best be done by using image recognition
as an example. An image consists of pixels that are grids of
numbers that tell what the intensity of each pixel is. These
grids of numbers can be analysed and manipulated to find
patterns and characteristics. The filters in a convolutional
layer of a CNN perform this manipulation. The filter is an
n × m-matrix that moves across the full image. A pooling
layer can extract the filters’ main features and pool together
the essential characteristics.
A CNN always consists of a convolutional layer in which the
input shape of the layers equals the shape of the input data. A
pooling layer follows this layer. After these layers, additional
layers can be added, consisting of iterating convolutional
and pooling layers. The input of these layers is determined
by the output of the layers before. The final layer is a fully
connected layer of which the output shape is equal to the
number of classes, in this case, three; low, increased, and
high fall risk.
Building a CNN requires making decisions about, for
example, the number of filters in each layer, the number of
convolutional layers in the model, and the pooling method.
Therefore, these parameters must be defined before training
the model and are called hyperparameters. In a CNN, the
hyperparameters can be set to different values. The best
combination of the hyperparameters and the corresponding
value should lead to the best performance of the model.

II. METHODS

This section describes the methods for the data collection,
preprocessing of the collected data, hyperparameter optimisa-
tion of the CNNs, and evaluation of the CNNs and SF. First,
the definitions of the statistical values used during optimisation
and evaluation will be outlined.
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All methods and data analyses described were performed
using Python programming language v3.9 (Python Software
Foundation) [17].

A. Definitions statistical values
The macro averaged F1 (macro F1) was used as a per-

formance value during CNN optimisation. The SF and CNN
performances were evaluated using One versus Rest classifi-
cation, which enables approaching a multiclass classification
as a binary classification problem by studying every class
separately. For example, when looking at high fall risk, the
performance was determined by how well the high fall risk is
predicted compared to the combination of increased and low
fall risk.
The performances were analysed with the F1 score, macro F1,
sensitivity, specificity, precision, a 3x3-confusion matrix and a
ROC curve with the corresponding AUC. The ROC curve and
the AUC were not obtained for the SF’s performance because
only the predicted labels were available, corresponding to one
point on the ROC curve [18].
The F1 score gives the harmonic mean between the precision
and sensitivity and was calculated with the following equation:

F1score =
2× precision× sensitivity

precision+ sensitivity

In this function, the precision tells how many participants that
were predicted with a particular fall risk have that fall risk and
was calculated as follows:

precision =
TP

TP + FP

Sensitivity tells how many participants with a particular fall
risk were predicted with that fall risk and was calculated with:

sensitivity =
TP

TP + FN

In these equations, the TP (true positive) is defined as the
number of correctly classified participants for a specific cate-
gory, e.g., high risk. When looking at high risk, the FN (false
negative) indicates the number of participants that should have
been a high risk but were predicted as increased or low risk.
The FP (false positive) is the number of participants that
should not have been classified as high risk but were classified
as high risk.
The F1 score gives a value between 0 and 1, where a score
of 1 indicates a well-performing model. The F1 score was
determined for each fall risk category separately but can be
combined into one value using the macro F1:

F1macro =
F1low + F1increased + F1high

3

The specificity defines the probability that not having a specific
fall risk gives the prediction of not having that fall risk.
When looking at high fall risk, the specificity describes the
probability that participants who did not have a high-risk
classification also did not have a high-risk prediction. The
specificity was calculated using the following equation:

specificity =
TN

TN + FP

Figure 3: Example of a ROC curve based on the curve of [18]. The
upper and left axes represent the truth. The diagonal line represents
an AUC of 0.5.

The TN (true negative) indicates how many participants are
correctly not classified with particular fall risk.
A 3x3-confusion matrix was used to visualise how many
sequences were correctly classified as a low, increased or high
fall risk. The true label described the categorisation based on
the POMA and was displayed on the y-axis. On the x-axis,
the predicted label was displayed. The predicted label is the
categorisation made by the SF or CNN. The 3x3-confusion
matrix shows the model’s results on one threshold of the ROC
curve. A threshold is a cutoff for the probability value.
The ROC curve visualises the trade-off between the true
positive rate (TPR) and the false positive rate (FPR) for
every threshold. An example of a ROC curve is displayed in
Figure 3. The TPR is equal to the sensitivity. The FPR is the
percentage of participants with a specific fall risk that were
mistakenly classified with another fall risk and was calculated
with

FPR =
FP

TN + FP
= 1− specificity

Generally, a higher TPR and a lower FPR indicate a better
model’s performance. The area under the ROC curve (AUC)
can be used to describe the performance of the ROC curve in
one number. In this case, the better the performance, the higher
the AUC. The dotted line in Figure 3 describes an AUC of
0.5. A good classification model would have a ROC outlined
in the top left corner and an AUC close to 1.

B. Data collection
In 2021 Smart Floor collected data from 101 older adults

temporarily living in a geriatric rehabilitation department of
a nursing home in Bergen op Zoom, Noord-Brabant, The
Netherlands. Participants were included if they were 65 years
or older and had a functional ambulation classification (FAC)
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of 3 (walking independently with or without a walking aid).
Most participants suffered multiple medical disorders like
a combination of Chronic Obstructive Pulmonary disease
(COPD), Diabetes Mellitus (DM), cardiovascular diseases or
COVID-19.
The SF was installed on the floor of the common area of the
department. Each participant performed fall risk assessments
two days in a row. Each day, the participants performed
the ten-meter walk test (10MWT), Timed-Up-and-Go test
(TUG), and the POMA. A physical therapist administered the
assessments. The participants wore the SFwearable around the
left and right ankle during all tests.
Only the data obtained during the 10MWT was used in this
study because not every participant’s data for the TUG were
available. During the 10MWT, the floor was marked with two
lines separated ten-meter from each other. Each participant
was asked to walk (if possible) three times from one line to
the other at their own pace. The participant was allowed to
rest for twenty seconds until two minutes between each trial.
The help of a third party was not allowed, but the use of
an assistive device was [19]. During each trial, the physical
therapist counted to three. The participant started walking at
three. A third observer started the sensor’s recording when the
participant started walking and stopped the recording when the
participant passed the 10-meter line with one foot.
The POMA scores were used to classify the participants as
high (0-18), increased (19-24) or low (25-28) fall risk.
The SFwearable was attached using velcro such that it fell
over the Achilles tendon, see Figure 2. The SFwearable
contained an RFID reader, accelerometer, gyroscope, magne-
tometer, WiFi transmitter, and battery. The study’s objective
was to use raw IMU data; thus, only data collected by the
accelerometer, gyroscope, and magnetometer should have been
used. However, the magnetometer collected unreliable results
due to noise. Thus only the accelerometer and gyroscope data
were used. The sampling frequency of the accelerometer and
gyroscope was set to 52.3 Hz.
For every trial of the 10MWT, a data file with the collected
data was generated per sensor. The data samples of the
accelerometer and gyroscope for each timestamp were listed in
that file. A maximum of six trials, thus twelve data files, were
collected per person. A schematic overview of the collected
data for one day is displayed in Figure 4.
The clinic’s ethical committee approved the study. The assess-
ments are part of regular care, and all participants participated
voluntarily. Therefore, no METC approval was required. All
participants signed informed consent. If a participant could not
sign the consent, a family member signed it.

C. Preprocessing
Several preprocessing steps were applied to the raw IMU

data to increase the model’s performance and reduce the
computation time. The sensor’s recording was manually started
when the physical therapist told the participant to start walking
and ended when the participant walked ten meters. Therefore,
each time series of the accelerometer and gyroscope was re-
lated to one trial of a 10MWT. This whole time series was used

because the length of the time series could give information
about the gait speed, which is correlated to prospective falls
[20]. Every axis’ time series collected per trial were combined
in a data frame for each ankle separately, as is displayed in
Figure 6.
Due to a technical defect, the sampling frequency varied,
resulting in data samples with unequally distributed times-
tamps. A data sample is one data point in a time series; see
Figure 6. Therefore, all timestamps were resampled to 19 ms,
which equals the sampling frequency of 52.3 Hz. Therefore, all
data samples were first upsampled to 1 ms timestamps using
linear interpolation, followed by downsampling to 19 ms by
taking the median. The data samples sometimes had identical
timestamps but different accelerometer and gyroscope values.
These timestamps were split into equally spaced timestamps
between the first and the subsequent not identical timestamp,
followed by 19 ms resampling. An example of the timestamps
with corresponding data samples before and after splitting is
displayed in Appendix-B.
The orientation of the IMU inside the SFwearable could be
different in each SFwearable. The resultant of the accelerom-
eter (accelres) and gyroscope (gyrores) were used to ensure
that the different orientations did not affect the model. The
resultants were calculated with the following equations:

accelres =
√
xaccel

2 + yaccel2 + zaccel2

gyrores =
√
xgyro

2 + ygyro2 + zgyro2

In this report, the calculated accelres and gyrores will be
referred to as a feature, and the combination of these two
features is called a sequence. Thus, one sequence refers to
one 10-m of the 10MWT and one ankle, see Figure 6.

Measurement disturbances were removed, followed by
normalising and equalising the sequences to improve the
computation time and performance.
The disturbances were removed by i) removing entire
sequences and ii) removing parts of sequences.

Removing entire sequences
Some sequences had an extremely short total recording time.
The average gait of a community-dwelling older adult is
0.6-1.45 with the desired speed of 1.2 m/s [21]. The mean
gait speed in a geriatric rehabilitation setting is around 0.23
m/s, and using an assistive device reduces the gait speed. All
sequences with a total time lower than 6.9, equal to walking
10 m with a gait speed of 1.45 m/s, were removed.

Removing parts of a sequence
When observing one sequence at a time, multiple outliers were
observed. These outliers could be caused by environmental
noise or disconnection in the wire. The outliers were removed
using the difference between the minimum and maximum
value, also called the range, in a specific window of the
accelres. This range was calculated with the following
equation:

range = maxvalues −minvalues
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Figure 4: Example of the collected data on one day of a participant who performed three trials of the 10MWT resulting in twelve time-series.

In this equation, maxvalues describes the maximum value in
the specific window and minvalues describes the minimum
value in the window.
If the range was higher than a specific value, all data samples
inside the window were removed and replaced with Not a
Number (NaN ). The range was only calculated in accelres,
but the windows were removed in the whole sequence, thus
in accelres and the corresponding gyrores data. A manual
search found that a range of 30 and a window size of 20 data
samples were the best cutoff values. The NaN values were
replaced with the mean of each feature without outliers. The
effect of removing parts of a sequence is displayed in Figure 5.

During normalisation, all accelres features from the left and
right ankle, and all participants were combined to calculate
the mean (µ) and standard deviation (σ). The overall mean
and standard deviation were extracted from each data sample
in a sequence using:

samplenormalized =
x− µ

σ

where x is the sample in a trial, µ is the mean of all
trials combined, and σ is the standard deviation of all trials
combined. The same was done for the gyrores features.

Equalisation of the sequences was necessary to create
vectorised data required for DL libraries. When one
participant walks faster, the performance time will be shorter,
resulting in different sequence lengths. The sequences can
be padded or truncated for equalisation. In this study, post
padding was also used for equalisation, which was also done
in the study of Roshdibenam et al. (2021) [15]. With post
padding, all sequences were equalised to the most extended
sequences’ lengths by adding zeroes. The longest sequence
had a length of n=3895.

The CNN was given input X consisting of accelres and
gyrores and the corresponding fall risk classification y ∈
{0, 1, 2}. The high fall risk category was labelled as 0,
increased fall risk as 1, and low fall risk as 2.

D. Hyperparameter optimization

The model’s architecture and hyperparameters can influence
the model’s performance. The architecture described in the
study of Nait Aicha et al. (2018) had an iterating structure of
convolutional layers and dropout layers with the addition of
an LSTM layer in the ConvLSTM model [13]. The maximum
number of filters in the CNN layers was 128 leading to a
promising AUC of 0.75. The study of Rohsdibenam et al.
(2021) had an architecture in which two convolutional layers
were followed by one max-pooling layer, which showed
a lower performance for predicting prospective falls [15].
Therefore, in the current study was also chosen for an
iterating structure in which a max-pooling layer followed
each convolutional layer. The convolutional layers contained
a rectified linear unit (ReLU) activation function to introduce
non-linearity. Besides, all convolutional layers except the
first contained L1 and L2 regularisers, both equaling 0.005
to improve the model’s fitting. After iterating a specified
number of times, a dropout layer is added, followed by a
fully connected layer with a ReLU activation. The final layer
is the output layer with a softmax activation. A schematic
overview of the model’s architecture is displayed in Figure 7.
After defining the architecture, the hyperparameters should
be tuned. Manual search, random search, grid search, and
Bayesian optimisation can be used to find the optimal
hyperparameters. Manual searching is time-consuming and
does not always give reliable results. Therefore, multiple
automatic algorithms have been developed. With grid
search, every possible combination of hyperparameters is
tested to find the optimal combination, but this exhaustive
searching method has a long computation time [22]. During
a random search, one finds out which hyperparameters
contribute to higher performance and which do not. Choosing
only the hyperparameters that matter results in a more
efficient search, but it is unreliable in more complex models.
Another optimisation method is Bayesian optimisation. In
Bayesian optimisation, the prior information is combined
with sample information to obtain posterior information on
the function distribution using the Bayesian formula. Using
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(a) With outliers

(b) After outlier removal

(c) Nan replaced with mean

Figure 5: An example of a sequence of the resultant of the accelerom-
eter and gyroscope with outliers (a), without outliers (b), and the Nan
replaced with the mean (c).

Figure 6: Schematic overview of the terms used in this report to
describe different parts of the dataset.

this information, there can be determined where the function
gets the optimal value [22]. In this study was chosen for
Bayesian optimisation due to the computational cost of the
grid search and the unreliability of random search.
Even with Bayesian optimisation, it would be time-consuming
to study all possible hyperparameters. Therefore, a selection
of hyperparameters was studied to optimise the model. These
hyperparameters are the number of convolutional layers (1-7),
the number of filters in these layers (multiples of 8, from
8-128), the kernel size (2-5), the dropout (0.0-0.5), and the
number of filters in the fully connected layer (multiples of
16, from 8-256). The number of epochs (1-10) was also
used as a variable to prevent the Bayesian search would
choose a combination of parameters purely by the predefined
number of epochs. However, the cross entropy loss function
was plotted for the model with the best combination of
hyperparameters to observe the fitting. This fitting was used
to determine the number of epochs.

Train-test split
The dataset was split into a training and validation (80%)
and a testing (20%) set at the participant level to ensure that
all sequences of one participant were either in the training or
testing set. This was done to ensure that the model learned
fall risk classification characteristics instead of participant
characteristics [13]. The distribution of the different fall risk
profiles in both sets was comparable. For hyperparameter
optimisation, the training and validation set was used. During
optimisation, grouped stratified 5-fold cross-validation was
applied. With grouped 5-fold cross-validation, the total
training and validation dataset was divided into five groups,
again at the participant level. At each fold, four groups were
used as a training set, and one was used as a validation
set. Every fold, another group of sequences was part of the
training or validation set [14]. The average of every fold’s
results was the model’s macro F1 score that was used for
choosing the best hyperparameters.
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Figure 7: Schematic view of the CNN’s architecture. Each layer is described by fk in which k is the number of layers.

After optimisation, the model was trained using the
combined training and validation data as training data. After
training, the model was evaluated using the testing set that
was not seen by the model before.

In the results of the unweighted multiclass classification, there
was a discrepancy between the 3x3-confusion matrix and the
ROC curve, which could have been caused by imbalanced
data. Therefore, a weighted multiclass classification was also
performed. The classes were weighted with

weightclassx =
nsequences

nclasses × nsequencesx

in which nsequences is the number of sequences in the
complete dataset, nclasses is the number of classes, which is
three (high, increased or low) in the multiclass classification
problem, and nsequencesx is the number of sequences in class
x.

Binary classification
When a physical therapist decides that everybody with an
increased fall risk should follow a fall prevention program,
it can be of clinical value that the model can differentiate
between the combination of high and increased against low
risk sequences. Therefore, binary classification was also
studied in which the sequences with a high and increased fall
risk were combined into one group and compared to the low
fall risk sequences. Because of the unequal distribution of
participants, the classes were weighted with

weightclassx =
nsequences

nclasses × nsequencesx

in which nsequences is the number of sequences in the com-
plete dataset, nclasses is the number of classes, which is
two (high or low) in the binary classification problem, and
nsequencesx is the number of sequences in class x.

E. Smart Floor evaluation
The SF’s estimates of the POMA score in this specific group

of participants were determined using a regression algorithm

based on data from patients in a nursing home, collected by
Smart Floor in 2019 [9]. The SF scores were categorised into
low, increased, and high fall risk. All values lower than 0 were
classified into the high fall risk category, and all values higher
than 28 were classified into the low fall risk category. The
POMA scores lower than 0 and higher than 28 were excluded
because these scores do not exist according to the POMA
scoring system. The SF’s performance was evaluated using
the (macro) F1 score, sensitivity, specificity, precision, and
the 3x3-matrix.

F. Model evaluation
The model was trained and tested five times, and the

average of the results was used.

Multiclass classification
One versus Rest classification was used to extract the macro
F1, sensitivity, specificity, precision, a 3x3-confusion matrix,
and a ROC curve with corresponding AUC. The model’s
performance for each fall risk category was compared to the
performance of the SF.

Binary classification
In binary classification One versus Rest classification was
not required because the classes were already binary. The
performance was studied using the ROC curve with the
corresponding AUC, (macro) F1-score, sensitivity, specificity,
precision, and a 2x2-confusion matrix.

III. RESULTS

A. Data description
In total, 117 participants performed the assessments.

10MWT data were available from 101 participants. Because
of a POMA score outside the range of 0-28, two participants
were additionally excluded.
In total, 1100 sequences were collected, less than the expected
twelve sequences per participant. This is because not every
participant performed three trials per 10MWT, and the sensor
did not always work as expected, leading to missing data.

10



Figure 8: Histogram of sequences excluded based on the total
recording time.

Table I: Number of participants, 10MWTs and trials for each fall
risk profile based on POMA score after exclusion. Sixteen of the 97
participants had two different fall risk classifications, resulting in 113
classifications.

Low Increased High Total

# of participants 22 57 34 113
# of 10MWT 35 94 59 188
# of trials 188 518 331 1037

Because of a total time lower than 6.9 s, 63 sequences were
removed. This resulted in excluding two participants, of whom
no sequences were left. The completion time distribution
of those sequences is displayed in Figure 8. In Figure 9
the flowchart of all excluded participants and sequences is
displayed.
Of the resulting 97 participants, sixteen received two different
POMA classifications of the physical therapist during the two
assessments. In those cases, both classifications were taken
into account. All sixteen participants received a higher fall risk
on the first day than on the second. Eight participants received
an increased risk on day one and low risk on day two, and
eight received a high risk on day one and an increased risk on
day two. The number of participants, 10MWTs, and sequences
for each fall risk category are displayed in Table I.
The distribution of the sequences in each fall risk category for
the training and validation and the test set are displayed in
Table II.

Table II: Distribution of sequences for training/validation and testing
set.

Low risk
n (%)

Increased risk
n (%)

High risk
n (%)

Total
n

Training set 157 (18.5%) 417 (49.2%) 274 (32.3%) 848
Testing set 31 (16.4%) 101 (53.4%) 57 (30.2%) 189
Total 188 518 331 1037

Figure 9: Flowchart of excluded participants and sequences.

B. Smart Floor evaluation
For 1065 sequences, the SF fall risk profile was determined.

Of these values, 1027 had a POMA between 0 and 28; the
others were excluded.
Of the 1027 sequences, 512 were correctly classified, as seen
in the 3x3-confusion matrix displayed in Figure 10. The macro
F1 score of the SF is 49%. Looking at the high fall risk,
the SF has a specificity of 94% and sensitivity of 32% in
combination with a precision of 70%, see Table III. The SF is
thus better in predicting sequences with a low and increased
fall risk than high fall risk. The increased fall risk versus
the low and high fall risk has a specificity and sensitivity
of respectively 51% and 54%. Thus, 54% of the sequences
with an increased fall risk were correctly classified. The low
fall risk was best classified with a sensitivity of 69%, and the
precision is only 38%, meaning that only 38% of all sequences
that were predicted with a low fall risk had a low fall risk.

C. Model evaluation
Multiclass classification
Unweighted

11



Figure 10: 3x3-confusion matrix of the Smart Floor.

Table III: Performance of the Smart Floor classification.

Fall risk Sensitivity Specificity Precision F1-score

High 32% 94% 70% 44%
Increased 54% 51% 52% 53%
Low 69% 74% 38% 49%
Macro avg 52% 73% 53% 49%

The Bayesian optimization determined the most optimal
hyperparameters. The best combination of hyperparameters
for the multiclass classification with unweighted and
weighted classes is displayed in Table IV. The corresponding
cross-entropy loss function of the unweighted multiclass is
displayed in Figure 11a, the average cross-entropy of five
iterations. The number of epochs was set to four.
The macro F1 of the unweighted multiclass classification
model was 46%, lower than the SF classification. The
sensitivity and precision of the increased and high fall risk
are higher than the sensitivity of the SF. For the increased
fall risk, the sensitivity is 85%, and the precision is 59%. The
sensitivity of the high fall risk is 40% with a precision of
82%. Thus 40% of the high fall risk sequences were classified
as a high fall risk, and 82% of all high-risk predictions
were correctly classified. In Figure 12 can be seen that the
low sensitivity of the high fall risk was mainly caused by
high-risk sequences classified as increased risk.
The sensitivity and precision of the increased fall risk are
85% and 59%, respectively. Thus, 82% of the increased
risk sequences were correctly classified. In the 3x3-matrix,
Figure 12a, it can be seen that the increased sequences that
were not predicted as increased were mainly predicted as low
risk. The model is not a good classifier of sequences with
low fall risk. Only 10% of the low fall risk sequences were
correctly classified, and overall only 20% of the low-risk
predictions were correct. The specificity of 92% shows that
the model is better at predicting sequences that do not have a
low risk than sequences that do.
In the 3x3-confusion matrix, the low fall risk sequences

were mainly classified as increased risk, see Figure 12a.
No sequences were classified as high risk. The wrong
classification of low-risk sequences could be caused by the
low number of total sequences with a low fall risk (n=31).
The ROC curves in Figure 12b show that the high fall risk
sequences are best classified with an AUC of 0.80, while
the increased fall risk sequences are least well classified
with an AUC of 0.61. The imbalanced data could cause the
discrepancy between the 3x3-confusion matrix and the ROC
curve. Therefore, a weighted multiclass classification was
also performed.

Weighted
In the weighted multiclass CNN, the low, increased, and
high fall risk categories were weighted with 1.84, 0.67,
and 1.04, respectively. The architecture of the best scoring
weighted multiclass model is displayed in Table IV and
the corresponding cross-entropy loss plot can be seen in
Figure 11b. Based on this plot, the number of epochs was set
to three.
The macro F1 score is 47%, which is only 1% higher than
the unweighted multiclass classification. The sensitivity of
the high and low fall risk increased with a maximum of 4%
compared to the sensitivity of the unweighted model. The
high fall risk has a sensitivity of 44% and precision of 81%,
and the low fall risk category has a sensitivity of 13% and
precision of 21%. Even though the slight increase, the model
is not good at predicting high and low-risk sequences. The
increased risk sequences are still best predicted.
In the 3x3-confusion matrix in Figure 13a, it can be seen
that sequences with a low fall risk are mainly predicted as
increased fall risk. The model barely misclassifies high-risk
sequences as low-risk and vice versa.
The ROC curve in Figure 13b again shows that the increased
risk (AUC=0.61) was less well predicted compared to the
high (AUC=0.79) and low (AUC=0.66) risk. The fact that the
values in Table VI show better results than the ROC could be
caused, by the fact that those values are based on one point
in the ROC curve, while the ROC curve gives a general view
of the overall performance for different threshold.

Binary classification
In the weighted binary CNN, the low and high risks were
respectively weighted as 2.83 and 0.61. The CNN’s architec-
ture can be seen in Table VII. The number of epochs was set
to five based on the cross-entropy loss function displayed in
Figure 14.
The macro F1 score is 47%, the highest score compared to
the SF and the multiclass classification models. This high
score is caused by the high F1 score of the high-risk class,
resulting from the higher sensitivity (46%) and precision
(91%). Thus 46% of the high-risk sequences were correctly
classified as high-risk sequences. Interestingly, the low fall risk
sensitivity significantly increased to 77%, while the precision
was comparable to the precisions of the other models (22%).
This distribution is also visualised in the 2x2-confusion matrix
of Figure 15a. Most low-risk sequences were predicted as
low risk, while less than half of the high-risk sequences were
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Table IV: CNN architecture for weighted and unweighted multiclass classification.

Class (un)weighted kernel size # of filters
layer 1

# of filters
layer 2

# of filters
layer 3

# of filters
fully-connected layer dropout # of epochs

Multi unweighted 3 40 48 96 224 0.5 3
Multi weighted 2 8 64 - 240 0.2 1

(a) Unweighted

(b) Weighted

Figure 11: Cross-entropy loss functions of multiclass classification
models with unweighted (a) and weighted (b) classes. Based on these
graphs, the number of epochs of the unweighted model was set to
four. The number of epochs of the weighted model was set to three.

Table V: Performance of unweighted multiclass classification.

Fall risk Sensitivity Specificity Precision F1-score
High 40% 96% 82% 54%
Increased 85% 32% 59% 70%
Low 10% 92% 20% 13%
Macro avg 45% 73% 54% 46%

Table VI: Performance of weighted multiclass classification.

Fall risk Sensitivity Specificity Precision F1-score
High 44% 95% 81% 57%
Increased 81% 35% 59% 68%
Low 13% 91% 21% 16%
Macro avg 46% 74% 54% 47%

(a) 3x3-confusion matrix

(b) ROC curve

Figure 12: The 3x3-confusion matrix (a) and ROC curve (b) of
unweighted multiclass classification.

predicted as high risk. The ROC curve in Figure 15b gives the
predictive capability of the binary model with the high class
as a positive label. The model has an AUC of 0.64, which
is lower than the high-risk AUCs of the weighted multiclass
model.

IV. DISCUSSION

This study’s objective was to predict the fall risk of people
from a geriatric rehabilitation department using raw data
collected with IMUs positioned at the ankles by developing
a DL algorithm. A CNN was developed, trained and tested
with raw IMU data collected during the 10MWT to predict
the older adults’ POMA fall risk category. The performance
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Table VII: CNN architectures of the binary weighted classification model.

Class (un)weighted kernel size # of filters
layer 1

# of filters
layer 2

# of filters
layer 3

# of filters
fully-connected layer dropout # of epochs

Binary weighted 4 48 96 88 32 0.3 7

(a) 3x3-confusion matrix

(b) ROC curve

Figure 13: The 3x3-confusion matrix (a) and ROC curve (b) of
weighted multiclass classification.

Table VIII: Performance of weighted binary classification.

Fall risk Sensitivity Specificity Precision F1-score
High 46% 77% 91% 61%
Low 77% 46% 22% 34%
Macro avg 61% 61% 56% 47%

of the SF for predicting the POMA fall risk categories of the
same participants was also determined.
The developed CNNs, as well as the SF, had a poor classifica-
tion performance. The SF had a macro F1 score of 49%, which
is higher than the macro F1 score of the unweighted and the
weighted multiclass classification CNNs, which had a macro
F1 score of 40% and 41%, respectively. Even if the models
had performances equal to the SF, the performance of the

Figure 14: Cross-entropy loss functions of the binary classification
model. Based on this plot, the number of epochs was set to 4.

models is low. The ROC curves of the multiclass unweighted
and weighted showed high performance for the high fall risk
sequences with an AUC of 0.80 and 0.79, respectively. The
comparison with the increased and low risk combined will
only be of clinical value if only the high fall risk class is
essential to be determined.
The binary classification model had a macro F1 score of 56%,
slightly higher than the SF performance. This model combined
the high and increased models into one class. This model will
only have a clinical value if the indication for a fall prevention
program is equal in case of increased and high fall risk. Yet,
56% is still very low, meaning that it is not a reliable POMA
fall risk classification model.
The low classification performance of the SF can be explained
by the fact that the algorithm of the SF was only trained
with data collected from participants living in a nursing home.
This study tested the performance with data collected from
participants temporarily living in a rehabilitation department.
The multiclass classification CNNs in this study had a com-
parable macro F1 to the low F1 score in the prospective
gyroscope CNN model of Roshdibenam et al. (2021), which
had an F1 score of 0.41 and an AUC of 0.56 [15]. In
this study, all models’ AUCs of all fall risk categories were
higher. In contrast, the studies of Nait Aicha et al. (2018)
and Tunca, Salur and Ersoy (2020) showed better results with
an AUC of 0.75 and 0.82, respectively [13, 14]. Only the
high fall risks of the multiclass unweighted and weighted
classification models were close to these values. The difference
in patient characteristics, sensor position, and categorisation
method might explain the performance difference between the
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(a) 2x2-confusion matrix

(b) ROC curve

Figure 15: The 2x2-confusion matrix (a) and ROC curve (b) of
weighted binary classification.

current study’s models and those found in other studies.
In the current study, the participants suffered multiple con-
ditions, which might complicate fall risk prediction based on
the gait analysis. For example, the difference in gait symmetry
is associated with osteoarthritis and hip replacement, while
reduced coordination is associated with rheumatoid arthritis
and Parkinson’s disease [23]. The participants in the study of
Roshdibenam et al. (2021) also suffered multiple conditions
[15], which could clarify the lower performance compared to
the other studies with better performances. In those studies,
the participants were healthy older adults and participants with
neurological disorders [13, 14].
Positioning of the sensors in combination with the complexity
of the task influences the performance of a model [7]. A
more complex task is associated with better performance. In
the current study, the 10MWT was performed, which only
contained straight walking. The sensors were positioned on
the ankles. In the better performing study of Nait Aicha et al.
(2020), the participants wore the accelerometer on the lower
back for a week during ADL [13]. ADL also consists of more
complex tasks, which might explain the better performance

of the model. In the study of Roshdibenam et al. (2021), the
results of the different sensor positions were also evaluated
[15]. The sensor on the neck outperformed the sensors on
the left and right foot when worn during the TUG. However,
the accelerometer and gyroscope data were separated. At the
same time, the combination of both sensors might give more
valuable information, which was done in the study of Tunca,
Ersoy and Salur (2018) [14]. In that study, the participants
performed straight walking with sensors on their feet.
The data collection methods of Tunca, Ersoy and Salur (2018)
are comparable to the current study, except that the sensors
were positioned at the ankle. However, the performance was
worse than the performance in the study of Tunca, Ersoy and
Salur (2018). Among others, the use of the resultants of the
accelerometer and gyroscope could cause this. If the signals
were out of phase, they were zeroed when the resultant was
calculated. Additionally, the negative and positive orientations
were removed by the calculations. As a result, there could
have been a loss of characteristics that might be important for
the fall risk classification.
The categorisation method in the current study was based on
the POMA fall risk assessment. However, a well-performing
model for classifying participants based on a fall risk assess-
ment does not guarantee a good performance when predicting
prospective falls [15]. The usefulness of the POMA for pre-
dicting prospective falls is limited [10]. Participants with a
high POMA score have a chance of 50% for a prospective
fall in six months, which is only 20% higher than the chance
of falling without an assessment [7]. Furthermore, the POMA
is better at predicting people who will not experience a fall
than people who will [24]. The use of the POMA as fall risk
assessment is thus questionable and might have affected the
performance of the model.
This study has three main limitations. First, data resampling
was required due to the timestamp’s varying sampling frequen-
cies and associated distributions. The samples with identical
timestamps were split into equally spaced timestamps, result-
ing in exceptionally high sampling frequencies.
Second, Bayesian optimisation with 60 iterations and a se-
lection of hyperparameters was used for the hyperparameter
optimisation. This method was chosen because of the available
time and materials. The low number of iterations in combi-
nation with the Bayesian optimisation might have resulted in
missing valuable combinations of hyperparameters.
Third, the left and right sensor sequences were separately used
as input for the CNNs. Therefore, the model could not have
detected asymmetry in the gait pattern, while this is a fall risk
characteristic in, for example, stroke patients [25].

A. Recommendations
In the future, multiple adjustments could be made to im-

prove the model’s performance resulting in a better fall risk
prediction.
When the IMUs are positioned the same in every measure-
ment, all three axes of sensors can be used individually. This
enables the identification of characteristics in every direction
and guarantees that the signals are not zeroes when they are
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out of phase.
Combining the sequences of the sensors on the left and right
ankles makes it possible to let the model identify asymmetry
characteristics, a meaningful fall risk characteristic [25].
Furthermore, only the time domain sequences were used to
develop a CNN, while adding the signals in the frequency
domain to the input signals could be promising. Participants
with a history of falling could have a lower amplitude and
slope of the dominant frequency in the vertical axis and a
higher amplitude and slope in the mediolateral axis compared
to people without a history of falling [26].
It will be of added value to use more iterations or a Grid
search for the optimisation if the circumstances allow it. This
reduces or removes the chance that essential combinations are
missed.
Collecting data during more complex tasks or ADL might give
a better classification performance [7]. When the sensors are
worn during ADL, this gives better insight into the movement
of people in their living environment while performing daily
tasks. Nait Aicha et al. (2018) also studied sensor data
collected during ADL, which showed promising results [13].
For predicting prospective falls, the positioning of the sensors
might also be reconsidered. Wearing a 3D accelerometer on
the lower back showed the capability to predict prospective
falling after a 25m walk test, while a 3D accelerometer on the
shanks did not [27]. When ADL is used as an assessment, the
sensors should be positioned on the lower back [13].
Finally, predicting prospective falls would have higher clinical
relevance than predicting the POMA fall risk classification,
of which the classification performance is questionable. The
model could then be used to predict whether someone is prone
to falling in the coming semester or not. This would make it
easier to decide whether a fall risk prevention program and
what type of program should be started.

V. CONCLUSION

The multiclass CNNs had a lower performance than the
SF and binary classification. All CNNs were better at pre-
dicting high-risk sequences. However, the models had a poor
performance when all three POMA fall risk categories should
have been predicted. Adjustments to the data collection and
CNN optimisation methods should be performed to study
the possibility of predicting fall risk using raw IMU data in
geriatric rehabilitation centres.
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VI. APPENDIX

A. POMA
The POMA measurement tool that can be used to score

each item of the POMA and calculate the total score.

Figure 16: POMA score sheet [11]
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B. Splitting timestamps with resampling

Table IX: An example of a dataframe with identical timestamps.

human timestamp timestamp accel x accel y accel z gyro x gyro y gyro z

2021-03-23 08:57:15.036 1616489835036 -5.6 -15.9 -4.1 1.6 0.2 -1.2
2021-03-23 08:57:15.037 1616489835037 -4.9 -17.5 -3.2 2.3 0.0 -1.9
2021-03-23 08:57:15.038 1616489835038 -2.0 -18.8 -1.3 3.4 -0.0 -3.1
2021-03-23 08:57:15.038 1616489835038 -3.6 -18.9 -1.9 3.0 -0.1 -2.6
2021-03-23 08:57:15.039 1616489835039 -0.6 -15.5 -1.2 3.7 0.5 -3.7
2021-03-23 08:57:15.039 1616489835039 -0.8 -17.5 -1.2 3.6 0.2 -3.5
2021-03-23 08:57:15.040 1616489835040 -0.7 -13.3 -0.6 3.6 0.4 -3.8
2021-03-23 08:57:15.041 1616489835041 -0.8 -10.9 -0.1 3.5 0.3 -3.6
2021-03-23 08:57:15.041 1616489835041 -1.0 -8.8 0.3 3.4 0.1 -3.4
2021-03-23 08:57:15.042 1616489835042 -1.1 -7.3 0.3 3.2 -0.1 -3.2
2021-03-23 08:57:15.042 1616489835042 -1.1 -6.2 0.1 2.9 -0.3 -3.0

Table X: Dataframe after linear interpolation to create equally spaced timestamps from identical timestamps.

human timestamp timestamp accel x accel y accel z gyro x gyro y gyro z

2021-03-23 08:57:15.036000000 1.616490e+12 -5.6 -15.9 -4.1 1.6 0.2 -1.2
2021-03-23 08:57:15.036999936 1.616490e+12 -4.9 -17.5 -3.2 2.3 0.0 -1.9
2021-03-23 08:57:15.038000128 1.616490e+12 -2.0 -18.8 -1.3 3.4 -0.0 -3.1
2021-03-23 08:57:15.038500096 1.616490e+12 -3.6 -18.9 -1.9 3.0 -0.1 -2.6
2021-03-23 08:57:15.039000064 1.616490e+12 -0.6 -15.5 -1.2 3.7 0.5 -3.7
2021-03-23 08:57:15.039500032 1.616490e+12 -0.8 -17.5 -1.2 3.6 0.2 -3.5
2021-03-23 08:57:15.040000000 1.616490e+12 -0.7 -13.3 -0.6 3.6 0.4 -3.8
2021-03-23 08:57:15.040999936 1.616490e+12 -0.8 -10.9 -0.1 3.5 0.3 -3.6
2021-03-23 08:57:15.041499904 1.616490e+12 -1.0 -8.8 0.3 3.4 0.1 -3.4
2021-03-23 08:57:15.041999872 1.616490e+12 -1.1 -7.3 0.3 3.2 -0.1 -3.2
2021-03-23 08:57:15.042500096 1.616490e+12 -1.1 -6.2 0.1 2.9 -0.3 -3.0

Table XI: Dataframe after resampling with 19ms.

human timestamp accel x accel y accel z gyro x gyro y gyro z

2021-03-23 08:57:15.020 -4.25 -18.15 -2.55 2.65 0.00 -2.25
2021-03-23 08:57:15.039 -0.70 -11.10 1.00 -0.90 0.30 0.80
2021-03-23 08:57:15.058 -0.15 -9.80 2.20 -0.40 0.00 0.50
2021-03-23 08:57:15.077 -0.85 -11.70 -0.10 0.75 0.05 -1.00
2021-03-23 08:57:15.096 -0.40 -10.10 2.00 -0.50 0.00 0.70
2021-03-23 08:57:15.115 -0.25 -9.85 -0.00 -0.00 -0.10 0.25
2021-03-23 08:57:15.134 -0.70 -10.50 1.30 -0.90 0.20 0.80
2021-03-23 08:57:15.153 0.10 -9.70 2.55 -0.40 -0.10 0.55

C. Rewritten literature review

19



Predictability of fall risk assessments in community-dwelling older
adults: a scoping review

August 11, 2022
N.F.J.Waterval, C. M. Claassen, F.C.T. van der Helm, E. van der Kruk

Abstract— Background: Fall risk increases with age, and
in adults over 65 years old one-third experiences a fall
annually. Due to the aging population, the number of
falls and related medical costs will progressively increase.
Prediction of whom will fall in the future may help to
timely intervene and reduce the number of falls. Therefore,
the aim of this scoping review is to determine the predictive
value of fall risk assessments in community-dwelling older
adults using prospective studies.
Methods: 37 studies were included that evaluated clinical
assessments (questionnaires, physical assessments, or a
combination), sensor-based clinical assessments, or sensor-
based daily life assessments using prospective study de-
signs. The posttest probability of falling or not-falling was
calculated.
Results: In general, fallers were better classified than non-
fallers. Questionnaires had a lower predictive capability
compared to the other assessment types. Contrary to
conclusions drawn in reviews that include retrospective
studies, the predictive value of physical tests evaluated in
prospective studies varies largely, with only smaller sam-
pled studies showing good predictive capabilities. Sensor-
based fall risk assessments performed best. However,
predictive value of sensor-based assessments has only been
evaluated in relatively small samples. The performance of
sensor-based improves with task complexity; sensor-data of
straight walking was insufficient to predict future fallers.
Conclusion: Fall risk prediction using sensor-data collected
during clinical test or daily living seems to outperform
conventional tests, but their validity needs to be confirmed
by large prospective studies.

Index Terms— Fall risk assessment, prediction, community-
dwelling, older adults, clinical, sensor-based, validity

I. INTRODUCTION

One-third of people above 65-years of age experience a fall annually,
and in more than 50 percent of the cases medical assistance is needed
[1–3].Besides direct injuries, elderly who experience a fall often
suffer from fear of falling [4], reduced activity [5, 6], and a lower
quality of life [5]. Due to the rapidly aging population, fall prevalence
and associated medical cost will progressively increase in the next
decades.

Fall risk factors can be divided into extrinsic and intrinsic risk
factors [7–9]. Extrinsic risk factors are external to the individual
and are also called environmental factors. These factors include
poor lighting, unsafe stairs, slippery floors, a loose carpet, or un-
safe footwear [7, 10]. Intrinsic factors can be divided into age-
related physiological changes, pathological predisposing factors[9],
and drugs[11]. To maintain balance, multiple physiological systems

need to work in synergy, such as the sensory system, central nervous
system and motor system [12]. Most falls in institutionalized elderly
are the consequence of age-related reduction of physiological capacity
[11]. The sensory system loses sensitivity due to a loss of sensors,
while response to stimuli is delayed and less effective due to a
reduction in white and grey matter in the central nervous system
and reduced nerve conduction velocity [12]add citation: van der
Kruk, E., Silverman, A. K., Koizia, L., Reilly, P., Fertleman, M.,
Bull, A. M. (2021). Age-related compensation: Neuromusculoskeletal
capacity, reserve movement objectives. Journal of Biomechanics,
122, 110385.. Intramuscular changes cause reduced muscle force and
speed of force transmission [12]

Several fall risk assessments have been developed which aim to
identify people at risk of falling to enable timely prescription of
fall prevention programs and assistive devices [13]. Clinical fall risk
assessments have been used for decades, and include questionnaires
(e.g., Falls Efficacy Scale-international (FES-i)[14], Activity specific
Balance Confidence (ABC-scale)[15]) or physical tests (e.g., Tinetti
Performance Oriented Mobility Assessment (POMA) [16], Timed
Up and Go test (TUG)[17]). Sensor-based fall risk assessments can
provide a more objective and less time-consuming approach [18, 19].
These assessments can be sensor-based clinical assessments, where
a sensor is used during the performance of a clinical fall risk
assessment[20, 21], or sensor-based activities of daily life (ADL)
assessments, where sensors are used at home during daily life
activities[22, 23]. Either wearable (e.g., inertial measurement unit
(IMU)) or portable sensors (e.g., Microsoft Kinect, pressure sensor)
have been used in this approach [19].

The validity of these fall risk assessments have been described
in various recent reviews, focusing on sensor-based [24, 25] or
clinical fall risk assessments [26]. However, these reviews included
retrospective studies, while to determine the validity and diagnostic
value of fall risk assessments, prospective falls are considered the
gold standard [27]. Consequently, a comprehensive overview of
the predictive capability of both sensor-based and clinical fall risk
assessment based on prospective falls was lacking. Furthermore,
validity of sensor-based clinical and ADL assessments depends on
“sensor location, sensor attachment and the type of assessment chosen
for the recording of sensor data” [25], yet this was not considered
in previous reviews. The primary aim of this review is therefore
to re-examine the validity of fall risk assessments to predict future
falls in community-dwelling older adults when only studies with a
prospective study design are included.

II. METHODS

A. Search strategy

In December 2021 the databases of Scopus, PubMed, IEEE Xplore,
and Web of Science were searched using the following search string:
(fall risk predict* OR fall risk assess* OR fall risk classif* OR fall
risk measur*) AND (”older adult” OR aged OR elder* OR senior*
OR geriatric) in the title, abstract or keywords and in all fields was
searched for (accura* OR sensitiv* OR specific*). The search strings
for the different databases are described in the supplementary material
-A. Results were exported to EndNote (EndNote X9.3.3, Philadelphia,
USA) for further analysis.



Table I: 2x2-matrix

(Recurrent)
fallers Non-fallers Total

Positive assessment TP FP Participants with positive assessment

Negative assessment FN TN Participants with negative assessment

Total Fallers Non-fallers Total participants

TP: true positive, FN: falls negative, TN: true negative, FP: falls positive

B. Selection criteria
Duplicates, conference proceedings, books, and serials were removed
from the results. The search included 50 high-quality review articles
on fall prediction published between 19... and 2020. Therefore, the
selection of high-quality studies was made by searching the references
from these recently published reviews using the following inclusion
criteria: i) inclusion of community-dwelling people with an age
≥60, or the mean age minus the standard deviation is ≥60, ii) use
of prospective methods for the categorization of fallers/non-fallers
or low/high fall risk to avoid recall bias [28, 29], iii) data are
prescribed (or could be determined) on the number of fallers who
were positive or negative for the fall risk assessment or summary
statistics (sensitivity, specificity, or area under the curve (AUC)) and
iv) written in English or Dutch. Studies were excluded if i) assistance
by another person was allowed during the assessment, or ii) the focus
was only on the detection of (near) falls instead of predicting falls.

C. Data extraction
Articles were categorized based on the type of fall risk assessments:
clinical (without sensors) or sensor-based (during clinical or
ADL assessments). The following data were extracted: number of
participants, number of fallers and fall criteria, follow-up time,
percentage female, mean age (±SD), sensitivity, specificity, and
positive and negative likelihood ratio.
For clinical assessments, studies that reported a predictive value
in multivariate analysis and that reported validity measures were
included. The specific assessment and cut-off score were extracted.
For the sensor-based assessments, sensor-type, sensor location, type
of assessment, cut-off score, and validity measures were extracted.

D. Analysis
The precision of fall risk assessments has been quantified with
various measures, such as sensitivity and specificity, number of
true positives, the positive and negative likelihood ratios (LR)
and posttest probability (PoTP) Table II. To compare results, we
calculated the PoTP for each study. The PoTP defines how much
fall risk has shifted compared to pretest probability (PrTP) [30]. For
example, falls have a prevalence of 30% in the population of older
adults, so the chance of falling is 30%. If a fall risk assessment
has a +PoTP of 60%, then a person with a positive assessment
has a 60% chance of falling, while rhe PrTP was 30%. On the
other hand, if the -PoTP is 20%, then the chance someone with a
negative assessment will fall reduces from 30% to 20%. Ideally,
an assessment would have a high +PoTP and a low -PoTP, which
indicates that people with a positive assessment experience a fall,
and with a negative assessment do not fall.
The PrTP in this study is set at 30%, based on the fall risk of older
adults in the general population[1, 2, 30]. The PoTP is calculated
based on the available measures [30].

III. RESULTS

A. Study selection
The combination of the results from IEEE Xplore (n=91), PubMed
(n=152), Scopus (n=1168), and Web of Science (n=256) resulted in

Figure 1: Flowchart of study selection.

1667 articles. After removing 437 duplicates, 1230 articles were left,
of which 1127 were journal articles. After scanning the titles and
abstracts, 50 reviews were included for full-text screening, of which
178 articles were extracted. After the full-text screening of these
articles, 37 prospective studies were included. In Figure 1 the flow
chart of the study selection has been displayed.
Thirty articles focused on clinical assessments, based on question-
naires or physical tests, while two focused on sensor-based ADL
assessments, and five on sensor-based clinical assessments.

B. Clinical assessments without sensors
Thirty articles focused on clinical assessments without sensors,
published between 2000 and 2018. Study characteristics are displayed
in Table III. In total, the studies included 12406 participants of
whom 3084 were classified as fallers based on prospective data.
The follow-up period varied from six months to three years
[31–40]. The most used fall criterion was ”at least one fall during
follow-up”[31–33, 35–39, 41–53].
The 30 studies used a total of 39 different clinical assessments
without sensors (explained in Appendix-B). These assessments
can be classified as questionnaires, questionnaires combined
with physical performance, and only physical performance. The
performance of each of the assessments is displayed in Table IV.

Questionnaires
The predictive value of questionnaires were evaluated by a total of
five studies evaluating four questionnaires; the Fall-risk screening
test [40], Fall Risk for Older People in the Community (FROP-
Com)[50, 51], Geriatric Depression Scale (GDS) [44], and the
combination of the history of falls and independent bathing[54].
The best performance for classification of fallers (+PoTP) based
on questionnaires was the Fall-risk screening test (+PoTP:52%)
[40]. This test was evaluated in one study (n=1285) with a 3-year
follow-up. It demonstrated classification of non-fallers (-PoTP)
of 20% [40]. The FROP-Com was evaluated in two studies with
a 12 month follow-up and had a slightly lower +PoTP, but a
slightly better -PoTP: (+PoTP:46%,-PoTP:17%) (n=344) [50] and
(+PoTP:44%,-PoTP:18%)(n=192) [51]. The +PoTP of GDS was
slighlty better than FROP-Com (48%), yet the -PoTP was worse
(24%)(n=260) [44]. The combination of the history of falls and
independent bathing was studied by one study for one fall in
12-months and classified non-fallers (-PoTP:13%) better than fallers
(+PoTP:39%) (n=192) [54].

Physical performance
Assessments that use a stand-alone physical performance test are the
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Table II: Explanation of validity terms.

Term Definition Calculation

True positive (TP) Correct prediction of fallers sensitivity*fallers

True negative (TN) Correct prediction of non-fallers specificity*(non-fallers)

False positive (FP) Non-fallers that were incorrectly predicted as fallers non-fallers−TN

False negative (FN) Fallers that were incorrectly predicted as non-fallers fallers−TP

Sensitivity Percentage of fallers correctly identified TP
TP+FN

Specificity Percentage of non-fallers correctly identified TN
TN+FP

Positive likelihood ratio (+LR)
Probability that a positive assessment will be expected in a person with

a high fall risk divided by a person with a low fall risk

sensitivity
(1−specificity)

Negative likelihood ratio (-LR)
Probability that a negative assessment will be expected in a person with

a low fall risk divided by a person with a high fall risk

(1−sensitivity
specificity

Pretest probability (PrTP) Prevalence of falls in the population 30%

Pretest odds (PrTO) The odds that the patient has a disorder before the assessment has been performed PrTP
1−PrTP

Posttest odds (PoTO) The odds that the patient has a disorder after the assessment results are known +PoTP=PrTO*(+LR) or -PoTP=PrTO*(-LR)

Positive posttest probability (+PoTP) Chance that a person with a positive assessment will fall (+PoTO)
1+(+PoTO)

Negative posttest probability (-PoTP) Chance that a person with a negative assessment will fall -PoTO
1+(-PoTO)

alternate step test[55], Adjusted maximum step length[46], Berg Bal-
ance Scale (BBS)[34, 47, 53], Dynamic Gait Index (DGI)[39], Func-
tional Gait Assessment (FGA)[39], Five-times sit-to-stand (FTSS)[56,
57], Zur balance scale[53], Getting up from lying on the floor[58],
One leg balance (OLB)[57], Tinetti Performance-Oriented Mobility
Assessment (POMA)[20, 38, 49, 52], Risk assessment[57], stair
ascent[59], Test battery[45], Timed gait[52, 59], TUG[31, 33–39, 56],
and Walking While Talking (WWT)[52].
The TUG had the highest predictive value, but the +PoTP varied from
31% to 91% and the -PoTP from 7% to 29% within the nine articles,
all but one with a follow-up of 6 months Table III. The best scores
(+PoTP:91%, -PoTP:7%) are from a small study (n=35), where the
average of three TUG tests was used [39]. The next best results for
the TUG had +PoTPs of 55% and 48% and -PoTPs of 25% and 15%
using larger sample sizes (n=259 and n=60, respectively) [31, 33].
The studies with the largest sample size for the TUG evaluation
(n=621 and n=868)(≥ 2 falls) had an even lower +PoTP of 42%
and 37%, and -PoTP of 29% and 28%[34, 57].
The second best predictor of fall risk in fallers with a physical
test only was the WWT (complex:+PoTP:79%, -PoTP:22%; sim-
ple:+PoTP:65%, -PoTP:21%)[52]. This test was however evaluated
in a single prospective study with a relatively small sample size
(n=59) and results should therefore be interpreted with caution.
These same limitations (n≤ 94) hold for the studies on Zur balance
scale (+PoTP:74%, -PoTP:16%)[53], FGA (FGA)(+PoTP: 71%, -
PoTP:0.00%)[39], the DGI (+PoTP: 64%, -PoTP: 0.00%)[39], the
classification tree (+PoTP:53%, -PoTP:15%)[36], and the test battery
(+PoTP:27%, -PoTP:33%)[45].
The POMA was verified in four studies, but in distinct forms: the
complete short assessment (full POMA) [20, 38], the balance part
of the short assessment only (14-item balance assessments)[20, 52],
and the balance part of the long assessment only (9-task balance
part )[49]. The different forms has comparable posttest probabili-
ties, respectively: The full POMA (n=180 +PoTP:50%, -PoTP:27%
[38], n=131 +PoTP:63%, -PoTP:15% [20]), 14-item balance assess-
ments (n=225 +PoTP:38%,-PoTP:20% [52], n=131 +PoTP:65%, -
PoTP:20% [20]) and the nine task balance part (n=59 +PoTP:48%,-
PoTP:18%)[49].
The risk model for recurrent falls, performance-based FRAT
(≥6)(+PoTP:62%, -PoTP:23%) (n=362)[55], and Getting up from ly-
ing on the floor (+PoTP:55%, -PoTP:25%)(n=307) [58] demonstrated
good predictive value in large cohort studies. Tiedemann et al. (2010)

compared several cut-off scores for the performance-based FRAT (0-
1,2-3,4-5, ≥ 6) and reported the best posttest probabilities to be ≥
6 [55] .
Timed gait was used in different tasks. In the study of Verghese et
al. (2002) (n=59), the duration of a participant to walk 6 meters,
turn, and return at a normal walking speed was measured[52], while
Tiedemann et al. (2008) (n=347) timed a 6 meter straight walk at a
normal pace[59]. The timed gait with turn showed a slightly better
predictive value (+PoTP:52%, -PoTP:24%)[52] than without the turn
(+PoTP:40%, -PoTP:24%)[59].
All other physical performance based assessments had a +PoTP of
less than 50% Table III.

Questionnaires combined with physical performance
Nine different assessment tools combining questionnaires and phys-
ical tests were evaluated: the Downton Fall Risk Index (DFRI)[35],
Risk model for recurrent falls[60], classification tree for recurrent
falls[34], mJH-FRAT[43], the AGS/BGS/AAOS Fall screening algo-
rithm[48], performance-based FRAT (based on the five domains PPA
and questions on fall history and medication use)[55],the clinical
screening tool (questions and one leg balance test (OLB))[41], and the
combination of the Physical Performance Assessment (PPA) and FES-
I[42]. All combinations of questionnaires and physical assessments
contained history of falls as one of the questions, except in the
combination of the PPA and FES-I[42].
The best faller identification procedure was the clinical screening tool
combined with the OLB with a +PoTP of 70% and -PoTOP of 26%
(n=1759) [41]. This is over 30% higher and 3% lower +PoTP and
-PoTP respectively compared to the OLB alone [41]. The best com-
bination to classify non-fallers was the DFRI, evaluated by one study
with a follow-up of 12 months (n=116) who found a -PoTP:0%, yet
also a very low +PoTP of only 30% [35]. Three combinations resulted
in +PoTP larger than 60%: The Risk model for recurrent fallers had a
+PoTP of 66% and a -PoTP of 17% (n=287) (fall criterion: ≥ 2 falls
follow-up 6 months)[60], the classification tree for recurrent falls
had the same +PoTP (66%), but a higher -PoTP (23%) (n=868) (fall
criterion: ≥ 2 falls follow-up 9 months)[34], the performance-based
FRAT had a +PoTP (62%) and comparable -PoTP of 23% (n=362)
(fall criterion: ≥ 2 falls follow-up 12 months)[55]. The mJH-FRAT
(+PoTP: 59%, -PoTP: 14%)[43], the AGS/BGS/AAO Fall screening
algorithm (+PoTP: 52%, -PoTP:21%)[48], and the combination of
the PPA and the FES-I (n=600) (+PoTP: 37%, -PoTP: 23%) (fall
criterion: ≥ 2 falls follow-up 12 months) each had a +PoTP below
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60%.

C. Sensor-based assessments
In total, seven sensor-based assessments articles were included,
of which five evaluated the performance of sensor-based clinical
assessments, and two the performance of sensor-based ADL
assessments. The articles were written between 2013 and 2018, and
1306 participants were included, of whom 695 were classified as
fallers, see Table V. The fall criterion of at least one fall during
follow-up was mostly used[21, 22, 61–64]. Three articles had a
follow-up time of 6 months[62–64], three articles had a follow-up
time of 12 months [20, 22, 61], and one article had a follow-up time
of 24 months[21].
The seven studies used Inertial Measurement Units (IMUs)
(accelerometer, gyroscope) placed on a variety of locations on the
body Figure 2; Two studies combined the accelerometer with an
insole pressure sensor under the plantar foot[63, 64].
The performance of each assessment is displayed in Table VI.

Figure 2: Locations of all wearable sensors of the included sensor-based
assessments.

Sensor-based clinical assessments
The performance of identification of fallers using sensor-based clin-
ical assessment is dependent on the task, the sensor location, feature
extraction, and the classification method.

The tasks used in the prospective sensor-based studies were
standardized walking tests [20, 61–64], of which four only used
data from straight walking, and one straight walking and turns
during a 6-minute walk test (6MWT)[62], see Table VI. The latter,
using accelerometers on the shank, analysed straight walking and
turns separately and combined. The data during a turn (+PoTP:59%,
-PoTP: 17%) and turn and straight walking (+PoTP:58%, -PoTP:
18%) had a higher predictive value than straight walking alone
(+PoTP:33%, -PoTP:26%) [62].

Howcroft, Koftmann, and Lemaire (2017 and 2018) compared
sensor locations for optimal classification of prospective falls.
They analyzed single-task (ST) and dual-task (DT) walking with
sensors on the head, pelvis, ankles, and with a pressure insole
[63, 64]. Based on their prospective study result they conclude that
in DT the pelvis accelerometer had the best single-sensor predictive
capability, while in ST the head location performs better. Overall,
their conclusion was that the multi-location sensors outperformed
the single-sensor approach. Bizovska et al. (2018) used sensors on
the trunk and shanks and found that the sensors on the shanks did
not contribute to a distinction between fallers and non-fallers.

Although the studies used similar sensors, feature extraction and
classification methods differed. Drover et al. used the maximum,

mean, and SD of acceleration in all directions of the three axes,
acceleration frequency, and ratio of even/odd harmonics from sensors
on the shank [62]. They found that the best overall machine learning
method was a random forest classifier and five turn-based features
selected with select-five best method from cross-validation.Doi et al.
found that the harmonic rate in the vertical direction of the sensor
on the upper trunk was the discriminate factor for a 15m straight
walk (+PoTP:65%, -PoTP:14%) [61]. In the study of Bizovska et al.
(2018), [20], the trunk medial-lateral (ML) acceleration in short term
(slopes of mean log divergence curve between 0 and 0.5 stride) and
Lyapunov exponents (stLE) had the best predictive power during
a 25m straight walk (+PoTP:60%, -PoTP: 19%). Note that the
non-sensor based POMA balance score (+PoTP:65%, -PoTP:20%)
and the POMA total score (+PoTP:63%, -PoTP:15%) each had a
better posttest probability value compared to the Trunk stLE ML
alone. Howcroft, Koftmann, and Lemaire (2017 and 2018) found
the sensors on the head and right shank to be discriminative for the
ST-walking assessment using a vector machine (SVM) (+PoTP:33%,
-PoTP:28%)[63, 64]. For the DT walking assessment, the sensor
on the head, pelvis, and left shank showed discriminative power
(+PoTP: 34%, -PoTP:27%) as determined using a neural network.
In the study of 2018, the insole pressure and sensor on the left
shank made the distinction between faller and non-faller by using a
support vector machine: +PoTP: 65%, -PoTP:20%[64].

Sensor-based ADL assessments
Two studies used sensors in daily living; one for three days[23] and
one for a week[22]. Both studies used a fall criterion of 2 falls in
6 months and accelerometer data on the lower back (lumbar spine).
Weiss et al. combined the 3-day measurements with the Dynamic
Gait Index (DGI) in 71 participants of whom 12 were fallers. Fallers
and non-fallers could be classified by the total activity duration,
DGI, and the anterior-posterior acceleration range and width,
extracted from the frequency in the power spectral density[23]. The
combination of DGI and 3-days ADL had a sublime result of +PoTP
of 100% and a -PoTP of 10%).[23].
Ihlen et al. used the phase-dependent generalized multiscale entropy
(PGME) to define time series irregularities in 303 participants.
They investigated the high-frequency intra-step modulation of trunk
acceleration signals of walking[22] and found a +PoTP of 74%
and a -PoTP of 14% [22]. Combining the fall history, conventional
gait, and demographic variables with the sensor resulted in a worse
+PoTP (64%) and better -PoTP (8%).

IV. DISCUSSION

The aim of this review was to provide an overview of the predictive
value of current fall assessment tools in community-dwelling older
adults. Assessment tools were classified as either questionnaires,
physical performance, a combination of questionnaires and physical
performance and sensor based assessment. For all classification
groups, in general, fallers are better classified than non-fallers.
Questionnaires have a lower predictive value compared to the other
groups, while sensor-based assessment seem to perform best, but
have mainly been studied in relatively small samples.
As expected, questionnaires have a lower predictive capability
than the other assessment types, no study found a +PoTP value
above 52%. The predictive value was improved by combining
questionnaires with physical performance tests and include fall
history in the questionnaires. All combined assessments analyzed
for this review used fall history except for the PPA in combination
with the FES-I. The performance of the PPA increased with addition
of the history of falls and medication use as was seen in the
performance-based FRAT. However, taking fall history into account
has its limitations as it can not be used to predict elderly at risk of
becoming fallers. Therefore, although easy to administer, the use of
questionnaires to predict future falls is not sufficient.
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Table III: Study characteristics of clinical assessments.

Abbreviations: AGS/BGS/AAOS: American Geriatrics Society/British Geriatrics Society/American College of Orthopaedic Surgeons, AmaxVL: adjusted
maximum valid step length, AmeanVL: adjusted mean valid step length, BBS: Berg Balance Scale, DFRI: Downton Fall Risk Index, F: faller, FES-I: fall
efficacy scale international, FGA: functional gait assessment, FROP-Com: fall risk of older people in the community, FTSS: Five-times sit-to-stand, GDS:
geriatric depression scale, IF: injurious falls/fallers, mJH-FRAT MF: multi-falls/fallers, NF: Non-faller, OLB: one-leg balance test, POMA: Tinetti Performance
Oriented Mobility Assessment, PPA: physical performance assessment, SF: single faller, TUG: Timed Up and Go test, WWT: walking while talking.
*Age, fal history, reaction time, movement velocity, standing on a firm plate with eyes open
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Table IV: Performance of clinical assessments.

AGS/BGS/AAOS: American Geriatrics Society/British Geriatrics Society/American College of Orthopaedic Surgeons, AmaxVL: adjusted maximum valid step
length, AmeanVL: adjusted mean valid step length, BBS: Berg Balance Scale, DFRI: Downton Fall Risk Index, F: faller, FES-I: fall efficacy scale international,
FGA: functional gait assessment, FROP-Com: fall risk of older people in the community, FTSS: Five-times sit-to-stand, GDS: geriatric depression scale, IF:
injurious falls/fallers, mJH-FRAT, MF: multi-falls/fallers, NF: Non-faller, NFPP: no fall prevention program, OLB: one-leg balance test, POMA: Tinetti
Performance Oriented Mobility Assessment, PPA: physical performance assessment, SF: single faller, TUG: Timed Up and Go test, WWT: walking while
talking.
*Age, fal history, reaction time, movement velocity, standing on a firm plate with eyes open
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Table V: Overview study characteristics sensor-based assessments

6MWT:6-minute walk test, Accel: accelerometer, ADL:activities of daily living, DGI: dynamic gait index, DT:dual-task, INF: infinity, MF: multi-faller,
PGME:phase-dependent generalized multiscale entropy, SF: single faller, ST: single-task, stLE ML:short term Lyapunox exponents, TUG: Timed-Up and Go.

Table VI: Results of sensor-based assessments.

6MWT:6-minute walk test, ADL:activities of daily living, DGI: dynamic gait index, DT:dual-task, INF: infinity, MF: multi-faller, PGME:phase-dependent
generalized multiscale entropy, SF: single faller, ST: single-task, stLE ML:short term Lyapunox exponents, TUG: Timed-Up and Go.

Popular physical fall assessment tools such as TUG, BBS, and
FTSS have been evaluated by multiple studies, but do not show high
predictive value for prospective falls. All studies using the TUG,
except for one, showed a +PoTP of 55% or lower, indicating a poor
fall prediction capability. The one study with a higher performance
(+PoTP of 91%) only included 6 fallers and is therefore not
representative [39]. Although the BBS showed promising outcomes
in a small sampled study (n=76)[53], in two larger studies (n=187
n=868), the BBS showed a +PoTP between 36 and 48% and a
-PoTP between 24 and 28% for varying cut-off scores [34][47],
while the FTSS scored even worse. These results are in contrast
with the review of Lusardi et al. (2017), who concluded that the
BBS, TUG, and FTSS are currently the most evidence-supported

functional measures to determine individual fall risk. However, this
review included retrospective studies[30], for which much better
associations between TUG, BBS and FTSS and falls have been
reported, as demonstrated by Beauchet et al. (2011)[27]. Based on
the prospective studies it must be concluded that the predictive value
of TUG, BBS, and FTSS is poor, and should not be used as primary
tool to assess fall risk. Furthermore, this discrepancy between
prospective and retrospective studies indicates the importance of
using prospective study designs to evaluate fall risk assessment tools.

Besides these common tools, risk model for recurrent falls,
performance-based FRAT, and Getting up from lying on the floor
are physical assessments that showed promising predictive values
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(+PoTP> 55%) in moderate sample sizes (N between 145 - 303).
However, for the performance-based FRAT the predictive value
depends largely on the cut-off score used [55]. In the future,research
should aim to specify the best cut-off scores, and their validity and
reliability in different settings (e.g. environment, age of population)
before using them to predict fall risk in daily practice.

Sensor-based assessments demonstrate promising predictive
value, although results depend on the task complexity, location of
the sensor, and feature extraction and have only been evaluated
in small samples (N < 131) with consequently a low number of
fallers [25]. Straight walking does not yield enough discrimative
information to predict fallers, as with sensor data from the +PoTP
was below 40%. More complex tasks, like including a turn in
walking, or dual-task walking, showed better predictability, which is
in line with conclusions of Bayot et al. (2020) [65]. Furthermore,
adding complexity to the task seems better than adding sensors,
as indicated by the finding that adding sensors to a double task
(talking) while straight walking does not improve the predictive
value beyond adding turns to the double task [63][52]. Focusing on
ADL, which generally are complex tasks, rather than sensor-based
clinical tests therefore seems promising. The sensor-based ADL
assessments show promising results (+PoTP > 74%), but require
further large-scale prospective studies.

Limitations & future work
The strength of this review is that only studies with a prospective
design were included to determine the predictive value. As shown
for the TUG, BBS and FTSS including retrospective studies may
lead to an overestimation of the predictive value of the different
tools. A disadvantage of our scoping review is that only studies
mentioned in one of the 28 high-quality and recently published
reviews were included. Additionally, the method to detect falls
differed from a calendar to record falls [49] or contact by phone
every 12 days to few months [22]. Differences in accuracy of the
fall detection method might affected the outcomes, and limit the
direct comparison between studies [30].As our review suggest that
sensor-based fall-risk assessment potentially outperform traditional
assessments, large, high quality prospective research in this field
is needed. As no studies after 2020 were included in our selected
reviews, we searched from that date on and found that since then
only two sensor-based prospective fall prediction studies have been
published, both with a relatively small sample size (n < 74) Future
research should aim to determine the best location of the sensors,
task to perform with the sensors and whether sensors worn in ADL
can predict falls. This could not only make fall prediction better, but
potentially less time-consuming as no physical test or questionnaires
need to be performed.

V. CONCLUSION

Traditional questionnaires and physical test to assess fall risk, have
limited predictive value when evaluated in prospective study designs.
Use of sensors during assessment or ADL might improve fall
risk prediction, although this warrants large prospective studies to
determine the validity of the sensor location and task complexity.
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VI. APPENDIX

A. Complete search strategy
Scopus
TITLE-ABS-KEY((”fall* risk assess*” OR ”fall* risk predict*” OR
”fall* risk classif*” OR ”fall* risk measur*”) AND (”older adult”
OR elder* OR aged OR geriatr* OR senior*)) AND (ALL(accura*
OR sensitiv* OR specific*))

PubMed
(”fall risk assess*”[Title/Abstract] OR ”fall risk pre-
dict*”[Title/Abstract] OR ”fall risk classif*”[Title/Abstract] OR ”fall
risk measur*”[Title/Abstract]) AND (”older adult”[Title/Abstract]
OR ”elder*”[Title/Abstract] OR ”aged”[Title/Abstract] OR
”senior*”[Title/Abstract] OR ”geriatric*”[Title/Abstract]) AND
(”accura*”[All Fields] OR ”specifi*”[All Fields] OR ”sensitiv*”[All
Fields])

IEEE Xplore
((”All Metadata”:”fall risk assess*” OR ”All Metadata”:”fall risk
predict*” OR ”All Metadata”:”fall risk classification” OR ”All
Metadata”:”fall risk measur*”) AND (”All Metadata”:”older adult”
OR ”All Metadata”:elder* OR ”All Metadata”:aged OR ”All
Metadata”:geriatr* OR ”All Metadata”:senior) AND (”Full Text
Metadata”:accura* OR ”Full Text Metadata”:specificity OR ”Full
Text Metadata”:sensitiv*) )

Web of Science
(TS=(”fall risk assess*”) OR TS=(”fall risk predict*”) OR TS=(”fall
risk classif*”) OR TS=(”fall risk measur*”)) AND (TS=(”older
adult”) OR TS=(elder*) OR TS=(aged) OR TS=(geriatric*) OR
TS=(senior*)) AND (ALL=(specific*) OR ALL=(sensitiv*) OR
ALL=(accura*))

B. Explanation of different assessments
Adjusted maximum step length[46]
Ruler tape was attached to the floor in front of the participant. The
participant is instructed to step out maximally with the preferred
leg while maintaining the stance leg in the initial position. When
returning to the initial position, the stepping foot can step back in
several small steps. To find out the preferred leg, the participant can
make two sub-maximal steps with each leg. After that, the test is
conducted five times with the preferred leg. The arms are allowed
to move freely but not touch or grab anything.
The distance between the toes of both feet is the maximum step
length. The step length was adjusted for body height.

American Geriatrics Society/British Geriatrics Society/American
College of Orthopaedic Surgeons (AGS/BGS/AAOS) Guidelines
for Fall Prevention screening algorithm[48]
According to the AGS/BGS/AAOS Guidelines for Fall Prevention
screening algorithm, people with a history of one fall should receive
an assessment for balance and gait impairment. If the participant has
balance/gait impairment, fall evaluation is required. If the participant
has a history of multiple falls, fall evaluation is needed, and no gait
and balance assessment are necessary. People without a history of
falling should be reviewed yearly. The algorithm is displayed in
Figure 3

Alternate step test (AST)[55]
In this test, the participant places the whole foot onto a step (18 cm
high and 40 cm deep). The participant should alternate between the
right and left foot for eight repetitions. The test should be completed
as fast as possible, and the time to complete the task is measured.
This test requires speed, strength, and balance.

Berg balance scale (BBS)[34, 47, 53]
The BBS is a balance scale that contains 14 items focussing on

Figure 3: AGS/BGS/AAOS fall screening algorithm according to Muir et al.
(2010a)[48].

sitting and standing[39]. Every item should be scored on an ordinal
scale from 0-4[47]. Zero indicates an inability to perform the task,
and four means that the task is performed independently. Examples
of the tasks are standing from a chair and standing with feet
together[39].

Classification tree[36]
The classification tree is a combination of the following nine tasks:
straight walking and visuospatial clock task, walking with turns and
naming animals, walking with turns and counting backward in 3s,
avoiding stationary obstacles and naming animals, avoiding a moving
obstacle, and carrying a cup, TUG and having a cup, stair descent
and naming animals, WWT-complex, a combination of straight
walking, visuospatial clock task, and holding a cup (TT test)[36].
For each test, the time is measured. In addition, the secondary task
performance was recorded and assessed as total answers/second
(performance speed) and errors/total answers (accuracy).

Classification tree for risk of recurrent falling[34]
The classification tree for risk of recurrent falling is based on the
history of falls, BBS, type of housing, and alcohol use. The amount
of falls in the past three months (≥2) leads to the other parts of
the flow chart: BBS score (cut-off: 30), type of housing (private
residential/other types of housing), and alcohol in the past six
months (yes/no). The whole flow chart is displayed in Figure 4.

Clinical screening tool[41]
The clinical screening tool consists of 6 items of categorical
variables: sex, living alone (in couple, family, alone), Osteoarthritis,
history of falls (0, 1, 2, 3 and more), psychoactive drug use, and
balance impairments[41]. Balance impairment is measured by the
change of position of the arms during the first 5 seconds when
performing the OLB test.

Downton Fall Risk Index (DFRI)[35]
Eleven fall risk items: history of falls in preceding 12 months
(reported by the patient), use of tranquilizers or sedatives, diuretics,
antihypertensive drugs, antiparkinsonian drugs, antidepressants
(determined by drug prescriptions), visual impairment (moderate
to severe impairment or blindness, and needing glasses daily),
hearing impairment (moderate to severe impairment or deafness),
limb impairment (extremity paresis or muscle weakness), cognitive
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Figure 4: Classification tree for predicting the risk of recurrent falls at six
months follow-up[34].In each node the following information is displayed
from top to bottom: node number, number of subjects in that node, incidence
of recurrent faller in that node.

impairment (MMSE<=23), and walking ability[35]. A participant
can obtain a score between 0-11, where a score ≥3 indicates a high
risk of falls.

Dynamic Gait Index (DGI)[21, 39]
For the DGI, the participant performs the following tasks: walking at
normal, fast, and slow speeds, walking with horizontal and vertical
head turns, walking over and around obstacles, and ascending and
descending stairs[39]. All items are rated on a 4-level ordinal scale.
A lower score indicates greater impairments. A score of =¡19
indicates an increased risk of falls.

Fall risk screening test[40]
The fall risk screening test for recurrent fallers consists of fall
history, urinary incontinence, visual impairment, and use of
benzodiazepines[40]. The score of each item is the regression
coefficient multiplied by five and rounded off to the nearest integer.
The sum of the score of each item determines the end score (max.
= 15), which is related to the fall risk.

Fall Risk for Older People in the Community (FROP-
Com)[50, 50]
The FROP-Com consists of 26 questions, covering 13 risk factors:
history of falls, medication, medical condition, feet and footwear,
cognitive status, continence, nutritional status, environment,
functional behavior, function, balance, gait/physical activity[50]. The
questions should be answered on a dichotomous or ordinal scale
from 0-3. The overall score is the sum of the score of each question
resulting in a maximum score of 60. A higher score indicates a
greater risk of falling.

Fall Efficacy Scale International (FES-I)[42]
The participant is asked about the concern about falling during
ADL[42]. A higher score indicates a greater concern about falling.

Functional Gait Assessment (FGA)[39]
The FGA is a modification of the DGI to improve the reliability
of the DGI and reduce the ceiling effect seen with the DGI in
patients with vestibular disorders[39]. Participants are asked to walk
at regular, fast, and slow speeds, with vertical and horizontal head,
turns, with eyes closed, over obstacles, in tandem, backward, and
ascending and descending stairs. All items are scored on a 4-level
ordinal scale. The total score ranges from 0-30, with lower scores
indicating more significant impairments.

Five-times sit-to-stand (FTSS)[55, 56]
Participants are asked to rise from a chair five times as quickly as
possible with their arms folded[55, 56]. The chair had a height of
43 cm in the study of Tiedemann et al. (2010) and a height of 45
cm in Buatois et al. (2008).

Geriatric depression scale (GDS)[44]
The participant is scored on questions of the 15 items GDS
(GDS-15). A score of ≥6 is suggestive of depression[44].

Getting up from lying on the floor[58]
Participants lay down on the floor in a supine position with their
hands on the floor and their head on a pillow[58]. The participant
was asked to get up from lying on the floor without aid at their own
time. The outcome was whether the subject managed (1) or not (0).

Modified John Hopkins Fall Risk Assessment Tool (mJH-
FRAT)[35]
The JH-FRAT is initially developed for assessing fall risk in acute
care. In the mJH-FRAT, seven areas are evaluated: patient age, prior
fall history, elimination, medications, use of patient care equipment,
mobility, and cognition[35]. The total score categorized patients into
three risk groups: low risk (0-6), moderate risk (7-13), high risk
(14-35).

One leg balance test (OLB)[56]
The participant is instructed to remain upright on one leg without
support for at least 5 seconds. The participant failed if he/she could
not keep standing.

Performance-based FRAT[55]
The tests are based on the five major physiological domains of the
Physiological Profile Assessment (PPA). The domains are vision,
lower limb sensation, lower limb strength, reaction time, and standing
balance[55]. For vision, a low (10%) contrast visual acuity measured
at a distance of 3 m was used. Lower limb sensation was tested by
using a single Semmes-Weinstein-type pressure monofilament on the
ankle. For lower limb strength, reaction time, and standing balance,
the sit-to-stand, alternate step test, and near tandem stand test
were used. In addition, the fall history (at least one fall in previous
year) and use of medication (four of more, psychotropic) were asked.

Tinetti Performance Oriented Mobility Assessment
(POMA)[20, 38, 49, 52]
The long version of the POMA consists of 24 items, while the
frequently used short version consists of 16 items. Both POMAs
consist of a balance and a gait part using walking, sitting, and
standing positions. The long version consists of 14 items for balance
(max score 24) and ten items for gait (max score 16)[49]. Raiche et
al. (2000) and Bizovska et al. (2018) studied the balance part of the
long version of the POMA[20, 49]. Trueblood et al. (2001) studied
the full short version, containing balance (max score=16) and gait
(max score=12) part[38]. Verghese et al. (2002) studied the nine
task balance part of the short version[52].
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Physiological Performance Assessment[42]
The five major physiological domains of the Physiological Profile
Assessment (PPA) are visual contrast sensitivity (Melbourne edge
test), proprioception (measured with a lower limb-matching task),
quadriceps strength (measured isometrically in the dominant leg
while the participant is seated with the hip and knee flexed at 90°,
simple reaction time (measured with light as stimulus and a higher
press as a response), and postural sway (measured with a sway meter
recording displacements of the body at the level of the pelvis while
the participants stand on a foam rubber mat with eyes open)[42].

Risk assessment[57]
The risk assessment of Buatois et al. (2010) consists of the FTSS
(cut-off>15 s), TUG (cut-off >12 s), and the OLB (cut-off ¡5
s)[57]. This assessment results in a score from 0 to 16. A higher
score gives a higher fall risk.

Risk model for recurrent fallers[60]
Risk model for the prediction of recurrent falls (≥2) containing:
gender, ≥2 fall in the previous year, depression (SCL90≥22), hand
dynamometry (man≤22 kg, woman ≤12 kg), abnormal postural
sway[60]. The regression coefficient is multiplied by five and
rounded to the nearest integer. The sum of the scores can determine
the risk of falling.

Six-minute walk test(6MWT)[62, 63]
During the six-minute walk test, the participant walks along a
hallway making straight left and right turns around two cones spaced
100 ft (30.34 m) apart[62]. In clinical assessments, the distance that
was covered is measured.

Stair ascent[59]
In the stair ascent test of Tiedemann et al. (2008), the participant
had to ascent eight steps (15cm high, 27.5 cm deep)[59]. The time
was measured from the moment the patient raised the foot of the
floor to climb the first step until both feet were placed on the eighth
step.

Test battery[45]
The test battery consists of 9 items: standing balance (0-6
performance scale), stepping ability (time required), general function
(time required), reaction time (averaged time to step), general
leg strength (time required), dual-task (speed reduction, gait
variability (autocorrelation), gait cadence (steps per second), vision
(acuity/contrast/field (0-7))[45].

Timed gait[59]
During the 6-meter walk test of Tiedemann et al. (2008), the
participant was asked to walk 6 meters at their speed[59]. The timed
gait test of Verghese et al. was performed over two times 6 meters,
tus included a turn[52].

Timed Up and Go (TUG)[21, 31, 33–39, 56]
The TUG is a functional mobility test where the participant should
rise from a chair, walk 3 meters, turn, walk back, and sit down
again[33, 35]. The time a participant needs to perform the test
is measured. A longer time indicates worse balance and mobility
performance[33].

Walking while talking test (WWT)[52]
Participants walk 20 feet, turn and return (40 feet in total) while
reciting letters of the alphabet for the simple version [52]. During
the complex WWT, participants recite alternate alphabet letters (a,
c, e. . . ). The duration of the walking is timed.

Zur balance scale[53]
In this test, a piece of Styrofoam (30 kg/m3) is covered tightly with
a piece of fabric[53]. The participant performs the Romberg stance
and Tandem stance with the eyes opened and closed and vertical

and horizontal head movements. These tests are once performed
on the floor and once on the Styrofoam plate. The score given per
item is the time maintaining the balance and the number of head
movements with a maximum of 10 s. The end score is the number
of head movements multiplied by two and the total time divided by
2.
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