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CHAPTER 16

A processing chain for estimating crop
biophysical parameters using temporal
Sentinel-1 synthetic aperture radar
data in cloud computing framework

Dipankar Mandal''?, Vineet Kumar?, Juan M. Lopez-Sanchez®, Y.S. Rao',
Heather McNairn®, Avik Bhattacharya' and Scott Mitchell®

'Microwave Remote Sensing Lab, Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay,
Mumbai, Maharashtra, India; 2Department of Agronomy, Kansas State University, Manhattan, KS, United States;
3Department of Water Resources, Delft University of Technology, Delft, the Netherlands; “Institute for Computer Research,
University of Alicante, Alicante, Spain; *Ottawa Research and Development Centre, Agriculture and Agri-Food Canada,
Ottawa, ON, Canada; °Geomatics and Landscape Ecology Laboratory, Carleton University, Ottawa, ON, Canada

1. Introduction

Operational crop growth monitoring is necessary to realize yield forecasts and map
inventories at a local and regional level. To achieve such objects, certain countries
have engaged with several operational groups to develop monitoring systems including
Monitoring Agricultural Resources (MARS) (Baruth et al., 2008), Forecasting Agricul-
tural output using Space (FASAL) (Parihar et al., 2006), CropWatch (Wu et al., 2014),
and Integrated Canadian Crop Yield Forecaster (ICCYF) (Chipanshi et al., 2015). These
crop monitoring systems function within a growing period through the collection of
timely information on plant conditions, meteorologic data, and yield expectations. Com-
plementary synoptic information about spatiotemporal variations in crop growth and
phenology stages can be provided using satellite imagery. With decades of investigation
and advancement, researchers well-instituted and advocated an operational crop moni-
toring and yield forecasting framework in the optical regime (Mulla et al., 2013; Khamala
etal., 2017; Fritz et al., 2019; deFourny et al., 2019). These frameworks frequently derive
either measurable growth indicators (e.g., leaf area index [LAI], plant water content,
chlorophyll absorption) or vegetation indices (e.g., normalized difference vegetation in-
dex, enhanced vegetation index) as by-products.

Operational frameworks that rely on satellite data from optical sensors are restricted to
data acquisition under clear sky states. A cloudy scene may keep a continuous time series
from being achieved for crop development. On the contrary, synthetic aperture radar
(SAR) measurements are seldom affected by sky conditions including cloud cover. Indeed,
it has gained attention for agricultural applications because of the sensitivity of the micro-
wave signal to dielectric and geometrical characteristics of the target. However, radar
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backscatter coefficients or other secondary parameters (such as scattering power decompo-
sition parameters) (Cloude et al., 1996) cannot be used directly in existing optical-driven
models.

A reasonable trail can be followed by obtaining similar vegetation metrics (e.g., LAI or
biomass) from SAR measurements. These metrics have been generated from optical sensors
as operational products (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)
vegetation products). We can achieve better yield estimates from agricultural monitoring
frameworks by assimilating SAR data-derived crop biophysical parameters along with
phenological developments. Such intense measurements have become possible with accel-
erated efforts by several space agencies to expand the constellations of satellites by commis-
sioning the Sentinel-1 series, Satélite Argentino de Observacion COn Microondas
(SAOCOM), Radarsat Constellation Mission (RCM), and the upcoming NASA-ISRO
Synthetic Aperture Radar (NISAR) and Radar Observing System for Europe - L-Band
(ROSE-L). The individual observation covers a wide swath, which would facilitate the pro-
duction of within-season crop inventories with reasonable accuracy.

In the SAR literature, the semiempirical water cloud model (WCM) (Attema and Ulaby,
1978) is recognized for realizing SAR scattering phenomena within vegetation targets owing
to its relative simplicity and inversion for these vegetation descriptors (Graham, 2003; Steele-
Dunne etal., 2017). Several studies have been undertaken to estimate biophysical parameters
from SAR data for difterent crops (Lievens et al., 2011; Prevot et al., 1993; Chakraborty
et al., 2005; Dabrowska et al., 2007; Inoue et al., 2014; Beriaux et al., 2015; Hosseini
et al., 2015, 2017; Mattia et al., 2015; Fieuzal et al., 2016; Mandal et al., 2021). Although
these experiments are specific to crop and test sites, it recommends feasible schemes to invert
the WCM to retrieve crop biophysical variables with adequate accuracy and scalability.

Nevertheless, an estimation of biophysical parameters via the WCM inversion scheme
may lead to an ill-posed problem. Such cases have been potentially addressed with the
iterative optimization (IO) and lookup table (LUT) search techniques (Prevot et al.,
1993; Mandal et al., 2021). However, the traditional methods impartially deliver realistic
estimations at the expense of high computational support when optimizing such inver-
sion problems (Mandal et al., 20192). Recognizing the inherent concerns with conven-
tional methods (IO and LUT search) for deployment at larger scales, ill-posed inversion
problems are customarily solved by data-driven nonparametric models to produce a
stable and optimum solution (Beriaux et al., 2011; Verrelst et al., 2012; Mandal et al.,
2019b). In a cross-site experiment setting, Mandal et al. (2019a) reported the superiority
of machine learning regression approaches compared with traditional ones for the inver-
sion of WCM in terms of accuracy and efficient computation time. Data-driven nonpara-
metric models in the machine learning regression family can provide a proper method for
‘WCM inversion in operational applications (Chauhan et al., 2018; Mandal et al., 2019a).

Operational crop monitoring benefits from Earth observation (EO) data with high
temporal revisit and extended spatial coverage. In this context, open data through the
C-band Sentinel-1 SAR constellation mission adheres to EO specifications for global
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agricultural monitoring (Whitcraft et al., 2019). It has become important to evaluate
model inversion methodologies to test their accuracy for operational use (GEOGLAM,
2012). Nevertheless, the dense acquisition of Sentinel-1 data created several challenges in
operational employment in terms of the data volume and the requirements of computa-
tional infrastructure (Wagner, 2015; Ali et al., 2017). To build efficient platforms for
regional-scale mapping, efforts have been made by difterent space agencies by inducting
the enactment of commercial cloud computing platforms. For instance, Sentinel-1 data
are open on Google Earth Engine (GEE) clouds as well as Amazon Web Services.
Similarly, for the upcoming NISAR mission, the Alaska Satellite Facility Distributed
Active Archive Centers (DAAC) is exploring a preliminary prototype of a cloud-based
system (NISAR' Science Team, 2018). This approach is currently being tested with
Sentinel-1 (approximately 5 GB of data volume per frame) as a surrogate for NISAR
data (approximately 25 GB per frame).

The GEE enables users to fetch and process Sentinel-1 data instantly on the cloud
platform as an alternative to downloading and processing in a local workstation (Gorelick
et al., 2017). Several studies showcased the utility of GEE and the efficiency of custom-
built processing pipelines for crop classification and mapping (Torbick et al., 2017; Xiong
etal., 2017; Shelestov et al., 2017; Mandal et al., 2018), LAI products from MODIS data
(Campos et al., 2018), and crop production evaluation (Lobell et al., 2015). However,
Sentinel-1 data have not been fully explored in GEE for the delivery of crop inventories.

The overarching goal of the investigation is to appraise the potential and transfer-
ability of the model inversion method from a point to a regional scale with Sentinel-1
data in a GEE processing chain. In this chapter, we introduce a comprehensive evolution
of a processing chain, GEE4Bio, in a cloud platform to estimate crop biophysical variables
using Sentinel-1 products. Apart from the inventory map generation, coupling the
Google Colab with the GEE permits us to achieve WCM calibration for individual crops
and to assess the retrieval accuracies. The inversion of WCM is implemented into the
GEE platform. Instead of a traditional LUT search and iterative approaches, the Random
Forest (RF) regression is used as the inversion approach to retrieve the plant area index
(PAI) and wet biomass using information from both the co- and cross-pol (VV-VH)
channels of Sentinel-1. Furthermore, PAI and wet biomass maps for different crop
growth stages are generated in the same processing chain.

2. Methodology
2.1 Study area and dataset

We conducted this investigation over the Joint Experiment for Crop Assessment and
Monitoring JECAM) test site for SAR Inter-Comparison Experiment in Carman,
Manitoba (Canada), as given in Fig. 16.1. The Carman test site includes
~26 x 48 km” of the area and is designated by diverse agricultural crop types and soil
conditions. Among several crop types, wheat, oats, soybean, canola, and corn are mostly
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Figure 16.1 Study area over the Joint Experiment for Crop Assessment and Monitoring—Carman test
site in Canada. The sampling fields (mint green polygons) are overlayed on the o, Sentinel-1 image
acquired on Jul. 19, 2016. A layout of 16 sampling locations within a sampling field is highlighted.

grown during the summer. Ground data were collected nearly simultaneously with sat-
ellite overpasses during the SMAPVEX16-MB campaign in 2016 (Bhuiyan et al., 2018).

Throughout the SMAPVEX16-MB campaign, crop and soil in situ data from 50
fields were measured in two definite periods (i.e., June 8—22 and July 8—22, 2016).
During this campaign window, measurements in most crop fields showed plant growth
from an early to a fully vegetative stage. The nominal size of each field was approximately
800 m x 800 m. In each sampling field, soil moisture data were gathered from 16
sampling locations, arranged in two parallel transects along the row direction, as shown
in Fig. 16.1. Soil moisture measurements were taken at these locations with three repli-
cate measurements using Steven’s Hydra Probes during both periods of the campaign
(Bhuiyan et al., 2018). Among these 16 sampling locations, three were selected for
vegetation sampling. In each sampling site, plant biomass (dry and wet), PAI
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(m*> m™?), and crop phenological stages were recorded by destructive and nondestructive
methods. On the contrary, PAI measurements were estimated using digital hemispherical
photography and postprocessing images in CANEYE software. A detailed description of
the test site and in situ measurement protocols can be found in SMAPVEX16-MB
campaign reports (McNairn et al., 2016). We also used the annual crop inventory map
developed by Agriculture and Agri-Food Canada (Davidson et al., 2017), which is
open in the GEE Data Catalog. We used three Sentinel-1 acquisitions for this research,
as listed in Table 16.1.

The preprocessing of these Sentinel-1 measurements to produce SAR backscatter
intensities for each sampling location is described in detail in Section 2.2. Extracted back-
scatter intensities 0, and @, are enumerated with corresponding in situ measure-
ments for each acquisition date. These tabulated datasets are subsequently employed to
calibrate and validate the WCM. From this entire feature set, the calibration data split
is performed by selecting approximately half of the data randomly; the remainder of
the data are used as an independent validation dataset for each individual crop. The first
dataset is used in the WCM calibration, and the other for validation to evaluate the
performance of the inversion method.

2.2 GEE4Bio: Sentinel-1 data processing chain in Google Earth Engine for
biophysical parameter estimation

The processing chain involves two elemental segments considering the cloud computing
environments within a unified framework: Earth Engine mode and Google Colab. Pro-
cessing steps counted on Google Colab (Hoyos et al., 2006) are the calibration of WCM,
creation of the LUT, and validation of inversion for each crop type. The inversion of the
WCM and the generation of biophysical inventory maps are implemented on the GEE
cloud platform.

The GEE can seamlessly manage the processing steps from time series of Sentinel-1
data fetching to model inversion. It typically encompasses five actions: (1) Sentinel-1
data fetching, (2) cloud filtering, (3) image preprocessing, (4) vegetation modeling and

Table 16.1 Sentinel-1 acquisitions and in situ measurement dates during the campaign.

Sentinel-1 image Beam Incidence angle In situ measurement
acquisition date mode range Orbit dates

June 13, 2016 w 31.32—35.24 Ascending | June 13, June 15
July 7, 2016 Iw 31.32—35.24 Ascending | Jul. 5, July 6

July 19, 2016 w 30.23—34.84 Ascending | Jul. 17, July 20

ITV, interferometric wide swath mode.
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Figure 16.2 Schematic workflow of GEE4Bio processing chain for plant area index (PAI) and wet
biomass retrieval. GEE, Google Earth Engine; PAI, plant area index; RFR, Random Forest regression;
WCM, water cloud model.

calibration, and (5) model inversion and crop biophysical parameter map generation.
The schematic workflow of the GEE4Bio processing chain for biophysical parameter
estimation is presented in Fig. 16.2.

2.2.1 Sentinel-1 data fetching

We fetched the Sentinel-1A Ground Range Detected (GRD) products in the GEE
processing Web application interface directly from the GEE Image collection. The image
collection in GEE contains the calibrated and ortho-corrected products, which are

preprocessed from the Single Look Complex data using the Sentinel-1 Toolbox
(ESA, 2015).

2.2.2 Cloud filtering
The GEE image collection of Sentinel-1 data contains multiple metadata attributes
regarding imaging properties including orbit pass type (ascending or descending),
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acquisition mode (IW, etc.), and polarization. In the cloud filtering step, we select
required images from the GEE image collection using associated attributes by employing
the Metadata filtering function. Subsequently, spatial subsetting is performed followed by
sorting images by date of acquisition using the filterDate argument.

2.2.3 Image preprocessing
The GEE image collection products of Sentinel-1 backscatter intensities are represented
in dB scale. Hence, for further processing, we converted the data products to natural po-

wer scale by employing 10419 conversion. Afterward, a 3 X 3 boxcar averaging sliding
window filter is employed to degrade the speckle effect. The type and window size of
the filter are determined according to the high field sizes and homogeneous cropping
pattern (Robertson et al., 2018). The locations of in situ measurements are overlayed
on these backscatter intensity images and ¢ values are extracted both in VV and VH
channels.

2.2.4 Vegetation modeling and calibration

The WCM enables the simulation of radar backscatter intensities from the vegetation—
soil system using semiempirical models (Attema and Ulaby, 1978). The form of WCM
adapted for backscatter calculations is (Eq. 16.1):

>) + D exp(CM,) X exp< -

2BV,
cos 8

o = AVlE cos 0(1 —exp( —
(16.1)

The vegetation descriptors are presented as 1’1 = L and 1, = W, where L and W
are the PAI and wet biomass, respectively. The WCM parameters (A, B, C, D, and E) are
calibrated for each crop type individually in the Google Colab Web platform. The model
parameters are determined using the nonlinear least square optimization employing the
Levenberg—Marquardt algorithm (More, 1978). The WCM is calibrated for both co-
and cross-pols for all crops employing the same in situ measurements. The model calibra-
tion realizations are evaluated in terms of the correlation coefficient (r) and root mean
square error (RMSE) with the WCM simulated ¢~ and observed o .

2.2.5 Model inversion and crop biophysical parameter map generation

After calibration of the WCM, we determine the PAI and wet biomass by inverting the
WCM. We employ a regression-based method to solve the ill-posed inversion case. The
model inversion chain encompasses three principal actions: (1) WCM forward modeling
and LUT generation, (2) regression model development, and (3) derivation of PAI and
wet biomass maps.
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The forward modeling denotes the generation of response values from an augmented
dataset employed to train the regression model. We use the aggregates of crop descriptors
from the calibration data in forward WCM to produce the corresponding o to form the
LUT. In the Google Colab platform, a LUT is created using these vegetation parameters
and the corresponding ¢ for individual crop types. These LUTs are then put in tables
independently for each crop.

The LUT elements are then employed as training data to constitute the RF regression
(RFR) model in the GEE cloud. Radar data derived ¢ in both the co-pol and cross-pol
channels are introduced as RFR predictors. On the opposite side, the PAI and wet
biomass measurements are employed as RFR targets. The formulation of RFR is
well-established in machine learning theories, which often indicate RF as an ensemble
learning technique (Breiman, 2001). It uses a large set of independently produced
decision trees from the given training datasets. To build each tree, a random bootstrap
sampling 1s conducted, which comprises 67% of the training samples. The remaining
33% of the training sample (often defined as out-of-bag [OOB] samples) is employed
to get an error estimate for this subset. After building such multiple decision trees, the
prediction is made by averaging the results of all trees, which can provide more accurate
and stable predictions than individual decision trees. Another key concept of RF is the
selection of random subsets of predictor features for node splitting. At each node, the
best split is chosen to form the succeeding child nodes. The numerical value of each child
node is taken as the mean of samples in that node (Liaw and Wiener, 2002). In this work,
based on the OOB error rate, 300 trees are considered for RF regression, and the node
impurity is measured with the mean square error.

During the inversion step, the PAI and wet biomass values are estimated using the
RFR model trained by the LUT elements for each crop. Afterward, PAI and wet biomass
inventory maps are generated over the test area in GEE using Sentinel-1 acquisitions and
the annual crop class map.

3. Results and discussion
3.1 Water cloud model calibration

The calibration of the WCM is performed for VV and VH polarizations as previously
discussed in Section 2.2.4 for the wheat, soybean, canola, corn, and oat crops. This
step results in 10 different equations. The model parameters (i.e., A, B, C, D, E, and
F) for each combination of crop and polarization are estimated along with the significance
test analysis (F statistics and P values).

Pvalues for all WCMs are <0.05, indicating a good fit for the dataset. Before forward
modeling and LUT generation, the goodness of fit of calibrated WCM is assessed using
the calibration dataset for each crop type. Backscatter intensities are simulated for the
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Table 16.2 Error estimates of simulated and observed backscatter (o) for calibration data.

w VH
Crop r Root mean square error r Root mean square error
Wheat 0.80 0.026 0.62 0.007
Soybean 0.64 0.034 0.68 0.006
Canola 0.87 0.051 0.83 0.010
Oats 0.86 0.036 0.62 0.004
Corn 0.66 0.026 0.79 0.006

calibration dataset using the model parameters estimated for both VV and VH polariza-
tions and individual crops, and the model accuracies are given in Table 16.2.

The correlation coefficients (r) in Table 16.2 confirm that the VV polarization is
better calibrated for wheat, oats, and canola than VH polarization. The higher errors
for soybean and corn canopies are likely a function of their more random (less vertical)
canopy structures. Evidence of this lies in the comparatively lower errors for VH relative
to VV polarizations for all of these crops.

3.2 Water cloud model inversion and validation

WCM inversion is achieved with VV and VH backscatter intensities from the validation
dataset, as predictors in the RFR model. The accuracy of crop biophysical parameter
estimates is assessed on a 1:1 plot against corresponding in situ measurements. Results
are shown in Figs. 16.3 and 16.4 for all individual crops. Validation samples from three
acquisition dates are presented in the 1:1 plot with cyan, green, and red dots, respectively.

3.2.1 Validation of plant area index

The estimated and ground measured PAIs for all five crops are presented in Fig. 16.3. The
correlative plots for wheat indicated a high value of r = 0.83 between estimated and
measured PAIs with an RMSE of 1.75 m® m™>. For wheat fields, the ground measured
PAI ranges from 0.75 to 8.90 m® m ™~ as plants advanced from leaf development to the
fruiting stages. Estimates from the first acquisition (of Sentinel-1) follow the 1:1 line well.
However, PAI values indicate an underestimation when wheat PAI is greater than
6.0 m*> m > through the end of the heading stage. During this phenologic stage, PAI
does not change with further wheat development. Rather, radar backscatter is governed
by scattering from wheat heads (Mcnaimn et al., 2004). The saturation of PAI estimates
during the second, and third acquisitions is apparent in Fig. 16.3.

For soybean, the measured PAI varies from 0.2 to 4.6 m* m~~ with development
during the SMAPVEX-16 campaign comprising growth stages from leaf development
through flowering. The estimated and observed PAIs follow the 1:1 line well during
these development stages, providing a correlation coefficient and RMSE of 0.91 and
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red, respectively. RMSE, root mean square error.

0.64 m”> m ™2, respectively. Nonetheless, a greater spread (1.2 m® m™?) is noted for high
PAI values when the soybean canopy closes at the end of side shoot formation. These
disparities in PAI estimations may result from the differences in plant density in certain
soybean fields. From the in situ measurements, we note that the number of plants along
the row was higher for some fields (50 plants/m) relative to other fields (12 plants/m).
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PAI assessments of canola (Fig. 16.3) indicate higher errors (RMSE of 1.32 m’m )
relative to soybean, even though the correlation is significant (r = 0.89). During the early
vegetative growth stage of canola, an overestimation in PAI can be observed, potentially
explained by the dominant response from the underlying soil. Soil moisture and surface
roughness have important roles during the early stage of crop development. However,
in situ surface roughness measurements reported low surface roughness (average root
mean square height and correlation length of 1.1 and 8.5 cm, respectively) over the sam-
pling fields. Alternatively, soil moisture values deviate owing to disparity in soil texture in
several fields (Bhuiyan et al., 2018), which might cause variations in backscatter inten-
sities. With the advancement of canola to inflorescence emergence and flowering, an
underestimation is apparent with PAI estimates. This underestimation at this period
(PAI >53m”>m ) is likely due to saturation of the C-band (5.6 cm wavelength)
wave with a high accumulation of plant biomass throughout the flowering and podding
stage of canola.

The validation outcomes for oats show that although variations in terms of accuracy
(r = 0.90 and RMSE = 1.25 m* m™ %) are modest compared with wheat, some differ-
ences over the 1:1 line are apparent. These agreements in results are likely due to higher
similarities in the structures of these two cereal crop types. As with wheat, oats exhibit an
erectophile leaf geometry during the early tillering phase. However, a difference is
observed during the period of plant inflorescence when oat heads emerge. Unlike the
formation of spikelets, as occurs during the inflorescence of wheat, oat plants form pan-
icles during inflorescence. These panicles are attached to the central axis via branches and
mantled by large paper-like covers (glumes), which contain two to three florets
(Bleiholder, 2001). Thus, separation between these two crops with second acquisition
estimates might be possible, as observed in Fig. 16.3. An underestimation is apparent
during the third acquisition period when fruit development starts. During this period,
PAI and biomass trends seldom increase proportionately for cereal crops.

As observed in Fig. 16.3, the PAI estimates of corn obey the 1:1 line reasonably well
for the entire period of corn growth starting from leaf development to tasseling. The
in situ measurement of PAI ranges from 0.1 to 5.6 m* m™ > during the field campaign
window. A high correlation coefficient (0.94) and low error (RMSE = 0.74 m* m™?)
are noted. Similar sensitivity of the estimated LAI (using VV-HV polarizations com-
bined) with in situ measurement was reported for corn in Hosseini et al. (2015), using
RADARSAT-2 data. The larger variations in the estimation of PAI above 4.1 m* m >
(i-e., during the tasseling of corn) may be due to increased randomness in the canopy.

3.2.2 Validation of wet biomass
Estimates of wet biomass are shown in Fig. 16.4. The in situ measurement of wet biomass
for wheat ranges from 0.4 to 4.8 kgm™ > throughout crop development. We obtain a

high correlation coefficient (r = 0.92) with an RMSE of 0.52 kg m ™2, which is lower
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than the PAI evaluation errors. However, the boundary of estimation is spread
(0.9 kg m™~?) across the 1:1 line when wet biomass exceeds 2.5 kg m™>. Hosseini and
McNairn (2017) also summarized such results when estimating wheat total biomass using
VV and HV channels.

The behavior of wet biomass estimates (Fig. 16.4) of soybean results in a high corre-
lation coefficient (r = 0.88) and low RMSE of 0.29 kg m ™ >. Early in the season, soybean
biomass is low. An overestimation of PAI was observed during the leaf development
stage. Early in development, the soybean canopy closure is very low (PAI <
1.48 m®> m™?) and exposed soil between rows has a greater contribution to backscatter
(Wiseman et al., 2014).

The correlation coefficient (r) and RMSE are 0.91 and 0.86 kg m ™2, respectively, for
canola. The model estimates diverge after the flowering stage, when the measured
biomass is >4.0 kg m~>. The sensitivity of radar backscatter to the accumulation of
canola biomass throughout leaf development to the flowering stage is likely. At later
growth stages, we also observed saturation of the C-band effect on estimates. In contrast
to PAI, the overall estimation is marginally better in the case of wet biomass predictions.

The in situ measured wet biomass of oats varies from 0.076 to 5.5 kg m ™. In contrast,
the estimates range from 0.05 to 4.0 kgm 2. The r is 0.95 for wet biomass with an
RMSE of 0.54 kgm 2. The wet biomass estimates follow the 1:1 line better than
PAI. The wet biomass estimates of corn follow the 1:1 line (Fig. 16.4) with r = 0.87
and an RMSE of 1.01 kg m™ 2. Despite this, the deviation in wet biomass estimations
is comparatively higher as plants advance to the tasseling stage.

3.3 Generation of plant area index and wet biomass maps using GEE4Bio

The WCM inversion algorithm in GEE is used to produce PAI and biomass maps of the
Carman test site with an area of 26 x 48 km? using VV and VH backscatter intensities
for Sentinel-1 acquisitions on three dates. High-resolution (20-m) PAI and biomass maps
for the three acquisition dates are shown in Figs. 16.5 and 16.6. Both the spatial and
temporal variability in plant growth are noted in these inventory maps. The GEE4Bio
processing chain takes about 40 s to derive these inventory maps from a single acquisition
of Sentinel-1.

The ground data indicate that most of the wheat and oat fields were at tillering
through the second week of June, with a mean wet biomass of 1.02 kg m™ > and PAI
of 3.44 m> m ™. Similar results are evident from Figs. 16.5 and 16.6. On the other
hand, soybean seeding was completed through this period, and the plants were in their
unifoliate to third trifoliate phenology stage (Agriculture, 2016). Therefore, the biophys-
ical parameter maps derived from the Jun. 13 image indicate very low PAI and biomass
levels.
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98°0'0'W
Figure 16.5 Plant area index (PAl) (m? m~2) inventory maps over the test site for different acquisitions
of Sentinel-1. Other land cover classes are masked on the inventory maps.

Wet Biomass (kg m2)

97°50'0"W

Figure 16.6 Wet biomass (kg m?) inventory maps over the test site for different acquisitions of
Sentinel-1. Other land cover classes are masked on the inventory maps.

The PAI and wet biomass estimates in most of the canola fields indicated low values
(0.7 m* m~? and 0.5 kg m™~?) compared with the cereal crops on June 13. During this
period, canola plants were in the emergent to early rosette growth state, which aftects
the soil contribution, primarily radar backscatter. A similar effect of soil components
(surface roughness and moisture content) is well-explained during the early phase of
crop development when vegetation cover is low over the soil surface (Baghdadi
et al., 2017). However, temporal changes in surface roughness are moderate after the
plant starts vegetative growth. Except for specific cultivation practices (harrowing or
tillage) or a heavy rainfall event, roughness seldom changes during the early seeding
time.

Most cornfields were in their primary vegetative stage during the second week of
June, and the average PAI and wet biomass was 0.36 m>m > and 0.3 kgm >,
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respectively. However, the PAI and wet biomass maps overestimate both the PAI and
wet biomass by 0.5 m”*m > and 0.7 kg m™~ >, respectively. These outcomes agree with
the validation results presented in Figs. 16.3 and 16.4. This overestimation is likely
due to the low cropping density of corn plants and the significant effect of the soil
component.

The inventory maps for succeeding acquisition dates indicate an increase in both the
PAI and wet biomass values of all crops. Rapid growth is evident in canola with an

increased PAI and wet biomass up to 5.7 m”*m > and 4.2 kg m™ 2, respectively. For
-2

comn, the average growth was observed with a PAI and wet biomass of 4.1 m* m
and 3.5 kg m ™%, respectively. During the third week of July, we observe pick values
of PAI and wet biomass irrespective of the crop types, as they advanced to the end of their
vegetative growth (Agriculture, 2016).

4, Conclusion

This chapter demonstrates a unified processing chain for end-users to estimate PAI and
wet biomass exploiting Sentinel-1 GRD data on the GEE platform. The RFR model
1s used in this framework for inversion of the WCM. In this cloud computing framework,
applicability of the RFR-based inversion method is evaluated for five major crops using
Sentinel-1 dual-pol (VV and VH) SAR data. The crop inventory maps showcased the
potential by capturing spatial variability between crop fields over the growing period,
leveraging production estimates.

To go from scientific applications to operational monitoring, the proposed processing
chain, named GEE4Bio, needs to be rigorously tested with more crop types for applica-
tion to a wider range of cropping systems. A goal of the JECAM SAR Inter-Comparison
Experiment is to gather data from regional test sites and diverse cropping systems. This
experiment would benefit from the efficiency of a GEE cloud computing platform.
Moreover, this representation of a cloud-based framework produces insights into possible
prototypes for managing high volumes of data, as anticipated from planned operational
SAR missions. The results presented here demonstrate the usefulness of GEE for regional
biophysical parameter retrieval. Such an approach could significantly advance the oper-
ational use of SAR for agricultural monitoring.
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Code availability

Extract by points code in GEE. https://code.carthengine.google.com/d767149¢290192a0b17538
5e62bea544.

GEE code for mapping. https://code.carthengine.google.com/32e06a03325faa2e6720¢ 1 1af0e58ad2.

Google Colab ipynb link. https://colab.research.google.com/drive/1TUGQuSZHuZplZfUKJoPVAVvrple-
Y QcAM?usp=sharing.
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