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Abstract

This thesis develops a continuous time framework to value deferred taxes using

Black and Scholes (1973) type option pricing techniques. The valuation renders a

market consistent pricing procedure, which avoids the necessity of subjective ac-

counting principles. Our framework is flexible enough to value deferred taxes like

carry forward, carry back or liabilities arising from temporary differences relying

solely on quantities observed in the market. A simulation study over multiple time

horizons shows that carry forward value is negatively influenced by leverage, whe-

reas carry back and tax liability values increase. Two empirical applications serve

to illustrate the practical use of our model: the loss absorbing capacity of deferred

taxes for European insurers and an estimate of BP’s loss of deferred taxes following

the U.S. tax overhaul.

Keywords: Deferred tax valuation, martingale pricing, optimal capital structures,

loss absorbing capacity of deferred taxes
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Introduction

In this thesis we describe the market consistent valuation of deferred taxes.
Deferred taxes are balance sheet items of undertakings with a certain his-
tory of fiscal profits and losses. They reflect the advantage or disadvantage
of such undertakings to pay less or more taxes compared to a hypothetical,
similar firm without any history of fiscal profits and losses.

Deferred taxes are commonly valued according to accounting standards,
which recognize and value them using a single deterministic scenario. This,
however, does not reflect the contingent characteristics of deferred taxes that
their payoff, i.e. the tax advantage or disadvantage, is a non-linear function
of the future fiscal profits and losses of the undertaking. In this thesis we
construct a model to take account of this non-linear payoff by using basic
option pricing techniques. Thereby, the model yields pricing formulas that
depend on market observable parameters, resulting in market consistent va-
luations of deferred taxes.

The market consistent valuation of deferred taxes differ from the com-
mon valuations according to the accounting standards in the following ways:

• The market consistent valuation of deferred tax assets (DTA) and
deferred tax liabilities (DTL) is typically lower than those obtained
with accounting methods. This is because a market consistent valu-
ation reflects scenarios in which DTA’s/DTL’s do not materialize,
while a single deterministic scenario is more or less all or nothing.

• Profits in previous years and the possibility in a tax regime to
carry back future losses to previous years also results in a DTA

ix



x Introduction

under the market consistent valuation principles. However, this
does not result in a DTA under conventional accounting standards.
The reason for this comes from the deterministic scenario, which
only considers a profit situation in which the carry back potential is
not being realized. On the contrary, a market consistent valuation
does attach value to the advantage in negative scenarios.

• Accounting standards (partially) recognize DTA’s if an undertaking
can prove future profitability using subjective assumptions. Market
consistent valuation uses market data to encompass all future sce-
narios and thereby solely relies on objective parameters observed
in the market.

The main novelty of this thesis is to attach a market consistent valu-
ation to deferred taxes arising from carry forward, carry back and tem-
porary differences in a continuous time framework. Hereby, we find that
market consistent valuation techniques yield significantly different estima-
tes in comparison with conventional accounting valuation methods. This
is because the market consistent approach takes all future profit and loss
scenarios into account. Moreover, we show that extending the firm’s activi-
ties for an additional year, may, in some cases, lead to a value reduction of
DTA’s. The reason is that undertakings with an initial tax benefit expect
to pay more taxes after the DTA is settled, compared to a similar underta-
king that doesn’t have the initial tax advantage. In addition, we show that
the market consistent valuation of deferred taxes is influenced by leverage.
Higher leverage reduces the value of carry forward, whereas it positively in-
fluences the value of carry back and DTL’s.

The valuation of deferred taxes is in close liaison with tax shield pricing,
as the tax advantage of coupon payments are contingent on profit streams.
The option component that arises herein leads to pricing formulas similar to
DTA’s/DTL’s, in lieu of the Modigliani-Miller theorem, which is contained
as a special case. Additionally, we develop a credit model that dovetails tax
benefits and bankruptcy cost. The tax benefits and loss in case of bank-
ruptcy prompts the existence of optimal capital structures, which depend
on the lifespan of the company. The credit model yields lower agency cost in
the asset substitution problem compared to the Merton (1974) credit model,
since debt and equity holders do not have a split claim on the assets.

In a final step, our methodology is applied to empirical investigations.
The model in this thesis supports how insurance undertakings can value their
deferred taxes according to the market consistent valuation principles of
Solvency II. On top of that, the model provides insights in the loss absorbing
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capacity of deferred taxes, an element that lowers the Solvency II capital
requirements. The market consistent valuation model indicates the following
regarding the loss absorbing capacity of deferred taxes:

• DTL’s indeed have loss absorbing capacity; when an insurance,
or any other undertaking suffers a loss, part of this loss is being
compensated by a lower market valuation of the DTL after the
loss.

• DTA’s may have loss absorbing capacity if the undertaking has
sufficient potential, resources and/or own funds to generate future
profits; in that case the value of the total DTA increases after a loss.
However, if insufficient own funds are available, such an underta-
king would experience a decrease in its DTA. In these situations,
a reduction of the Solvency II capital requirements for European
insurance undertakings does not reflect the actual loss due to a
decrease in their DTA.

We find that the loss absorbing capacity is, on average, less than extant es-
timates and under some circumstances can even be negative, since so much
potential is lost after a severe (negative) shock. Not only is the market
consistent valuation of deferred taxes important for insurers, but it is also
relevant to mergers and acquisitions, when buyers have to value an un-
dertaking. The common accounting valuation of deferred taxes does not
necessarily reflect the market price of the tax advantage or disadvantage.

The remainder of this thesis is structured as follows. Chapter 1 intro-
duces the non-linear payoff structure of various deferred taxes over one time
period. The basic ideas are extended to include leverage and multiple time
horizons in Chapter 2. In Chapter 3, we outline the stochastic underpin-
nings of the pricing approach, which are used in Chapter 4 to obtain the
market consistent DTA/DTL values. Chapter 5 covers two empirical appli-
cations: the loss absorbing capacity of European insurers and BP’s loss of
deferred taxes following the U.S. tax overhaul. In addition, agency problems
are discussed. Finally, Chapter 6 concludes and suggests further directions
of research.

Literature overview

Current valuation methods of deferred taxes are generally based on GAAP
(Generally Accepted Accounting Principles) or IAS12 (International Ac-
counting Standard, Income Taxes). Sansing (1998) remarks that these ap-
proaches tend to overestimate the true value of deferred taxes appearing on
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financial statements, as they are future benefits but not discounted. Moreo-
ver, the appropriate discount factor is an open question, since the materia-
lization of deferred taxes is not risk free. Sansing (1998) derives a discount
factor for deferred tax liabilities, however assuming an average tax liability,
thereby ignoring the dynamics over longer periods of time. De Waegenaere
et al. (2003) obtain closed form formulas for tax carry forward, including
additional parameters like the duration period. This framework leads to the
surprising conclusion that the market-to-book ratio of carry forward can ex-
ceed one, depending on the skewness of the underlying income distribution.
This suggests that discounting deferred tax assets may not always be ap-
propriate. But, De Waegenaere et al. (2003) use the stringent assumption
that income is generated in perpetuity, which is rather unrealistic. Empi-
rical studies of deferred taxes are conducted by Givoly and Hayn (1992),
Amir et al. (1997) and Ayers (1998). Givoly and Hayn (1992) use a linear
regression approach, where abnormal returns are regressed on the reduction
in deferred tax liabilities during a period of tax reforms. Hereby, Givoly and
Hayn (1992) find that investors discount the liability based on likelihood
and timing of the settlement. Amir et al. (1997) use a regression approach
as well, but splitting the deferred taxes into seven categories, which renders
a more precise estimate of the influence of deferred taxes on equity. All
regression coefficients of the deferred tax assets are found to be greater than
one, which contradicts the hypothesis that DTA’s ought to be discounted,
as this would imply a regression coefficient between zero and one. A similar
approach and conclusion is reached by Ayers (1998). However, as De Wae-
genaere et al. (2003) point out, this only holds if the disparity between book
and market value is solely due to discounting.

The emphasis in this thesis centers around the valuation of deferred
taxes and their influence on firm value. However, taxes also enact positive
benefits to society that are not taken into consideration, cf. Burda and
Wyplosz (2013) Chapter 18.4.



Chapter 1

Introduction to
deferred taxes

1.1. Fiscal and market consistent accounting

The reason that deferred taxes arise stems from the difference in valua-
tion principles between the accounting and fiscal balance sheet. The fiscal
balance sheet is typically based on historical cost, whereas accounting prin-
ciples are based on a market consistent approach, which values balance sheet
items on the basis of current market prices. To get a better understanding of
the matter at hand, we look at a fictitious example with market consistent
accounting principles and historical cost as fiscal valuation principles. Con-
sider a company without any fiscal history, so that the market consistent
and fiscal account are exactly the same as in the T-account below.

Market consistent Account

Stock 100 Equity 100

Fiscal Account

Stock 100 Equity 100

Next, assume that the company’s assets rise in value to 120 due to an
increase of stock investment, so that a profit of 20 is realized. However, this
profit is not recognized in the fiscal account, because stocks are valued on
the basis of historical costs. The company now faces a deferred tax liability
(DTL), because it does not yet pay taxes, but is obliged to do so in the
future. Suppose that the tax rate τ = 25%, so that the amount of tax
paid on profit would be 5. This amount needs to be reserved on the market

1



2 1. Introduction to deferred taxes

account, because it needs to be paid in the future. The fiscal balance sheet
remains unchanged. The new situation leads to the following T-account.

Market consistent Account

Stock 120 Equity 115

DTL 5

Fiscal Account

Stock 100 Equity 100

Now, suppose a negative shock occurs, reducing total assets by 40%. As
a result, total assets fall to 72, which means that the earlier profit of 20
and DTL of 5 disappear. When selling the assets, a loss of 28 would be
realized. This loss can be carried forward to offset the next 28 (taxable)
profit, creating a tax advantage of 28τ = 7. This amount is put on the
market consistent account as a deferred tax asset (DTA). The new situation
leads to the following T-accounts.

Market consistent Account

Stock 72

DTA 7

Equity 79

Fiscal Account

Stock 100 Equity 100

Because of deferred taxes, the loss is not 48 but 36. This is the loss
absorbing capacity of deferred taxes (LAC DT), because part of the loss
can be transferred to the tax authority, thereby mitigating the overall loss.
However, the DTA can only be settled if future profits are sufficient to
claim the full amount from the tax authority. Two of the most widely
used accounting principles, GAAP and IAS12, require that a firm proves
it is likely to make sufficient profit in the future to materialize the DTA.
If not, the DTA will not be recognized on the balance sheet. This is the
conventional way in which undertakings value DTA’s/DTL’s and use them
to change equity. This valuation method is not correct, since one does not
incorporate the possibility that future profits are unable to compensate the
entire DTA (or DTL). Since these DTA’s/DTL’s are conditional claims on
the tax authority, we can interpret them as a financial option. Methods from
financial option pricing theory can be employed to find a market consistent
value of deferred taxes.
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1.2. Carry Forward

Carry forward is the allowance to carry forward losses to offset future taxable
income. An undertaking recognizes that losses can be seen as an asset, since
part of the loss will result in lower tax payments compared to a similar
undertaking without any tax history. The extent to which an undertaking
is able to settle the carry forward in the future determines the eventual
value of this type of DTA. Throughout this thesis we make the following
important assumption about corporate tax payments, which is needed to
model the contingent characteristics of DTA’s/DTL’s.

Assumption 1.1. Net profit is measured by the difference in asset value
over two consecutive periods. Taxable income consists of net profit if this is
a positive quantity and is zero otherwise.

Remark 1.2. This assumption essentially implies market consistent ac-
counting introduced in Section 1.1, except that we exclude tax exempted
earnings, like income outside tax jurisdiction. These items are excluded for
modeling purposes. Moreover, the assumption leads to a convenient analy-
tical interpretation in subsequent results.

Consider a company with no fiscal history, so that it does not have any
deferred taxes on the balance sheet. Let At denote the asset value of a
company at time t before taxes are levied. At t = 1, a firm pays taxes only
if A1 > A0 (Assumption 1.1), in which case the total asset value is reduced.
Let τ denote the tax rate, then the asset value at t = 1 after tax can be
expressed as

(1.1) Ã1 = A1 − τ(A1 −A0)+.

Here Ãt denotes the value of an asset after taxes in period t and (x)+

, max(x, 0). The second term in (1.1) has the same structure as the payoff
of a European call option with strike A0.1

Consider a firm with an identical balance sheet, but with the additional
benefit of carry forward as a deferred tax asset. Carry forward can be used
to offset taxable income in case net profit is positive. Let CFt be the loss
carry forward available in year t. Then in period t = 1 we have the following
post-tax asset value

(1.2) Ã1 = A1 − τ(A1 −A0 − CF1)+.

An undertaking with carry forward pays taxes from the moment A1 > A0 +
CF1, which differs from a firm without having this tax asset, as they pay
taxes as soon as A1 > A0. The asset value after tax (1.2) versus (1.1) is

1In particular, this is an at-the-money call option.
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shown in Figure 1.1. The difference between the two asset values becomes
relevant as soon as A1 > A0, corresponding to the moment that a firm
without fiscal history has to pay taxes. The difference between the two
graphs is what fundamentally determines the DTA (or DTL) value.
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Figure 1.1. Asset value after tax. Blue line denotes asset without
fiscal history with A0 = 100, while orange line depicts asset with 40
carry forward.

1.3. Carry Back

Tax carry back is the possibility to receive a refund of corporate tax paid in
the past, due to current losses. The maximum amount that can be claimed
as refund equals the current loss times the tax rate, but may be less when
historical profits are insufficient to offset the current loss. Carry back renders
the firm with an immediate cash flow that (partly) compensates current loss.
Carry back expires worthless when an undertaking makes profit in period
one. This gives rise to the following asset value of a firm in period one

(1.3) Ã1 = A1 + τCB1 − τ(A1 −A0 + CB1)+,

where CBt denotes the loss carry back in year t. The asset value after tax
(1.3) and (1.1) are shown in Figure 1.2. The value of the DTA manifests itself
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when the company incurs a loss, in which one observes a positive difference
between the two graphs. This difference vanishes as soon as A1 is bigger
than or equal to A0, which corresponds to a factual profit. In this situation,
there is no loss that can be carried back anymore.
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Figure 1.2. Asset value after tax. Blue line denotes asset without
fiscal history with A0 = 100, while orange line depicts asset with 40
carry back.

1.4. DTA from temporary differences

Temporary differences arise as a consequence of the difference between the
applicable and fiscal valuation principles. Fiscal accounting principles are
typically based on historical costs. Initially, assets are valued at their market
price on the fiscal balance sheet. If increases in the market price are not
reflected on the fiscal balance sheet, the undertaking does not need to pay
taxes on this profit now, but only when it sells. In other cases, like for fixed
income, the tax advantage materializes over the lifetime of the fixed income
asset. As a result, an undertaking can make an accounting profit/loss, which
is not recognized yet under fiscal accounting principles. An example is given
in Section 1.1. A deferred tax asset arising from temporary differences might
occur due to shocks in the asset value. In this case, the loss incurred now
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can offset future taxable income. Hence, the after-tax value of a firm having
a DTA from temporary differences is equal to

Ã1 = A1 − τ(A1 −A0 − TD1)+,

where TD1 is the nominal DTA value. We observe that the post-tax value
of such a firm has the exact same structure as a firm having some carry
forward available (see Equation (1.2)). Hence, in those circumstances, the
analysis of DTA’s arising from temporary differences is equivalent to finding
a market consistent value of carry forward. When going beyond one year
time periods, differences might emerge due to the absence of regulations on
settlement terms of DTA’s arising from temporary differences. Despite this,
we ignore further valuation analysis of such DTA’s, as they are still similar
in spirit to DTA’s coming from carry forward.

1.5. DTL from temporary differences

Finally, we consider scenarios in which a firm makes profit under applicable
valuation principles, which is not recognized under fiscal valuation principles.
The undertaking knows it is obliged to pay extra taxes in the future and
reserves an appropriate amount on the balance sheet. In the one period case,
the asset value after tax of a company having a DTL arising from temporary
differences can be expressed as

(1.4) Ã1 = A1 − τ(A1 −A0 + gain1)+.

The variable gain1 is the amount of taxable profit recognized under market
consistent accounting, but not under fiscal accounting standards in period
one. In general, we write gaint for the (total) unrecognized fiscal profit in
time period t. The asset value (1.4) is always less than or equal to (1.1),
because of deferred tax liabilities. The two graphs corresponding to (1.4)
and (1.1) are shown in Figure 1.3. The difference between the two graphs
unfolds whenever some of the untaxed profit still persists in period one.
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Figure 1.3. Asset value after tax. Blue line denotes asset without
fiscal history with A0 = 100, while orange line depicts asset with 20 tax
liabilities.





Chapter 2

Extensions of the
one-period model

2.1. One-period model levered firms

So far, we ignored the capital structure of an undertaking. However, the way
in which an undertaking is financed has repercussions for tax payments. Our
approach to give a market consistent valuation of deferred taxes depends on
comparing tax payments of a reference undertaking without fiscal history
and a firm having the same characteristics with deferred taxes. Introducing
debt financing alters tax payments, since coupon payments can be deducted
from taxable income, creating the so-called tax shield. In the following
subsections we examine the effect of coupon payments on DTA’s/DTL’s.

2.1.1. Carry forward. We assume that coupon payments are deducted
from taxable income before deferred taxes are used. A reference undertaking
(without deferred taxes), making yearly coupon payments due to leverage,
has the following post-tax asset value

(2.1) Ã1 = A1 − C − τ(A1 −A0 − C)+,

where C is the coupon payment on debt. The rationale behind (2.1) is the
following; part of taxable income is reduced by coupon payments, this is the
tax shield and appears in the (·)+ term. Equation (2.1) contains (1.1) as a
special case when debt (D) is zero, since C = 0 in that case.

Remark 2.1. The amount of coupon payment a firm can deduct from
taxable income is quite country specific. For example, countries like Italy
have a limit on the amount of coupon an undertaking can deduct, in order to

9



10 2. Extensions of the one-period model

eschew perverse incentives arising from debt financing. Because we aim for
some generality in our analysis, we model the amount of interest payments
the firm can deduct by an exogenous parameter γ ∈ [0, 1]. By doing so, (2.1)
is replaced by

(2.2) Ã1 = A1 − C − τ(A1 −A0 − γC)+.

In analogy with Section 1.2 and by Remark 2.1 we get the following asset
value after tax for levered firms having some carry forward

(2.3) Ã1 = A1 − C − τ(A1 −A0 − CF1 − γC)+.

Deducting interest payments from net profits has repercussions for the carry
forward value, as the following example shows.

Example 2.2. Suppose an unlevered firm has 20 carry forward available
(CF1 = 20) and makes 10 profit in period one, i.e. A1 − A0 = 10. The
firm can use 10 of the carry forward to offset all taxable income. Now
consider an identical firm, which is levered and pays 10 interest each year,
i.e. C = 10 (and γ = 1). This means that the factual profit in period one is
zero, because A1 − A0 − C = 0. As a result, none of the carry forward can
be used and expires worthless. Hence, the DTA arising from carry forward
is less valuable for levered firms.

Thus, with leverage, generating fiscal loss becomes more likely, which
decreases the probability of settling carry forward.

2.1.2. Carry back. The post-tax asset value of a levered firm with some
carry back is equal to

(2.4) Ã1 = A1 − C + τCB1 − τ(A1 −A0 + CB1 − γC)+.

In contrast to carry forward, tax carry back increases in value as a result of
leverage. This is because fiscal profit/loss, as calculated by the difference in
asset value less coupon payments, is always less for a levered undertaking.
Thus, it becomes more likely that carry back is materialized, as the following
example shows.

Example 2.3. Suppose that an unlevered firm has CB1 = 20 and incurs a
loss of 15 in period one , i.e. A1−A0 = −15. It can use 15 of the carry back
to neutralize the loss in period one. Now consider an identical levered firm
carrying interest cost of C = 10 each year. For this firm, the net “profit”
is −15 − 10 = −25. With 20 carry back available, it can materialize the
complete DTA. Hence, in this case carry back is more valuable when a firm
is levered.
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2.1.3. DTL. Finally, for firms carrying some tax liabilities (DTL), the
post-tax asset value is given by

(2.5) Ã1 = A1 − C − τ(A1 −A0 + gain1 − γC)+.

The following example shows that levered undertakings are less likely to
repay the entire DTL compared to unlevered undertakings.

Example 2.4. Take a firm having a deferred tax liability of 20 (i.e. gain1 =
20). If a firm makes a profit of 50 (A1−A0 = 50) in the next period, then it
has to pay taxes over 70, instead of paying taxes over 50 if it did not have a
tax obligation. Consider again an identical firm, which is levered and makes
interest payments of C = 10. Consequentially, taxable income is equal to
A1−A0−C+gain1 = 60. Hence, the amount of taxes paid is less for levered
firms, so that the DTL value is greater for such undertakings.

2.2. Two-period model unlevered firms

In a multi-period framework, the payoff structure of post-tax asset values
becomes significantly more complicated, due to the presence of additional
parameters. For example, the post-tax asset value depends on the settlement
term of carry forward, whether carry back is allowed or not, settlement term
of carry back etc.1 In general, one would expect that deferred tax assets
become more valuable over longer time periods, since the probability that
the entire DTA is settled increases. An important change is that taxes are
settled every year, which creates path dependency. In this section we present
some formulas for the post-tax asset value of undertakings in a two-period
model, which serve to illustrate the dynamics of the asset process over longer
periods of time.

2.2.1. Carry forward. At the end of year two, the following post-tax asset
value holds for an undertaking without deferred taxes and excluding carry
back possibilities

(2.6) Ã2 = A2 − τ(A2 − Ã1 − 1A1<A0(A0 −A1)︸ ︷︷ ︸
=CF2

)+.

In this formula, Ã1 is given by (1.1) and the indicator function is included
to account for carry forward possibilities.2 In case a firm has carry forward
(= CF1) which has a settlement term of one year, the formula is similar,

except that Ã1 is now given by (1.2) Allowing carry back results in a linear

1The settlement term denotes the number of years that losses can be carried forward/back.
2Alternatively, we could rewrite the last term as 1A1<A0

(A0−A1) = (A0−A1)+ to highlight

the nested option like nature of the payoff. This would be more consistent with previous notation,

but we refrain from doing so for notational convenience.
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combination of options multiplied by indicator functions to keep track of
carry forward and carry back situations.

Ã2 = A2 − 1A1<A0τ(A2 −A0)+ − 1A0<A1<A0+CF1τ(A2 −A1)+

+ 1A1>A0+CF1(τCB1 − τ(A2 − Ã1 + CB1)+),

where Ã1 is given by (1.2). This formula follows from considering three se-
parate cases. If A1 < A0, a loss is incurred, carry forward expires worthless
and no taxes are paid. However, the loss incurred in period one (A0 − A1)
can be carried forward, so that the strike of the call option in year two equals
A1 + (A0 − A1) = A0 > A1. The third term considers a situation in which
profit is made which is less than the total carry forward, so that no taxes are
paid and no carry forward nor carry back is taken to period two. Finally,
for the last term, if profit is greater than carry forward, the entire carry
forward is used and corporate tax is paid over the amount A1 − A0 − CF1.
This amount can subsequently be taken to period two, where it can be used
as carry back. Hence, in the two-period model, the payoff structure of the
assets after tax already becomes quite involved. Generalizing the formulas
above for time periods t ≥ 3 is certainly possible, but will not be pursued
here.

Excluding carry back and assuming a two year settlement term of carry
forward still results in (2.6) for undertakings without deferred taxes, but a
firm with carry forward in period t = 0 gives rise to

Ã2 = A2 − τ(A2 − Ã1 − 1A1<A0+CF1(A0 + CF1 −A1))+.

This formula holds, since, if at time t = 1 the asset value is less than
A0 +CF1, some part of carry forward has not been used and can be carried

over to period two. Also, Ã1 is given by (1.2). The payoff after tax still has
the structure of a call option, but there is path dependency that complicates
the tractability of analytical solutions.

2.2.2. Carry back. When determining the value of carry back, we always
assume that loss carry forward can be created in subsequent years, as there
is no country in the world that allows carry back but no carry forward. The
opposite situation is ubiquitous in many tax regimes (see also ??). Along
similar lines, we can express the asset value after tax of an undertaking with
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carry back in the two year model as

Ã2 = A2 − 1A1<A0−CB1

(
τ(A2 − Ã(1)

1 − (A0 − CB1 −A1)︸ ︷︷ ︸
=CF2

)+

)
(2.7)

− 1A0−CB1≤A1≤A0

(
τ(A2 − Ã0)+

)
+ 1A1>A0

(
τ (A1 −A0)︸ ︷︷ ︸

=CB2

−τ(A2 − Ã(2)
1 + (A1 −A0)︸ ︷︷ ︸

=CB2

)+

)
.

where Ã
(1)
1 , Ã

(2)
2 are given by (1.3) and (1.1) respectively. The first line fol-

lows since A1 < A0 − CB1, which means that the complete carry back can
be settled and additional carry forward in the amount of A0 − CB1 − A1

is taken to period two. The second line considers A0 − CB1 ≤ A1 ≤ A0,
which means that only part of the carry back is settled. Since carry back
is only one year valid, the remaining carry back expires worthless as it can-
not be taken to period two. The last line treats the condition A1 > A0,
which means the undertaking made profit and the entire carry back expires
worthless. However, additional carry back in the amount of A1 − A0 can
be taken to period two and can be used when incurring a loss in that period.

At last, we consider the situation in which carry back is two years valid.
This yields the after-tax asset value in period two

Ã2 = A2 − 1A1<A0−CB1

(
τ(A2 − Ã(1)

1 − (A0 − CB1 −A1)︸ ︷︷ ︸
=CF2

)+

)(2.8)

+ 1A1−CB1≤A1≤A0

(
τ (CB1 − (A0 −A1))︸ ︷︷ ︸

=CB2

−τ(A2 −A0 + (CB1 − (A0 −A1))︸ ︷︷ ︸
=CB2

)+

)

+ 1A1>A0

(
τ (A1 −A0 + CB1)︸ ︷︷ ︸

=CB2

−τ(A2 − Ã(2)
1 + (A1 −A0 + CB1)︸ ︷︷ ︸

=CB2

)+

)
.

Again Ã
(1)
1 , Ã

(2)
2 are given by (1.3) and (1.1). The difference between (2.7)

and (2.8) comes from the last two lines. The first line in (2.8) considers a
situation in which the entire carry forward is used in year one and additional
carry forward can be taken to year two. This situation is identical to the one
where carry back is one year valid. The second line results from the situation
in which part of carry back is used, but unlike (2.7), this time the remaining
carry back can be taken to year two. The total amount of carry back left
for period two equals CB1 − (A0 −A1). Finally, if an undertaking makes a
profit in period one, then CB1 cannot be used, but because it can be settled
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in two years, the amount can be taken to period two. Tax is levied over
the amount A1 − A0, and these tax payments can also be taken to period
two and used as carry back. This means that CB2 = CB1 + A1 − A0 and
explains the last line of (2.8).

2.2.3. DTL. As opposed to DTA’s arising from carry forward/back, there
are no regulations on settlement terms of DTL’s. A DTL is put on the
balance sheet to reflect future tax expenses, but it depends on the specific
characteristic of the profit stream when those untaxed profits are materiali-
zed. As there are no regulations to guide us here, we consider two different
scenarios. In a basic setup, we assume that no intermediate tax payments
occur and the DTL is settled at maturity. This gives the post-tax asset
value

Ã2 = A2 − (A2 −A0 + gain1)+

In a more realistic setup, we assume that the DTL is reduced in period one
whenever the firm incurs a loss in that period. The reduction in (nominal)
DTL value is equal to the corresponding loss. If the loss in period one
exceeds the entire DTL value, the DTL disappears in its entirety and carry
forward is created over the remaining loss. In case the undertaking makes
a profit in period one = (A1 − A0), taxes are paid over that profit and
the DTL remains the same. The DTL value left is taken to period two, in
which settlement is due. Considering each of these three scenarios yields the
post-tax asset

Ã2 = A2 − 1A1<A0−gain1
(A2 −A1 − (A0 − gain1 −A1)︸ ︷︷ ︸

=CF2

)+

− 1A0−gain1≤A1≤A0(A2 −A1 + (gain1 −A0 +A1)︸ ︷︷ ︸
=gain2

)+

− 1A1>A0(A2 − Ã1 + gain1)+,

where Ã1 is the post-tax asset value in period one, as given by (1.1).



Chapter 3

Models

3.1. Modeling unlevered firms

The valuation of deferred taxes is based on comparing the value of two hypot-
hetical firms having the same assets, with the only difference that one firm
has deferred taxes on the balance sheet. We frequently refer to the underta-
king without deferred taxes as the reference undertaking . This approach, by
comparing two firms who differ in just one characteristic, essentially started
with Modigliani and Miller (1963) and has been applied in various other
settings (e.g. Arzac and Glosten (2005) on tax shield valuation). The value
of a firm is gauged by using the firm value measure, which takes the market
value of all assets as a proxy to total value of a firm. This is one of the con-
ventional ways in which total firm value is measured, besides market value
of equity and enterprise value.1 Therefore, the following definition is used
to determine the value of deferred taxes.

Definition 3.1. The market consistent value of a DTA/DTL is defined
as the difference in firm value between an undertaking with deferred taxes
and a reference undertaking with the same assets, without having deferred
taxes. The precise value of the DTA/DTL then follows from comparing the
discounted payoff of the post-tax assets at final time t = T under martingale
measure. We will henceforth refer to this quantity by ξba, where superscript
and subscript refer to the option model and type of DTA/DTL respectively.

1See Professor Damodaran’s blog at http://aswathdamodaran.blogspot.nl/2013/06/

a-tangled-web-of-values-enterprise.html
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In the model, we always work with aggregated quantities, which means
that a firm cannot have a DTA and DTL at the same time.2 Following
the Merton (1974) methodology, we assume that the asset value follows a
geometric Brownian motion

(3.1) dAt = µAtdt+ σAtdW
P
t , µ ∈ R, σ > 0,

but only in between periods of tax payment. In this formula, Wt is a standard
Brownian motion under P -measure. By Girsanov’s theorem (Theorem A.9)
we can switch to Q-measure, which renders the following dynamics for the
asset process

(3.2) dAt = rAtdt+ σAtdW
Q
t .

This reveals that the discounted asset process under Q-measure is a mar-
tingale. Under the Black-Scholes assumptions it also follows that the market
is complete (Definition A.6) and the risk-neutral measure Q is unique. That
means we take

(3.3) V = e−rTEQ(ÃT |F0), Ft = σ(Bs : s ≤ t)
as the fair price of an unlevered undertaking with or without fiscal history.
Saying that At follows a geometric Brownian motion in between periods

of tax payments creates path dependency. In particular, ÃT is calculated
inductively. Given A0, A1 (before tax) is calculated by A1 = A0 exp(r −
σ2/2 + σW1), which is the SDE solution to (3.2) for t = 1. Depending on

the availability of deferred taxes, Ã1 is calculated according to one of the

four formulas (1.1), (1.2), (1.3) or (1.4). The asset process restarts at Ã1,

so that A2 = Ã1 exp(r − σ2/2 + σ(W2 −W1)). In general, given the after-

tax value Ãt, the pre-tax asset value is calculated by At+1 = Ãt exp(r −
σ2/2 + σ(Wt+1 −Wt)), where Wt+1 −Wt ∼ N(0, 1) is the increment of the
Brownian motion. Depending on the deferred tax available at time t, the
post-tax asset value is calculated by3

Ãt+1 = AT+1 − τ(At+1 −At)+ (No deferred tax)(3.4)

Ãt+1 = AT+1 − τ(At+1 −At − CFt+1)+ (Carry forward)

Ãt+1 = AT+1 + τCBt+1 − τ(At+1 −At + CBt+1)+ (Carry back).

After taxes have been levied, CFt (resp. CBt) is increased if the firm incurs
a loss (resp. makes profit) and is reduced in case of profit (resp. loss). The
total increase or reduction is equal to the loss/profit in the respective period.
If profit exceeds the outstanding carry forward in a specific year, the entire
DTA arising from carry forward is settled and carry back is created over

2Basically, we look at the net DTA; if a firm has both a DTA and DTL, both quantities are

aggregated and the resultant is either a DTA or DTL which will be used in our analysis.
3Dividend policies are not taken into account in this model.
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the remaining taxable income. The same holds for carry back if the loss
in a certain year t exceeds the outstanding CBt. This process is repeated
until time t = T , after which the undertaking liquidates all the assets and
ceases to exist. Equation (3.3) then yields the firm value at time t = 0. A
typical realization of the asset process with and without taxes is shown in
Figure 3.1. We refer to the lifespan T of the undertaking as the T -period
model . During the calculation of the asset paths, we always assume that an
undertaking settles the deferred tax asset in chronological order, meaning
that the deferred tax created first is settled first (first in first out). The
following example shows why this assumption matters.

Example 3.2. Suppose an undertaking has CF1 = 10 and creates additi-
onal carry forward in year one (say A1 − A0 = −10) so that CF2 = 20. If
the undertaking makes a profit in period two equal to 15, then it first uses
all carry forward from period zero (= 10) and then uses 5 carry forward
created in year one to offset all taxable income. The remaining carry for-
ward equals CF3 = 20 − 15 = 5. This is important when the settlement
term of carry forward is limited. If one could carry forward losses for only
two years, and the firm would settle the carry forward created in period one
first, the remaining carry forward in period three equals zero, since the 5
carry forward from period zero would expire worthless due to the two year
settlement constraint.

The time losses can be carried forward (or profits carried back) is refer-
red to as the settlement term or duration time of the DTA. There are no
guidelines on the settlement of deferred tax liabilities over longer periods of
time, as the DTL is rather an informative accounting measure not abide to
tax regulations. Therefore, we examine two possibilities leading to the asset
value of a firm having a DTL in the T -period model:

(i) Base case: The undertaking pays no taxes until it liquidates the assets
in period T . The asset value for time t < T is simply

A0 exp((r − σ2/2)t+ σWt),

and the post-tax asset value at time T equals

ÃT = AT − τ(AT −A0 + gain1)+.

(ii) More realistic case: In most cases, the undertaking can decide them-
selves when to settle the DTL because it depends on untaxed profit.
Tax must be paid as soon as the profit is realized, but the timing of re-
alization is at the mercy of the firm. One could think of realizing fiscal
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profits underlying the DTL by selling stock.4 In the T -period model,
we assume that the firm realizes the profit at the end of year T . In
intermediate years t < T , the untaxed profit gaint is reduced when the
firm incurs a loss (deduction equal to the loss). In case of profit, taxes
are levied, the DTL is unaltered and tax expenses can be carried back
prior to maturity. In all European member states where carry back
is allowed, it is restrained to a one year duration (see ??). Therefore,
when a firm incurs a loss and has tax carry back, we assume that carry
back is used first (instead of reducing the DTL). The DTL is reduced
accordingly in case losses exceed the tax carry back. When, due to los-
ses, the untaxed profit gaint has disappeared completely, carry forward
can be created as well. Whenever the loss in a certain year exceeds
the outstanding gaint, the tax liability disappears and carry forward
is created over the remaining loss. In summary, if gaint > 0 for t < T ,
the post-tax asset value is calculated by

(3.5) Ãt =

{
At − τ(At −At−1)+, if CBt = 0

At + τCBt − τ(At −At−1 + CBt)
+, otherwise.

(3.6) gaint+1 =

{
max

(
gaint −max(At−1 −At, 0), 0

)
, if CBt = 0

max
(
gaint −max(At−1 −At − CBt, 0), 0

)
, otherwise.

Equation (3.6) is used to ensure that gaint never turns negative and
is only reduced in case of a loss, with the precise amount depending
on the availability of carry back. Otherwise, if gaint = 0, the post-tax
asset values are calculated according to (3.4). If gainT is still positive
at the end of final period T , the remaining untaxed profit is realized
and the post-tax asset value follows from

ÃT = AT − τ(AT −AT−1 + gainT )+.

For future reference, we recall the explicit expression of the Black-Scholes
formula

CBS(K,T,At, σ, r, t) = AtΦ(d1)−Ke−r(T−t)Φ(d2), where(3.7)

d1 =
1

σ
√
T − t

[
log

(
At
K

)
+ (r +

σ2

2
)(T − t)

]
d2 = d1 − σ

√
T − t.

In this formula At is the starting value of the undertaking, K is the strike
price, T is the exercise date, σ is the volatility of the assets, r is the risk-free
interest rate and Φ(·) is the cumulative distribution function of the standard

4The settlement term of DTL’s is not always at the mercy of an undertaking, e.g. when
untaxed profit is realized on fixed contracts with some maturity date T . For reasons of parsimony,

this case is ignored.
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Figure 3.1. Typical asset path of geometric Brownian motion with
and without tax (no deferred taxes). The asset path with tax jumps
down if at the end of year t profit is made. The geometric Brownian

motion restarts from the point Ãt, whereas the asset path without tax
just continues from At.

normal. In Chapter 4, we interpret the strike K in (3.7) as the threshold
from which an undertaking pays taxes. For example, in the 1-period model
without fiscal history (see (1.1)), K = A0, since an undertaking pays taxes
whenever A1 > A0. As such, the quantity log(At/K) for 0 < t ≤ 1 in (3.7)
represents the return on the assets when substituting K = A0. Similarly,
if an undertaking has carry forward, (1.2) reveals that the strike will be
K = A0 + CF1.

In addition, throughout the rest of the thesis we make some important
conventions. The following parameters are fixed: σ, t, r, A0. Because we are
only interested in the value of deferred taxes now we always take t = 0. Mo-
reover, we assume the Black-Scholes assumptions described above to hold for
the asset and the underlying market. To emphasize the dependency on two
varying parameters K and T , we write CBS(K,T ) , CBS(K,T,At, σ, r, t).
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Similarly, V BS, V BS
cb , V BS

cf , V BS
L denote the value of a firm without fiscal his-

tory, with carry back, with carry forward and with a DTL respectively under
the Black-Scholes assumptions. In this case, there is no subscript to expli-
cate the T -period model, as this can always be understood from the context.

3.2. Modeling levered firms

The value of a levered undertaking depends on the additional parameter debt
(D).5 Coupon payments (C) are modeled as a function of debt. In analogy to
Black and Cox (1976), we assume that the firm issues a single homogeneous
type of debt with face value D which it promises to repay at future time
t = T in the T -period model. In addition, the firm makes yearly coupon
payments C, which for simplicity occurs at the same time tax payments
are due (this is similar to Brennan and Schwartz (1978)). Bondholders are
endowed with safety covenants, which means they have the right to force
the firm into bankruptcy and take hold of the assets whenever the post-
tax asset value drops below some critical threshold K.6 Debt holders can
execute the safety covenants at discrete time points, corresponding to the
moment taxes are levied at the end of each year. In particular, this means
that bankruptcy is triggered after coupon payments are made. At maturity,
when debt payment D is due, a firm can also go bankrupt if the post-tax
asset value is less than the face value of outstanding debt.7 When a firm goes
bankrupt, a fraction α of the remaining asset value is lost due to bankruptcy
cost. This time, post-tax asset values are calculated by

Ãt+1 = AT+1 − C − τ(At+1 −At − γC)+ (No deferred tax)

(3.8)

Ãt+1 = AT+1 − Ccf − τ(At+1 −At − CFt+1 − γCcf)+ (Carry forward)

Ãt+1 = AT+1 + τCBt+1 − Ccb − τ(At+1 −At + CBt+1 − γCcb)+ (Carry back),

as long as the firm is solvent, otherwise the undertaking is liquidated prior
to maturity and the DTA/DTL value equals the difference in firm value at
the point of bankruptcy. In these equations, we tacitly assume the following
order

(i) First, the coupon is paid to creditors and subtracted from the assets,
since this money flows out of the company.

(ii) Secondly, γC is subtracted from taxable income, which creates the so-
called tax shield.

5As in the unlevered model, dividend policies are not taken into account.
6This should not be confused with the strike of a call option in (3.7).
7Hence, the bankruptcy trigger at maturity is not K but D.
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(iii) Finally, taxes are levied over the remaining profit (At+1 − At − γC)+,
or any of the last terms in the second and third line of (3.8), depending
on the available deferred taxes.

This set-up creates a trade-off between a loss of potential, arising from
coupon payments resulting in lower asset values and the gain of shielding
part of taxable income. We investigate these two opposing forces in Section 4.6.

Remark 3.3. In the literature, one often makes the assumption that the
stochastic process of the underlying assets (3.2) is unaffected by the finan-
cial structure of a firm (Brennan and Schwartz (1978), Leland (1994) and
Leland and Toft (1996)). Consequentially, cash outflows associated with the
choice of leverage, like coupon payments, must be financed by selling addi-
tional equity. However, it is hard to believe that equity value is unaffected
by the sale of stock. Therefore we depart from this assumption, which has
repercussions for the valuation of levered firms in Chapter 4. Adapting the
assumption of stochastic invariance to the financial structure would elimi-
nate the loss of potential due to debt financing.

The different coupon notations C, Ccf, Ccb will become clear in Chapter 4.
For now it suffices to say that undertakings with DTA’s at period t = 0 are
more likely to repay debt and coupon. The reason for this is the absolute
priority rule, which means that claims by the tax authority rank above those
by general creditors and equity holders (Brouwer, 2006).8 To illustrate this
mechanism, we consider an undertaking in the 2-period model.

Example 3.4. Suppose a firm has the following characteristics: A0 =
100, D = 95, C = 20, CF1 = 10 and tax rate τ = 0.5. Suppose A1−C = 105;
the undertaking can use carry forward to offset all tax expenses in period
one and is left with CF2 = 10 − 5 = 5. However, a reference undertaking

without carry forward pays τ · 5 and is left with asset value Ã1 = 102.5,
creating CF2 = 5. If the asset before tax and coupon payments increase
with 11%, A2 = 1.11 · 105 = 116.78 and after giving effect to concomitant

coupon payments, the firm is left with Ã2 = 96.78, which is just enough to
repay debt. The assets of the reference undertaking before tax and coupon
rise to 1.11 · 102.5 = 114. The post-coupon (and tax) asset value equals

Ã2 = 94, which is not enough to repay the entire debt and triggers bank-
ruptcy. Hence, undertakings starting with carry forward are more likely to
avoid bankruptcy than a reference undertaking without tax benefits. The
same holds for firms having carry back.

8In reality there are many more priority rules, depending on the specific type of claim on the
company, (see https://taxmap.irs.gov/taxmap/pubs/p908-006.htm). Since our main concern is
it to analyze the tax effect on coupon payments, we ignore the myriad of different priority rules,

as this would render the model infeasible to work with.

https://taxmap.irs.gov/taxmap/pubs/p908-006.htm
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Following Leland and Toft (1996), we assume that the coupon is set such
that debt sells at par value, i.e. debt at time zero (D0) equals the face value
of debt at maturity (D). In Chapter 4, we outline how to find the coupon
payments using numerical methods. In addition, we assume that D0 ≤ A0,
i.e. a firm does not have negative equity value at t = 0. The risk-neutral
pricing approach yields the firm value at time T when bankruptcy is avoided

e−rTEQ
(
ÃT +

T−1∑
i=0

eriC
)

(Undertaking without DTA)(3.9)

e−rTEQ
(
ÃT +

T−1∑
i=0

eriCcf
)

(Undertaking with carry forward)

e−rTEQ
(
ÃT +

T−1∑
i=0

eriCcb
)

(Undertaking with carry back),

where Ãt is calculated according to equations (3.8) at each time instant. In
case bankruptcy occurs at time t at or prior to maturity, firm values are
calculated by

e−rtEQ
(

(1− α)Ãt +
t−1∑
i=0

eriC
)

(Undertaking without DTA)

e−rtEQ
(

(1− α)Ãt +

t−1∑
i=0

eriCcf
)

(Undertaking with carry forward)

e−rtEQ
(

(1− α)Ãt +
t−1∑
i=0

eriCcb
)

(Undertaking with carry back),

In the one-year model, this means that firms can only go bankrupt if
they incur a loss in period one. As such, taxes have no influence on the
bankruptcy condition for undertakings without deferred taxes nor for firms

with carry forward (when γ = 1). For these firms, Ã1 can be replaced with
A1 in (3.8), as taxes only play a role once you make a profit in period one.
In contrast, a firm with carry back has the possibility of a tax refund when
incurring a loss in period one and this might be enough to avoid bankruptcy.
Similarly, taxes play a role for undertakings with a DTL, since tax obligati-
ons persist even in case of a loss (as measured by A1 − A0). This suggests
that firms with a DTL ought to pay a higher coupon than firms without tax
liabilities.



Chapter 4

Results

4.1. One-period model unlevered firms

Since we are dealing with a one year time horizon, we fix the parameter T (so

T = 1). Hence, for ease of notation, we write CBS(K) , CBS(K,T,At, σ, r, t)
whenever we are concerned with the one-period model.

4.1.1. Carry forward. Let us now turn to the original quest of determi-
ning a market consistent valuation of deferred taxes. First, we take a firm
without fiscal history, whose asset value after tax at time one is given by
(1.1). This is a contingent T -claim (Definition A.2), whose value at time
zero is given by

(4.1) V BS = e−rEQ
(
A1 − τ(A1 −A0)+|F0

)
= A0 − τCBS(K = A0),

where CBS is the Black-Scholes price of a European at-the-money call option.

In (4.1) we have K = A0, so that by virtue of (3.7) we get d1 = 1
σ (r + σ2

2 )

and similarly d2 = 1
σ (r − σ2

2 ). It is well known that the Black-Scholes call
option value is greater than or equal to the payoff received at expiry. Hence,
V BS is always less than the actual asset value minus tax at expiry in (1.1).

Similar analysis allows us to find the market consistent value of a com-
pany with carry forward. Again, by martingale pricing, the no-arbitrage
value of a company with carry forward is found by discounting (1.2)

V BS
cf = e−rEQ

(
A1 − τ(A1 −A0 − CF1)+|F0

)
= A0 − τCBS(K = A0 + CF1).(4.2)

23
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Notice that V BS
cf in (4.2) is always greater than or equal to V BS appearing

in (4.1). This makes sense, because a company having future tax deduction
possibilities should be more valuable than a company that doesn’t have these
possibilities. By Definition 3.1, the market consistent DTA value of carry
forward follows by comparing (4.2) with (4.1), which yields

ξBS
cf , V

BS
cf − V BS = τ

(
CBS(A0)− CBS(A0 + CF1)

)
(3.7)
= τ

[
A0

(
Φ(d1)− Φ(dcf

1 )

)
− e−r

(
A0Φ(d2)− (A0 + CF1)Φ(dcf

2 )

)]
.(4.3)

Equation (4.3) is monotonically increasing in CF1 and always bigger than
zero, however for large values of CF1 the additional benefit of extra carry
forward is rather limited. This can also be seen from Figure 4.1, which
shows the diminishing marginal returns of carry forward for various tax ra-
tes. The reason is that expected profits are insufficient to utilize additional
carry forward.

It is instructive to analyze the sensitivity of the DTA (or DTL) value
with respect to the variable from which the DTA arises (such as CF1). The
following proposition facilitates these computations.

Proposition 4.1. For a standard European call option with constant inte-
rest rate we have the following expression for the first and second derivative
with respect to the call price

∂

∂K
C(K,T,At, σ, r, t) = −e−r(T−t)(1− F (K))

∂2

∂K2
C(K,T,At, σ, r, t) = e−r(T−t)f(K),

where F (K) and f(K) are the risk-neutral CDF and PDF of the underlying
asset respectively. These expressions are independent of the Black-Scholes
model and can be derived irrespective of modeling issues.

Proof. The proof essentially follows from (A.3) in the Appendix. Accor-
dingly we can set

C(K,T,At, σ, r, t) = e−r(T−t)EQ((AT −K)+|Ft)

= e−r(T−t)
∫ ∞
K

(z −K)f(z)dz.(4.4)

Straightforward differentiation of (4.4) (in conjunction with Leibniz’ rule)
yields the result. �
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By Proposition 4.1, the derivative of (4.3) is given by

(4.5)
∂

∂CF1
ξBS

cf = τe−r(1− F (A0 + CF1)).

Equation (4.5) leads to an interesting interpretation. Because F (x) is the
risk-neutral probability that assets at time one are less than x, we can re-
write (4.5) to τ exp(−r)Q(A1 > A0 + CF1), where Q is the risk-neutral
measure.1 In other words, the sensitivity w.r.t. CF1 is equal to the proba-
bility of {ω ∈ Ω : A1(ω) > A0 + CF1} under the risk-neutral measure Q,
weighted by a discount factor consisting of the tax rate τ and the risk-free
rate. The event {ω ∈ Ω : A1(ω) > A0 +CF1} corresponds to the risk-neutral
probability that the entire carry forward will be used. This bears some re-
semblance to current valuation methods, which are discussed in more detail
in Section 4.1.5. The variable τ works as a kind of amplification factor; hig-
her tax rates increase the sensitivity of the DTA to CF1 because a change
in CF1 has a more pronounced effect on firm value.

Since distribution functions are always bounded by one (and non de-
creasing), it follows that (4.5) is always positive. Taking the (formal) limit
CF1 → ∞ renders that (4.5) goes to zero. Initially, if CF1 is small, there
is a high probability that the entire carry forward can be used for tax de-
duction, so a small change leads to a relatively big change in DTA value.
On the contrary, if CF1 is high, it is not likely that the entire carry forward
will be used for tax deduction (since future profits are unlikely to settle the
complete carry forward), so that a change in CF1 does not have a conside-
rable effect on the DTA value. Figure 4.2 illustrates the behavior of (4.5)
for different tax rates.

Figure 4.3 shows the value of CF1 according to (4.3) together with the
value of CF1 at maturity. Initially the market consistent value of carry
forward is worth more than the final value at maturity. This is because
there still exists a probability that some of the carry forward will be used.
At some point, however, the upward potential is not enough to offset the
guaranteed carry forward value at maturity, causing the graphs to intersect
so that the market consistent value is worth less than the guaranteed payoff
for large values of A1. The structure of the payoff has the same form as that
of a bull call spread , which corresponds to the option trading strategy used
by investors to profit from the limited rise of an underlying security.

1In fact, we know that in the Black-Scholes model F (x) is the CDF of the Log-normal

distribution.
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Figure 4.1. DTA value given from carry forward (4.3) as function of
carry forward (CF1) for different tax rates. Parameters: A0 = 100, r =
0.05, σ = 0.2.

4.1.2. Carry back. The market consistent value of a company with carry
back follows by discounting (1.3), which gives

V BS
cb = e−rEQ(A1 + τCB1 − τ(A1 −A0 + CB1)+|F0)

= A0 + e−rτCB1 − τCBS(K = A0 − CB1).(4.6)

In a similar vein, we obtain the market consistent DTA value of carry back
by comparing the difference (4.6) and (4.1)

(4.7) ξBS
cb , V

BS
cb − V BS = e−rτCB1 − τ

(
CBS(A0 − CB1)− CBS(A0)

)
(3.7)
= τe−rCB1−τ

[
A0

(
Φ(dcb

1 )−Φ(d1)

)
−e−r

(
(A0−CB1)Φ(dcb

2 )−A0Φ(d2)

)]
.

Equation (4.7) expresses the DTA value of carry back as a linear combination
of two factors. The first one corresponds to the value of carry back today
if no settlement risk were involved. However, because it is not guaranteed
that the (entire) carry back will be materialized at period one, the second
term is subtracted to take this risk into account. The sensitivity of carry
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Figure 4.2. Derivative of DTA from carry forward (4.5) as a function of
carry forward (CF1) for different tax rates. Parameters: A0 = 100, r =
0.05, σ = 0.2.

back to its DTA value is expressed by

(4.8)
∂

∂CB1
ξBS

cb = τe−r − τ
[

A0Φ′(dcb
1 )

σ(A0 − CB1)
+ e−r

(
Φ(dcb

2 )− Φ′(dcb
2 )

σ

)]
.

Once more we appeal to Proposition 4.1, which gives the alternative repre-
sentation of (4.8), namely

∂

∂CB1
ξBS

cb = τe−r
(

1−
(
1− F (A0 − CB1)

))
= τe−rF (A0 − CB1).(4.9)

The factor after the tax rate is the probability that A1 exceeds the asset
value at time zero minus the carry back under the risk neutral measure Q,
i.e. Q(A1 < A0 − CB1). So alternatively we may write2

∂

∂CB1
ξBS

cb = τe−rQ(A1 < A0 − CB1).

2The event Q(A1 < A0 − CB1) can be written down in explicit terms. Let X ∼ N(0, 1),

then Q(A1 < A0 −CB1) = P (A0 exp(r− σ2/2 + σX) < A0 −CB1) = P (X ≤ 1
σ

(log(A0−CB1
A0

) +

σ2/2− r)) = Φ
(
1
σ

(log(A0−CB1
A0

) + σ2/2− r)
)
.
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Figure 4.3. Value of CF1 under Black-Scholes vs. payoff at maturity.
Parameters: r = 0.05, σ = 0.2, A0 = 100, CF1 = 40, τ = 0.25.

The probability of the event {ω ∈ Ω : A1 < A0 − CB1} = {ω ∈ Ω :
A0 − A1 ≥ CB1} is the probability (under risk-neutrality) that the loss in
period one is sufficient to materialize the complete carry back. Also, from
here it follows that (4.8) is always greater than zero and decreasing in CB1

until CB1 ≤ A0 after which it vanishes since {ω ∈ Ω : A1(ω) ≤ 0} has
(risk-neutral) probability measure zero. The latter observation holds since
we always have the constraint CB1 ≤ A0. If this condition is not satisfied,
the asset value prior to time t = 0 (say t = −1) would be less than zero, i.e.
A−1 < 0. This cannot happen with probability one since the asset value is
always bigger than zero by definition. Figure 4.4 shows the value of CB1 in
the market consistent model together with its value at expiry. In contrast to
carry forward, the DTA value (under the Black-Scholes model) is less than
the payoff at maturity when A1 is small. The “payoff” structure of carry
back is similar to the bear spread strategy , which is used by option traders
to profit from the limited decrease of an underlying security.

4.1.3. The trade-off between carry forward and carry back. Having
established the market consistent DTA value of carry forward (4.3) and
carry back (4.7), we investigate which deferred tax asset is more valuable
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Figure 4.4. Value of CB1 under Black-Scholes vs. payoff at maturity.
Parameters: r = 0.05, σ = 0.2, A0 = 100, CB1 = 40.

and under what circumstances. To clarify this, we set CF1 = CB1 = 20
and consider the difference between (4.3) and (4.7). Figure 4.5 shows the
difference as a function of σ and r. For fixed values of r, the function in
Figure 4.5 is monotonically decreasing in σ. Hence, we conclude that carry
back is more valuable for firms with high volatility relative to the interest
rate r. The precise extent to which the valuation difference depends on
the interplay between r and σ remains unclear, but some insight is gained
by looking at the asset process before taxes. The assumption on the asset
process (3.2) implies that the probability of a loss in year one equals

P (A1 < A0) = P

(
X ≤ 1

σ

(σ2

2
− r
))

X ∼ N(0, 1),

so that the sign of σ2/2− r provides a link between the valuation difference
of carry back and carry forward. Carry back is only beneficial in period one
when the firm incurs a loss. The opposite holds for carry forward. From
this one might be tempted to hypothesize that the DTA arising from carry
back is more valuable than the DTA coming from carry forward if σ2/2 > r.
However, this is not entirely true, due to the skewness of the (risk-neutral)
lognormal distribution. Even though the probability that you lose or gain
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is equal, the probability that you gain ten is bigger than the probability
that you lose ten.3 This makes the call option arising from carry forward
more valuable, so that equality between (4.3) and (4.7) is achieved for higher
values of σ than what one would obtain by solving σ2/2 = r. Even though
the analytical threshold that determines the equality between carry back
and carry forward remains out of reach, Figure 4.5 and extensive simulation
suggest that high volatility relative to r implies that carry back is more
valuable than carry forward.
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Figure 4.5. The difference between (4.3) and (4.7) as a function of r
and σ, for the fixed deferred tax values CF1 = CB1 = 20. The domain
r × σ = {(r, σ) : r ∈ [0.01, 0.5], σ ∈ [0.1, 0.9]} and A0 = 100, τ = 0.25.

4.1.4. DTL temporary differences. Finally, the firm value of an un-
dertaking with a deferred tax liability follows by discounting (1.4) under

3Assume that σ2/2 = r, and let c > 0. The probability of losing c equals P (A1−A0 < −c) =

Φ( 1
σ

(log A0−c
A0

)). In contrast, the probability of gaining c is P (A1−A0 > c) = Φ(− 1
σ

log(A0+c
A0

)).

The latter probability is always bigger than the probability of losing c, due to the properties of

the log(·) function.
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martingale measure, which yields

V BS
L = e−rE(A1 − τ(A1 −A0 + gain1)+|F0)(4.10)

= A0 − τCBS(A0 − gain1).

We stick to the convention of modeling the difference between normal tax
conditions and a DTL by a negative quantity. Thus the market consistent
DTL value is obtained by subtracting (4.10) from (4.1), which gives

(4.11) ξBS
L , V

BS
L − V BS = τ

(
CBS(A0)− CBS(A0 − gain1)

)
.

The shape of (4.11) as a function of A1 is similar to that of carry back,
which can be seen from Figure 4.6. However, this time the values are ne-
gative, since the DTL is a tax obligation and hence a future liability. For
large values of A1, the untaxed profit (as measured by gain1) has to be paid
in its entirety to the tax authority, by the amount of τ · gain1.

At last we turn to the sensitivity of the DTL to the untaxed profit gain1.
Straightforward differentiation of (4.11) in conjunction with Proposition 4.1
gives
(4.12)

∂

∂gain1

ξBS
L = −τe−r(1− F (A0 − gain1)) = −τe−rQ(A1 > A0 − gain1).

Hence, higher values of gain1 increase the likelihood of {ω ∈ Ω : A1(ω) >
A0 − gain1}, which means that (4.12) is decreasing in gain1, but stabilizes
when gain1 ≥ A0. The latter condition is excluded, since gain1 < A0 by
construction.4 A company starts to lose value from the moment A1 > A0 −
gain1, so higher values of gain1 lead to a more severe reduction in asset value
compared to a firm with lower gain1. Hence, the slope of (4.11) ought to be
decreasing.

4.1.5. Comparison to current valuation methods. Having the precise
formulas for the DTA’s/DTL at hand, we can now analyze the difference be-
tween current valuation methods and our market consistent approach. In
Section 1.1 we explained that extant valuation procedures acknowledge the
underlying value of the different type of DTA/DTL as the nominal amount
appearing on the balance sheet. We compare our method to two frequently
employed accounting principles: GAAP and IAS12. Most other accounting
guidelines use techniques for valuing deferred taxes by methods either based
on GAAP or IAS12. However, both of these guidelines neglect carry back
possibilities and the value creation as a result of this possibility. Hence, we

4Remember that gain1 is the untaxed profit made in period t = 0, so that gain1 + A−1 =

A0 =⇒ gain1 < A0.
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Figure 4.6. Value of DTL under Black-Scholes vs. payoff at maturity.
Parameters: r = 0.05, σ = 0.2, A0 = 100, gain1 = 20.

only draw comparison to carry forward valuation.

Let us first analyze the way under which GAAP computes the value of
carry forward. Under GAAP principles, carry forward is recognized whene-
ver there is a more than 50% chance that future profit settles the complete
carry forward. In particular, The Financial Accounting Standards Board
(1992) states the following in Paragraph 98:
“The Board acknowledges that future realization of a tax benefit sometimes
will be expected for a portion but not all of a deferred tax asset, and that the
dividing line between the two portions may be unclear. In those circumstan-
ces, application of judgment based on a careful assessment of all available
evidence is required to determine the portion of a deferred tax asset for which
it is more likely than not a tax benefit will not be realized.”

In other words, the DTA arising from carry forward is recognized com-
pletely if and only if the probability of materializing the entire carry forward
has a more than 50% chance. If this is not the case, a valuation allowance
(VA) is issued, which reduces the overall DTA value. In our model, this
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translates to the condition

P (A1 −A0 ≤ A∗1) =
1

2
,

where A∗1 is the median profit and P (·) the physical probability measure.
The geometric Brownian motion assumption of the asset process (3.1) ren-

ders the explicit expression A∗1 = A0e
µ−σ2/2−A0. Hence, for carry forward,

a valuation allowance is issued whenever

(4.13) CF1 > A∗1 ⇐⇒ CF1 > A0(eµ−σ
2/2 − 1).

This expression reveals that sufficiently large values of volatility always lead
to the issuance of a valuation allowance, i.e. when σ2/2� µ. Secondly, it is
less likely that a valuation allowance is issued for large values of the starting
value A0 when µ − σ2/2 > 0. This is because the geometric Brownian mo-
tion assumption on the asset process is concerned with relative profits. So
for higher values of A0, a small percentage change leads to a more pronoun-
ced difference in absolute asset values, which makes it more likely that the
complete carry forward will be settled. In analogy to De Waegenaere et al.
(2003), a valuation allowance (VA) is issued if (4.13) holds and the balance
sheet value is given by

V A =

(
τ
(
CF1 −A∗1

))+

.

The DTA value under the GAAP approach thus takes the form

ξcf,GAAP , DTA− V A(4.14)

= τ

(
CF1 − (CF1 −A∗1)+

)
.

It follows from (4.14) that the DTA value arising from carry forward stabili-
zes when it hits the threshold level for which it becomes more likely than not
to settle the complete carry forward. Interestingly, in Figure 4.7 we see that
the GAAP approach is higher for small values of CF1 but is lower for high
values of CF1. However, this relation is ambiguous as A∗1 depends on the
growth parameter µ. To see this, for large values of CF1, the DTA value of
carry forward ξBS

cf in (4.3) goes to τCBS(A0). In contrast, ξcf,GAAP → τA∗1
for large values of CF1. Therefore, the relation boils down to comparing
CBS(A0) with A∗1. However, the relation between these two quantities is
inconclusive because A∗1 depends on µ. For the particular case shown in
Figure 4.7, µ is chosen small enough such that the market consistent value
is eventually higher than the GAAP value. But we might equally well take
µ so large that the relationship breaks down eventually.5 On the other hand,
it always holds true that the GAAP approach renders higher values for the

5In fact, µ = 0.12 is already sufficient in this example.
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DTA when CF1 < A∗1.

Valuation guidelines of deferred taxes under IAS12 are less flexible. Ac-
cording to these accounting principles, deferred taxes are recognized only if
there is a more than 50% chance that the complete DTA will be materialized
(Deloitte, 2017). Otherwise, the deferred tax asset is not recognized. Hence,
we have the following value of the DTA arising from carry forward under
IAS12

ξcf,IAS12 = τ1{CF1≤A∗1}CF1.

The carry forward value under IAS12 in Figure 4.7 (green line) concurs with
the GAAP value, but vanishes as soon as carry forward exceeds the median
profit. In some sense, our model contains the GAAP and IAS12 approach
as a special case, namely if we take limσ→0+ ξ

BS
cf = τe−rCF1, provided that

(er−1)A0 > CF1. This is almost equal to the GAAP and IAS12 value, apart
from the discounting term. Our model not only encompasses the GAAP and
IAS12 approach as special cases, but is preferred in certain other aspects:

(i) The market consistent approach does not depend on the subjective
substantiation of future profit. In our model, the uncertainty of future
profit is implicitly measured by the volatility of the assets σ, which de-
termines the likelihood of materializing the entire carry forward under
all future scenarios.

(ii) If the probability of realizing the entire carry forward is huge, the
GAAP and IAS12 approach are not in line with conventional economic
theory, which suggests that the nominal carry forward value should
at least be discounted to reflect time preferences. However, the pre-
cise discounting value is somewhat diffuse and depends on parameters
difficult to measure, such as likelihood and timing of the settlement
(Givoly and Hayn, 1992). Other researchers even find evidence against
discounting of deferred taxes (e.g. Amir et al. (1997)), which can be
explained by assuming a skewed income distribution (De Waegenaere
et al., 2003).

As in the previous section(s), we analyze the sensitivity of the conventio-
nal accounting valuation principles to carry forward. The GAAP and IAS12
valuation methods are not classically differentiable. At least the GAAP ap-
proach gives rise to a function that is weakly differentiable, where the weak
derivative is given by6

(4.15)
∂

∂CF1
ξcf,GAAP =

{
τ, for CF1 ≤ A∗1
0, else.

6Recall that a function f has weak derivative g if
∫
R f(x)ϕ(x)′dx = −

∫
R g(x)ϕ(x)dx for all

ϕ ∈ C∞c (R), which is the space of smooth functions with compact support.
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Figure 4.7. DTA value of carry forward as a function of CF1 under
different valuation approaches. Parameters: A0 = 100, τ = 0.25, r =
0.05, σ = 0.2, µ = 0.1.

The sensitivity is larger compared to the market consistent sensitivity in
(4.5) at each point on the support of (4.15).

Another illuminating quantity is the dependence on the initial start value
A0, which is shown in Figure 4.8. Initially, the asset value is so small that
materializing the complete carry forward is unlikely. Hence, under GAAP
principles, a valuation allowance is issued, which reduces the nominal value
of CF1. However, at some point, the initial asset value is large enough so
that the probability of materializing the complete carry forward is larger
than 50%. At this point, ξcf,GAAP stabilizes and becomes constant. This is
also the point where ξcf,IAS12 gets positive and concurs with IAS12 (green
line in Figure 4.8). Both ξcf,GAAP and ξcf,IAS12 converge to τCF1 for large
values of A0.

Remark 4.2. The size of A0 relative to CF1 plays an important role in the
loss absorbing capacity of deferred taxes. After a negative shock in the asset
value, a loss is incurred, which can be used as carry forward. Hence, CF1

increases, but the asset value decreases. The asset value after shock can be
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so low that the market consistent carry forward is actually worth less than
it was before, even though the nominal value increased. We analyze this in
more detail in Section 5.1.
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Figure 4.8. DTA value of carry forward as a function of A0 under
different valuation approaches. Parameters: τ = 0.25, CF1 = 90, r =
0.05, σ = 0.2, µ = 0.1.

4.2. Valuation of debt

Subsequent valuation methods of deferred taxes of levered firms requires
knowledge of the coupon payment C. These are obtained from debt D with
maturity T . Recall our assumption that bankruptcy can be triggered at
discrete times (each year after taxes are levied), when the post-tax asset

value Ãt drops below some critical threshold K prior to maturity, or if

ÃT < D at maturity. The time of bankruptcy is thus given by the stopping
time (see Definition A.1)

τD = inf

{
t ∈ {1, 2, . . . , T − 1}|Ãt ≤ K

}
,

where the stopping time is interpreted as T whenever the set above is empty.

Default at maturity happens when τD = T and ÃT < D. This framework
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thus only considers time independent default barriers. When default occurs,

the firm loses a fraction α ∈ [0, 1] of the asset value ÃτD due to bankruptcy
cost. Using risk neutral valuation gives the value of the issued debt at time
zero

D0 = EQ
(
e−rτD

τD−1∑
t=0

ertC
)

+ (1− α)EQ
(
e−rτDÃτD 1τD<T

)
(4.16)

+ e−rTEQ
((
D1

ÃT≥D + (1− α)ÃT 1
ÃT<D

)
1τD=T

)
.

The first term on the right is the discounted payoff of the coupon pay-
ments as long as the firm is not bankrupt. The second term is the expected
amount that bondholders receive when bankruptcy is triggered prior to ma-
turity multiplied by the recovery rate 1 − α. Taxes and coupon payments
are already deducted from the assets in this term. Finally, the last term
takes into consideration the value that is left to bondholders at maturity
after taxes have been levied, in case bankruptcy is avoided before maturity.
However, the firm can still default at maturity when assets after tax and
coupon are less than the face value of debt, in which case one recovers the
fraction 1−α of the remaining asset value.7 We henceforth assume that the
default boundary K is determined exogenously. The next example serves to
illustrate the various scenarios that may occur.

Example 4.3. Assume that A0 = 100, r = 0.05, α = 0.5, C = 5 and K =
D = 80 in the 2-period model.

(i) If the firm loses 50% of the assets in period one, so that A1 = 50, then

the asset value after tax and coupon equals Ã1 = 50−C − τ(50−A0−
C)+ = 45. Since Ã1 < K, bondholders declare bankruptcy (τD = 1)

and they receive the remaining asset value αÃ1 = 22.5 due to bank-
ruptcy cost. As a result, the total share received by bondholders dis-

counted back to period zero equals e−rτD(C + αÃ1) = 26.16. Limited
liability ensures that equity holders receive nothing.

(ii) Suppose now that the firm loses 10% in period one and 20% in period

two. This implies Ã1 = 0.9 · A0 − C = 85 > K, so bondholders do
not declare bankruptcy in period one. The asset value after coupon

and tax in period two equals Ã2 = 0.8 · Ã1 − C = 63 < D. In this
case, the undertaking goes bankrupt in period two (τD = 2) and the

7Strictly speaking, we should include a fourth term in (4.16) to account for the possibility

that the asset value before tax (AτD ) is less than the coupon payment. In most reasonable
calibrations, the probability that the remaining asset value is insufficient to pay the coupon is
small and the risk-neutral expectation of this event contributes just little to debt value at time

zero. However, K and C could be close in crisis periods. This is because C reflects credit spreads,
which is a measure of riskiness of a company. Therefore, for highly leveraged companies and in a

period of turbulence C could be close to K.
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total share received by bondholders discounted back to period zero is

e−rτD(C + erC + αÃ2) = 37.78. Again, equity holders receive nothing.

(iii) Finally, assume that a firm makes 5% profit in period one and two.

Hence, asset values are given by Ã1 = A0 ·1.05−C− τ(A0 ·1.05−A0−
C)+ = 100 and Ã2 = Ã1 · 1.05− C − τ(1.05 · Ã1 − Ã1 − C)+ = 100. No

bankruptcy occurs since Ã1 > K and Ã2 > D. Thus, the total share
received by bondholders discounted back is given by e−2r(5+er5+D) =

81.67. Equity holders receive the remaining amount Ã2 −D = 20.

As in Leland and Toft (1996), coupon payments C are determined such
that debt sells at par value, i.e. D = D0 in (4.16). The next section pre-
sents closed form solutions for such debt payments. For general T -period
models T ≥ 2 we have to resort to simulation in order to obtain C. The
framework thus described operates in between the credit models of Merton
(1974) and Black and Cox (1976). The Merton (1974) model allows debt
holders to file for bankruptcy when the coupon expires, whereas Black and
Cox (1976) permit debt holders to file for bankruptcy at every time point
prior to maturity when the assets drop below some critical threshold K.
The first approach leads to interpret debt value as a put option on the as-
sets, whereas the second approach values debt as the difference between two
barrier call options. Our framework (4.16) could, although not precisely,
be interpreted as modeling debt as a Bermudan barrier call option. This is
because bankruptcy dates are discrete (Bermudan) and are exercised whe-
never the post-tax assets drop below some critical threshold (barrier).

For the valuation of DTA’s/DTL’s we always assume that bankruptcy
costs are zero, i.e. α = 0 in (4.16). Later on, when studying optimal capital
structures and agency problems, bankruptcy cost play an important role
and we will work with α > 0.

4.3. One-period model levered firms

In the one-period model, we are able to find closed-form formulas for debt
at time zero, so that C can be obtained without simulation. The one year
model significantly simplifies (4.16). Namely, bankruptcy cannot be trigge-
red before maturity, so that the stopping time is deterministic (τD = 1) and
we do not have to specify the exogenous bankruptcy trigger K. Moreover,
bankruptcy cost are assumed to be zero for DTA valuations. Hence, (4.16)
becomes

(4.17) D0 = e−rC + e−rEQ
(

min(D, Ã1)
)
,
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which is recognized as Merton’s debt value (Merton, 1974) with coupon

payments. The precise form of Ã1 depends on the availability of deferred
taxes.

4.3.1. Carry forward. Initially, we suppose that γ = 1, so that an under-
taking can subtract all interest payments from taxable income. In this case,
carry forward has no influence on the bankruptcy condition, since bank-
ruptcy only occurs if the firm incurs a loss. This is because we assume that

D0 ≤ A0. Hence, by writing min(D, Ã1) = D − (D − Ã1)+, (4.17) equals

D0 = e−r(C +D)− e−rEQ
(
(D − Ã1)+

)
= e−r(C +D)− e−rEQ

(
(D + C −A1)+

)
= e−r(D + C)− PBS(D + C).(4.18)

The second line follows from Ã1 < D ⇐⇒ A1 − C < D, since no taxes
have to be paid in case of a loss. The notation PBS(K) denotes the Black-
Scholes price of a European call option with strike K. We choose C such that
D0 = D. The solution can be obtained by numerical methods, e.g. Newton-
Raphson iteration. The resulting coupon payment is shown in Figure 4.9 as
a function of D. For sufficiently high levels of debt, the coupon C is seen to
rise exponentially as a consequence of the imminence of bankruptcy.

The more general case corresponding to γ ∈ [0, 1] yields a more compli-
cated form than (4.18). In particular, D0 for fixed C corresponding to a firm
without deferred taxes follows from the next theorem.

Theorem 4.4. The debt value at time zero for an undertaking without de-
ferred taxes is given by

D0 = e−r(D + C)− e−r(D + C)Φ(θ3) +A0Φ(θ3 − σ),

if D + C ≤ A0 + γC. Otherwise

D0 = e−r(D + C)− e−r(D + C)Φ(θ2) +A0Φ(θ2 − σ)

− τA0[Φ(θ2 − σ)− Φ(θ1 − σ)] + e−rτ(A0 + γC)[Φ(θ2)− Φ(θ1)].

In these expressions

θ1 =
1

σ

[
log

(
A0 + γC
A0

)
− r + σ2/2

]
θ2 =

1

σ

[
log

(
D + C − τ(A0 + γC)

(1− τ)A0

)
− r + σ2/2

]
θ3 =

1

σ

[
log

(
D + C
A0

)
− r + σ2/2

]
.

Proof. See Appendix C.1. �
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Figure 4.9. Coupon payment C on risky debt as a function of debt
D for undertakings with different deferred taxes. Parameters: A0 =
100, r = 0.05, σ = 0.2, τ = 0.25, CB1 = 10, gain1 = 30, γ = 1.

Likewise, debt at time zero for undertakings with carry forward follows
from

Theorem 4.5. The debt value at time zero for an undertaking having CF1

is given by8

D0 = e−r(D + Ccf)− e−r(D + Ccf)Φ(θ3) +A0Φ(θ3 − σ),

if D + Ccf ≤ A0 + CF1 + γCcf. Otherwise

D0 = e−r(D + Ccf)− e−r(D + Ccf)Φ(θ2) +A0Φ(θ2 − σ)

− τA0[Φ(θ2 − σ)− Φ(θ1 − σ)] + e−rτ(A0 + CF1 + γCcf)[Φ(θ2)− Φ(θ1)].

8The subscript a in Ca refers to the specific type of deferred tax. No subscript indicates an

undertaking without deferred taxes.
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In these expressions

θ1 =
1

σ

[
log

(
A0 + CF1 + γCcf

A0

)
− r + σ2/2

]
θ2 =

1

σ

[
log

(
D + Ccf − τ(A0 + CF1 + γCcf)

(1− τ)A0

)
− r + σ2/2

]
θ3 =

1

σ

[
log

(
D + Ccf
A0

)
− r + σ2/2

]
.

Proof. See Appendix C.2. �

From Theorem 4.4 and Theorem 4.5, the Newton-Raphson method can
be employed to find C (or Ccf) such that D0 = D. In this case, there is a
difference between the coupon paid by undertakings without deferred taxes
and one that has carry forward. The disparity arises if 0 ≤ γ < 1. To see
this, note that if D + C > A0, a firm can go bankrupt even if it makes a
profit in period one. When interest payments are fully deductible (γ = 1),
the firm never has to pay taxes over that profit. However, when γ < 1, some
profit will be taxed, and this tax deduction might be enough to trigger the
bankruptcy condition.9

Having established the coupon C, we now turn to the valuation of levered
undertakings and their deferred taxes. The value of a levered undertaking
without deferred taxes is given by discounting the assets at time one (2.1),
plus the coupon payment to creditors

(4.19) VBS = e−rE(Ã1 + C|F0) = A0 − τCBS(K = A0 + γC).

We henceforth denote the value of levered firms by VBS
a , to distinguish it

from unlevered firms. Consistent with previous notation, subscript a depicts
the deferred tax available at the starting period. The strike value in (4.19)
is higher compared to unlevered firms, since interest deductions lead to a
tax advantage. The interest deduction also contains an option component,
as it is not certain that the entire interest payment can be deducted from
taxable income, e.g. when a firm incurs a loss, so there is no taxable income
to offset the interest payment.

The market consistent pricing approach gives the value of a levered firm
having some carry forward by discounting (2.3) and adding the coupon pay-
ment

(4.20) VBS
cf = e−rEQ(Ã1 + Ccf|F0) = A0 − τCBS(K = A0 + CF1 + γCcf).

9The absolute priority rule ensures that taxes are levied first, before bondholders can file for

bankruptcy.



42 4. Results

Remark 4.6. Since our approach to valuing DTA’s/DTL’s has been to
compare firm values with an otherwise identical firm, which does not have
deferred taxes (Definition 3.1), we must assume that coupon payments for
the reference undertaking are the same to avoid circular reasoning. To faci-
litate subsequent sensitivity calculations, we therefore chose to set Ccf = C
when valuing carry forward.

As a result, the DTA value arising from carry forward for levered under-
takings is given by the difference (4.20) and (4.19)

(4.21) ξBS
cf = τ

(
CBS(A0 + γC)− CBS(A0 + CF1 + γC)

)
.

Equation (4.21) contains the unlevered DTA value of carry forward (4.3) as
a special case when γ = 0 or D = 0. The value of carry forward for levered
firms in (4.21) is smaller in comparison to the value of carry forward for un-
levered firms in (4.3). Mathematically, this is evident from Proposition 4.1,
as the derivative of a European call option to the strike is decreasing in
absolute value. The slope of the call option seen as a function of the strike
is steeper, so the difference between two call options is greater compared
to the difference between two call options further in the tail. There is also
some economic rationale behind this result. The value of a DTA coming
from carry forward is positively dependent on the amount of tax payments.
In case a firm is levered, less tax is paid due to the interest tax shield.
Hence, the overall DTA is reduced in value compared to unlevered firms.
The relation between debt and the DTA value of carry forward is shown in
Figure 4.10. The negative relationship between the DTA value arising from
carry forward and debt is clearly visible. The DTA value even tends to zero
when a firm is extremely leveraged, because coupon payments are excessive
in those cases.

The sensitivity of the DTA value for levered firms is given by

∂

∂CF1
ξBS

cf = τe−r(1− F (A0 + CF1 + γC)) = τe−rQ(A1 > A0 + CF1 + γC).

This is lower than the sensitivity for unlevered firms, since the probability
that A1 exceeds the term on the right is lower when interest payments are
included. Ceteris paribus, a levered firm is less likely to profit from the full
carry forward than an unlevered firm, so a small change in carry forward
has less impact on the overall value for levered firms.

4.3.2. Carry back. In case a firm has CB1 at year one, bankruptcy can
be avoided in the event of a severe loss, by reclaiming previous tax expenses.
This suggests that the coupon payment for companies with carry back should
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Figure 4.10. DTA/DTL value of levered firms seen as a function of
debt. The coupon payment corresponding to debt level D0 is determined
via numerical methods and depends on the deferred tax. Parameters:
A0 = 100, r = 0.05, σ = 0.2, τ = 0.25, CF1 = CB1 = gain1 = 20.

be lower compared to firms without deferred taxes (or firms with carry
forward when γ = 1). In this case, the debt value at t = 0 follows from

Theorem 4.7. The debt value at time zero for an undertaking having CB1

is given by

D0 = e−r(D + Ccb)− e−r(D + Ccb − τCB1)Φ(θ3) +A0Φ(θ3 − σ),

if D + Ccb ≤ A0 − CB1 + γCcb. Otherwise

D0 = e−r(D + Ccb)− e−r(D + Ccb − τCB1)Φ(θ2) +A0Φ(θ2 − σ)

− e−rτ(CB1 −A0 − γCcb)[Φ(θ2)− Φ(θ1)]− τA0[Φ(θ2 − σ)− Φ(θ1 − σ)].
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In these expressions

θ1 =
1

σ

[
log

(
A0 − CB1 + γCcb

A0

)
− r + σ2/2

]
θ2 =

1

σ

[
log

(
D + Ccb − τ(A0 + γCcb)

(1− τ)A0

)
− r + σ2/2

]
θ3 =

1

σ

[
log

(
D + Ccb − τCB1

A0

)
− r + σ2/2

]
.

Proof. See Appendix C.3. �

Again, Newton-Raphson can be used to find Ccb such that D0 = D. Even
if γ = 1, the coupon payments for undertakings with carry back are lower
compared to those of the reference undertaking (see Figure 4.9). As a result,
the value of a firm having some carry back is calculated by discounting (2.4)
and adding the coupon
(4.22)

VBS
cb = e−rE(Ã1 + Ccb|F0) = A0 + e−rτCB1− τCBS(K = A0 + γCcb−CB1).

To avoid circular reasoning, we assume once more that Ccb = C. The DTA
value for carry back is then given by the difference between (4.22) and (4.19)

(4.23) ξBS
cb = τe−rCB1 − τ

(
CBS(A0 + γC − CB1)− CBS(A0 + γC)

)
.

In contrast to carry forward, the DTA value arising from carry back is
actually more valuable when a firm is increasingly leveraged. The last two
terms in (4.23) are smaller in difference compared to the last two terms
appearing in (4.7) for unlevered firms. This is due to the higher strike value
of the call option, which is also visible in Figure 4.10. The economic reason
behind this phenomenon comes from the coupon payments, which decreases
fiscal loss even further. Hence, in case of a loss, it is more likely that a
higher part of the carry back will be materialized, which increases the value
of the DTA. The derivative of the DTA value to the carry back is given by

∂

∂CB1
ξBS

cb = τe−rF (A0 + γC − CB1) = τe−rQ(A1 < A0 + γC − CB1).

This is higher compared to unlevered firms. The same carry back value has
higher probability of being realized, so that a small change in the carry back
has more influence on the DTA value when a firm is levered.

4.3.3. DTL. A firm having a deferred tax liability is more likely to go
bankrupt, since even in case of a loss the firm might be obliged to pay
taxes. Thus, it can potentially happen that A1 > D + CL, but after taxes

Ã1 < D + CL. This should be taken into account when calculating the
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coupon CL and implies that CL is generally higher for firms having a DTL in
comparison to undertakings without deferred tax obligations.

Theorem 4.8. The debt value at time zero for an undertaking having gain1

is given by

D0 = e−r(D + CL)− e−r(D + CL)Φ(θ3) +A0Φ(θ3 − σ),

if D + CL ≤ A0 − gain1 + γCL. Otherwise

D0 = e−r(D + CL)− e−r(D + CL)Φ(θ2) +A0Φ(θ2 − σ)

− e−rτ(gain1 −A0 − γCL)[Φ(θ2)− Φ(θ1)]− τA0[Φ(θ2 − σ)− Φ(θ1 − σ)].

In these expressions

θ1 =
1

σ

[
log

(
A0 − gain1 + γCL

A0

)
− r + σ2/2

]
θ2 =

1

σ

[
log

(
D + CL − τ(A0 − gain1 + γCL)

(1− τ)A0

)
− r + σ2/2

]
θ3 =

1

σ

[
log

(
D + CL
A0

)
− r + σ2/2

]
.

Proof. See Appendix C.4. �

The resulting coupon payments are higher compared to those of the
reference undertaking, which can be seen from Figure 4.9. The market
consistent firm value follows from discounting (2.5) and adding the coupon
payment

(4.24) VBS
L = e−rEQ(Ã1 + CL|F0) = A0 − τCBS(K = A0 + γCL − gain1).

Once again we impose that CL = C to avoid circular reasoning. The DTL
value is given by comparing (4.24) and (4.19)

(4.25) ξBS
L = VBS

L − VBS = τ

(
CBS(A0 + γC)− CBS(A0 + γC − gain1)

)
.

The DTL value arising from temporary differences for levered firms is grea-
ter compared to unlevered firms due to higher strike values. Economically,
this holds since coupon payments reduce fiscal profits, which makes it less
likely that untaxed profit remains in period one.

The sensitivity of the DTL value (4.25) to a change in untaxed profit
equals

∂

∂gain1

ξBS
L = τe−r(1−F (A0+γCL−gain1)) = τe−rQ(A1 > A0+γCL−gain1).

Hence, the DTL value arising from temporary differences is less sensitive to
a change in the untaxed profit when a firm is levered. A change in gain1 has
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less influence on tax payments as coupon payments make it less likely that
such tax payments are materialized.

4.3.4. Valuation interest tax shield. We can obtain a market consistent
value of the tax shield under the Black-Scholes assumptions by adapting the
valuation formulas for levered firms. The interest tax shield derives its va-
lue from the uncertainty related to the fact that not all of the interest tax
shield will be materialized. However, the extent to which a firm is able to
profit from the tax shield depends on the fiscal history. Figure 4.11 shows
the difference in tax payments for levered and unlevered firms for two type
of undertakings; a reference undertaking without fiscal history and an un-
dertaking having a DTL. The difference between each of the graphs is what
determines the tax shield value.
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(a) Reference undertaking without fiscal history, C = 12.
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(b) Undertaking with a DTL (gain1 = 20). The coupon CL
equals 13.

Figure 4.11. Tax payments for levered and unlevered firms with diffe-
rent fiscal history. Parameters: A0 = 100, τ = 0.25.

There is no general consensus in the literature about tax shield valua-
tion. This topic started off with the classical article of Modigliani and Miller
(1963), which suffers from some serious drawbacks such as risk-free debt and
the tacit assumption that the tax shield will be completely materialized each
year. Numerous investigations have tried to improve upon this work, such
as Kemsley and Nissim (2002) who assess the impact of debt financing by
cross sectional regression, concluding that firm value is a strongly positive
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function of debt. Arzac and Glosten (2005) take a more theoretical appro-
ach, in which future cash flows arising from tax payments are discounted
by a pricing kernel. The value of the tax shield is subsequently obtained as
the difference in tax payments for levered and unlevered firms. Arzac and
Glosten (2005) show that their framework contains the Modigliani-Miller
theorem as a special case, by making specific assumptions about the dyna-
mics of the free cash flow process. In line with Arzac and Glosten (2005), we
calculate the value of the tax shield by subtracting the enterprise value of
an unlevered firm from a levered firm. In particular, the following theorem
presents the valuation of the two type of interest tax shields that might arise
in our model.

Theorem 4.9. The interest tax shield corresponding to firms with different
fiscal history is given by

(i) For firms with no fiscal history, carry forward or carry back

(4.26) RBS , VBS − V BS = τ

(
CBS(A0)− CBS(A0 + γC)

)
.

(ii) For firms with a DTL arising from temporary differences

(4.27) RBS
L , VBS

L − V BS
L = τ

(
CBS(A0 − gain1)− CBS(A0 − gain1 + γC

)
.

Proof. For (i), simply subtract (4.1) from (4.19). In Section 3.2 we assu-
med a specific order for the coupon payments. After accounting for coupon
payments, carry forward/back can be used for the remaining profit/loss.
Hence, under this assumption, deferred tax assets like carry forward/back
are immaterial for tax shield valuations. They only have an influence on
the coupon payments, but to avoid circular reasoning coupons are taken to
be the same as those of the reference undertaking. Finally, (ii) takes into
consideration that, ex-ante, it is known that additional taxes are levied over
gain1 in period one. Therefore, a DTL makes it more likely that part of the
tax shield is materialized and the value is obtained by subtracting (4.10)
from (4.24). �

Remark 4.10. This theorem is markedly different than the conventional
Modigliani-Miller theorem, which (in our notation) states that

(4.28) R = e−rτC.

Modigliani and Miller (1963) tacitly assume that the full interest tax shield
can be deducted each year, which is not generally valid since taxable income
might not be sufficient to compensate the entire tax advantage. Our model
does account for this risk, which is reflected by the option price formulas
in the previous theorem. The model for firms without fiscal history (4.26)
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contains the Modigliani-Miller theorem as a special case, which can be seen
by taking σ → 0+ in (4.26).10 Using the Black-Scholes formula (3.7) gives
that (4.26) converges to

lim
σ→0+

RBS = τe−rγC,

provided (er − 1)A0 > γC. Mathematically, this condition derives from the
fact that d2 in (3.7) goes to infinity if and only if log(A0/(A0 + γC)) + r > 0
when σ → 0+.11 In our model, the condition expresses that taxable income
(as measured by (er − 1)A0) should be greater than γC in order to benefit
completely from the tax shield. If all interest payments can be deducted from
taxable income (i.e. γ = 1), this is precisely the (continuously) discounted
interest tax shield.

20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Face value of debt, D

V
a

lu
e

 t
a

x
 s

h
ie

ld

 

 

Modigliani−Miller

Reference undertaking

Undertaking with DTL

Figure 4.12. Interest tax shield seen as a function of debt. The
Modigliani-Miller value is given by (4.28), whereas the value of the Re-
ference undertaking and the Undertaking with DTL are given by RBS

and RBSL respectively. Parameters: r = 0.05, σ = 0.2, τ = 0.25, A0 =
100, gain1 = 10, γ = 1. Bankruptcy cost are zero (α = 0).

10There is no explicit σ in (4.26) since we assumed it was constant throughout our analysis.

However, the DTA/DTL values do depend on this quantity.
11The strike value of the option is K = A0 + γC.
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Figure 4.12 shows the value of the tax shield as a function of debt.
The option interpretation of the tax shield renders values lower than the
Modigliani-Miller approach, since this model takes into account that part
of the tax shield may not be settled in period one. The valuation difference
is most pronounced when a firm is highly leveraged, due to the exponential
rise in coupon payments. Figure 4.12 also shows that the tax shield is more
valuable for firms with a DTL, although the difference with a reference
undertaking is relatively moderate.

4.4. Multi-period model unlevered firms

4.4.1. Simulation set-up. In this section, we outline how the DTA/DTL
values are obtained in the T -period model for T ≥ 2 by simulation. We
generate 10,000 asset paths (5,000 asset paths plus 5,000 antithetic vari-
ates) according to Equations (3.4). Moreover, the simulation depends on
the availability of DTA’s at time zero (CF1 or CB1), duration of carry for-
ward/back, tax rate (τ), starting value of the assets (A0), risk-free rate r,
whether carry back is allowed or not (1Carry back allowed) and the geometric
Brownian motion (3.2). Based on these input parameters, the asset paths
are generated according to Equations (3.4). Subsequently, the firm value
(3.3) is estimated by

V̂ BS = e−rT
(

1

10, 000

10,000∑
n=1

Ã
(n)
T

)
if CF1 = CB1 = 0

V̂ BS
cf = e−rT

(
1

10, 000

10,000∑
n=1

Ã
(n)
T

)
if CF1 > 0

V̂ BS
cb = e−rT

(
1

10, 000

10,000∑
n=1

Ã
(n)
T

)
if CB1 > 0.

As a result, the DTA value of carry forward and carry back respectively are
estimated by

ξ̂BS
cf , V̂

BS
cf − V̂ BS

ξ̂BS
cb , V̂

BS
cb − V̂ BS .

The DTL value in the T -period model corresponding to the base case
(i) can be obtained analytically, hence it need not be simulated. The DTL
value in the more realistic case (ii) is obtained in the same way the
DTA values are simulated, but this time carry back is either not allowed or
otherwise has a duration of one year. The untaxed profit is decreased each



50 4. Results

year according to (3.6). The estimated DTL value then follows from

ξ̂BS
L , V̂

BS
L − V̂ BS

V̂ BS
L = e−rT

(
1

10, 000

10,000∑
n=1

Ã
(n)
T

)
In the last equation, Ã

(n)
T is given by (3.5).

4.4.2. Carry forward. It is still possible to derive closed form formulas
in the two-period model, but the expressions tend to be rather cumbersome
(see Appendix B). One might be able to extend the results of Appendix B
to concoct formulas for longer time periods, but these will necessarily be
extremely tedious. Moreover, the longer the time period, the more parame-
ter combinations are available.12 Hence, DTA values for time periods t ≥ 3
are obtained by Monte-Carlo simulation. The results of Appendix B yield
the following DTA values for carry forward in the 2-period model with a
duration of one year.

Proposition 4.11. The value of a company without fiscal history, excluding
carry back and assuming a one year duration of carry forward is given by

V BS = A0 − τCBS(A0)− τA0

(
Φ(ρ1)(g1, g2)− e−2rΦ(ρ1)

(
ζ1,

2r/σ − σ√
2

)
+
(
Φ(d1,2)− e−rΦ(d2,2)

)[
(1− τ)Φ(σ − ζ1) + e−rτΦ(−ζ1)

])
.

Here Φ(ρ)(x, y) is the distribution function of a bivariate standard normal
distribution with correlation coefficient ρ and

ρ1 ,
−1√
(2)

, ζ1 ,
σ

2
− r

σ
, g1 , ζ1 − σ, g2 ,

2r/σ + σ√
(2)

d1,2 =
1

σ
[r + σ2/2], d2,2 = d1,2 − σ.

Proof. See Proposition B.2. �

Theorem 4.12. The value of a firm having CF1 available at time zero
equals

V BS
cf = A0 − τCBS(A0 + CF1)− τ(I1 + I2,1 + I3),

12Given the t-period model, we have t − 1 combinations corresponding to the duration of

carry forward. In addition, we can choose to allow carry back or not, and if we allow carry
back, then one has another t − 2 choices for the duration of carry back. This means there are

(t− 1) + (t− 1)(t− 2) different models starting with carry forward. The like can be said starting

with carry back.



4.4. Multi-period model unlevered firms 51

where

I1 = A0Φ(ρ1)(g1, g2)− e−2rA0Φ(ρ1)

(
ζ1,

2r/σ − σ√
2

)
I2,1 = (Φ(d1,2)− e−rΦ(d2,2))

(
A0(1− τ)Φ(σ − ζ1 − δ) + e−rτ(A0 + CF1)Φ(−ζ1 − δ)

)
I3 = A0(Φ(d1,2)− e−rΦ(d2,2))(Φ(ζ1 + δ − σ)− Φ(ζ1 − σ)).

All constants are the same as in Proposition 4.11 and δ = 1
σ log(CF1

A0
+ 1).

Proof. See Appendix B.2. �

Corollary 4.13. Assuming one year duration for carry forward and exclu-
ding carry back, the DTA value is given by

(4.29) ξBScf = τ(CBS(A0)− CBS(A0 + CF1))︸ ︷︷ ︸
Carry forward value in one period model.

−τ(I2,1 − I2 + I3︸ ︷︷ ︸
>0

).

In this expression, all constants are the same as in Theorem 4.12 and

I2 = A0

(
Φ(d1,2)− e−rΦ(d2,2)

)[
(1− τ)Φ(σ − ζ1) + e−rτΦ(−ζ1)

]
.

Proof. This follows by subtracting V BS from V BS
cf . The fact that the second

term in (4.29) is positive follows from the proof in Appendix B.2. �

This result might be somewhat vexing, since the carry forward value is
worth less in the two year model than in the one year model. However,
this can be explained by observing that the asset value of a firm with carry
forward in period one is higher in comparison to a firm without the tax
advantage. This has repercussions for period two. A relative change in
period two leads to a more pronounced difference in absolute asset value,
so that a firm with carry forward has to pay more taxes in period two.
A careful inspection of the proof in Appendix B.2 reveals that the loss of
value comes from integrating two at-the-money call options over the region
{ω ∈ Ω : A1(ω) > A0}, i.e. where the undertaking makes a profit. The tax
authority holds an option on a firm expiring in period two, which is exercised
as soon as the undertaking makes a profit. The call option is at the money
for both undertakings (since no DTA’s are available in period two), so the
value deduction is a consequence of CBSat-the-money(K1) > CBSat-the-money(K2) if
K1 > K2, i.e. the tax authority expects to levy more taxes from firms with
higher asset value in period one.

Example 4.14. In a static environment, together with the risk-neutral
assumption, we could for simplicity assume that assets grow with rate 1 + r
each year. Let us also assume that rA0 ≤ CF1, so that an undertaking with
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carry forward does not pay taxes in year one. A firm without deferred taxes
results in the following asset value after tax in periods one and two

Ã1 = (1 + r)A0 − τ((1 + r)A0 −A0) = A0(1 + r(1− τ))

Ã2 = A1(1 + r(1− τ)) = A0(1 + r(1− τ))2.

In contrast, a firm having CF1 results in the following after-tax asset value

Ã
(1)
1 = A0(1 + r) (Since rA0 ≤ CF1)

Ã
(1)
2 = A1(1 + r(1− τ)) = A0(1 + r)(1 + r(1− τ)).

By definition, this results in the following DTA values for carry forward in
the one and two year model respectively

ξ1 ,
Ã

(1)
1 − Ã1

1 + r
=
A0rτ

1 + r

ξ2 ,
Ã

(1)
2 − Ã2

(1 + r)2
=
A0rτ(1 + r − rτ)

(1 + r)2
=
A0rτ

1 + r

1 + r − rτ
1 + r

< ξ1,

since 1 + r − rτ < 1 + r. Indeed, in this simple example carry forward is
more valuable in the one year model, since part of the tax benefit in period
one is offset by the payment of extra taxes in period two.

The analytic results of Appendix B.3 permit us to express the DTA
value of carry forward in the two year model assuming a two year duration
of carry forward.

Theorem 4.15. In the two year model without carry back and assuming a
two year duration of carry forward, firm value is given by

(4.30) V BS
cf = A0 − τCBS(A0 + CF1)− τ(I1,2 + I2,1).

Proof. See Appendix B.3. �

Corollary 4.16. In the two year model

(4.31) ξBScf = τ(CBS(A0)− CBS(A0 + CF1))− τ(I1,2 + I2,1 − I1 − I2),

where

I1,2 = A0Φ(ρ1)(ζ1 + δ − σ, g1)− e−2r(A0 + CF1)Φ(ρ1) (ζ1, g2) ,

g1 ,
2r
σ + σ + 1

σ log( A0
A0+CF1

)
√

2
, g2 ,

2r
σ + 1

σ log( A0
A0+CF1

)− σ
√

2
.

The rightmost term contains four integrals, for which we have the following
inequalities

(4.32) I1,2 < I1, I2,1 < I2.
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Proof. This follows by subtracting V BS in Proposition 4.11 from V BS
cf in

Theorem 4.15. The inequalities (4.32) are proved in Appendix B.3. �

In contrast to Corollary 4.13, the DTA value of carry forward correspon-
ding to a two year duration does increase compared to the one year model.
The trade-off between higher taxes in period two is offset by the extra use
of carry forward in that period.

Example 4.17. As in Example 4.14, assume that assets grow with rate
1 + r and that (1 + r)2A0 ≤ CF1, so that in periods one and two no tax
needs to be paid for a firm having CF1 that can be settled in two years. The
post-tax asset value for the undertaking without carry forward is the same
as in Example 4.14 for both periods, the same holds for the undertaking with
a DTA in period one. However, since the undertaking with carry forward is
also exempted from tax payments in period two, we now have

Ã
(1)
2 = A0(1 + r)2.

Working out the differences yields the DTA value of carry forward in the
one and two year model

ξ1 ,
A0rτ

1 + r
(Same as in Example 4.14)

ξ2 ,
A0(1 + r)2 −A0(1 + r(1− τ))2

(1 + r)2
=
A0rτ(2− rτ + 2r)

(1 + r)2

=
A0rτ

1 + r

2− rτ + 2r

1 + r
= ξ1

(
1 + r + (1 + r − rτ)

1 + r

)
> ξ1,

since 1 + r − rτ > 1. Hence, in the deterministic scenario with constant
growth, the DTA arising from carry forward is indeed more valuable in the
two year model.

Proposition 4.18. The added value of going from one year to two years
carry forward in the two year model is given by

(4.33) τ(I1 + I3 − I1,2)

Proof. By definition this is the difference between (4.31) and (4.29). �

The analytical solution (4.33) is not easily interpreted, but the proofs in
Appendix B.2 and Appendix B.3 give some insight where these quantities
are derived from. Once an undertaking’s profit in period one exceeds the
nominal carry forward value, it doesn’t matter whether CF1 is one or two
years valid as it is completely settled in period one and no other deferred
tax assets are taken to period two. The difference comes from considering
all scenarios in which taxable income is not sufficient to settle the entire
carry forward in period one. The integrals I1 + I3 quantify the extent to
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which a firm is expected to lose value due to taxes in period two, given it has
incurred a loss in period one and the duration of carry forward is only one
year. The integral I1,2 quantifies the expected tax payments in period two,
given a loss incurred in period one and a two year duration of carry forward.
Hence, the difference (4.33) gauges the expected tax savings resulting from
extending the duration of carry forward with one year.

Table 4.1 summarizes the DTA value of carry forward corresponding to
different time models and settlement terms, assuming no carry back pos-
sibilities. The values are quite subtle; when carry forward has a one year
duration, one has the upper bound on the DTA value, e−rτCF1, which is
the value you would acknowledge if the entire carry forward would be sett-
led with certainty. For time periods T ≥ 2, we no longer have the upper
bound e−rT τCF1, since part of (or the entire) carry forward might be sett-
led before maturity. On the other hand, the probability of materializing
the complete carry forward can be small if CF1 is high relative to A0 and
this can offset the value creation arising from intermediate tax deduction.
To illustrate this, Table 4.1 yields that the DTA value of CF1 = 10 in the
10-period model, with settlement term ten years equals 1.67, which is more
than e−r×10τCF1 = 1.53. In contrast, the DTA value of CF1 = 50 in the
same model renders 6.86 < 7.58 = e−r×10τCF1 since CF1 is high relative to
A0 so that the probability of complete settlement is low.

The values in Table 4.2 also concern the DTA value of carry forward,
this time, however, allowing carry back possibilities. Apart from the one
year model (in which both models concur), the values are uniformly lower
compared to Table 4.1. Some intuition is gained by looking at the 2-period
model. Consider the event A , {ω ∈ Ω : A1(ω) > A0 + CF1}, which
is where both models diverge. Excluding carry back refrains undertakings
from using DTA’s in period two under scenario A. Allowing carry back
yields the undertaking without carry forward with CB2 = A1−A0, whereas
the undertaking with carry forward only has CB2 = A1−A0−CF2. In case
of a large (negative) shock in period two, the asset values of both firms come
closer (in absolute value) and the carry back possibility might then suffice
to offset the tax disadvantage which arose in period one. See Example 4.19
below for a simple illustration. In general T -period models, the same forces
play a role.

Example 4.19. Consider first the two year model in which carry back
possibilities are excluded. Suppose the relative increments are given by 1.5
and 0.5 in period one and two respectively. In addition, the initial asset value
A0 = 100 and tax τ = 0.25. This yields the asset values for an undertaking
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without deferred taxes

Ã1 = 100 · 1.5− τ(100 · 1.5− 100)+ = 137.5

Ã2 = 137.5 · 0.5− τ(137.5 · 0.5− 137.5)+ = 68.75.

In a similar vein, the undertaking having CF1 = 20 is left with

Ã1 = 100 · 1.5− τ(100 · 1.5− 100− 20)+ = 142.5

Ã2 = 142.5 · 0.5− τ(142.5 · 0.5− 142.5)+ = 71.25.

In this scenario, the DTA value at the end of period two equals 71.25 −
68.75 = 2.5. Similar computations lead to the DTA value of carry forward
when carry back is allowed

Ã1 = 100 · 1.5− τ(100 · 1.5− 100)+ = 137.5 (50 carry back is created)

Ã2 = 137.5 · 0.5 + 50 · τ = 81.25

the last equality follows, since CB2 = 50, which can be used in its entirety

since Ã1 −A2 > 50. Subsequently, a firm having CF1 = 20 gives rise to the
asset values

Ã1 = 100 · 1.5− τ(100 · 1.5− 100− 20)+ = 142.5 (30 carry back is created)

Ã2 = 142.5 · 0.5 + 30 · τ = 78.75.

The DTA value arising from carry forward in this example is negative
(78.75 − 81.25 in period two). This illustrates that if carry back is allo-
wed, a firm may actually lose value despite having the tax advantage CF1

at the beginning of period zero. A firm expecting an anomalous negative
shock in period two may thus be better off settling only part of the carry
forward in period one (or nothing in the most extreme case). In the general
case, an undertaking with a long time horizon should take all future scena-
rios into account to determine the optimal way in which the DTA’s should
be settled at each time period. An interesting research question would be
to investigate whether such an optimal strategy exists and how it influen-
ces firm value. The domain of mathematics that is best suited to attack
these type of problems belongs to the realm of stochastic optimal control,
see Øksendal (2003) Chapters 10 & 11 for a thorough discussion.

Even though only one scenario is considered in Example 4.19, it serves to
illustrate that there are forces having a negative influence on carry forward
value, which do not arise when carry back is excluded. This explains why
the values in Table 4.2 are lower compared to those in Table 4.1. In general
T -period models, a myriad of such scenarios having a negative influence on
carry forward might occur. However, this still does not weigh up against all
scenarios in which carry forward has a positive influence on firm value, as
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Table 4.1. Monte-Carlo simulation of DTA value corresponding to different

nominal carry forward values (header). Left most column concerns the dura-

tion of the model. Two cases are distinguished, one where duration of carry
forward is one year, other where duration is ten years. Carry back is not al-

lowed and the maximum standard error during all simulations equals 0.0194.
The following parameters are used: A0 = 100, r = 0.05, σ = 0.2, τ = 0.25 and

10.000 Monte-Carlo paths.

CF1 10 20 30 40 50 10 20 30 40 50

Carry forward 1 year Carry forward 10 years

T = 1 1.10 1.80 2.19 2.43 2.53 1.10 1.80 2.18 2.40 2.51

T = 2 1.07 1.75 2.15 2.34 2.46 1.42 2.47 3.25 3.75 4.08

T = 3 1.05 1.72 2.09 2.30 2.42 1.56 2.81 3.79 4.51 5.07

T = 4 1.03 1.67 2.05 2.27 2.35 1.64 2.99 4.09 4.99 5.70

T = 5 1.01 1.65 1.99 2.18 2.32 1.67 3.09 4.30 5.30 6.12

T = 6 0.98 1.60 1.95 2.15 2.26 1.69 3.16 4.42 5.50 6.40

T = 7 0.96 1.56 1.92 2.10 2.20 1.70 3.19 4.49 5.63 6.59

T = 8 0.94 1.55 1.88 2.05 2.15 1.70 3.21 4.54 5.71 6.75

T = 9 0.92 1.49 1.84 2.02 2.10 1.69 3.20 4.54 5.76 6.84

T = 10 0.91 1.48 1.80 1.99 2.07 1.67 3.20 4.54 5.76 6.86

all values in Table 4.2 are positive.

In each T -period model, the DTA arising from carry forward will even-
tually decrease, as can be seen from Figure 4.13 panel (a) and (b). In panel
(a), the duration period is varied over 1,3 and 8 years. Increasing the du-
ration time always leads to an increase in DTA value, since settlement of
the entire carry forward is more probable. However, panel (b) shows that
over a very long time horizon, the DTA value starts to decrease. The point
of inflection is the same for the 10 and 100 year duration, namely in the
9-period model. Once more, the reason for this coming from the trade-off
described in Example 4.14 and Example 4.17. Initially, the benefit of one
extra time period increases the likelihood of materializing the entire carry
forward, but at some time point this doesn’t weigh up anymore against the
increased tax expenses in subsequent time periods. Panel (c) in Figure 4.13
shows the DTA value as a function of carry forward in the 10-period model.
A settlement term of one year causes the DTA value to stabilize already for
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Table 4.2. Monte-Carlo simulation of DTA value corresponding to different

nominal carry forward values (header). Left most column concerns the dura-

tion of the model. Two cases are distinguished, one where duration of carry
forward is one year, other where duration is ten years. Carry back is allowed

for one and ten years in the respective models and the maximum standard

error in all simulations equals 0.0214. The following parameters are used:
A0 = 100, r = 0.05, σ = 0.2, τ = 0.25 and 10.000 Monte-Carlo paths.

CF1 10 20 30 40 50 10 20 30 40 50

Carry forward 1 year* Carry forward 10 years**

T = 1 1.10 1.80 2.20 2.41 2.51 1.10 1.81 2.21 2.40 2.51

T = 2 0.86 1.38 1.68 1.84 1.92 1.20 2.10 2.76 3.23 3.56

T = 3 0.92 1.48 1.80 1.96 2.06 1.25 2.26 3.06 3.66 4.14

T = 4 0.89 1.43 1.73 1.88 1.97 1.29 2.35 3.22 3.93 4.54

T = 5 0.88 1.42 1.72 1.87 1.95 1.31 2.41 3.37 4.12 4.81

T = 6 0.86 1.37 1.69 1.83 1.92 1.32 2.47 3.45 4.28 5.01

T = 7 0.84 1.35 1.65 1.82 1.88 1.33 2.50 3.50 4.36 5.11

T = 8 0.82 1.34 1.63 1.78 1.85 1.33 2.50 3.56 4.47 5.28

T = 9 0.81 1.32 1.60 1.77 1.80 1.34 2.53 3.58 4.52 5.36

T = 10 0.80 1.29 1.55 1.71 1.78 1.34 2.53 3.64 4.54 5.40

* Carry back has a one year duration

** Carry back has a ten year duration

(relatively) small values of CF1, since the probability of materializing the
entire carry forward is small. An increase in the settlement term results in a
concomitant rise in DTA value and the stabilization occurs for much larger
value of CF1.

4.4.3. Carry Back. The DTA values arising from carry back are shown
in Table 4.3. Both models considered in Table 4.3 are simulated under the
assumption that carry forward is allowed, since virtually all tax regimes
worldwide also acknowledge carry forward possibilities when carry back is
allowed. Following the discussion in Section 4.1.3, the fact that the values in
Table 4.3 are uniformly lower compared to the DTA values of carry forward
in Table 4.2 is a consequence of r being large relative to σ2/2.13 To see

13By simulation, we find that σ = 0.5 and keeping all other parameters fixed, yields that

carry back is more valuable than carry forward.
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(a) DTA value of CF1 = 30 for different duration periods over
the T -period model.
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(b) DTA value of CF1 = 30 for different duration periods over
the T -period model.
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(c) DTA value as function of carry forward in the 10-period
model. The settlement term in the models is 1,5 and 10 years.

Figure 4.13. Monte-Carlo simulation of DTA value arising from carry
forward in multi-period models. In all sub figures carry back is not
allowed. Parameters: A0 = 100, r = 0.05, σ = 0.2, τ = 0.25.

why this condition also plays a role in the multi-period model, we consider
the dynamics of the assets without taxes (3.2) over long periods of time. In
particular, the following can be proved about the asset process when t→∞
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(Karatzas and Shreve, 2012)

lim
t→∞

At =


∞ a.s., if r − 1

2σ
2 > 0

0 a.s., if r − 1
2σ

2 < 0

does not exist a.s., if r = 1
2σ

2.

The first two statements follow from the strong law of large numbers, whereas
the latter statement is a consequence of the law of the iterated logarithm.14

Hence, if σ2 is large relative to r, this result suggests that an undertaking is
more likely to incur losses, which makes CB1 more valuable than CF1. Panel
(c) in Figure 4.14 shows the DTA value of carry back in different T -period
models for varying values of σ and r. The DTA values are fairly close to each
other when σ = r. Dropping the latter constraint causes further divergence
between the DTA values. Panel (d) in Figure 4.14 shows that the shape of
the DTA value as a function of A0 is similar in different T -period models.
Even though the payoff of carry back in multi-period models can no longer
be expressed as an explicit call option, its behaviour is similar to the one-
period model where the explicit call option interpretation is available.

There is a second factor that contributes to differences in value between
CB1 and CF1. Firstly, Example 4.19 shows there are scenarios under which
it is not beneficial to have carry forward. Such examples cannot be found
for undertakings having carry back, i.e. there are no scenarios for which it
is harmful to have carry back in comparison with the reference undertaking,
assuming a one year settlement term of carry back.15 Example 4.19 emana-
tes from scenarios under which the reference undertaking creates more carry
back in period one than the firm starting with carry forward. Panel (b) in
Figure 4.14 shows that longer settlement terms of carry forward engender
lower DTA values of carry back, when profits can be settled for 10 years. In
such cases, the same logic applies as in Example 4.19; there are scenarios for
which it is not beneficial to use carry back, which has a downward pushing
effect on the DTA value. Finally, it is visible from panel (a) that varying
the settlement term of carry back/forward at the same time is beneficial for
longer settlement terms in the various T -period models. The DTA value in
panel (a) reaches a maximum when profit/loss can be carried back/forward
for multiple years. This is because firms with initial tax benefits are ex-
pected to pay more taxes after the DTA is settled, whose effect is more

14Interestingly, one also has limt→∞ At = ∞ in L1 when r > 0. Hence, the convergence
does not depend on σ. Off course, this is not a contradiction, since convergence in L1 and almost

sure convergence are two different notions. The failure of agreement in the two limits comes from
the fact that geometric Brownian motion is not uniformly integrable.

15It is indeed possible to find such examples when carry back has a longer settlement term,

but this is not realistic given that no country allows to carry back losses for more than one year.
See also ??.
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Table 4.3. Monte-Carlo simulation of DTA value corresponding to different

nominal carry back values (header). Left most column concerns the duration

of the model. Two cases are distinguished, one where duration of carry back
is one year, other where duration is ten years. Carry forward is allowed for

one and ten years in the respective models and the maximum standard error

in all simulations equals 0.0081. The following parameters were used: A0 =
100, r = 0.05, σ = 0.2, τ = 0.25 and 10.000 Monte-Carlo paths.

CB1 10 20 30 40 50 10 20 30 40 50

Carry back 1 year* Carry back 10 years**

T = 1 0.81 1.22 1.36 1.38 1.39 0.81 1.22 1.36 1.39 1.40

T = 2 0.54 0.79 0.88 0.90 0.89 0.80 1.30 1.53 1.67 1.68

T = 3 0.48 0.70 0.77 0.79 0.78 0.77 1.29 1.60 1.74 1.80

T = 4 0.42 0.61 0.66 0.68 0.68 0.74 1.26 1.60 1.79 1.87

T = 5 0.36 0.54 0.60 0.61 0.60 0.71 1.23 1.56 1.76 1.89

T = 6 0.33 0.48 0.54 0.54 0.55 0.69 1.20 1.53 1.74 1.88

T = 7 0.31 0.44 0.49 0.50 0.50 0.66 1.16 1.50 1.73 1.86

T = 8 0.28 0.41 0.45 0.47 0.46 0.64 1.12 1.47 1.69 1.84

T = 9 0.26 0.38 0.42 0.43 0.42 0.62 1.10 1.43 1.65 1.80

T = 10 0.25 0.36 0.40 0.40 0.40 0.60 1.06 1.39 1.63 1.75

pronounced over longer periods of time. This is similar to Example 4.14.

If we consider a firm starting with carry back, it is certainly possible to
tweak Example 4.19 in such a way that the reference undertaking creates
more carry forward for period two than a firm with the initial carry back.16

However, the following example shows that such scenarios still do not lead
to higher firm values for the reference undertaking.

Example 4.20. In contrast to Example 4.19, assume now that the relative
shocks are given by 0.5 and 1.5. In addition suppose that a firm has CB1 =
20.The other parameters are still the same, i.e. A0 = 100 and τ = 0.25. The
post-tax asset values in period one and two for the reference undertaking

16Just consider all scenarios which lead to a loss in period one. The firm with carry back

will use some of the DTA to get a tax refund, but as a result less carry forward is available in

period two.
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are given by

Ã1 = 100 · 0.5− τ(100 · 0.5− 100)+ = 50 (50 carry forward is created)

Ã2 = 50 · 1.5− τ(50 · 1.5− 50− 50)+ = 75.

The post-tax asset values for a firm with carry back are given by

Ã1 = 100 · 0.5 + τCB1 − τ(100 · 0.5− 100 + CB1)+ = 55 (45 carry forward is created)

Ã2 = 55 · 1.5− τ(55 · 1.5− 55− 45)+ = 82.5

Hence, in this particular example, it is still beneficial to use carry back, even
though that reduces carry forward in subsequent periods. A straightforward
generalization of this example (replacing the shocks by arbitrary numbers
ψ1 and ψ2) shows that there are no scenarios for which the reference under-
taking has a higher post-tax asset value in period two. The same conclusion
holds for arbitrary T -period models for T ≥ 3 due to the one year settlement
term of carry back.

4.4.4. DTL. In the base case (i), we assume that no intermediate tax
payments are made until final time period T . In year T , taxes are levied
over the untaxed profit gain1 and AT − A0. This yields the post-tax asset
value

ÃT = AT − τ(AT −A0 + gain1)+.

Hence, the firm value is given by

V BS
L = e−rTE(AT − τ(AT −A0 + gain1)+|F0)

= A0 − τCBS(A0 − gain1, T ).

In this base case scenario, the firm value of an undertaking without deferred
taxes is given by

V BS = e−rTEQ(AT − τ(AT −A0)+|F0)

= A0 − τCBS(A0, T )

As a result, the DTL value equals

(4.34) ξBSL , V BS
L − V BS = τ(CBS(A0, T )− CBS(A0 − gain1, T )).

Panel (a) in Figure 4.15 shows the DTL value (4.34) as a function of the
T -period model. The function is strictly increasing, because on average, the
difference between a firm with a DTL and a reference undertaking is the
same after taxes are levied at the end of year T for T ∈ {1, 2, . . . }. This
difference is worth less for higher values of T due to discounting. The value
of the more realistic case (ii) is obtained by simulation, as illustrated in
panel (b) of Figure 4.15. The DTL value is monotonically increasing in
the 2-period model, since carry back has no influence on the DTL value.
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(a) DTA value of CB1 = 40 for different duration periods.
Duration of carry forward is the same as duration of carry back
in each respective model.
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(b) DTA value of CB1 = 40 keeping the duration time of carry
back fixed (10 years) and varying the carry forward duration.
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(c) DTA value of CB1 = 40 for different ordered pairs (r, σ).
Duration carry forward is 10 years, duration carry back is 2
years.
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(d) DTA value of CB1 = 20 for different T -period models as
a function of A0. Duration carry forward is 10 years, duration
carry back is 2 years.

Figure 4.14. Monte-Carlo simulation of DTA value arising from carry
back in multi-period models. Parameters: A0 = 100, r = 0.05, σ =
0.2, τ = 0.25.

However, for time-periods T ≥ 3, carry back plays a role. We see that the
DTL value is rising initially for small values of A0. But, at some point, A0

is so large that a positive shock creates enough carry back for future time-
periods. As a result, it is increasingly unlikely that the DTL is diminished
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at future time periods (since carry back is used first), which means that the
DTL is bigger at the end of the settlement period.
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(b) DTL value arising from gain1 = 20 as a function of A0 in
different T -period models.

Figure 4.15. Monte-Carlo simulation of DTL value arising from tem-
porary differences in multi-period models. Parameters: A0 = 100, r =
0.05, σ = 0.2, τ = 0.25.

4.5. Multi-period model levered firms

4.5.1. Simulation set-up. In this section we outline how the coupon pay-
ments are obtained in T -period models for T ≥ 2 such that debt sells at par
value. Since there are no analytical formulas available for D0 when T ≥ 2,
the asset processes in (3.8) are generated taking C, Ccf and Ccb from the
1-period model as starting values. The set-up in (4.16) means that firms fall
into one of three classes

(i) The firm does not go bankrupt over the lifespan of the T -period model.

This means that at the end of each year t < T , Ãt > K and ÃT > D
at maturity. The number of firms belonging to this class is referred to
as Na.

(ii) The firm defaults at maturity. This means that Ãt > K for t < T , but

ÃT < D. The number of firms belonging to this class is referred to as
Nb.

(iii) The firm defaults before maturity. This means that the stopping rule

τD < T and ÃτD < K. The number of firms belonging to this class is
referred to as Nc.
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When simulating the 10.000 asset paths we thus have Na+Nb+Nc = 10.000.
For simplicity, we assume that the bankruptcy trigger prior to maturity
equals the face value of the outstanding bond, i.e. K = D. Henceforth, the
debt value at time zero (4.16) is estimated by

[
Na

(
e−rT

( T−1∑
t=0

ertC +D

)
︸ ︷︷ ︸

=I1

)
+Nb

(
e−rT

T−1∑
t=0

ertC + e−rT (1− α)

Nb∑
n=1

Ã
(n)
T

)
︸ ︷︷ ︸

=I2

(4.35)

+Nc

(
(1− α)

Nc∑
n=1

e−rτD,(n)Ã(n)
τD

+

Nc∑
n=1

e−rτD,(n)
τD,(n)∑
t=0

C(n)ert
)

︸ ︷︷ ︸
=I3

]
/(Na +Nb +Nc).

The first term I1 corresponds to class (i) when a firm does not go bankrupt.
In those cases, debt at time zero is the discounted sum of all coupon pay-
ments plus the discounted face value of debt at maturity. The second term
I2 corresponds to class (ii) when a firm defaults at maturity. In that case,
all necessary coupon payments are made and discounted, which is the first
term. The second term is the discounted asset value at maturity, multiplied
by the recovery fraction 1 − α due to bankruptcy cost. The final term I3

corresponds to class (iii) when the firm defaults prior to maturity. The first
term is the discounted asset value at the time of default. The notation τD,(n)

indicates the time of default before maturity of firm n belonging to class (iii).
The second term in I3 is the discounted value of the coupon stream, where
coupons are paid out up to and including the time of bankruptcy.

The weighted average in (4.35) gives an estimate of D0. Subsequently,
numerical methods are employed to find C such that (4.35) equals D. The
same is done to find Ccf and Ccb in case the firm has carry forward or carry
back respectively. The values C, Ccf, Ccb obtained in this way are used as
input to compute the firm values according to (3.9).

4.5.2. Carry forward. We argue in Section 4.3 that firms with carry for-
ward should pay less coupon than firms without a DTA, since the probability
of bankruptcy is higher for these firms when taking taxes into account. The
same conclusion holds for general T -period models for T ≥ 2 without carry
back. Table 4.4 shows the resulting coupon payments for the reference un-
dertaking and a firm having carry forward in the 5-period model. Indeed, Ccf
is slightly smaller than C, although both values do not differ substantially.
When allowing carry back, all coupon payments are lower than in Table 4.4,
as can be seen from Table 4.5. Again, this holds since bankruptcy is less



4.5. Multi-period model levered firms 65

likely when allowing more tax deduction possibilities. However, Table 4.5
shows that the difference is rather limited. The disparity between C and Ccf
is more pronounced in Table 4.5. This can be explained by our earlier finding
that there are scenarios in which carry forward leads to a reduction in firm
value in comparison with the reference undertaking (see Example 4.19). Ta-
king such scenarios into account forces the two coupon payments C and Ccf
to be closer in absolute value. Finally, Table 4.5 also shows that Ccb < Ccf
for each fixed face value of debt. This is because carry back is positively
influenced by leverage, as opposed to carry forward. Moreover, assuming
a one year settlement term of carry back excludes scenarios under which a
reference undertaking is better off. Therefore, downward pushing forces on
firm value that play a role when starting with carry forward cannot occur.
These observations combined cause lower coupon payments for firms star-
ting with carry back.

The DTA value arising from carry forward still bears a negative relation
with leverage in multi-period models, as can be seen from Figure 4.16. The
reason for this is the same as in the 1-period model, namely that coupon
payments reduce taxable income. As a result, fewer carry forward can be
used to offset tax expenses. This effect is more pronounced over longer time
periods, since coupon payments rise as a result of increased likelihood of
bankruptcy. However, due to coupon payments, more carry forward accrues
in each period compared to firms which are unlevered.

Table 4.4. Coupon payments in the 5-period model, when carry back
is not allowed. The coupon Ccf corresponds to the coupon payment of a
firm having CF1 and the settlement term of carry forward is five years.
Parameters: A0 = 100, CF1 = 20, r = 0.05, σ = 0.2, τ = 0.25.

D 30 40 50 60 70 80

C 1.5405 2.0746 2.6678 3.3897 4.3452 5.8083

Ccf 1.5405 2.0742 2.6652 3.3806 4.3198 5.7395

4.5.3. Carry back. The coupon payments Ccb for firms with carry back are
lower than C and Ccf, as can be seen from Table 4.5. By extensive simulation
for a large number of different parameter settings we find that this is always
the case. There are two findings that shed light on this phenomenon. Ex-
ample 4.20 illustrates that there are no scenarios that lead to negative carry
back values, assuming a one year duration of carry back. Secondly, (4.23)
shows that the DTA value of carry back increases when a firm is levered.
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Table 4.5. Coupon payments for different levels of debt with face value
D when carry back is allowed for one year and losses can be carried
forward five years. For firms with carry forward/back we assume CF1 =
CB1 = 20. Parameters: A0 = 100, r = 0.05, σ = 0.25, τ = 0.2

D 30 40 50 60 70 80

C 1.5406 2.0733 2.6617 3.3700 4.3003 5.7042

Ccf 1.5406 2.0734 2.6617 3.3693 4.2955 5.6816

Ccb 1.5397 2.0680 2.6436 3.3265 4.2076 5.4745
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Figure 4.16. DTA/DTL value of carry forward, carry back and un-
taxed profit gain1 for levered undertakings as a function of debt D in
the 5-period model. The deferred taxes are set such that CF1 = CB1 =
gain1 = 20 and coupons Ccf, Ccb, CL are determined such that debt sells
at par value. Parameters: A0 = 100, r = 0.05, σ = 0.2, τ = 0.25, γ = 1.
Duration of carry forward/back is 5/1 year(s) respectively.

These observations induce lower coupon payments for firms with carry back.

As in the 1-period model, leverage tends to increase the DTA value of
carry back. This is also visible in Figure 4.16, which shows that carry back is
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positively related to leverage. Higher leverage ratios result in more coupon
payments. Consequentially, a firm is more likely to incur a loss which makes
it more probable that the initial carry back (CB1) is settled during the next
period. For low levels of leverage, the DTA value of CB1 is rather small and
less than the DTA value of CF1 = 20 (see Figure 4.16). However, a vast
increase in leverage may give the DTA value of carry back such a boost that
it will eventually be more valuable than carry forward.

4.5.4. DTL. We only examine the effect of leverage on the DTL value in
the more realistic case (ii). In this model, leverage has a damping effect
on the DTL values in between, since the DTL is reduced each time the
firm incurs a loss. With leverage, it is more likely that the firm incurs a
loss in each period. This loss mitigates the overall DTL value (in absolute
terms) before maturity, whence less tax liabilities are due at the end of the
T -period model. This is also visible from Figure 4.16, which shows that
the DTL goes faster to zero for higher levels of debt, resulting from the
exponential increase in coupon payments.

4.6. Optimal capital structures

The previous sections on DTA/DTL values with leverage necessitate the
calculation of firm values. The simulation set-up for those computations
introduces a trade-off between the tax shield (arising from leverage) and
bankruptcy, which can be triggered if a firm maintains unsustainable high
levels of debt. Bankruptcy occurs if the firm fails to repay D at maturity,
or if the post-tax asset value drops below the bankruptcy trigger K prior to
maturity. The tax shield increases in value when a firm raises higher levels
of debt, but these tax benefits are lost in case of bankruptcy.

The trade-off arising in this framework suggests there is an optimal level
of debt which maximizes firm value. As in the previous sections, the coupon
payments are chosen such that debt sells at par value. In addition, the
bankruptcy trigger K prior to maturity (see (4.16)) equals the face value of
debt, i.e. K = D. Finally, as in Leland and Toft (1996), bankruptcy cost
amount to α = 0.5. Figure 4.17 shows the resulting firm value as a function
of debt in different T -period models. In each of these models, there is an
optimal level of debt D that maximizes firm value. The coupon payments
C corresponding to these levels of debt are presented in the upper half of
Table 4.6, together with the maximum premium the firm can get by debt fi-
nancing (maximum leverage premium). The leverage premium is increasing
for higher T -period models, since tax savings arising from debt financing
accrue over time. Bankruptcy cost engender lower optimal leverage levels,
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as the influence on firm value is more pronounced when bankruptcy is trig-
gered.

Table 4.6 shows that optimal capital structures are not monotonically
increasing over time, as debt in the 10-period model is less compared to the
5-period model. This contrasts the empirical findings of Barclay and Smith
(1995), who find that optimal leverage ratios increase over longer periods
of debt issuance. The main factor responsible for this disparity comes from
our assumption that coupon payments reduce the asset value, which affects
bankruptcy conditions before maturity. This effect is more pronounced over
longer periods of time, as coupon payments in between increase the proba-
bility of default. Some influential papers on capital structuring (Brennan
and Schwartz (1978), Leland (1994) and Leland and Toft (1996)) bypass this
assumption by assuming that any cash outflow related to leverage is finan-
ced by selling additional equity (see also Remark 3.3). Incorporating this
assumption in our model would significantly alter optimal capital structures.

Table 4.6. Optimal debt levels in various T -period models. Coupon
payment C is determined such that debt sells at par value. The maximum
leverage premium is the difference between columns four and three. The
exogenous bankruptcy case takes K = D. The endogenous bankruptcy
case finds the optimal K∗ implied by the model. Parameters: A0 =
100, r = 0.05, σ = 0.2, τ = 0.25, α = 0.5 and the settlement term of
carry forward/back is 10/1 year(s) respectively. The firm has no initial
deferred taxes.

Optimal Coupon Unlevered Optimal Maximum K∗

debt (C) firm value firm value leverage premium

Exogenous bankruptcy

5-period model 35.00 1.88 91.33 92.55 1.22 -

10-period model 33.00 1.74 84.67 86.89 2.22 -

25-period model 42.00 2.25 68.04 74.46 6.42 -

Endogenous bankruptcy

5-period model 37.56 1.98 91.33 92.93 1.60 25.52

10-period model 39.57 2.16 84.67 89.00 4.33 15.70

25-period model 28.64 1.52 68.04 75.31 7.09 12.98
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Figure 4.17. Firm value of undertaking without deferred taxes in
different T -period models. Parameters: A0 = 100, r = 0.05, σ =
0.2, τ = 0.25, γ = 1. The firm has no initial deferred taxes, i.e.
CF1 = CB1 = gain1 = 0. Settlement term of carry forward/back is
10/1 year(s) respectively.

Instead of imposing the exogenous bankruptcy condition K = D deter-
mined by a covenant, we consider the case when K is chosen by the firm.
Following Leland (1994), we assume the company chooses K so to maximize
firm value, under the additional constraint of staying in a particular rating
class. For example, we could assume a probability of default (PD) threshold
of 10%. This could be motivated by the desire of firms to stay in a certain
credit rating class after issuing new debt. In the 5-period model, a thres-
hold of 10% roughly corresponds to a firm which is Ba rated according to
Moody’s.17 In the 10- and 25-period model, this corresponds to an under-
taking which is Baa and A rated respectively. The resulting (multivariate)
constrained optimization problem is thus to find D and K to maximize firm
value, such that PD ≤ 0.1. The optimal K (denoted by K∗) and D are re-
ported in the second half of Table 4.6. The firm values compare favorably to
those when K is determined exogenously. The additional freedom to chose

17See Table IV in http://pages.stern.nyu.edu/~eelton/working_papers/corp%20bonds/

all%20tables%20and%20figures%201.pdf

http://pages.stern.nyu.edu/~eelton/working_papers/corp%20bonds/all%20tables%20and%20figures%201.pdf
http://pages.stern.nyu.edu/~eelton/working_papers/corp%20bonds/all%20tables%20and%20figures%201.pdf
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K outweighs the confinement that PD ≤ 0.1, which is not required in the
exogenous bankruptcy case.

The firm values in Table 4.6 for different T -period models should not be
compared literally. The firm value corresponding to the 5-period model is
obtained by simulating asset paths over five years, whereas the firm value in
the 25-period model results from simulating asset paths over 25 years. Wit-
hout tax payments, the discounted asset path is a martingale, but including
tax payments means that the asset process is a supermartingale. Hence,
the firm value tends to go down over longer periods of time. If we assume
that a firm issues new debt with maturity T whenever it manages to repay
outstanding debt with maturity T and simulate the model for 25 years, then
we find that firm values are monotonically increasing with debt maturity.
This is consistent with Leland and Toft (1996).



Chapter 5

Empirical applications
and agency problems

5.1. Loss absorbing capacity of deferred taxes for European
insurers

As a practical implementation of the theory developed in previous chapters,
we analyze the impact of our new valuation approach to the loss absorbing
capacity of deferred taxes on European insurance undertakings. The recently
established Solvency II regulations (analogue of Basel III for insurers) dictate
that European insurers should maintain a Solvency ratio ratio greater than
one, where

Solvency ratio =
Eligible own funds

Solvency capital requirements
.

The Solvency capital requirements (SCR) are calculated such that an insurer
can withstand a shock that occurs once every 200 years (this is essentially
the 99.5% VaR). The standard formula used to calculate the SCR makes use
of a modular approach (EIOPA, 2014). This means that the overall risk is
subdivided into sub risks and sub-sub risks. For each sub risk (or sub-sub
risk) one calculates the capital requirements (corresponding to a 99.5% VaR
over a one year period). All these capital requirements are aggregated using
correlation matrices, which results in the Solvency capital requirements (EI-
OPA, 2014). We showed in Section 1.1 that part of a shock is absorbed
by deferred taxes, as such anomalies mitigate DTL’s or create additional
carry forward when the net DTA position is positive. Basically, underta-
kings transfer part of the loss to the tax authority, as it reduces future
taxable income. The Solvency II guidelines take this loss absorbing capacity

71
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of deferred taxes (LAC DT) into account by subtracting this from the Sol-
vency capital requirements. Hence, when taking LAC DT into account, the
Solvency ratio follows from

(5.1) Solvency ratio =
Eligible own funds

Solvency capital requirements− LAC DT
.

Suppose that LAC DT is 25% of the Solvency capital requirements, then
incorporating LAC DT can increase the Solvency ratio from 100% to 133%.
By definition, LAC DT is the difference in net DTA position post and ex-
ante shock, i.e. LAC DT = post shock net DTA− ex-ante shock net DTA.
The maximum LAC DT is equal to the tax rate multiplied by the magnitude
of the shock, but in reality these values are often lower since insurers cannot
substantiate enough future profits to prove that the deferred tax asset will
be settled completely.

Example 5.1. Suppose A0 = 100, CF1 = 10 and SCR = 40, i.e. the
undertaking loses maximally 40 following a shock that is bound to occur
once every 200 years. The loss of 40 immediately raises carry forward to
CF1 = 50. If the undertaking can substantiate enough future profits to prove
that the additional carry forward will be settled completely, then LAC DT =
τ(50−10) = τ ·40, which is the entire shock loss times the corporate tax rate.
If the undertaking expects to settle only 20 of the shock loss of 40 (because
future profits are not sufficient), then LAC DT = τ(30− 10) = τ · 20.

5.1.1. Market consistent approach. This section is deleted, because
confidential data are used.

5.1.2. Implication for policymakers. This section is deleted, because
confidential data are used.

5.2. BP tax loss estimates

The methodology developed in previous chapters is sufficiently flexible to
cover a wide range of problems. In this section, we analyze the effect of the
U.S. tax overhaul on deferred tax assets. In particular, we investigate the
influence of tax cuts on the DTA value of BP, following the widely covered
news reports about their estimated losses arising from tax reforms.1 Among
others, tax reforms in the U.S. constitute a change in the corporate tax rate
from 35% to 21%. Naturally, such a tax cut positively influences firm value,
but extant deferred tax assets are adversely affected by such revisions, as the
value positively depends on the tax rate τ . In BP’s fourth quarter 2017 re-
sults announcement, it is estimated that tax reforms induce a one-off charge
of $859 million (BP, 2018). We adapt our simulation of the T -period model

1See for example https://www.ft.com/content/5d477db2-efac-11e7-ac08-07c3086a2625

https://www.ft.com/content/5d477db2-efac-11e7-ac08-07c3086a2625
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with leverage to give a market consistent estimate of the deferred tax loss
arising from the U.S. tax overhaul. Since it is not clear-cut how to calibrate
all parameters from the model, we use the Merton (1974) model on credit
risk to obtain proxies for some of the input variables.

In particular, daily stock prices (Sti) of BP over the period August
31st, 2016 - December 30, 2016 are used to obtain a time series of market
capitalizations (Eti) over the same period by multiplying the stock price
with the number of outstanding shares. Table 5.1 lists the number of shares
outstanding, as well as other market data needed for the simulation. The
value of debt due at maturity (D) is taken to be a fraction of the market
capitalization at time t0. The fraction comes from the book values of debt
and equity reported on page 23 of BP (2018) over the year 2016. This leads
to the debt value

(5.2) D =
Gross debt

Equity
· Et0 =

58.3

96.843
· Et0 = 383, 559.1269 · 106.

Subsequently, the time series of market capitalizations are used to estimate
the implied asset volatility σ̂A using the maximum likelihood (MLE) method
of Duan (1994). The Merton (1974) model on credit risk gives that

Eti = CBS(D,T,Ati , σ, r, ti),

where maturity date T is usually interpreted as the duration of debt. The
optimization problem to find the MLE can be written down explicitly

(5.3) (σ̂A, µ̂A) = argmax
σ,µ

LE(Ât1(σ), . . . , ÂtN (σ);σ, µ)−
N∑
i=1

log(Φ(di(σ))).

Let ∆ti be the time between two consecutive observations, i.e. ∆ti = ti+1−
ti, then Duan (1994) finds that the log-likelihood function is

LE(Et1 , . . . , EtN ;σ, µ) = −N
2

log(2πσ2∆ti)−
1

2

N∑
i=1

(Ri − (µ− σ2/2)∆ti)
2

σ2∆ti
−

N∑
i=1

log(Ei)

Ri = log
Eti
Eti−1

Âti = (CBS(Eti ;σ))−1 (Inverse of Black-Scholes call option)

di =
log(Âti/D) + (r + σ2/2)(T − i∆ti)

σ
√
T − i∆ti

.

The resulting solution gives an estimated time series of asset values Âti and
an estimate of the asset volatility σ̂A.2 The duration of debt T is required as
input for this model. The book value of debt D usually combines a number

2One also obtains an estimate µ̂A, but this is immaterial for subsequent valuation purposes.
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of debt issuance with different maturities. To resolve this, the optimization
problem (5.3) is iterated over discrete debt maturities T ∈ [1, 30] and we
choose the optimal T (denoted by Toptimal), corresponding to the model
that attains the highest log-likelihood. This is somewhat similar to the
approach of Engle and Siriwardane (2017). For each discrete T ∈ [1, 30],
we set r = rforward,T , where rforward,T is the nominal yield on average U.S.

treasury coupon issues T -years from December 31, 2016.3 The parameter
values thus obtained are summarized in Table 5.2.

Table 5.1. Input variables taken from the market. Shares outstanding
is the basic weighted average number of shares outstanding over 2016,
see page 22 of BP (2018). Carry forward (= CF1) is the DTA value over
2016 on page 15 of BP (2018), converted to nominal scale (assuming the
tax rate τ = 0.35). Hence, we tacitly assume that all DTA’s are coming
from loss carry forward. The single debt issuance D comes from (5.2).
All numbers are reported in millions (106).

Shares outstanding Carry forward D

18, 744, 800 13, 545.7143 383, 559.1269

Table 5.2. Parameter values resulting from the optimization problem (5.3).

σ̂A ÂtN Toptimal Log-likelihood

0.2656 834, 395.7324 · 106 20 −2122.4376

Coupon payments C are determined exogenously, meaning that we take
the coupon rate (rcoupon) from the market and determine the coupon pay-
ment using C = (exp(rcoupon) − 1) ·D. We have not been able to find data
on coupons issued by BP with maturity Toptimal = 20. The best we could
find is a coupon issued by BP with face value $1000, maturing at September
19, 2027.4 The rate on this coupon and the forward rate corresponding to
Toptimal are respectively given by

rcoupon = 0.0328, rforward,20 = 0.0268.

As in Section 5.1.1, we set the bankruptcy trigger K = 0 and bankruptcy
cost α = 0, since no reliable data were available. The parameters described
above remain constant throughout the simulation that is needed to assess

3These data are coming from https://www.treasury.gov/resource-center/

economic-policy/corp-bond-yield/Pages/TNC-YC.aspx. Accessed: 2018-03-12.
4These data are coming from http://cbonds.com/emissions/issue/357247. Accessed: 2018-

03-14.

https://www.treasury.gov/resource-center/economic-policy/corp-bond-yield/Pages/TNC-YC.aspx
https://www.treasury.gov/resource-center/economic-policy/corp-bond-yield/Pages/TNC-YC.aspx
http://cbonds.com/emissions/issue/357247
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the impact of the U.S. tax overhaul on BP’s deferred tax assets. The most
important changes in the U.S. tax regime are shown in Table 5.3. To esti-
mate the effect on DTA’s following such a regime change, we reassess the
DTA value of carry forward in Table 5.1 using the parameters under current

law from Table 5.3. This renders the firm values V̂, V̂BS
cf and the market

consistent DTA under current law follows from

(5.4) ξ̂cf = V̂BScf − V̂.

In a second step, we simulate the asset paths over one year using the current
law. From year two, corresponding to time January 1, 2018, the parameters
of the G.O.P. Bill are used. This includes the cap of 80% carry forward on

taxable income. Once again this gives estimates of the firm values V̂, V̂BS
cf

and the new DTA value

(5.5) ξ̂cf = V̂BScf − V̂.

The impact of the tax overhaul on deferred tax assets of BP is then simply
the difference between (5.5) and (5.4). In this way, we find that the loss
is only $203.122 million dollars, significantly less than BP’s own estimate
of $859 million dollars. However, this disparity should be interpreted with
some care, since we have not been able to inspect BP’s own calculations
leading to their estimated loss.

Table 5.3. Most important legislative transitions in the U.S. corporate
tax overhaul. The current law column describes the extant tax laws,
whereas the G.O.P. Bill column describes the proposed tax changes of
the Trump administration.

Current law G.O.P Bill

Corporate tax rate (τ) 35% 21%

Business interest- Generally fully Cap deduction at

deduction deductible (γ = 1) 30% of income (γ = 0.3)

Carry forward 20 years settlement; Infinite duration;

can potentially offset limit deduction to

all taxable income 80% of taxable income

Carry back 2 year settlement No carry back allowed
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5.2.1. Simulation with random tax regimes. In the previous section
we analyzed the loss of deferred tax assets following the transition in cor-
porate taxes. However, those results were obtained using a deterministic
change after year one. In this section we consider random changes in the
corporate tax rate and assess its effect on deferred taxes. To this extent,
all variables during the simulation are kept fixed, except for the corporate
tax rate. The corporate tax rate is assumed to be in one of two states, i.e.
τ ∈ {τ1, τ2}, where (τ1) is the low tax rate and (τ2) represents the high
tax regime. In line with Hassett and Metcalf (1999), we assume that the
corporate tax rate follows a Poisson process randomly switching between τ1

and τ2. In particular, the dynamics of the corporate tax rate is described
by

dτt =



∆τ λ1,tdt

0 (1− λ1,t)dt τ = τ0

−∆τ λ0,tdt

0 (1− λ0,t)dt τ = τ1,

where ∆τ = τ1 − τ0 > 0. This means that the corporate tax rate randomly
switches between τ0 and τ1 with (Poisson) transition parameters λ1,t and

λ0,t. The inverse of the transition parameters λ−1
0,t , λ

−1
1,t represents the ex-

pected time in each tax regime before a change occurs. The average time
spend in the high tax regime equals λ−1

0,t and the fraction of time spend in

this regime is given by λ1,t/(λ0,t + λ1,t). Table 5.4 shows that a negative
change in the tax rate does not necessarily imply that carry forward is also
negatively affected. Over moderate time horizons, the DTA value is indeed
inversely related to a tax cut, since the influence of carry forward is less
pronounced when tax rates are lower. However, there is an opposing effect
which is not prominent over short time horizons, but plays an important
role on firm values over extended time horizons. Namely, lower tax rates
cause more divergence between the value of a reference undertaking and the
value of a firm with carry forward. The example below illustrates this.

Example 5.2. Consider a 2-period model, with A0 = 1000, r = 0.05 and
CF1 = 30 and suppose the tax rate jumps after year one from τ1 = 0.4 to
τ2 = 0.2. In a risk neutral world, the assets grow with rate exp(r) ≈ 1 + r.
Consider the DTA value in a world without tax jumps. The post-tax asset
values of the reference undertaking are given by

Ã1 = (1 + r)A0 − τ2((1 + r)A0 −A0)+ = 1030

Ã2 = (1 + r)Ã1 − τ2((1 + r)Ã1 − Ã1)+ = 1060.9.



5.2. BP tax loss estimates 77

The post-tax asset value of a firm with carry forward follows from

Ã1 = (1 + r)A0 − τ2((1 + r)A0 −A0 − CF1)+ = 1042

Ã2 = (1 + r)Ã1 − τ2((1 + r)Ã1 − Ã1)+ = 1073.26.

Thus the DTA value in period two equals ξcf = 1073.26 − 1060.9 = 12.36.
Now, suppose a transition in the corporate tax rate is imposed after year
one, so that in year two the corporate tax rate is given by τ2. In this case,
post-tax asset values for the reference undertaking are given by

Ã1 = (1 + r)A0 − τ2((1 + r)A0 −A0)+ = 1030

Ã2 = (1 + r)Ã1 − τ1((1 + r)Ã1 − Ã1)+ = 1071.2.

The post-tax asset value for a firm with carry forward is given by

Ã1 = (1 + r)A0 − τ2((1 + r)A0 −A0 − CF1)+ = 1042

Ã2 = (1 + r)Ã1 − τ1((1 + r)Ã1 − Ã1)+ = 1083.68.

Hence, the DTA value in period two is ξ
(1)
cf = 1083.68−1071.2 = 12.48 > ξcf.

In this example, firm values are further apart following a tax transition since
the DTA from carry forward is completely settled before the tax overhaul.
In higher T -period models, this disparity might still persist even if part of
(or the entire) carry forward is settled in low tax regimes. The reason for
this is similar to the example given above, namely that lower tax rates cause
a greater discrepancy in firm value between a reference undertaking and the
firm with carry forward. This can eventually crowd-out the tax transition
effect. These dynamics can also provoke an increase in DTA value when
moving from a low to high tax regime.

Table 5.4. DTA value of carry forward with and without tax change
in different T -period models, using λ1,t = λ0,t = 0.35. The low and high
tax rates are respectively given by τ1 = 0.2 and τ2 = 0.45. Both models
start with the high tax rate τ2. Additional parameters: A0 = 1000, r =
0.05, CF1 = 40, C = 5, γ = 1. Settlement term of carry forward is ten
years and carry back can be settled for one year.

5-Period model 15-Period 30-Period 50-Period

Without tax change 10.43 9.24 6.19 3.65

With tax change 9.69 9.08 6.38 4.82
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5.3. Tax smoothing effects and agency problems

Deferred tax assets like carry forward and carry back give an undertaking
the possibility to smooth their tax expenses. In this section we quantify how
much firms gain by deferred tax possibilities. As a base case, we consider
a tax regime in which no carry forward/back possibilities are allowed. Ta-
ble 5.5 shows the relative gain of introducing deferred taxes with different
settlement terms. In the most extreme case, when profit and losses can be
carried back and forward indefinitely, a firm spends 40% less on taxes. By
extensive simulation, we find that these ratios are independent of the initial
asset value (A0). The difference for distinct volatility values (σ) is neither
pronounced, although higher volatility values tend to increase the ratios by
a few percent. For small T -period models, the ratios differ significantly from
those in Table 5.5, however for T ≥ 5 we find ratios that are commensu-
rate with the ones in Table 5.5; the difference being only several percentage
points.

Table 5.5. Tax savings expressed as a fraction of the base case
without deferred taxes in the 30-period model without leverage for
different settlement terms. In particular: Tax savings = 1 −
(Tax expense with DTA)/(Tax expense without DTA possibility). In
the notation [a; b], a is the duration of carry forward and b concerns
the duration of carry back. Parameters: CF1 = CB1 = 0, A0 = 100, r =
0.05.

Duration [1;0] [1;1] [2;1] [3;1] [10;1] [30;1] [30;30]

Tax savings 0.11 0.21 0.25 0.27 0.32 0.33 0.40

Even though the ratios in Table 5.5 are roughly unaffected by volati-
lity, the absolute tax expenses of firms are affected by volatility and this
creates so-called agency problems. Agency problems arise when there are
conflicting interests between stakeholders. Jensen and Meckling (1976) ob-
serve that equity holders want to increase the riskiness of a firm’s activities
after debt has been issued, so that value is transferred from debt to equity
holders. This is the so-called asset substitution problem. Ignoring leverage
for a moment, we see from (4.1) that even in the basic one-period model
there is a conflict between equity holders and the tax authority. The tax
authority holds a call option on the profit stream of an undertaking, which
increases in value when the firm’s volatility increases. This at the expense
of equity holders, who find themselves in the same situation as debt holders
in the original model of Merton (1974). By simulation we find the same con-
flicting interests for multi-period models with and without deferred taxes.
Essentially, the same logic applies as in the one-period model, due to the
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asymmetric payoff of the tax authority. At the end of each year, the tax aut-
hority does not lose anything if a firm incurs a loss, but gains substantially
when profits are large. Higher volatility values make such scenarios more
likely, only the precise influence of σ on the tax authority can no longer be
quantified with analytical formulas.

The conflicting interests described above changes when a firm is levered,
as a third stakeholder enters the stage; debt holders. The conflicting inte-
rests between equity holders, debt holders and the tax authority are subtle.
On one hand, the tax authority may benefit from an initial increase in σ whe-
never debt has been issued, but this is accompanied with a higher likelihood
of bankruptcy, causing the tax authority to lose all future tax payments.
The like holds for equity holders, who may benefit from an initial increase
in σ but in case of bankruptcy equity holders lose all money as well. To
analyze the matter at hand, we include bankruptcy cost α = 0.5 whenever
a firm defaults at or prior to maturity.
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(a) Relative payout to stakeholders of unlevered firm.
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(b) Relative payout to stakeholders of levered firm.

Figure 5.1. Pie chart of payout to stakeholders for levered and unle-
vered firm in the 10-period model. All payouts are discounted back to
period zero. For the levered firm, parameters are chosen to match the
optimal capital structure in the endogenous bankruptcy case in Table 4.6.
This means that D = 39.57,K = 15.70, C = 2.16, γ = 1 and α = 0.5.
Other parameters: A0 = 100, r = 0.05, σ = 0.2, CF1 = CB1 = 0 and
the settlement term of carry forward/back is 10/1 year(s) respectively.

Figure 5.1 details how the cash flows of the levered and unlevered firm
are divided among stakeholders in the 10-period model. The firm issues debt



80 5. Empirical applications and agency problems

D = 39.57 with bankruptcy trigger K = 15.70 corresponding to the optimal
capital structure when bankruptcy is determined endogenously in Table 4.6.
All intermediate and final cash flows are discounted back to period zero,
depending on the moment of reception. Panel (a) shows that the unlevered
firm spends a total of 15% on taxes. The remaining part goes to equity
holders (85%). The relative cash flows to stakeholders in case the firm is
levered are shown in panel (b). This time, the undertaking only spends
12% on taxes and the remaining part is paid to equity holders (39%) and
bondholders (49%). In this simulation example, we find that the unlevered
firm pays 84.79 to equity holders, whereas the levered firm pays a total of
87.53 to equity and bondholders. Hence, the tax shield arising from debt
financing allows the levered firm to pay out more to investors.
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(a) Sensitivity in the 5-period model. Optimal capital para-
meters: D0 = 37.56,K = 25.52, C = 1.98, γ = 1 and α = 0.5.
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(b) Sensitivity in the 10-period model. Optimal capital para-
meters: D0 = 39.57,K = 15.70, C = 2.16, γ = 1 and α = 0.5.

Figure 5.2. Effect of an increase in risk (σ) as measured by the par-
tial derivatives w.r.t. σ on tax, equity and debt value in the 5-period
model (panel (a)) and 10-period model (panel (b)) as a function of A0.
Parameters are chosen to match the optimal capital structure in the
endogenous bankruptcy case when A0 = 100 in Table 4.6. Parameters:
r = 0.05, σ = 0.2, CF1 = CB1 = 0 and the settlement term of carry
forward/back is 10/1 year(s) respectively.

Finally, we quantify the extent of agency cost related to the asset substi-
tution problem when firms are levered in the 5-and 10-period model. Panel
(a) in Figure 5.2 illustrates the partial derivative of tax, equity and debt
value with respect to risk, σ, as a function of the underlying asset value in
the 5-period model. For each asset value, ∂E/∂σ > 0, where E is the equity
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value. This means that equity holders want to increase the riskiness of the
firm’s activities at any level of A0, consistent with Merton (1974). In the
5-period model, bankruptcy is triggered if K = 25.52 (see Table 4.6). The
sign of ∂D/∂σ is somewhat ambiguous when A0 is close to bankruptcy. In
particular, we observe that

(i) In the range A0 ∈ [13, 18] ∪ [27, 40], ∂D/∂σ > 0, i.e. debt holders also
want to increase the riskiness of the firm’s investments. In this case,
equity and debt holders do not have conflicting interests.

(ii) When A0 ∈ [19, 26] ∪ [41, 180], ∂D/∂σ < 0. In this range, agency
problems emerge due to conflicting interest between debt and equity
holders.

Moreover, panel (a) also reveals that for each asset value A0, the tax aut-
hority benefits from an increase in risk of the firm’s investment. The loss
of tax payments in case of bankruptcy do not weigh up against the increase
in tax payments when a firm engages in more risky business. Even though
the option analogy in multi-period models is no longer exact, the conclusion
that equity holders and the tax authority want to increase risk at all times
is similar to that of the 1-period model. Panel (b) of Figure 5.2 gives an
analogous conclusion for the 10-period model. In both panels, ∂D/∂σ appro-
aches zero from below as A0 →∞, since debt becomes essentially risk-free in
those cases. Following Leland and Toft (1996), one could measure the asset-
substitution agency costs as the Lebesgue-measure of all asset values A0 for
which sign(∂D/∂σ) 6= sign(∂E/∂σ). Using this definition, agency costs in
this model are lower compared to those of Merton’s model, since our model
yields a range of values (case (i)) for which sign(∂D/∂σ) = sign(∂E/∂σ).
Contrarily, in the Merton (1974) model, there do not exist asset values which
lead to similar signs in equity and debt value sensitivities w.r.t σ, since bank-
ruptcy and tax benefits are not taken into account. In our model, the tax
shield benefit and its loss in case of bankruptcy implies that equity and debt
holders do not split a claim that only depends on the underlying asset va-
lue. This gives rise to a range of values where equity and bondholders have
similar objectives. However, by letting τ, α → 0+, one recovers the split
claim and the game between debt and equity holders approaches a zero-sum
game. In this case, conflicting interests between the two stakeholders are
most pronounced, akin to the findings of Leland and Toft (1996).

Remark 5.3. One should be careful by concluding that the tax autho-
rity wants to increase the riskiness of a firm’s activities at all times. For
example, the bankruptcy of a systemically important undertaking has re-
percussions for many other actors in the economy. We have not taken into
consideration the amplified loss of tax payments when the bankruptcy of one
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company triggers bankruptcy of another undertaking. The interconnected-
ness of bankruptcy events would alter the incentives of the tax authority.
It would be an interesting research question to investigate tax payments on
aggregate level and how this influences the tax authorities’ incentives in light
of the asset substitution problem.



Chapter 6

Conclusion

We propose a market consistent valuation of deferred taxes based on the
option interpretation of tax payments. This leads us to express DTA/DTL
values as the difference between Black-Scholes call option formulas over a
one year time horizon. These formulas offer clear insight in the contingent
nature of deferred taxes and avoid the necessity of subjective profit forecasts
that are needed for extant accounting valuation techniques. Moreover, the
market consistent model acknowledges value creation due to loss carry back,
which is not recognized by applicable accounting standards.

Over multiple time periods, valuation results for deferred taxes are obtai-
ned by simulation, since path dependency eschews the tractability of analy-
tical formulæ. The option interpretation is no longer exact, but the shape of
the pricing formulas for different parameter values bears strong resemblance
to the one-period model. In this case, the valuation also depends on the
settlement term of carry forward/back and whether carry back is allowed or
not. Extending the T -period model by an extra year negatively influences
DTA value, since an undertaking with the initial tax advantage is expected
to pay more taxes after the DTA has been settled, compared to a reference
undertaking that does not have the tax benefit.

Moreover, we make a clear distinction between levered and unlevered
firms. Coupon payments resulting from debt financing mitigates taxable
income, thereby negatively influencing carry forward values, but igniting a
positive effect on carry back value. Leverage also reduces tax liabilities (in
absolute terms) arising from temporary differences. The option interpreta-
tion of deferred taxes can also be applied to tax shield valuations, which
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leads us to an alternative version of the Modigliani-Miller theorem (Modig-
liani and Miller, 1963), essentially containing the latter as a special case. In
light of these results, optimal capital structures emerge as a consequence of
the trade-off between tax benefits due to coupon payments and bankruptcy
scenarios. Optimal leverage ratios are maximal in the 25-period model when
bankruptcy is determined exogenously. In contrast, a firm should maintain
lower leverage ratios when the bankruptcy trigger is determined endoge-
nously. The extra freedom for the firm to choose the bankruptcy trigger
themselves positively influences firm value. Finally, we show that this model
renders lower agency cost in comparison to Merton (1974) when considering
the asset substitution problem.

Lastly, the model is flexible enough to cover a wide range of practical
applications. The loss absorbing capacity of deferred taxes of European in-
surance undertakings is reassessed using the market consistent approach.
Hereby, we find that the loss absorbing capacity is less than anticipated,
but the overall effect is relatively moderate. Secondly, the loss of deferred
tax assets of BP following the U.S. tax overhaul is examined. We find that
the loss is only 25% of BP’s own tax loss estimate. In conclusion, we offer
an omnibus framework that offers clear insight in the contingent nature of
deferred taxes relevant to virtually all undertakings with deferred taxes on
the balance sheet.

Shortcomings of approach

The valuation approach developed in this thesis derives many of the assump-
tions from Black and Scholes (1973). It has been shown that these assump-
tions are valid only under restrictive circumstances, thus our model inherits
the essential weaknesses of the Black-Scholes model. This is best illustrated
by the empirical applications, which necessitate the input of forward rates
varying over time. Under the Black and Scholes (1973) assumptions, there
is only one risk-free asset, which is constant over time. Neither does our
model allow for time varying volatility, which is a ubiquitous phenomenon
in financial time series data.

The empirical applications also reveal that the model supported in this
thesis is not easily calibrated. The model relies on parameters observed in
the market, but quantities like total asset value or asset volatility are usu-
ally unobserved. It is not clear how to derive those quantities endogenously,
relying solely on the market consistent valuation approach. In BP’s case, we
resolve this by relying on proxies inspired by the Merton (1974) model on
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credit risk, which is quite different from the credit model developed in this
thesis. Such proxies may entail wrong estimates of the factual market values
and consequentially lead to wrong inferences about deferred tax values.

Moreover, we assume that taxable income consists of the difference in
asset value over two consecutive periods. This assumption could be defended
well for particular industries like insurance undertakings, but in general there
can be a great disparity between applicable taxable income and the difference
in asset value. Such situations engender considerable dissonance amongst
estimates resulting from our model. One could dispose this assumption and
directly model the profit stream as a stochastic process. However, the option
interpretation of deferred taxes would still be valid.

Suggestions for further research

The model in this thesis uses martingale pricing to eliminate the average
growth rate µ in (3.1). It is interesting to investigate the implication of
pricing (3.1) under physical measure P , instead of martingale measure Q.
In particular, this implies that all pricing formulas will depend on µ, instead
of the risk-free rate r. The assumption µ > r is embedded in any reasonable
pricing model, otherwise it would not make sense to invest in such a com-
pany. Since µ > r, the substitution r → µ engenders higher carry forward
values, because under physical measure it is more likely that an undertaking
makes profit. In contrast, carry back and the DTL will reduce in value. The
precise extent of the resulting valuation difference, especially over longer
periods of time, remains unclear.

Secondly, as mentioned in Example 4.19, it might not always be be-
neficial for undertakings to use all carry forward in a certain time period.
An interesting research question is to investigate the optimal way in which
carry forward should be settled, so to maximize firm value. The machinery
of stochastic optimal control, in particular the Itô-Bellman equation, could
be employed to approach such a problem. However, the path dependency
embedded in our model makes it unlikely that the problem can be solved
analytically.





Appendix A

Elements of financial
mathematics

This appendix serves as an overview of some of the core parts of finan-
cial mathematics that underlies the valuation approach in this thesis. Our
overview is necessarily somewhat parsimonious, additional background in-
formation can be found in some of the references we include.

A.1. Martingale pricing

The useful concept of a stopping time is used to model stopping rules avai-
lable up to time t. Moreover they provide a useful generalization of mar-
tingales. In formal terms we have

Definition A.1. A stopping time τ is a random variable τ : Ω → [0,∞]
such that {ω : τ(ω) ≤ t} ∈ Ft for each 0 ≤ t <∞.

One of the core business of mathematical finance is to come up with a
“correct” price of a contingent claims, which informally is a claim that can
be made when certain specified outcomes occur.

Definition A.2. A contingent T -claim is a lower bounded FT -measurable
random variable F (ω) ∈ L2(Ω).

When we have a market consisting of d+1 traded securities with strictly
positive prices P0(t), . . . , Pd(t), the following

P̂i(t) :=
Pi(t)

P0(t)
,

is called the discounted price process and P0(t) is called the numéraire.
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Definition A.3. A portfolio is an Rd- valued progressively measurable pro-
cess with respect to {Ft}t∈[0,T ]

θ(t, ω) = (θ0(t, ω), θ1(t, ω), . . . , θn(t, ω))

satisfying ∫ T

0
|θ0(t)|dt <∞ a.s. P ,

d∑
j=1

∫ T

0
(θi(t)Pi(t))

2dt <∞ a.s. P for i = 1, . . . , d.

The value at time t of a portfolio θ(t) is defined by

V (t, ω) = V θ(t, ω) =

n∑
i=0

θi(t)Pi(t).

Definition A.4. A portfolio θ(t) which is self-financing is called admissible
if the corresponding value process V θ(t) is (t, ω) a.s. lower bounded, i.e.
there exists K = K(θ) <∞ such that

V θ(t, ω) ≥ −K for a.a. (t, ω) ∈ [0, T ]× Ω

and V θ(t, ω) ∈ L2(Ft,Ω, P ).

Definition A.5. The claim F (ω) is attainable if there exists an admissible
portfolio θ(t) and a real number z such that

F (ω) = z +

∫ T

0
θ(t)dP (t) a.s.

Definition A.6. The market {P (t)}t∈[0,T ] is called complete if every T -
claim is attainable.

The modern theory of pricing contingent claims often proceeds by finding
the price that precludes arbitrage.

Definition A.7. An arbitrage is a portfolio with value Vt such that V0 = 0
and, for some T > 0,

P (VT ≥ 0) = 1 and P (VT > 0) > 0.

A price of a contingent claim that leads to arbitrage in the sense above
is obviously not stable, as people will acquire this portfolio en masse since
it is guaranteed that one does not lose money by investing in this portfolio.
The key idea to prevent arbitrage is by switching to another probability
measure under which the discounted price process is a martingale. For this
to be accomplished we need some additional definitions.
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Definition A.8. Two (probability) measures P and Q on a measure space
(Ω,F) are called equivalent if P � Q and Q � P , i.e. they are mutually
absolutely continuous. That means they agree on those set of F that have
probability measure zero.

Theorem A.9 (Girsanov). Let (Ω,F , P ) be a complete probability space
with a complete filtration Ft and B(t) =

(
B1(t), . . . , Bd(t)

)
a d-dimensional

Brownian motion with respect to Ft. Fix 0 < T < ∞ and let H(t) =
(H1(t), . . . ,Hd(t)) be an Rd-valued adapted, measurable process such that

(A.1)

∫ T

0
|H(t, ω)|2dt <∞ ∀T <∞, for P -almost every ω.

Define the stochastic exponential

Zt := exp

(∫ t

0
H(s)dB(s)− 1

2

∫ t

0
|H(s)|2ds

)
,

and a new probability measure QT on FT by

QT (A) = EP (1AZT ) ∀A ∈ FT .
Then on the probability space (Ω,FT , QT ), the process {W (t) : t ∈ [0, T ]} is
a d-dimensional Brownian motion relative to {Ft}t∈[0,T ].

Proof. See Seppäläinen (2012) Theorem 8.10. �

Definition A.10. A probability measure Q defined on (Ω,FT ) which is
equivalent to P is called an equivalent martingale measure for

(
P0(t), . . . , Pd(t)

)
if the discounted prices

P̂i(t) =
Pi(t)

P0(t)
, i = 1, . . . , d t ∈ [0, T ]

are martingales with respect to Q. P0(t) is the risk-free asset.

Proposition A.11. If there exists an equivalent martingale measure then
the market given by the price processes

(
P0(t), . . . , Pd(t)

)
contains no arbi-

trage opportunity.

Proof. Let V (t) be a portfolio at time t such that V (0) = 0. The martingale
property implies

(A.2) EQ
(
V (T )

P0(T )

∣∣F0

)
= 0.

Suppose P (V (T ) < 0) = 0 where P is the physical measure. Equivalence
then gives Q(V (T ) < 0) = 0. In conjunction with (A.2), standard measure
theory arguments yieldQ(V (T ) > 0) = 0. Invoking equivalence once more in
the other direction renders P (V (T ) > 0) = 0. So altogether no portfolio can
be an arbitrage, since any portfolio with V (0) = 0 cannot be an arbitrage.

�
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The foregoing suggests an effective way of finding an arbitrage free price
of a contingent claim. Simply take

(A.3) XQ
B (t) , EQ

(
P0(t)

P0(T )
B
∣∣Ft).

However, there are some technical subtleties that we have overlooked. Most
notably the existence and uniqueness of equivalent martingale measures.
These issues are taken up in Korn and Korn (2001). In turns out that under
some (unrealistic) assumptions on the underlying market you can indeed
ensure existence and uniqueness. In the literature these theorems are known
as the Fundamental theorems of Asset pricing.



Appendix B

Valuation of carry
forward in 2-period
model

We present pricing formulas of carry forward in the two year model, distin-
guishing several cases.

B.1. No fiscal history

Throughout the following derivations, we repeatedly appeal to this lemma
(see also Korn and Korn (2001) Lemma 4.2)

Lemma B.1. If X and Y are independent random variables with

X ∼ N(µ, σ2), Y ∼ N(0, 1),

then for x̃, α, β ∈ R, α > 0 we have∫ ∞
x̃

ϕµ,σ2(x)Φ(αx+ β)dx = P (X ≥ x̃, Y ≤ αX + β) = P (X ≥ x̃, Z ≤ β),

where

(X,Z) ∼ N
((

µ

−αµ

)
,

(
σ2 −ασ2

−ασ2 1 + α2σ2

))
Here ϕµ,σ2 is the density of the normal distribution with mean µ and variance

σ2.

Proof. The first equality is obvious. Write Z = Y −αX, then E(Z) = −αµ,
Var(Z) = 1+α2σ2 and Cov(X,Z) = −ασ2 by independence of Y and X. �
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Firstly, we focus on the pricing formula of a company without fiscal his-
tory, excluding carry back and assuming one year duration of carry forward.
In particular, the value of such a firm is given in the following proposition.

Proposition B.2. The value of a company without fiscal history, excluding
carry back and assuming a one year duration of carry forward is given by

V BS = A0 − τCBS(A0)− τA0

(
Φ(ρ1)(g1, g2)− e−2rΦ(ρ1)

(
ζ1,

2r/σ − σ√
2

)
+
(
Φ(d1,2)− e−rΦ(d2,2)

)[
(1− τ)Φ(σ − ζ1) + e−rτΦ(−ζ1)

])
.

Here Φ(ρ)(x, y) is the distribution function of a bivariate standard normal
distribution with correlation coefficient ρ and where

ρ1 ,
−1√
(2)

, ζ1 ,
σ

2
− r

σ
, g1 , ζ1 − σ, g2 ,

2r/σ + σ√
(2)

d1,2 =
1

σ
[r + σ2/2], d2,2 = d1,2 − σ.

Proof. Our assumptions on the deferred tax possibilities imply that the
asset value of such a company is worth

Ã2 = A2 − τ(A2 − Ã1 − 1A1<A0(A0 −A1))+,

after paying taxes in period two. By risk neutral arguments, the firm value
at time zero is given by

V BS = E
(
e−2rÃ2|F0

)
= E

(
E
(
e−2rÃ2|F1

)
|F0

)
= e−rE

(
Ã1 − τCBS(Ã1 + 1A1<A0(A0 −A1))|F0

)
= A0 − τCBS(A0)− e−rτE

(
CBS(Ã1 + 1A1<A0(A0 −A1))|F0

)
.(B.1)

At this point set A1 = A0 exp((r − σ2/2) + σX), where X ∼ N(0, 1). Note

that A1 < A0 (carry forward situation) if X < σ/2 − r/σ , ζ1. In this

situation Ã1 = A0 exp((r − σ2/2) + σX), this corresponds to the option
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price

CBS1 = A1Φ(d1,1)− e−r(K = A1 +A0 −A1 = A0)Φ(d2,1)

d1,1 =
1

σ
[ln

(
A0 exp(r − σ2/2 + σx)

A0

)
+ (r + σ2/2)]

=
1

σ
[σx+ r − σ2/2 + r + σ2/2] = 2r/σ + x

d2,1 = d1,1 − σ.

Now consider X(ω) > ζ1, in this case profit is made in period one, so that no

carry forward is available in period 2. Consequentially, Ã1 = A1 − τ(A1 −
A0) = (1 − τ)A1 + τA0. In this case the strike is equal to A1 and the
Black-Scholes price reduces to

CBS2 = Ã1Φ(d1,2)− e−r(K = Ã1)Φ(d2,2)(B.2)

d1,2 =
1

σ
[ln

(
(1− τ)A1 + τA0

(1− τ)A1 + τA0

)
+ r + σ2/2] (At the money call)

=
1

σ
[r + σ2/2]

d2,2 = d1,2 − σ.

The latter expectation in (B.1) can be rewritten as

e−rE
(
CBS(Ã1 − 1A1<A0(A0 −A1))|F0

)
= e−r

∫
R
CBSdQ = e−r

∫ ζ1

−∞
CBS1 dQ︸ ︷︷ ︸

=I1

+ e−r
∫ ∞
ζ1

CBS2 dQ︸ ︷︷ ︸
=I2

.

We now focus on each of the integrals separately. By the previous results
this gives

I1 = e−rA0

∫ ζ1

−∞
er−σ

2/2+σxΦ(2r/σ + x)ϕ(x)dx

− e−2rA0

∫ ζ1

−∞
Φ(2r/σ − σ + x)ϕ(x)dx.

Here ϕ(x) is the density of a standard normal distribution. The two integrals
appearing above are amenable to analytical expressions, which follows from
Lemma B.1. Let us turn attention to the first integral in I1. Using the same
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notation as in Lemma B.1, we get

e−rA0

∫ ζ1

−∞
er−1/2σ2+σxΦ(2r/σ + x)ϕ(x)dx

= A0

∫ ζ1

−∞
ϕσ,1(x)Φ(2r/σ + x)dx

= A0P (X ≤ ζ1, Z ≤ 2r/σ),

where by Lemma B.1 the distribution of (X,Z) is given by

(X,Z) ∼ N
((

σ

−σ

)
,

(
1 −1

−1 2

))
.

Usual standardization arguments imply that the first integral is equal to:

A0Φ(ρ1)(g1, g2),

where Φ(ρ)(x, y) is the cumulative distribution function of a bivariate stan-
dard normal distribution with correlation coefficient ρ and

ρ1 ,
−1√
(2)

, g1 , ζ1 − σ, g2 ,
2r/σ + σ√

(2)
.

In a similar vein, the second integral is equal to

e−2rA0Φ(ρ1)

(
ζ1,

2r/σ − σ√
2

)
.

As a result

I1 = A0Φ(ρ1)(g1, g2)− e−2rA0Φ(ρ1)

(
ζ1,

2r/σ − σ√
2

)
.

Consider now I2

I2 = e−r
(
Φ(d1,2)− e−rΦ(d2,2)

) ∫ ∞
ζ1

Ã1dµ

= A0e
−r(Φ(d1,2)− e−rΦ(d2,2)

) ∫ ∞
ζ1

(
(1− τ) exp(r − σ2/2 + σx) + τ

)
ϕ(x)dx

= A0

(
Φ(d1,2)− e−rΦ(d2,2)

)[
(1− τ)Φ(σ − ζ1) + e−rτΦ(−ζ1)

]
.

This means that the total value is given by

(B.3) V BS = A0 − τCBS(A0)− τ(I1 + I2)

= A0 − τCBS(A0)− τA0

(
Φ(ρ1)(g1, g2)− e−2rΦ(ρ1)

(
ζ1,

2r/σ − σ√
2

)
+
(
Φ(d1,2)− e−rΦ(d2,2)

)[
(1− τ)Φ(σ − ζ1) + e−rτΦ(−ζ1)

])
.

�
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B.2. One year duration carry forward

Here we derive the value of carry forward under the standing assumption
that no carry back is allowed and the duration time of carry forward is one
year. This leads to the following.

Theorem B.3. The value of a firm having CF1 available at time zero equals

V BS
cf = A0 − τCBS(A0 + CF1)− τ(I1 + I2,1 + I3),

where

I1 = A0Φ(ρ1)(g1, g2)− e−2rA0Φ(ρ1)

(
ζ1,

2r/σ − σ√
2

)
I2,1 = (Φ(d1,2)− e−rΦ(d2,2))

(
A0(1− τ)Φ(σ − ζ1 − δ) + e−rτ(A0 + CF1)Φ(−ζ1 − δ)

)
I3 = A0(Φ(d1,2)− e−rΦ(d2,2))(Φ(ζ1 + δ − σ)− Φ(ζ1 − σ)).

The parameters are the same as in Proposition B.2, i.e.

ρ1 ,
−1√
(2)

, ζ1 ,
σ

2
− r

σ
, g1 , ζ1 − σ, g2 ,

2r/σ + σ√
(2)

δ =
1

σ
ln

(
CF1

A0
+ 1

)
, d1,2 =

1

σ
[r + σ2/2], d2,2 = d1,2 − σ.

As a result, we have the following no-arbitrage value for carry forward

ξBScf = τ(CBS(A0)− CBS(A0 + CF1))︸ ︷︷ ︸
Carry forward value in one period model.

−τ(I2,1 − I2 + I3︸ ︷︷ ︸
>0

).

Proof. Let CF1 be carry forward available at time t = 1. If X < ζ1, we are
in the same situation as Appendix B.1. However, a firm only pays taxes in
period one if A1 > A0 +CF1. Again, by writing A1 = A0 exp(r−σ2/2+σX)

we solve the equation A1 = A0 + CF1 and denote its solution by x ,
ζ1 + δ, where δ > 0 and ζ1 defined as in the previous paragraph. In fact,
a straightforward calculation gives x = 1

σ (log(CF1
A0

+ 1) + σ2/2− r), so that

δ = 1
σ log(CF1

A0
+ 1). Three cases can occur:

(i) X < ζ1, this case was already solved before. (No tax but carry for-
ward). Notice that CF1 expires worthless, because duration is only
one year.

(ii) ζ1 < X < ζ1 + δ. In this case a firm makes profit, but it’s not taxable
due to carry forward. However, no additional carry forward is created
which can be used in period 2.

(iii) X > ζ1 + δ, this case was already solved before. However, some minor
things change due to carry forward from previous period.
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Since cases (i) and (iii) are already solved in Appendix B.1, we focus on (ii).
In this case

(B.4) CBS3 = A1Φ(d1,2)− e−r(K = A1)Φ(d2,2),

where d2,1, d2,2 are the same as in (B.2), because it is an at-the-money call
option. The tedious computations leading to the total firm value will not
be repeated, as they are very similar to the ones in the previous section.
The integral I1 will be completely identical. Let us define a third integral
corresponding to the call option that arises from case (ii)

I3 , e
−r
∫ ζ1+δ

ζ1

CBS3 dQ

= A0e
−r(Φ(d1,2)− e−rΦ(d2,2))

∫ ζ1+δ

ζ1

er−σ
2/2+σxϕ(x)dx

= A0(Φ(d1,2)− e−rΦ(d2,2))(Φ(ζ1 + δ − σ)− Φ(ζ1 − σ)).

Consider I2,1, corresponding to the integral of a Black-Scholes call option

after taxes are levied. The firm value after tax payments equals Ã1 =
A1 − τ(A1 −A0 − CF1). The integral is therefore

I2,1 , e
−r(Φ(d1,2)− e−rΦ(d2,2))

∫ ∞
ζ1+δ

Ã1dQ =

(B.5)

e−r(Φ(d1,2)− e−rΦ(d2,2))

∫ ∞
ζ1+δ

(A0(1− τ) exp(r − σ2/2 + σx) + τ(A0 + CF1))ϕ(x)dx

= (Φ(d1,2)− e−rΦ(d2,2))
(
A0(1− τ)Φ(σ − ζ1 − δ) + e−rτ(A0 + CF1)Φ(−ζ1 − δ)

)
.

This leads to the total firm value for a company having some carry forward

(B.6) V BS
cf = A0 − τCBS(A0 + CF1)− τ(I1 + I2,1 + I3).

The resulting carry forward just follows by subtracting (B.3) from (B.6)

ξBScf = τ(CBS(A0)− CBS(A0 + CF1))︸ ︷︷ ︸
Carry forward value in one period model.

−τ(I2,1 − I2 + I3︸ ︷︷ ︸
>0

).

�

The latter term on the right-hand side is greater than zero, which es-
sentially follows from comparing the integral of two at-the-money call op-
tions over the region {ω ∈ Ω : X(ω) > ζ1}, i.e. where A1 > A0. Let
C(K) be the call option value with strike K. Whenever A1 > A0 we have∫
{A1>A0}C1(A1) >

∫
{A1>A0}C1(Ã1).
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B.3. Two year duration carry forward

The value of a firm without fiscal history remains the same in this case.
The value of a firm with carry forward is obtained by splitting the integral
corresponding to the expectation into pieces. Consider a firm having CF1

created at period t = 0, which is two year valid.

(i) If X < ζ1 then none of the carry forward is used in year 1, due to loss
in that period. That means that the total carry forward available in
year 2 is equal to CF1 +A0 −A1.

(ii) If ζ1 ≤ X < ζ1 + δ, some of the carry forward is used in period 1, so
that the total carry forward in period two equals CF1 + A0 − A1. No
taxes are paid in this case, so the option is the same as in (i).

(iii) X > ζ1 + δ implies that all carry forward is used in period 1 and no
carry forward is available in period two. In this case taxes are paid.

We consider (i) first. In this case the call option value is given by

CBS1 = A1Φ(d1,1)− e−r(K = A0 + CF1)Φ(d2,1)

d1,1 =
2r

σ
+

log(A0/(A0 + CF1))

σ
+ x

d2,1 = d1,1 − σ.

Secondly, item (iii) renders a call option value that is equivalent to (B.5),
so we ignore this case. The calculations leading to the integral over C1 are
very similar to the ones before, so we only state the final result

I1,2 , e
−r
∫ ζ1+δ

−∞
CBS1 dQ

= A0Φ(ρ1)(ζ1 + δ − σ, g1)− e−2r(A0 + CF1)Φ(ρ1) (ζ1, g2) ,

g1 ,
2r
σ + σ + 1

σ log( A0
A0+CF1

)
√

2
, g2 ,

2r
σ + 1

σ log( A0
A0+CF1

)− σ
√

2
.

Thus, the value of a company having some carry forward that can be used
for two consecutive years is

(B.7) V BS
cf = A0 − τCBS(A0 + CF1)− τ(I1,2 + I2,1).

As a result, the DTA value of carry forward follows by subtracting (B.3)
from (B.7)

ξBScf = τ(CBS(A0)− CBS(A0 + CF1))− τ(I1,2 + I2,1 − I1 − I2).

The rightmost term contains four integrals, for which we have the following
inequalities

I1,2 < I1, I2,1 < I2,
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since on each domain of integration the call option is worth less when having
carry forward available. This implies that carry forward is always more
valuable when it is two year valid compared to a one year duration.



Appendix C

Proof coupon
payments

C.1. No deferred taxes

Theorem C.1. The debt value at time zero for an undertaking without
deferred taxes is given by

D0 = e−r(D + C)− e−r(D + C)Φ(θ3) +A0Φ(θ3 − σ),

if D + C ≤ A0 + γC. Otherwise

D0 = e−r(D + C)− e−r(D + C)Φ(θ2) +A0Φ(θ2 − σ)

− τA0[Φ(θ2 − σ)− Φ(θ1 − σ)] + e−rτ(A0 + γC)[Φ(θ2)− Φ(θ1)].

In these expressions

θ1 =
1

σ

[
log

(
A0 + γC
A0

)
− r + σ2/2

]
θ2 =

1

σ

[
log

(
D + C − τ(A0 + γC)

(1− τ)A0

)
− r + σ2/2

]
θ3 =

1

σ

[
log

(
D + C
A0

)
− r + σ2/2

]
.

Proof. A firm without deferred taxes gives rise to the following debt value
at time zero

D0 = e−r(D + C)− e−rEQ((D + C − [A1 − τ(A1 −A0 − γC)+])+).

To evaluate this expression, we assume that C is fixed. Introduce θ1 as the
solution to A1 = A0 + γC (point from which the undertaking pays taxes).

99
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As in Appendix B.1, write A1 = A0 exp(r−σ2/2+σX), where X ∼ N(0, 1).
The analytical solution for θ1 follows from

A0 exp(r − σ2/2 + σθ1) = A0 + γC =⇒

θ1 =
1

σ
[log

(
A0 + γC
A0

)
− r + σ2/2].

Let θ2 be the solution to D+ C = A1− τ(A1−A0− γC). Rearranging leads
to

(1− τ)A1 = D + C − τ(A0 + γC) =⇒
(1− τ)A0 exp(r − σ2/2 + σθ2) = D + C − τ(A0 + γC) =⇒

θ2 =
1

σ
[log

(
D + C − τ(A0 + γC)

(1− τ)A0

)
− r + σ2/2].

Finally, θ3 is defined to be the solution to D + C = A1. This gives

A0 exp(r − σ2/2 + σθ3) = D + C =⇒

θ3 =
1

σ
[log

(
D + C
A0

)
− r + σ2/2].

We now distinguish the following two cases

(i) D + C ≤ A0 + γC.
(ii) D + C > A0 + γC.

In case (i), the expectation equals

e−rEQ((D + C − [A1 − τ(A1 −A0 − γC)+])+)

= e−r
∫ θ3

−∞
D + C −A1dQ

= e−r
∫ θ3

−∞
(D + C −A0e

r−σ2/2+σx)ϕ(x)dx

= e−r(D + C)Φ(θ3)−A0Φ(θ3 − σ).

Case (ii) yields

e−rEQ((D + C − [A1 − τ(A1 −A0 − γC)+])+)

= e−r
∫ θ1

−∞
(D + C −A1)dQ

+ e−r
∫ θ2

θ1

(D + C −A1 + τ(A1 −A0 − γC))dQ

= e−r(D + C)Φ(θ2)−A0Φ(θ2 − σ)

+ τA0[Φ(θ2 − σ)− Φ(θ1 − σ)]− e−rτ(A0 + γC)[Φ(θ2)− Φ(θ1)].

�
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C.2. Carry forward

Theorem C.2. The debt value at time zero for an undertaking having CF1

is given by

D0 = e−r(D + Ccf)− e−r(D + Ccf)Φ(θ3) +A0Φ(θ3 − σ),

if D + Ccf ≤ A0 + CF1 + γCcf. Otherwise

D0 = e−r(D + Ccf)− e−r(D + Ccf)Φ(θ2) +A0Φ(θ2 − σ)

− τA0[Φ(θ2 − σ)− Φ(θ1 − σ)] + e−rτ(A0 + CF1 + γCcf)[Φ(θ2)− Φ(θ1)].

In these expressions

θ1 =
1

σ

[
log

(
A0 + CF1 + γCcf

A0

)
− r + σ2/2

]
θ2 =

1

σ

[
log

(
D + Ccf − τ(A0 + CF1 + γCcf)

(1− τ)A0

)
− r + σ2/2

]
θ3 =

1

σ

[
log

(
D + Ccf
A0

)
− r + σ2/2

]
.

Proof. For an undertaking with carry forward, debt at time zero equals

D0 = (D + Ccf)− e−rEQ((D + Ccf − [A1 − τ(A1 −A0 − CF1 − γCcf)+])+).

To compute the expectation explicitly, we proceed as in the previous section.
Let θ1 be the solution to A1 = A0 + CF1 + γCcf (moment from which firm
pays taxes). In particular

A0 exp(r − σ2/2 + σθ1) = A0 + CF1 + γCcf =⇒

θ1 =
1

σ
[log

(
A0 + CF1 + γCcf

A0

)
− r + σ2/2].

In addition θ2 is the solution to D + Ccf = A1 − τ(A1 − A0 − CF1 − γCcf).
Rearranging terms yields

(1− τ)A0 = D + Ccf − τ(A0 + CF1 + γCcf) =⇒

θ2 =
1

σ
[log

(
D + Ccf − τ(A0 + CF1 + γCcf)

(1− τ)A0

)
− r + σ2/2].

Finally, θ3 is the solution to D + Ccf = A1.

A0 exp(r − σ2/2 + σθ3) = D + Ccf =⇒

θ3 =
1

σ
[log

(
D + Ccf
A0

)
− r + σ2/2].

This time we distinguish between

(i) D + Ccf ≤ A0 + CF1 + γCcf.
(ii) D + Ccf > A0 + CF1 + γCcf.
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Case (i) renders the following solution to the expectation

e−rEQ((D + Ccf − [A1 − τ(A1 −A0 − CF1 − γCcf)+])+)

= e−r
∫ θ3

−∞
D + Ccf −A1dQ

= e−r(D + Ccf)Φ(θ3)−A0Φ(θ3 − σ).

Case (ii) yields

e−rEQ((D + Ccf − [A1 − τ(A1 −A0 − CF1 − γCcf)+])+)

= e−r
∫ θ1

−∞
(D + Ccf −A1)dQ

+ e−r
∫ θ2

θ1

(D + Ccf −A1 + τ(A1 −A0 − CF1 − γCcf))dQ

= e−r(D + Ccf)Φ(θ2)−A0Φ(θ2 − σ)

+ τA0[Φ(θ2 − σ)− Φ(θ1 − σ)]− e−rτ(A0 + CF1 + γCcf)[Φ(θ2)− Φ(θ1)].

�

C.3. Carry back

Theorem C.3. The debt value at time zero for an undertaking having CB1

is given by

D0 = e−r(D + Ccb)− e−r(D + Ccb − τCB1)Φ(θ3) +A0Φ(θ3 − σ),

if D + Ccb ≤ A0 − CB1 + γCcb. Otherwise

D0 = e−r(D + Ccb)− e−r(D + Ccb − τCB1)Φ(θ2) +A0Φ(θ2 − σ)

− e−rτ(CB1 −A0 − γCcb)[Φ(θ2)− Φ(θ1)]− τA0[Φ(θ2 − σ)− Φ(θ1 − σ)].

In these expressions

θ1 =
1

σ

[
log

(
A0 − CB1 + γCcb

A0

)
− r + σ2/2

]
θ2 =

1

σ

[
log

(
D + Ccb − τ(A0 + γCcb)

(1− τ)A0

)
− r + σ2/2

]
θ3 =

1

σ

[
log

(
D + Ccb − τCB1

A0

)
− r + σ2/2

]
.

Proof. We know that debt at time zero is given by
(C.1)

D0 = e−r(D+Ccb)−e−rEQ((D+Ccb−[A1+τCB1−τ(A1−A0+CB1−γCcb)+])+).
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Let us denote the solution to A1 = A0 − CB1 + γCcb by θ1.

A0 exp(r − σ2/2 + σθ1) = A0 − CB1 + γCcb =⇒

θ1 =
1

σ
[log

(
A0 − CB1 + γCcb

A0

)
− r + σ2/2].

Also, set θ2 to be the solution to D+Ccb = A1 +τCB1−τ(A1−A0 +CB1−
γCcb). Rearranging leads to

(1− τ)A1 = D + Ccb − τ(A0 + γCcb) =⇒
(1− τ)A0 exp(r − σ2/2 + σθ2) = D + Ccb − τ(A0 + γCcb) =⇒

θ2 =
1

σ
[log

(
D + Ccb − τ(A0 + γCcb)

(1− τ)A0

)
− r + σ2/2].

Finally, define θ3 to be the solution to D + Ccb = A1 + τCB1, which gives

A0 exp(r − σ2/2 + σθ3) = D + Ccb − τCB1 =⇒

θ3 =
1

σ
[log

(
D + Ccb − τCB1

A0

)
− r + σ2/2].

Distinguish the following cases

(i) D + Ccb ≤ A0 − CB1 + γCcb.

(ii) D + Ccb > A0 − CB1 + γCcb.

In case (i), the expectation in (C.1) is easily evaluated, as the firm can only
go bankrupt if A1 ≤ A0 +CB1−γCcb, which means debt is so low compared
to A0 that if bankruptcy is triggered, a firm can reclaim the complete carry
back. The expectation then follows from

e−rEQ((D + Ccb − [A1 + τCB1 − τ(A1 −A0 + CB1 − γCcb)+])+)

= e−r
∫ θ3

−∞
D + Ccb −A1 − τCB1dQ

= e−r
∫ θ3

−∞
(D + Ccb −A0e

r−σ2/2+σx − τCB1)ϕ(x)dx

= e−r(D + Ccb − τCB1)Φ(θ3)−A0Φ(θ3 − σ).

In case (ii), bankruptcy is triggered already when a firm can only reclaim
part of the carry back from the tax authority. In this case the expectation
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in (C.1) is found by splitting the integral

e−rEQ((D + Ccb − [A1 + τCB1 − τ(A1 −A0 + CB1 − γCcb)+])+)

= e−r
∫ θ1

−∞
D + Ccb −A1 − τCB1dQ

+ e−r
∫ θ2

θ1

D + Ccb −A1 − τCB1 + τ(A1 −A0 + CB1 − γCcb)dQ

= e−r(D + Ccb − τCB1)Φ(θ2)−A0Φ(θ2 − σ) + e−rτ

∫ θ2

θ1

(A1 −A0 + CB1 − γCcb)dQ

= e−r(D + Ccb − τCB1)Φ(θ2)−A0Φ(θ2 − σ)

+ e−rτ(CB1 −A0 − γCcb)[Φ(θ2)− Φ(θ1)] + τA0[Φ(θ2 − σ)− Φ(θ1 − σ)].

�

C.4. DTL

Theorem C.4. The debt value at time zero for an undertaking having gain1

is given by

D0 = e−r(D + CL)− e−r(D + CL)Φ(θ3) +A0Φ(θ3 − σ),

if D + CL ≤ A0 − gain1 + γCL. Otherwise

D0 = e−r(D + CL)− e−r(D + CL)Φ(θ2) +A0Φ(θ2 − σ)

− e−rτ(gain1 −A0 − γCL)[Φ(θ2)− Φ(θ1)]− τA0[Φ(θ2 − σ)− Φ(θ1 − σ)].

In these expressions

θ1 =
1

σ

[
log

(
A0 − gain1 + γCL

A0

)
− r + σ2/2

]
θ2 =

1

σ

[
log

(
D + CL − τ(A0 − gain1 + γCL)

(1− τ)A0

)
− r + σ2/2

]
θ3 =

1

σ

[
log

(
D + CL
A0

)
− r + σ2/2

]
.

Proof. The DTL increases the probability of bankruptcy and thus influen-
ces coupon payments. To see this, we write
(C.2)

D0 = e−r(D+ CL)− e−rEQ((D+ CL− [A1− τ(A1−A0 + gain1− γCL)+])+).
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Now we define θ1 to be the solution to A1 = A0−gain1 +γCL (moment from
which levered firm with DTL pays taxes). Solving gives

A0 exp(r − σ2/2 + σθ1) = A0 − gain1 + γCL =⇒

θ1 =
1

σ
[log

(
A0 − gain1 + γCL

A0

)
− r + σ2/2].

Similarly, θ2 is the solution to D + CL = A1 − τ(A1 − A0 + gain1 − γCL).
Rearranging leads to

(1− τ)A1 = D + CL − τ(A0 − gain1 + γCL) =⇒
(1− τ)A0 exp(r − σ2/2 + σθ2) = D + CL − τ(A0 − gain1 + γCL) =⇒

θ2 =
1

σ
[log

(
D + CL − τ(A0 − gain1 + γCL)

(1− τ)A0

)
− r + σ2/2].

Finally, θ3 is the solution to D + CL = A1. Solving renders

A0 exp(r − σ2/2 + σθ3) = D + CL =⇒

θ3 =
1

σ
[log

(
D + CL
A0

)
− r + σ2/2].

The expectation in (C.2) follows by distinguishing two cases

(i) D + CL ≤ A0 − gain1 + γCL.
(ii) D + CL > A0 − gain1 + γCL.

Case (i) renders the solution

e−rEQ((D + CL − [A1 − τ(A1 −A0 + gain1 − γCL)+])+)

= e−r
∫ θ3

−∞
(D + CL −A1)dQ

= e−r(D + CL)Φ(θ3)−A0Φ(θ3 − σ).

In case (ii), we have

e−rEQ((D + CL − [A1 − τ(A1 −A0 + gain1 − γCL)+])+)

= e−r
∫ θ1

−∞
D + CL −A1dQ

+ e−r
∫ θ2

θ1

D + CL −A1 + τ(A1 −A0 + gain1 − γCL)dQ

= e−r(D + CL)Φ(θ2)−A0Φ(θ2 − σ)

+ e−rτ(gain1 −A0 − γCL)[Φ(θ2)− Φ(θ1)] + τA0[Φ(θ2 − σ)− Φ(θ1 − σ)].
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restarts from the point Ãt, whereas the asset path without tax just
continues from At. 19

4.1 DTA value given from carry forward (4.3) as function of
carry forward (CF1) for different tax rates. Parameters:
A0 = 100, r = 0.05, σ = 0.2. 26

4.2 Derivative of DTA from carry forward (4.5) as a function
of carry forward (CF1) for different tax rates. Parameters:
A0 = 100, r = 0.05, σ = 0.2. 27

4.3 Value of CF1 under Black-Scholes vs. payoff at maturity.
Parameters: r = 0.05, σ = 0.2, A0 = 100, CF1 = 40, τ = 0.25. 28

4.4 Value of CB1 under Black-Scholes vs. payoff at maturity.
Parameters: r = 0.05, σ = 0.2, A0 = 100, CB1 = 40. 29

111



112 List of Figures

4.5 The difference between (4.3) and (4.7) as a function of r and
σ, for the fixed deferred tax values CF1 = CB1 = 20. The
domain r × σ = {(r, σ) : r ∈ [0.01, 0.5], σ ∈ [0.1, 0.9]} and
A0 = 100, τ = 0.25. 30

4.6 Value of DTL under Black-Scholes vs. payoff at maturity.
Parameters: r = 0.05, σ = 0.2, A0 = 100, gain1 = 20. 32

4.7 DTA value of carry forward as a function of CF1 under different
valuation approaches. Parameters: A0 = 100, τ = 0.25, r =
0.05, σ = 0.2, µ = 0.1. 35

4.8 DTA value of carry forward as a function of A0 under different
valuation approaches. Parameters: τ = 0.25, CF1 = 90, r =
0.05, σ = 0.2, µ = 0.1. 36

4.9 Coupon payment C on risky debt as a function of debt D
for undertakings with different deferred taxes. Parameters:
A0 = 100, r = 0.05, σ = 0.2, τ = 0.25, CB1 = 10, gain1 = 30, γ = 1. 40

4.10 DTA/DTL value of levered firms seen as a function of debt. The
coupon payment corresponding to debt level D0 is determined via
numerical methods and depends on the deferred tax. Parameters:
A0 = 100, r = 0.05, σ = 0.2, τ = 0.25, CF1 = CB1 = gain1 = 20. 43

4.11 Tax payments for levered and unlevered firms with different fiscal
history. Parameters: A0 = 100, τ = 0.25. 46

4.12 Interest tax shield seen as a function of debt. The Modigliani-
Miller value is given by (4.28), whereas the value of the Reference
undertaking and the Undertaking with DTL are given by RBS and
RBSL respectively. Parameters: r = 0.05, σ = 0.2, τ = 0.25, A0 =
100, gain1 = 10, γ = 1. Bankruptcy cost are zero (α = 0). 48

4.13 Monte-Carlo simulation of DTA value arising from carry forward
in multi-period models. In all sub figures carry back is notallowed.
Parameters: A0 = 100, r = 0.05, σ = 0.2, τ = 0.25. 58

4.14 Monte-Carlo simulation of DTA value arising from carry back in
multi-period models. Parameters: A0 = 100, r = 0.05, σ = 0.2, τ =
0.25. 62

4.15 Monte-Carlo simulation of DTL value arising from temporary
differences in multi-period models. Parameters: A0 = 100, r =
0.05, σ = 0.2, τ = 0.25. 63

4.16 DTA/DTL value of carry forward, carry back and untaxed
profit gain1 for levered undertakings as a function of debt
D in the 5-period model. The deferred taxes are set such
that CF1 = CB1 = gain1 = 20 and coupons Ccf, Ccb, CL are
determined such that debt sells at par value. Parameters:



List of Figures 113

A0 = 100, r = 0.05, σ = 0.2, τ = 0.25, γ = 1. Duration of carry
forward/back is 5/1 year(s) respectively. 66

4.17 Firm value of undertaking without deferred taxes in different
T -period models. Parameters: A0 = 100, r = 0.05, σ =
0.2, τ = 0.25, γ = 1. The firm has no initial deferred taxes, i.e.
CF1 = CB1 = gain1 = 0. Settlement term of carry forward/back
is 10/1 year(s) respectively. 69

5.1 Pie chart of payout to stakeholders for levered and unlevered
firm in the 10-period model. All payouts are discounted back
to period zero. For the levered firm, parameters are chosen
to match the optimal capital structure in the endogenous
bankruptcy case in Table 4.6. This means that D = 39.57,K =
15.70, C = 2.16, γ = 1 and α = 0.5. Other parameters:
A0 = 100, r = 0.05, σ = 0.2, CF1 = CB1 = 0 and the settlement
term of carry forward/back is 10/1 year(s) respectively. 79

5.2 Effect of an increase in risk (σ) as measured by the partial
derivatives w.r.t. σ on tax, equity and debt value in the 5-period
model (panel (a)) and 10-period model (panel (b)) as a function of
A0. Parameters are chosen to match the optimal capital structure
in the endogenous bankruptcy case when A0 = 100 in Table 4.6.
Parameters: r = 0.05, σ = 0.2, CF1 = CB1 = 0 and the settlement
term of carry forward/back is 10/1 year(s) respectively. 80





List of Tables

4.1 Monte-Carlo simulation of DTA value corresponding to different nominal carry

forward values (header). Left most column concerns the duration of the model.

Two cases are distinguished, one where duration of carry forward is one year, other

where duration is ten years. Carry back is notallowed and the maximum standard

error during all simulations equals 0.0194. The following parameters are used:

A0 = 100, r = 0.05, σ = 0.2, τ = 0.25 and 10.000 Monte-Carlo paths. 56

4.2 Monte-Carlo simulation of DTA value corresponding to different nominal carry forward

values (header). Left most column concerns the duration of the model. Two cases are

distinguished, one where duration of carry forward is one year, other where duration is

ten years. Carry back is allowed for one and ten years in the respective models and the

maximum standard error in all simulations equals 0.0214. The following parameters

are used: A0 = 100, r = 0.05, σ = 0.2, τ = 0.25 and 10.000 Monte-Carlo paths. 57

4.3 Monte-Carlo simulation of DTA value corresponding to different nominal carry back

values (header). Left most column concerns the duration of the model. Two cases are

distinguished, one where duration of carry back is one year, other where duration is ten

years. Carry forward is allowed for one and ten years in the respective models and the

maximum standard error in all simulations equals 0.0081. The following parameters

were used: A0 = 100, r = 0.05, σ = 0.2, τ = 0.25 and 10.000 Monte-Carlo paths. 60

4.4 Coupon payments in the 5-period model, when carry back is not
allowed. The coupon Ccf corresponds to the coupon payment of a
firm having CF1 and the settlement term of carry forward is five
years. Parameters: A0 = 100, CF1 = 20, r = 0.05, σ = 0.2, τ = 0.25. 65

4.5 Coupon payments for different levels of debt with face value D
when carry back is allowed for one year and losses can be carried
forward five years. For firms with carry forward/back we assume
CF1 = CB1 = 20. Parameters: A0 = 100, r = 0.05, σ = 0.25, τ = 0.2 66

115



116 List of Tables

4.6 Optimal debt levels in various T -period models. Coupon payment
C is determined such that debt sells at par value. The maximum
leverage premium is the difference between columns four and three.
The exogenous bankruptcy case takes K = D. The endogenous
bankruptcy case finds the optimal K∗ implied by the model.
Parameters: A0 = 100, r = 0.05, σ = 0.2, τ = 0.25, α = 0.5 and the
settlement term of carry forward/back is 10/1 year(s) respectively.
The firm has no initial deferred taxes. 68

5.1 Input variables taken from the market. Shares outstanding is the
basic weighted average number of shares outstanding over 2016, see
page 22 of BP (2018). Carry forward (= CF1) is the DTA value
over 2016 on page 15 of BP (2018), converted to nominal scale
(assuming the tax rate τ = 0.35). Hence, we tacitly assume that all
DTA’s are coming from loss carry forward. The single debt issuance
D comes from (5.2). All numbers are reported in millions (106). 74

5.2 Parameter values resulting from the optimization problem (5.3). 74

5.3 Most important legislative transitions in the U.S. corporate tax
overhaul. The current law column describes the extant tax laws,
whereas the G.O.P. Bill column describes the proposed tax changes
of the Trump administration. 75

5.4 DTA value of carry forward with and without tax change in different
T -period models, using λ1,t = λ0,t = 0.35. The low and high
tax rates are respectively given by τ1 = 0.2 and τ2 = 0.45. Both
models start with the high tax rate τ2. Additional parameters:
A0 = 1000, r = 0.05, CF1 = 40, C = 5, γ = 1. Settlement term of
carry forward is ten years and carry back can be settled for one
year. 77

5.5 Tax savings expressed as a fraction of the base case without
deferred taxes in the 30-period model withoutleverage for
different settlement terms. In particular: Tax savings = 1 −
(Tax expense with DTA)/(Tax expense without DTA possibility).
In the notation [a; b], a is the duration of carry forward
and b concerns the duration of carry back. Parameters:
CF1 = CB1 = 0, A0 = 100, r = 0.05. 78


	Abstract
	Introduction
	Literature overview

	Chapter 1. Introduction to deferred taxes
	1.1. Fiscal and market consistent accounting
	1.2. Carry Forward
	1.3. Carry Back
	1.4. DTA from temporary differences
	1.5. DTL from temporary differences

	Chapter 2. Extensions of the one-period model
	2.1. One-period model levered firms
	2.1.1. Carry forward
	2.1.2. Carry back
	2.1.3. DTL

	2.2. Two-period model unlevered firms
	2.2.1. Carry forward
	2.2.2. Carry back
	2.2.3. DTL


	Chapter 3. Models
	3.1. Modeling unlevered firms
	3.2. Modeling levered firms

	Chapter 4. Results
	4.1. One-period model unlevered firms
	4.1.1. Carry forward
	4.1.2. Carry back
	4.1.3. The trade-off between carry forward and carry back
	4.1.4. DTL temporary differences
	4.1.5. Comparison to current valuation methods

	4.2. Valuation of debt
	4.3. One-period model levered firms
	4.3.1. Carry forward
	4.3.2. Carry back
	4.3.3. DTL
	4.3.4. Valuation interest tax shield

	4.4. Multi-period model unlevered firms
	4.4.1. Simulation set-up
	4.4.2. Carry forward
	4.4.3. Carry Back
	4.4.4. DTL

	4.5. Multi-period model levered firms
	4.5.1. Simulation set-up
	4.5.2. Carry forward
	4.5.3. Carry back
	4.5.4. DTL

	4.6. Optimal capital structures

	Chapter 5. Empirical applications and agency problems
	5.1. Loss absorbing capacity of deferred taxes for European insurers
	5.1.1. Market consistent approach
	5.1.2. Implication for policymakers

	5.2. BP tax loss estimates
	5.2.1. Simulation with random tax regimes

	5.3. Tax smoothing effects and agency problems

	Chapter 6. Conclusion
	Shortcomings of approach
	Suggestions for further research

	Appendix A. Elements of financial mathematics
	A.1. Martingale pricing

	Appendix B. Valuation of carry forward in 2-period model
	B.1. No fiscal history
	B.2. One year duration carry forward
	B.3. Two year duration carry forward

	Appendix C. Proof coupon payments
	C.1. No deferred taxes
	C.2. Carry forward
	C.3. Carry back
	C.4. DTL

	Bibliography
	List of Figures
	List of Tables

