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ABSTRACT 
We propose and analyze a generic multi-class kinematic wave traffic flow model: 

Fastlane. The model takes into account heterogeneity among driver-vehicle units with respect 
to speed and space occupancy: long vehicles with large headways (e.g. trucks) take more 
space than short vehicles with short headways (e.g. passenger cars). Moreover, and this is 
what makes the model unique, this effect is larger when the traffic volume is higher. This 
state dependent space occupancy is reflected in dynamic passenger car equivalent values. The 
resulting model is shown to satisfy important requirements such as providing a unique 
solution and being anisotropic. Simulations are applied to compare Fastlane to other multi-
class models. Furthermore, we show that the characteristic velocity depends on the truck 
share, which is one of the main consequences of our modeling approach. 
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INTRODUCTION 
Traffic flow theory aims to describe human driving behaviour on road networks, 

including consistent explanations of observed phenomena such as stop and go traffic, capacity 
drop and traffic hysteresis. Traffic flow models are traditionally classified into microscopic 
models, which describe the behavior of individual vehicles, mesoscopic models, which 
describe traffic on the basis of probability distributions of ‘packets’ of vehicles, and 
macroscopic models, which describe traffic as a continuum flow (1, 2, 3). Our focus is on 
macroscopic traffic flow models, which are widely used to describe and predict traffic flows 
in larger networks, both in the context of traffic and transportation planning, as well as in 
management of traffic operations. 

Macroscopic models describe aggregate driving behavior and typically include an 
average (equilibrium) relation between traffic density ρ (number of vehicles per unit length) 
and flow q (number of vehicles per unit time). In kinematic wave (KW) models, traffic is 
assumed to always be in a state described by this fundamental relation. However, observed 
density-flow plots usually show wide scatter. One reason for this scatter is that not all the data 
represent steady-state conditions. Higher-order models explain and reproduce (at least partly) 
this scatter by assuming accordingly that the traffic state tends towards the fundamental 
relation but is usually not on it, due to for example anticipation and relaxation effects.  

A more complete explanation for the scatter in density-flow plots is that it is also 
related to heterogeneity among drivers and vehicles. Ossen and Hoogendoorn (4) discuss 
heterogeneity in relation to microscopic models and distinguish between intra- and inter-
driver heterogeneity. The first relates to changes in behavior of a single driver over time. 
Additionally, inter-driver heterogeneity relates to structural differences in behavior and/or 
capabilities between vehicles and drivers. For example, trucks are usually longer and slower 
than cars, and have different drive characteristics (e.g. maximum acceleration and 
deceleration capabilities). As a result, congestion sets in at lower densities if truck shares are 
higher. These inter-driver differences are used in multi-class (MC) traffic flow models to 
reproduce scattered density-flow plots. Instead of considering traffic flow as a homogenous 
flow with homogeneous vehicles and drivers (mixed-class) the heterogeneity of vehicles and 
drivers is taken into account by dividing them into classes with distinct properties. In (5, 6) 
MC mesoscopic and MC higher-order macroscopic models are discussed. We focus on multi-
class kinematic wave (MC-KW) models, which despite their relative simplicity are also 
capable of reproducing scattered density-flow plots and some of the spatio-temporal 
phenomena related to it (1, 7, 8). 

Our main contribution is a detailed study of the Fastlane model (First-order fAST 
muLti-class mAcroscopic traffic flow model for simulation of NEtwork-wide traffic 
conditions) (9). This model is part of a range of MC-KW models (7, 8, 10, 11, 12, 13, 14, 15). 
We re-derive the model from a consistent set of principles and analyze its properties. We 
show that it satisfies certain important requirements and show the consequences of the 
modeling choices. The consequences include the reproduction of scattered density-flow plots 
and the dependence of the characteristic velocity in congestion on the traffic composition. 

The paper is organized as follows. In the next section we discuss the principles on 
which the Fastlane model is based and the qualitative requirements that are supposed to be 
satisfied by it. Then the Fastlane model is specified and it is shown that the model satisfies the 
requirements. Finally, we show Fastlane’s distinctive properties by simulations, including an 
analysis of the modeling consequences. The concluding section summarizes the results and 
indicates future research directions. 

 
PRINCIPLES, REQUIREMENTS AND PROPERTIES 
In this section we discuss the principles underlying the Fastlane traffic flow model 

and the qualitative requirements that should be satisfied by MC-KW models such as Fastlane. 
We also shortly discuss the expected properties of the model that can be observed in 
simulations. 

 
Principles 
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All continuum models, including MC-KW models, are based on the following two 
principles: 

1. Vehicles are conserved. 
2. Traffic can be modeled as a continuum flow. 

Principle 1 is trivial, in the sense that conservation of vehicles represents the only physical 
certainty in traffic flow modeling. Based on Principle 2 only aggregated variables of the 
traffic flow are considered, such as average density ρ (number of vehicles per unit length), 
average flow q (number of vehicles per unit time) and average vehicle velocity v (m/s or 
km/h). Principle 2 distinguishes continuum models from microscopic models in which the 
behavior of individual vehicles is modeled and individual vehicles are traced. 

All KW models are derived from the LWR model (16, 17) and are additionally based 
on the following principles: 

3. Traffic flow can be modeled as a single-pipe flow. 
4. Traffic is always in equilibrium state. 
5. Traffic is always in either of two regimes: free flow or congestion. 

Principle 3 states that although in reality there may be multiple lanes and vehicles may 
overtake each other, this is not modeled explicitly. The consequence of Principle 4 is that 
drivers adapt their speed instantaneously to new traffic conditions (e.g. a change in density). 
This principle is relaxed in higher-order models. Principle 5 distinguishes two regimes. In free 
flow, if the density increases the flow also increases. In congestion, if the density increases 
the flow decreases. The principle is relaxed in the three-regime MC model (14). 

An other principle of mixed-class KW models is that all vehicles behave identically. 
This principle is relaxed in MC models, and replaced by the following: 

6. Vehicles can be categorized into an arbitrary number of classes, and all vehicles in 
one class behave identically. 
The direct consequence of Principle 6 is that MC models can incorporate different 
fundamental relations for different vehicle classes. Other differences, such as vehicle length, 
driving style or destination may also be taken into account. 

 
Model Requirements 
We introduce qualitative requirements that should be satisfied by Fastlane or any 

other MC-KW model. Only after formulating the model based on the principles, it can be 
checked whether the model indeed satisfies the requirements. The requirements consist of 
three groups, related to the model formulation, the fundamental relation and the model 
dynamics. 

The first two requirements are related to the formulation of the model and the 
uniqueness of the solution: 

1. Given ‘permissible’ class-specific densities, (class-specific) velocities and flows 
are defined uniquely. 

2. The model has a unique solution that maximizes flow. 
In Requirement 1 permissible class specific densities are nonnegative and the total density is 
not above a certain threshold (i.e. jam density, see Principle 6). Requirement 2 refers to the 
entropy condition (18). The entropy condition states that there is only one solution to an 
initial value problem and that this solution maximizes flow. 

We propose the following requirements on the shape of the fundamental relation. 
They are partly similar to the requirements put forward in (19): 

3. Below a certain threshold density (critical density) the velocities of each class are 
allowed to differ. 

4. Below critical density the velocities of relatively fast classes are allowed to 
decrease with increasing density. 

5. At and above critical density the velocity of each class is equal.  
6. If the density reaches a certain threshold (jam density), vehicle velocity is zero. 
7. If the density of only one class increases, while all other class specific densities 

remain constant, vehicle velocities do not increase. 
Requirements 3–5 are based on observations. For example, (20) describes observation of 
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decreasing car velocity in free flow. The author also shows that at low densities, velocities of 
cars and trucks are unequal and that they are equal at high densities. Requirement 5 is also in 
line with observed low velocity variance at high densities (21). Requirements 6 and 7 may 
seem trivial. However, not all fundamental relations satisfy Requirement 6. We show that 
Fastlane only satisfies Requirement 7 if the parameters are chosen appropriately. 

Finally, two requirements are related to the dynamics of the model. They put bounds 
on the velocity of characteristics carrying information or disturbances. A characteristic is a 
curve in the time-space domain at which a certain variable, such as a class specific density, is 
constant. 

8. Characteristics have finite velocity. 
9. Characteristics do not have a larger velocity than vehicles. 

Requirement 8 can be interpreted as follows. After a disturbance, such as sudden braking, 
surrounding vehicles will react. However, it takes some time to react and therefore, not all 
vehicles react immediately. Requirement 9 implies that the model is anisotropic. An 
interpretation of this is that vehicles only react to their leader and not to their follower. 

Especially the anisotropy requirement has received much attention in the last years. 
Daganzo (22) initiated an ongoing debate on whether or not certain traffic flow models are 
anisotropic and whether it is necessary that they are. The main argument to impose this 
requirement on traffic flow models is that traffic is believed to be anisotropic. Furthermore, if 
the model is anisotropic, more efficient computational methods can be applied (23, 24). 

 
Properties 
We have already discussed that MC models reproduce scattered density-flow plots. A 

second property of MC models is related to a characteristic velocity in congestion: the 
congestion wave velocity. This is the velocity with which the downstream front of a 
congested area propagates. (25) suggests, based on empirical evidence, that the congestion 
wave velocity depends on the traffic composition. Figure 1 illustrates the theory behind this 
hypothesis. It shows why the congestion wave velocity depends on the vehicle length and 
reaction time. We expect that the congestion wave velocity is larger if the share of long 
vehicles (e.g. trucks) is higher. Thereby neglecting the possible influence of anticipation on 
multiple vehicles and the influence of headway. We test the hypothesis using simulation 
studies with several MC-KW models. 

 
MODEL SPECIFICATION 
In this section we introduce the generalized MC-KW traffic flow model Fastlane and 

we show that it satisfies all requirements. Fastlane is based on the principles from the 
previous section. The model consists of three components which will be discussed in the 
following order: the conservation of vehicles equation, the fundamental diagram and the link 
between those two equations using the concepts of effective density and passenger car 
equivalent (pce) value. A fourth component, namely a node model, can be added to the model 
to apply it to networks. We only discuss the model for long homogeneous roads, (9, 26) show 
how Fastlane can be extended to networks. 

 
Conservation of Vehicles 
Principle 1 states that vehicles are conserved. Together with the continuum 

assumption (Principle 2), this leads to the multi-class conservation of vehicles equation: 

with ρu the class specific density of class u [veh/m] and U the set of all classes. x and t are the 
the space and time coordinates, respectively. For readability we omit (x, t) from here on. The 
class specific flow [veh/s] is defined as: 
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FIGURE 1 Explanation of influence of truck share on congestion wave velocities by two
extreme cases: only trucks (top) and only cars (bottom), all driving from left to right. Down-
stream of a high density region a vehicle accelerates. The vehicles only react on their leader
and accelerate some reaction time ⌧ after the leader accelerates. The velocity with which
this ‘acceleration information’ travels upstream is the congestion wave velocity. If there are
only trucks, it takes little time (3⌧ ) to reach the upstream end of the graphic. However, when
there are only passenger cars it takes more time (7⌧ ), which implies a lower congestion wave
velocity.

Properties
We have already discussed that MC models reproduce scattered density-flow plots. A second
property of MC models is related to a characteristic velocity in congestion: the congestion wave
velocity. This is the velocity with which the downstream front of a congested area propagates. (35)
suggests, based on empirical evidence, that the congestion wave velocity depends on the traffic
composition. Figure 1 illustrates the theory behind this hypothesis. It shows why the congestion
wave velocity depends on the vehicle length and reaction time. We expect that the congestion
wave velocity is larger if the share of long vehicles (e.g. trucks) is higher. Thereby neglecting the
possible influence of anticipation on multiple vehicles and the influence of headway. We test the
hypothesis using simulation studies with several MC-KW models.

MODEL SPECIFICATION
In this section we introduce the generalized MC-KW traffic flow model Fastlane and we show that
it satisfies all requirements. Fastlane is based on the principles from the previous section. The
model consists of three components which will be discussed in the following order: the conserva-
tion of vehicles equation, the fundamental diagram and the link between those two equations using
the concepts of effective density and passenger car equivalent (pce) value. A fourth component,
namely a node model, can be added to the model to apply it to networks. We only discuss the
model for long homogeneous roads, (14, 36) show how Fastlane can be extended to networks.

Conservation of Vehicles
Principle 1 states that vehicles are conserved. Together with the continuum assumption (Principle
2), this leads to the multi-class conservation of vehicles equation:

@⇢u

@t

(x, t) +
@qu

@x

(x, t) = 0, 8u 2 U (1)

with ⇢u the class specific density of class u [veh/m] and U the set of all classes. x and t are the the
space and time coordinates, respectively. For readability we omit (x, t) from here on. The class
specific flow [veh/s] is defined as:

qu = ⇢uvu (2)
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with vu the class specific vehicle velocity [m/s], which is uniquely defined by the 
fundamental relation (Principle 4). Since it is assumed that traffic can be modeled as a single 
pipe flow (Principle 3), lanes do not need to be distinguished and flows between lanes are not 
included explicitly. 

 
Fundamental Relation 
Principle 6 leads to different fundamental relations for each class. The Smulders 

fundamental relation (27) is extended to include multiple vehicle classes, see Figure 2. We 
have chosen this fundamental relation because it is relatively generic: depending on the 
parameter choice, it reduces to the Greenshields (parabolic) fundamental relation (28) or the 
Daganzo (triangular) fundamental relation (29). The Smulders fundamental relation consists 
of two branches: free flow and congestion (Principle 5). For each class u the velocity is 
defined by: 

with ρ the ‘effective’ density, which can be thought of as a total density including all classes 
and will be defined in more detail later. ρjam is the jam density, ρcrit the critical density, vcrit 

the critical velocity and vu,max the maximum velocity of class u.  is the 
congestion wave parameter. We note that ρjam, ρcrit, vcrit, vu,max and w are parameters and 
do not depend on the traffic state. 

According to (3), at jam density the velocity is zero and thus the fundamental relation 
satisfies Requirement 6. The other fundamental relation requirements (Requirement 3–5) are 
satisfied if its parameters are chosen correctly: 

To understand this, we first discuss the shape of the fundamental relation. The multi-class 
Smulders density-flow fundamental relation (Figure 2(b)) is a combination of a parabola (free 
flow) and a straight line (congestion). In free flow, the flow increases if the density increases, 
in congestion the flow decreases. Both branches intersect at critical density ρcrit and at this 
density the flow is maximum. However, as Figure 3 shows, this only holds if the fundamental 
relation parameters are chosen such that vu,max ≤ 2vcrit, ∀u. Without loss of generality, it is 
assumed that class 1 is the fastest class. 

Theorem 1. If condition (4) holds, then the following holds: 
 1. Class specific velocities may be unequal if effective density is below critical (0 ≤ ρ 

< ρcrit).  
2. Velocities are equal if effective density is above or at critical (ρcrit ≤ ρ ≤ ρjam). 

3. Velocities may be decreasing ( ) if effective density is below critical (0 ≤ ρ 
< ρcrit). 

Proof. It can readily be concluded from the fundamental relation (3) that in free flow 
the velocities of two classes are different if their maximum velocity vu,max is different 
(Requirement 3 and first part of the theorem). Furthermore, in congestion the velocity of all 
classes is equal (Requirement 5 and second part of the theorem) and since vcrit ≤ vu,max the 
class specific velocity in free flow strictly decreases if vcrit < vu,max (Requirement 4 and 
third part of the theorem).                                            

From the fundamental relation (3) we can furthermore conclude that the velocity does 
not increase with increasing effective density. Indeed, in free flow 

Van Wageningen-Kessels, Van Lint, Hoogendoorn, Vuik 7

0 ⇢

crit

⇢

jam

v

crit

vtr,max

v

car,max

effective density

ve
lo

ci
ty

(a) Density-velocity fundamental diagram.

0 ⇢

crit

⇢

jam

qcap

effective density

flo
w

(b) Density-flow fundamental diagram.

FIGURE 2 Example of a two-class fundamental diagram. The solid line denotes the ve-
locity or flow of cars, the broken line denotes the velocity or flow of trucks, as a function of
the effective density.
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� 0. It may seem obvious that this holds, but below we show that some
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occupancy. The effective density ⇢ is a weighted summation of all class specific densities:

⇢ =
X

u2U

⌘u(⇢)⇢u (5)

with ⌘u(⇢) the pce function. A high pce-value ⌘u indicates that each vehicle in class u (e.g. trucks)
contributes a lot to the effective density. Consequently, a small increase in the number of vehicles
of class u leads to a large increase in the effective density and a large decrease in the vehicle
velocity. We note that this definition of the effective density (5) implies that the effective density
is not conserved over time and space. In other words: the continuity equation (1) holds for each
class separately, but there is no equivalent for the effective density. The pce-value in (5) depends
on the actual traffic state and is based on the relative space occupancy:

⌘u =
!u

!

1

(6)

with !u the space occupancy of class u and class u = 1 the reference class, usually passenger cars.
Pce-values and space occupancy are illustrated in Figure 4. The space occupancy is the road length
(in meters) a vehicle needs, this is the vehicle length, plus some minimum headway:

!u = Lu + Tuvu (7)

with Tu a parameter that may be interpreted as the minimum time headway. Lu is the gross vehicle
length of class u, that is: the length of the vehicle plus the distance between 2 vehicles of this class
at standstill. Therefore, and since class 1 is the reference class, L

1

= 1/⇢
jam

. We note that the
space occupancy is equal to the safe following distance in Pipes’ car following model (40). Figure
4 illustrates that at low densities and high velocities, the minimum headways play the largest role
in the space occupancy. They are similar for all types of vehicles and therefore pce-values are
relatively low. At high densities and low velocities, the influence of the (physical) vehicle length
determines largely how much space is occupied by a vehicle. Since vehicle lengths can differ
greatly among classes, pce-values differ as well.

Finally, the condition on the parameters of the space occupancy function is:

T

1

 L

1

w

 Lu

w

(8)

We show later that if the condition holds, the final requirement on the fundamental relation (Re-
quirement 7) holds, as well as the model dynamics requirements (Requirement 8 and 9). However,
we first interpret the condition (8), see also Figure 5. The first inequality puts constraints on the
minimum time headway of class 1 (T

1

) and ensures that the space occupancy takes a realistic value.

Theorem 2. Consider any congested traffic state (i.e. ⇢
crit

 ⇢  ⇢

jam

) with only vehicles of class
1 (i.e. ⇢u = 0 for all u 6= 1). If the first inequality of (8) holds, then the space occupancy is not
larger than the spacing !

1

 s = 1/⇢.

Proof. There are only vehicles of class 1 and thus the spacing is s = 1/⇢ = 1/⇢
1

. Because
the velocity is decreasing in congestion

⇣
dv

1

d⇢  0
⌘

, also the space occupancy (7) is decreasing in
congestion:

d!
1

d⇢
= T

1

dv
1

d⇢
 0 (9)
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with Tu a parameter that may be interpreted as the minimum time headway. Lu is the gross vehicle
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Theorem 2. Consider any congested traffic state (i.e. ρcrit ≤ ρ ≤ ρjam) with only 

vehicles of class 1 (i.e. ). If the first inequality of (8) holds, then the 
space occupancy is not larger than the spacing ω1 ≤ s = 1/ρ. 

Proof. There are only vehicles of class 1 and thus the spacing is s = 1/ρ = 1/ρ1. 
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Theorem 2 implies that, in congestion with only vehicles of class 1, no part of the 

road can be occupied by two vehicles at the same time. That is: their space occupancies do 
not overlap. 

The second inequality of (8) puts constraints on the gross vehicle lengths Lu and 
ensures that the pce-values are nondecreasing. 
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Theorem 3 implies that, if traffic is more congested, trucks (which are longer and 
have a larger minimum time headway than passenger cars) have a higher pce-value than in 
free flow. This reflects that at high densities they take relatively more space than in free flow, 
see Figure 4. 

 
Reformulation of the Effective Density Function 
The Fastlane model equations in the previous subsections describing the velocity (3), 

the effective density (5), the pce-value (6) and the space occupancy (7) form a set of implicit 
functions: 
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with ⌘u(⇢) the pce function. A high pce-value ⌘u indicates that each vehicle in class u (e.g. trucks)
contributes a lot to the effective density. Consequently, a small increase in the number of vehicles
of class u leads to a large increase in the effective density and a large decrease in the vehicle
velocity. We note that this definition of the effective density (5) implies that the effective density
is not conserved over time and space. In other words: the continuity equation (1) holds for each
class separately, but there is no equivalent for the effective density. The pce-value in (5) depends
on the actual traffic state and is based on the relative space occupancy:
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with !u the space occupancy of class u and class u = 1 the reference class, usually passenger cars.
Pce-values and space occupancy are illustrated in Figure 4. The space occupancy is the road length
(in meters) a vehicle needs, this is the vehicle length, plus some minimum headway:

!u = Lu + Tuvu (7)

with Tu a parameter that may be interpreted as the minimum time headway. Lu is the gross vehicle
length of class u, that is: the length of the vehicle plus the distance between 2 vehicles of this class
at standstill. Therefore, and since class 1 is the reference class, L
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= 1/⇢
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. We note that the
space occupancy is equal to the safe following distance in Pipes’ car following model (40). Figure
4 illustrates that at low densities and high velocities, the minimum headways play the largest role
in the space occupancy. They are similar for all types of vehicles and therefore pce-values are
relatively low. At high densities and low velocities, the influence of the (physical) vehicle length
determines largely how much space is occupied by a vehicle. Since vehicle lengths can differ
greatly among classes, pce-values differ as well.

Finally, the condition on the parameters of the space occupancy function is:
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We show later that if the condition holds, the final requirement on the fundamental relation (Re-
quirement 7) holds, as well as the model dynamics requirements (Requirement 8 and 9). However,
we first interpret the condition (8), see also Figure 5. The first inequality puts constraints on the
minimum time headway of class 1 (T

1

) and ensures that the space occupancy takes a realistic value.
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) with only vehicles of class
1 (i.e. ⇢u = 0 for all u 6= 1). If the first inequality of (8) holds, then the space occupancy is not
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Finally, the condition on the parameters of the space occupancy function is:

T

1

 L

1

w

 Lu

w

(8)

We show later that if the condition holds, the final requirement on the fundamental relation (Re-
quirement 7) holds, as well as the model dynamics requirements (Requirement 8 and 9). However,
we first interpret the condition (8), see also Figure 5. The first inequality puts constraints on the
minimum time headway of class 1 (T
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) and ensures that the space occupancy takes a realistic value.
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) with only vehicles of class
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) and ensures that the space occupancy takes a realistic value.

Theorem 2. Consider any congested traffic state (i.e. ⇢
crit

 ⇢  ⇢

jam

) with only vehicles of class
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Therefore, it suffices to show that !
1

 s at critical density ⇢

crit

. We substitute ⇢
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= 1/L
1

and
the fundamental relation (3) into the space occupancy function (7). Rewriting the result gives:

!

1

= L

1

+ T

1

w

✓
1

⇢L

1

� 1

◆
=

1

⇢


(L

1

� T

1

w)⇢+
T

1

w

L

1

�
(10)
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Theorem 2 implies that, in congestion with only vehicles of class 1, no part of the road can
be occupied by two vehicles at the same time. That is: their space occupancies do not overlap.

The second inequality of (8) puts constraints on the gross vehicle lengths Lu and ensures
that the pce-values are nondecreasing.

Theorem 3. Consider any congested traffic state (i.e. ⇢
crit

 ⇢  ⇢

jam

) with only vehicles of class
1 (i.e. ⇢u = 0 for all u 6= 1). If the second inequality of (8) holds for a certain class u, then the
pce-value of class u is nondecreasing: d⌘u/d⇢ � 0.

Proof. There are only vehicles of class 1 and thus the spacing is s = 1/⇢ = 1/⇢
1

. We apply the
pce function (6) and the space occupancy function (7) and use that vu = v

1

and dvu/d⇢ = dv
1

/d⇢
to compute the density derivative of the pce vale ⌘u:
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We have already shown that the velocity is decreasing (dv1
d⇢  0). Therefore, if and only if, the

second inequality of (8) holds, the term between square brackets in (12) is nonpositive and the
pce-value is nondecreasing.

Theorem 3 implies that, if traffic is more congested, trucks (which are longer and have a
larger minimum time headway than passenger cars) have a higher pce-value than in free flow. This
reflects that at high densities they take relatively more space than in free flow, see Figure 4.

Reformulation of the Effective Density Function
The Fastlane model equations in the previous subsections describing the velocity (3), the effective
density (5), the pce-value (6) and the space occupancy (7) form a set of implicit functions, see
Figure 6. In fact, by combining the equations, a quadratic equation with two solutions is found.
One of them leads to unrealistic, not meaningful solutions, for example with negative velocities.
The correct solution is selected such that the effective density becomes a uniquely defined function
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reflects that at high densities they take relatively more space than in free flow, see Figure 4.
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Theorem 2 implies that, in congestion with only vehicles of class 1, no part of the road can
be occupied by two vehicles at the same time. That is: their space occupancies do not overlap.
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Theorem 3. Consider any congested traffic state (i.e. ⇢
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) with only vehicles of class
1 (i.e. ⇢u = 0 for all u 6= 1). If the second inequality of (8) holds for a certain class u, then the
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We have already shown that the velocity is decreasing (dv1
d⇢  0). Therefore, if and only if, the

second inequality of (8) holds, the term between square brackets in (12) is nonpositive and the
pce-value is nondecreasing.

Theorem 3 implies that, if traffic is more congested, trucks (which are longer and have a
larger minimum time headway than passenger cars) have a higher pce-value than in free flow. This
reflects that at high densities they take relatively more space than in free flow, see Figure 4.

Reformulation of the Effective Density Function
The Fastlane model equations in the previous subsections describing the velocity (3), the effective
density (5), the pce-value (6) and the space occupancy (7) form a set of implicit functions, see
Figure 6. In fact, by combining the equations, a quadratic equation with two solutions is found.
One of them leads to unrealistic, not meaningful solutions, for example with negative velocities.
The correct solution is selected such that the effective density becomes a uniquely defined function
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By combining the equations, a quadratic equation with two solutions is found. One of them 
leads to unrealistic, not meaningful solutions, for example with negative velocities. The 
correct solution is selected such that the effective density becomes a uniquely defined 
function and has a meaningful value:  

 

With this new effective density function (14), only the class specific densities are 
needed to calculate the effective density. The velocities, space occupancies and pce-values 
are incorporated, but their values are not needed anymore. This way, all variables in the 
model are defined uniquely (Requirement 1). The derivation of the new effective density 
function (14) from (3), (5), (6) and (7) is not straightforward (31). However, it can be checked 
relatively easy that they are equivalent by substituting (14) into the fundamental relation (3), 
substituting the obtained velocity in the space occupancy function (7) and substituting the 
obtained space occupancy in the pce-function (6). Subsequently, substituting the pce-value 
into the old effective density function (5), yields the effective density ρ at the right hand side 
of (5). 

With the new formulation of the effective density (14), it is possible to show that the 
velocity is a nonincreasing function of the class specific densities (Requirement 7). 

Theorem 4. If both condition (4) and (8) hold, then for all classes i and j 

 

We have already shown that  for all classes u. It remains to show that 

 for all classes u, because then . The full proof of Theorem 4 can 
be found in (31). 

 
Lagrangian Formulation of the Model 
We reformulate the model in the Lagrangian coordinate system. In this coordinate 

system the coordinates move with the vehicles of class 1, instead of being fixed in space such 
as in the traditional Eulerian coordinate system. The reformulation has two main advantages: 
1. it becomes easier to assess the model dynamics requirements, and 2. simulations can be 
done more efficiently, as described in more detail in (24).  
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FIGURE 6 Schematic view of the reformulation of the effective density. The implicit
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is selected. The reformulated function expresses the effective density ⇢ as a function of only
the class specific densities ⇢u.
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With this new effective density function (13), only the class specific densities are needed to calcu-
late the effective density. The velocities, space occupancies and pce-values are incorporated, but
their values are not needed anymore. This way, all variables in the model are defined uniquely
(Requirement 1). The derivation of the new effective density function (13) from (3), (5), (6) and
(7) is not straightforward (41). However, it can be checked relatively easy that they are equiva-
lent by substituting (13) into the fundamental relation (3), substituting the obtained velocity in the
space occupancy function (7) and substituting the obtained space occupancy in the pce function
(6). Subsequently, substituting the pce-value into the old effective density function (5), yields the
effective density ⇢ at the right hand side of (5).

With the new formulation of the effective density (13), it is possible to show that the veloc-
ity is a nonincreasing function of the class specific densities (Requirement 7).

Theorem 4. If both condition (4) and (8) hold, then for all classes i and j
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Vehicles are numbered in opposite driving direction. The first vehicle gets number n 
= 1, it follower n = 2, etc. The main variables of the model are class specific spacing su = 1/ρu 
and velocity vu. The Lagrangian fundamental relation expresses the velocity as a function of 
the class specific spacings but can be rewritten in Eulerian formulation: 

The conservation equation (1) is reformulated in Lagrangian coordinates: 

To assess the model dynamics requirements, the model is subsequently rewritten in matrix 
vector notation:  

with the vector of class specific spacings  and Jacobian matrix: 

and  the Lagrangian fundamental relation. A detailed derivation of this 
formulation can be found in (42). 

 
Model Dynamics Requirements 
We show that the Fastlane model satisfies the model dynamics requirements on finite 

characteristic velocity (Requirement 8) and anisotropy (Requirement 9). Theory of partial 
differential equations tells us that the characteristic velocities in the Lagrangian coordinate 
system are equal to the eigenvalues of the Jacobian (19). The model is anisotropic if the 
characteristics are not faster than the vehicles of the fastest class. In the Lagrangian 
coordinate system, the coordinates move with the vehicles of the fastest class. Therefore, the 
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states that the entropy solution should be selected. It depends on the numerical method 
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numerical method that maximizes the flow in pce-units per time unit. This yields an unique 
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We provide simulation results to show some of the properties of Fastlane. We study 

the differences in scatter reproduced in the fundamental diagram between Fastlane and 

models with constant pce-values and without pce-values ( ). Furthermore, we 
study the impact of traffic composition on characteristic velocity in congestion in Fastlane 
and other models. 

Before continuing with the simulation setup and its results we shortly discuss the 
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Lagrangian Formulation of the Model
We reformulate the model in the Lagrangian coordinate system. In this coordinate system the co-
ordinates move with the vehicles of class 1, instead of being fixed in space such as in the traditional
Eulerian coordinate system. The reformulation has two main advantages: 1. it becomes easier to
assess the model dynamics requirements, and 2. simulations can be done more efficiently (34).
More details on the reformulation can be found in (34). Vehicles are numbered in opposite driving
direction. The first vehicle gets number n = 1, it follower n = 2, etc. The main variables of the
model are class specific spacing su = 1/⇢u and velocity vu. The Lagrangian fundamental relation
expresses the velocity as a function of the class specific spacings but can be rewritten in Eulerian
formulation:

v

⇤
u = v

⇤
u(s1, . . . , sU) = v

⇤
u(1/⇢1, . . . , 1/⇢U) = vu(⇢1, . . . , ⇢U) = vu(⇢(⇢1, . . . , ⇢U)) (15)

The conservation equation (1) is reformulated in Lagrangian coordinates:
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To assess the model dynamics requirements, the model is subsequently rewritten in matrix
vector notation:
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and v

⇤
i (s) = v

⇤
i (1/⇢) the Lagrangian fundamental relation. A detailed derivation of this formula-

tion can be found in (42).

Model Dynamics Requirements
We show that the Fastlane model satisfies the model dynamics requirements on finite characteristic
velocity (Requirement 8) and anisotropy (Requirement 9). Theory of partial differential equations
tells us that the characteristic velocities in the Lagrangian coordinate system are equal to the eigen-
values of the Jacobian (18). The model is anisotropic if the characteristics are not faster than the
vehicles of the fastest class. In the Lagrangian coordinate system, the coordinates move with the
vehicles of the fastest class. Therefore, the model is anisotropic if the eigenvalues of the Jacobian
(18) are nonnegative. The main challenge here is that the eigenvalues can not be computed di-
rectly, at least not for the generic case with U > 4. However, some theorems from linear algebra
can be applied to analyze whether the eigenvalues are finite and the sign of the eigenvalues. The
procedure is explained in more detail in (41, 42). It is shown that the Fastlane model satisfies the
Requirements 8 and 9 if the class specific velocity is a nonincreasing function of the class specific
densities (Requirement 7). We have already shown (Theorem 4) that this is indeed the case if
Condition (4) and (8) hold.
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Requirements 8 and 9 if the class specific velocity is a nonincreasing function of the class specific
densities (Requirement 7). We have already shown (Theorem 4) that this is indeed the case if
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Finally, we conclude that if conditions (4) and (8) hold, then the Fastlane model satisfies all
requirements, except for Requirement 2 which is not discussed yet. Requirement 2 states that the
entropy solution should be selected. It depends on the numerical method whether this requirement
is satisfied. For the simulations in the next section, we apply a numerical method that maximizes
the flow in pce units per time unit. This yields an unique entropy solution and thus the requirement
is satisfied.

SIMULATIONS AND RESULTS
We provide simulation results to show some of the properties of Fastlane. We study the differ-
ences in scatter reproduced in the fundamental diagram between Fastlane and models with con-
stant pce-values and without pce-values (⇢ =

P
u ⇢u). Furthermore, we study the impact of traffic

composition on characteristic velocity in congestion in Fastlane and other models.
Before continuing with the simulation setup and its results we shortly discuss the discretiza-

tion of the Fastlane model equations.

Discretization
To apply a macroscopic traffic flow model in a simulation tool, its continuous equations have to be
discretized and solved using numerical methods. Alternatively, one could shock wave and rarefac-
tion wave velocities and calculate the exact solution. However, that would be rather complicated,
if at all possible, with the proposed model and many vehicle classes. For discretization, in the
original introduction of the Fastlane model (14) the mixed class minimum supply demand method
(26, 39) is adapted to include multiple classes (41). The mixed class Godunov method in La-
grangian coordinates (33) has been adapted to include multiple vehicle classes and is shown to
be more efficient (34). In simulations time is divided into K time steps of size �t. Furthermore,
vehicles are divided into groups of �n vehicles. In each time step, the position of each vehicle
group is calculated. In the simulations in this section, the parameters of the numerical method are
time step size of �t = 1 s and vehicle group size of �n = 0.833 vehicles.

Simulation Setup
We apply a simple test case consisting of an initial value problem on a long homogeneous road
with a queue of length L = 2000 m:

⇢(x, 0) =

8
><

>:

0 for x > 0

⇢

jam

for �L  x  0
1

2

⇢

crit

for x < �L

(19)

There are 2 vehicle classes: passenger cars and trucks. The initial truck share varies from 0% to
50%. The queue travels backward, its length decreases and after some time (about 1100 s), it is
dissolved. This is due to the expansion wave at the front of the queue and a backward traveling
shock wave at its tail. In the exact solution, within the queue and in the fan the velocities of both
classes are equal. In the rest of the domain the densities are below critical and thus the velocities are
unequal. We study the profile of the queue, i.e. the effective density and the class specific densities.
Moreover, we study how the profile depends on the pce-value or function and the truck share.
Therefore, we run the simulation with the Fastlane pce function (6), a large constant pce-value
(⌘

2

= L
2

L
1

), a small constant pce-value (⌘
2

= L
2

2L
1

) and no class specific pce-value (⌘
2

= ⌘

1

= 1).

(16) 

(17) 

(18) 

(19) 
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discretization of the Fastlane model equations. 
 
Discretization 
To apply a macroscopic traffic flow model in a simulation tool, its continuous 

equations are discretized and solved using numerical methods. For discretization, in the 
original introduction of the Fastlane model (9) the mixed class minimum supply demand 
method (18, 29) is adapted to include multiple classes (31). The mixed class Godunov method 
in Lagrangian coordinates (23) has been adapted to include multiple vehicle classes and is 
shown to be more efficient (24). In simulations time is divided into K time steps of size ∆t. 
Furthermore, vehicles are divided into groups of ∆n vehicles. In each time step, the position 
of each vehicle group is calculated. In the simulations in this section, the parameters of the 
numerical method are time step size of ∆t = 1 s and vehicle group size of ∆n = 0.833 vehicles. 

 
Simulation Setup 
We apply a simple test case consisting of an initial value problem on a long 

homogeneous road with a queue of length L = 2000 m: 

 
There are 2 vehicle classes: passenger cars and trucks. The initial truck share varies 

from 0% to 50%. The queue travels backward, its length decreases and after some time (about 
1100 s), it is dissolved. This is due to the expansion wave at the front of the queue and a 
backward traveling shock wave at its tail. In the exact solution, within the queue and in the 
fan the velocities of both classes are equal. In the rest of the domain the densities are below 
critical and thus the velocities are unequal. We study the profile of the queue, i.e. the effective 
density and the class specific densities. Moreover, we study how the profile depends on the 
pce-value or function and the truck share. Therefore, we run the simulation with the Fastlane 

pce-function (6), a large constant pce-value , a small constant pce-value 

 and no class specific pce-value . This corresponds to models with 
no pce-value (8, 12) and to models with a constant pce-value (10, 11, 15), though these model 
mostly use different fundamental relations. All other parameters are kept constant, see Table 1. 

 
Simulation Results 
The results of the simulations are shown in Figures 6–8. Figure 6 shows the evolution 

of the effective densities computed with Fastlane and with initially 20% trucks. Simulation 
results with constant pce-values (not shown) look very similar to this one. Therefore, we 
compare the results in a different way. Figure 7 shows cross sections at time t = 600 s. The 
effective density and class specific densities are shown. The results indeed depend on the pce-
function or value. The class specific densities in the queue are equal to those with η2 = L2/L1. 
This is because in the queue, in Fastlane the same pce-values hold. However, downstream of 
the queue the pce-values of Fastlane are smaller and therefore its class specific densities are 
larger. Moreover, Figure 7 shows that the queue travels upstream faster in the Fastlane 
simulation than with constant pce-values. This implies a higher characteristic velocity, which 
is studied further in Figure 8. It shows all the density-flow pairs from all simulations. Each 
subfigure shows the results for one pce-function or value. The fundamental diagrams all show 
some scatter. With no pce-values (η2 = η1 = 1), there is only scatter in the free flow branch of 
the fundamental diagram. With constant pce-values the scatter in congestion is independent of 
the actual density. As can be expected, the influence of the truck share is low with low pce-
values and it is high with high pce-values. The fundamental diagram reproduced by Fastlane 
combines both: it shows little scatter (little dependence on truck share) at low densities and 
the scatter increases gradually for higher densities. This fundamental diagram furthermore 
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Finally, we conclude that if conditions (4) and (8) hold, then the Fastlane model satisfies all
requirements, except for Requirement 2 which is not discussed yet. Requirement 2 states that the
entropy solution should be selected. It depends on the numerical method whether this requirement
is satisfied. For the simulations in the next section, we apply a numerical method that maximizes
the flow in pce units per time unit. This yields an unique entropy solution and thus the requirement
is satisfied.

SIMULATIONS AND RESULTS
We provide simulation results to show some of the properties of Fastlane. We study the differ-
ences in scatter reproduced in the fundamental diagram between Fastlane and models with con-
stant pce-values and without pce-values (⇢ =

P
u ⇢u). Furthermore, we study the impact of traffic

composition on characteristic velocity in congestion in Fastlane and other models.
Before continuing with the simulation setup and its results we shortly discuss the discretiza-

tion of the Fastlane model equations.

Discretization
To apply a macroscopic traffic flow model in a simulation tool, its continuous equations have to be
discretized and solved using numerical methods. Alternatively, one could shock wave and rarefac-
tion wave velocities and calculate the exact solution. However, that would be rather complicated,
if at all possible, with the proposed model and many vehicle classes. For discretization, in the
original introduction of the Fastlane model (14) the mixed class minimum supply demand method
(26, 39) is adapted to include multiple classes (41). The mixed class Godunov method in La-
grangian coordinates (33) has been adapted to include multiple vehicle classes and is shown to
be more efficient (34). In simulations time is divided into K time steps of size �t. Furthermore,
vehicles are divided into groups of �n vehicles. In each time step, the position of each vehicle
group is calculated. In the simulations in this section, the parameters of the numerical method are
time step size of �t = 1 s and vehicle group size of �n = 0.833 vehicles.

Simulation Setup
We apply a simple test case consisting of an initial value problem on a long homogeneous road
with a queue of length L = 2000 m:

⇢(x, 0) =

8
><

>:

0 for x > 0
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for �L  x  0
1

2

⇢

crit

for x < �L

(19)

There are 2 vehicle classes: passenger cars and trucks. The initial truck share varies from 0% to
50%. The queue travels backward, its length decreases and after some time (about 1100 s), it is
dissolved. This is due to the expansion wave at the front of the queue and a backward traveling
shock wave at its tail. In the exact solution, within the queue and in the fan the velocities of both
classes are equal. In the rest of the domain the densities are below critical and thus the velocities are
unequal. We study the profile of the queue, i.e. the effective density and the class specific densities.
Moreover, we study how the profile depends on the pce-value or function and the truck share.
Therefore, we run the simulation with the Fastlane pce function (6), a large constant pce-value
(⌘

2

= L
2

L
1

), a small constant pce-value (⌘
2

= L
2

2L
1

) and no class specific pce-value (⌘
2

= ⌘

1

= 1).
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group is calculated. In the simulations in this section, the parameters of the numerical method are
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There are 2 vehicle classes: passenger cars and trucks. The initial truck share varies from 0% to
50%. The queue travels backward, its length decreases and after some time (about 1100 s), it is
dissolved. This is due to the expansion wave at the front of the queue and a backward traveling
shock wave at its tail. In the exact solution, within the queue and in the fan the velocities of both
classes are equal. In the rest of the domain the densities are below critical and thus the velocities are
unequal. We study the profile of the queue, i.e. the effective density and the class specific densities.
Moreover, we study how the profile depends on the pce-value or function and the truck share.
Therefore, we run the simulation with the Fastlane pce function (6), a large constant pce-value
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Finally, we conclude that if conditions (4) and (8) hold, then the Fastlane model satisfies all
requirements, except for Requirement 2 which is not discussed yet. Requirement 2 states that the
entropy solution should be selected. It depends on the numerical method whether this requirement
is satisfied. For the simulations in the next section, we apply a numerical method that maximizes
the flow in pce units per time unit. This yields an unique entropy solution and thus the requirement
is satisfied.

SIMULATIONS AND RESULTS
We provide simulation results to show some of the properties of Fastlane. We study the differ-
ences in scatter reproduced in the fundamental diagram between Fastlane and models with con-
stant pce-values and without pce-values (⇢ =

P
u ⇢u). Furthermore, we study the impact of traffic

composition on characteristic velocity in congestion in Fastlane and other models.
Before continuing with the simulation setup and its results we shortly discuss the discretiza-

tion of the Fastlane model equations.

Discretization
To apply a macroscopic traffic flow model in a simulation tool, its continuous equations have to be
discretized and solved using numerical methods. Alternatively, one could shock wave and rarefac-
tion wave velocities and calculate the exact solution. However, that would be rather complicated,
if at all possible, with the proposed model and many vehicle classes. For discretization, in the
original introduction of the Fastlane model (14) the mixed class minimum supply demand method
(26, 39) is adapted to include multiple classes (41). The mixed class Godunov method in La-
grangian coordinates (33) has been adapted to include multiple vehicle classes and is shown to
be more efficient (34). In simulations time is divided into K time steps of size �t. Furthermore,
vehicles are divided into groups of �n vehicles. In each time step, the position of each vehicle
group is calculated. In the simulations in this section, the parameters of the numerical method are
time step size of �t = 1 s and vehicle group size of �n = 0.833 vehicles.

Simulation Setup
We apply a simple test case consisting of an initial value problem on a long homogeneous road
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There are 2 vehicle classes: passenger cars and trucks. The initial truck share varies from 0% to
50%. The queue travels backward, its length decreases and after some time (about 1100 s), it is
dissolved. This is due to the expansion wave at the front of the queue and a backward traveling
shock wave at its tail. In the exact solution, within the queue and in the fan the velocities of both
classes are equal. In the rest of the domain the densities are below critical and thus the velocities are
unequal. We study the profile of the queue, i.e. the effective density and the class specific densities.
Moreover, we study how the profile depends on the pce-value or function and the truck share.
Therefore, we run the simulation with the Fastlane pce function (6), a large constant pce-value
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Finally, we conclude that if conditions (4) and (8) hold, then the Fastlane model satisfies all
requirements, except for Requirement 2 which is not discussed yet. Requirement 2 states that the
entropy solution should be selected. It depends on the numerical method whether this requirement
is satisfied. For the simulations in the next section, we apply a numerical method that maximizes
the flow in pce units per time unit. This yields an unique entropy solution and thus the requirement
is satisfied.

SIMULATIONS AND RESULTS
We provide simulation results to show some of the properties of Fastlane. We study the differ-
ences in scatter reproduced in the fundamental diagram between Fastlane and models with con-
stant pce-values and without pce-values (⇢ =
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u ⇢u). Furthermore, we study the impact of traffic

composition on characteristic velocity in congestion in Fastlane and other models.
Before continuing with the simulation setup and its results we shortly discuss the discretiza-

tion of the Fastlane model equations.

Discretization
To apply a macroscopic traffic flow model in a simulation tool, its continuous equations have to be
discretized and solved using numerical methods. Alternatively, one could shock wave and rarefac-
tion wave velocities and calculate the exact solution. However, that would be rather complicated,
if at all possible, with the proposed model and many vehicle classes. For discretization, in the
original introduction of the Fastlane model (14) the mixed class minimum supply demand method
(26, 39) is adapted to include multiple classes (41). The mixed class Godunov method in La-
grangian coordinates (33) has been adapted to include multiple vehicle classes and is shown to
be more efficient (34). In simulations time is divided into K time steps of size �t. Furthermore,
vehicles are divided into groups of �n vehicles. In each time step, the position of each vehicle
group is calculated. In the simulations in this section, the parameters of the numerical method are
time step size of �t = 1 s and vehicle group size of �n = 0.833 vehicles.
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We apply a simple test case consisting of an initial value problem on a long homogeneous road
with a queue of length L = 2000 m:
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There are 2 vehicle classes: passenger cars and trucks. The initial truck share varies from 0% to
50%. The queue travels backward, its length decreases and after some time (about 1100 s), it is
dissolved. This is due to the expansion wave at the front of the queue and a backward traveling
shock wave at its tail. In the exact solution, within the queue and in the fan the velocities of both
classes are equal. In the rest of the domain the densities are below critical and thus the velocities are
unequal. We study the profile of the queue, i.e. the effective density and the class specific densities.
Moreover, we study how the profile depends on the pce-value or function and the truck share.
Therefore, we run the simulation with the Fastlane pce function (6), a large constant pce-value
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shows that the congestion wave velocity is higher if the truck share is higher. This effect is 
not observed with constant pce-values. 

 
SUMMARY AND CONCLUSION 
We introduced Fastlane as a generic multi-class kinematic wave (MC-KW) traffic 

flow model. It generalizes previously introduced MC-KW traffic flow models in the sense 
that it takes into account heterogeneity in vehicle speed and space occupancy. Moreover, and 
this is what distinguishes Fastlane from other such models, space occupancy of vehicles also 
depends on the actual traffic state. This is reflected in dynamic pce-values. 

We introduced some requirements on continuum traffic flow models, related to for 
example the existence of a unique solution and anisotropy of traffic flow. It is shown that the 
Fastlane model satisfies these requirements when appropriate model parameters are chosen. 
Furthermore, simulation results show distinctive properties of Fastlane related to the model 
dynamics and the resulting fundamental diagram. They show that scatter in measured density-
flow plots can be explained by differences in traffic composition using MC models with 
dynamic pce-values. Moreover, in Fastlane, high truck shares lead to high congestion wave 
velocities in congestion. 

An important next step in the development of Fastlane is calibration and validation 
using experimental data and comparison with other models. Therefore, it would also be 
valuable to study the influence of parameter values (such as maximum velocity vu,max and 
critical density ρcrit) on the simulation results. Future research also includes testing our 
hypothesis on the influence of composition on congestion wave velocity. The model has been 
applied for traffic state estimation (33) and model predictive control (34). The studies show 
the added value of a multi-class model because it enables multi-class measurements in state 
estimation. Furthermore, the model predictive control method is applied to a freeway with 
many trucks (the A15 close to the port of Rotterdam) and uses control aimed at specific 
classes (45). 
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FIGURE 1 Explanation of influence of truck share on congestion wave velocities by two 
extreme cases: only trucks (top) and only cars (bottom), all driving from left to right. Down- 
stream of a high density region a vehicle accelerates. The vehicles only react on their leader 
and accelerate some reaction time τ after the leader accelerates. The velocity with which this 
‘acceleration information’ travels upstream is the congestion wave velocity. If there are only 
trucks, it takes little time (3τ) to reach the upstream end of the graphic. However, when there 
are only passenger cars it takes more time (7τ), which implies a lower congestion wave 
velocity. 

FIGURE 2 Example of a two-class fundamental diagram. The solid line denotes the velocity 
or flow of cars, the broken line denotes the velocity or flow of trucks, as a function of the 
effective density. 

FIGURE 3  Density-flow relations. If the critical velocity is relatively large (critical density 
relatively small) (a), the top of the parabola is not included in the fundamental relation and the 
maximum flow equals the flow at critical density. However, if the critical velocity is 
relatively small (i.e. critical density is relatively large) (b), the top of the parabola is included 
in the fundamental relation and the maximum flow does not equal the flow at critical density. 
Moreover, part of the free flow branch is decreasing. 

FIGURE 4 Illustration of pce-values and space occupancy. Top: free flow, the space 
occupancy of a truck is similar to the space occupancy of a car, therefore the pce-value of the 
truck is low. Bottom: congestion, the space occupancy of a truck is much larger than the 
space occupancy of a car, therefore the pce-value of the truck is high. 

FIGURE 5 Schematic view of the condition on the space occupancy parameters, Condition 
(8). The gray areas illustrate the admissible values of 1/T1 and 1/Tu respectively. 

FIGURE 6 Effective densities computed with Fastlane pce-function and initially 20% trucks. 
Vertical white lines indicate times for which cross sections are shown in Figure 8. 

FIGURE 7 Cross sections of density profiles at t = 600 s. 

FIGURE 8 Resulting fundamental diagrams. Colors indicate the truck share: • 0%, • 2%, • 5%, 
• 10%, • 20%, • 50%. Note that the horizontal axis indicates the total density (in vehicles per 
meter) and not the effective density (in pce-units per meter). 

TABLE 1 Parameter Settings for Simulation 

 

  



FLM van Wageningen-Kessels et al                                                         

	
  

17 

 
 

 

 
 

 
 
 
 
 
 
 
 

  

Van Wageningen-Kessels, Van Lint, Hoogendoorn, Vuik 6

⌧ ⌧ ⌧ ⌧ ⌧ ⌧ ⌧

⌧ ⌧ ⌧

FIGURE 1 Explanation of influence of truck share on congestion wave velocities by two
extreme cases: only trucks (top) and only cars (bottom), all driving from left to right. Down-
stream of a high density region a vehicle accelerates. The vehicles only react on their leader
and accelerate some reaction time ⌧ after the leader accelerates. The velocity with which
this ‘acceleration information’ travels upstream is the congestion wave velocity. If there are
only trucks, it takes little time (3⌧ ) to reach the upstream end of the graphic. However, when
there are only passenger cars it takes more time (7⌧ ), which implies a lower congestion wave
velocity.

Properties
We have already discussed that MC models reproduce scattered density-flow plots. A second
property of MC models is related to a characteristic velocity in congestion: the congestion wave
velocity. This is the velocity with which the downstream front of a congested area propagates. (35)
suggests, based on empirical evidence, that the congestion wave velocity depends on the traffic
composition. Figure 1 illustrates the theory behind this hypothesis. It shows why the congestion
wave velocity depends on the vehicle length and reaction time. We expect that the congestion
wave velocity is larger if the share of long vehicles (e.g. trucks) is higher. Thereby neglecting the
possible influence of anticipation on multiple vehicles and the influence of headway. We test the
hypothesis using simulation studies with several MC-KW models.

MODEL SPECIFICATION
In this section we introduce the generalized MC-KW traffic flow model Fastlane and we show that
it satisfies all requirements. Fastlane is based on the principles from the previous section. The
model consists of three components which will be discussed in the following order: the conserva-
tion of vehicles equation, the fundamental diagram and the link between those two equations using
the concepts of effective density and passenger car equivalent (pce) value. A fourth component,
namely a node model, can be added to the model to apply it to networks. We only discuss the
model for long homogeneous roads, (14, 36) show how Fastlane can be extended to networks.

Conservation of Vehicles
Principle 1 states that vehicles are conserved. Together with the continuum assumption (Principle
2), this leads to the multi-class conservation of vehicles equation:

@⇢u

@t

(x, t) +
@qu

@x

(x, t) = 0, 8u 2 U (1)

with ⇢u the class specific density of class u [veh/m] and U the set of all classes. x and t are the the
space and time coordinates, respectively. For readability we omit (x, t) from here on. The class
specific flow [veh/s] is defined as:

qu = ⇢uvu (2)
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FIGURE 2 Example of a two-class fundamental diagram. The solid line denotes the ve-
locity or flow of cars, the broken line denotes the velocity or flow of trucks, as a function of
the effective density.

with vu the class specific vehicle velocity [m/s], which is uniquely defined by the fundamental
relation (Principle 4). Since it is assumed that traffic can be modeled as a single pipe flow (Principle
3), lanes do not need to be distinguished and flows between lanes are not included explicitly.

Fundamental Relation
Principle 6 leads to different fundamental relations for each class. The Smulders fundamental re-
lation (37) is extended to include multiple vehicle classes, see Figure 2. We have chosen this fun-
damental relation because it is relatively generic: depending on the parameter choice, it reduces to
the Greenshields (parabolic) fundamental relation (38) or the Daganzo (triangular) fundamental re-
lation (39). The Smulders fundamental relation consists of two branches: free flow and congestion
(Principle 5). For each class u the velocity is defined by:

vu = vu(⇢) =

8
>><

>>:

vu,max

� vu,max

� v

crit

⇢

crit

⇢ if 0  ⇢ < ⇢

crit

(free flow) (3a)

w

✓
⇢

jam

⇢

� 1

◆
if ⇢

crit

 ⇢  ⇢

jam

(congestion) (3b)

with ⇢ the ‘effective’ density, which can be thought of as a total density including all classes and
will be defined in more detail later. ⇢

jam

is the jam density, ⇢
crit

the critical density, v
crit

the
critical velocity and vu,max

the maximum velocity of class u. w = v
crit

⇢
crit

⇢
jam

�⇢
crit

is the congestion wave
parameter. We note that ⇢

jam

, ⇢
crit

, v
crit

, vu,max

and w are parameters and do not depend on the
traffic state. For example, ⇢

jam

denotes the maximum number of vehicles in case there were only
vehicles of class 1.

According to (3), at jam density the velocity is zero and thus the fundamental relation
satisfies Requirement 6. The other fundamental relation requirements are satisfied if its parameters
are chosen correctly. In fact, Requirement 3–5 are satisfied if:

v

crit

 vu,max

 v

1,max

 2v
crit

(4)

To understand this, we first discuss the shape of the fundamental relation. The multi-class Smulders
density-flow fundamental relation (Figure 2(b)) is a combination of a parabola (free flow) and a
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0 ⇢

crit

⇢
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q

max

= q

crit

(a) v
1,max

< 2v
crit

: q
max

= q
crit

, flow increases in
free flow.

0 ⇢

crit

⇢

jam

q

crit

q

max

(b) v
1,max

> 2v
crit

: q
max

6= q
crit

, flow in-
creases and decreases in free flow.

FIGURE 3 Density-flow fundamental relations. If the critical velocity is relatively large
(critical density relatively small) (a), the top of the parabola is not included in the fundamen-
tal relation and the maximum flow equals the flow at critical density. However, if the critical
velocity is relatively small (i.e. critical density is relatively large) (b), the top of the parabola
is included in the fundamental relation and the maximum flow does not equal the flow at
critical density. Moreover, part of the free flow branch is decreasing.

straight line (congestion). In free flow, the flow increases if the density increases, in congestion
the flow decreases. Both branches intersect at critical density ⇢

crit

and at this density the flow is
maximum. However, as Figure 3 shows, this only holds if the fundamental relation parameters are
chosen such that vu,max

 2v
crit

, 8u. Without loss of generality, it is assumed that class 1 is the
fastest class.

Theorem 1. If condition (4) holds, then the following holds:
1. Class specific velocities may be unequal if effective density is below critical (0  ⇢ < ⇢

crit

).
2. Velocities are equal if effective density is above or at critical (⇢

crit

 ⇢  ⇢

jam

).
3. Velocities may be decreasing

⇣
@vu
@⇢ < 0

⌘
if effective density is below critical (0  ⇢ < ⇢

crit

).

Proof. It can readily be concluded from the fundamental relation (3) that in free flow the velocities
of two classes are different if their maximum velocity vu,max

is different (Requirement 3 and first
part of the theorem). Furthermore, in congestion the velocity of all classes is equal (Requirement
5 and second part of the theorem) and since v

crit

 vu,max

the class specific velocity in free flow
strictly decreases if v

crit

< vu,max

(Requirement 4 and third part of the theorem).

From the fundamental relation (3) we can furthermore conclude that the velocity does not
increase with increasing effective density. Indeed, in free flow @vu

@⇢ = �vu,max

�v
crit

⇢
crit

 0 and in
congestion @vu

@⇢ = �w

⇢
jam

(⇢)2 < 0. However, from this we may not conclude that the velocity does
not increase if a class specific density increases (Requirement 7). In fact, the requirement is only
satisfied if furthermore d⇢

d⇢u
� 0. It may seem obvious that this holds, but below we show that some

additional conditions on the model parameters are needed for that. Therefore, first the effective
density function is introduced.

Effective Density and PCE-function
The fundamental relation (3), with effective densities ⇢, and the conservation equation (1), with
class-specific densities ⇢u must be linked to each other to form a complete set of model equations.
Therefore, we introduce the effective density, the passenger car equivalent (pce) and the space
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9 m 23 m

40 m
50 m

FIGURE 4 Illustration of pce-values and space occupancy. Top: free flow, the space
occupancy of a truck is similar to the space occupancy of a car, therefore the pce-value of
the truck is low. Bottom: congestion, the space occupancy of a truck is much larger than the
space occupancy of a car, therefore the pce-value of the truck is high.
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(b) Second part: L1
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, i.e. 1
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� L1

T1
Lu.

FIGURE 5 Schematic view of the condition on the space occupancy parameters, Condition
(8). The gray areas illustrate the admissible values of 1/T

1

and 1/Tu respectively.
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FIGURE 6 Effective densities computed with Fastlane pce-function and initially 20% trucks. 
Vertical white lines indicate times for which cross sections are shown in Figure 8. 
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FIGURE 7 Effective densities computed with Fastlane pce function and initially 20%
trucks. Vertical white lines indicate times for which cross sections are shown in Figure 8.

the existence of a unique solution and anisotropy of traffic flow. It is shown that the Fastlane model
satisfies these requirements when appropriate model parameters are chosen. Furthermore, simula-
tion results show distinctive properties of Fastlane related to the model dynamics and the resulting
fundamental diagram. They show that scatter in measured density-flow plots can be explained
by differences in traffic composition using MC models with dynamic pce-values. Moreover, in
Fastlane, high truck shares lead to high congestion wave velocities in congestion.

An important next step in the development of Fastlane is calibration and validation using
experimental data and comparison with other models. Therefore, it would also be valuable to study
the influence of parameter values (such as maximum velocity vu,max

and critical density ⇢

crit

) on
the simulation results. Future research also includes testing our hypothesis on the influence of
composition on congestion wave velocity. A calibration and validation method for the model
parameters of Fastlane is developed (43). The model has been applied for traffic state estimation
(44) and model predictive control (45, 46). The studies show the added value of a multi-class
model because it enables multi-class measurements in state estimation. Furthermore, the model
predictive control method is applied to a freeway with many trucks (the A15 close to the port of
Rotterdam) and uses control aimed at specific classes (45).
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FIGURE 7 Cross sections of density profiles at t = 600 s. 
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FIGURE 8 Cross sections of density profiles at t = 600 s.
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FIGURE 8 Resulting fundamental diagrams. Colors indicate the truck share: • 0%, • 2%, • 5%, 
• 10%, • 20%, • 50%. Note that the horizontal axis indicates the total density (in vehicles per 
meter) and not the effective density (in pce-units per meter). 
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(a) Fastlane. (b) Large pce (⌘
2

= L2
L1

).

(c) Small pce (⌘
2

= L2
2L1

). (d) No pce (⌘
2

= ⌘
1

= 1).

FIGURE 9 Resulting fundamental diagrams. Colors indicate the truck share: • 0%, •
2%, • 5%, • 10%, • 20%, • 50%. Note that the horizontal axis indicates the total density (in
vehicles per meter) and not the effective density (in pce units per meter).
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TABLE 1 Parameter Settings for Simulation
parameter value unit
v

1,max

30 m/s (= 108 km/h)
v

2,max

27.5 m/s (= 99 km/h)
v

crit

25 m/s (= 90 km/h)
⇢

crit

0.0278 pce/(m lane) (= ⇢

jam

/6)
⇢

jam

0.1667 pce/(m lane) (= 1/L
1

)
T

1

1 s
T

2

1.5 s
L

1

6 m
L

2

18 m

This corresponds to models with no pce-value (12, 17) and to models with a constant pce-value
(15, 16, 21), though these model mostly use different fundamental relations. All other parameters
are kept constant, see Table 1.

Simulation Results
The results of the simulations are shown in Figures 7–9. Figure 7 shows the evolution of the
effective densities computed with Fastlane and with initially 20% trucks. Simulation results with
constant pce-values (not shown) look very similar to this one. Therefore, we compare the results
in a different way. Figure 8 shows cross sections at time t = 600 s. The effective density and class
specific densities are shown. The results indeed depend on the pce function or value. The class
specific densities in the queue are equal to those with ⌘

2

= L

2

/L

1

. This is because in the queue, in
Fastlane the same pce-values hold. However, downstream of the queue the pce-values of Fastlane
are smaller and therefore its class specific densities are larger. Moreover, Figure 8 shows that
the queue travels upstream faster in the Fastlane simulation than with constant pce-values. This
implies a higher characteristic velocity, which is studied further in Figure 9. Figure 9 shows all
the density-flow pairs from all simulations. Each subfigure shows the results for one pce function
or value. The fundamental diagrams all show some scatter. With no pce-values (⌘

2

= ⌘

1

= 1),
there is only scatter in the free flow branch of the fundamental diagram. With constant pce-values
the scatter in congestion is independent of the actual density. As can be expected, the influence of
the truck share is low with low pce-values and it is high with high pce-values. The fundamental
diagram reproduced by Fastlane combines both: it shows little scatter (little dependence on truck
share) at low densities and the scatter increases gradually for higher densities. This fundamental
diagram furthermore shows that the congestion wave velocity is higher if the truck share is higher.
This effect is not observed with constant pce-values.

SUMMARY AND CONCLUSION
We introduced Fastlane as a generic multi-class kinematic wave (MC-KW) traffic flow model. It
generalizes previously introduced MC-KW traffic flow models in the sense that it takes into account
heterogeneity in vehicle speed and space occupancy. Moreover, and this is what distinguishes
Fastlane from other such models, space occupancy of vehicles also depends on the actual traffic
state. This is reflected in dynamic pce-values.

We introduced some requirements on continuum traffic flow models, related to for example


