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Abstract

This thesis discusses the use of perturbation theory in the context of financial mathematics, in
particular on the use of matched asymptotic expansions in option pricing.

Our methods are applied to the ordinary Black-Scholes model for illustration. In this simple
example of the Black-Scholes model an exact solution is available, so it is in fact not neccessary
to apply the method of asymptotic expansions on this model. However, in case we do apply
the method, two artificial layers have to be constructed. Making smart choices for the local
variables leads to a transformation of the equations into a heat equation, which can easily be
solved. Finally, the results are compared to a Taylor expansion of the exact solution to see that
this method is very accurate.

After this first instructive model, the method of matched asymptotic expansions is applied to
two more advanced models based on papers by Howison [7] and Hagan et al. [5]. Here, different
choices for the scalings are made.

The former discusses a fast mean-reverting stochastic volatility model that turns out to have
many open ends. In Howison’s paper [7] quite a lot of assumptions and simplifications are made.
Unfortunately, often the motivation for them is not explicitly given in the paper, and in some
cases we even think these assumptions and simplifications are incorrect.

The latter examines a new three-parameter stochastic volatility model that successfully prices
back the volatility smile as observed in the market nowadays, and that is commonly used. The
derivation of this model is the main focus of this thesis. The resulting expression for the implied
volatility under the SABR model is obtained by considering the forward and backward Kol-
mogorov equations per order in ε, making some smart choices for local variables and functions
in order to transform them into an equation that looks like a heat equation, which is easier to
solve.

Recommendations for further investigation on these models would be to consider several different
choices for the scalings and see which one works best.
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Chapter 1

Introduction

Modern financial research depends heavily on mathematics. This thesis focuses on the use
of matched asymptotic expansions in option pricing. It presents illustrations of the approach
in plain vanilla option valuation using the Black-Scholes model, using a fast mean-reverting
(stochastic) volatility model, and in the stochastic α, β, ρ (SABR) model.

We begin in section 2 with explaining how to use the method of matched asymptotic
expansions to solve a general singularly perturbed problem. To explain this method, we
will study a simple (physical) example. Four steps have to be accomplished in order to complete
the application of this method:

• First, an outer expansion has to be constructed. This leads to an outer solution of the
problem.

• After that, the boundary layer has to be analized. For this, an inner expansion has to be
made, which leads to an inner solution of the problem.

• Next, these two solutions have to be matched at their boundary, using matching conditions,
to determine the remaining constants.

• Finally, we will combine these two solutions to form a composite expansion. This is done
by adding the expansions and then subtracting the part that is common to both.

Section 3 is an introduction to the computational f inance subjects in this thesis. Before
presenting a mathematical description, it is necessary to clarify some economical definitions and
nomenclature. Next, in section 4 the f inancial framework will be considered. Some formulas
and theorems that are commonly used for financial models will be explained here.

In section 5 we will consider the first financial model: the Black-Scholes model. We will
derive this basic model and show a reduction from the Black-Scholes equation to the heat equa-
tion. Because the Black-Scholes approach leads to partial differential equations, many physical
applied mathematicians contributed to this field. These people mainly focused on obtaining
exact solutions to certain boundary value problems representing the prices of options, or on
numerical methods. The purpose of this thesis is to illustrate another technique: asymptotic
analysis, with a particular emphasis on the use of matched asymptotic expansions. After show-
ing the exact Black-Scholes solution, perturbation theory will be applied to this model. Finally,
we will compare the results of applying perturbation theory with the exact solution.

1



2 CHAPTER 1. INTRODUCTION

The next financial model, in section 6, is the constant elasticity of variance (CEV) model.
This model will be studied following the steps taken in Howison’s paper [7]. The CEV model is
a more realistic version of the ‘ordinary’ Black-Scholes model in chapter 5, because studies have
shown that relative price variances do change as the stock price changes, while the Black-Scholes
model assumes a constant stock price volatility, regardless of the level of the security price.

Boundary-layer techniques can also be applied in the analysis of fast-mean-reverting stochas-
tic volatility models. We will look at this third financial model in section 7 and we will show
how to construct the boundary layer near expiry for European options. In these models the
volatility itself is assumed to follow a stochastic process while the asset price is assumed to
follow the lognormal process as before.

European options are often priced and hedged using Black’s model, or, equivalently, the Black-
Scholes model. In the Black-Scholes model there is a one-to-one correspondence between the
price of a European option and the volatility parameter σB. Consequently, option prices are
often quoted by stating the implied volatility σB, the unique value of the volatility which yields
the options dollar price when used in the Black-Scholes model. In theory, the volatility σB in the
Black-Scholes model is a constant. In practice, options with different strikes K require different
volatilities σB to match their market prices.

To resolve this problem, we derive the stochastic α, β, ρ (SABR) model in section 8. The
SABR model is very well explained in the paper by Hagan et al. [5]. In reality, options with
different strikes require different volatilities to match their market prices. So the volatility is
assumed to follow a stochastic process again, and the asset price and volatility are correlated.
Singular perturbation techniques are used to obtain the prices of European options under the
SABR model. From these prices we obtain a closed-form algebraic formula for the implied vola-
tility as a function of todays forward price f and the strike K. This market volatility smile is
critical for hedging.



Chapter 2

Perturbation theory

In this chapter we will use the method of matched asymptotic expansions1 to solve a
singularly perturbed problem. To explain this method, we will study the following example:2

εy′′ + 2y′ + 2y = 0, for 0 < x < 1, (2.0.1)

with boundary conditions y(0) = 0 and y(1) = 1. Here y = y(x) and

y′ =
dy

dx
and y′′ =

d2y

dx2
.

To construct a first-term approximation of the solution for small ε we will proceed in four steps.3

Step 1: Outer solution
To begin, we will assume that the solution of the above problem can be expanded in powers of
ε:

yε(x) =
m∑

n=0

εnyn(x) + O
(
εm+1

)
= y0(x) + εy1(x) + ε2y2(x) + . . . . (2.0.2)

Substituting this into problem (2.0.1), we obtain

ε
(
y′′0 + εy′′1 + . . .

)
+ 2

(
y′0 + εy′1 + . . .

)
+ 2 (y0 + εy1 + . . .) = 0. (2.0.3)

By looking at all terms without ε we obtain the O(1) equation y′0 +y0 = 0. The general solution
of this O(1) equation is

y0(x) = ae−x, (2.0.4)

where a is an arbitrary constant. Looking at this solution, we have a dilemma, because there is
only one arbitrary constant but we have two boundary conditions. So the solution (2.0.4) and
the expansion (2.0.2) are incapable of describing a solution over the entire interval 0 ≤ x ≤ 1.
At this moment we have no idea which boundary condition, if any, we should require y0(x) to
satisfy. Based on what is observed in Example 2 in Section 1.7 of [6], it is a reasonable working
hypothesis to assume that (2.0.4) describes a solution over most of the interval 0 ≤ x ≤ 1, but
there is a boundary layer at either x = 0 or at x = 1, where a different approximation must be
used. Sometimes it’s even possible to have several boundary layers at the same time.

1To define an asymptotic approximation, first the order symbols need to be introduced. See appendix B.
2This example is taken from [6], p.48-56.
3See page 34 of [12] for a summary of those 4 steps.

3



4 CHAPTER 2. PERTURBATION THEORY

For now let’s assume that we have a boundary layer at x = 0.4 We will look for a solution in
that area in step 2. The solution (2.0.4) is the first term in the expansion of the outer solution.

Step 2: Boundary layer
Based on the assumption that there is a boundary layer at x = x0 = 0, we rescale the variable
x by introducing a local variable ξ given as

ξ =
x− x0

δ(ε)
=

x

δ(ε)
. (2.0.5)

After changing variables from x to ξ, we will take ξ to be fixed when expanding the solution in
terms of ε. This has the effect of stretching the area near x0 = 0 when ε becomes small, such
that we can analyze the problem locally. At this point we only know that δ(ε) = o(1), and we
have no a priori knowledge of a suitable choice of δ(ε).

The equation with respect to this local variable ξ becomes

ε

δ(ε)2
∂2y∗

∂ξ2
+

2
δ(ε)

∂y∗

∂ξ
+ 2y∗ = 0, (2.0.6)

with boundary condition y∗(0) = 0. The boundary condition at x = 0 has been included here
because the boundary layer is at the left end of the interval.

Just as with the algebraic equations studied in section 1.4 of [6], it is now neccessary to determine
the correct balancing in the following equation:

ε

δ(ε)2
∂2

∂ξ2
y∗ +

2
δ(ε)

∂

∂ξ
y∗ + 2y∗ = 0, (2.0.7)

which contains three terms. The balance between the second and third term was already con-
sidered in Step 1, so the following two possibilities remain:

• term 1 ∼ term 3 and term 2 is of higher order in ε (and becomes smaller as ε becomes
small):

ε

δ(ε)2
= 0 ⇒ δ(ε) =

√
ε.

Now term 3 is O(1) but term 2 is O(ε−1/2). This violates our original assumption that
term 2 is higher order, and so this balance is not possible.

• term 1 ∼ term 2 and term 3 is higher order (and becomes smaller as ε becomes small):

ε

δ(ε)2
=

2
δ(ε)

⇒ δ(ε) = ε.

Now term 1 and 2 are O (
ε−1

)
and term 3 is O(1). In this case, the conclusions are

consistent with the original assumptions, and so this is the balancing we are looking for.
This is said to be a distinguished limit5 for the equation.

4In this case, choosing the boundary layer to be at x = 1 gives no solution at all, because the matching in step
3 is not possible. See appendix C.

5Also known as maximum balance or signif icant degeneration.
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Now the differential equation (2.0.7) becomes

∂2

∂ξ2
y∗ + 2

∂

∂ξ
y∗ + 2εy∗ = 0. (2.0.8)

Because δ(ε) = ε the appropriate expansion for the boundary-layer solution is given by

y∗(ξ) ∼ y∗0(ξ) + εy∗1(ξ) + . . . . (2.0.9)

Substituting this expansion (2.0.9) into equation (2.0.8) gives

∂2

∂ξ2
(y∗0 + εy∗1 + . . .) + 2

∂

∂ξ
(y∗0 + εy∗1 + . . .) + 2ε (y∗0 + εy∗1 + . . .) = 0. (2.0.10)

By taking a look at all terms of O(1), we have the following problem to solve:

{
y∗0
′′ + 2y∗0

′ =0, for 0 < ξ < ∞,

y∗0(0) =0.

(2.0.11a)
(2.0.11b)

The general solution of this problem is y∗0(ξ) = A
(
1− e−2ξ

)
, where A is an arbitrary constant.

In this case, it should be observed that the boundary-layer equation (2.0.11) contains at
least one term of the outer-layer equation (i.e., y′0 + y0 = 0) in Step 1, to have a successful
completion of the matching in Step 3. In general, this isn’t always the case.

The boundary-layer expansion (2.0.9) is supposed to describe the solution in the immediate
neighbourhood of the endpoint x = 0. It is therefore not unreasonable to expect that the outer
solution (2.0.4) applies over the remainder of the interval (assuming there are no other layers).
This means that the outer solution (2.0.4) should satisfy the boundary condition at x = 1 (i.e.,
y(1) = 1). So we find that a = e1, which implies y0(x) = e1−x.

Step 3: Matching
It remains to determine the constant A in the first-term approximation of the boundary-layer
solution y∗0(ξ) = A

(
1− e−2ξ

)
. To do this, the approximations we have constructed so far are

summarised in figure 2.2 on page 52 of [6]. The important point here is that both the inner
(boundary-layer) and outer expansions are approximations of the same function. Therefore, in
the transition region between the inner and outer layers we should expect that the two expansions
give the same result. This is accomplished by requiring that the value of y∗0 as one comes out of
the boundary-layer (as ξ →∞) is equal to the value of y0 as one comes into the boundary layer
(as x → 0). Imposing the condition y∗0(∞) = y0(0) yields A = e1 and the solution becomes

y∗0(ξ) = e
(
1− e−2ξ

)
= e1 − e1−2ξ. (2.0.12)

This completes the derivation of the inner and outer approximations of the solution of the
example problem (2.0.1). A plot of these solutions can be seen in figure 2.1. The next step is
to combine them into a single expression (Step 4).
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Figure 2.1: The outer (blue) and inner (red) solution of the example problem.

Step 4: Composite expansion
Our description of the solution consists of two pieces, which we will now combine to form a
so-called composite expansion. This is done by adding the expansions and then subtracting
the part that is common to both. Thus,

y ∼ y0(x) + y∗0
(x

ε

)
− y0(0),

∼ e1−x − e1−2x/ε. (2.0.13)

It may seem strange that it is possible to combine expansions over different intervals and still
have an asymptotic approximation of the solution. However, note that the boundary-layer so-
lution y∗0 (x/ε) is constant to first order inside the outer region. This constant is y0(0) and to
compensate for its contribution, the term −y0(0) is added to the composite expansion. Simi-
larly, the outer solution y0(x) is also constant to first order inside the boundary-layer region.
However, the term −y0(0) removes its contribution in this region. The fact that the adjustment
in each case involves the constant y0(0) is not a coincidence, since it is the first term in the
inner and outer expansions found from matching: y0(0) is called the common part of the
expansions. The composite expansion gives a very good approximation to the solution over
the entire interval, see figure 2.4 on page 54 of [6].

In figure 2.2 one can see the composite expansion: this is a combination of the outer (blue) and
inner (red) solution.

In the next chapters, we will apply perturbation theory to a couple of different financial models.



7

Figure 2.2: Solution of the example problem: combining the outer (blue) and inner (red) solution
to a composite expansion (bold black line).
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Chapter 3

Introduction to the financial
framework

This chapter is an introduction to the computational finance subjects in this thesis. Before
presenting a mathematical description, it is necessary to clarify some economical definitions.

Financial market instruments can be divided into two distinct categories. There are the ‘under-
lying’ stocks: shares, bonds, commodities, foreign currencies, etcetera, and their ‘derivatives’:
claims that promise some payment or delivery in the future depending on an underlying stock’s
behaviour. Derivatives can reduce risk, or they can magnify it.

3.1 Bonds

First, we consider a risk-free interest rate, r, which represents the growth of money in time.
We should be able to lend at that rate, and borrow - and in arbitrary size. To model this, we
need something to model the time-value of money: a zero-coupon bond Bt, which we can
buy or sell at time zero for some price, say B0. After a small time step dt it will be worth
Bdt = B0 + rB0 dt = B0(1+ r dt), such that Bt+dt = Bt + rBt dt = Bt(1+ r dt). Consequently,
we obtain the following differential equation for the bond:

dBt = rBt dt, (3.1.1)

such that
Bt = B0e

rt, (3.1.2)

see figure 3.1.

3.2 Brownian motion

To model more complicated financial products, a stochastic variable is needed. Brownian mo-
tions are often being used for this.

The stochastic process W = (Wt : t ≥ 0) is a P-Brownian motion if and only if

1. Wt is continuous and W0 = 0,

2. the value of Wt is distributed, under measure P, as a normal random variable N(0, t),

9



10 CHAPTER 3. INTRODUCTION TO THE FINANCIAL FRAMEWORK

Figure 3.1: Bondprice Bt for different values of t. Here B0 = 1 and r = 0.03.

3. the increment Ws+t −Ws is distributed as a normal N(0, t), under P, and is independent
of Fs, the history of what the process did up to time s.

These are all necessary and sufficient conditions for the process W to be Brownian motion.
Brownian motion with drift is called Wiener process, and is a (one-dimensional) Gaussian
process.

We know that if the increment dWt is a Wiener process, then dW 2
t := (dWt)

2 → dt as dt → 0.1

This can be explained by proving that E [dW1 dW2] = ρ dt for dW1 and dW2 with correlation
ρ.

Proof:
Suppose we have two independent normal distributed random variables Z1, Z2 ∼ N(0, t). Now
we define

X1 = Z1,
X2 = ρZ1 +

√
1− ρZ2,

such that

E [X1X2] = E
[
Z1(ρZ1 +

√
1− ρZ2)

]
,

= E
[
ρZ2

1 +
√

1− ρZ1Z2)
]
,

= ρ E
[
Z2

1

]
+

√
1− ρ E [Z1Z2] ,

= ρVar(Z1) +
√

1− ρ · 0,

= ρt. (3.2.1)
1See also page 58-59 of [1].
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So X1 and X2 are ρ-correlated. In case X = X1 = X2, we have ρ = 1 and E
[
X2

]
= t.

Substitution of X = dWt, and dWt ∼ N(0, dt), indeed implies that dW 2
t → dt as dt → 0. And

in the more general case, we have E [dW1 dW2] = ρ dt for dW1 and dW2 with correlation ρ.

¤

3.3 Stocks

In business and finance, a share of stock (also referred to as equity share) means a share of
ownership in a corporation (company). The initial price of a stock, at time t = 0, is given by
S0, whereas at time t it is given by St. In a small time interval dt, this price will change from St

to St + dSt. Next, consider the relative change in price: dSt
St

. We can split this relative change
into two parts:

• A deterministic part µtdt, because instead of investing it, one could also store the money
(price of the stock) at a bank, and receive interest.

• An stochastic part σtdWt, where dWt ∼ N(0, dt) is known as a Wiener process, which
we discussed in the previous section.

So we obtain the following stochastic differential equation (sde):

dSt

St
= µtdt + σtdWt. (3.3.1)

The change in the stock price divided by its original value, dSt
St

, is called the return. Here µt

is the drift rate of the stock St. The volatility σt is related to the standard deviation of the
stock price of a share. It is an indication for the random behaviour of the market. The stock
price St follows the lognormal distribution that arises from sde (3.3.1). See figure 3.2.

Dividend δ will be received by the owner of a share of some profit making company. Typically,
the stock price will decrease when dividend is paid. In all financial models described in this
thesis, we will assume absence of dividend: δ = 0.

3.4 Derivatives

Secondly, the main topic of this thesis − option contracts and the pricing of options − will be
discussed.

A stock derivative is any financial instrument that has a value that is dependent on the price
of some underlying stock. Futures and options are the two main types of stock derivatives.

A forward contract is an agreement to buy or sell an asset (i.e., a bond, stock or anything
else of value that is owned by a person or company) for a certain price at a certain time in the
future. The participants in forward contracts are the holder and the writer. The holder, who
buys the contract, is said to take a long position on the asset. The writer sells the option
and takes a short position. A forward contract is binding towards both parties: the holder is
obliged to buy the asset and the writer is obliged to sell the asset.
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Figure 3.2: Stockprice St for different values of t.

This is not the case in option contracts. Options give the holder the right to exercise the
option, so he is not obliged to buy the asset. The writer is however obliged to sell the asset.
There are two basic types of options: the call and the put option. A call option is an option
that gives the holder the right to buy an asset for a certain price. A put option gives the holder
the right to sell an asset for a certain price. The price mentioned in either option contract is
called the exercise price or strike K.

The most commonly traded types of calls and puts are European and American options,
which are often called “vanilla options”.2 In the case of European options, the holder may only
exercise the option at the time of maturity or exercise time, T . American options may also be
exercised in the period before maturity.

3.5 Speculation and hedging

Options are used for several purposes. The two most important ones are speculation and
hedging.

Speculation is quite easy to understand: if the holder buys a call option V call
t at time t, he

expects the stock price to increase. The strike price is denoted by K. If the stock price S is
greater than the strike K, the call option will be exercised and the net profit of the option will
be its payoff P (ST ) := max(ST −K, 0) minus the option price V call

T :

P (ST )− V call
T = ST −K − V call

t er(T−t). (3.5.1)

2The opposite of a vanilla option is called an exotic option: any of a broad category of options that may
include complex financial structures.
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This is called the time value of money.

The second purpose to use options is hedging. The collection of all shares, options and other
derivatives owned by a trader is called a portfolio. Hedging means using options to reduce
the risk of this portfolio. A risk-free portfolio can sometimes be constructed by choosing your
hedging parameters such that all stochastic terms are eliminated in the expression for the value
of the portfolio.

Example
Let us take a closer look at hedging and speculating by looking at an example taken from [1].
We have an interest-free bond and a stock, both initially priced at $1. At the end of the next
time interval, the stock is worth either $2 or $0.50.

Question: What is the value of a bet that pays $1 if the stock goes up?

Solution: Let B denote the bond price, S the stock price and X the payoff of the bet. Let us
define p as the change that the stock goes up. In this example we take p = 2

3 . The picture in
figure 3.3 describes the situation.

Figure 3.3: Pricing a bet.

Buy a portfolio Π consisting of 2
3 of a unit of stock and a borrowing of 1

3 of a unit of bond. The
cost of this portfolio Π0 at time zero is Π0 = 2

3 · $1− 1
3 · $1 = $0.33.

After an up-jump, the portfolio becomes worth Πup = 2
3 · $2 − 1

3 · $1 = $1. And after a down-
jump, it is worth Πdown = 2

3 · $0.5− 1
3 · $1 = $0.

The portfolio exactly simulates the bet’s payoff, and must thus be worth exactly the same as
the bet X. It must be that the portfolio’s initial value of $0.33 is also the bet’s initial value:
X = $0.33.

Restrictions
There are some restrictions in hedging, including:

• Transaction costs, i.e., a cost incurred in making a financial exchange. For example,
most people, when buying or selling a stock, must pay a commission to their broker
(a regulated professional who buys and sells shares and other securities through market
makers on behalf of investors): that commission is a transaction cost of doing the stock
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deal.

• Liquidity, i.e., the capacity of a market to withstand an unusual amount of buying or
selling without affecting the market substantially. It refers to an asset’s ability to be easily
converted through an act of buying or selling without causing a significant movement in
the price and with minimum impact on its price. Money, or cash on hand, is the most
liquid asset.

• Business days, which means any day including Monday to Friday and does not include
holidays. Trading can only be done on business days. Hence, hedging cannot be done
continuously.



Chapter 4

Financial framework

In this chapter the basics of the f inancial framework, with which we can describe the prices
of options and other derivatives, will be considered. Here some formulas and theorems will be
explained. These are valid for all financial models in the next chapters.

4.1 Notation

Before starting with the formulas and theorems, we list a couple of important variables:

• Vt is the value of an option or other derivative. This value Vt is a function of the stock
value St and time t.

• Later on we will consider V call(St, t) and V put(St, t) as the values of a call, resp. put option.

The value of the option Vt is dependent of:

• µt: the drift of the stock,

• σt: the volatility of the stock,

• K: strike of the option,

• rt: (risk-free) interest rate,

• St: the price of the stock,

• T : expiry time, t = T ,

• t: time.

From now on we will omit the subscripts, and write µ, σ, and r, because in most of the simple
financial models they are presumed to be constant. In case they appear to be time dependent,
this will explicitly be mentioned, or we will add the subscript again. Also, starting in the next
section, we write S instead of St and V instead of Vt, for notational convenience.

4.2 Assumptions

Arbitrage indicates that it is possible in a financial market to make risk-free profits beyond the
interest gained when placing money in a bank account. We assume that there is no arbitrage
and there are no transaction costs. Also we assume the absence of dividends. Furthermore,
hedging continuously in time is assumed to be possible.
These assumptions are valid for all financial models, unless explicitly stated otherwise.

15
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4.3 Itô’s formula

In order to calculate with stochastic processes we have to consider Itô’s Formula. The derivation
of Itô’s Formula can be found in section 3.3 in the book of Rennie and Baxter ([1]).

Definition of Itô’s formula
If X is a stochastic process, satisfying dXt = µ dt+σ dWt and the function f is a deterministic,
twice continuously differentiable function, then f(Xt) is also a stochastic process. Letting

f ′(Xt) =
∂f

∂x
(Xt), and f ′′(Xt) =

∂2f

∂x2
(Xt),

we obtain

df(Xt) = f ′(Xt) dXt +
1
2
f ′′(Xt) dX2

t ,

= f ′(Xt) (µ dt + σ dWt) +
1
2
σ2f ′′(Xt) dt.

Here, all terms up to and including O(dt) are taken into account, and we omit all higher order
terms. After rearranging terms, we find that the stochastic process f(Xt) is given by

df(Xt) =
(

µf ′(Xt) +
1
2
σ2f ′′(Xt)

)
dt + σf ′(Xt) dWt. (4.3.1)

4.4 Feynman-Kac

From the sde dS = µSdt + σSdWt, which was introduced in section 3.3, the Black-Scholes
equation

∂V

∂t
+ µ

∂V

∂s
+

1
2
σ2 ∂2V

∂s2
= 0 (4.4.1)

can be derived, with µ = µ(s, t), σ = σ(s, t) and V = V (s, t), and terminal condition V (s, T ) =
P (s). Here, P (s) is the payoff received at expiry date t = T . This derivation will be considered
in section 5.1.

Meanwhile, we will prove that the expectation V (St, t) = EQ
[
P (ST )

∣∣∣St

]
is equivalent to the

solution of the Black-Scholes equation, by proving the Feynman-Kac formulas1.

Proof:
Using Itô calculus, first write

dV (St, t) =
∂V (St, t)

∂t
dt +

∂V (St, t)
∂St

dSt +
1
2

∂2V (St, t)
∂S2

t

dS2
t + . . . . (4.4.2)

The next step is to assume the stochastic differential equation (SDE)

dSt = µ(St, t)Stdt + σ(St, t)StdWt, (4.4.3)

with dWt ∼ N(0, dt) a Wiener process, as introduced in section 3.2.

1More information on the Feynman-Kac formulas can be found in appendix D.
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Substituting this into equation (4.4.2) yields:

dV (St, t) =
(

∂V (St, t)
∂t

+ µ(St, t)
∂V (St, t)

∂St
+

1
2
σ2(St, t)

∂2V (St, t)
∂S2

t

)
dt

+ σ(St, t)
∂V (St, t)

∂St
dWt. (4.4.4)

From the Black-Scholes equation (4.4.1) we know that

∂V (St, t)
∂t

+ µ(St, t)
∂V (St, t)

∂St
+

1
2
σ2(St, t)

∂2V (St, t)
∂S2

t

= 0, (4.4.5)

such that in dV (St, t) only the stochastic term (containing dWt) remains, i.e.,

dV (St, t) = σ(St, t)
∂V (St, t)

∂St
dWt. (4.4.6)

For the price V (St, t), we can write

V (St, t) = V (ST , T )−
∫ T

t′=t
dV (St′ , t

′),

= V (ST , T )−
∫ T

t′=t
σ(St′ , t

′)
∂V (St′ , t

′)
∂St′

dWt′ . (4.4.7)

Because f(Wt) = σ(St, t)
∂V (St,t)

∂St
is an L2-function and dWt ∼ N(0,dt) is a Wiener process, we

have2

E
[∫ T

t
f(Wt) dWt

∣∣∣St = s

]
= 0. (4.4.8)

Hence, using equation (4.4.7), we can write

V (s, t) = E
[
V (St, t)

∣∣∣St = s
]
,

= E
[
V (ST , T )

∣∣∣St = s
]
− E

[∫ T

t
f(Wt) dWt

∣∣∣St = s

]
,

= E
[
P (ST )

∣∣∣St = s
]
. (4.4.9)

¤

4.5 Self-f inancing strategies

Now consider a portfolio (Φt, Ψt) with value Πt. At time t it contains Φt units of security, i.e.,
stock (stock price is St), and also Ψt units of bond (bond price Bt). So the value of our portfolio
at time t is Πt = ΦtSt + ΨtBt. At the next time instance, two things happen: the old portfolio
changes value, due to the change in St and Bt, and the old portfolio has to be adjusted to give
a new portfolio as instructed by the trading strategy (Φt, Ψt). If the cost of the adjustment is
perfectly matched by the profits or losses made by the portfolio then no extra money is required
from outside − the portfolio is self-f inancing.

Self-f inancing property
If (Φt, Ψt) is a portfolio with stock price St and bond price Bt, then:

(Φt,Ψt) is self-financing ⇔ dΠt = ΦtdSt + ΨtdBt, for all t ≤ T. (4.5.1)
2See appendix E for notes on L2-functions.
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4.6 Put-call parity

In financial mathematics, put-call parity defines a relationship between the price of a call
option V call and a put option V put, which both have an identical strike price K and expiry time
T . For European options the put-call parity relationship will be derived. These options cannot
be exercised before expiry time T . Put-call parity can be derived in a manner that is largely
model independent.

Suppose we buy a stock St and a put option V put, and also we sell a call option V call. At an
arbitrary time t our portfolio Π is worth

Π = St + V put − V call. (4.6.1)

At expiry time T , we make a profit of

ST +max(K−ST , 0)−max(ST −K, 0) =
{

ST + 0− (ST −K) = K, for ST > K,
ST + (K − ST )− 0 = K, for ST ≤ K.

(4.6.2)

Hence, the question is: “What is the value of a portfolio at an arbitrary time t, if it has a
guaranteed prof it of K at t = T?”

Again we assume the presence of a risk-free interest rate r. The money that we had to invest in
the portfolio Π could also be stored at a bank, such that we would have received the risk-free in-
terest rate r. That’s why the portfolio is worth Ker(T−t); else there would certainly be arbitrage.

Thus we have the following relationship between options and the underlying stock:

St + V put − V call = Ker(T−t), for all t ≤ T, (4.6.3)

which is called put-call parity.



Chapter 5

Black-Scholes model

In this chapter, we will take a look at the first financial model: the Black-Scholes model. First,
the model will be derived, and we will show that the Black-Scholes equation can be reduced into
a heat equation. After showing the exact solution, perturbation theory will be applied to the
model and finally we will compare the result with this exact solution.

5.1 Derivation of the Black-Scholes model

Substituting V (S, t) for f in Itô’s Formula (4.3.1) gives:

dV = σS
∂V

∂S
dWt +

(
µS

∂V

∂S
+

1
2
σ2S2 ∂2V

∂S2
+

∂V

∂t

)
dt. (5.1.1)

Now we first need to construct a portfolio.

5.1.1 Hedging: Making a risk-free portfolio

Consider a portfolio Π that contains −Φ units of stock S at time t, i.e., we are short Φ units of
stock, which means we have sold them. Also we buy one option V , i.e., we are long one option
V . The value of our portfolio at time t is Π = V − ΦS. If the value of our portfolio Π changes
dΠ during a small time step dt, we have

dΠ = dV − ΦdS − S dΦ︸︷︷︸
=0

= dV − ΦdS. (5.1.2)

Here dΦ = 0, because the number of stocks in the portfolio can only be changed at the end of
every time step dt, not during the time step itself.

Substitution of equation (5.1.1) into (5.1.2), using Itô’s formula (4.3.1), we find that dΠ satisfies:

dΠ = σS

(
∂V

∂S
− Φ

)
dWt +

(
µS

∂V

∂S
+

1
2
σ2S2 ∂2V

∂S2
+

∂V

∂t
− µΦS

)
dt. (5.1.3)

To make sure we have a risk-free portfolio, we should eliminate the stochastic term: the one
containing dWt. So we take Φ = ∂V

∂S , such that the change in value of the portfolio becomes

dΠ =
(

µS

(
∂V

∂S
− Φ

)
+

1
2
σ2S2 ∂2V

∂S2
+

∂V

∂t

)
dt =

(
1
2
σ2S2 ∂2V

∂S2
+

∂V

∂t

)
dt. (5.1.4)

By storing your money at a bank, instead of investing it, one can receive a risk-free interest rate
r, just like we have seen before, looking at the bond Bt in Chapter 3.1. Then the amount of

19
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money Π (which could have been the value of your portfolio) will produce rΠdt after a small
time step dt, without any risk. So substitution of dΠ = rΠdt into equation (5.1.4) yields

rΠdt =
(

1
2
σ2S2 ∂2V

∂S2
+

∂V

∂t

)
dt. (5.1.5)

After dividing equation (5.1.5) by dt and substitution of Π = V −ΦS with Φ = ∂V
∂S into equation

(5.1.5), we obtain the well-known Black-Scholes equation

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (5.1.6)

5.2 Heat or diffusion equation

We can reduce the Black-Scholes equation (5.1.6) into an equation of the form

∂u

∂τ
=

∂2u

∂x2
, (5.2.1)

which is known as the heat equation or diffusion equation.

For the call option we have

∂V call

∂t
+

1
2
σ2S2 ∂2V call

∂S2
+ rS

∂V call

∂S
− rV call = 0, (5.2.2)

with boundary conditions: V call(0, t) = 0, V call(S, t) ∼ S as S → ∞ and at t = T we have a
terminal condition: V call

T := V call(ST , T ) = max(S −K, 0).

This is a backward equation, with non-constant coefficients. To make it a forward equation, we
measure time backwards from expiry and scale it with σ, writing1

t = T − τ
1
2σ2

⇔ τ =
1
2
σ2(T − t). (5.2.3)

Also we substitute S = Kex and V call = Kv(x, τ). Now the stock price St, which followed a
log-normal distribution, becomes x, which is normally distributed. Also we scale S and V call

with K to make x and v(x, τ) dimensionless. After these substitutions, we obtain

∂v

∂τ
=

∂2v

∂x2
+ (k − 1)

∂v

∂x
− kv, (5.2.4)

with k = r/1
2σ2 and initial condition v(x, 0) = max(ex − 1, 0).

This already looks a lot more like the heat equation (5.2.1). The next step is to substitute
v(x, τ) = eαx+βτu(x, τ) for some constants α and β.

Substituting this into differential equation (5.2.4) yields

βu +
∂u

∂τ
= α2u + 2α

∂u

∂x
+

∂2u

∂x2
+ (k − 1)

(
αu +

∂u

∂x

)
− ku. (5.2.5)

1Deviding t by σ2 is done to make τ dimensionless. From the sde dS = µS dt + σS dWt it follows that

[σ] =
[

1√
t

]
.
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In order to let all terms with u and ∂u
∂x cancel, we have to solve the following system for α and

β: {
β = α2 + (k − 1)α− k,
0 = 2α + (k − 1).

(5.2.6)

The solution of system (5.2.6) is given by
{

α = 1
2(k − 1),

β = −1
4(k + 1)2,

such that v(x, τ) = e
1
2
(k−1)x− 1

4
(k+1)2τu(x, τ) and this indeed gives us the heat equation

∂u

∂τ
=

∂2u

∂x2
, for −∞ < x < ∞, τ > 0, (5.2.7)

with initial condition u(x, 0) = u0(x) = max
(
e

1
2
(k+1)x − e

1
2
(k−1)x, 0

)
.

5.3 Model

In [7] Howison first considers an asset (for example: a stock) whose price is S. This stock price
S can be modeled as a function of time t by the stochastic differential equation (sde)

dS = µS dt + σS dWt, (5.3.1)

in which dWt is the increment of a standard Brownian Motion2 and µ and σ are, respectively,
the drift and volatility of the asset (taken to be constant).

Just like we have seen in the previous sections, we can set up a hedge portfolio Π = V −∆S,
where the choice ∆ = ∂V

∂S makes the portfolio risk-free again.

In absence of arbitrage and transaction costs, the portfolio earns a (constant) risk-free rate r,
so that dΠ = rΠdt. This leads to the well-known Black-Scholes equation

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (5.3.2)

This backward parabolic equation is to be solved with a terminal condition V (S, T ) = P (S),
where P (S) is the payoff received at the expiry date t = T .

An alternative view of the hedging strategy is that it entails pricing with respect to a probability
measure Q that is risk-neutral, rather than the objective (observed) measure P associated with
the sde for the asset price cited above in (5.3.1). That is, if the asset is assumed to follow the
sde (5.3.1), then the discount value of the option at time t is given by

V (St, t)
Bt

= EQ

[
P (ST )

BT

∣∣∣St

]
, (5.3.3)

which is a martingale3.

2See section 3.2.
3See appendix F.
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Here, we will posit the existence of a deterministic r, µ and σ, such that the bond price Bt and
the stock price St follow

Bt = B0 ert, (5.3.4)
St = S0 eµt+σWt , (5.3.5)

where r is the deterministic risk-free interest rate, σ is the stock volatility and µ is the stock drift.

For the option price V (St, t) this yields

V (St, t) = Bt EQ

[
P (ST )

BT

∣∣∣St

]
,

=
Bt

BT
EQ

[
P (ST )

∣∣∣St

]
,

= e−r(T−t) EQ
[
P (ST )

∣∣∣St

]
. (5.3.6)

In practice, the hedging strategy above is impractical and in particular it is impossible to hedge
continuously in time, or at each t. For this reason we introduce the hedge parameter gamma,

Γ =
∂2V

∂S2
. (5.3.7)

This gamma is a measure of the risk incurred in rehedging at non-infinitesimal time intervals
δt. To see this, consider a portfolio Π = V − ∆tS, with ∆t = ∂V

∂S evaluated at (S, t), that is
perfectly hedged at time t. Assume that no trading takes place over the interval (t, t + δt).

Using Taylor’s theorem, the change in the portfolio over this interval is δΠ = δV − ∆tδS. In
the infinitesimal limit where δt → dt, δΠ is equal to the risk-free return rΠdt. Over the finite
interval we have a difference between the return on the portfolio and the risk-free interest rate.
This difference is called the hedging error, and is given by

δΠ−Π
(
erδt − 1

)
=

∂V

∂t
δt +

1
2

∂2V

∂S2
δS2 − r

(
V − ∂V

∂S
δS

)
δt + o (δt) ,

=
1
2
σ2S2

(
δW 2 − δt

) ∂2V

∂S2
+ o (δt) . (5.3.8)

To obtain this hedging error, we have used the Black-Scholes equation (5.1.6) and the fact that
to this order δS2 = σ2S2δW 2, where δW ∼ N (0, δt) is the small change in a Wiener process W .4

The hedging error (5.3.8) seems to be proportional to the random variable δW 2 − δt, whose
expectation is zero, multiplied by the option’s gamma Γ = ∂2V

∂S2 .

For call options we have

Γ(S, T ) =
d2

dS2
max (S −K, 0) = δ (S −K) , (5.3.9)

where δ(·) is the Dirac delta function. For put options we have the same gamma.

For call options without dividends [∆]∞S=0 = 1 for all t, such that
∫∞
0 Γ(S, t) dS = 1. As t → T

the gamma of such an option is an approximation of the delta function.
4See section 3.2.
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5.4 Exact solution

As a first example we consider a call option (or, by put-call parity5, a put option) in the
standard Black-Scholes model. The payoff is given by P (S) = max(S − K, 0) and there is a
famous explicit formula for the option value,

V (S, t) = SN(d+)−Ke−r(T−t)N(d−), (5.4.1)

where6

d± =
log( S

K ) +
(
r ± 1

2σ2
)
(T − t)

σ
√

T − t
, (5.4.2)

and
N(x) =

1√
2π

∫ x

−∞
e−s2/2ds (5.4.3)

is the standard normal cumulative density function.

5.5 Vanilla options near expiry: boundary layers and scalings

In this section a first application of perturbation theory on a financial model will be presented
to show the method and find an approximation. Because an exact solution is available, we
are able to compare the results.

Boundary layers
For small time, we can derive an approximation to the exact solution (5.4.1) as follows. We
will construct two ‘boundary layers’: one when the stock price is near the strike price, i.e. near
S = K, and one when time t is close to expiry time T , i.e. near t = T .

These artificial (boundary) layers are illustrated in figure 5.1. We have constructed them
to show the method of asymptotic expansions applied to this basic financial model.

Note that we will only consider the region inside the layer near maturity, i.e. when T − t is
small. In this case, the other regions are not taken into account. In particular we will look
inside a layer around S = K. Here, we have an inner expansion and an inner solution. In
the rest of the layer near t = T , i.e., when the spot S is far from the strike K, we have an outer
expansion and outer solution.7

Scalings
First of all, we measure time backwards from expiry and scale it with σ2 to make it dimensionless,
writing

t = T − t′

σ2
⇔ t′ = (T − t)σ2. (5.5.1)

After this scaling the Black-Scholes equation (5.1.6) transforms into

∂V

∂t′
=

1
2
S2 ∂2V

∂S2
+ αS

∂V

∂S
− αV, (5.5.2)

5See section 4.6.
6Note that traditionally d1 and d2 are used instead of d+ and d−.
7Here, Howisons nomenclature is quite unusual, but practical: the outer solution is inside one of the boundary

layers. The inner solution is located in the overlap of the two layers.
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with α = r
σ2 dimensionless. Suppose that α = O(1) and scaled time is small, such that τ = t′/εη

with 0 < ε ¿ 1. This has the effect of stretching the area near t = T . At this point the value
of scaling parameter η is not yet known; we will determine it later on.

The scaled Black-Scholes equation (5.5.2) now becomes

1
εη

∂V

∂τ
=

1
2
S2 ∂2V

∂S2
+ αS

∂V

∂S
− αV. (5.5.3)

Figure 5.1: In this case there are 2 artificial layers: around t = T and S = K.

5.6 Outer problem

In figure 5.1 it is shown that, when the spot S is far from the strike K, we have a regular
outer expansion

Vε(S, τ) =
m∑

n=0

εnηVn(S, τ) +O
(
εη(m+1)

)
= V0(S, τ) + εηV1(S, τ) + . . . , (5.6.1)

which gives

∂

∂τ
(V0(S, τ) + εηV1(S, τ) + . . .) = εη 1

2
S2 ∂2

∂S2

(
V0(S, τ) + εηV1(S, τ) + . . .

)

+ εηαS
∂

∂S

(
V0(S, τ) + εηV1(S, τ) + . . .

)

− εηα
(
V0(S, τ) + εηV1(S, τ) + . . .

)
.

The O(1) equation becomes ∂V0
∂τ = 0, and for O (εη) we have8

∂V1

∂τ
=

1
2
S2 ∂2V0

∂S2︸ ︷︷ ︸
=0

+α

(
S

∂V0

∂S
− V0

)
= α

(
S

∂V0

∂S
− V0

)
,

8If the spot S is far from the strike K, note that in either region V (hence, also V0) is linear.
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i.e.,
∂V1

∂τ
=

{
α(S − (S −K)) = αK, for S À K,
0, for S ¿ K.

The term 1
2S2 ∂2V0

∂S2 in the O (εη) equation vanishes, because for |S −K| À εηK (i.e., if the spot
is far from the strike) we have Γ = ∂2V

∂S2 = 0. This can be seen in figure 5.2.

Figure 5.2: European call option payoff max(St−K, 0) at different times t < T before maturity
(blue lines) and at maturity (red line) t = T (here: strike K = 30).

5.7 Outer solution

The solution of the O(1) outer equation with final condition V0(S, T ) = P (S) = max(S −K, 0)
is given by V0(S, t) = max(S − K, 0). Next, solving the O(εη) equation with final condition
V1(S, T ) = 0, yields

V1(S, t) =
{

αKτ, for S À K,
0, for S ¿ K,

such that the expansion becomes

Vε = V0 + εηV1 =
{

S −K + εηαKτ, for S À K,
0, for S ¿ K.

(5.7.1)

which we can rewrite as

V0 + εηV1 =
{

S −K(1− αεητ), for S −K À εηK, far above the strike,
0, for S −K ¿ εηK, far below the strike.

(5.7.2)
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Note that in this case, we have a layer of width εη.

Later on, after applying maximum balance, η turns out to be equal to 2. This implies that the
previous expression (5.7.2) becomes equivalent to the first two terms in the small time expansion
in unscaled variables of the function

{
S −Ke−r(T−t), for S > Ke−r(T−t),

0, for S < Ke−r(T−t).
(5.7.3)

The components of the function (5.7.3) are the value of the forward contract in which the option
holder is compelled to buy the asset, corresponding to certain exercise, and zero corresponding
to no exercise.

5.8 Inner problem

However, as remarked earlier and as can be seen in figure 5.2, we expect large gamma near the
strike K. Hence, the term containing the second derivative with respect to S cannot be ignored.
We deal with this by rescaling if S is near the strike price K. So, let us introduce a local inner
variable

x =
S −K

ενK
, (5.8.1)

such that we have scaled S−K with εν and we divide by K to make x dimensionless. The value
of ν will be determined later, after applying maximum balance.

Also we introduce a scaling

v(x, τ) =
V (S, τ)
ενK

, (5.8.2)

such that we scale V (S, τ), which is O(εν), with εν to have v = O(1) and again we devide by K
to make v(x, τ) dimensionless.

After this second scaling, the scaled Black-Scholes equation (5.5.3) becomes the dimensionless
equation

1
εη

∂v

∂τ
=

1
2ε2ν

(1 + ενx)2
∂2v

∂x2
+

α

εν
(1 + ενx)

∂v

∂x
− αv, (5.8.3)

and the payoff is9

v(x, 0) =
V (S, 0)
ενK

=
max(S −K, 0)

ενK
= max(x, 0). (5.8.4)

Next, we will calculate the solution to this inner problem, and after that we will try to match it
with the outer solution (5.7.2).

First, assume ν and µ to be integer, such that the solution can be expanded in integer powers:

vε(x, τ) = v0(x, τ) + εv1(x, τ) +O (
ε2

)
, (5.8.5)

which gives

1
εη

∂

∂τ
(v0(x, τ) + εv1(x, τ) + . . .) =

1
2ε2ν

(1 + ενx)2
∂2

∂x2
(v0(x, τ) + εv1(x, τ) + . . .)

+
α

εν
(1 + ενx)

∂

∂x
(v0(x, τ) + εv1(x, τ) + . . .)

− α (v0(x, τ) + εv1(x, τ) + . . .) . (5.8.6)
9On page 5 of [7] Howison claims v(x, 0) = ε max(x, 0), which is incorrect.
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Maximum balance10 over the 3 terms of equation (5.8.6) gives η = 2ν. A nice integer solution
for this constraint is choosing η = 2 and ν = 1, which yields

∂

∂τ
(v0(x, τ) + εv1(x, τ) + . . .) =

1
2
(1 + εx)2

∂2

∂x2
(v0(x, τ) + εv1(x, τ) + . . .)

+ αε(1 + εx)
∂

∂x
(v0(x, τ) + εv1(x, τ) + . . .)

− αε2 (v0(x, τ) + εv1(x, τ) + . . .) . (5.8.7)

The O(1) problem becomes

∂v0

∂τ
=

1
2

∂2v0

∂x2
, with v0(x, 0) = max(x, 0). (5.8.8)

For x → ±∞ the conditions for this equation are, consistently with the payoff,

lim
x→+∞

v0(x, τ)
x

= 1,

lim
x→−∞ v0(x, τ) = 0.

If x → −∞, S will stay inside the layer, but it will go towards the lower boundary of the layer,
because S

K − 1 → −∞. In that case v(x, τ) will go to zero.

5.9 Inner solution

The inner problem is much simpler than the original problem. We will use one of the five basic
invariance properties of the diffusion equation to choose a local variable correctly.

Five basic invariance properties of the diffusion equation
Suppose we have the initial value problem

{
ut = kuxx,

u(x, 0) = φ(x).
(5.9.1a)
(5.9.1b)

Our method is tantamount to solving the initial value problem (5.9.1a)-(5.9.1b) for a particular
φ(x) and then build the general solution from this particular one. Therefore we will use the
following five basic invariance properties:11

1. The translate u(x− y, t) of any solution u(x, t) of the pde (5.9.1a) is another solution for
any fixed y.
Proof :

∂

∂t
u(x− y, t) =

∂

∂t
u(x, t) and

∂2

∂x2
u(x− y, t) =

∂2

∂x2
u(x, t).

2. Any derivative (ux or ut, or uxx, etc.) of a solution u(x, t) of the pde (5.9.1a) is again a
solution, because u(x, t) ∈ C∞ for t > 0.
Proof : Suppose that u(x, t) satisfies the heat equation ut = kuxx. Define y := Du(x, t),
where D is an operator that can be any derivative of u(x, t). Then, yt = (Du)t = D(ut) =
D(kuxx) = k(Du)xx = kyxx, because derivatives can be interchanged using u(x, t) ∈ C∞.
Hence, any derivative y = Du(x, t) of any solution u(x, t) also satisfies the heat equation.

10See chapter 2. This is also referred to as signif icant degeneration or distinguished limit.
11See section 2.4 of [11].
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3. A linear combination of solutions ui(x, t) of the heat equation (5.9.1a) is again a solution
of (5.9.1a).
Proof : By linearity:

∂

∂t

(∑

i

ui(x, t)

)
=

∑

i

∂

∂t
ui(x, t) and

∂2

∂x2

(∑

i

ui(x, t)

)
=

∑

i

∂2

∂x2
ui(x, t).

4. An integral of solutions of the pde (5.9.1a) is again a solution.
Proof : If S(x, t) is a solution of problem (5.9.1a), then so is the translate S(x− yi, t) for
any constant yi, by property 1. and so is S(x− yi, t)g(yi). Multiplication by the constant
∆y := yi+1−yi yields that also S(x−yi, t)g(yi)∆yi is a solution of the pde (5.9.1a). Thus,
summation over all yi and letting ∆yi → 0 implies that

v(x, t) =
∫ ∞

−∞
S(x− y, t)g(y) dy,

is a solution of the heat equation (5.9.1a) for any function g(y), as long as this improper
integral converges appropriately. In fact, property 4. is just a limiting form of property 3.

5. If u(x, t) is a solution of the pde (5.9.1a), so is the dilated function u(
√

ax, at), for any
a > 0.
Proof : We can prove this using the chain rule:
Let v(x, t) := u(

√
ax, at). Then we have vt =

[
∂(at)

∂t

]
ut = aut and vx =

[
∂(
√

ax)
∂x

]
ux and

vxx =
√

a · √auxx = auxx.

Using the dilated function u(
√

ax, at) in property 5. we know that the pde in (5.8.8) has
similarity solution12

f

(
x√
τ

)
:=

v0(x, τ)√
τ

. (5.9.2)

Also we introduce a local variable
ξ =

x√
τ
. (5.9.3)

After substituting the transformations (5.9.2) and (5.9.3) into the O(1) heat equation (5.8.8),
and multiplying by 2

√
τ , we obtain the following ode in f(ξ):

f ′′ + ξf ′ − f = 0, (5.9.4)

with boundary conditions
lim

ξ→−∞
f = 0,

lim
ξ→∞

f

ξ
= 1.

(5.9.5)

The solution can be found by differentiating equation (5.9.4) once with respect to ξ,

d
dξ

(
f ′′(ξ) + ξf ′(ξ)− f(ξ)

)
= 0,

⇒ d
dξ

(
f ′′(ξ) + ξf ′′(ξ)

)
= 0, (5.9.6)

12See appendix G.
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which gives us an ordinary differential equation (ode) in f ′′. The solution of ode (5.9.6) is
given by

f ′′(ξ) = Ae−
1
2
ξ2

= c2 n(ξ). (5.9.7)

This is again a differential equation, which has a solution that is given by

f(ξ) = c2ξ N(ξ) + c2 n(ξ) + c1ξ + c0. (5.9.8)

From the boundary conditions (5.9.5) we find that c1 = c0 = 0 and c2 = 1, such that

f(ξ) = ξ N(ξ) + n(ξ). (5.9.9)

In the original variables, the solution is given by

v0(x, τ) = xN

(
x√
τ

)
+
√

τn

(
x√
τ

)
, (5.9.10)

where N(·) is as above in (5.4.3) and n(·) is its derivative e−x2
/
√

2π.

This solution can also directly be obtained by application of Green’s functions.13

The approximation we found in equation (5.9.10) and equation (H.0.21) is valid in the inner
region, while in the outer region we have the outer expansion (5.7.2). In more complicated prob-
lems one can often find a uniformly valid expansion, holding in both inner and outer regions, by
calculating ’outer+inner−common’, in which ’outer’ and ’inner’ are the expansions we already
found, and ’common’ is the intermediate limiting behavior of these expansions used in matching.

In our case the outer expansion is so simple that it and the common expansion coincide, and
so the inner expansion is in fact uniformly valid and can be used as an approximation for all S
and small t′.

So a 1-term approximation is given by

vε(x, τ) = v0(x, τ) +O(ε),

= x N

(
x√
τ

)
+
√

τ n

(
x√
τ

)

=
S/K − 1

ε
N

(
S/K − 1
σ
√

T − t

)
+

σ

ε

√
T − t n

(
S/K − 1
σ
√

T − t

)
.

In the original variables, this expression is

V (S, t) ∼ V0(S, t) ∼ εK v0(x, τ)

= (S −K) N

(
S/K − 1
σ
√

T − t

)
+ σ

√
T − tK n

(
S/K − 1
σ
√

T − t

)
. (5.9.11)

Note that the parameter ε, which is artificial, does not appear in the expression.

In figure 5.3 one can see the approximation (1-term inner expansion) we found in equation
(5.9.11) compared to the exact solution. As can be seen, both approximations are very close to
the exact solution.
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Figure 5.3: The approximation with the 1-term expansion (green) versus the exact solution
(red).

Figure 5.4: The difference between approximation with 1-term expansion and the exact solution.
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To see how close this approximation exactly is, we can subtract the exact solution, and make a
plot of the discrepancy between the approximation and the exact solution, see figure 5.4.

Using equation (5.8.7) again, the O(ε) problem becomes

∂v1

∂τ
=

1
2

∂2v1

∂x2
+ x

∂2v0

∂x2
+ α

∂v0

∂x
, with v1(x, 0) = 0. (5.9.12)

As v0 satisfies the diffusion equation ∂tv0 − 1
2∂2

xv0 = 0, again we will use some of the the five
basic invariance properties of the diffusion equation to find:

• If uτ − 1
2uxx = 0 and vτ − 1

2vxx = u, then a particular solution is up(x, τ) = τu.

• If u is as above and vτ − 1
2vxx = xu, then a particular solution is vp(x, τ) = xτu + 1

2τ2ux.

• N ′′(ξ) + ξN ′(ξ) = 0.

So a particular solution is readily found and, as it vanishes at τ = 0, it is the solution we need:

v1(x, τ) = xτ
∂2v0

∂x2
+

1
2
τ2 ∂3v0

∂x3
+ ατ

∂v0

∂x
,

=
1
2
x
√

τ n

(
x√
τ

)
+ ατ N

(
x√
τ

)
. (5.9.13)

For the 2-term approximation of v, this gives

v(x, τ) ∼ v0(x, τ) + εv1(x, τ),

= x N

(
x√
τ

)
+
√

τ n

(
x√
τ

)
+ ε

(
1
2
x
√

τ n

(
x√
τ

)
+ ατ N

(
x√
τ

))
,

= (x + εατ) N

(
x√
τ

)
+
√

τ(1 +
1
2
εx) n

(
x√
τ

)
. (5.9.14)

Furthermore the 2-term inner expansion V (S, τ) = εKv(x, τ) ∼ εK(v0 + εv1) is again uniformly
valid. In the original variables, the expression reads

V (S, t) ∼ (
S −K + rK(T − t)

)
N

(
S/K − 1
σ
√

T − t

)
+ σ

√
T − t(S + K) n

(
S/K − 1
σ
√

T − t

)
. (5.9.15)

Figure 5.5 presents the approximation (with the 2-term inner expansion) we found in (5.9.15)
compared to the exact solution and the approximation (1-term inner expansion) we found in
(5.9.11). As can be seen, both approximations are very close to the exact solution.

To see how close the approximations exactly are, we can subtract the exact solution, and make
a plot of the ‘error’, see figure 5.6. This figure makes clear that the 2-term expansion (5.9.15)
indeed is a better approximation than the 1-term expansion (5.9.11), because the error (blue
line) is much closer to zero.

13The steps we need to take for this, are being explained in [11], on the pages 47− 52. See appendix H.
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Figure 5.5: The approximation with the 2-term expansion (blue) versus 1-term expansion (green)
and the exact solution (red).

Figure 5.6: The difference between approximation with the 2-term expansion (blue) versus
1-term expansion (green) and the exact solution.
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5.10 Taylor expansion

After substitution of τ̄ = T − t we can show that these expressions (5.9.11) and (5.9.15) agree
to O (

ε2
)

with the small-time expansion of the exact solution below:

V (S, τ) = S N(d+)−Ke−rτ N(d−), (5.10.1)

with

d± =
log( S

K ) +
(
r ± 1

2σ2
)
τ̄

σ
√

τ̄
, (5.10.2)

and

N(x) =
1√
2π

∫ x

−∞
e−s2/2ds. (5.10.3)

The Taylor expansion of V (S, τ̄) around τ̄ = 0 is given by

V Taylor(S, τ̄) =
∞∑

n=0

τ̄n

n!
∂n

∂τ̄n
V Taylor

τ̄=0 , (5.10.4)

= V Taylor

τ̄=0 + τ̄
∂

∂τ̄
V Taylor

τ̄=0 +
1
2
τ̄2 ∂2

∂τ̄2
V Taylor

τ̄=0 +O (
τ̄3

)
. (5.10.5)

For the first term, V Taylor

τ̄=0 , we have

V Taylor

τ̄=0 =
{

S −K, for S > K,
0, for S ≤ K,

(5.10.6)

because this is just the payoff function at expiry.

For the second term, ∂
∂τ V Taylor

τ̄=0 , we find

∂

∂τ̄
V Taylor

τ̄=0 =
∂V

∂τ̄
(S, 0) =

∂V

∂d+

∂d+

∂τ̄
+

∂V

∂d−
∂d−
∂τ̄

,

=
{ −rK, for S > K,

0, for S ≤ K.

Hence, the Taylor expansion (5.10.5) becomes

V T (S, τ̄) = V Taylor

τ̄=0 + τ̄
∂

∂τ̄
V Taylor

τ̄=0 =
{

S −K(1− τ̄ r) for S > K,
0, for S ≤ K.

(5.10.7)

In original variables this is

V Taylor

τ̄=0 (S, t) =
{

S −K + rK(T − t) for S > K,
0, for S ≤ K.

(5.10.8)

The Taylor expansion (5.10.8) agrees up to O(ε2) with the 1-term and 2-term expansions we
found in (5.9.11) and (5.9.15).
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5.11 Discussion

In this section a first application of perturbation theory on a financial model has been presented
in order to show the techniques and complications of the method of asymptotic expansions in a
financial context. In the simple example of the Black-Scholes model an exact solution is avail-
able, so that it is possible to compare results.

First, we have constructed two artificial layers: a boundary layer at the option maturity date
and an internal layer at the strike price. Next, the method of asymptotic expansions has been
applied, in order to find a solution of the Black-Scholes equation (5.3.2). Comparison between
the resulting asymptotic expansion and the exact solution is very useful: we can check if the
results are consistent. It also indicates how accurate the approximation is.

Here, applying perturbation theory actually gives the same result as making a Taylor series of
the exact solution around τ̄ = T − t = 0. The more accurate the expansion (i.e., higher order
terms are taken into account), the better the approximation will become.

On page 8 of his paper [7] Howison is showing some figures containing this section’s results.
Here, he plots the approximate call value minus the exact value as a function of moneyness
S/K for different times to expiry. In general, the approximation is remarkably good for these
practical parameter values, because the error is very small. Near S = K (or S/K = 1) the
error is a bit larger. This can be explained by the size of the risk factor Γ = ∂2V

∂S2 , which is a
Dirac delta function around S = K. Far from the strike, the option price is linear in S if the
option is far in the money (itm), and zero if the option is far out of the money (otm). In these
cases the second derivative is zero. At S = K, when the option is at the money (atm) we have
an infinite Γ. In this case, the second derivative ∂2V

∂S2 contributes to the pde for the option price V .

Our opinion
Generally speaking, we think that the result of applying perturbation theory on the Black-
Scholes model is not very useful. For this simple model an exact solution is available, so an
asymptotic approximation is not necessary. Besides, the approximation will never be as accu-
rate as the exact solution. However, constructing these artificial layers is an instructive way
to show the method and to understand how an asymptotic expansion analysis can be done.
Moreover, the results can be compared, because this exact solution is available. Due to this it
is possible to observe the accuracy of the method.

This can be seen as a first step in applying perturbation theory on financial models. After
understanding this, more complicated models can be considered.



Chapter 6

CEV models

In this chapter, we will consider a second financial model: the constant elasticity of variance
(CEV) model, which is an improved version of the Black-Scholes model.

Using the CEV functions, we can calculate the theoretical price, sensitivities, and implied vola-
tility of options, by applying a valuation technique based on the constant elasticity of variance
option pricing model. With this model we consider the possibility that the volatility of the
underlying asset depends on the price of the underlying asset.

This model is more realistic than the ‘ordinary’ Black-Scholes model, because studies have shown
that price variances do indeed change as the stock price changes, while the Black-Scholes model
assumes a constant stock price volatility, regardless of the level of the stock price.

6.1 Derivation of the CEV model

Let us change the stochastic differential equation (sde) in (5.3.1) into

dS = µS dt + σ̃Sγ/2dWt, where γ 6= 2. (6.1.1)

Here
σ̃ = S

1− γ
2

0 σ, (6.1.2)

with S0 = S(0) the stock price at t = 0, to make sure that the dimensions of S2
0

(
S
S0

)γ
are

correct (euro2, instead of euroγ).

So, for the change in the option price dV we have, using Itô’s formula (4.3.1),

dV = σ̃Sγ/2 ∂V

∂S
+

(
µS

∂V

∂S
+

1
2
σ̃2Sγ ∂2V

∂S2
+

∂V

∂t

)
dt. (6.1.3)

Again we construct a portfolio Π = V − φS, which - using sde (6.1.1) and equation (6.1.3) -
gives

dΠ = dV − φ dS,

= σ̃Sγ/2 ∂V

∂S
+

(
µS

∂V

∂S
+

1
2
σ̃2Sγ ∂2V

∂S2
+

∂V

∂t

)
dt− φµSdt− φσ̃Sγ/2dWt,

= σ̃Sγ/2

(
∂V

∂S
− φ

)
dWt +

(
µS

(
∂V

∂S
− φ

)
+

1
2
σ̃2Sγ ∂2V

∂S2
+

∂V

∂t

)
dt.
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Once again we choose φ = ∂V
∂S to eliminate the stochastic dWt term. This gives

dΠ =
(

1
2
σ̃2Sγ ∂2V

∂S2
+

∂V

∂t

)
dt. (6.1.4)

Storing money at a bank account gives a risk-free interest rate r, so dΠ = rΠdt. Substituting
this into (6.1.4) yields

rΠdt =
(

1
2
σ̃2Sγ ∂2V

∂S2
+

∂V

∂t

)
dt. (6.1.5)

Using Π = V − φS with φ = ∂V
∂S gives

r

(
V − ∂V

∂S
S

)
dt =

(
1
2
σ̃2Sγ ∂2V

∂S2
+

∂V

∂t

)
dt, (6.1.6)

which, after division by dt and reordering the terms, becomes the CEV equation

∂V

∂t
+

1
2
σ̃2Sγ ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (6.1.7)

In original variables, the CEV equation (6.1.7) is given by

∂V

∂t
+

1
2
σ2S2

0

(
S

S0

)γ ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (6.1.8)

The difference from the previous Black-Scholes model is that the volatility σ̃ is now S-dependent
for γ 6= 2. The model is used to represent a ‘leverage’ effect whereby the impact of a given
stochastic change dWt is assumed to be greater when the asset price is small than when it is
large, and thus γ is assumed to be less than the Black-Scholes value: γ < 2.

The parameters S0 and σ̃ are not independent, but writing volatility at a given price level (for
example: S0 = K) gives the same at-the-money1 volatility for options with strike K as γ varies.

Calculating explicit solutions is thus much less straightforward, but the asymptotic procedure
is virtually the same as for the case γ = 2 (the ‘ordinary’ Black-Scholes model).

6.2 Scalings

As before we measure time backwards from expiry and scale it with σ2, writing t = T − t′/σ2

such that t′ = T − tσ2. After this scaling again we have

∂V

∂t′
=

1
2
S2 ∂2V

∂S2
+ αS

∂V

∂S
− αV, (6.2.1)

with α = r
σ2 dimensionless. Suppose that α = O(1) and scaled time is small, such that τ = t′/ε2

with 0 < ε ¿ 1.

6.3 Outer expansion

For the CEV equation (6.2.1) above, this gives

∂V

∂τ
= ε2 1

2
S2 ∂2V

∂S2
+ ε2αS

∂V

∂S
− ε2αV, (6.3.1)

which is exactly the same as the previously used outer expansion (see section 5.6).
1An option is at the money if the strike price K of the option is equal to the market price S of the underlying

security.
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6.4 Inner expansion

For the inner problem, we first introduce a local variable

x =
S −K

εK
, (6.4.1)

such that x is dimensionless, and S −K is scaled by ε.

Also we introduce a time rescaling

v(x, τ) =
V (S, τ)

εK
, (6.4.2)

such that v is dimensionless, and V (S, τ) is scaled with ε, where τ = (T−t)σ2

ε2 .

For the derivatives in the replaced CEV equation (6.1.8) this gives

∂V

∂t
=

∂V

∂τ

∂τ

∂t
= −σ2

ε2

∂V

∂τ
= −σ2

ε2

∂(εKv)
∂τ

= −σ2K

ε

∂v

∂τ
,

∂V

∂S
=

∂V

∂x

∂x

∂S
=

1
εK

∂V

∂x
=

1
εK

∂(εKv)
∂x

=
1

εK

∂v

∂x
,

∂

∂S
=

1
εK

∂

∂x
⇒ ∂2V

∂S2
=

1
εK

∂2v

∂x2
.

Thus the replaced CEV equation (6.1.8) transforms into

σ2K

ε

∂v

∂τ
=

1
2
σ2S2−γ

0 (1 + εx)γKγ 1
εK

∂2v

∂x2
+ r(1 + εx)K

∂v

∂x
− εKrv,

⇒ ∂v

∂τ
=

1
2

(
S0

K

)2−γ

(1 + εx)γ ∂2v

∂x2
+ ε

r

σ2
(1 + εx)

∂v

∂x
− ε2 r

σ2
v,

⇒ ∂v

∂τ
=

1
2

(
S0

K

)2−γ

(1 + εx)γ ∂2v

∂x2
+ εα(1 + εx)

∂v

∂x
− ε2αv,

such that the inner equation becomes

∂v

∂τ
=

1
2
κ2(1 + εx)γ ∂2v

∂x2
+ εα(1 + εx)

∂v

∂x
− ε2αv. (6.4.3)

Here κ2 = (S0/K)2−γ , and we have the same payoff as before: v(x, 0) = max(S −K, 0).

First we rescale time by setting τγ = τκ2, and again we expand

vε(x, τγ) = v0(x, τγ) + εv1(x, τγ) +O (
ε2

)
, (6.4.4)

which gives

κ2 ∂

∂τγ

(
v0(x, τγ) + εv1(x, τγ) + . . .

)
=

1
2
κ2(1 + εx)γ ∂2

∂x2

(
v0(x, τγ) + εv1(x, τγ) + . . .

)

+ εα(1 + εx)
∂

∂x

(
v0(x, τγ) + εv1(x, τγ) + . . .

)

− ε2α
(
v0(x, τγ) + εv1(x, τγ) + . . .

)
, (6.4.5)
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Because this appears to be the same problem as the previous one for v0, in (5.9.12), we will
obtain an inner solution that is similar to the one in (5.9.13), namely,

v(x, τ) ∼ v0(x, τ) + εv1(x, τ) = (x + εατ) N

(
κx√

τ

)
+ κ

√
τ

(
1 +

1
4
εγx

)
n

(
κx√

τ

)
. (6.4.6)

When γ = 2, the approximation (6.4.6) reduces to the previous expression (5.9.14).

In original variables, we have the approximation

V (S, t) = εKv(x, τ) ∼ εK
(
v0(x, τ) + εv1(x, τ)

)
,

= εK

(
(x + εατ) N

(
κx√

τ

)
+ κ

√
τ

(
1 +

1
4
εγx

)
n

(
κx√

τ

))
,

=
(
S −K + rK(T − t)

)
N

(
κ(S/K − 1)

σ
√

T − t

)
,

+ κσ
√

T − t

(
γS + (4− γ)K

4

)
n

(
κ(S/K − 1)

σ
√

T − t

)
. (6.4.7)

In figure 6.1 the CEV values for a call option are presented for different values of γ < 2. The
absolute and relative differences between the γ = 2 case (‘ordinary’ Black-Scholes model) and
CEV values with γ < 2 can be seen in figure 6.2 and 6.3 respectively.

Figure 6.1: CEV values (call option) for different γ < 2
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Figure 6.2: Absolute difference between the γ = 2 case (‘ordinary’ Black-Scholes model) and
CEV values with γ < 2.

Figure 6.3: Relative difference (%) between the γ = 2 case (‘ordinary’ Black-Scholes model) and
CEV values with γ < 2.
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Chapter 7

Fast mean-reverting volatility

Boundary-layer techniques can be applied in the analysis of fast mean-reverting stochastic
volatility models. In these models the volatility itself is assumed to follow a stochastic process
while the asset price is assumed to follow the lognormal process as before.1

{
dSt =µtStdt + σtStdWt,

dσt = Mtdt + ΣtdW̃t.

(7.0.1a)

(7.0.1b)

Here Mt and Σt are the drift and the volatility of the volatility σt respectively. The instantaneous
correlation between the Brownian motions Wt and W̃t is denoted by ρ, i.e.,2

E
[
dWt dW̃t

]
= ρ dt.

A well-known example of a stochastic volatility model is the Heston model, for which

d(σ2
t ) = −κ (σt − σ̄∞) dt + θσtdW̃t, (7.0.2)

for constants κ > 0, θ and σ̄∞.

Leaving out the stochastic part (containing dW̃t), we have

dσ2
t

dt
=

{ −κ (σt − σ̄∞) ≤ 0, for σt ≥ σ̄∞,
, , > 0, for σt < σ̄∞,

(7.0.3)

such that in the long term the volatility σt will always return to its equilibrium value σ̄∞. That is
why this model is called mean-reverting. The fast mean-reversion is caused by the parameter
κ, which we will assume to be quite large. This will be explained in terms of time scales in
section 7.2.

7.1 Derivation of the fast mean-reverting stochastic volatility
model

Suppose we have the following model:3

{
dS = rS dt + σS dWt,

dσ = (M − λΣ)dt + Σ dW̃t,

(7.1.1a)

(7.1.1b)

1Therefore we write σt instead of σ in this case.
2See chapter 3.2.
3Note that we omit the subscripts from here on, for notational convenience.

41



42 CHAPTER 7. FAST MEAN-REVERTING VOLATILITY

where λ is the market price of volatility risk4, and we know that E
[
dWt dW̃t

]
= ρ dt.

The value V of an option is now a function of the stock price S, time t and volatility σ:
V = V (S, σ, t). Using Itô’s formula (4.3.1) we obtain up to and including O(dt) the differential

dV =
∂V

∂t
dt +

1
2

∂2V

∂S2
dS2 +

1
2

∂2V

∂σ2
dσ2 +

∂2V

∂S∂σ
dσdS +

∂V

∂σ
dσ +

∂V

∂S
dS. (7.1.2)

Substituting dS and dσ as given in definition (7.1.1a) and (7.1.1b) resp. into equation (7.1.2),
yields

dV =
(

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+

1
2
Σ2 ∂2V

∂σ2
+ σΣSρ

∂2V

∂S∂σ
+ (M − λΣ)

∂V

∂σ
+ rS

∂V

∂S

)
dt

+
∂V

∂σ
ΣdW̃t +

∂V

∂S
σSdWt. (7.1.3)

Again we will set up a portfolio Π.5 Because now we have two stochastic parts (due to two
Brownian motions dWt and dW̃t), we have two hedge parameters ∆ and ∆1, such that

Π = V −∆S −∆1V1. (7.1.4)

So our portfolio Π contains the option whose value is V (S, σ, t), a quantity −∆ of the stock S,
and a quantity −∆1 of another asset whose value V1 depends on the stock price S, volatility σ
and time t. Note that the quantities ∆ and ∆1 can also become negative in case you sell stock
(going short).

The change dΠ in this portfolio in a time dt is given by

dΠ = dV −∆dS −∆1dV1, (7.1.5)

=
(

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+

1
2
Σ2 ∂2V

∂σ2
+ σΣSρ

∂2V

∂S∂σ
+ (M − λΣ)

∂V

∂σ
+ rS

∂V

∂S

)
dt

+
∂V

∂σ
ΣdW̃t +

∂V

∂S
σSdWt −∆(rSdt + σSdWt)−∆1

(
∂V1

∂σ
ΣdW̃t +

∂V1

∂S
σSdWt

)

− ∆1

(
∂V1

∂t
+

1
2
σ2S2 ∂2V1

∂S2
+

1
2
Σ2 ∂2V1

∂σ2
+ σΣSρ

∂2V1

∂S∂σ
+ (M − λΣ)

∂V1

∂σ
+ rS

∂V1

∂S

)
dt.

To make the portfolio instantaneously risk-free, all terms containing dWt and dW̃t must vanish.
That is true if

∂V

∂S
−∆1

∂V1

∂S
−∆ = 0, and

∂V

∂σ
−∆1

∂V1

∂σ
= 0,

i.e.,

∆1 =

(
∂V
∂σ

)
(

∂V1
∂σ

) , and (7.1.6a)

∆ =
∂V

∂S
−

(
∂V
∂σ

)
(

∂V1
∂σ

) ∂V1

∂S
. (7.1.6b)

4A definition and explanation of this concept will be given later on in this chapter.
5Based on the method used in [3] on p. 4-6.
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Substituting ∆1 and ∆ as above into equation (7.1.5), yields

dΠ =
(

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+

1
2
Σ2 ∂2V

∂σ2
+ σΣSρ

∂2V

∂S∂σ

)
dt

−
(

∂V
∂σ

)
(

∂V1
∂σ

)
(

∂V1

∂t
+

1
2
σ2S2 ∂2V1

∂S2
+

1
2
Σ2 ∂2V1

∂σ2
+ σΣSρ

∂2V1

∂S∂σ

)
dt.

The fact that the return on a risk-free portfolio must equal the risk free rate r, which we assume
to be deterministic, implies that dΠ = rΠdt. Or explicitely, following the steps taken in [3],
and collecting all V -dependent terms on the left-hand side and all V1-dependent terms on the
right-hand side, we obtain

∂V
∂t + 1

2σ2S2 ∂2V
∂S2 + 1

2Σ2 ∂2V
∂σ2 + σΣSρ ∂2V

∂S∂σ + rS ∂V
∂S − rV

∂V
∂σ

=
∂V1
∂t + 1

2σ2S2 ∂2V1
∂S2 + 1

2Σ2 ∂2V1
∂σ2 + σΣSρ ∂2V1

∂S∂σ + rS ∂V1
∂S − rV1

∂V1
∂σ

. (7.1.7)

Because the left-hand side of equation (7.1.7) is explicitly independent of V1 and the right-hand
side is explicitly independent of V , either side must be independent of both V and V1. The
only way that this can be true is for both sides to be equal to some function of the independent
variables S, σ and t. We deduce that

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+

1
2
Σ2 ∂2V

∂σ2
+ σΣSρ

∂2V

∂S∂σ
+ rS

∂V

∂S
− rV

= −
(
(M − λΣ)− λΣ

)∂V

∂σ
, (7.1.8)

where, without loss of generality, we have written the arbitrary function of S, σ and t as(
(M − λΣ) − λΣ

)
, where (M − λΣ) and Σ are the drift and volatility functions from the

sde (7.1.1b) for instantaneous variance. This approach is analougos to the one in [3]. Here,
λ = λ(S, σ, t) is an arbitrary function.

The market price of volatility risk
To see why λ is called the market price of volatility risk, we will consider the following
portfolio, consisting of a ∆-hedged (but not ∆1-hedged) option V :

Π1 = V − ∂V

∂S
S. (7.1.9)

After applying Itô’s formula (4.3.1) we obtain

dΠ1 = dV − ∂V

∂S
dS,

=
(

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+

1
2
Σ2 ∂2V

∂σ2
+ σΣSρ

∂2V

∂S∂σ
+ (M − λΣ)

∂V

∂σ

)
dt

+
∂V

∂σ
ΣdW̃t. (7.1.10)

Note that all terms with dWt vanish, because the option is ∆-hedged.
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Again we expect to have dΠ1 = rΠ1dt, such that dΠ1 − rΠ1dt = 0. However, because we did
not ∆1-hedge the portfolio, we have

dΠ1 − rΠ1dt =
(

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+

1
2
Σ2 ∂2V

∂σ2
+ σΣSρ

∂2V

∂S∂σ
+ (M − λΣ)

∂V

∂σ

)
dt

+
∂V

∂σ
ΣdW̃t − r

(
V − ∂V

∂S
S

)
dt,

=
(

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+

1
2
Σ2 ∂2V

∂σ2
+ σΣSρ

∂2V

∂S∂σ
+ (M − λΣ)

∂V

∂σ

+rS
∂V

∂S
− rV

)
dt +

∂V

∂σ
ΣdW̃t. (7.1.11)

Using equation (7.1.8) we find

dΠ1 − rΠ1dt = −
(
(M − λΣ)− λΣ

)∂V

∂σ
dt + (M − λΣ)

∂V

∂σ
dt + Σ

∂V

∂σ
dW̃t,

= λΣ
∂V

∂σ
dt + Σ

∂V

∂σ
dW̃t = Σ

∂V

∂σ

(
λdt + dW̃t

)
6= 0. (7.1.12)

Taking the expectation to get rid of the dW̃t term yields

E (dΠ1 − rΠ1dt) =
∑ ∂V

∂σ
λdt. (7.1.13)

We see that the extra return per unit of volatility risk dW̃t scales linearly with λ, which is known
as the market price of volatility risk.

Hence, the price V (S, σ, t) satisfies the backward parabolic equation

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ ρSσΣ

∂2V

∂S∂σ
+

1
2
Σ2 ∂2V

∂σ2
+ rS

∂V

∂S
+ (M − λΣ)

∂V

∂σ
− rV = 0, (7.1.14)

of which the Black-Scholes equation is a special case.

7.2 Scalings

We assume for simplicity that the drift and volatility of the volatility σ are functions of only σ,
not of S or t. Let us consider the commonly occurring situation in which the volatility process
is fast mean-reverting, which means that the timescale for mean-reversion is much shorter than
that for the evolution of the asset price, their ratio r

M−λΣ being small, such that we can apply
perturbation theory.

We now introduce the scaled variables

m := εM ⇔ M =
m

ε
and ζ :=

√
ε Σ ⇔ Σ =

ζ√
ε
, (7.2.1)

such that ∂σ
∂t = M − λΣ is large when M = m

ε is large.6 This causes the fast mean-reversion.

6Note that M = O( 1
ε
), which implies m = O(1), and note that Σ = O( 1√

ε
), which implies ζ = O(1).
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The relative sizes of these coefficients are chosen such that σ has a nontrivial invariant distri-
bution. We denote this time-independent invariant distribution by

p∞(σ) := lim
t→∞ p(σ, t|σ0, 0),

where p(σ, t|σ0, 0) is the transition density function for σ at time t, conditional on σ0 at time
zero, which satisfies the forward Kolmogorov equation7

∂p

∂t
= − ∂

∂σ

[
(M − λΣ)p

]
+

1
2

∂2

∂σ2

(
Σ2p

)
. (7.2.2)

In terms of the original variables, this reads

∂p

∂t
= − ∂

∂σ

[(
m

ε
− λ

ζ√
ε

)
p

]
+

1
2

∂2

∂σ2

(
ζ2

ε
p

)
. (7.2.3)

After applying the above scalings, the pricing equation becomes

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+

ρζ√
ε
σS

∂2V

∂S∂σ
+

1
2

ζ2

ε

∂2V

∂σ2
+ rS

∂V

∂S
+

(
m

ε
− λζ√

ε

)
∂V

∂σt
− rV = 0. (7.2.4)

7.3 Outer expansion

First, we write the pricing equation (7.2.4) for the fast mean-reverting process in the form
(
L0 +

√
εL 1

2
+ εL1

)
V = 0, (7.3.1)

where

L0 =
1
2
ζ2 ∂2

∂σ2
+ m

∂

∂σ
,

L 1
2

= ρζσS
∂2

∂S∂σ
− λζ

∂

∂σ
,

L1 =
∂

∂t
+

1
2
σ2S2 ∂2

∂S2
+ rS

∂

∂S
− r.

Note that L1 is the Black-Scholes operator8 with volatility σ. Because L0 is the generator of the
backward Kolmogorov equation for σ, its adjoint L∗0 is the generator of the forward equation.
These Kolmogorov equations govern the evolution in time of the transition density function p.

Hence, p∞(σ) satisfies the forward Kolmogorov equation, with ∂p∞
∂t = 0, because p∞(σ) does

not depend on t. Therefore, p∞(σ) satisfies

L∗0p∞ =
d2

dσ2

(
1
2
ζ2p∞

)
− d

dσ
(mp∞) = 0. (7.3.2)

Integrating once yields
1
2

d
dσ

(
ζ2p∞(σ)

)−mp∞(σ) = c0. (7.3.3)

7We found this forward Kolmogorov equation using the method on p. 291 of [10]. This is very different from
the equation Howison writes down on page 14 of [7].

8The Black-Scholes equation reads L1V = 0.
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The homogeneous version of this equation is given by

1
2

d
dσt

(
ζ2phom

∞ (σt)
)−mphom

∞ (σt) = 0, (7.3.4)

which can be rewritten as

d
dσ

(
ζ2phom

∞ (σ)
)− 2m

ζ2

(
ζ2phom

∞ (σ)
)

= 0, (7.3.5)

such that

phom
∞ (σ) =

2c1

ζ2
exp

{∫ σ

0

2m(s)
ζ2(s)

ds

}
. (7.3.6)

As a particular solution we take p∞ to be constant:

ppart
∞ (σ) := c2, (7.3.7)

because it has to look like the inhomogeneous part of the integrated Kolmogorov equation (7.3.3).
After substituting this particular solution into equation (7.3.3), we find c2 = c0

m .

The general solution is thus given by

p∞(σ) = phom
∞ (σ) + ppart

∞ (σ) =
2c1

ζ2
exp

{∫ σ

0

2m(s)
ζ2(s)

ds

}
+

c0

m
, (7.3.8a)

with p∞(σ) satisfying the property
∫ ∞

−∞
p∞(σ) dσ = 1, (7.3.8b)

because p∞(σ) is a transition density function.

Howison does not explicitly show his solution in [7], but he only remarks that it is proportional
to

1
ζ2(σ)

exp
(
−2

∫ σ m(s)
ζ2(s)

ds

)
,

assuming that ζ2 and m are such that p∞ exists. This is very different, because we did not find
the minus sign in the exponent, and also the integration ‘constant’ c0

m is missing here.

We now expand

V (S, σ, t) ∼ V0(S, σ, t) + ε
1
2 V 1

2
(S, σ, t) + εV1(S, σ, t) + ε

3
2 V 3

2
(S, σ, t) + ε2V2(S, σ, t) + . . . .

After substituting this into the pricing equation (7.3.1), and collecting coefficients of equal
powers of ε together, we obtain

O (1) : L0V0 = 0,
O (
√

ε) : L0V 1
2

+ L 1
2
V0 = 0,

O (ε) : L0V1 + L 1
2
V 1

2
+ L1V0 = 0,

O
(
ε

3
2

)
: L0V 3

2
+ L 1

2
V1 + L1V 1

2
= 0,

O (
ε2

)
: L0V2 + L 1

2
V 3

2
+ L1V1 = 0.
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We will first solve the O(1) equation L0V0 = 0 for V0, i.e.,

1
2
ζ2 ∂2V0

∂σ2
+ m

∂V0

∂σ
= 0, (7.3.9)

which we can rewrite as
∂2V0

∂σ2
= −2m

ζ2

∂V0

∂σ
. (7.3.10)

Integrating once yields
∂V0

∂σ
= c(S, t) exp

{∫ σ

0

2m(s)
ζ2(s)

ds

}
. (7.3.11)

After another integration we find

V0(S, σ, t) =
∫ σ

0
c(S, t) exp

{∫ σ̄

0

2m(s)
ζ2(s)

ds

}
dσ̄ + c0(S, t),

= c(S, t)
∫ σ

0
exp

{∫ σ̄

0

2m(s)
ζ2(s)

ds

}
dσ̄ + c0(S, t), (7.3.12)

such that we can write this solution V0 as

V0(S, σ, t) = c(S, t)g(σ) + c0(S, t). (7.3.13)

Here, V0(S, σ, t) satisfies the following terminal condition at t = T :

V0(S, σ, T ) = max(S −K, 0). (7.3.14)

Also, we know that the solution V0 satisfies the following limits9

lim
S
K
→∞

V0

S
= 1, and lim

S
K
→0

V0

S
= 0. (7.3.15)

Next, Howison uses the disputable10 assumption that V0 is independent of σ, to obtain c(S, t) = 0
and thus V0(S, σ, t) = c0(S, t).

The O(
√

ε) equation is given by
L0V 1

2
+ L 1

2
V0 = 0, (7.3.16)

with initial condition V 1
2
(S, σ, 0) = 0.

Since V0 = c0(S, t) is a function of S and t only, we have L 1
2
V0 = 0, such that the O(

√
ε)

equation (7.3.16) becomes
L0V 1

2
= 0. (7.3.17)

This implies that V 1
2

is independent of σ, and therefore

V 1
2

= c 1
2
(S, t). (7.3.18)

Note that if Howison would not have done the above assumption about the σ-independence of
V0, the O (

√
ε) equation would be completely different, because then the term L 1

2
V0 would not

be zero. Consequently, it would have been a lot more complicated to obtain the O (
√

ε) solution
9See [10], p. 289.

10See discussion in section 7.6.
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V 1
2
(S, σ, t).

Because L 1
2

contains derivatives with respect to σ only, the O(ε) equation

L0V1 + L 1
2
V 1

2
+ L1V0 = 0, (7.3.19)

thus becomes
L0V1 = −L1V0, (7.3.20)

with initial condition V1(S, σ, 0) = 0.

To solve the O(ε) equation (7.3.20) we use the inner product with some arbitrary function f
that is not yet determined:

< L0V1, f >= − < L1V0, f > . (7.3.21)

This can also be written as
< V1,L∗0f >= − < L1V0, f >, (7.3.22)

where L∗0 is the Hermitian adjoint11 of L0.

Because we know the dynamics of p∞ and the fact that L∗0p∞ = 0, we choose f = p∞ to obtain

< V1, 0 >= − < L1V0, f >, (7.3.23)

i.e.,
< L1V0, p∞ >= 0. (7.3.24)

Since L1 is an operator, we can write down the eigenvalue equation

L1Φi = λiΦi, (7.3.25)

where Φi is an eigenfunction, and λi is its corresponding eigenvalue. In this case we know that
there is an eigenvalue λi = 0, because we have < L1V0, p∞ >= 0. By the Fredholm alter-
native12, we know that there is either no solution V0 possible, or there are infinitely many
solutions, which implies that V0 cannot be determined uniquely.

Define LiVj :=< LiVj , p∞ > for i = 0, 1
2 , 1 and j = 0, 1, 2, . . .. For i = 1 and j = 0 and using

equation (7.3.24) we obtain

L1V0 =
∫ ∞

−∞
L1V0p∞(σ) dσ,

=
∫ ∞

−∞

(
∂V0

∂t
+

1
2
σ2S2 ∂2V0

∂S2
+ rS

∂V0

∂S
− rV0

)
p∞(σ) dσ = 0. (7.3.26)

Here, the only σ-dependence is in the volatility coefficient σ2, so in all other terms the integral
vanishes:

< 1, p∞ >=
∫ ∞

−∞
p∞(σ) dσ = 1, (7.3.27)

because p∞ is a probability distribution function. Hence,

L1V0 =
∂c0

∂t
+

1
2
σ2S2 ∂2c0

∂S2
+ rS

∂c0

∂S
− rc0 = 0, (7.3.28)

11For determining this Hermitian adjoint L∗0, see appendix I.
12See appendix J.
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with

σ2 :=< σ2, p∞ >=
∫ ∞

−∞
σ2p∞(σ) dσ, (7.3.29)

representing the average of σ2 with respect to the invariant distribution p∞.

Equation (7.3.28) is the Black-Scholes equation with averaged variance σ2. The solution can be
calculated by standard Black-Scholes techniques once a final condition is given.

First of all, if the volatility in the Black-Scholes equation is a given deterministic function σ(t)
of time, the option value can be calculated by replacing σ in the relevant constant-volatility
formula by

(
1

T − t

∫ T

t
σ2(s) ds

) 1
2

. (7.3.30)

Next, we can calculate V1. Because L1V0 = 0, we have, by subtraction,

L1V0 = L1V0 − L1V0 =
1
2

(
σ2 − σ2

)
S2 ∂2c0

∂S2
. (7.3.31)

Here we can eliminate the majority of the terms in the right-hand side of equation (7.3.20),
leaving

L0V1 =
1
2

(
σ2 − σ2

)
S2 ∂2c0

∂S2
. (7.3.32)

Because S2 ∂2c0
∂S2 and eigenfunction c1(S, t) are independent of σ, and L0 contains only derivatives

with respect to σ, this can be written as

L0

(
V1 − c1

S2 ∂2c0
∂S2

)
=

1
2

(
σ2 − σ2

)
, (7.3.33)

Hence, we know that the solution has the form

V1(S, σ, t) = g1(σ)S2 ∂c0

∂S2
+ c1(S, t), (7.3.34)

where g1(σ) satisfies

L0g1 =
1
2

(
σ2 − σ2

)
, (7.3.35)

i.e.,
1
2
ζ2 ∂2g1

∂σ2
+ m

∂g1

∂σ
=

1
2

(
σ2 − σ2

)
. (7.3.36)

This can be rewritten as
∂2g1

∂σ2
+ h(σ)

∂g1

∂σ
= j(σ), (7.3.37)

with

h(σ) :=
2m

ζ2
, and j(σ) :=

σ2 − σ2

ζ2
. (7.3.38)

Writing G1 := ∂g1

∂σ , we have the following differential equation in terms of G1:

∂G1

∂σ
+ h(σ)G1 = j(σ). (7.3.39)
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Multiplying both sides by e
∫ σ
0 h(s) ds yields

e
∫ σ
0 h(s) ds ∂G1

∂σ
+ h(σ)G1e

∫ σ
0 h(s) ds = j(σ) e

∫ σ
0 h(s) ds. (7.3.40)

This can be rewritten as

∂

∂σ

(
e
∫ σ
0 h(s) ds ·G1

)
= j(σ) e

∫ σ
0 h(s) ds. (7.3.41)

Solving this differential equation for e
∫ σ
0 h(s) ds ·G1, gives

e
∫ σ
0 h(s) ds ·G1 =

∫ σ

0
j(σ̃) e

∫ σ̃
0 h(s) ds dσ̃ + H1(S, t), (7.3.42)

such that

∂V1

∂σ
= G1 = e−

∫ σ
0 h(s) ds

∫ σ

0
j(σ̃) e

∫ σ̃
0 h(s) ds dσ̃ + H1(S, t)e−

∫ σ
0 h(s) ds, (7.3.43)

After integrating once we find

V1(S, σ, t) =
∫ σ

0

(
e−

∫ σ̂
0 h(s) ds

∫ σ̂

0
j(σ̃) e

∫ σ̃
0 h(s) ds dσ̃ + H1(S, t)e−

∫ σ̂
0 h(s) ds

)
dσ̂ + H2(S, t).

(7.3.44)
This is the integral form of the solution. One of these two “complementary solutions”, namely
H2(S, t), does not depend on σ and can be absorbed into eigenfunction c1(S, t). The other one
is unbounded at infinity. Hence, we choose the particular solution v1(S, σ, t) to be equal to zero.

Before proceeding any further, we outline the pattern followed by succesive iterations of the
solution procedure. For all n ≥ 0 we have the nth equation

L0Vn = −L 1
2
Vn+ 1

2
− L1Vn−1 for Vn(S, σ, t). (7.3.45)

The right-hand side is assumed to be known from earlier stages. Solving this, we obtain a par-
ticular solution vn(S, σ, t) and an eigenfunction cn(S, t). For the case n = 0 the former is zero
and the latter is c0(S, t).

Next, we repeat this process for Vn+ 1
2
, obtaining a further particular solution vn+ 1

2
and a further

eigenfunction cn+ 1
2
. Note that the eigenfunction cn(S, t) does not depend on σ and is annihilated

by the operator L0. Finally, we substitute the functions just found into the right-hand side of
the equation for Vn+1:

L0Vn+1 = −Ln+ 1
2
Vn+ 1

2
− L1Vn for Vn+1(S, σ, t). (7.3.46)

Because the eigenfunction cn+ 1
2
(S, t) does not depend on σ, it is annihilated by the operator

L 1
2
. Therefore, the right-hand side is known in terms of the particular solutions just obtained.

Here, the solvability condition L0Vn+1 =< L0Vn+1, p∞ >= 0 for existence of a solution can be
applied. From equation (7.3.46) it follows that

L0Vn+1 = −Ln+ 1
2
Vn+ 1

2
− L1Vn, (7.3.47)

i.e.,
0 = −Ln+ 1

2
vn+ 1

2
− L1vn − L1cn. (7.3.48)
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This can be written as
L1cn = −Ln+ 1

2
vn+ 1

2
− L1vn. (7.3.49)

We now apply this procedure to the case n = 1
2 . We have already found V 1

2
and V1 up to

eigenfunctions c 1
2
(S, t) resp. c1(S, t), so we need only apply the solvability condition to the

equation
L0V 3

2
= −L 1

2
V1 − L1V 1

2
for V 1

2
(S, σ, t). (7.3.50)

This yields
L0V 3

2
= −L 1

2
V1 − L1V 1

2
, (7.3.51)

i.e.,
0 = −L 1

2
V1 − L1V 1

2
. (7.3.52)

Using the fact that eigenfunction c1(S, t) is annihilated by operator L 1
2
, we obtain

L1V 1
2

= −L 1
2
v1. (7.3.53)

Substituting v1(S, σ, t) = g1(σ)S2 ∂2c0
∂S2 , we obtain

L1V 1
2

= −L 1
2
g1(σ)S2

∂2c0

∂S2
,

= −ρζσS
dg1

dσ

∂

∂S

(
S2 ∂2c0

∂S2

)
+ λζ

dg1

dσ
S2 ∂2c0

∂S2
. (7.3.54)

For ease of notation, we set

D := S
∂

∂S
(7.3.55)

equivalent to using a logarithmic price variable.13 Defining

A 1
2
,1 := λζ

dg1

dσ
and A 1

2
,2 := −ρζσ

dg1

dσ
, (7.3.56)

we obtain
L1V 1

2
=

(
A 1

2
,1 + A 1

2
,2D

) (D2 −D)
c0. (7.3.57)

Note that this is a partial differential equation with constant coefficients. Next, we use that
L1c0 = 0 and the fact that the time derivative of a solution of the homogeneous equation is
again a solution of the homogeneous equation. Also, we assume pro tem that the correct final
condition (from matching) is V 1

2
(S, T ) = 0. We find14

V 1
2
(S, σ, t) = −(T − t)

(
A 1

2
,1 + A 1

2
,2D

) (D2 −D)
c0. (7.3.58)

where c0 is already known. As noted earlier, V 1
2

is independent of σ.

This result, and elaborations thereof, is an important practical consequence of the method, since

it allows calibration of the three constants σ2, ρζσdg1

dσ
and λζ dg1

dσ
to market prices of options

(as represented by an implied volatility surface) in a simple manner: the key point is that only
these directly deducable constants are needed, rather than the unobservable functions M(σ, t)

13This can be explained by setting x := log S. Then, ∂
∂x

= ∂S
∂x

∂
∂S

= ex ∂
∂S

= S ∂
∂S

.
14Howison made a small mistake here, forgetting the minus sign.
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and Σ(σ, t).

We first calculate
L0V 3

2
= −L 1

2
V1 − L1V 1

2
, (7.3.59a)

using

− L 1
2
V1 = −ζ

(
ρσD − λ

) ∂

∂σ

(
g1(σ)

(D2 −D)
c0(S, t) + c1(S, t)

)
,

= ζ
dg1

dσ
(λ− ρσD)

(D2 −D)
c0(S, t). (7.3.59b)

and

− L1V 1
2

= −L1V 1
2

+
1
2

(
σ2 − σ2

) (D2 −D)
V 1

2

= −
(
A 1

2
,1 + A 1

2
,2D

) (D2 −D)
c0 +

1
2

(
σ2 − σ2

) (D2 −D)
c0. (7.3.59c)

From this, it follows that

L0V 3
2

=
[
ζ
dg1

dσ
(λ− ρσD) +

1
2

(
σ2 − σ2

)
(T − t)

(
A 1

2
,1 + A 1

2
,2D

) (D2 −D)

−A 1
2
,1 −A 1

2
,2D

] (D2 −D)
c0(S, t), (7.3.60)

such that V 3
2

has the form

V 3
2
(S, σ, t) =

[
g2(σ) + g3(σ)D + g1(σ)(T − t)

(
A 1

2
,1 + A 1

2
,2D

) (D2 −D)] (D2 −D)
c0. (7.3.61)

Here, g1(σ), g2(σ) and g3(σ) satisfy

1
2
ζ2 d2g1

dσ2
+ m

dg1

dσ
=

1
2

(
σ2 − σ2

)
, (7.3.62a)

1
2
ζ2 d2g2

dσ2
+ m

dg2

dσ
=

1
2

(
σ2 − σ2

)
+ λζ

dg1

dσ
−A 1

2
,1, (7.3.62b)

1
2
ζ2 d2g3

dσ2
+ m

dg3

dσ
=

1
2

(
σ2 − σ2

)
− ρσ

dg1

dσ
−A 1

2
,2. (7.3.62c)

Then, the solvability condition for V2, applied to the equation

L0V2 = −L 1
2
V 3

2
− L1V1, (7.3.63)

gives
L0V2 = −L 1

2
V 3

2
− L1V1, (7.3.64)

i.e.,
0 = −L 1

2
V 3

2
− L1V1, (7.3.65)

We know that V1 can be written as a particular solution v1(S, σ, t), plus an eigenfunction c1(S, t).
From this, it follows that

L1c1 = −L 1
2
V 3

2
− L1v1 = −L 1

2
V 3

2
, (7.3.66)

recalling that v1(S, σ, t) = 0.
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Hence,

L1c1 = −L 1
2
V 3

2

= −ζ
(
ρσD − λ

) [
dg2

dσ
+

dg3

dσ
D +

dg1

dσ
(T − t)

(
A 1

2
,1 + A 1

2
,2D

) (D2 −D)] (D2 −D)
c0

=
[
A1,1 + A1,2D +

(
A 1

2
,1 + A 1

2
,2D

)
(T − t)

(
A 1

2
,1 + A 1

2
,2D

) (D2 −D)] (D2 −D)
c0,

where15

A1,1 := ζ
(
λ− ρσD) dg2

dσ
and A1,2 := ζ

(
λ− ρσD) dg3

dσ
. (7.3.67)

The relevant particular solution c1(S, t) with zero payoff c1(S, T ) = 0 can be obtained in a
similarly way. Again, we use that L1V1 = 0 and the fact that the time derivative of a solution
of the homogeneous equation is again a solution of the homogeneous equation. This yields that
the particular solution c1(S, t) is equal to

−
[
(T − t) (A1,1 + A1,2D) +

1
2
(T − t)2

(
A 1

2
,1 + A 1

2
,2D

(D2 −D))(
A 1

2
,1 + A 1

2
,2D

)] (D2 −D)
c0.

However, we leave open the possibility of adding a further solution c′1(S, t), if the payoff, de-
termined by matching into the boundary layer, dictates that we should do so. Similarly, the
σ-dependence of the solution can only be resolved by matching.

7.4 Boundary layer analysis

Reasoning by means of analogies to chapter 5, let us introduce a boundary layer in t near t = T
of size O(ε), defining the inner time variable τ via

t = T + ετ ⇔ τ =
t− T

ε
, for τ < 0. (7.4.1)

Note that here τ < 0, opposite the t = T − ετ in the Black-Scholes calculations in chapter 5,
where τ > 0.

The pricing equation for V (S, σ, τ) reads

1
ε

∂V

∂τ
+

1
2
σ2S2 ∂2V

∂S2
+

ρζ√
ε
σS

∂2V

∂S∂σ
+

1
2

ζ2

ε

∂2V

∂σ2
+ rS

∂V

∂S
+

(
m

ε
− λζ√

ε

)
∂V

∂σ
− rV = 0. (7.4.2)

Again we can write this in the form
(
L̃0 +

√
εL̃ 1

2
+ εL̃1

)
V (S, σ, τ) = 0, (7.4.3)

using the operators

L̃0 =
∂

∂τ
+ L0 =

∂

∂τ
+

1
2
ζ2 ∂2

∂σ2
+ m

∂

∂σ
,

L̃ 1
2

= L 1
2

= ρζσS
∂2

∂S∂σ
− λζ

∂

∂σ
,

L̃1 =
1
2
σ2S2 ∂2

∂S2
+ rS

∂

∂S
− r.

15Howison claims that the definitions should be A1,1 := ζg′2(σ)(λ− ρσ) and A1,2 := ζg′3(σ)(λ− ρσ).
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Note that L̃0, unlike L0, contains the time derivative ∂
∂τ . Next, we expand

Vε(S, σ, τ) = V0 +
√

εV 1
2

+ εV1 + . . . . (7.4.4)

From this equation, the following O(1) equation can be determined:

L̃0V0 = 0, (7.4.5a)

i.e.,
∂V0

∂τ
+

1
2
ζ2 ∂2V0

∂σ2
+ m

∂V0

∂σ
= 0, (7.4.5b)

with initial condition V0(S, σ, 0) = P (S).

Following the disputable assumption16 in Howison’s paper [7], that V0 is independent of σ, only

∂V0

∂τ
= 0 (7.4.6)

is left, which yields that V0 is a function of S only. The initial condition implies that this
function is the payoff. Hence,

V0(S, σ, τ) = P (S). (7.4.7)

Note that for τ → −∞ this first order inner approximation matches automatically with the
one-term outer solution V0(S, t) as t → T . The procedure of matching will be discussed in the
next section.

The O(
√

ε) equation is given by
L̃0V 1

2
+ L̃ 1

2
V0 = 0, (7.4.8)

with initial condition V 1
2
(S, σ, 0) = 0.17

Using the fact that V0 does not depend on σ yields

L̃ 1
2
V0 = ρζσS

∂2V0

∂S∂σ
− λζ

∂V0

∂σ
= 0, (7.4.9)

such that
L̃0V 1

2
= 0, (7.4.10)

which is the same differential equation as the O(1) equation. This time the initial condition
V 1

2
(S, σ, 0) = 0 gives

V 1
2
(S, σ, t) = 0. (7.4.11)

The O(ε) equation is given by

L̃0V1 + L̃ 1
2
V 1

2
+ L̃1V0 = 0, (7.4.12)

with initial condition V1(S, σ, 0) = 0. Using the solutions we found above, i.e., V0 = P (S) and
V 1

2
= 0, this reduces to

L̃0V1 = −L̃1P (S). (7.4.13)
16This issue was already discussed in the previous section 7.3 of this thesis.
17On page 20 of [7] Howison states that the initial condition is given by V 1

2
(S, T ) = 0, which must be a

typographical error, because we are working in (S, σ, τ)-coordinates now.
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Writing

L̃0V1 =
∂V1

∂τ
+ L0V1, (7.4.14)

gives
∂V1

∂τ
+ L0V1 = −1

2
σ2S2 ∂2P (S)

∂S2
− rS

∂P (S)
∂S

+ rP (S). (7.4.15)

Because ∂P
∂τ = 0, we can write

− ∂P

∂τ
− 1

2
σ2S2 ∂2P (S)

∂S2
− rS

∂P (S)
∂S

+ rP (S) (7.4.16)

for the right hand side. This can also be written as18

1
2

(
σ2 − σ2

)
S2 ∂2P

∂S2
− L1P. (7.4.18)

Equation (7.4.15) thus becomes

∂V1

∂τ
+ L0V1 =

1
2

(
σ2 − σ2

)
S2 ∂2P

∂S2
− L1P. (7.4.19)

Although it is not immediately clear which steps are taken to obtain this, according to Howison,
a particular solution is

V ∞
1 = g1(σ)S2 ∂2P

∂S2
− τL1P + V1(S), (7.4.20)

where V1 is an arbitrary function. This indeed is a solution of problem (7.4.19) with initial
condition V1(S, σ, 0) = 0. In fact, this is the correct form for the asymptotic behaviour of V1

as τ → −∞, see figure 7.1. To see this, first note that applying the inner product to equation
(7.4.19) yields

<
∂V1

∂τ
+ L0V1, p∞ >=<

1
2

(
σ2 − σ2

)
S2 ∂2P

∂S2
− L1P, p∞ > . (7.4.21)

Figure 7.1: As τ → −∞, it goes towards the left boundary of the layer (away from maturity T ).

This gives
∂

∂τ
< V1, p∞ >= −L1P, (7.4.22)

18Recall that when computing the outer solution, we defined

L1V :=< L1V, p∞ >=
∂V

∂τ
+

1

2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV, with σ2 :=< σ2, p∞ > . (7.4.17)
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because < L0V1, p∞ >= 0, < L1P, p∞ >= L1P and

∫ ∞

−∞

1
2

(
σ2 − σ2

)
S2 ∂2P

∂S2
dσ =

1
2
S2 ∂2P

∂S2


σ2

∫ ∞

−∞
p∞dσ

︸ ︷︷ ︸
=1

−
∫ ∞

−∞
σ2p∞dσ

︸ ︷︷ ︸
=:σ2


 = 0. (7.4.23)

And so, integrating equation (7.4.22) and using the initial condition V1(S, σ, 0) = 0,

< V1, p∞ >= −τL1P. (7.4.24)

Using the solution (7.4.20) found for V ∞
1 , we also have that

< V ∞
1 , p∞ > = < g1(σ)S2 ∂2P

∂S2
− τL1P + V1(S), p∞ >,

= < g1(σ), p∞ > S2 ∂2P

∂S2
− τL1P + V1(S),

= g1(σ)S2 ∂2P

∂S2
− τL1P + V1(S). (7.4.25)

Comparing these two expressions (7.4.24) and (7.4.25) for the inner product, we conclude that

V1(S) = −g1(σ)S2 ∂2P

∂S2
. (7.4.26)

Thus, as τ → −∞,

V1 ∼ V ∞
1 =

(
g1(σ)− g1(σ)

)
S2 ∂2P

∂S2
− τL1P, (7.4.27)

since what is left after subtracting the particular solution, V1 − V ∞
1 , satisfies the homogeneous

version of the parabolic equation, has initial data that vanishes at large and small σ, and
therefore vanishes as τ → −∞. This is the first step in the matching, because here we consider
what happens if we go to the boundary of the layer (τ → −∞). Further mathching will be done
in the next section 7.5.

7.5 Matching

We can now complete the matching. From the outer expansion, written in inner variables, we
have

Vε := V0(S, σ, T + ετ) + ε
1
2 V 1

2
(S, σ, T + ετ) + εV1(S, σ, T + ετ) + . . .

∼ V0(S, σ, T ) + ετ
∂V0

∂t
(S, σ, T ) + ε

1
2 · 0 + εV1(S, σ, T ),

= V0(S, σ, T ) + ε

(
τ
∂V0

∂t
(S, σ, T ) + V1(S, σ, T )

)
,

= c0(S, T ) + ε

(
τ
∂c0

∂t
(S, T ) + g1(σ)S2 ∂2c0

∂S2
+ c1(S, T )

)
. (7.5.1)

Note that the particular solutions in V 1
2

and V1 that are multiplied by T − t do not contribute

to this, because they are O
(
ε

3
2

)
.
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One-term matching of the outer and inner expansion yields

lim
t→T

c0(S, t) = lim
τ→−∞V0(S, σ, τ) ⇒ c0(S, T ) = P (S) (7.5.2)

and

L1 c0 = 0 ⇒ ∂c0

∂t
+

1
2
σ2S2 ∂2c0

∂S2
+ rS

∂c0

∂S
− rc0 = 0,

⇒ ∂c0

∂t
=

1
2
σ2S2 ∂2c0

∂S2
+ rS

∂c0

∂S
− rc0. (7.5.3)

The inner expansion yields V0(S, σ, t) = P (S), such that one-term matching this with the outer
expansion gives c0(S, t) = P (S). This implies that

∂c0

∂t
= −L̂1P (S), (7.5.4)

where L̂1 is the inner product of the operator as it was defined formulating the inner expansion:

L̂1P (S) := L̃1P (S) =< L̃1P (S), p∞(σ) >=
1
2
σ2S2 ∂2P

∂S2
+ rS

∂P

∂S
− rP. (7.5.5)

Replacing c0(S, T ) by P (S) and ∂c0
∂t (S, T ) by −L̂1P , the three-term outer expansion written in

inner variables (7.5.1) can be rewritten as

Vε = P (S) + ε

(
−τ L̂1P + g1(σ)S2 ∂2c0

∂S2
+ c1(S, T )

)
. (7.5.6)

As demonstrated in section 7.4, the large-τ behaviour of the three-term inner expansion is

P (S) + ε

(
−τ L̂1P +

(
g1(σ)− g1(σ)

)
S2 ∂2P

∂S2

)
. (7.5.7)

Matching these two expressions, the missing final condition for c1(S, t) is

c1(S, T ) = −g1(σ)S2 ∂2P

∂S2
. (7.5.8)

Let us define w := S2 ∂2c0
∂S2 . We can rewrite L̂1c0 = 0 as

1
2
σ2S2 ∂2c0

∂S2
+ rS

∂c0

∂S
− rc0 = 0, (7.5.9)

i.e.,

S2 ∂2c0

∂S2
= −2r

σ2

(
rS

∂c0

∂S
− rc0

)
. (7.5.10)

So we can replace w by − 2r

σ2

(
rS ∂c0

∂S − rc0

)
, such that

L̂1w =
1
2
σ2S2 ∂2w

∂S2
+ rS

∂w

∂S
− rw,

=
1
2
σ2S2 ∂2

∂S2

[
−2r

σ2

(
rS

∂c0

∂S
− rc0

)]
+ rS

∂w

∂S
− rw,

= −rS2 ∂

∂S

(
S

∂2c0

∂S2
+

∂c0

∂S
− ∂c0

∂S

)
+ rS

∂w

∂S
− rw,

= −rS2 ∂

∂S

(w

S

)
+ rS

∂w

∂S
− rw,

= −rS2−1
S2

w − rS2 1
S

∂w

∂S
+ rS

∂w

∂S
− rw = 0.
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Hence, as w = S2 ∂2c0
∂S2 itself appears to be a solution of L̂1V = 0, we have

c1(S, t) = −g1(σ)S2 ∂2c0

∂S2
, (7.5.11)

and the complete outer expansion to the three lowest orders is

V (S, σ, t) ∼ c0(S, t) + ε
1
2 (T − t)

(
A 1

2
,1 + A 1

2
,2D

)
S2

(D2 −D)
c0

+ ε
[
g1(σ)− g1(σ)− (T − t) (A1,1 + A1,2D)

− 1
2
(T − t)2

(
A 1

2
,1 + A 1

2
,2D

(D2 −D)) (
A 1

2
,1 + A 1

2
,2D

)] (D2 −D)
c0,

recalling that D := S ∂
∂S .

This seems to be a nice solution, however there are several occurences of c0(S, t) in the above
expression for V (S, σ, t), which is an undetermined function.

7.6 Discussion

In Howison’s paper [7], some assumptions, simplifications and remarks are presented below.
After that, the method and solution will be discussed.

Method and assumptions
As a final example in his paper [7], Howison shows the applicability of boundary-layer techniques
in the analysis of fast mean-reverting stochastic volatility models. A well-known example of a
stochastic volatility model is the Heston model.

In these models the volatility itself is assumed to follow a stochastic process while the asset price
is assumed to follow the lognormal process as before in section 5, considering the Black-Scholes
model. That is, {

dSt =µtStdt + σtStdWt,

dσt = Mtdt + ΣtdW̃t.

(7.6.1a)

(7.6.1b)

The two Wiener processes are assumed to be correlated by

E
[
dWt dW̃t

]
= ρ dt. (7.6.2)

Here, the timescale for mean-reversion is assumed to be much shorter than that for the evolution
of the asset price. Therefore, their ratio r

M−λΣ is small, such that we can apply perturbation
theory. This results in a scaling of M and Σ by ε resp.

√
ε, such that ∂σ

∂t = M − λΣ is large
when M = m

ε is large.

We do know that the scaled variables m and ζ depend on σ. Unfortunately, we do not know
their functional form.

First, we have made an outer expansion, where we have assumed pro tem that the correct final
condition (from matching) for the O

(
ε

1
2

)
problem is V 1

2
(S, T ) = 0. Secondly, we have investi-

gated the boundary layer near t = T . At the end of the boundary layer analysis, Howison starts



7.6. DISCUSSION 59

matching already, by introducing a particular solution V ∞
1 , which vanishes as τ → −∞. After

that, the matching is completed by one-term matching of the outer and inner expansion.

Finally, an expression for the option price V is obained. This solution will be discussed at the
end of this section.

Simplif ications

• On page 16 of [7] Howison claims that the solution V0 of the O(1) equation is a function of
the stock price S and time t only (i.e., V0 = c0(S, t), which is independent of the volatility
σ). He argues that this choice follows naturally from the behaviour of V0 in the limits for
small and large S. We, on the other hand, have found a general solution of the form

V0(S, σ, t) = c(S, t)g(σ) + c0(S, t). (7.6.3)

However, this solution can satisfy the following two limits:

lim
S
K
→∞

V0

S
= 1, and lim

S
K
→0

V0

S
= 0 (7.6.4)

and exhibit σ-dependence simultaneously. For example, if we would take c(S, t) = S2e−S ,
both limits would be satisfied, and V0 still depends of σ in the middle part, because these
are only conditions for very large and very small stock prices S. So, for intermediate S, the
solution V0 can still depend on σ. We have asked Howison if there is a model assumption
which says it cannot, but he did not answer that question.

• Note that if Howison would not have done the above assumption about the σ-independence
of V0, the higher order equations would be completely different, because then the opera-
tor L 1

2
would contribute and give some non-zero terms. Consequently, it would have been

a lot more complicated to obtain the higher order solutions V 1
2
(S, σ, t), V1(S, σ, t), etcetera.

Remarks

• On page 14 of [7] Howison presents a forward Kolmogorov equation

∂p

∂t
=

∂

∂σ

(
1
2
Σ2 ∂p

∂σ

)
− ∂

∂σ
(Mp),

while we have found

∂p

∂t
= − ∂

∂σ

(
(M − λΣ)p

)
+

1
2

∂2

∂σ2

(
Σ2p

)
,

i.e.,
∂p

∂t
=

∂

∂σ

(
1
2
Σ2 ∂p

∂σ

)
− ∂

∂σ
(Mp) +

∂

∂σ

(
pΣ

(
∂Σ
∂σ

+ λ

))
. (7.6.5)

using p. 291 of [10]. After asking Howison for explanation of why this extra term vanishes,
he answered that we are right that there is a missing term in the FKE:
“I forgot to include the market price of risk in that term (I think the f irst version of the
paper incorporated it into M). As a result I think that p∞(σ) should have an additional
term of O

(
ε

1
2

)
and this will have consequences further on (i.e., will make the subsequent

formulae worse). Thank you for pointing out this error.”
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However, if we assume it to be incorporated into M , we would still have an extra term
left, namely,

∂

∂σ

(
pΣ

∂Σ
∂σ

)
. (7.6.6)

We have asked Howison to explain this, but unfortunately he did not reply to any of our
subsequent e-mails.

• The solution of this forward Kolmogorov equation is also different from Howisons answer.
On page 15 of [7] Howison does not explicitly show his solution p∞, but he only remarks
that if it exists, then it is proportional to

1
ζ2(σ)

e−2
∫ σ m(s)/ζ2(s) ds.

This is very different from the expression (7.3.8) we obtained, because we did not find the
minus sign in the exponent, and also the integration ‘constant’ c0

m is missing here.

• In the expression for V 1
2

on page 18 of [7] Howison lacks a minus sign.

• On page 19 of [7] the definitions of A1,1 and A1,2 are probably incorrect: the operator D
is missing from both A1,1 and A1,2.

• The particular solution Ṽ1
∞

= g1(σ)S2 ∂2P
∂S2 − τL1P + Ṽ1(S) on page 20 of [7] is indeed a

solution of the initial value problem

∂Ṽ1

∂τ
+ L0Ṽ1 =

1
2

(
σ2 − σ2

)
S2 ∂2P

∂2S
− L1P, (7.6.7a)

V1(S, σ, 0) = 0. (7.6.7b)

It is, however, not clear which steps are taken to obtain this solution.

Method and solution
Howison made certain choices for the scalings. However, often the motivation for them was not
explicitly given. There are many other ways to scale your parameters. For instance, an other
combination of parameters could be chosen in the maximum balance and/or the order of the
scaling in ε might be different. Due to lack of information, for example about how m and ζ
depend on σ, we cannot determine an O(1) outer solution V0 that depends on σ. Howison is
actually ‘throwing away’ some information at this point by taking c(S, t) = 0.

After applying the method of matched asymptotic expansions to the fast mean-reverting stochas-
tic volatility model and following Howison’s assumptions, we have obtained the following ex-
pression for the three lowest order terms of the solution:

V (S, σ, t) ∼ c0(S, t) + ε
1
2 (T − t)

(
A 1

2
,1 + A 1

2
,2D

)
S2

(D2 −D)
c0

+ ε
[
g1(σ)− g1(σ)− (T − t) (A1,1 + A1,2D)

− 1
2
(T − t)2

(
A 1

2
,1 + A 1

2
,2D

(D2 −D)) (
A 1

2
,1 + A 1

2
,2D

)] (D2 −D)
c0,

where D := S ∂
∂S . However, since the function c0(S, t) is still undetermined, this result doesn’t

seem to be very useful.
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Our opinion
In the paper written by Howison [7], quite a lot of assumptions and simplifications are made.
Unfortunately, often the motivation for them is not explicitly given in the paper, and in some
cases we even think these assumptions and simplifications are incorrect.

Also, the choice of the scalings has not been explained very well. Howison presumably attempts
to apply the same procedure as he used for the Black-Scholes model, as discussed in section 5
of this thesis. However, this is not the only way to scale the parameters in this model. He has
chosen the derivative with respect to time to be O(ε), instead of O(1). So in the first order
approach in equation (7.3.9), the time derivative has been left out of the problem, because ∂

∂t
only occurs in the operator L1. The reason for this might be that in case the time derivative
would occur in the O(1) problem, it is likely that one would obtain a more complicated solution
V that does not only depend on t, but also on εt.

Multiple-scale analysis is a global perturbation scheme that is useful in systems characterized
by disparate time scales. A two-scale expansion might work well for this model. The trick is
to introduce a new variable ϑ = εt. This variable is called the slow time because it does not
become significant until t ∼ 1

ε . Then take an expansion of the form

V (S, σ, t) = V0(S, σ, ϑ) + εV1(S, σ, ϑ) + . . . . (7.6.8)

So, a recommendation for further investigation on this model would be to use multiple-scale
methods.
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Chapter 8

The SABR model

In the classical Black-Scholes model, the volatility σ is assumed to be constant. But in reality,
options with different strikes require different volatilities for the underlyings to match their mar-
ket prices. This is called the market volatility smile. Handling these market smiles correctly
is critical for hedging.

The SABR model is a stochastic volatility model that attempts to capture this volatility smile
in derivatives markets. The name is an abbreviation of “Stochastic Alpha, Beta, Rho”,
referring to the three key parameters of the model.

The SABR model describes a single forward F , such as a forward interest rate, a forward swap
rate, or a forward stock price. The volatility of the forward F is described by a parameter α.
Here the volatility α is not constant, but is itself a random function of time. SABR is a dynamic
model in which both F and α are stochastic state variables whose time evolution is given by the
following system of stochastic differential equations:

{
dF = α̂F βdW1, F (0) = f

dα̂ = να̂ dW2, α̂(0) = α.

(8.0.1a)
(8.0.1b)

Here, f and α are the forward and volatility resp. at time t = 0. On the exercise date tex the
decision whether or not to exercise the option is made. On the settlement date tset all payments
are made and the forward contract matures. The period tset − tex is called the settlement delay.
W1 and W2 are two correlated Wiener processes with correlation coefficient −1 < ρ < 1. The
constant parameter β satisfies the condition 0 ≤ β ≤ 1. The above dynamics are a stochastic
version of the CEV model with the skewness parameter β, because this CEV model is aug-
mented by stochastic volatility. In fact, it reduces to the CEV model if ν = 0.

Under the SABR model (8.0.1), the price of European options is given by Black’s formula1

Vcall = D(tset) {fN (d+)−KN (d−)} , (8.0.2)
Vput = Vcall + D(tset) [K − f ] , (8.0.3)

1Note that there is a difference between Black’s formula and the Black-Scholes formula:
In case we are considering a spot price as we did before, the spot measure has to be used. In this case, the Black-
Scholes formula can be derived. Here, we have a forward, which is a martingale in the forward measure because
its expectation is equal to its present value. This leads to Black’s formula. These two formulas are equivalent for
deterministic interest rates. When the interest rate is stochastic, an extra term occurs in Black’s formula.
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with D(t) the discount factor for date t, i.e., the value today of $1 to be delivered on date t, and

d± =
log (f/K)± 1

2σ2
Btex

σB
√

tex
, (8.0.4)

where the implied volatility σB(f,K) is given by

σB(f, K) = α(fK)(β−1)/2

{
1 +

(1− β)2

24
log2

(
f

K

)
+

(1− β)4

1920
log4

(
f

K

)
+ . . .

}−1

·
(

z

x(z)

)

·
{

1 +
[
(1− β)2

24
α2

(fK)1−β
+

1
4

ρβνα

(fK)(1−β)/2
+

2− 3ρ2

24
ν2

]
tex + . . .

}
.

Here,

z =
ν

α
(fK)(1−β)/2 log

(
f

K

)
, (8.0.5)

and x(z) is defined by

x(z) = log

{√
1− 2ρz + z2 + z − ρ

1− ρ

}
. (8.0.6)

In section 8.6 we will derive this result.

For the special case of at-the-money options, options struck at K = f , this formula reduces to

σATM = σB(f, f) =
α

f (1−β)

{
1 +

[
(1− β)2

24
α2

f2−2β
+

1
4

ρβαν

f (1−β)
+

2− 3ρ2

24
ν2

]
tex + . . .

}
. (8.0.7)

8.1 Derivation of the differential equation

After applying Itô’s formula (4.3.1), we find the following expression for the infinitesimal incre-
ment in the option price:

dV =
∂V

∂t
dt +

∂V

∂F
dF +

∂V

∂α
dα +

1
2

∂2V

∂F 2
dF 2 +

1
2

∂2V

∂α
dα2 +

∂2V

∂F∂α
dFdα,

=
(

∂V

∂t
+

1
2
α2F 2β ∂2V

∂F 2
+

1
2
ν2α2 ∂2V

∂α2
+ ρνα2F β ∂2V

∂F∂α

)
dt + αF β ∂V

∂F
dW1 + να

∂V

∂α
dW2.

Next we construct a portfolio Π = V −∆F −∆1V1, such that dΠ = dV −∆dF −∆1dV1. The
observation that dΠ = rΠdt, leads to

r (V −∆F −∆1V1) dt = dV −∆dF −∆1dV1. (8.1.1)

Substituting the formulas for dV , dF and dV1 into equation (8.1.1) yields

(
∂V

∂t
+

1
2
α2F 2β ∂2V

∂F 2
+

1
2
ν2α2 ∂2V

∂α2
+ ρνα2F β ∂2V

∂F∂α
− rV

)
dt

+ αF β ∂V

∂F
dW1 + να

∂V

∂α
dW2 −∆αF βdW1 −∆Fdt

= ∆1

(
∂V1

∂t
+

1
2
α2F 2β ∂2V1

∂F 2
+

1
2
ν2α2 ∂2V1

∂α2
+ ρνα2F β ∂2V1

∂F∂α
− rV1

)
dt. (8.1.2)
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Collecting all stochastic terms containing dW1 and dW2 together, this equation (8.1.2) trans-
forms into

(
∂V

∂t
+

1
2
α2F 2β ∂2V

∂F 2
+

1
2
ν2α2 ∂2V

∂α2
+ ρνα2F β ∂2V

∂F∂α
− rV

)
dt−∆Fdt

= ∆1

(
∂V1

∂t
+

1
2
α2F 2β ∂2V1

∂F 2
+

1
2
ν2α2 ∂2V1

∂α2
+ ρνα2F β ∂2V1

∂F∂α
− rV1

)
dt

+
(

∆1αF β ∂V1

∂F
− αF β ∂V

∂F
+ ∆αF β

)
dW1 +

(
∆1να

∂V1

∂α
− να

∂V

∂α

)
dW2. (8.1.3)

To obtain a risk-free portfolio, these stochastic terms have to be eliminated, as we did before in
section 7.1. Hence, we choose





∆1 =

(
∂V
∂α

)
(

∂V1
∂α

) ,

∆ =
∂V

∂F
−∆1

∂V1

∂F
=

∂V

∂F
−

(
∂V
∂α

)
(

∂V1
∂α

) ∂V1

∂F
.

(8.1.4a)

(8.1.4b)

Following the steps taken in [3], substituting ∆1 and ∆ as above into equation (8.1.3), and
collecting all V -dependent terms on the left-hand side and all V1-dependent terms on the right-
hand side, we obtain

∂V
∂t + 1

2α2F 2β ∂2V
∂F 2 + 1

2ν2α2 ∂2V
∂α2 + ρνα2F β ∂2V

∂F∂α − F ∂V
∂F − rV(

∂V
∂α

)

=
∂V1
∂t + 1

2α2F 2β ∂2V1
∂F 2 + 1

2ν2α2 ∂2V1
∂α2 + ρνα2F β ∂2V1

∂F∂α − F ∂V1
∂F − rV1(

∂V1
∂α

) . (8.1.5)

Because the left-hand side of equation (8.1.5) is explicitly independent of V1 and the right-hand
side is explicitly independent of V , either sides must be independent of both V and V1. The only
way that this can be is for both sides to be equal to some function of the independent variables
F , α and t. We deduce that

∂V

∂t
+

1
2
α2F 2β ∂2V

∂F 2
+

1
2
ν2α2 ∂2V

∂α2
+ ρνα2F β ∂2V

∂F∂α
− F

∂V

∂F
− rV = λνα

∂V

∂α
, (8.1.6)

where, without loss of generality, we have written the arbitrary function of F , α and t as(
0− λνα

)
, where 0 and α are the drift and volatility functions from the sde (8.0.1) for instan-

taneous variance. Note that here λ = λ(F, α, t).

Hence, the price V (F, α, t) satisfies the following partial differential equation (pde):

∂V

∂t
+

1
2
α2F 2β ∂2V

∂F 2
+

1
2
ν2α2 ∂2V

∂α2
+ ρνα2F β ∂2V

∂F∂α
− F

∂V

∂F
− λνα

∂V

∂α
− rV = 0. (8.1.7)

Scaling parameters in the above pde, using maximum balance, does not seem to work very well,
since after scaling we obtain pdes that are still difficult to solve. Hence, for the SABR model
we will follow the procedure of Hagan et al., applying the scalings on the system of stochastic
differential equations and using Kolmogorov equations, see section 8.2 of this thesis.
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8.2 Scalings

Consider the following model in which both F and α are represented by stochastic state variables
whose time evolution is given by the following system of stochastic differential equations:

{
dF = α̂C(F )dW1, F (0) =f,

dα̂ = ν̂α̂ dW2, α̂(0) =α,

(8.2.1a)
(8.2.1b)

under the forward measure, where the two Wiener processes are correlated by

E [dW1 dW2] = ρ dt. (8.2.2)

8.3 Application of perturbation theory to SABR model

Initially, we will analyze the model with a general function C(F ), for notational convenience.
After that, the results are specialized to the power law F β.

Our analysis is based on a small volatility expansion, where we take both the volatility α and
the volatility of volatility2 ν to be small. To carry out this analysis systematically, we first scale
them by ε as follows:

σ =
α̂

ε
, ⇔ α̂ = εσ, (8.3.1a)

ν =
ν̂

ε
, ⇔ ν̂ = εν, (8.3.1b)

such that σ and α are Os(1). This yields
{

dF = εσC(F ) dW1, F (0) =f,

dσ = ενσ dW2, σ(0) =α,

(8.3.2a)
(8.3.2b)

Suppose that the market is in state F (t) = f , σ(t) = α at date t. Define the transition density
function p by

p(t, f, α;T, F,A) dFdA = prob
(
F < F (T ) < F + dF,A < σ(T ) < A + dA

∣∣F (t) = f, σ(t) = α
)
.

According to [10], p. 291, the unique Forward Kolmogorov Equation (fke) of a stochastic
differential equation (sde)

df = D1dt + D2dW, (8.3.3)

where D1 and D2 are matrices, and f , dt and dW are vectors, is given by

∂f

∂T
= −

N∑

i=1

∂

∂xi

(
D1

i (x1, . . . , xN )f
)

+
1
2

N∑

i=1

N∑

j=1

∂2

∂xi∂xj

(
D2

ij(x1, . . . , xN )f
)
. (8.3.4)

Next, we can construct the fke for the transition density function p, which is given by

∂

∂T
p(t, f, α;T, F,A) =

1
2

∂2

∂F 2

(
ε2A2C2(F ) p

)
+

1
2

∂2

∂A2

(
ε2ν2A2 p

)

+
1
2

∂2

∂F∂A

(
ρε2νA2 p

)
+

1
2

∂2

∂A∂F

(
ρε2νA2 p

)
,

=
1
2
ε2A2 ∂2

∂F 2

(
C2(F ) p

)
+ ρε2ν

∂2

∂F∂A

(
A2C(F ) p

)
+

1
2
ε2ν2 ∂2

∂A2

(
A2 p

)
,

2This is commonly abbreviated as “volvol”.
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for t < T , with p = δ(F − f)δ(A− α) at t = T .3

Let V (t, f, α) be the value of a European call option at date t, when the economy is in state
F (t) = f , σ(t) = α. Let tex be the option’s exercise date, and let K be its strike. Omitting the
discount factor D(tex), because we do a current valuation of the final payoff, the value of the
option is

V (t, f, α) = E [max(F (tex)−K, 0)|F (t) = f, σ(t) = α] ,

=
∫ ∞

A=−∞

∫ ∞

F=K
(F −K) p(t, f, α; tex, F, A) dF dA. (8.3.5)

Since

p(t, f, α; tex, F,A) = δ(F − f)δ(A− α) +
∫ tex

t

∂

∂T
p(t, f, α;T, F,A) dT, (8.3.6)

we can rewrite equation (8.3.5) as

V (t, f, α) = max(f−K, 0)+
∫ tex

T=t

∫ ∞

F=K

∫ ∞

A=−∞
(F −K)

∂

∂T
p(t, f, α;T, F,A) dA dF dT. (8.3.7)

Next, substitute the fke

∂

∂T
p(t, f, α; T, F, A) =

1
2
ε2A2 ∂2

∂F 2

(
C2(F ) p

)
+ ρε2ν

∂2

∂F∂A

(
A2C(F ) p

)
+

1
2
ε2ν2 ∂2

∂A2

(
A2 p

)

into equation (8.3.7), where integrating the A derivatives, i.e.,

ε2ρν
∂2

∂F∂A

(
A2C(F )p

)
and

1
2
ε2ν2 ∂2

∂A2

(
A2p

)
(8.3.8)

over all A yields zero. This is caused by the fact that p and it’s derivatives with respect to A
resp. F go faster to zero than A resp. F and it’s powers go to ±∞, see [2]. Therefore our option
price reduces to

V (t, f, α) = max(f −K, 0)

+
1
2
ε2

∫ tex

T=t

∫ ∞

A=−∞

∫ ∞

F=K
A2(F −K)

∂2

∂F 2

(
C2(F ) p

)
dF dA dT, (8.3.9)

where we have changed the order of integration. Integration by parts twice with respect to F
yields

∫ ∞

K
A2(F −K)

∂2

∂F 2

(
C2(F ) p

)
dF =

[
A2(F −K)

∂

∂F

(
C2(F ) p

)]∞

K

−
∫ ∞

K
A2 ∂

∂F

(
C2(F ) p

)
dF,

= −A2
[
C2(F ) p

]∞
K

= A2C2(K)p,

Again, this is caused by the property that p goes faster to zero than C(F ) and its powers go to
±∞ [2] such that

V (t, f, α) = max(f −K, 0) +
1
2
ε2C2(K)

∫ tex

T=t

∫ ∞

A=−∞
A2 p(t, f, α; T,K, A) dA dT. (8.3.10)

3This terminal condition follows directly from the definition of the transition density function p, as given
above.
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According to [10], p. 291, the unique Backward Kolmogorov Equation (bke) of a stochastic
differential equation (sde)

df = D1dt + D2dW, (8.3.11)

where D1 and D2 are matrices, and f , dt and dW are vectors, is given by

− ∂f

∂t
=

N∑

i=1

∂

∂xi

(
D1

i (x1, . . . , xN )f
)

+
1
2

N∑

i=1

N∑

j=1

∂2

∂xi∂xj

(
D2

ij(x1, . . . , xN )f
)
. (8.3.12)

Before we will construct the bke for the transition density function p, let us define

P (t, f, α;T, K) :=
∫ ∞

−∞
A2p(t, f, α;T, K, A) dA, (8.3.13)

to simplify the problem further. Then P satisfies the following Backward Kolmogorov Equa-
tion (bke):

∂P

∂t
+

1
2
ε2α2C2(f)

∂2P

∂f2
+ ρε2να2C(f)

∂2P

∂f∂α
+

1
2
ε2ν2α2 ∂2P

∂α2
= 0, (8.3.14)

for t < T and P = α2 δ(f −K) for t = T .

Since t does not appear explicitly in this equation, P depends only on the combination T − t,
and not on t and T separately. So, define

τ := T − t and τex := tex − t. (8.3.15)

Then our pricing equation becomes

V (t, f, α) = max(f −K, 0) +
1
2
ε2C2(K)

∫ τex

0
P (τ, f, α; K)dτ, (8.3.16)

where P is the solution of the problem




∂P

∂τ
=

1
2
ε2α2C2(f)

∂2P

∂f2
+ ρε2να2C(f)

∂2P

∂f∂α
+

1
2
ε2ν2α2 ∂2P

∂α2
, for τ > 0,

P = α2 δ(f −K), at τ = 0.

(8.3.17a)

(8.3.17b)

Since P starts out as a delta function, initially its derivatives will be large enough so that the
size of the ∂2P

∂f2 term offsets the smallness of ε.4

To capture this limit, let us define the local variable

ξ :=
f −K

ε
, (8.3.18)

such that f can be replaced by K + εξ.

Then,
∂

∂f
→ 1

ε

∂

∂ξ
,

∂2

∂f2
→ 1

ε2

∂2

∂ξ2
, (8.3.19)

4This means, the product ε2 ∂2P
∂f2 is still large, even if ε is small, because ∂2P

∂f2 is the second derivative of the
delta function, which has a very steep slope.
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and we have the Taylor expansion

C(f) = C(K + εξ) = C0

{
1 + εγ1ξ +

1
2
ε2γ2ξ

2 + . . .

}
, (8.3.20)

where

C0 = C(K), γ1 =
C ′(K)
C(K)

, γ2 =
C ′′(K)
C(K)

. (8.3.21)

Substituting this into the pde yields,

∂P

∂τ
=

1
2
α2C2

0

{
1 + 2εγ1ξ + ε2

(
γ2 + γ2

1

)
ξ2 + . . .

} ∂2P

∂ξ2

+ ε2ρνα2C0 {1 + εγ1ξ + . . .} ∂2P

∂ξ∂α
+

1
2
ε2ν2α2 ∂2P

∂α2
, (8.3.22a)

for τ > 0 with the initial condition5

P = α2δ(εξ) =
α2

ε
δ(ξ) as τ → 0. (8.3.22b)

Expanding

Pε(t, ξ, α) =
1
ε
P0(t, ξ, α) + P1(t, ξ, α) + εP2(t, ξ, α) + . . . , (8.3.23)

substituting this expansion into problem (8.3.22) and equating like powers of ε leads to the
following O(1

ε ) problem: 



∂P0

∂τ
=

1
2
α2C2

0

∂2P0

∂ξ2
, for τ > 0,

P0 = α2δ(ξ), as τ → 0.

(8.3.24a)

(8.3.24b)

The solution of the above problem can be computed by applying the following transformations:




y :=
ξ

α2
,

k :=
C2

0

2α2
,

t := τ,

u(t, y) := P0(τ, ξ).

(8.3.25a)

(8.3.25b)

(8.3.25c)
(8.3.25d)

Then,
∂2

∂y2
= α4 ∂2

∂ξ2
, (8.3.26)

and the problem (8.3.31) transforms into




∂u

∂t
− k

∂2u

∂y2
= 0,

u(t = 0, y) = δ(y),

(8.3.27a)

(8.3.27b)

which is the heat or diffusion equation, subject to a Dirac delta in the initial condition.

5Here, δ(·) is the Dirac delta function. For a proof of the equality δ(εξ) = δ(ξ)
ε

, see Appendix L.
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The solution to this problem (8.3.27) is given by the fundamental solution or heat kernel

u(t, y) =
1√

4πkt
e−

y2

4kt . (8.3.28)

In terms of the original variables, this equals

P0(τ, ξ) =
1√

4π
C2

0
2α2 τ

exp

(
−

ξ2

α4

4 C2
0

2α2 τ

)
=

|α|√
2πC2

0τ
exp

(
− ξ2

2α2C2
0τ

)
, (8.3.29)

i.e.,

P0(τ, ξ) =
|α|√

2πC2
0τ

exp
(
− (f −K)2

2ε2α2C2
0τ

)
. (8.3.30)

The O(1) problem is given by




∂P1

∂τ
− 1

2
α2C2

0

∂2P1

∂ξ2
= γ1α

2C2
0ξ

∂2P0

∂ξ2
, for τ > 0,

P1 = 0, as τ → 0.

(8.3.31a)

(8.3.31b)

whereas the O(ε) problem is given by




∂P2

∂τ
− 1

2
α2C2

0

∂2P2

∂ξ2
= γ1α

2C2
0ξ

∂2P1

∂ξ2
+ ρνC0

∂2P0

∂ξ∂α
, for τ > 0,

P2 = 0, as τ → 0.

(8.3.32a)

(8.3.32b)

Because the differential equations and initial conditions are independent of ε, all Pi (i = 1, 2, . . .)
are O(1) so we can conclude that [4]

P =
1
ε
P0 + P1 + εP2 + . . . =

α√
2πε2α2C2

0τ
exp

(
− (f − k)2

2ε2α2C2
0τ

)
{1 + . . .} . (8.3.33)

The expansion

C(f) =
∞∑

n=0

C(n)(K)
(εξ)n

n!
= C(K) + εC ′(K)ξ +O (

ε2
)

(8.3.34)

can be rewritten as

C(f) = C(K)
(

1 +
C ′(K)
C(K)

εξ

)
= C(K)

(
1 +

C ′(K)
C(K)

(f −K)
)

, (8.3.35)

such that the difference C(f) = C(K) becomes

C(f)− C(K) = C ′(K)(f −K). (8.3.36)

Since the “+ . . .” in equation (8.3.33) involves powers of (f −K)/εαC(K), this expansion would
become inaccurate as soon as (f −K)C ′(K)/C(K) becomes a significant fraction of 1, i.e., as
soon as C(f) and C(K) are significantly different.

Note that small changes in the exponent cause much greater changes in the probability density.
Therefore, a better approach is to re-cast the series as

P =
α√

2πε2C2(K)τ
exp

(
− (f −K)2

2ε2α2C2(K)τ

)
{1 + . . .} (8.3.37)
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and expand the exponent, since one expects that only small changes to the exponent will be
needed to effect the much larger changes in the density.

We can refine this approach by noting that the exponential can be written in terms of an integral
as follows:

(f −K)2

2ε2α2C2(K)τ
{1 + . . .} =

1
2τ

(
1
εα

∫ f

K

df ′

C(f ′)

)2

{1 + . . .}. (8.3.38)

This can be explained by writing out the integral in the right-hand side as follows:

∫ f

K

df ′

C(f ′)
= ε

∫ ξ

0

dξ′

C(K + εξ′)
, (8.3.39a)

= ε

∫ ξ

0

dξ′

C(K) + εC ′(K)ξ′ +O (ε2)
, (8.3.39b)

=
ε

C(K)

∫ ξ

0

dξ′

1 + εC′(K)
C(K) ξ′ +O (ε2)

, (8.3.39c)

=
ε

C(K)

∫ ξ

0

dξ′

1 + εγ1ξ′ +O (ε2)
, (8.3.39d)

=
ε

C(K)

∫ ξ

0

(
1− εγ1ξ

′ +O (
ε2

))
dξ′, (8.3.39e)

=
ε

C(K)

(
ξ − 1

2
εγ1ξ

2 +O (
ε2

))
, (8.3.39f)

=
εξ

C(K)
=

f −K

C(K)
. (8.3.39g)

Here, the Mercator series6 are used to perform the step from equation (8.3.39d) to equation
(8.3.39e), i.e.,

1
1 + ε +O (ε2)

= 1 +−1 · ε +O (
ε2

)
= 1− ε +O (

ε2
)
. (8.3.41)

Having found that
f −K

C(K)
=

∫ f

K

df ′

C(f ′)
(8.3.42)

implies that
(f −K)2

C2(K)
=

(∫ f

K

df ′

C(f ′)

)2

(8.3.43)

and thus we can maken the substitution

(f −K)2

2ε2α2C2(K)τ
{1 + . . .} =

1
2τ

(
1
εα

∫ f

K

df ′

C(f ′)

)2

{1 + . . .}, (8.3.44)

which concludes the derivation of equation (8.3.38).

6In mathematics, the Mercator series or Newton-Mercator series is the series

∞∑
n=1

(−1)n+1

n
xn = x− x2

2
+

x3

3
− x4

4
+ . . . . (8.3.40)

This is the Taylor series for the natural logarithm shifted by 1, i.e., log(1 + x).



72 CHAPTER 8. THE SABR MODEL

Here, it is a ‘natural’ choice to change variables from f to

z :=
1
εα

∫ f

K

df ′

C(f ′)
, (8.3.45)

since f only occurs in combination with this integral. Also, we define

B(εαz) := C(f). (8.3.46)

Then,
∂

∂f
→ 1

εαC(f)
∂

∂z
=

1
εαB(εαz)

∂

∂z
and

∂

∂α
→ ∂

∂α
− z

α

∂

∂z
, (8.3.47)

such that

∂2

∂f2
→ 1

ε2α2B2(εαz)

{
∂2

∂z2
− εα

B′(εαz)
B(εαz)

∂

∂z

}
, (8.3.48a)

∂2

∂f∂α
→ 1

εαB(εαz)

{
∂2

∂z∂α
− z

α

∂2

∂z2
− 1

α

∂

∂z

}
, (8.3.48b)

∂2

∂α2
→ ∂2

∂α2
− 2z

α

∂2

∂z∂α
+

z2

α2

∂2

∂z2
+

2z

α2

∂

∂z
. (8.3.48c)

Also,7

δ(f −K) = δ(εαzC(K)) =
1

εαC(K)
δ(z). (8.3.49)

Therefore, (8.3.16) through (8.3.17) become

V (t, f, α) = max(f −K, 0) +
1
2
ε2C2(K)

∫ τex

0
P (τ, z, α)dτ, (8.3.50)

where P (τ, z, α) is the solution of the boundary value problem




∂P

∂τ
=

1
2

∂2P

∂z2
− 1

2
εα

B′

B

∂P

∂z
+ ρενα

∂2P

∂z∂α
− ερνz

∂2P

∂z2
− ρεν

∂P

∂z

+
1
2
ε2ν2α2 ∂2P

∂α2
− ε2ν2αz2 ∂2P

∂z∂α
+

1
2
ε2ν2z2 ∂2P

∂z2
+ ε2ν2z

∂P

∂z
, for τ > 0,

P =
α

εC(K)
δ(z), at τ = 0,

(8.3.51a)

(8.3.51b)

i.e., 



∂P

∂τ
=

1
2

(
1− 2ερνz + ε2ν2z2

) ∂2P

∂z2
− 1

2
εα

B′

B

∂P

∂z

+
(
ερν − ε2ν2z

)(
α

∂2P

∂z∂α
− ∂P

∂z

)
+

1
2
ε2ν2α2 ∂2P

∂α2
, for τ > 0,

P =
α

εC(K)
δ(z), at τ = 0.

(8.3.52a)

(8.3.52b)

Accordingly, let us define8

P̂ (τ, z, α) :=
ε

α
C(K)P, (8.3.53)

7In integral form.
8Here, we have adopted the notation of Hagan et al., containing C(K). Actually, in this case it would be

better to write P̂ (τ, z, α) := ε
α

B(0)P. Recall that B(εαz) = C(f) and B(0) = C(K).
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such that P can be replaced by α
εC(K) P̂ .

Then,

εC(K)
α

∂P

∂f
→ εC(K)

α

∂

∂α

(
α

εC(K)
P̂

)
=

1
α

P̂ +
∂P̂

∂α
, and (8.3.54a)

εC(K)
α

∂2P

∂α2
→ εC(K)

α

∂2

∂α2

(
α

εC(K)
P̂

)
=

1
α

∂

∂α

(
P̂ + α

∂P̂

∂α

)
,

=
1
α

(
∂P̂

∂α
+

∂P̂

∂α
+ α

∂2P̂

∂α2

)
=

2
α

∂P̂

∂α
+

∂2P̂

∂α2
. (8.3.54b)

In terms of P̂ we obtain

V (t, f, α) = max(f −K, 0) +
1
2
εαC(K)

∫ τex

0
P̂ (τ, z, α)dτ, (8.3.55)

where P̂ (τ, z, α) is the solution of




∂P̂

∂τ
=

1
2

(
1− 2ερνz + ε2ν2z2

) ∂2P̂

∂z2
− 1

2
εα

B′

B

∂P̂

∂z

+
(
ερν − ε2ν2z

)
α

∂2P̂

∂z∂α
+

1
2
ε2ν2

(
α2 ∂2P̂

∂α2
+ 2α

∂P̂

∂α

)
, for τ > 0,

P̂ = δ(z), at τ = 0.

(8.3.56a)

(8.3.56b)

To leading order, P̂ is the solution of the standard diffusion problem

∂P̂

∂τ
=

1
2

∂2P̂

∂z2
, (8.3.57)

with P̂ = δ(z) at τ = 0. So it is a Gaussian to leading order. The next stage is to transform
the problem into the standard diffusion problem through O(ε), and then through O (

ε2
)
, etc.

This is the near identify transform method9 which has proven so powerful in near-Hamiltonian
systems10.

Note that the variable α does not enter the problem for P̂ until O(ε), so

P̂ (τ, z, α) = P0(τ, z) + εP1(τ, z, α) + . . . . (8.3.59)

Consequently, the derivatives ∂2P̂
∂z∂α , ∂2P̂

∂α2 and ∂P̂
∂α are all O(ε). Recall that we are only solving

for P̂ through O (
ε2

)
.

9See appendix M.
10A near-Hamiltonian system is of the form





dp

dt
=

∂H

∂q
+ ε(. . .) =: F,

dq

dt
= −∂H

∂p
+ ε(. . .)=: G,

(8.3.58a)

(8.3.58b)

with
∂F

∂p
= −∂G

∂q
.
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So, through this order, we can re-write our boundary value problem as




∂P̂

∂τ
=

1
2

(
1− 2ερνz + ε2ν2z2

) ∂2P̂

∂z2
− 1

2
εα

B′

B

∂P̂

∂z
+ ερνα

∂2P̂

∂z∂α
, for τ > 0,

P̂ = δ(z), at τ = 0.

(8.3.60a)

(8.3.60b)

Let us now eliminate the 1
2εαB′

B
∂P̂
∂z term. Define H(τ, z, α) by

P̂ =
(

C(f)
C(K)

)n

H =
(

B(εαz)
B(0)

)n

H, (8.3.61)

where n is an O(1) constant that will be determined in the next steps.

Then,

∂P̂

∂z
=

(
B(εαz)
B(0)

)n (
∂H

∂z
+ εnα

B′

B
H

)
, (8.3.62a)

∂2P̂

∂z2
=

(
B(εαz)
B(0)

)n (
∂2H

∂z2
+ 2εnα

B′

B

∂H

∂z
+ ε2α2

[
n

B′′

B
+ (n2 − n)

B′2

B2

]
H

)
,(8.3.62b)

∂2P̂

∂z∂α
=

(
B(εαz)
B(0)

)n (
∂2H

∂z∂α
+ εnz

B′

B

∂H

∂z
+ εnα

B′

B

∂H

∂α
+ εn

B′

B
H +O (

ε2
))

.(8.3.62c)

The option price now becomes

V (t, f, α) = max(f −K, 0) + εnαB(0)
(

B(εαz)
B(0)

)n ∫ τex

0
H(τ, z, α) dτ, (8.3.63)

where H(τ, z, α) is the solution of

∂H

∂τ
=

1
2

(
1− 2ερνz + ε2ν2z2

)(
∂2H

∂z2
+ 2εnα

B′

B

∂H

∂z
+ ε2α2

[
n

B′′

B
+ (n2 − n)

B′2

B2

]
H

)

+ ερνα

(
∂2H

∂z∂α
+ εnz

B′

B

∂H

∂z
+ εnα

B′

B

∂H

∂α
+ εn

B′

B
H +O (

ε2
))

− 1
2
εα

B′

B

(
∂H

∂z
+ εnα

B′

B
H

)

for τ > 0, with initial condition H = δ(z) at τ = 0. Omitting all O (
ε3

)
terms, and combining

some terms yields

∂H

∂τ
=

1
2

(
1− 2ερνz + ε2ν2z2

) ∂2H

∂z2
+ εnα

B′

B

∂H

∂z

+
1
2
ε2α2

[
n

B′′

B
+ (n2 − n)

B′2

B2

]
H − ε2nρνα

B′

B

(
z
∂H

∂z
−H

)
− 1

2
εα

B′

B

∂H

∂z

− 1
2
ε2nα2 B′2

B2
H + ερνα

(
∂2H

∂z∂α
+ εnα

B′

B

∂H

∂α

)
. (8.3.64)

Next, we combine the third and sixth term of equation (8.3.64) and reorder terms to obtain

∂H

∂τ
=

1
2

(
1− 2ερνz + ε2ν2z2

) ∂2H

∂z2
+ εα

(
n− 1

2

)
B′

B

∂H

∂z

+
1
2
ε2α2

[
n

B′′

B
+ (n2 − 2n)

B′2

B2

]
H − ε2nρνα

B′

B

(
z
∂H

∂z
−H

)

+ ερνα

(
∂2H

∂z∂α
+ εnα

B′

B

∂H

∂α

)
. (8.3.65)
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The choice n = 1
2 , eliminates the term containing ∂H

∂z . This yields

V (t, f, α) = max(f −K, 0) +
1
2
εαB(0)

(
B(εαz)
B(0)

) 1
2
∫ τex

0
H(τ, z, α) dτ, (8.3.66)

for the option price, where H(τ, z, α) is the solution of

∂H

∂τ
=

1
2

(
1− 2ερνz + ε2ν2z2

) ∂2H

∂z2
− 1

2
ε2ρνα

B′

B

(
z
∂H

∂z
−H

)

+ ε2α2

[
1
4

B′′

B
− 3

8
B′2

B2

]
H + ερνα

(
∂2H

∂z∂α
+

1
2
εα

B′

B

∂H

∂α

)
, (8.3.67)

for τ > 0, with initial condition H = δ(z) at τ = 0.

Since this equation (8.3.67) is independent of α to leading order, i.e.,





∂H

∂τ
=

1
2

∂2H

∂z2
, for τ > 0,

H = δ(z), at τ = 0,

(8.3.68a)

(8.3.68b)

we can conclude that the α-derivatives ∂H
∂α and ∂2H

∂α2 are no larger than O(ε).

At O(ε) equation (8.3.67) depends on α only through the last term

ερνα

(
∂2H

∂z∂α
+

1
2
εα

B′

B

∂H

∂α

)
. (8.3.69)

Because the α-derivatives are no larger than O(ε), this last term is actually only O (
ε3

)
, and

can thus be neglected, since only the terms through Os

(
ε2

)
are taken into account.

This yields




∂H

∂τ
=

1
2

(
1− 2ερνz + ε2ν2z2

) ∂2H

∂z2
− 1

2
ε2ρνα

B′

B

(
z
∂H

∂z
−H

)

+ ε2α2

[
1
4

B′′

B
− 3

8
B′2

B2

]
H, for τ > 0,

H = δ(z), at τ = 0.

(8.3.70a)

(8.3.70b)

There are no longer any α-derivatives, so now α can be treated as a parameter instead of as
an independent variable. This means we have succesfully reduced the problem to one dimension.

Let us now remove the ∂H
∂z term through O (

ε2
)
. To leading order the ratios

B′(εαz)
B(εαz)

and
B′′(εαz)
B(εαz)

(8.3.71)

are constant. We can replace them by

b1 :=
B′(εαz0)
B(εαz0)

and b2 :=
B′′(εαz0)
B(εαz0)

, (8.3.72)
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committing only an O(ε) error, where the constant z0 will be chosen later on. This can be seen
by expanding z = z0 + εz1 + . . ..

We now define Ĥ by

H = exp
(

1
4
ε2ρναb1z

2

)
Ĥ, (8.3.73)

such that

∂H

∂τ
→ exp

(
1
4
ε2ρναb1z

2

)
∂Ĥ

∂τ
, (8.3.74a)

∂H

∂z
→ exp

(
1
4
ε2ρναb1z

2

) (
∂Ĥ

∂z
+

1
2
ε2ρναb1zĤ

)
, (8.3.74b)

∂2H

∂z2
→ exp

(
1
4
ε2ρναb1z

2

) (
∂2Ĥ

∂z2
+ ε2ρναb1z

∂Ĥ

∂z
+

1
2
ε2ρναb1Ĥ

)
. (8.3.74c)

Again, only terms up to and including O (
ε2

)
have to be taken into account.

Then our option price becomes

V (t, f, α) = max(f −K, 0) +
1
2
εα

√
B(0)B(εαz)eε2ρναb1z2/4

∫ τex

0
Ĥ(τ, z, α) dτ, (8.3.75)

and equation (8.3.70a) transforms into

∂Ĥ

∂τ
=

1
2

(
1− 2ερνz + ε2ν2z2

)
(

∂2Ĥ

∂z2
+ ε2ρναb1z

∂Ĥ

∂z
+

1
2
ε2ρναb1Ĥ

)

− 1
2
ε2ρναb1

[
z

(
∂Ĥ

∂z
+

1
2
ε2ρναb1zĤ

)
− Ĥ

]
+ ε2α2

[
1
4
b2 − 3

8
b2
1

]
Ĥ. (8.3.76)

Neglecting all terms that are O (
ε3

)
, this can be rewritten as

∂Ĥ

∂τ
=

1
2

(
1− 2ερνz + ε2ν2z2

) ∂2Ĥ

∂z2
+

1
2
ε2ρναb1z

∂Ĥ

∂z
+

1
4
ε2ρναb1Ĥ

− 1
2
ε2ρναb1z

∂Ĥ

∂z
+

1
2
ε2ρναb1Ĥ + ε2α2

[
1
4
b2 − 3

8
b2
1

]
Ĥ, (8.3.77)

i.e.,

∂Ĥ

∂τ
=

1
2

(
1− 2ερνz + ε2ν2z2

) ∂2Ĥ

∂z2
+ ε2α2

[
1
4
b2 − 3

8
b2
1

]
Ĥ +

3
4
ε2ρναb1Ĥ, (8.3.78)

for τ > 0, with initial condition H(0, z, α) = δ(z).

Next, we define

x :=
1
εν

∫ ενz

0

dζ√
1− 2ρζ + ζ2

, (8.3.79)

i.e.,

x =
1
εν

∫ ενz

0

dζ√
1− ρ2 + (ζ − ρ)2

=
1
εν

∫ ενz

0

dζ
√

1− ρ2
√

1 + (ζ−ρ)2

1−ρ2

. (8.3.80)
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Define

ω :=
ζ − ρ√
1− ρ2

, (8.3.81)

such that x can be written as

x =
1
εν

∫ ενz

ζ=0

dω√
1 + ω2

. (8.3.82)

Pythagoras’ theorem states that in a right triangle with sides of length 1 and ω, the hypotenuse
(the side opposite the right angle) is equal to

√
1 + ω2. Also we define the angle θ as illustrated

in figure 8.1.

Figure 8.1: Right triangle with sides of length 1 and ω, and hypotenuse
√

1 + ω2.

From this we can derive that

1√
1 + ω2

= cos θ, (8.3.83a)

ω = tan(θ) ⇒ dω = d tan θ =
dθ

cos2 θ
. (8.3.83b)

Substituting this into the expressions for x (8.3.82) yields

x =
1
εν

∫ ενz

ζ=0

cos θ

cos2 θ
dθ =

1
εν

∫ ενz

ζ=0

dθ

cos θ
. (8.3.84)

After computing this integral, we obtain

x =
1
εν

[
log

∣∣∣∣
1

cos θ
+ tan θ

∣∣∣∣
]ενz

ζ=0

. (8.3.85)

Using the expressions of ω in terms of θ and the fact that
√

1 + ω2 > ω, this can be written as

x =
1
εν

[
log

(√
1 + ω2 + ω

)]ενz

ζ=0
. (8.3.86)

The last step is to substitute the definition of ω back into this expression, to obtain

x =
1
εν

[
log

(√
1− 2ρζ + ζ2

√
1− ρ2

+
ζ − ρ√
1− ρ2

)]ενz

ζ=0

,

=
1
εν

log

(√
1− 2ρενz + ε2ν2z2 + ενz − ρ√

1− ρ2

)
− 1

εν
log

(
1− ρ√
1− ρ2

)
. (8.3.87)
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Hence, the definition of x (8.3.79) can also be written as

x :=
1
εν

log

(√
1− 2ρενz + ε2ν2z2 − ρ + ενz

1− ρ

)
. (8.3.88)

It is also possible to find an implicit expression for z in terms of x, by defining

y := ενz − ρ. (8.3.89)

Then,
y2 = (ενz − ρ)2 = ε2ν2z2 − 2ρενz + ρ2, (8.3.90)

such that equation (8.3.88) can be written as

x =
1
εν

log

(√
1− ρ2 + y2 + y

1− ρ

)
. (8.3.91)

From this, it follows that
(1− ρ)eενx =

√
1− ρ2 + y2 + y. (8.3.92)

We can also write

√
1− ρ2 + y2 − y =

(√
1− ρ2 + y2 − y

) √
1− ρ2 + y2 + y√
1− ρ2 + y2 + y

=
1− ρ2 + y2 − y2

√
1− ρ2 + y2 + y

=
1− ρ2

(1− ρ)eενx
=

(1− ρ)(1 + ρ)
(1− ρ)eενx

= (1 + ρ)e−ενx. (8.3.93)

Using these two expressions (8.3.92) and (8.3.93), we can write y as

y =
1
2

[(√
1− ρ2 + y2 + y

)
−

(√
1− ρ2 + y2 − y

)]
,

=
1
2

[
(1− ρ) eενx − (1 + ρ) e−ενx

]
,

=
1
2

[(
eενx − e−ενx

)− ρ
(
eενx + e−ενx

)]
,

= sinh (ενx)− ρ cosh (ενx) . (8.3.94)

Substituting this into the definition of y (8.3.89) and reordering yields

ενz = y + ρ = sinh (ενx)− ρ cosh (ενx) + ρ. (8.3.95)

Hence, expression (8.3.88) can be written implicitly as

ενz = sinh (ενx)− ρ (cosh (ενx)− 1) . (8.3.96)

After the transformation from z to x, we have

∂Ĥ

∂z
→ 1√

1− 2ερνz + ε2ν2z2

∂Ĥ

∂x
=

1
I(ενz)

∂Ĥ

∂x
, (8.3.97a)

∂2Ĥ

∂z2
→ 1

I2(ενz)

(
∂2Ĥ

∂x2
− ενI ′(ενz)

∂Ĥ

∂x

)
,

=
1

1− 2ερνz + ε2ν2z2

(
∂2Ĥ

∂x2
− ενI ′(ενz)

∂Ĥ

∂x

)
. (8.3.97b)
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Here,
I(ζ) =

√
1− 2ρζ + ζ2. (8.3.98)

In terms of x, we have

V (t, f, α) = max(f −K, 0) +
1
2
εα

√
B(0)B(εαz) exp

(
1
4
ε2ρναb1z

2

) ∫ τex

0
Ĥ(τ, x) dτ, (8.3.99)

with

∂Ĥ

∂τ
=

1
2

∂2Ĥ

∂x2
− 1

2
ενI ′(ενz)

∂Ĥ

∂x
+ ε2α2

[
1
4
b2 − 3

8
b2
1

]
Ĥ +

3
4
ε2ρναb1Ĥ, (8.3.100)

for τ > 0, with initial condition H = δ(x), at τ = 0.

The final step is to define Q(τ, x) by

Ĥ = I
1
2 (ενz(x))Q =

(
1− 2ρενz + ε2ν2z2

) 1
4 Q. (8.3.101)

Then,11

∂Ĥ

∂τ
→ I

1
2 (ενz)

∂Q

∂τ
, (8.3.102a)

∂Ĥ

∂x
→ I

1
2 (ενz)

(
∂Q

∂x
+

1
2
ενI ′(ενz)Q

)
, (8.3.102b)

∂2Ĥ

∂x2
→ I

1
2

(
∂2Q

∂x2
+ ενI ′(ενz)

∂Q

∂x
+ ε2ν2

(
1
2
I ′′I +

1
4
I ′2

)
Q

)
. (8.3.102c)

Hence, the option price becomes

V (t, f, α) = max(f −K, 0) +
1
2
εα

√
B(0)B(εαz)I

1
2 (ενz)e

1
4
ε2ρναb1z2

∫ τex

0
Q(τ, x) dτ, (8.3.103)

where Q is the solution of

∂Q

∂τ
=

1
2

∂2Q

∂x2
+

1
2
ενI ′

∂Q

∂x
+

1
2
ε2ν2

(
1
2
I ′′I +

1
4
I ′2

)
Q− 1

2
ενI ′

∂Q

∂x

− 1
4
ε2ν2I ′2Q + ε2α2

[
1
4
b2 − 3

8
b2
1

]
Q +

3
4
ε2ρναb1Q, (8.3.104)

i.e.,

∂Q

∂τ
=

1
2

∂2Q

∂x2
+ ε2ν2

(
1
4
I ′′I − 1

8
I ′2

)
Q + ε2α2

[
1
4
b2 − 3

8
b2
1

]
Q +

3
4
ε2ρναb1Q, (8.3.105)

for τ > 0, with initial condition Q = δ(x), at τ = 0.

As above, we can replace I(ενz), I ′(ενz), I ′′(ενz) by the constants I(ενz0), I ′(ενz0), I ′′(ενz0),
and commit only O(ε) errors.

11Here, the fact that ∂z
∂x

= I(ενz) is used to compute the derivatives with respect to x.
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Define the constant κ by

κ := ν2

(
1
4
I ′′(ενz0)I(ενz0)− 1

8
(
I ′(ενz0)

)2
)

+ α2

[
1
4
b2 − 3

8
b2
1

]
+

3
4
ρναb1, (8.3.106)

where z0 will be chosen later.

Then, through O (
ε2

)
, we can simplify our problem to





∂Q

∂τ
=

1
2

∂2Q

∂x2
+ ε2κQ, for τ > 0,

Q = δ(x), at τ = 0.

(8.3.107a)

(8.3.107b)

The solution of system (8.3.107) is

Q(τ, x) =
1√
2πτ

e−
x2

2τ eε2κτ . (8.3.108)

Expanding the last exponential eε2κτ in a Taylor series around ε = 0 yields 1 + ε2κτ +O (
ε4

)
.

Note that this expanding 1

(1− 2
3
κε2τ+...)

3
2

in a Taylor series around 0 gives the same result. Hence,

Q(τ, x) =
1√
2πτ

e−
x2

2τ
1

(
1− 2

3κε2τ + . . .
) 3

2

, (8.3.109)

through O (
ε2

)
.

This solution yields the option price

V (t, f, α) = max(f −K, 0) +
1
2
εα

√
B(0)B(εαz)I

1
2 (ενz)e

1
4
ε2ρναb1z2

∫ τex

0

1√
2πτ

e−
x2

2τ eε2κτ dτ.

Observe that this can be written as

V (t, f, α) = max(f −K, 0) +
1
2

f −K

x

∫ τex

0

1√
2πτ

e−
x2

2τ eε2θeε2κτ dτ, (8.3.110a)

where

ε2θ := log
(

εαz

f −K

√
B(0)B(εαz)

)
+ log

(
xI

1
2 (ενz)
z

)
+

1
4
ε2ρναb1z

2. (8.3.110b)

Expanding ε2θ through O (
ε2

)
yields [4]

ε2θ ∼
(

1
12

b2 − 1
8
b2
1

)
ε2α2z2 +


 1

12
I ′′(1

2ενz)
I(1

2ενz)
− 1

24

(
I ′(1

2ενz)
I0(1

2ενz)

)2

 ε2ν2z2 +

1
4
ε2ρναb1z

2.

(8.3.111)
Using z

x = 1 +O(ε) and I(ενz) = 1 + . . ., we note that θ
x2 matches

κ

3
=

1
3
ν2

(
1
4
I ′′(ενz0)I(ενz0)− 1

8
(
I ′(ενz0)

)2
)

+
1
3
α2

[
1
4
b2 − 3

8
b2
1

]
+

1
4
ρναb1, (8.3.112)
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and thus

eε2κτ =
1

(
1− 2

3κε2τ
) 3

2

=
1

(
1− 2ε2τ θ

x2

) 3
2

+O (
ε4

)
, (8.3.113)

through O (
ε2

)
.

Therefore, our option price is

V (t, f, α) = max(f −K, 0) +
1
2

f −K

x

∫ τex

0

1√
2πτ

e−
x2

2τ eε2θ 1
(
1− 2ε2τ θ

x2

) 3
2

dτ. (8.3.114)

Changing integration variables to q := x2

2τ reduces this to

V (t, f, α) = max(f −K, 0) +
|f −K|

4
√

π

∫ ∞

x2

2τex

e−q+ε2θ

(q − ε2θ)
3
2

dq. (8.3.115)

That is, the value of a European call option is given by

V (t, f, α) = max(f −K, 0) +
|f −K|

4
√

π

∫ ∞

x2

2τex
−ε2θ

q−
3
2 e−qdq, (8.3.116a)

with

ε2θ := log
(

εαz

f −K

√
B(0)B(εαz)

)
+ log

(
xI

1
2 (ενz)
z

)
+

1
4
ε2ρναb1z

2, (8.3.116b)

through O (
ε2

)
.

Solving problem (8.3.17) for P (τ, f, α;K) and then substituting this into the pricing formula
(8.3.16) to obtain the option value V (t, f, α) under the SABR model, the resulting formulas
(8.3.116) we find are awkward and not very useful.

First comparison: Normal model
To cast the results in a more usable form, we re-compute the option price under the normal
model

dF = σNdW, (8.3.117)

and then equate the two prices to determine which normal volatility σN needs to be used to
reproduce the option price under the SABR model. That is, we find the implied normal
volatility of the option under the SABR model.

Second comparison: Lognormal model
By doing a second comparison between option prices under the lognormal model

dF = σBFdW, (8.3.118)

and the normal model (8.4.1), we then convert the implied normal volatlity to the usual implied
lognormal (Black-Scholes) volatility, i.e., we quote the option price predicted by the SABR model
in terms of the option’s implied volatility.
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8.4 Normal model

Equations (8.3.116a)-(8.3.116b) form a general formula for the dollar price of the call option
under the SABR model. The utility and beauty of this formula is not overwhelmingly apparent.
To obtain a useful formula, we convert this dollar price into the equivalent implied volatilities.

To cast the results in a more usable form, we re-compute the option price under the normal
model

dF = σNdW, (8.4.1)

and then equate the two prices to determine which normal volatility σN needs to be used to
reproduce the option price under the SABR model. That is, we find the implied normal
volatility of the option under the SABR model.

Suppose we repeated the above analysis for the ordinary normal model

dF = α̂C(F )dW1, F (0) = f. (8.4.2)

Here, we set

C(f) = 1 ⇒ B(ενz) = 1, B(0) = 1, b1 =
B′

B
= 0 and b2 =

B′′

B
= 0. (8.4.3a)

εα = σN , (8.4.3b)
ν = 0 ⇒ σN is constant, not stochastic. (8.4.3c)

As ν → 0 we have to apply L’Hôpital’s rule for x to avoid ‘00 ’. This yields

x = lim
ν→0

1
εν

ενz√
1− 2ρενz + ε2ν2z2

= lim
ν→0

z√
1− 2ρενz + ε2ν2z2

= z. (8.4.4a)

Furthermore,

ε2θ := log
(

εαz

f −K

√
B(0)B(εαz

)
+ log

(
xI

1
2

z

)
+

1
4
ε2ρναb1z

2,

= log
(

σN

f −K
z

)
+ log

(
I

1
2

)
+ 0 = log

(
σN

f −K
zI

1
2

)
= log

(
I

1
2

)

= log
(
(1− 2ρενz + ε2ν2z2)

1
4

)
=

1
4

log(1) = 0, (8.4.4b)

for ν = 0.

Hence, the lower limit of the integral in formula (8.3.116a)

x2

2τex

− ε2θ (8.4.5a)

can be replaced by
(f −K)2

2σ2
Nτex

, (8.4.5b)

such that the option value for the normal model is exactly

V (t, f, α) = max(f −K, 0) +
|f −K|

4
√

π

∫ ∞

(f−K)2

2σ2
N

τex

q−
3
2 e−qdq. (8.4.6)
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Working out the integral and applying the property N(−a) = 1−N(a) for all a then yields the
exact European option price

V (t, f, α) = (f −K)N
(

f −K

σN
√

τex

)
+ σN

√
τexn

(
f −K

σN
√

τex

)
(8.4.7)

for the normal model.

From equation (8.4.6) it is clear that the expression for the option price under the normal model
matches the general expression for the option price under the SABR model (8.3.116a)-(8.3.116b)
if and only if the lower integral limits are the same, i.e.,

x2

2τex

− ε2θ =
(f −K)2

2σ2
Nτex

. (8.4.8)

This implies that the normal volatility σN satisfies

1
σ2

N

=
(

x2

2τex

− 2ε2θ

)
2τex

(f −K)2
=

x2

(f −K)2

(
1− ε2 θ

x2
τex

)
. (8.4.9)

Taking the square root and expanding
√

1
1− ε2 θ

x2 τex

(8.4.10)

in a Taylor series around ε = 0 shows that the option’s implied normal (absolute) volatility
is given by

σN =
f −K

x

(
1 + ε2 θ

x2
τex + . . .

)
. (8.4.11)

Since x = z (1 +O(ε)), we can rewrite the answer as12

σN =
(

f −K

z

)(
z

x(z)

) (
1 + ε2 (φ1 + φ2 + φ3) τex + . . .

)
, (8.4.12)

where
f −K

z
=

εα(f −K)∫ f
K

df ′
C(f ′)

=
(

1
f −K

∫ f

K

df ′

εαC(f ′)

)−1

. (8.4.13)

On page 28 of their paper [5] Hagan and his coauthors state: “This factor represents the average
dif f iculty in dif fusing from today’s forward f to the strike K, and would be present even if the
volatility were not stochastic.” This probably means that this factor is the main multiplier for
the volatility and its appearence does not depend on the value of the volvol ν.

The next factor is

z

x(z)
=

z

1
εν log

(√
1−2ρενz+ε2ν2z2−ρ+ενz

1−ρ

) =
ζ

log
(√

1−2ρζ+ζ2−ρ+ζ
1−ρ

) , (8.4.14)

12This can be seen by making a Taylor expansion of the definition of x (8.3.88) around ε = 0 up to and including
O (ε). This yields x = z

(
1 + 1

2
ρνzε

)
= z (1 +O (ε)).
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where

ζ := ενz = εν
1
εα

∫ f

K

df ′

C(f ′)
=

ν

α

∫ f

K

df ′

C(f ′)
=

ν

α

f −K

C (favg)
(
1 +O (

ε2
))

. (8.4.15)

Here, favg :=
√

fK is the geometric average of f and K.13 On page 28 of [5] Hagan and col-
leagues claim: “This factor represents the main ef fect of the stochastic volatility.” With this
they presumably mean that in the expression for the normal volatility (8.4.12) the lowest order
term in ν is driven by favg.

The coefficients φ1, φ2 and φ3 provide relatively minor corrections. Through O (
ε2

)
these

corrections are

εφ1 =
1
x2

log
(

εαz

f −K

√
B(0)B(εαz)

)
, (8.4.16a)

εφ2 =
1
x2

log

(
xI

1
2

z

)
, (8.4.16b)

εφ3 =
1
x2

ε2ραν
B′

4B
. (8.4.16c)

i.e., using x = z (1 +O (ε)) as we did before,

εφ1 =
1
z2

log
(

εαz

f −K

√
C(f)C(K)

)
=

2γ2 − γ2
1

24
ε2α2C2 (favg) + . . . , (8.4.17a)

εφ2 =
1
z2

log
(x

z

(
1− 2ερνz + ε2ν2z2

) 1
4

)
=

2− 3ρ2

24
ε2ν2 + . . . , (8.4.17b)

εφ3 =
1
z2

ε2ραν
B′

4B
=

1
4z2

ρναγ1C (favg) + . . . , (8.4.17c)

where

γ1 :=
C ′ (favg)
C(favg)

and γ2 :=
C ′′ (favg)
C (favg)

. (8.4.18)

Let us briefly summarize before continuing. Under the normal model, the value of a European
call option with strike K and exercise date τex is given by

V (t, f, α) = (f −K)N
(

f −K

σN
√

τex

)
+ σN

√
τex

(
f −K

σN
√

τex

)
. (8.4.19)

For the SABR model, {
dF̂ = εα̂C(F̂ ) dW1, F̂ (0) = f,

dα̂ = ενα̂ dW2, α̂(0) = α,

(8.4.20a)
(8.4.20b)

where
E [dW1dW2] = ρ dt. (8.4.20c)

The value of the call option is given by the same formula, at least through O (
ε2

)
, provided we

use the implied normal volatility

σN (K) =
εα(f −K)∫ f

K
df ′

C(f ′)

·
(

ζ

x̂(ζ)

)
· (8.4.21a)

{
1 +

(
2γ2 − γ2

1

24
α2C2 (favg) +

2− 3ρ2

24
ν2 +

1
4
ρναγ1C (favg)

)
ε2τex + . . .

}
.

13Note that the arithmetic average f+K
2

could have been used equally well at this order of accuracy.
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Here,

favg =
√

fK, γ1 =
C ′ (favg)
C (favg)

, γ2 =
C ′′ (favg)
C (favg)

, (8.4.21b)

ζ =
ν

α

f −K

C (favg)
, x̂(ζ) = log

(√
1− ρζ + ζ2 − ρ + ζ

1− ρ

)
. (8.4.21c)

The first two factors provide the dominant behaviour, with the remaining factor 1 + [. . .]ε2τex

usually providing small corrections14.

One can repeat the analysis for a European put option, or simply use put-call parity as we have
seen before in section 4.6. Because in this case we consider a forward f (instead of a stock S),
there is no discount factor e−r(T−t) needed. Hence, the put-call parity is given by

V put = V call + K − f, (8.4.22)

Using the fact that N(−a) = 1 − N(a) and n(−a) = n(a) for all values of a, we obtain the
following expression for the value of a European put option with strike K and exercise date τex:

V put = (f −K)N
(

f −K

σN
√

τex

)
+ σN

√
τex

(
f −K

σN
√

τex

)
+ K − f,

= (K − f)N
(

K − f

σN
√

τex

)
+ σN

√
τex

(
K − f

σN
√

τex

)
, (8.4.23)

where the implied volatility σN is given by the same formulas (8.4.21a)-(8.4.21c) as the call.

8.5 Lognormal model

By doing a second comparison between option prices under the lognormal model

dF = σBFdW, (8.5.1)

and the normal model (8.4.1), we then convert the implied normal volatlity to the usual im-
plied lognormal (Black-Scholes) volatility, i.e., we quote the option price predicted by the SABR
model in terms of the option’s implied volatility. Here C(F ) = F .

To derive the implied Black volatility, consider Black’s model

dF = εσBFdW, (8.5.2)

where we have written the volatility as εσB to stay consistent with the preceding analysis. For
Black’s model, the value of a European call with strike K and exercise date τex is

Vcall = fN(d+)−KN(d−), (8.5.3a)
Vput = Vcall + D(tset)(K − f), (8.5.3b)

with

d± =
log( S

K )± 1
2ε2σ2

Bτex

εσB
√

τex

, (8.5.3c)

where we are omitting the overall factor D(tset) as before.

14Hagan et al. claim: “These are corrections of around 1% or so.”
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We can obtain the implied normal volatility for Black’s model by repeating the preceding anal-
ysis for the SABR model with C(f) = f and ν = 0.

Setting C(f) = f and ν = 0 in equation (8.4.21a)-(8.4.21c) shows that

σN (K) =
εα(f −K)
log(f/K)

(
1− 1

24
ε2σ2

Bτex + . . .

)
(8.5.4)

through O (
ε2

)
.

When we equate the two formulas for σN (K) (8.5.4) and (8.4.21a), and multiply through by
[
log(f/K)

f −K

]
1
ε

(
1 +

1
24

ε2σ2
Bτex

)
(8.5.5)

to clear up the left-hand side, we obtain

σB =
α log(f/K)∫ f

K
df ′

C(f ′)

·
(

ζ

x̂(ζ)

)
·
(

1 +
1
24

ε2σ2
Bτex

)
· (8.5.6)

{
1 +

(
2γ2 − γ2

1

24
α2C2 (favg) +

2− 3ρ2

24
ν2 +

1
4
ρναγ1C (favg)

)
ε2τex + . . .

}
.

Remember that we are only working through O (
ε2

)
, so we can neglect any higher order terms

that arise. The final answer, which is an expression for σB is obtained by substituting for σB

its first order approximation [4]

σB = α
C(favg)

favg

(1 +O(ε)) , (8.5.7)

so we can replace [
1 + ε2σ2

Bτex

]
(8.5.8)

on the right-hand side by [
1 + ε2

(
1
24

α2C(favg)2
1

f2
avg

)
τex

]
(8.5.9)

which can be combined with the other ε2τex terms. Through O (
ε2

)
this yields

σB(K) =
α log(f/K)∫ f

K
df ′

C(f ′)

·
(

ζ

x̂(ζ)

)
· (8.5.10)

{
1 +

(
2γ2 − γ2

1 + 1
f2

av

24
α2C2 (favg) +

2− 3ρ2

24
ν2 +

1
4
ρναγ1C (favg)

)
ε2τex + . . .

}
.

This is the main result of the paper written by Hagan and colleagues [5].

8.6 Stochastic β model

As originally stated, the SABR model consists of the special case C(f) = fβ. The model then
becomes {

dF̂ = εα̂F̂ β dW1, F̂ (0) = f,

dα̂ = ενα̂ dW2, α̂(0) = α,

(8.6.1a)
(8.6.1b)
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where
E [dW1dW2] = ρ dt. (8.6.1c)

For C(f) = fβ, we have

γ1 =
C ′(favg)
C(favg)

=
βfβ−1

avg

fβ
avg

= βf−1
avg and (8.6.2a)

γ2 =
C ′′(favg)
C(favg)

= β(β − 1)
βfβ−2

avg

fβ
avg

= β(β − 1)f−2
avg . (8.6.2b)

Substituting this into equation (8.4.21a)-(8.4.21c) shows that the normal volatility for this model
is

σN (K) =
εα(f −K)∫ f

K f−βdf ′
·
(

ζ

x̂(ζ)

)
·

{
1 +

(
2β(β − 1)f−2

avg − β2f−2
avg

24
α2f2β

avg +
2− 3ρ2

24
ν2 +

1
4
ρναβf−1

avgfβ
avg

)
ε2τex + . . .

}
,

=
εα(1− β)(f −K)

f1−β −K1−β
·
(

ζ

x̂(ζ)

)
·

{
1 +

(−β(2− β)α2

24f2−2β
av

+
2− 3ρ2

24
ν2 +

1
4

ρναβ

4f1−β
av

)
ε2τex + . . .

}
, (8.6.3a)

through O (
ε2

)
with favg =

√
fK as before and

ζ =
ν

α

f −K

fβ
av

and x̂(ζ) = log
(√

1− 2ρζ − ρ + ζ

1− ρ

)
. (8.6.3b)

This can be simplified by expanding15

f −K =
√

fK log
(

f

K

)(
1 +

1
24

log2

(
f

K

)
+

1
1920

log4

(
f

K

)
+ . . .

)
,

f1−β −K1−β = (1− β)(fK)(1−β)/2 log
(

f

K

)

·
(

1 +
(1− β)2

24
log2

(
f

K

)
+

(1− β)4

1920
log4

(
f

K

)
+ . . .

)
.

Here, terms higher than fourth order can be neglected, because f − K = O (ε) and therefore
log

(
f
K

)
is small.

15Define x := log(f/K) and write

f −K =
√

fK

(√
f

K
−

√
K

f

)
= 2

√
fK

(
e

1
2 x − e−

1
2 x

)

2
= 2

√
fK sinh

(x

2

)
,

=
√

fKx

(
1 +

x2

3! · 23
+

x4

5! · 24
+ . . .

)
=

√
fK log

(
f

K

) (
1 +

1

24
log2

(
f

K

)
+

1

1920
log4

(
f

K

)
+ . . .

)
.

A similar approach can be used to expand f1−β −K1−β .
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Then, the implied normal volatility (8.6.3a) reduces to

σN (K) = εα(fK)β/2
1 + 1

24 log2
(

f
K

)
+ . . .

1 + (1−β)2

24 log2
(

f
K

)
+ . . .

·
(

ζ

x̂(ζ)

)
· (8.6.5a)

{
1 +

(−β(2− β)α2

24(fK)1−β
+

2− 3ρ2

24
ν2 +

1
4

ρναβ

(fK)(1−β)/2

)
ε2τex + . . .

}
,

where

ζ =
ν

α
(fK)(1−β)/2 log

(
f

K

)
and x̂(ζ) = log

(√
1− 2ρζ + ζ2 − ρ + ζ

1− ρ

)
. (8.6.5b)

Equating the above formula (8.6.5a) for σN (K) for the SABR model and the expression for
σN (K) for Black’s model (8.5.4) and multiplying through by

[
log(f/K)

f −K

]
1
ε

(
1 +

1
24

ε2σ2
Bτex

)
(8.6.6)

yields

σB =
α

(fK)(1−β)/2

1 + 1
24ε2σ2

Bτex

1 + (1−β)2

24 log2
(

f
K

)
+ . . .

· ζ

x̂(ζ)
· (8.6.7)

{
1 +

(−β(2− β)α2

24(fK)1−β
+

2− 3ρ2

24
ν2 +

1
4

ρναβ

(fK)(1−β)/2

)
ε2τex + . . .

}
.

Next σB has to be replaced by

σB = α
C(favg)

favg

(1 +O(ε)) (8.6.8)

as we did before, such that we can replace

1 +
1
24

ε2σ2
Bτex (8.6.9)

on the right-hand side by

1 +
1
24

ε2α2f2β−1
avg τex (8.6.10)

Hence, the expression for the implied Black volatility for the SABR model (8.6.8) becomes16

σB =
α

(fK)(1−β)/2

1

1 + (1−β)2

24 log2
(

f
K

)
+ . . .

· ζ

x̂(ζ)
· (8.6.11)

{
1 +

(
(1− β)2α2

24(fK)1−β
+

2− 3ρ2

24
ν2 +

1
4

ρναβ

(fK)(1−β)/2

)
ε2τex + . . .

}
.

through O (
ε2

)
, where ζ and x̂(ζ) are given by equation (8.6.5b) as before.

16In equation (B.69c) on page 31 of [5], Hagan et al. claim that there should also be an ε in the numerator of
the first fraction. This must be a typographical mistake, because in equation (2.17a) on page 9 of the same paper
[5] no ε occurs.
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8.7 Special cases: β = 0 and β = 1

There are two special cases we will take a special look at: the stochastic normal model (β = 0)
and the stochastic lognormal model (β = 1).

Normal model: β = 0

For the stochastic normal model (β = 0), the implied volatilities of European call and put
options are

σN (K) = εα

(
1 +

2− 3ρ2

24
ε2ν2τex + . . .

)
, (8.7.1a)

σB(K) = εα
log

(
f
K

)

f −K

(
ζ

x̂(ζ)

)(
1 +

[
α2

24fK
+

2− 3ρ2

24
ν2

]
ε2τex + . . .

)
, (8.7.1b)

through O (
ε4

)
, where

ζ =
ν

α

√
fK log

(
f

K

)
and x̂(ζ) = log

(√
1− 2ρζ + ζ2 − ρ + ζ

1− ρ

)
. (8.7.1c)

Lognormal model: β = 1

For the stochastic lognormal model (β = 1), the implied volatilities are

σN (K) = εα
f −K

log
(

f
K

)
(

ζ

x̂(ζ)

)(
1 +

[
−α2

24
+

ραν

4
+

2− 3ρ2

24
ν2

]
ε2τex + . . .

)
, (8.7.2a)

σB(K) = εα

(
ζ

x̂(ζ)

)(
1 +

[
ραν

4
+

2− 3ρ2

24
ν2

]
ε2τex + . . .

)
, (8.7.2b)

through O (
ε4

)
, where

ζ =
ν

α
log

(
f

K

)
and x̂(ζ) = log

(√
1− 2ρζ + ζ2 − ρ + ζ

1− ρ

)
. (8.7.2c)

8.8 Discussion

The most important assumptions that are made in the paper by Hagan et al. [5] are presented
below. Furthermore, the method and solution will be discussed in this section.

Method and assumptions
Hagan and his colleagues use singular perturbation techniques to obtain the plain-vanilla op-
tion prices implied by the SABR model, and from these the associated implied volatilities. In
their book [9] Rebonato, McKay and White explain that “Implied volatilities are just ‘the wrong
number to put in the wrong formula to get the right price’, so there is no great fundamental
meaning in obtaining implied volatilities rather than prices. However, for very good reasons,
these ‘wrong numbers’ have become the common metric in the market place to communicate the
prices of options.”
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The SABR model describes a single forward F . The volatility of this forward F is described
by the parameter α, which itself follows a stochastic process, while the forward is assumed to
follow the CEV process as before in section 6. That is,

{
dF = α̂C(F )dW1, F (0) =f,

dα̂ = ν̂α̂ dW2, α̂(0) =α.

(8.8.1a)
(8.8.1b)

The two Wiener processes are assumed to be correlated by

E [dW1 dW2] = ρ dt. (8.8.2)

All the parameters of the model, ν, β and ρ, are assumed to be constants, not functions of time,
and there is no mean-reversion in the stochastic process for volatility.

Both the volatility α̂ and the volvol ν̂ are assumed to be small. This results in the following
scalings:

σ =
α̂

ε
, ⇔ α̂ = εσ, (8.8.3a)

ν =
ν̂

ε
, ⇔ ν̂ = εν. (8.8.3b)

The pde approach does not seem to work very well in this case, because after scaling we obtain
pdes that are difficult to solve. Hence, for the SABR model it is better to follow the procedure
of Hagan et al., who directly apply the scalings on the system of stochastic differential equations
(8.8.1) and use Kolmogorov equations, as we did in section 8.2 of this thesis.

The resulting expression for the implied volatility under the SABR model is obtained by con-
sidering the forward and backward Kolmogorov equations per order in ε, making smart choices
for local variables and functions in order to attempt to transform them into an equation that
looks like a heat equation, which is easier to solve.

Solution
The SABR model is very well explained in the paper by Hagan et al. [5]. Singular perturbation
techniques are used to obtain the prices of European options under the SABR model. From
these prices we obtain the following closed-form algebraic formula for the implied volatility as a
function of todays forward price f and the strike K:

σB =
α

(fK)(1−β)/2

1

1 + (1−β)2

24 log2
(

f
K

)
+ . . .

· ζ

x̂(ζ)
· (8.8.4a)

{
1 +

(
(1− β)2α2

24(fK)1−β
+

2− 3ρ2

24
ν2 +

1
4

ρναβ

(fK)(1−β)/2

)
ε2τex + . . .

}

through O (
ε2

)
, where ζ and x̂(ζ) are given by

ζ =
ν

α
(fK)(1−β)/2 log

(
f

K

)
and x̂(ζ) = log

(√
1− 2ρζ + ζ2 − ρ + ζ

1− ρ

)
. (8.8.4b)

Our opinion
Though the SABR model is very well explained in the paper by Hagan et al. [5], it took us
quite some time and effort to understand all derivations. Fortunately, Patrick Hagan was very
helpful in answering our questions via e-mail and explaining the steps we did not immediately
understand. This helped us a lot in comprehensing the details of this particular application of
perturbation theory.



Chapter 9

Conclusions

This section summarizes the main results and conclusions that we have obtained in this thesis.
Also some recommendations for further investigation will be presented below.

This thesis discusses the use of perturbation theory in the context of financial mathematics, in
particular on the use of matched asymptotic expansions in option pricing. Our methods are
applied to the ordinary Black-Scholes model for illustration, and two more advanced models
based on papers by Howison [7] and Hagan et al. [5].

Black-Scholes model
A first application of perturbation theory on a financial model has been presented in section
5 in order to show the techniques and complications of the method of asymptotic expansions
in a financial context. In this simple example of the Black-Scholes model an exact solution is
available, so it is in fact not neccessary to apply the method of asymptotic expansions on this
model. However, in case we do apply the method, we can construct two artificial layers, and
make smart choices for the local variables, in order to attempt to transform the equations into
a heat equation, which can be solved. A nice property of this model is that it is possible to
compare the results with the exact solution, to see that it is a very accurate method. Note
that this exact solution can be obtained by transforming the Black-Scholes equation into a heat
equation (as we have shown in section 5.2).

Fast mean-reverting stochastic volatility model
Howison’s paper [7] discusses a fast mean-reverting stochastic volatility model that turns out to
have many open ends. In this paper quite a lot of assumptions and simplifications are made.
Unfortunately, often the motivation for them is not explicitly given in the paper, and in some
cases we even think these assumptions and simplifications are incorrect.

An important simplification is that Howison makes some assumptions about σ-independence
of the O(1) solution V0. He argues that this choice follows naturally from the behaviour of V0

in the limits for small and large S, but he doesn’t explain this. This simplification has large
consequences for the higher order equations and their solutions. If the O(1) solution would
depend on σ, these higher order equations would be completely different and it would make
solving them a lot more complicated.

Another important point of discussion is that Howison has chosen to make the derivative with
respect to time to be O(ε), instead of O(1). As a consequence, the remaining O(1) equation does
not look like a heat equation anymore, because in the first order approach in equation (7.3.9),
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the time derivative has been left out of the problem. The similarities with the application of
perturbation theory on the Black-Scholes model have thus dissappeared here. Howison does not
explicitely motivate his choice. A reason for this choice might be that it is likely that taking
the time derivative into account in the O(1) problem leads to a more complicated first order
solution V0, which does not only depend on t, but also on εt. In that case, a totally different
approach, using multiple timescales, would be needed.

After applying the method of matched asymptotic expansions to the fast mean-reverting stochas-
tic volatility model and following Howison’s assumptions, we have obtained the following ex-
pression for the three lowest order terms of the solution:

V (S, σ, t) ∼ c0(S, t) + ε
1
2 (T − t)

(
A 1

2
,1 + A 1

2
,2D

)
S2

(D2 −D)
c0 (9.0.1)

+ ε
[
g1(σ)− g1(σ)− (T − t) (A1,1 + A1,2D)

− 1
2
(T − t)2

(
A 1

2
,1 + A 1

2
,2D

(D2 −D)) (
A 1

2
,1 + A 1

2
,2D

)] (D2 −D)
c0,

where D := S ∂
∂S . However, since the function c0(S, t) is still undetermined, this result doesn’t

seem to be very useful.

Lognormal-normal model
The next model that has been considered, is a lognormal stock process with a normal volatility
process, also known as the Schöbel-Zhu model, given by

{
dS = µS dt + σS dW, dW ∼ N(0, dt),

dσ = a dt + b dW̃ , dW̃ ∼ N(0, dt).

(9.0.2a)

(9.0.2b)

Here, a, b ∈ R are constants and the stochastic processes W and W̃ have correlation ρ.

This model was supposed to be a first step to the SABR model. We expected it to be easier
than SABR, because the drift and volatility of volatility were chosen to be constant. However,
after trying to apply the method of asymptotic expansions to this model, unfortunately this
appeared to be not that easy. In particular, the inner equations were hard to solve, because
these partial differential equations contained coefficients that depend on the time and space
parameters. Therefore, we have decided to abandon this model and directly continue with the
SABR model.

SABR model
The paper written by Hagan and colleagues [5] examines a new three-parameter stochastic vola-
tility model (the SABR model) that successfully prices back the volatility smile as observed in
the market nowadays, and that is commonly used. This resulting expression for the implied
volatility under the SABR model is obtained by considering the forward and backward Kol-
mogorov equations per order in ε, making some smart choices for local variables and functions
in order to attempt to transform them into an equation that looks like a heat equation, which
is easier to solve. Note that, contrary to Howison’s approach, Hagan et al. do take into account
the first derivative with respect to time in their O(1) equation.
The main result of this section is the following closed-form algebraic formula for the implied
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volatility as a function of todays forward price f and the strike K:

σB =
α

(fK)(1−β)/2

1

1 + (1−β)2

24 log2
(

f
K

)
+ . . .

· ζ

x̂(ζ)
· (9.0.3a)

{
1 +

(
(1− β)2α2

24(fK)1−β
+

2− 3ρ2

24
ν2 +

1
4

ρναβ

(fK)(1−β)/2

)
ε2τex + . . .

}

through O (
ε2

)
, where ζ and x̂(ζ) are given by

ζ =
ν

α
(fK)(1−β)/2 log

(
f

K

)
and x̂(ζ) = log

(√
1− 2ρζ + ζ2 − ρ + ζ

1− ρ

)
. (9.0.3b)

Recommendations
Recommendations for further investigation on these models would be to consider several different
scalings and see which one works best.

For example, using multiple-scale methods to find the correct O(1) equation and solution for
Howison’s fast mean-reverting volatility model. Also, the σ-independence of the O(1) solution
V0 should be reconsidered to see if it is possible to obtain a first order approach that does depend
on σ.

For the SABR model, also some choices are made for the scalings. Here, a nice suggestion for
further investigation would be to see if any other small parameters occur in this model. For
example, to examine what happens if (also) (1− ρ) and/or (β − 1

2 are small.
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Appendix A

List of symbols

Greek symbols
Γ: Second order derivative of the option price, one of the Greeks.
γ: Parameter in the CEV model.
∆: First order derivative of the option price, one of the Greeks.

Used for heding, to determine the amount of stock that has to be in the portfolio.
δ: Dividend.
ε: Stretching parameter.
µt: Drift.
σt: Volatility.

Latin symbols
Bt: Bond price.
D(t): Discount factor for time t.
K: Strike price.

N(·): Standard normal cumulative distribution function, N(x) = 1√
2π

∫ x
−∞ e−

z2

2 dz.
N(µ, σ): Normal distribution with mean µ and variance σ2.

n(·): Standard normal probability density function, n(x) = 1√
2π

e−
x2

2 .
P (S): Payoff.
rt: Risk-free interest rate.
St: Stock price.
T : Expiry time.
t: Time.
V : General option price.
V call: Price of a call option.
V put: Price of a put option.
Wt: Wiener Process.
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Appendix B

Order symbols

To define an asymptotic approximation, first the order symbols1 need to be introduced. The
reason for this is that we will be interested in how functions behave as a parameter, typically ε,
becomes small.

For example, the function f(ε) = ε does not converge to zero as fast as g(ε) = ε2 when ε → 0.
Therefore, a notation to denote this fact is needed.

Definitions

• g = O(f) as ε ↓ ε0 means that there are constants k0 and ε1 (independend of ε), such that

|g(ε)| ≤ k0|f(ε)| for ε0 < ε < ε1. (B.0.1)

We say that g is “big Oh” of f as ε ↓ ε0.

• g = o(f) as ε ↓ ε0 means that for every positive δ, there is an ε2 (independent of ε), such
that

|g(ε)| ≤ δ|f(ε)| for ε0 < ε < ε2. (B.0.2)

We say that g is “little oh” of f as ε ↓ ε0.

• f(ε) = Os (g(ε)) if f = O(g) and f 6= o(g) for ε → 0.

Another useful way to make this determination involves the limit

l := lim
ε↓ε0

g(ε)
f(ε)

. (B.0.3)

• If this limit l exists and is finite, then g = O(f) as ε ↓ ε0.

• Similarly, if l = 0, then g = o(f) as ε ↓ ε0.

1Also referred to as Landau symbols.
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Appendix C

Example problem in perturbation
theory: layer at x = 1

In chapter 2 the following example problem is being considered:

εy′′ + 2y′ + 2y = 0, for 0 < x < 1, (C.0.1)

with boundary conditions y(0) = 0 and y(1) = 1.

Step 1: Outer solution
If the layer is chosen to be at x = 1, the O(1) outer solution y0(x) = ae−x should satisfy the
boundary condition at x = 0, i.e., y(0) = 0. This is only the case if we choose the arbitrary
constant a to be equal to zero, such that the outer solution is given by y0(x) = 0.

Step 2: Boundary layer analysis
Inside the layer at x = 1 we have a local variable

ξ =
x− 1
δ(ε)

. (C.0.2)

After substitution of this variable ξ in problem (C.0.1), we obtain

ε

δ(ε)2
∂2y∗

∂ξ2
+

2
δ(ε)

∂y∗

∂ξ
+ 2y∗ = 0. (C.0.3)

Maximum balance yields δ(ε) = ε, such that equation (C.0.3) transforms into

∂2y∗

∂ξ2
+ 2

∂y∗

∂ξ
+ 2εy∗ = 0. (C.0.4)

Expanding y∗ = y∗0 + εy∗1 + . . . gives the following O(1) equation:

∂2y∗

∂ξ2
+ 2

∂y∗

∂ξ
= 0. (C.0.5)

The general solution of the O(1) equation is y∗0(ξ) = Ae−2ξ + B. Here, the boundary condition
at x = 1 should be satisfied, i.e., at ξ = x−1

ε = 0 we have y∗0(0) = 1. This implies that A+B = 1,
such that the inner solution becomes y∗0(ξ) = A

(
e−2ξ − 1

)
+ 1.
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Step 3: Matching
To determine the arbitrary constant A in the inner solution, a matching condition is needed.
Letting ξ → −∞, which means going towards the boundary of the layer, yields A = 0, to
avoid that the inner solution would become infinitely large. The inner solution thus becomes
y∗0(ξ) = 1. Unfortunately, in this case we are not able to match this with the outer solution
y(x) = 0.

Conclusion
The boundary layer cannot be located at x = 1. Therefore, let us asume it to be at x = 0.

The importance of matching cannot be overemphasized: It is one of the essential steps. If the
inner and outer solution do not match, it is necessary to go back and determine where the error
was made. The possibilities where this happens are almost endless. On page 56 of the book
written by Holmes [6] there’s a list of useful places to start to look.



Appendix D

Feynman-Kac

Richard Feynman and Mark Kac have established a link between partial differential equations
(pdes) and stochastic processes. It offers a method of solving certain pdes by simulating random
paths of a stochastic process. Suppose we are given the pde:

∂f

∂t
+ g(x, t)

∂f

∂x
+

1
2
σ2(x, t)

∂2f

∂x2
= 0, (D.0.1)

subject to the boundary condition f(x, T ) = η(x), then the Feynman-Kac formula reads:

f(x, t) = E [η(XT )|Ft] . (D.0.2)

Here, X is an Itô process driven by the equation

dX = g(X, t) dt + σ(X, t) dWt, (D.0.3)

with Wt a Wiener process and the initial value for X(t) is X(0) = x.

Proof of the Feynman-Kac formula1

The pde for f(x, t) is given, so using Itô’s formula (4.3.1) on f we obtain:

df =
∂f

∂t
dt +

∂f

∂x
dx +

1
2

∂2f

∂x2
dx2,

=
(

∂f

∂t
+ g(x, t)

∂f

∂x
+

1
2
σ2(x, t)

∂2f

∂x2

)
dt + σ(x, t) dWt,

= σ(x, t) dWt.

Integrating both sides gives
∫ T

t
df = f(XT , T )− f(x, t) =

∫ T

t
σ(x, t)

∂f

∂x
dWt. (D.0.4)

Taking the expectation, we find

f(x, t) = E [f(XT , T )] = E [η(XT )] . (D.0.5)

1Source: Lecture notes of the TU Delft course “Computational Finance” (WI4154), lecture 04, by Lech A. Grze-
lak and C.W. Oosterlee.
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Appendix E

Notes on L2 functions

Consider an L2 function f , and the expectation value of its Itô integral

E
[∫ T

t
f(Wt) dWt

]
, (E.0.1)

which is named after Kiyoshi Itô. See figure E.1 below.

Figure E.1: Itô integral

Using the fact that the increment Wti+1 −Wti is independent of Wti , such that we can split up
the expectation, yields

E
[∫ T

t
f(Wt) dWt

]
= E

[∑
ti

f(Wti)
(
Wti+1 −Wti

)
]

,

=
∑
ti

E [f(Wti)] E
[
Wti+1 −Wti

]
.

Because E [f(Wti)] < ∞ and E
[
Wti+1 −Wti

]
= 0, we conclude that

E
[∫ T

t
f(Wt) dWt

]
= 0. (E.0.2)
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Appendix F

Martingales

In probability theory, a martingale is a stochastic process1, such that the conditional expected
value of an observation at some time t, given all observations up to some earlier time s < t, is
equal to the observation at that earlier time s. The concept of martingale in probability theory
was introduced by Paul Pierre Lévy.

Definition of a martingale
A discrete-time martingale is a discrete-time stochastic process X1, X2, X3, . . . that satisfies

E(|Xn|) < ∞, (F.0.1)
E(Xn+1|X1, . . . , Xn) = Xn, (F.0.2)

for all n ≥ 0.

Example
Suppose Xn is a gambler’s fortune after n tosses of a fair coin, where the gambler wins $1 if the
coin comes up heads and loses $1 if the coin comes up tails. The gambler’s conditional expected
fortune after the next trial, given the history, is equal to his present fortune. So this sequence
is a martingale.

Properties
Perfectly tradable goods, like shares of stock, are subject to the law of one price: they should
cost the same amount wherever they are bought. This law requires an efficient and liquid mar-
ket. Any discrepancy that may exist in pricing perfectly tradable goods, will lead to an arbitrage
opportunity. Goods that cannot be costlessly traded are not subject to this law.

Here, a nice property is that martingales are tradables, and non-martingales are non-tradables.
More information on this statement can be found on page 116-118 of the book writen by Baxter
and Rennie ([1]).

1I.e., a sequence of random variables X1, X2, X3, . . ..
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Appendix G

Similarity solutions for PDEs

The technique of similarity solutions is one of the various techniques for reducing a partial
differential equation (pde) into an ordinary differential equation (ode), or at least turn the
original pde into another pde, reducing the number of independent variables.

This is an approach that identifies equations for which the solution depends on certain group-
ings of the independent variables rather than depending on each of the independent variables
separately.

First consider the heat equation
∂u

∂t
−D

∂2u

∂x2
= 0. (G.0.1)

We introduce the so-called dilation transformation

z = εax,
s = εbt,

v(z, s) = εcu
(
ε−az, ε−bs

)
.

(G.0.2)

So the heat equation (G.0.1) transforms into

εb−c ∂v

∂s
−Dε2a−c ∂2v

∂z2
= 0. (G.0.3)

Hence, for b−c = 2a−c (i.e., b = 2a), this equation is invariant under this transformation. So if
u(x, t) solves the heat equation in the variables x, t, then for z, s, v(z, s) as given v(z, s) solves
the heat equation in the variables z, s.
Note that

vs−c/b = (εcu)
(
εbt

)−c/b
= ut−c/b, and

z

sa/b
=

εax

(εbt)a/b
=

x

ta/b
,

such that both groupings of variables are invariant under the transformation (G.0.2) for all
choices of a, b, c. This suggests that we look for a solution of the heat equation (G.0.1) that is
of the form

u = tc/by(ξ) for ξ =
x

ta/b
=

x√
t
, since

a

b
=

1
2
, (G.0.4)
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which gives

∂u

∂t
= tc/2a−1

(
c

2a
y(ξ)− ξ

2
y′(ξ)

)
,

∂u

∂x
= tc/2a−1/2y′(ξ),

∂2u

∂x2
= tc/2a−1y′′(ξ),

such that the heat equation (G.0.1) transforms into

tc/2a−1

[
Dy′′(ξ)− c

2a
y(ξ) +

ξ

2
y′(ξ)

]
= 0. (G.0.5)

So the pde (G.0.1) has indeed been reduced to the ode (G.0.5). A non-zero solution y(ξ) sat-
isfying (G.0.5) is called a similarity solution of the heat equation (G.0.1).

If the heat equation (G.0.1) is satisfied for x > 0, t > 0 and if u(x, t) satisfies u(x, 0) = 0 for
x > 0, u(x, t) → ∞ for x → ∞ and ∂u

∂x(0, t) = Q for t > 0, then it follows that ξ → ∞ for
x →∞ or t → 0 and ξ = 0 if x = 0, because y(ξ) = t−c/2au(x, t) and ξ = x/

√
t.

For y this gives y(∞) = 0 and ∂u
∂x(0, t) = t−c/2a−1/2y′(0) = Q if and only if c = a, because Q is

a constant. So the initial boundary value problem for u(x, t) reduces to the following problem
for y(ξ): 




Dy′′(ξ)− 1
2y(ξ) + ξ

2y′(ξ) = 0,
y′(0) = Q,

y(ξ) → 0 as ξ → ∞.

(G.0.6)

If the boundary condition at x = 0 is given by u(0, t) = u0 then u(0, t) = tc/2ay(0) = u0 if and
only if c = 0, because u0 is a constant. In this case the initial boundary value problem for u(x, t)
reduces to





Dy′′(ξ) + ξ
2y′(ξ) = 0,

y(0) = u0,
y(ξ) → 0 as ξ → ∞.

(G.0.7)

We can integrate the equation Dy′′(ξ) + ξ
2y′(ξ) = 0 once to obtain y′(ξ) = c1e

−ξ2/4D, such that

y(ξ) = c1

∫ ξ

0
e−λ2/4Ddλ + c2 = c3 erf

(
ξ√
4D

)
+ c2, (G.0.8)

where erf(x) := 2√
π

∫ x
0 e−η2

dη. This has the property that erf(∞) = 1.

The boundary conditions now lead to

y(ξ) = u0 − u0 erf
(

ξ√
4D

)
,

u(x, t) = u0 − u0 erf
(

x√
4Dt

)
= u0 erfc

(
x√
4Dt

)
,

where erfc(s) = 1− erf(s).
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The solution of problem (G.0.6) is given by

y(ξ) = C1ξ + C2

[
2
√

πDe−ξ2/4D + πξ erf
(

ξ√
4D

)]
. (G.0.9)

And since y′(ξ) = C1 + C2

[
π erf

(
ξ√
4D

)]
, the other conditions are satisfied by

y(ξ) = Qξ − Q

π

[
2
√

πDe−ξ2/4D + πξ erf
(

ξ√
4D

)]
,

= Qξ erfc
(

ξ√
4D

)
− 2Q

√
D

π
e−ξ2/4D.
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Appendix H

Green’s functions

Green’s functions are named after the British mathematician George Green. They are the basic
solutions to linear differential equations. A Green’s function is a building block that can be
used to construct many useful solutions.

Consider differential equations of the form

Lu(x) = f(x), (H.0.1)

where L = L(x) is a linear differential operator acting on distributions over a subset of the
Euclidean space Rn, at a point s.

Definition
A Green’s function1 G(x, s) of a linear differential operator L(x) is any solution of

LG(x, s) = δ(x− s), (H.0.2)

where δ(·) is the Dirac delta function.

Motivation
If a function G(x, s) can be found for an operator L, then we multiply equation (H.0.2) by f(s)
and integrate with respect to s to obtain

∫
LG(x, s)f(s)ds =

∫
δ(x− s)f(s) ds = f(x). (H.0.3)

By equation (H.0.1), the right hand side of equation (H.0.3) is equal to Lu(x), so (H.0.3) becomes

Lu(x) =
∫

LG(x, s)f(s) ds. (H.0.4)

Because operator L(x) is linear and acts on the variable x only, we can take the operator L out
of the integration on the right hand side, and obtain

Lu(x) = L

(∫
G(x, s)f(s) ds

)
, (H.0.5)

which implies that the solution u(x) of differential equation (H.0.1) is given by

u(x) =
∫

G(x, s)f(s) ds. (H.0.6)

1Also referred to as source functions, fundamental solutions, gaussians or propagators of the diffusion equation,
or simply diffusion kernels.
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Application
Our goal is to find a particular solution of the heat equation

uτ =
1
2
uxx, (H.0.7)

with initial condition u(x, 0) = φ(x) = max(x, 0), and then to construct all the other solutions,
using property 4. in section 5.9, which says that an integral of solutions of the heat equation is
again a solution.

The particular solution we will look for is the one, denoted Q(x, τ), that satisfies the special
initial condition

Q(x, 0) =
{

1 for x > 0,
0 for x < 0.

(H.0.8)

This function for the initial condition is known as the Heaviside function. The reason for this
choice is that this initial condition does not change under dilation2.

First we will look for Q(x, τ) of the form

Q(x, τ) = g(p) where p =
x√
2τ

, (H.0.9)

and g is a function of one variable (to be determined).

Clearly, the initial condition (H.0.8) does not change at all under the dilation x → √
ax, t → at.

So we look for a Q that satisfies the heat equation (H.0.7) and initial condition (H.0.8) and has
the form (H.0.9).

Using (H.0.9), we can convert the heat equation (H.0.7) into an ode for g, by use of the chain
rule. This gives

0 = Qτ − 1
2
Qxx,

= − 1
2τ

x√
2τ

g′(p)− 1
2

1
2τ

g′′(p),

= − 1
4τ

(
2pg′(p) + g′′(p)

)
, (H.0.10)

such that the ode becomes
g′′(p) + 2pg′(p) = 0. (H.0.11)

The ODE (H.0.11) is solved using the integrating factor e
∫

2p dp = ep2
, such that we obtain

g′(p) = c1e
−p2

(H.0.12)

and

Q(x, τ) = g(p) = c1

∫ x/
√

2τ

0
e−p2

dp + c2, for τ > 0. (H.0.13)

Using initial condition (H.0.8), we can express the limits as follows.

If x > 0, 1 = lim
t↓0

Q(x, τ) = c1

∫ ∞

0
e−p2

dp + c2 = c1

√
π

2
+ c2. (H.0.14)

If x < 0, 0 = lim
t↓0

Q(x, τ) = −c1

∫ 0

−∞
e−p2

dp + c2 = −c1

√
π

2
+ c2. (H.0.15)

2See appendix G for the definition of a dilation transformation.
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This determines the coefficients {
c1 = 1√

π
,

c2 = 1
2 .

Therefore Q(x, τ) is the function

Q(x, τ) =
1
2

+
1√
π

∫ x/
√

2τ

0
e−p2

dp, for τ > 0. (H.0.16)

After checking, we find that solution (H.0.16) does indeed satisfy the heat equation (H.0.7),
initial condition (H.0.8) and has the form (H.0.9).

Now define3

G(x, τ) =
∂Q

∂x
=

1
2
√

πkτ
e−x2/2τ , for τ > 0. (H.0.17)

and
u(x, τ) =

∫ ∞

−∞
G(x− y, τ)φ(y) dy, for τ > 0. (H.0.18)

By property 4. in section 5.9, the integral u(x, τ) of solution G(x, τ) is a different solution of the
heat equation (H.0.7). We even claim that u(x, τ) is the unique solution of (H.0.7) satisfying
the initial condition u(x, 0) = φ(x).

Hence, after substituting (H.0.17) and the initial condition φ(x) = max(x, 0) into equation
(H.0.18) we find that the solution is given by

u(x, τ) =
1√
2πτ

∫ ∞

−∞
e−(x−y)2/2τ max(y, 0) dy, for τ > 0.

=
1√
2πτ

∫ ∞

0
ye−(x−y)2/2τ dy, for τ > 0.

Now transform (x,y,τ) into (x,z,τ) by using

z =
x− y√

τ
, (H.0.19)

such that we can replace y by y = x−√τz. Assuming x and τ to be constant with respect to
z, we have dz = − 1√

τ
dy. This gives

u(x, τ) = − 1√
2π

∫ −∞

x/
√

τ
(x−√τz)e−z2/2 dz,

=
1√
2π

∫ x/
√

τ

−∞
(x−√τz)e−z2/2 dz,

=
x√
2π

∫ x/
√

τ

−∞
e−z2/2 dz −

√
τ√
2π

∫ x/
√

τ

−∞
ze−z2/2 dz,

=
x√
2π

∫ x/
√

τ

−∞
e−z2/2 dz −

√
τ√
2π

∫ x/
√

τ

−∞
ze−z2/2 dz, for τ > 0. (H.0.20)

3Note that ∂Q
∂x

is the Dirac delta function, because Q(x, 0) is equal to the Heaviside function.
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The second part of u(x, τ) we can compute by partial integration.

∫ x/
√

τ

−∞
ze−z2/2 dz =

∫ x/
√

τ

−∞
e−z2/2 d

(
z2

2

)
=

[
−ez2/2

]x/
√

τ

−∞
.

So the solution (H.0.20) indeed becomes

u(x, τ) =
x√
2π

∫ x/
√

τ

−∞
e−z2/2 dz − 1√

2π

[
−ez2/2

]x/
√

τ

−∞
,

=
x√
2π

∫ x/
√

τ

−∞
e−z2/2 dz +

√
τex2/2τ ,

= x N

(
x√
τ

)
+
√

τ n

(
x√
τ

)
, for τ > 0. (H.0.21)

Thus, using Green’s functions we find exactly the same solution as we already found in (5.9.10).



Appendix I

Hermitian adjoint

In mathematics, specifically in functional analysis, each linear operator on a Hilbert space has
a corresponding adjoint operator. The adjoint of an operator A is also sometimes called the
Hermitian adjoint (after Charles Hermite) of A and is denoted by A∗.

One can show that there exists a unique continuous linear operator A∗ : H → H with the
following property:

< Ax, y > = < x, A∗y > for all x, y ∈ H. (I.0.1)

Here < ·, · > denotes the inner product, which is defined as follows:

< f, g >:=
∫ b

a
f(t)g(t) dt. (I.0.2)

Immediate properties:

• A∗∗ = A.

• If A is invertible, so is A∗. Then, (A∗)−1 = (A−1)∗.

• (A + B)∗ = A∗ + B∗.

• (λA)∗ = λ∗A∗, where λ∗ denotes the complex conjugate of the complex number λ.

• (AB)∗ = B∗A∗.

Application
Consider the operator

L0 =
1
2
ζ2 ∂2

∂σ2
+ m

∂

∂σ
. (I.0.3)

We will compute its adjoint by using the definition of the inner product

< L0u, v > =
∫ ∞

−∞

(
1
2
ζ2 ∂2u

∂σ2
+ m

∂u

∂σ

)
v dx. (I.0.4)

After applying integration by parts twice, this gives

< L0u, v > =
∫ ∞

−∞
u

(
1
2
ζ2 ∂2v

∂σ2
−m

∂v

∂σ

)
dx = < u,L∗0v > . (I.0.5)

Here,

L∗0 =
1
2
ζ2 ∂2

∂σ2
−m

∂

∂σ
(I.0.6)

is called the adjoint operator of L0.
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Appendix J

Fredholm Alternative

Consider a differential equation
L(u) = f, (J.0.1)

where L is an operator that operates on u.

First we expand
u =

∑
n

anφn, (J.0.2)

where φn are the eigenvectors of u and an are coefficients that are yet undetermined.

Because φn are the eigenvectors of u, we have

L(φn) = −λnφn, (J.0.3)

with λn are the corresponding eigenvalues.

Substitution into the differential equation yields

L(
∑

n

anφn) = f, (J.0.4)

which gives
−

∑
n

anλnφn = f. (J.0.5)

Multiplication by a function φm, which is orthogonal to φn, and integration over a domain D
results in

− amλm

∫

D
φ2

mdV =
∫

D
fφmdV. (J.0.6)

Now the Fredholm Alternative (named after the Swedish mathematician Ivar Fredholm)
states that the following 3 situations are possible:

• If λm 6= 0 for all m, then the coefficients am are unique, and the solution can also be
determined uniquely.

In case there is a λm = 0, then:

• If
∫
D fφmdV 6= 0, there is no solution.

• If
∫
D fφmdV = 0, then the coefficients am are not determined, and there are infinitely

many solutions.
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Appendix K

Dimensional analysis

Dimensional analysis is a conceptual tool often applied to understand physical situations
involving certain (physical) quantities. It is routinely used by mathematicians, statisticians,
physical scientists and engineers to check the plausibility of derived equations and computations.

The Buckingham Π theorem is a key theorem in dimensional analysis. The theorem loosely
states that if we have a physically meaningful equation involving a certain number, n, of physical
variables, and these variables are expressible in terms of k independent fundamental physical
quantities, then the original expression is equivalent to an equation involving a set of p = n− k
dimensionless variables constructed from the original variables: it is a scheme for nondimen-
sionalization. This provides a method for computing sets of dimensionless parameters from the
given variables, even if the form of the equation is still unknown. However, the choice of dimen-
sionless parameters is not unique: Buckingham’s theorem only provides a way of generating sets
of dimensionless parameters, and will not choose the most ‘physically meaningful’.

Application
On page 11 of [7] Howison claims that the value of an option satisfies the following nonlinear
equation

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV + λσ2S2

(
∂2V

∂S2

)2

+
1
2
λ2β2σ2S4

(
∂2V

∂S2

)3

= 0. (K.0.1)

If we define LBS as the Black-Scholes differential operator, given by

LBS =
∂

∂t
+

1
2
σ2S2 ∂2

∂S2
+ rS

∂

∂S
− r, (K.0.2)

we can write (K.0.1) as

LBSV + λσ2S2

(
∂2V

∂S2

)2

+
1
2
λ2β2σ2S4

(
∂2V

∂S2

)3

= 0. (K.0.3)

Let us express all dimensions in the problem in terms of the dimensions of K and t, as follows:




[V ] = [K] ,
[S] = [K] ,
[r] =

[
t−1

]
,

[σ] =
[
t−

1
2

]
,

[β] = 1,
[λ] = 1,

(K.0.4)
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we find that

[LBSV ] =
[
K

t

]
+

[
1
t
K3 1

K2

]
+

[
1
t
K

1
K

]
−

[
K

t

]
=

[
K

t

]
, (K.0.5)

[
λσ2S2

(
∂2V

∂S2

)2
]

=

[
1 · 1

t
K2

(
K

K2

)2
]

=
[
1
t

]
, (K.0.6)

[
1
2
λ2β2σ2S4

(
∂2V

∂S2

)3
]

=

[
1 · 1

t
K4

(
K

K2

)3
]

=
[
K

t

]
. (K.0.7)

So the terms of (K.0.3) have the following dimensions
[
K

t

]
+

[
1
t

]
+

[
K

t

]
. (K.0.8)

Dimensionally, this is incorrect, we cannot sum up terms that have different dimensions.

Suggestion
If we replace equation (K.0.1) by

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV + λσ2S3

(
∂2V

∂S2

)2

+
1
2
λ2β2σ2S4

(
∂2V

∂S2

)3

= 0, (K.0.9)

the dimensions are correct. The S2 indeed turns out to be a typographical error when it was
copied from page 24 of [8]. If we replace it by S3, we obtain equation (K.0.9), that is correct.



Appendix L

The Dirac Delta

The Dirac delta is a mathematical construct introduced by theoretical physicist Paul Dirac.
Informally, it is a generalized function representing an infinitely sharp peak bounding unit area:
a ‘function’1 δ(x) that has the value zero everywhere, except at x = 0 where its value is infinitely
large in such a way that its total integral is 1:

∀x6=0 δ(x) = 0 and
∫ ∞

−∞
δ(x) dx = 1. (L.0.1)

In section 8.3 we use the fact that
δ(εx) =

δ(x)
ε

, (L.0.2)

which will be proven in this section.

Proof :
Using the property ∀x 6=0 δ(x) = 0, also

∀x6=0|ε|δ(εx) = 0. (L.0.3)

From this, it follows that
∫ ∞

−∞
|ε|δ(x) dx =

∫ ∞

−∞
δ(εx) d(εx) =

∫ ∞

−∞
|ε|δ(y) dy = 1. (L.0.4)

Conclusion:
δ(x) = |ε|δ(εx), (L.0.5)

and thus
δ(εx) =

δ(x)
|ε| . (L.0.6)

In section 8.3 we will use this property without taking the absolute value of ε in the denominator.
This is allowed, because we have ε > 0.

¤

1The Dirac delta is not strictly a function. While for many purposes it can be manipulated as such, formally
it can be defined as a distribution that is also a measure.
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Appendix M

Near-identity transformation

Definition
Suppose that a solution xε(t) can be approximated by yε(t) for t ≥ 0. If for t ≥ 0

xε(t)− yε(t) = O (εm) , 0 ≤ tεn ≤ C, (M.0.1)

with m, n, C constants independent of ε, we call yε(t) an O (εm) approximation of xε(t) on the
timescale 1

εn .

Application
Consider the n-dimensional equation in the standard form

ẋ = εf(t, x) + ε2g(t, x) + ε3R(t, x, ε), (M.0.2)

in which the vector fields f and g are T -periodic in t with averages f0 and g0.

Next, define the vectorfield

u(t, x) :=
∫ t

0

(
f(s, x)− f0(x)

)
ds− a(x), (M.0.3)

where f(s, x)− f0(x) has average zero, but this does not hold necessarily for the integral. The
function a(x) is chosen such that u0(x) (i.e., the average of u(t, x)) vanishes.

We now introduce the near-identity transformation

x(t) := w(t) + εu(t, w(t)). (M.0.4)

We call this “near identity” as x(t) − w(t) = O (ε) for t ≥ 0 This will be used to simplify
equation (M.0.2). The near identity transformation is also called the averaging or normalising
transformation. Substituting this into the equation for x (M.0.2), we obtain

ẇ(t) + ε
∂u

∂t
(t, w(t)) + ε

∂u

∂w
(t, w(t))ẇ(t)

= εf ((t, w(t) + εu(t, w(t))) + ε2g ((t, w(t) + εu(t, w(t))) + ε3 . . . . (M.0.5)

Using the definition of u1(t, x), the left-hand side of equation (M.0.5) becomes

LHS = ẇ(t) + ε∇ · u(t, w(t))ẇ(t) + ε
(
f(t, w)− f0(w)

)
,

= (I + ε∇ · u(t, w(t))) ẇ(t) + εf(t, w)− εf0(w). (M.0.6)
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Here, I is the n× n identity matrix, and with ∇ · f(t, x) we denote the derivative with respect
to x only, this is an n× n matrix.

Because u is uniformly bounded, so is∇·u(t, w(t)), and we may invert the matrix (I + ε∇ · u(t, w(t)))
to obtain

(I + ε∇ · u(t, w(t)))−1 = I − ε∇ · u(t, w(t)) +O (
ε2

)
, t ≥ 0. (M.0.7)

Expanding f and g, we obtain

f ((t, w(t) + εu(t, w(t))) = f(t, w) + ε∇ · f(t, w)u(t, w) + . . . , (M.0.8a)
g ((t, w(t) + εu(t, w(t))) = g(t, w) + ε∇ · g(t, w)u(t, w) + . . . , (M.0.8b)

such that

ẇ(t) = εf0(w) + ε2∇ · f(t, w)u(t, w) + ε2g(t, w) + ε2f0(w)∇ · u(t, w) +O (
ε3

)
. (M.0.9)

Put f1(t, w) := ∇ · f(t, w)u(t, w)− f0(w)∇ · u(t, w), with average f0
1 . This yields

ẇ(t) = εf0(w) + ε2f1(t, w) + ε2g(t, w) +O (
ε3

)
, (M.0.10)

such that after averaging we have

v̇(t) = εf0(v) + ε2f0
1 (v) + ε2g0(v) +O (

ε3
)
. (M.0.11)

The average of ẇ(t) is denoted as v̇(t), for notational convenience.

We can prove that
x(t) = v(t) + εu(t, v(t)) +O (

ε2
)

(M.0.12)

on the timescale 1
ε .
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