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Efficient Implementation of GPR Data Inversion in
Case of Spatially Varying Antenna Polarizations

Jianping Wang, Pascal Aubry and Alexander Yarovoy, Fellow, IEEE

Abstract—Ground penetrating radar (GPR) imaging from the
data acquired with arbitrarily oriented dipole-like antennas is
considered. To take into account variations of antenna orienta-
tions resulting in spatial rotation of antenna radiation patterns
and polarizations of transmitted fields, the full-wave method that
accounts for the near-, intermediate- and far-field contributions to
the radiation patterns is applied for image reconstruction, which
is formulated as a linear inversion problem. Two approaches,
namely an interpolation based method and a Nonuniform Fast
Fourier transform (NUFFT) based method, are suggested to
efficiently implement the full-wave method by computing exact
Green’s functions. The effectiveness and accuracy of the method
proposed have been verified via both numerical simulations and
experimental measurements and significant improvement of the
reconstructed image quality compared to the traditional scalar-
wave based migration algorithms is demonstrated. The results
can be directly utilized by forward-looking microwave imaging
sensors such as installed at tunnel boring machine or can be used
for the observation matrix computation in regularization-based
inversion algorithms.

Index Terms—Microwave imaging, Ground Penetrating Radar
(GPR), Green’s function, Nonuniform Fast Fourier Transform
(NUFFT), Radiation pattern, Rotated array.

I. INTRODUCTION

TODAY tunnel boring machine (TBM) has become a very
powerful and important piece of equipment for tunnel

construction in underground civil engineering projects, for in-
stance, building metro lines and water transportation systems.
It substantially improves the working efficiency and reduces
human exposure in the hazardous work environment compared
to the conventional “hand mining” approach. However, due to
lack of adequate geological information in front of a TBM,
some potential problems or even risks still exist during tunnel
construction. For example, unawareness of brutal change of
geological structure may cause a TBM to deviate from the
planned construction path. To avoid such problems and risks, a
reliable and robust ground prediction system is always required
to predict the ground in front of a TBM during its operation.

As a non-destructive test tool, Ground Penetrating Radar
(GPR) exploits electromagnetic (EM) waves to investigate
subsurface structures and objects, which provides great po-
tential for ground prediction in the TBMs. Although GPR has
been broadly used for geophysical investigation and subsurface
survey [1], its extension to the TBM application brings some
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unique features and thus some new challenges. In the conven-
tional applications, GPR system typically performs measure-
ments along a line or over a two-dimensional (2-D) rectilinear
grid on the ground surface while in the TBM application GPR
antennas are mounted on the TBM cutter-head and acquire
signals during its rotation [2]–[4]. So in essence the GPR
signals are acquired with a rotating antenna array over a polar
grid, which is named as Radial-Scanned Synthetic Aperture
Radar (RadSAR) [5]. However, the rotation of TBM cutter-
head constantly changes GPR antenna orientation, i.e., antenna
polarization and radiation patterns within the synthesized an-
tenna array, which is distinct from the conventional (synthetic)
GPR arrays. As a consequence, this difference makes the scalar
wave assumption used for traditional imaging algorithms, for
instance, Kirchhoff migration invalid. Thus, their imaging
performance is degraded in this circumstance. Although the
RadSAR has been discussed for near-field imaging [5] and
subsurface object detection [6], however, in both cases the
effects of the variation of antenna orientations during the
rotation were neglected and EM signals were treated as the
scalar wave for imaging.

Due to the vector nature of EM waves, the variation of an-
tenna orientations within the rotating arrays constantly changes
the antenna polarizations and then the radiation patterns in
space with respect to the scatterers. To circumvent the vari-
ation of antenna polarizations within the array aperture, one
approach is to retrieve the polarized signals in an aligned po-
larization basis (e.g., H/V basis) through specifically designed
antenna arrays. A novel rotating antenna array was proposed
for full-polarimetric imaging in [7], where three co-polarized
signals were measured at each spatial position. Through a
simple algebraic operation, full-polarized signals are retrieved
from the three co-pol measurements at each position. Then the
traditional image algorithms can be used for image formation.
However, extra antennas are needed in this approach, which is
not desirable for the practical GPR systems with limited space
for antenna installation such as in TBM applications.

As mentioned above, the variation of antenna orientations
causes not only the variation of antenna polarizations but also
the variation of radiation patterns with respect to the scatters.
So an alternative approach to overcome the impact of the
variation of antenna orientations on imaging is to compensate
the effects of radiation patterns on the EM signals. In the
literature, the effects of antenna radiation patterns have been
considered to get quantitatively correct GPR images with
the traditional GPR data acquisition schemes [8]–[16]. For
example, the far-field radiation pattern derived by Engheta
et al. [17] has been incorporated in Kirchhoff migration [9] and
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generalized Radon transform [10] for GPR data processing. In
[11] and [12], the diffraction tomography is discussed based
on the approximated Green’s function (GF) in the horizontal
wavenumber-frequency (i.e., k-f ) domain. In [8], a migration
approach is presented by incorporating far-field radiation pat-
tern and Alford rotation to extract the azimuth direction of
targets. In [15], a matrix-based inversion approach is proposed
in which the co- and cross-polarized GPR data are migrated
as a matrix combining the far-field approximation of radiation
patterns and their information is merged into one image.
By integrating far-field radiation patterns, these approaches
provide superior performance compared to the scalar-wave
ones. However, the extrema in the far-field radiation patterns
generally lead to low image quality, especially for the extended
targets illuminated over narrow ranges of incidence angles. To
address this problem, the multicomponent imaging approach is
further improved by use of full-wave radiation patterns which
account for the exact fields, i.e., near-, intermediate- and far-
field contributions [16].

Although a fast Fourier transform (FFT)-based method was
suggested for exact half-space GFs computation in the k-f
domain and the multicomponent migration approach provides
the best imaging performance [16], it requires multicomponent
GPR data and assumes antenna orientations are consistent
within the aperture. Namely, their radiation patterns are lin-
early translated, i.e., shift-invariant in space. However, this
property is spoiled in the case of antennas with spatially
varying orientations, for example, rotating antenna arrays
in the TBM applications. Thus, it is not straightforwardly
applicable in our case.

In this paper, we addressed the problem of GPR imaging by
antennas with spatially varying orientations over data acqui-
sition aperture (e.g., rotating antenna arrays), by considering
the full-wave radiation patterns through linear inversion. The
focus of the paper is the construction of the observation
matrix. In the implementation, two methods were suggested
to efficiently compute the exact Green’s functions of rotated
dipole antennas: interpolation based method and Nonuniform
FFT (NUFFT) based method. Both methods consider the
effects of antenna translation and rotation in space by using
the shift and rotation properties of 2-D Fourier transform. By
compensating the effects of the variation of antenna orienta-
tions, the suggested approach could significantly improve the
quality of reconstructed images compared to the traditional
ones.

The rest of the paper is organized as follows. In Section
II, the linear inversion formulation for the GPR imaging by
antennas with spatially varying orientations is presented. Then
two approaches to compute exact GFs of rotated antennas are
discussed in Section III. Numerical simulations are performed
to demonstrate the efficiency and accuracy of the two methods
for GF computation as well as the imaging performance
of the suggested approach in Section IV. Section V shows
experimental results to demonstrate the suggested imaging
approach. Finally, some conclusions are drawn in Section VI.
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Fig. 1. Geometrical configuration of 3-D imaging with a rotating antenna
array. With the rotation of the linear array, the antenna polarizations constantly
change.

II. SIGNAL MODEL

Assume the transmit and receive (dipole-like) antennas are
placed along a radius of a circular aperture on the x1ox2 plane
and their orientations are parallel to the radius, as shown in
Fig. 1. With the rotation of the circular aperture transmit and
receive antenna arrays, the antennas illuminate the scene of
interest and the scattered signals are acquired over the space.
As a consequence, an equivalent circular antenna array is
synthesized. Based on the Born approximation, the scattered
electromagnetic signals for a pair of transmitting and receiving
antennas can be formulated as [15]

Esαβ
(
xR,xT , ω

)
=

∫
V (xc)

Dαβ

(
xR,xT |xc, ω

)
⊗ χ (xc) Jβ

(
xT , ω

)
dV

= S (ω)

∫
V (xc)

Dαβ

(
xR,xT |xc, ω

)
bβ
(
xT , ω

)
χ (xc) dV

(1)

where ⊗ denotes the spatial convolution, Dαβ is the wavefield
extrapolator that describes the wave propagation of electric
field from a β- polarized point source Jβ

(
xT , ω

)
at xT to a

scatterer at xc and then to a α-polarized receive antenna at xR,
χ (xc) = η̂− η is the contrast function and defined as the dif-
ference of the background physical property η̂ and scatterer’s
physical property η. Here the electromagnetic physical prop-
erty η is defined as η = σ+ jωε, where σ is the conductivity
and ε is the permittivity. Moreover, in the last line of (1), it has
used the expression for point source Jβ

(
xT , ω

)
as a product

of the wavelet of the radiated signal S(ω) and the polarization
vector bβ

(
xT , ω

)
: Jβ

(
xT , ω

)
= S(ω)bβ

(
xT , ω

)
. In space,

the wavefield extrapolator Dαβ is explicitly represented as an
inner product of the Green’s functions of transmit and receive
antennas

Dαβ =

3∑
l=1

GαlGlβ (2)

where l ∈ {1, 2, 3} represents the electric field orthogonal
directions. Gαl and Glβ are the Green’s functions in the
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l direction for α-pol receive and β-pol transmit antennas,
respectively. In the discrete form, (1) can be written as

Esαβ
(
xR,xT , ω

)
= S(ω) ·∆V

·
Np∑
k=1

Dαβ

(
xT ,xR

∣∣xck, ω)χ (xck) (3)

where Np is the number of partition cells of the imaging
scene and ∆V is the volume of each partition cell. S(ω) is
the spectrum of the wavelet. Considering all the transmit and
receive antenna pairs and the discrete frequencies within the
signal bandwidth, scattered signals can be represented in a
matrix form

Es = D(Ntr·Nf )×Np · χ (Xc) (4)

where Ntr is the number of transmit-receive antenna pairs, Nf
is the number of the discrete frequencies within the operational
bandwidth, and Es is a Ntr ·Nf column vector formed by all
the measurements. In (4), the constant S(ω) · ∆V has been
normalized with respect to the spectrum of each frequency.
χ (Xc) is a vector and represents the contrast functions of the
pixels

χ (Xc) =
[
χ (xc1) χ (xc2) · · · χ

(
xcNp

)]ᵀ
(5)

where superscript ᵀ refers to the matrix transpose operation
and xc1, xc2, · · · , xcNp are the positions related to each pixel
in the imaging scene. D is the matrix of the forward wavefield
extrapolator, which is represented as

D =
[
D̄1, D̄2, · · · , D̄Ntr

]ᵀ
(6)

where D̄s ∈ CNp×Nf , s = 1, 2, · · · , Ntr and

D̄s =
[
¯̄D
(
xTRs , ω1

)
, ¯̄D
(
xTRs , ω2

)
, · · · , ¯̄D

(
xTRs , ωNf

)]
,

¯̄D
(
xTRs , ωt

)
=

[
Dαβ

(
xTRs |xc1, ωt

)
, Dαβ

(
xTRs |xc2, ωt

)
,

· · · , Dαβ

(
xTRs |xcNp , ωt

)]ᵀ
where t = 1, 2, · · · , Nf , and xTRs denotes the positions of the
s-th transmit-receive antenna pair, i.e., (xR,xT ).

The objective of imaging process is to retrieve the contrast
functions of the targets relative to the background media,
which requires to solve the large system of linear equations
in (4). The least squares estimation of the contrast functions
of the scatters can be represented as

χ (Xc) = D† ·Es (7)

where D† =
(
DHD

)−1
DH , and the superscript H and (·)−1

refer to the Hermitian transpose and the inverse operation
of a matrix. As the wavefield extrapolator D is typically a
matrix with dimensions of thousands or even more, the inverse
operation of DHD is extremely computationally expensive. To
save the computational load, (7) can be rearranged as

DHDχ = DHEs (8)

Then some iterative approaches can be used to solve (8). In this
paper, we used the BiConjugate Gradient Stabilized method

(BiCGStab) [18]. Here, as long as the matrix of forward
wavefield extrapolator D is computed, (8) can be solved to
reconstruct the contrast functions of scatterers. Therefore, the
other major computational effort has to been spent to compute
the Green’s functions for each transmit-receive antenna pair at
each frequency with respect to the imaging region. Consider-
ing the constant variation of antenna polarizations within the
aperture, two approaches are suggested to compute the exact
Green’s functions in the space-frequency and wavenumber-
frequency domain, respectively, in the following.

III. COMPUTATION OF x-f DOMAIN EXACT GREEN’S
FUNCTIONS OF ROTATED ANTENNAS

The exact k-f domain Green’s functions for the dipole
antennas placed on the surface of homogeneous ground (i.e.,
x1ox2 plane) can be denoted by [16] G̃11 G̃12

G̃21 G̃22

G̃31 G̃32

 = −ζ

 k21V + U k1k2V
k1k2V k22V + U
−jk1Γ0V −jk2Γ0V

 (9)

where

U =
exp (−Γ1x3)

Γ0 + Γ1
, V =

exp (−Γ1x3)

γ21Γ0 + γ20Γ1
(10)

Γi =
√
γ2i + k21 + k22 (11)

and
γ2i = ηiζ complex propagation constants for air (i = 0) and
the subsurface (i = 1);
ηi = σi+jωεi electric material parameters for conductivities
σi and permittivities εi;
ζ = jωµ0 magnetic material parameter with permeability
µ0;
k1, k2 wavenumbers on the ground plane;
ω = 2πf angular frequency.
In (9), “˜” above G is used to indicate the wavenumber-
frequency domain, which will also be used in the following.
Taking inverse Fourier transform (IFT) of the Green’s func-
tions in (9) with respect to k1 and k2, their counterparts in the
space-frequency (i.e., x-f ) domain are obtainedG11 (x1, x2, ω) G12 (x1, x2, ω)

G21 (x1, x2, ω) G22 (x1, x2, ω)
G31 (x1, x2, ω) G32 (x1, x2, ω)

 .

Note (9) gives the exact Green’s functions of an antenna at
(0, 0, 0) along the x1 or x2 axis. For shifted antennas in the
traditional arrays, their Green’s functions are obtained through
the linear translation in space according to the space shift-
invariant property. However, for the rotated antenna arrays, the
antennas within the aperture are not only linear translated but
also rotated. To obtain the corresponding Green’s functions,
both translation and rotation operations are needed in the x-
f domain. In what follows, two methods are suggested to
compute the exact Green’s functions of rotated antennas.
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A. Computation of Green’s functions via Interpolation

For image reconstruction, Green’s functions over a rectilin-
ear grid in the x1-x2-x3 coordinate system are required. Let us
assume the imaging grid in space at a certain depth is defined
as

I =

(x1p, x2q)

∣∣∣∣∣∣∣
x1p = p∆x1, x2q = q∆x2

p = 0, 1, · · · , Nx1 − 1;

q = 0, 1, · · · , Nx2 − 1

 (12)

where ∆x1, ∆x2 are the grid intervals along the x1 and x2
axes and Nx1

, Nx2
are the associated numbers of sample

points. Assume a dipole antenna is placed at (xa1 , x
a
2 , 0) with

an orientation angle of θ with respect to the x1 axis and denote
the antenna orientation and its normal direction as xθ and xθ⊥ .
For the convenience of discussion in the following, we define
a “local” coordinate system xθ-xθ⊥ -x3 with the origin at
(xa1 , x

a
2 , 0) and denote kθ and kθ⊥ as the Fourier counterparts

of xθ and xθ⊥ . Then in the ”local” kθ-kθ⊥ -f domain, the
Green’s functions G̃alθ (kθ, kθ⊥ , ω), where the superscript a

indicates the corresponding spatial center of the GF is at the
antenna position and the subscript θ is the explicit substitution
of α (or β) in (2) and represents the antenna orientation, on
a grid Φ can be directly calculated via (9), and the grid Φ is
defined as

Φ =

(kθ m, kθ⊥ n)

∣∣∣∣∣∣∣∣∣
kθ m = m∆kθ;

kθ⊥ n = n∆kθ⊥ ;

m = 0, 1, · · · , Lkθ − 1

n = 0, 1, · · · , Lkθ⊥ − 1

 (13)

where the sampling intervals ∆kθ and ∆kθ⊥ are determined by
the field of view of the imaging scene according to the Nyquist
criterion, and Lkθ and Lkθ⊥ are, respectively, the numbers
of sample points along the kθ and kθ⊥ directions. In [16],
it suggests that in practical implementation the wavenumber
sampling grid should be 4 ∼ 16 times over sampled compared
to the Nyquist sampling requirements in order to get accurate
radiation properties of antennas, especially for the near-field.
Taking the IFFT of G̃alθ (kθ, kθ⊥ , ω) with respect to kθ and
kθ⊥ , the Green’s functions Galθ (xθ, xθ⊥ , ω) in the xθ-xθ⊥ -f
domain are obtained.

To get the Green’s functions Glθ for imaging, a mapping
of the Green’s functions from the xθ-xθ⊥ grid to the imaging
grid I has to be made, including both linear translation and
rotation operation in space. Explicitly, this mapping can be
written as

Glθ (x1, x2, ω;xa1 , x
a
2 , θ) = Galθ (x̃θ, x̃θ⊥ , ω) (14)

where

x̃θ = (x1 − xa1) cos θ + (x2 − xa2) sin θ

x̃θ⊥ = − (x1 − xa1) sin θ + (x2 − xa2) cos θ

From (14), we can see that Green’s functions over a new
grid (x̃θ, x̃θ⊥) in xθ-xθ⊥ coordinate system are needed to
get the corresponding values on the grid I . As the new grid
(x̃θ, x̃θ⊥) is generally different from that determined by the
Fourier grid Φ, so two-dimensional (2-D) interpolation is

required to implement the mapping from a rectilinear grid
(xθ, xθ⊥) to the rectilinear grid I . Many interpolation methods,
for example, nearest, cubic, spline, are applicable for this
operation. Considering both accuracy and efficiency, spline
interpolation is used in this paper.

In addition, we have to say that instead of taking
the interpolation in x-f domain, the Green’s function
Glθ (x1, x2, ω;xa1 , x

a
2 , θ) can also be obtained via direct

Fourier summation of G̃alθ (kθ, kθ⊥ , ω), which is expressed as

Glθ (x1, x2, ω;xa1 , x
a
2 , θ)

=

Lkθ−1∑
m=0

Lkθ⊥
−1∑

n=0

G̃alθ (kθ m, kθ⊥ n, ω) (15)

· exp{−jkθ m · [(x1 − xa1) cos θ + (x2 − xa2) sin θ]}
· exp{−jkθ⊥ n · [− (x1 − xa1) sin θ + (x2 − xa2) cos θ]}

The computation of Green’s functions via (15) is referred as
direct summation method in the following text.

B. Computation of Green’s functions with NUFFT

In this section, we propose to take advantage of Nonuni-
form Fast Fourier Transform (NUFFT) [19] to accelerate the
computation of x-f domain Green’s functions.

Linear translation and rotation operations in space are re-
quired to obtain the Green’s functions in the previous section.
Actually, these operations can also be efficiently implemented
in the wavenumber domain. According to the properties of
two-dimensional (2-D) Fourier transform, the operations in
(14) can be represented in the wavenumber domain as

G̃lθ (k1, k2, ω;xa1 , x
a
2 , θ)

= F2D [Glθ (x1, x2, ω;xa1 , x
a
2 , θ)]

= G̃alθ (k1 cos θ + k2 sin θ,−k1 sin θ + k2 cos θ, ω)

· exp {−j [(k1 cos θ + k2 sin θ)xa1

+ (k2 cos θ − k1 sin θ)xa2 ]} (16)

where G̃lθ is the counterpart of Glθ in the k-f domain in
the (k1, k2) coordinate system, and F2D is the 2-D Fourier
transform operator. In (16), the exponential terms describe the
translation operation in space while the trigonometric terms
are related to the rotation.

Then to get the Green’s functions Glθ of a rotated an-
tenna over the grid I , the Green’s functions G̃lθ should be
computed over a rectilinear grid on k1-k2 plane. According
to (16), the corresponding values G̃alθ have to be calcu-
lated on an irregular grid (k1 cos θ + k2 sin θ,−k1 sin θ +
k2 cos θ), which can be obtained directly via (9). However,
due to the varied antenna orientation angles, the grid points
(k1 cos θ + k2 sin θ,−k1 sin θ + k2 cos θ) change for antennas
at different azimuthal positions. Hence the point-by-point
computation of Green’s function has to be performed for every
antenna with different orientations. This is even more compu-
tationally expensive than the interpolation-based method.

One alternative approach to address this problem is to
exploit the similar idea as the Stolt interpolation for one-
dimensional mapping. Firstly, equations (9), (10), and (11) are
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used to compute the Green’s functions G̃alθ in the k-f domain
over the grid Φ. After the k-f domain Green’s functions are
obtained point by point, then they can be used to calculate
the x-f domain Green’s functions for every antenna within
the aperture. For an antenna at (xa1 , x

a
2 , 0) with orientation of

angle θ with respect to the x1 axis, the pre-computed Green’s
functions over the regular grid in the (kθ, kθ⊥) basis that is
rotated by θ in counter-clockwise with respect to the (k1, k2)
basis are mapped onto the grid

Φ′ =

(k1, k2)

∣∣∣∣∣∣∣
k1 = kθ m cos θ + kθ⊥ n sin θ;

k2 = −kθ m sin θ + kθ⊥ n cos θ;

(kθ m, kθ⊥ n) ∈ Φ

 (17)

in the (k1, k2) basis. Obviously, after the rotation mapping
from (kθ m, kθ⊥ n)→ (k1, k2), the sample points are located
on a skewed grid in the (k1, k2) basis.

So the problem can be restated as: Using the pre-calculated
k-f domain Green’s functions over the irregular grid Φ′ to
reconstruct their counterparts in the x-f domain over the
rectilinear grid I . Apparently, it is a typical nonuniform
Fourier transform problem from nonuniform samples in the
k-f domain to the uniform grid in the x-f domain. So we can
take advantage of NUFFT to efficiently implement it [19]. To
compute the Green’s functions in a 3-D volume, the wavefield
calculated in a ground plane can be extrapolated to different
depth via the derived k-f domain relation [20]

G̃lθ

(
k1, k2, ω, x

(n)
3

)
= G̃lθ

(
k1, k2, ω, x

(0)
3

)
× exp

{
−Γ1

(
x
(n)
3 − x(0)3

)}
(18)

where x(0)3 is the initial depth of the electric fields computed
directly and x(n)3 is the depth of the extrapolated electric fields.
As the exponential term in (18) is rotationally symmetric
around the origin on the k1-k2 plane, so it is directly applicable
to extrapolate the wavefield to different depths for antennas
with various orientations on the x1-x2 plane.

C. Sampling Criteria

In all the three methods, the uniform sampling of G̃alθ is re-
quired for the x-f domain GFs computation. The wavenumber
domain sampling spacings can be taken as [16]

∆ki =
2π

p ·Xi
(19)

where p is the oversampling factor, Xi is the dimension of
the imaging scene in the xi direction and i ∈ {θ, θ⊥}. As
the k-f domain Green’s functions G̃alθ are calculated only
once for all the antennas within the aperture, then Xis usually
choose the value of the maximum cross-range dimension of
the imaging scene. Considering the computational accuracy
of IFFT-derived Green’s functions in the x-f domain, p could
empirically take a value of 4 to 16. Moreover, we have to
mention that when the interpolation based method is used to
compute the Green’s functions, a large enough value should
be chosen for p so that the support region of the computed
Green’s functions always covers the desired imaging area in

TABLE I
COMPARISON OF THREE METHODS FOR x-f DOMAIN GREEN’S FUNCTION

COMPUTATION

Method Direct-sum Interp NUFFT
Time [s] 1042.64 4.042 0.553

L2 Error
G11 - 1.269e-8 1.373e-14
G21 - 2.034e-8 1.524e-14
G31 - 2.358e-8 1.827e-14

L∞ Error
G11 - 1.033e-4 1.255e-7
G21 - 1.500e-4 1.644e-7
G31 - 1.655e-4 1.683e-7

the spatial domain even after translation with respect to the
most remote antenna from the origin.

Here it should be mentioned that in this paper we use
elementary dipole sources and ideal receivers for the above
discussion considering two aspects: (1) in practice, dipole-like
antennas, e.g., loaded dipoles or bow-tie antennas, are widely
used in GPR system. In these circumstances, the elementary
dipole source could be a good approximation model for
the observation matrix construction, which will be verified
below through both numerical simulations and experimental
measurements; (2) for more complex antennas, theoretically
we can use the superposition principle to get the corresponding
Green’s functions.

IV. SIMULATION

A. Green’s Function Computation

In this section, Green’s function computation methods are
examined via numerical simulations. In this simulation, the
operational frequency was 200MHz and the relative permit-
tivity of soil medium was 9. Dipole antennas were placed
on the x1ox2 plane and their orientation angles were defined
as the angles from the x1-axis to antenna axes. The x3-axis
points downward, forming a right-hand coordinate system with
the x1- and x2-axes. At first, Green’s functions for a dipole
antenna at the origin along the x1 axis were calculated in
the approach presented in [16]. Then Green’s functions for
a linearly translated and rotated antenna were computed by
the interpolation based method and NUFFT based method
discussed in the previous section. In order to get accurate x-f
domain Green’s functions, four times oversampling in the k-
f domain computation was taken for all simulations and the
computation accuracy of NUFFT was set to be 1e−5. The
computation results are illustrated in Fig. 2. Green’s functions
for a dipole antenna located at the origin at the depth of 0.6m
are shown in Fig. 2 (a)–(c) while the Green’s functions for
a dipole antenna at (1, 1, 0)m with the orientation angle of
45◦ are displayed in 2 (d)–(l). The Green’s functions obtained
with the interpolation method and NUFFT based method are
presented in Fig. 2 (g), (h), (i) and Fig. 2 (j), (k), (l). As a
reference, the results computed by direct summation are shown
in Fig. 2 (d), (e) and (f). According to 2 (d)–(l), both the
interpolation based method and NUFFT based method obtain
the visually equal results as those of direct summation.

The efficiency and accuracy of both methods were also
compared quantitatively and the results are listed in Table. I.
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Fig. 2. Green’s functions for dipole antennas located at (0, 0, 0) with orientation along x1-axis [(a)–(c)] and at (1, 0, 1)m with orientation of 45◦ from the
x1-axis [(d)–(l)] at the depth of 0.6m. (d)–(f) are computed by direct summation; (g)–(i) are by the interpolation based method; and (j)–(l) are obtained with
the NUFFT based method. The antennas are placed on the ground surface (x1ox2 plane). The operational frequency is 200MHz and the relative permittivity
of soil ε = 9.

The accuracy is indicated by relative L2 error and relative
L∞ error. The relative L2 error is defined by the norm of
the differences between the computed Green’s function with
suggested method and the reference Green’s function divided
by the norm of the reference Green’s function. The relative
L∞ is defined by the maximum of the differences between
the computed Green’s function with suggested method and

the reference Green’s function divided by the norm of the
reference Green’s function. In terms of both relative L2 error
and relative L∞ error, the NUFFT based method for Green’s
function computation achieves much higher accuracy than that
of the interpolation based one. Although both suggested meth-
ods significantly improve the computation efficiency compared
to the direct summation method, the NUFFT based method
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TABLE II
PARAMETERS FOR GPR SIMULATION WITH DIELECTRIC CYLINDERS IN

THE SOIL

Parameter Value
Wavelet Ricker [900 MHz]
Radial sampling interval 5 cm
Azimuthal sampling interval 3◦

Radius of circular antenna aperture 0.5 m
Permitivity of background soil 9.0

Soil conductivity 0.01 S/m
Permitivity of dielectric cylinders 5.0

Conductivity of dielectric cylinders 0.05 S/m
Depth of the cavity 0.4 m

(a) (b)

Fig. 3. Geometrical configuration of dielectric cylinders in the soil. (a) is
the 3-D geometrical configuration and (b) is its top view along the positive y
direction.

is still more than 7 times faster than the interpolation based
method for a 250 × 250 points x-f domain Green’s function
computation.

B. Imaging with rotating antenna array

To demonstrate the imaging performance of the proposed
approach, numerical simulations were performed for dielectric
cylinders buried in the soil. GPR data was synthesized with
gprMax software, which uses the Finite-Difference Time-
Domain (FDTD) method to simulate the electromagnetic wave
propagation [21]. The geometrical configuration for the sim-
ulation is shown in Fig. 3. Two cylinders of radius 10cm
were buried at the depth of 0.4m and they were joined at
one end (as shown in Fig. 3(a)). The relative permittivity
of the cylinders is 5.0 and their conductivity is 0.05S/m.
Meanwhile, the permittivity and conductivity of background
soil are 9.0 and 0.01S/m, respectively. The elementary dipole
antennas were placed on the ground surface (i.e., xoz plane)
as the transceivers and the Ricker wavelet of 900MHz was
used as the excitation signal. To emulate the operation of
GPR system used for TBM applications, the dipole antennas
were placed with orientations along the radii at different
positions. GPR signals were acquired over eight concentric
circles whose radii range from 0.15m to 0.5m with steps of
5cm and the azimuthal sampling intervals were 3◦. Therefore,
960 spatial samples were obtained within the aperture in total
but their polarizations varied at different azimuthal positions.
For convenience, the parameters of GPR system and the media
properties are summarized in Table II.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Reconstructed images of cylinders buried in the soil with three
different imaging approaches: (a), (c), and (e) are the 3-D images obtained
by the linear inversion with exact radiation patterns, Kirchhoff migration, and
Kirchhoff migration combining the far-field radiation patterns, respectively.
(b), (d), and (f) are their corresponding top-view images.

After synthesizing the GPR data, the accurate Green’s
functions of rotated antennas at each position were computed
over a 2×2×2 cm volume grid with the suggested methods in
the previous section. The relative permittivity of background
soil ε = 9.0 and conductivity σ = 0 were used for GF
computation. The oversampling factor p was chosen to be four.
Then the synthetic data were focused via the linear inversion
method by considering the accurate radiation patterns of the
antennas with varied polarizations at different positions (i.e.,
linear inversion with accurate radiation pattern, referred as LI-
AccuRP below). In the implementation, the biconjugate gradi-
ents stabilized method (BiCGStab) was exploited to estimate
the solution for the linear system of equations. For comparison,
the Kirchhoff migration as well as the Kirchhoff migration
combining the far-field approximation of the radiation patterns
were also utilized for image formation. Integrating the far-field
radiation pattern aims to correct the angle dependence of the
dipole radiation which is generally neglected in the Kirchhoff
migration. To avoid the blow-up of the signals after correction
caused by the sharp minima in the far-field radiation patterns,
only the signals that correspond to the radiation patterns down
to -13dB with respect to its peak were compensated in the third
imaging approach.
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(a)

(b)

(c)

Fig. 5. The experimental measurement in anechoic chamber. (a) experimental
setup, (b) antipodal Vivaldi antennas and (c) the “L”-shape target.

The images reconstructed with the three approaches are
shown in Fig. 4, where all the images are normalized with
respect to their own maximum absolute voxel values and
shown in logarithmic scale for comparison. In all the images
of Fig. 4 (a), (c) and (f), the “L” shape profiles of the joint
cylinders are more or less reconstructed. However, in Fig. 4 (c)
and (e) the reconstructed cylinders are much thinner than that
in Fig. 4 (a). This is due to the striking angle dependence
of the radiation patterns of the interfacial dipole antennas
which significantly affects the strength of the signals observed
from different aspects with respect to a target. Although the
far field radiation patterns were employed to compensate the
angle dependence of the observations in Fig. 4 (e) and (f),
the resultant images are visually even worst than that without
radiation pattern correction (Fig. 4 (c) and (d)). Specifically,
the image of the cylinder parallel to the x-axis is fractured
and in Fig. 4(f) the joint part of the two cylinders becomes
dim compared to that in Fig. 4(d). This may result from
the inadequate approximation of the far-field patterns in this
case as well as the truncation effect on the radiation patterns
for signal correction. In contrast to Fig. 4(c)–(f), the images
formed with linear inversion are remarkably improved by
accounting for the exact radiation patterns of dipole antennas
(Fig. 4 (a) and (b)). Based on the Fig. 4(b), the diameters
of the cylinders could be estimated although some artifacts
are observed around the object. Note that the GFs used for
imaging were computed by setting σ = 0, so they are not
exact with respect to the real EM parameters of background
soil. However, the reconstructed images are still dramatically
improved compared to those obtained with traditional imaging
approaches. Therefore, it shows the robustness of the proposed
imaging approach.

V. EXPERIMENTS

As the rotated GPR instrument was unavailable, we instead
took an experimental campaign in the anechoic chamber for
imaging in free space.

(a)

(b)

Fig. 6. Images of experimental measurements reconstructed by: (a) Linear
inversion with accurate radiation pattern, (b) Kirchhoff migration.

A rotated experimental platform was built in the anechoic
chamber in the TU Delft to emulate the signal acquisition for
rotated arrays, as shown in Fig. 5 (a). Actually, this setup was
similar to that we used in [7]. A column was installed on
the base with the three-axis motion (i.e., two-axis translation
and one-axis rotation), where a step motor was used to drive
the base. On the top of the column, a polyethylene plastic
panel was mounted as a support for the two Vivaldi antennas
(see Fig. 5 (b)), i.e., one for transmitting and the other for
receiving. Both Vivaldi antennas were connected to a vector
network analyzer (VNA). By linear translation along the radius
and the rotation along azimuth, a circular planar array was
synthesized. An “L” shape object covered with aluminum foil
was placed in front of the array at the distance of 0.5 m. The
two arms of the “L” shape object are about 20 cm and 30 cm
in length, respectively, 6 cm in width, and 5.5 cm in thickness
(see Fig. 5 (c)). The spatial measurements were taken over
some concentric circles with the radii ranging from 11 to 53
cm with steps of 3 cm. In azimuth, the sampling interval was
2.4◦. The operational frequency of the VNA sweeps from 3
to 6 GHz with steps of 20 MHz.

To consider the direct coupling between the transmitter and
the receiver and background reflections, the measurement was
also performed with the absence of the object. After back-
ground subtraction, the signals reflected from the target were
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obtained. Then the linear inversion approach with accurate
radiation patterns was utilized to reconstruct the target’s image
from the frequency-domain signals. The reconstructed image is
shown in Fig. 6 (a). Note that as the experimental measurement
was conducted in free space, so the Green’s functions for Hertz
dipole in free space instead of half space were used for linear
inversion [22]. For comparison, the signals after applying the
inverse Fourier transform (IFT) to the measurements in the
frequency domain were focused with Kirchhoff migration as
well and the formed image is presented in Fig. 6 (b). Similar
to the Fig. 4, the two images in Fig. 6 have been normalized
with respect to their own maximum absolute voxel values and
displayed in the logarithmic scale. From Fig. 6, one can see
that both linear inversion with accurate radiation patterns and
Kirchhoff migration acquire well-focused images of the target.
However, the profile of the target is clearer and sharper in
the image formed by linear inversion with accurate radiation
pattern (Fig. 6 (a)) compared to that in the image focused by
Kirchhoff migration (Fig. 6 (b)). Meanwhile, relatively larger
artifacts and circularly sidelobes observed in Fig. 6 (b) are
noticeably suppressed in Fig. 6 (a). Therefore, by considering
the accurate radiation patterns of the rotated antenna arrays,
improved images were obtained. As a consequence, in this
case the computation time of the linear inversion approach
(with 51 frequencies at each spatial position, i.e., the measure-
ments were down-sampled every three frequencies) required
∼350s (about 340s for computing DHD in (8)) compared to
the ∼7s of the Kirchhoff migration on a computer of 3.20 GHz
CPU with four cores. The increase of computation time can be
considered as a cost to be paid for the improved image quality.
To accelerate the linear inversion approach, the matrix DHD
can be precomputed and stored before the inversion operation,
or more advanced inversion solvers should be exploited to
circumvent the computation of DHD.

Finally, we have to mention that although the “exact” GFs
of the Hertz dipole are not exact with respect to the practical
Vivaldi antenna, significant improvement is still observed in
the reconstructed image with the suggested approach [see
Fig. 6 (a)]. Again, it demonstrates the robustness of the
suggested imaging approach.

VI. CONCLUSION

In this paper, we have presented a linear inversion approach
for GPR systems with arbitrarily oriented transmit and receive
antennas over data acquisition aperture. The approach models
the wave propagation process with full-wave Green’s functions
and the image reconstruction is formulated as a linear inverse
problem. Taking advantage of accurate Green’s functions, the
polarization and radiation pattern variations of GPR antennas
within the aperture are taken into account and their effects are
compensated during the imaging process.

The focus of this paper is the construction of the ob-
servation matrix. In terms of the implementation of the
proposed approach, computing the Green’s functions with
respect to each point in the scene is the key, yet the most
computationally expensive step. To improve the computation
efficiency, two methods are proposed for Green’s function

calculation: interpolation-based method and Nonuniform Fast
Fourier Transform (NUFFT) based method. Compared to the
direct summation method, both methods significantly accel-
erate the Green’s function computation and their accuracies
were verified through numerical simulations. Besides for the
imaging, these two efficient approaches for Green’s function
calculation can also benefit the investigation of the properties
of the observation matrix for near-field imaging which is help-
ful to optimize the spatial signal sampling and imaging array
design. It was shown in both simulations and measurements
the proposed approach significantly improves the imaging
performance (i.e., the sharpness of the focused image, artifacts
suppression) compared to the traditional imaging algorithms
such as scalar Kirchhoff migration and its combination with
far-field radiation patterns. Especially, the method proposed
is more suitable for reconstructing images of polarization
independent subsurface objects and structures (such as point-
like scatterers, spheres, and planar structures). The proposed
approach can also be straightforwardly extended for full-
polarimetric imaging when the signals are acquired with full-
polarimetric antenna arrays.
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