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A B S T R A C T

A novel framework to fuse structural health monitoring (SHM) data from different in-situ monitoring techniques
is proposed aiming to develop a hyper-feature towards more effective prognostics. A state-of-the-art Non-
Homogenous Hidden Semi Markov Model (NHHSMM) is utilized to model the damage accumulation of com-
posite structures, subjected to fatigue loading, and estimate the remaining useful life (RUL) using conventional
as well as fused SHM data. Acoustic Emission (AE) and Digital Image Correlation (DIC) are the selected in-situ
SHM techniques. The proposed methodology is applied to open hole carbon/epoxy specimens under fatigue
loading. RUL estimations utilizing features extracted from each SHM technique and after data fusion are com-
pared, via established and newly proposed prognostic performance metrics.

1. Introduction

When the degradation process of a component/structure is mon-
itored, maintenance can be planned dynamically (condition based
maintenance) instead of periodically (scheduled maintenance) based on
health monitoring data [1,2]. This requires prognostic capability for
predicting the damage evolution of the degradation state of the com-
ponent/structure in the future. The word prognostics is originally a
Greek word which means to know in advance, to foresee [3]. In en-
gineering, prognostics are defined as the estimations of the remaining
useful life (RUL) of a component, which is degrading during its op-
eration time [4].

In general, prognostic modeling options can be classified into four
types; reliability based, physics-based, data-driven and hybrid [3,5]. In
industrial applications of components and machinery almost all the
aforementioned approaches have found applications. In structural
prognostics on the other hand, relevant literature is quite limited.
Chiachio et al. [6,7] and Corbetta et al. [8] have recently utilized a
Bayesian filtering framework that incorporates information from em-
pirical damage models and health monitoring data in order to enable
predictions of the remaining useful life of composite materials. They
utilized state-of-the-art empirical models for matrix cracking, delami-
nations and crack growth to predict through the use of particle filtering
the future damage states and thus estimate the remaining life. However,

the parameters of those empirical models, i.e. the fitting parameters of
Paris relation power-law relationship [9,10], depend on the type of
failure, loading case, geometry and stacking sequence, limiting the
applicability of these models to coupons rather than in complex com-
posite structures.

In contrast, the main idea behind prognostic data-driven models is
to use health monitoring representative training data from the studied
component (independent on its complexity in terms of loading condi-
tions, geometry etc.), in order to estimate a mathematical model's
parameters (θ). Then, based on the trained model a probability density
function of the RUL can be determined. Characteristic examples of data-
driven prognostic approaches for composite materials/structures are
presented hereafter.

Liu et al. [11] utilized Gaussian processes, as a mathematical model,
to perform non-linear regression. Gaussian process was trained with
acoustic emission (AE) data and Lamb wave signals in order to estimate
the RUL of composite beams. By comparing the RUL estimations of
Lamb wave signals and AE data, it can be seen that Lamb's RUL esti-
mations were better than AE's RUL estimations. The same research team
in [12] proposed a prognostic methodology, which consisted of real
time sensor signals from strain gages, direct cross-correlation analysis
and a Gaussian process trained with off-line data to perform the non-
linear regression prognostic task. Notched carbon/epoxy composite
specimens under fatigue loading were used. Eleftheroglou and Loutas
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[13] and Eleftheroglou et al. [14] proposed the use of a multi-state
degradation model, i.e. the Non-Homogenous Hidden Semi Markov
Model (NHHSMM), for the in-situ prognostics of open hole carbon/
epoxy specimens under fatigue loading. They used AE [13] or strain
measurements [14] to estimate the parameters of the NHHSMM and
successfully used it to obtain RUL estimates in unseen data with un-
certainty quantification. In Loutas et al. [15] two data-driven

prognostic models, i.e. NHHSMM and Bayesian Neural Networks
(BNN), utilizing AE measurements, were compared via several prog-
nostic performance metrics. Fatigue tests were performed in open hole
carbon/epoxy specimens. The NHHSMM clearly exceled the perfor-
mance metrics at this study. The aforementioned case studies represent
some prognostic models that are encountered in the literature on ap-
plication to composite structures/materials.

Fig. 1. Proposed RUL prediction methodology.
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In the SHM community [16,17], it has been long known that various
health monitoring techniques have different sensitivities to composite
structures’ failure mechanisms. The process of extracting information
from different monitoring techniques and integrate them into a con-
sistent, accurate and reliable data set is known as data fusion and it has
been already successfully applied to damage diagnostics [18–20]. In
principle, data fusion can be implemented in three levels; raw multi-
sensor data fusion, feature-level fusion and decision-level fusion. Raw
data fusion should be treated with caution as sensor recordings may
have different acquisition, pre-filtering and amplification settings. In
addition, raw data fusion needs to have as input commensurate data. As
a result, feature-level and decision-level fusion are more common [21].

By combining features extracted from different sensors or mon-
itoring techniques and integrating them into a single feature, is known
to enhance the diagnostics performance [21,22]. Data fusion for
structural prognostics purposes has never been attempted according to
the authors best knowledge. We expect the prognostic performance to
be improved when fusing SHM data from various monitoring techni-
ques. In order to quantify this statement various prognostic perfor-
mance metrics are employed for the comparison.

In this study a data-driven approach is followed utilizing a sophis-
ticated stochastic model, i.e. the Non-Homogeneous Hidden Semi
Markov model (NHHSMM), since the physics of composite structures’
damage evolution is not yet fully understood or explained by a math-
ematical model of global validity and recent advances in SHM tech-
nologies enable us to continuously monitor composite structures during
their operation time [23]. Furthermore, we follow the feature-level data
fusion strategy combining features extracted from two different SHM
techniques and introducing new hyper-features of higher monotonicity
that it is expected to improve the RUL estimations. Acoustic Emission
(AE) and Digital Image Correlation (DIC) techniques are employed to
monitor the damage evolution during fatigue loading. The first provide
data related to the failure mechanisms that occur after energy release
due to damage formulation in micro-scale level and the latter measures
surface strain fields.

The main objective of this paper is to investigate the potential of
SHM data fusion for structural prognostics of composite structures.
Emphasis is given in improving the prognostic performance. The main
contributions of the present study are listed below:

• A novel data fusion methodology is proposed that is able to com-
bine heterogeneous monitoring data i.e. AE and DIC data.
• Application of a sophisticated data-driven prognostic model, i.e.
NHHSMM, for the very first time with fused data.
• Two new prognostic performance metrics are proposed i.e.
Modified Mann–Kendal (MMK) monotonicity metric and Confidence
Intervals Distance Convergence (CIDC) metric.

The remainder of this paper is organized as follows. In Section 2, the
selected RUL prediction methodology is described where its feature
extraction process, SHM data fusion methodology, prognostic model
and prognostic performance metrics are discussed. A case study analysis
follows in Section 3 and finally the paper is concluded in Section 4.

2. Remaining useful life prediction methodology

The goal of the remaining useful life prediction methodology is to
estimate the composite structure's RUL probability density function. In
order to facilitate that, health monitoring data are utilized to train a
mathematical model (i.e. estimate its parameters θ), which will provide
the RUL estimations. Fig. 1 summarizes the RUL prediction metho-
dology, which is proposed in this paper.

In the framework of this study, SHM data i.e. AE and DIC data
during constant amplitude fatigue tests in open-hole composite coupons
are used. The available SHM data can be divided to training and testing
sets. However, the raw AE and DIC data include noise so a feature

extraction process is required in order to produce features with strong
prognostic suitability. A detailed description of the term ‘prognostic
suitability’ is given in Section 2.1. In the case that more than one
monitoring techniques are available, a data fusion strategy can be im-
plemented to enhance the prognostic performance of the available SHM
data (Section 2.2). The current study proposes a new feature-level data
fusion strategy, which combines features from the AE and DIC techni-
ques.

Based on the available training SHM features the parameters θ of
the mathematical model, that is utilized to provide with the RUL pre-
dictions, are estimated (Section 2.3). In the present study we utilize a
stochastic multi-state degradation model, such as NHHSMM, based on
its successful implementation in our previous investigations [13,14].
Three different NHHSMMs are trained after using features extracted
from the training set of AE, DIC and fused AE & DIC. After training the
respective NHHSMMs, health monitoring observations from an unseen
case (testing set) may feed the models after the relevant pre-processing
and obtain the mean/median RUL estimations and the associated 90%
confidence intervals (Section 2.4). Special metrics are introduced
(Section 2.5) so as to evaluate the performance of the SHM data.

2.1. Data pre-processing and feature extraction

A set of metrics in order to illustrate a feature extraction process has
been proposed in the relevant literature and consists of monotonicity,
prognosability and trendability [24–27]. Monotonicity characterizes a
parameter's general increasing or decreasing trend, prognosability
measures the spread of a parameter's failure value and finally, trend-
ability indicates whether degradation histories of a specific parameter
have the same underlying trend.

In order to produce features with strong prognostic capability, the
aforementioned metrics can be used as feature design properties. In this
paper, the feature extraction process is based on monotonicity since a
feature that is sensitive to the degradation process is desirable to have a
monotonic trend [25,26,28]. Prognosability is excluded from the pre-
sent feature extraction process since NHHSMM dictates that the last
observation of the monitoring data must be unique and common for all
the degradation histories [13,29,30]. The feature extraction process
does not take into account the influence of trendability since the target
of this work is to identify monotonicity's influence in prognostics.

A second key element of the NHHSMM is that the monitoring data's
domain should be discrete [13,29,30]. Different methods, such as
vector quantization and clustering can be used to discretize the avail-
able monitoring data [31]. In this paper the unsupervised k-means al-
gorithm is used to cluster and quantize the features extracted from the
SHM data. The target of using k-means algorithm is to find the optimal
number of discrete levels, which delivers features with maximum
monotonicity. To quantify the monotonicity we introduce the Modified
Mann–Kendall (MMK) criterion, Eq. (1).
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The advantages of the MMK criterion, over the classical
Mann–Kendal criterion [32], are explained below:

• Mann–Kendal (MK) values have not any informative meaning. For
example, in the current case study the MK values’ range is (105,
4× 105). However, MMK value as defined in (1) expresses a per-
centage of monotonicity in the range [−1,1]. If MMK=1 the de-
gradation history is strictly increasing, if MMK=−1 the degrada-
tion history is strictly decreasing. In any other case the degradation
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history is not strictly monotonic.

• Secondly, based on the MMK criterion each degradation history has
the same monotonicity weight. On the other hand, the classical MK
criterion is biased since a longer degradation history gives a higher
MK value.

The objective of the feature extraction process as implemented in
this study, is to obtain quantized degradation histories with the as high
monotonicity as possible using features from AE data, DIC data and
fused ones.

2.2. Data fusion methodology

The fusion scheme receives as inputs the quantized AE and DIC
features, where the following equation explains the rationale behind
the fusion process.

∑ ∑=
= =

+ ≤

f DIC AE a DIC AE( , ) · ·t
j

M

i

i j M

ij
j i

0 0 (2)

where ft is the fused output feature, aij are constant coefficients that
control the weight of the exponential DIC and AE features’ product and
M the maximum polynomial degree power that these features can use.
The Modified Mann–Kendal (MMK) criterion, Eq. (1), is adopted to
enable the data fusion process and is expressed in Eq. (3). MMK is used
as an objective function to be maximized and thus determine which
polynomial degree M and constant coefficients aij give the most
monotonic fused feature.
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where K is the number of available training degradation histories (e.g.
the number of tested specimens), fi(k) the fused feature value at time of
measurement ti(k) for the kth specimen, dk the number of the kth spe-
cimen's measurements and
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The constant polynomial coefficients aij, for each polynomial degree
M, are based on the optimization problem described in Eq. (4) with the
monotonicity obtained by the MMK criterion as the objective function.
For the aforementioned optimization problem, different optimization
techniques were used i.e. Nelder–Mead, Neural Networks, Particle
Swarm Optimization (PSO), Genetic Algorithms and OptQuest/NLP
(OQNLP). For this exercise, it was found that OQNLP [33] is the most
efficient optimization technique regarding the computational time of
the parameters aij and M. The unconstrained optimization problem is
formulated as:

=α a M* argmax (MMK( , ))ij
a

ij
ij (4)

In conclusion, the outputs of the proposed data fusion methodology
are the optimum polynomial degree M and the optimum constant
coefficients aij based on the MMK monotonicity, Eq. (4).

2.3. Stochastic modeling

The aim of the NHHSMM is to correlate the damage accumulation
process, which is normally hidden, with the SHM data (observations).
NHHSMM has the capabilities, as a state space model, to achieve this
correlation as it consists of a bi-dimensional stochastic process where
the first process forms a finite Semi Markov chain (SMC) not directly

observed i.e. the damage sequence and the second process, conditioned
on the first, forms a sequence of conditionally independent random
variables i.e. the SHM features. Only a brief description of the model is
presented hereafter in order to aid the coherence of the paper's struc-
ture. The interested reader can refer to Moghadass and Zuo [29,30],
who set the original framework, as well as Eleftheroglou and Loutas
[13], who implemented it in structural prognostics, for a more detailed
description.

The model's parameters θ are obtained via a maximum likelihood
estimation approach. Moghadass and Zuo [29,30] proposed a method
for defining the Maximum Likelihood Estimator (MLE) θ* of the model
parameter θ, which maximizes the likelihood function L(θ,y(1:K)),
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where y(k) is the kth degradation history, K is the total number of
available degradation histories. Setting initial values for θ and solving
the aforementioned optimization problem the model's parameters are
estimated from the training dataset (fused or standalone).

2.4. Prognostic measures

Conditional on the testing SHM dataset and model's parameters θ,
prognostic measures can be calculated via the conditional reliability
function [29,30]. The conditional reliability function,

⎜ ⎟ ⎜ ⎟
⎛
⎝

> ⎞
⎠

= ⎛
⎝

> > ⎞
⎠

θ θR t y L t Pr L t y L t, , , ,t p t p1: 1:p p , represents the prob-

ability that the composite structure continues to operate after a time t,
less than the life-time L (L> t), further than the present time tp given
that the composite structure has not failed yet (L> tp), conditional on
the testing SHM dataset y1:tp up to tp and the model's parameters θ. In
this study the mean, median and confidence intervals of RUL constitute
the prognostic measures. They can be calculated via the cumulative
distribution function (CDF) of RUL. The CDF of RUL is defined at any
time point via the conditional reliability according to the following Eq.
(6):

≤ = − +( )( )θ θPr RUL t y R t t y, 1 ,t t p t1: 1:p p p (6)

2.5. Prognostic performance metrics

Eight prognostic performance metrics are employed in order to
evaluate the predictive performance of the three NHHSMMs trained
with the different types of SHM features. Six of them are metrics widely
used in literature [34,35] i.e. Precision, Mean Squared Error (MSE),
Mean Absolute Percentage Error (MAPE), Median Absolute Percentage
Error (MdAPE), Cumulative Relative Accuracy (CRA), Convergence
(CEm). The aforementioned prognostic performance metrics are defined
in the following:

1. Precision

Precision = ∑ −
−

= ,E E( (t ) (t ))
D 1

m mi 1
D

i i 2
where Em is the mean value of error

Em and
Em(ti)=RULactual(ti)-meanRUL(ti) and ti ε [1,D] is the discrete time

moment when the ith SHM observation is recorded.

2. Mean Squared Error (MSE)
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7. Monotonicity

The prognostic's function monotonicity can be measured based on
the proposed Modified Mann–Kendal (MMK) monotonicity criterion
where y(ti) is replaced with meanRUL(ti). In case of the studied function,
which is the RUL prediction function, the preferable value of
MMK=−1 since it is expecting that the composite structure's RUL is
decreasing monotonically during its lifetime.

8. Confidence Intervals Distance Convergence (CIDC)

Goebel et al. [36] stated that as the amount of data increases during
the fatigue life, the confidence intervals distance should converge. In
order to quantify this statement, a new metric is introduced; the Con-
fidence Intervals Distance Convergence (CIDC). This metric is an ex-
tension of the metric of convergence in [34] but in this case the centroid
is under the confidence intervals distance curve. In general, lower Eu-
clidian distance means faster convergence. Let (xc, yc) be the center of
mass of the area under the confidence intervals distance curve, then the
CIDC can be represented by the Euclidean distance between the (xc, yc)
and the origin (t1,0), where:
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2 2
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and
UCI, LCI the upper and lower selected confidence intervals.
Fig. 2 demonstrates how the CIDC metric works in two hypothetical

sets of confidence intervals 1 and 2. The confidence intervals in case 2
converge faster than confidence intervals 1, see Fig. 2(a). In Fig. 2(b)
the Euclidean distance of the mass center 2 and the origin
(CIDC2=9.7419) is lower than the Euclidian distance of the mass
center 1 and the origin (CIDC1= 10.5048) thus, the CIDC metric is
validated.

3. Case study

Seven open-hole carbon/epoxy specimens, with [0/±45/90]2 s, lay-
up were manufactured via the autoclave process with the following de-
tails: dimensions [300mm x 30mm] and a central hole of 6mm diameter.
These specimens were subjected to fatigue loading with maximum am-
plitude 90% of the static tensile strength (Fult=42.66 kN), R=0 and
f=10Hz. The tests were executed in a MTS 100 kN universal test ma-
chine and they run up to failure. A stereovision system was used to per-
form 3D full field DIC measurements in order to measure strain distribu-
tion on the specimen surface during the entire fatigue test. In addition, an
AE system was used in order to perform AE measurements. Fig. 3 presents
the experimental set-up, the fatigue loading and the data acquisition
process. The reader can refer to Eleftheroglou et al. [37] for a more de-
tailed description of the experimental campaign. Table 1 presents the
cycles to failure for the tested specimens.

3.1. Digital image correlation feature extraction

DIC technique enabled strain measurements in the entire surface of
the specimen. Fig. 4 presents the axial strain distribution, strain in the
load direction, as calculated at the maximum loading during the fatigue
test of specimen02.

Based on the analytical model of Lekhnitskii [38], which calculates
the effect of a notch on the stress/strain distribution, the green rhom-
boid point (half a diameter distance for the hole center in the transverse
direction), highlighted at the picture of 0 cycles, was chosen as the
critical point to extract the axial strains. Fig. 5 presents the seven axial
strain degradation histories, which were extracted for the aforemen-
tioned critical point.

As discussed earlier, the final SHM feature should be presented in a
discrete form by the clusters V, that can be calculated using the Modified
Mann–Kendal criterion. The MMK converges for the number of clusters V
equals to 25 for the DIC data, as Fig. 6 presents. Fig. 7 presents the final
clustered axial strain data after the thresholding process.

3.2. Acoustic emission feature extraction

1/A (1/amplitude) was found to have the highest monotonic ob-
servation sequences and it was selected as the AE feature to use. Similar
to DIC measurement, 1/A was calculated cumulatively in periodic time
windows of 500 cycles. The respective degradation histories for seven
specimens are shown in Fig. 8.

Although the MMK monotonicity converges for number of clus-
ters≥ 18, see Fig. 9, V=25 was selected for the AE data equal to the
number of clusters for strain data. This way, the data fusion process
becomes more efficient as the normalization of the AE and DIC features
is avoided. Fig. 10 presents the final clustered AE data.

3.3. SHM data fusion results

The results of the optimization study, Eq. (4), are presented for
various polynomial degrees M in Fig. 11. The MMK monotonicity
converges for a polynomial degree M≥ 5. Therefore, the polynomial
degree is selected as M=5.

For determined polynomial degree M=5, Table 2 summarizes the
optimization results regarding the constant coefficients aij.

The fused features for polynomial degree M=5 and the afore-
mentioned polynomial coefficients aij are depicted in Fig. 12.

Fig. 13 presents the MMK monotonicity for each SHM feature i.e.
AE, DIC and fused data and it is observed that the fused data has the
highest monotonic rate. The data fusion process is presented in Ap-
pendix too.
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3.4. Remaining useful life estimations

Seven degradation histories Y=[y(1),y(2),…,y(7)] were available for
each SHM technique (AE, DIC and fused data). The training dataset employs
six degradation histories in order to estimate the NHHSMM's parameters θ
and keeps the seventh degradation history as the testing prognostic dataset.

The mean/median RUL and the 90% confidence intervals can be
calculated using Eq. (2). The level of confidence intervals depends on
the application, i.e. for aerospace applications 90% and 95% are
common values [39] and 90% will be adopted for this study. Figs. 14
and 15 present the RUL estimations of the three available SHM tech-
niques for specimen03 and specimen04, respectively. The choice of
presenting the results of those specimens was random, similar results
were obtained for the other specimens.

Fig. 2. Validation of Confidence Intervals Distance Convergence metric (a) Hypothetical sets of confidence intervals (b) Mass centers under the confidence intervals
distance curves.

Fig. 3. The experimental set-up and the acquisition data process [37].

Table 1
Cycles to failure of tested coupons.

Specimen # Fatigue test conditions Cycles to failure (x 103)

A1 R=0 63
A2 25
A3 f=10 Hz 22
A4 A=42.66× 90% kN 24.5
A5 14
A6 [0/± 45/90]2s 25
A7 30

Fig. 4. Axial strain distribution of specimen02.
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The RUL estimations converge quite satisfactorily with the actual
RUL values. Based on Figs. 14 and 15 the strain data provides the best
RUL estimations, fused data is ranked second while AE provides the
worst estimations. In order to quantify these observations we utilize
eight prognostic performance metrics.

3.5. Prognostic performance metrics implementation

In Figs. 16–23 the results of the performance metrics, defined in
Section 2.5, are presented. Based on these results, it is confirmed that
DIC data provides the best RUL estimations since DIC RUL estimations
score better in all prognostic performance metrics. For example, based
on Fig. 16, AE RUL estimations of specimen01 (SP1) excel at precision
metric since the precision of the AE RUL estimations are lower than the
precision of the DIC and Fusion RUL estimations. The optimum values
of the prognostic performance metrics are following:

Precision: minimum value CRA: maximum value
MSE: minimum value Monotonicity: minimum value
MAPE: minimum value CEm: minimum value
MdAPE: minimum value CIDC: minimum value

4. Conclusions

A RUL prediction methodology that utilized two different sources of
SHM data for remaining fatigue life prognosis in composite structures and
a new data fusion methodology, on a feature-level, were presented in this
paper. Open-hole carbon/epoxy specimens were subjected to constant
amplitude fatigue loading up to failure and DIC and AE techniques were
employed, to monitor the fatigue tests and provide the required SHM data.
In addition, six prognostic performance metrics were employed and two
new were introduced, in order to compare the performance of the RUL
estimations. The following conclusions can be withdrawn:

• A new data fusion approach was developed and the main objective
was to produce hyper-features with high monotonicity. Although
the degradation histories of the fused data had monotonicity higher
than the monotonicity of the degradation histories of DIC and AE
features, the fused data didn't provide always better estimations,
indicating that the requirement of monotonicity is not enough and
extra criteria should be involved. Nevertheless, the results demon-
strate the potential of the proposed data fusion methodology and its
evolvement by adding extra criteria, such as trendability, will en-
hance the performance of the fused data.

• In order to accommodate the phenomenon of the structural de-
gradation over time and the belief that as the amount of data

Fig. 5. Axial strain degradation histories of seven open-hole specimens.

Fig. 6. MMK monotonicity convergence of DIC data versus the number of clusters (V).
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Fig. 7. Clustered axial strain degradation histories of seven open-hole specimens.

Fig. 8. AE degradation histories of seven open-hole specimens.

Fig. 9. MMK monotonicity convergence of AE data versus the number of clusters (V).
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increases the confidence intervals should converge, two new prog-
nostic performance metrics, Modified Mann–Kendal (MMK) mono-
tonicity and Confidence Intervals Distance Convergence (CIDC)
were proposed and materialized these statements. Their results were
similar to the results of the other metrics and their applicability was
verified.

• The feature extraction process for the strain data was straightfor-
ward, as after the determination of the critical specimen's point, the
axial strain data was extracted via the DIC technique. The well-es-
tablished analytical model of Lekhnitskii enhanced the feature
performance indicating that mechanics can play an informative role

on the feature selection process. In contrast, extensive signal pro-
cessing was performed in order to identify monotonic histories that
describe sufficiently the damage accumulation process using AE
data.

Consequently, the current work characterizes the DIC data as the
optimum prognostic performance data, compare it with the AE and
fusion data. This statement is consistent with the selected stochastic
model i.e. NHHSMM, the selected data fusion process and the selected
prognostic performance metrics.

Considering the importance of delivering a RUL prediction metho-
dology that is generic enough and able to provide reliable estimations,
future work includes a new fusion approach that will take into con-
sideration not only the monotonicity but also the trendability of de-
gradation histories, more representative operating conditions, i.e.
variable amplitude fatigue, generic element geometries and additional
SHM techniques.

Funding

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

Fig. 10. Clustered AE degradation histories of seven open-hole specimens.

Fig. 11. Modified Mann–Kendal value versus the polynomial degree.

Table 2
Optimization results for M=5.

AE0 AE1 AE2 AE3 AE4 AE5

DIC0 −39,955 −953,757 −743,892 471,0798 882,5275 1,985,843
DIC1 −783,606 1,989,894 −746,044 381,3022 −344,348 0
DIC2 412,001 411,5522 271,9862 829,036 0 0
DIC3 −922,063 −183,044 −16,7071 0 0 0
DIC4 292,6789 906,5035 0 0 0 0
DIC5 336,2406 0 0 0 0 0
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Fig. 12. Fused degradation histories of seven open-hole specimens.

Fig. 13. Comparison between DIC, AE and Fusion MMK monotonicity.

Fig. 14. Estimated mean RUL and 90% confidence intervals for specimen03.
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Fig. 15. Estimated mean RUL with 90% confidence intervals for specimen04.

Fig. 16. Precision prognostic performance metric of each specimen and SHM technique.

Fig. 17. MSE prognostic performance metric of each specimen and SHM technique.
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Fig. 18. MAPE prognostic performance metric of each specimen and SHM technique.

Fig. 19. MDAPE prognostic performance metric of each specimen and SHM technique.

Fig. 20. CRA prognostic performance metric of each specimen and SHM technique.
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Fig. 21. Monotonicity prognostic performance metric of each specimen and SHM technique.

Fig. 22. CEM prognostic performance metric of each specimen and SHM technique.

Fig. 23. CIDC prognostic performance metric of each specimen and SHM technique.

N. Eleftheroglou et al. Reliability Engineering and System Safety 178 (2018) 40–54

52



Appendix

N. Eleftheroglou et al. Reliability Engineering and System Safety 178 (2018) 40–54

53



References

[1] Williams JH, Davies A, Drake IR. Condition-based maintenance and machine di-
agnostics. Chapman and Hall; 1994. p. 187.

[2] Marseguerra M, Zio E, Podofillini L. Condition-based maintenance optimization by
means of genetic algorithms and Monte Carlo simulation. Reliab Eng Syst Safety
2002:77151–65.

[3] Elattar HM, Elminir HK, Riad AM. Prognostics: a literature review. Complex Intell
Syst 2016;2:125–54.

[4] Farrar CR, Lieven NAJ. Damage prognosis: the future of structural health mon-
itoring. Phil Trans R Soc A 2007;365:623–32.

[5] Si XS, Wang W, Hu CH, Zhou DH. Remaining useful life estimation – A review on the
statistical data driven approaches. Eur J Oper Res 2011;213:1–14.

[6] Chiachío J, Chiachío M, Saxena A, Sankararaman S, Rus G, Goebel K. Bayesian
model selection and parameter estimation for fatigue damage progression models in
composites. Int J Fatigue 2014;70:361–73.

[7] Chiachío J, Chiachío M, Sankararaman S, Saxena A, Goebel K. Condition-based
prediction of time-dependent reliability in composites. Reliab Eng Syst Saf
2014;142:134–47.

[8] Corbetta M, Sbarufatti C, Giglio M, Saxena A, Goebel K. A Bayesian framework for
fatigue life prediction of composite laminates under co-existing matrix cracks and
delamination. Comp Struct 2018;187:58–70.

[9] Pascoe JA, Alderliesten RC, Benedictus R. Methods for the prediction of fatigue
delamination growth in composites and adhesive bonds – a critical review. J Eng
Fract Mech 2013;112-113:72–96.

[10] Carpinteri A, Paggi M. A unified interpretation of the power laws in fatigue and the
analytical correlations between cyclic properties of engineering materials. Int J
Fatigue 2009;31:1524–31.

[11] Liu Y, Mohanty S, Chattopadhyay A. A Gaussian Process based prognostics frame-
work for composite structures. Proceedings of SPIE: modeling, signal processing,
and control for smart structures, San Diego, March. 2009.

[12] Liu Y, Mohanty S, Chattopadhyay A. Condition based structural health monitoring
and prognosis of composite structures under uniaxial and biaxial loading. J
Nondestr Eval 2010;29:181–8.

[13] Eleftheroglou N, Loutas TH. Fatigue damage diagnostics and prognostics of com-
posites utilizing structural health monitoring data and stochastic processes. Struct
Health Monit 2016;15(4):473–88.

[14] Eleftheroglou N, Zarouchas D, Loutas TH, Alderliesten R, Benedictus R. Online re-
maining fatigue life prognosis for composite materials based on strain data and
stochastic modeling. Key Eng Mater 2016;713(1662–9795):34–7.

[15] Loutas TH, Eleftheroglou N, Zarouchas D. A data-driven probabilistic framework
towards the in-situ prognostics of fatigue life of composites based on acoustic
emission data. Comp Struct 2017;161:522–9.

[16] Jefferson C, Vanniamparambil PA, Hazeli K, Bartoli I, Kontsos A. Damage quanti-
fication in polymer composites using a hybrid NDT approach. Compos Sci Technol
2013;83:11–21.

[17] Liu Z, Forsyth DS, Komorowski JP, Hanasaki K, Kirubarajan T. Survey: state of the
art in NDE data fusion techniques. IEEE T-IM 2007;56(6):2435–51.

[18] Jiang S-F, Zhang C-M, Zhang S. Two-stage structural damage detection using fuzzy
neural networks and data fusion techniques. Expert Syst Appl 2011;38(1):511–9.

[19] Gros XE. Multisensor data fusion and integration in NDT. Applications of NDT data

fusion. US: Springer; 2001. p. 1–12.
[20] Hall DL, McMullen SAH. Mathematical techniques in multi-sensor data fusion.

Boston: Artech House; 2004.
[21] Hall DL, Llinas J. An introduction to multisensor data fusion. Proc IEEE

1997;85(1):6–23.
[22] Zhao X, Li M, Song G, Xu J. Hierarchical ensemble-based data fusion for structural

health monitoring. Smart Mater Struct 2010;19:4–045009.
[23] Zio E, Maio F. Failure prognostics by a data-driven similarity-based approach. Int J

Rel, Qual Saf Eng 2013;20:135001.
[24] Coble J, Wesley HJ. Identifying optimal prognostic parameters from data: a genetic

algorithms approach. Annual conference of the prognostics and health management
society. September 2009.

[25] Qian F, Niu G. Remaining useful life prediction using ranking mutual information
based monotonic health indicator. Prognostics and system health management
conference. 2015.

[26] Liao L. Discovering prognostic features using genetic programming in remaining
useful life prediction. IEEE Trans Ind Electron 2014;61(5):2464–72.

[27] McCarter D, Shumaker B, McConkey B, Hashemian H. Nuclear power plant in-
strumentation and control cable prognostics using indenter modulus measurements.
Int J Progn Health Manage 2014;16(5):1–10.

[28] Yaguo L. Intelligent fault diagnosis and remaining useful life prediction of rotating
machinery. Butterworth-Heinemann; 2016.

[29] Moghaddass R, Zuo MJ. An integrated framework for online diagnostic and prog-
nostic health monitoring using a multistate deterioration process. Reliab Eng Syst
Saf 2014;124:92–104.

[30] Moghaddass R, Zuo MJ. Multistate degradation and supervised estimation methods
for a condition-monitored device. IIE Trans 2014;46(2):131–48.

[31] Jegou H, Douze M, Schmid C. Product quantization for nearest neighbor search.
IEEE Trans Patten Anal Mach Intell 2011;33(1):117–28.

[32] Yue S, Pilon P. A comparison of the power of the t test, Mann–Kendall and bootstrap
tests for trend detection. Hydrol Sci J 2004;49(1):21–38.

[33] Ugray Z, Lasdon L, Plummer J, Glover F, Kelley J, Marti R. Scatter search and local
NLP solvers: a multistart framework for global optimization. INFORMS J Comp
2007;19(3):328–40.

[34] Saxena A, Celaya J, Saha B, Saha S, Goebel K. Metrics for offline evaluation of
prognostic performance. Int J Progn Health Manage 2010;1:1–20.

[35] Peng T, He J, Xiang Y, Liu Y, Saxena A, Celaya J, Goedel K. Probabilistic fatigue
damage prognosis of lap joint using Bayesian updating. J Intell Mater Syst Struct
2014. 1045389X14538328.

[36] Goebel K, Saha B, Saxena A. A comparison of three data-driven techniques for
prognostics. 62nd meeting of the society for machinery failure prevention tech-
nology. 2008.

[37] Eleftheroglou N, Zarouchas D, Loutas TH. In-situ fatigue damage assessment of
carbon-fibre reinforced polymer structures using advanced experimental technique.
17th European conference on composite materials. 2016.

[38] Lekhnitskii S.G., Tsai S.W., Cheron T.. Anisotropic plates. Gordon and Breach
Science Publishers New York. New York; 1963.

[39] Tuegel E.J., Bell R.P., Berens A.P., Brussat T., Cardinal J.W., Gallagher J.P., Rudd J..
Aircraft structural reliability and risk analysis handbook. In: vol. 1, Basic analysis
methods. No. AFRL-RQ-WP-TR-2013-0132. AIR FORCE RESEARCH LAB WRIGHT-
PATTERSON AFB OH AEROSPACE SYSTEMS DIR; 2013.

N. Eleftheroglou et al. Reliability Engineering and System Safety 178 (2018) 40–54

54

http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0001
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0001
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0002
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0002
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0002
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0003
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0003
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0004
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0004
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0005
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0005
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0006
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0006
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0006
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0007
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0007
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0007
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0008
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0008
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0008
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0009
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0009
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0009
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0010a
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0010a
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0010a
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0010
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0010
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0010
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0011
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0011
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0011
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0012
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0012
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0012
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0013
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0013
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0013
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0014
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0014
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0014
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0015
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0015
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0015
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0016
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0016
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0017
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0017
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0018
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0018
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0019
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0019
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0020
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0020
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0021
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0021
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0022
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0022
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0023
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0023
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0023
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0024
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0024
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0024
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0025
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0025
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0026
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0026
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0026
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0027
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0027
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0028
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0028
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0028
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0029
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0029
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0030
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0030
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0031
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0031
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0032
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0032
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0032
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0033
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0033
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0034
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0034
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0034
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0035
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0035
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0035
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0036
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0036
http://refhub.elsevier.com/S0951-8320(17)30673-7/sbref0036

	Structural health monitoring data fusion for in-situ life prognosis of composite structures
	Introduction
	Remaining useful life prediction methodology
	Data pre-processing and feature extraction
	Data fusion methodology
	Stochastic modeling
	Prognostic measures
	Prognostic performance metrics

	Case study
	Digital image correlation feature extraction
	Acoustic emission feature extraction
	SHM data fusion results
	Remaining useful life estimations
	Prognostic performance metrics implementation

	Conclusions
	Funding
	Appendix
	References




