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Continuous-Time Identification of SISO
Systems Using Laguerre Functions

Chun Tung Chou, Michel Verhaegen, and Rolf Johansson

Abstract—This paper looks at the problem of estimating the
coefficients of a continuous-time transfer function given sam-
ples of its input and output data. We first prove that any
nnnth-order continuous-time transfer function can be written as
a fraction of the form nnn

kkk=== 0
bbbkkkLLLkkk(s)=(s)=(s)= nnn

kkk=== 0
aaakkkLLLkkk(s)(s)(s), where

Lk(s)Lk(s)Lk(s) denotes the continuous-time Laguerre basis functions.
Based on this model, we derive an asymptotically consistent
parameter estimation scheme that consists of the following two
steps: 1) Filter both the input and output data by Lk(s)Lk(s)Lk(s), and
2) estimate fak; bkgfak; bkgfak; bkg and relate them to the coefficients of the
transfer function. For practical implementation, we require the
discrete-time approximation of Lk(s)Lk(s)Lk(s) since only sampled data
is available. We propose a scheme that is based on higher
order Padé approximations, and we prove that this scheme
produces discrete-time filters that are approximately orthogonal
and, consequently, a well-conditioned numerical problem. Some
other features of this new algorithm include the possibility to
implement it as either an off-line or a quasi-on-line algorithm
and the incorporation of constraints on the transfer function
coefficients. A simple example will be given to illustrate the
properties of the proposed algorithm.

Index Terms—Asymptotic consistency, continuous-time sys-
tems, Laguerre basis functions, Pad´e approximation, parameter
estimation, system identification, total least-squares.

I. INTRODUCTION

T HIS PAPER looks at the problem of estimating the
coefficients of single-input single-output (SISO) dynamic

models specified by a linear differential equation with constant
coefficients.

The approach taken here can be classified as the state
variable filter approach according to an earlier survey paper
on continuous-time identification by Young [22] or as the
“linear dynamics operations” approach according to a later
survey paper on the same topic by Unbenhauen and Rao [16].
This particular approach consists of two steps. In the first
step, the input/output data is passed through a bank of filters.
This filtering action is chosen in such a way that the filtered
input and output are related by an equation whose unknown
coefficients are related to those of the differential equation.
The second step then consists of estimating these unknown
coefficients and relating them to those of the differential
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equation. The prime motivation of this approach is that the
undesirable action of differentiating noisy data is replaced by
the action of this bank of filters. Various choices of filters
have been suggested, for example, the use of integrators has
been suggested by Sagara and Zhou [13] and Schoukens [14],
and the use of low-pass filters by Johansson [5] and Moonen
et al. [10]. In this paper, we have chosen these filters to be
continuous-time Laguerre functions, and we shall justify this
choice later.

This paper looks at two different scenarios of the
continuous-time identification problem. We shall first study
the noise-free case, and then, we shall look at the case where
the output is corrupted by white measurement noise.

The noise-free case for continuous-time identification is
not as straightforward as its discrete-time counterpart. Since
only the sampled versions of the continuous-time signals are
available, the output of the state variable filters can only
be computed from discrete approximations of these filters.
We find that discrete-time filters obtained from first-order
approximation methods [for example, first-order-hold (FOH)
or Tustin transform] have two main drawbacks. First, these
approximations are only accurate when the sampling frequency
is very high compared with the bandwidth of the system to be
identified. Second, the estimated continuous-time model may
be unstable even if the given continuous system is a stable one.

In order to overcome these problems, we propose a scheme
to compute discrete-time approximation of continuous-time
Laguerre filters by applying second- or third-order Padé ap-
proximations in a particular way. Besides the fact that these
discrete-time filters give excellent approximation over a large
bandwidth, there is an added advantage that is due to the use
of Laguerre filters with higher order Padé approximation. The
resulting discrete-time filters are approximately orthogonal,
and the numerical conditioning of the associated parameter
estimation problem is therefore improved. However, the above
added advantage comes with a price. These higher order
discrete-time filters are unstable. Although unstable filters can
be implemented as causal/anticausal filter, there is the problem
of unknown end conditions.

Our main contribution is that we have derived an
accurate and asymptotically consistent parameter estimation
scheme—based on using higher order approximations of
continuous-time Laguerre filters—which can deal with both
the unknown initial conditions of the system and the unknown
end conditions of these anticausal filters. Furthermore, we have
derived an explicit transformation that maps the coefficients
of the equation relating the filtered signals to those of
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the differential equation. This transformation also allows
us to incorporatea priori knowledge such as the relative
degree of the transfer function. Finally, this algorithm can be
implemented in either an off-line or quasi-on-line fashion.

This paper is organized in the following way. We first
define the parameter estimation problem in Section II, and
then, we present the outline of the solution for the noise-free
case in Section III. In Section IV, we suggest a scheme to
obtain discrete-time approximations of continuous-time filters
and compare its accuracy with higher order hold circuits.
We also prove, in this section, that the discrete-time filters
obtained by applying our proposed approximation scheme to
continuous-time Laguerre filters are approximately orthogonal.
The parameter estimation algorithm for the noise-free case
is then presented in Section V and for the noisy case in
Section IV. Section VII gives a simple example that illus-
trates the properties of the proposed algorithm. Finally, the
conclusions are given in Section VIII.

II. PROBLEM STATEMENT

We consider a continuous-time SISO system whose input
and output are related by a linear constant coefficient

differential equation of order

(1)

where denotes the th derivative of the continuous-
time signal . The system is assumed to be subjected to an
arbitrary set of initial conditions

(2)

(3)

Furthermore, we make two assumptions on the polynomials
and , which are defined as

(4)

(5)

First, these two polynomials are assumed to be relatively
prime. Second, the roots of the polynomial are assumed
to have negative real parts; in other words, the system defined
by (1) is assumed to be asymptotically stable.

For the identification problem, it is assumed that the
continuous-time signals and are sampled at regular
time interval . The measured output is assumed to be
corrupted by an additive white measurement noise with
variance ; in other words,

(6)

The data available for identification is (for
), and they will be denoted as

when the context makes it clear that they denote samples of
the continuous-time signals.

The identification problem can now be stated as follows:
Given the sampled data , determine the co-
efficients and of the differential
equation model.

III. OUTLINE OF SOLUTION

In this section, we outline the solution to the identification
problem in the noise-free case. This consists of two steps.
In the first step, the measured input and output are filtered
through a bank of Laguerre functions. It can be shown that the
filtered input, filtered output, and the impulse responses of the
Laguerre filters are related by a linear equation with constant
coefficients and that these coefficients can be computed from
the null space of a specific matrix. Once these coefficients are
determined, the coefficients of the differential equation can be
computed via a linear transformation, and this is the second
step.

We first define a few notation that will be used in this paper.
Let be any positive real number andbe the allpass filter

(7)

In addition, let for be the set of
Laplace domain Laguerre functions where

(8)

and be their corresponding functions in the time
domain.

Consider the Laplace transform of the differential equation
defined by (1)

(9)

where and are, respectively, the Laplace transforms
of the input and the output . The polynomial
is defined as

(10)

and it contains the part of system response due to the unknown
initial conditions. Note that the coefficients depend on the
unknown parameters and as well as the unknown initial
conditions.

By substituting

(11)

into (9) and multiplying both sides of the resulting equation
by , we arrive at a model of the form

(12)

where

(13)

and the polynomials and are similarly defined.
Furthermore, we shall denote the coefficients of these three
polynomials by

(14)

(15)

(16)
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Note that an identical transformation technique is also used by
Johansson [5], except that is chosen to be . In
general, this type of transformation is referred to as a linear
dynamic operation in the survey paper on continuous-time
identification by Unbenhauen and Rao [16].

By multiplying both sides of (12) by the lowpass filter
, we arrive at the Laguerre model structure that

will be used in this paper.

(17)

Note that in the above derivation, we have effectively shown
that an th-order transfer function can be written as a ratio
of two linear functions of Laguerre basis functions, and this
representation is coined as the generalized ARX model by
Wahlberg [20]. Note also that the above derivation is in sharp
contrast to the present literatures on using Laguerre functions
and other orthonormal basis functions for system identification
[8], [17], [20], [21], where a transfer function is approximated
by a truncated Laguerre expansion or, more generally, a finite
sum of orthonormal basis functions.

In terms of time domain signals, (17) can be written as

(18)

where

(19)

(20)

and denotes the convolution operator.
Define the matrices

...
...

...
... (21)

...
...

...
... (22)

...
...

...
... (23)

Under the assumption that the input signal is persis-
tently exciting, then we can recover the coefficients
from the null space of the following matrix.

(24)

We shall show in Section V how we can compute the coeffi-
cients of the differential equation (1) given and .

Remark 3.1:Note that it is also possible to write an order
discrete-time transfer function as a ratio of two linear functions
of discrete-time Laguerre functions. The steps are completely
analogous to those used above with and

replaced, respectively, by and
, where .

Fig. 1. Two approaches to Problem 4.1.

IV. DISCRETE APPROXIMATION OF FILTERS

A Note on Notation:Both continuous and discrete-time
signals and filters will appear in this section. We use and

to denote the continuous-time signal and its sample.
The notation is used to denote convolution in both time
domains; the nature of filter should make it clear. Finally,

may mean either “samples of convoluted with
” or “ convoluted with ”; this again can be

decided from what is.

A. Approximation Scheme

Recall from the last section that the first identification step
requires the value of and at .
Since only samples of and are available, this gives
the motivation to study the problem:

Problem 4.1: Let be a unknown continuous-time sig-
nal whose bandwidth is below the Nyquist frequency, and

is a given continuous-time filter. The problem is, given
sampled data , compute .

There are two ideal solutions to this problem. The first
one is to use Shannon reconstruction to compute from

. The signal can then be obtained via filtering
and sampling. This approach is depicted in Fig. 1 by the
thick solid line path. Practically, the Shannon reconstruction
is approximated by some higher order hold (HOH) circuits.

The second ideal solution is a more direct one: Is there a
discrete-time filter whose output is when its input
is ? This solution path is depicted by the “dashbox” in
Fig. 1.

Theorem 4.1:Based on problem formulation 4.1, we main-
tain that the discrete-time filter

(25 )

has the property .
Proof: Consider the discrete Fourier transform (DFT)

of , which is equal to ,
where is the DFT of . By (25), we have

, and the bandlimited assumption of
implies that . This means that the

signals and have the same spectrum,
and this completes our argument.

Equation (25) indicates that this ideal discrete-time filter
cannot be realized as a finite-dimensional rational transfer
function. In the next paragraph, we suggest a scheme to
approximate this filter based on Padé approximation, and we
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shall examine the properties of these approximate filters when
is a Laguerre function in Section IV-B.
Let denote a th-order Pad́e approximation of

. Define the function

(26)

and we propose

(27)

Note that this approximation is not of Padé type, but we
shall show in Theorem 4.2 that it has, in a certain sense, the
same accuracy as Padé type of approximations. Bearing this in
mind and in order to avoid expressions such as “discrete-time
approximation of based on th-order Pad́e approximation
of ,” we shall simply refer to it as “th Pad́e approximation
of .”

Some of the discussion later on will be limited to Padé
approximation of orders one to three. For completeness, ex-
pressions for ( ) are given below.

(28)

(29)

(30)

Note that coincides with Tustin transformation.

B. Properties of the Approximate Filters

This section examines the properties of the approximate
filters obtained from Pad́e approximation. Note that the section
on accuracy is applicable to any rational filter , whereas
the rest applies only to Laguerre filters.

1) Accuracy: This aim of this section is to examine the
accuracy of the Padé approximation scheme. In order to derive
an expression for the error, we first argue that this scheme can
also be viewed as a filter-dependent interpolation scheme, c.f.,
the thick-lined path in Fig. 1. It can be shown, using the same
type of argument in Theorem 4.1, that if we first interpolate

by and then follow by filtering by
and sampling, then the resulting discrete-time signal is

given by . This interpretation implies that the
approximation error of Padé method is identical to that of

.

Theorem 4.2:Let be as defined in (26); then

(31)

Consequently, let denote the error in estimating
using th-order Pad́e approximation; then

(32)

Proof: See Appendix B.
This theorem shows that the approximation error is of the

same order as one that is based on the true Padé approximation.
As a comparison, under the assumption that the continuous-
time signal is sufficiently smooth, ath-order hold circuit
gives an approximation error of , which is larger than
that of Pad́e approximation of the same order.

A more empirical approach would be to compare the fre-
quency domain error measure

(33)

where an approximation to . Here, we assume that
is with and . The error in ap-

proximating using first-, second-, and third-order holds
and the scheme based on Padé approximations orders 1 to 3
are plotted in Fig. 2. It can be seen that drastic improvement
can be obtained by using higher order Padé approximations,
as second-order approximation introduces nearly zero error up
to , whereas third-order approximation gives almost
zero error up to . This shows that we can get a good
interpolation property without too much oversampling.

2) Tapped Delay Line Structure:An advantage to using
Laguerre filters is that they can be implemented efficiently in
a manner similar to a tapped delay line. Recall the definitions
of in (7); we have

(34)

This shows that these approximate filters can again be imple-
mented like a tapped delay line; note that this does not apply
to HOH’s. Furthermore, for are allpass
filters, as shown in (35)–(37) at the bottom of the page. This
allpass property will be made use of in Section IV-B3.

3) Approximate Orthogonality:It is a well-known fact that
the Laguerre functions are orthonormal functions. We
shall show that if we apply our proposed approximation
scheme to , the resulting discrete-time filters are ap-
proximately orthogonal in a sense that will be defined later.
Based on this result and a result proved by Wahlberg [20],
which states that the use of discrete-time Laguerre functions in
linear regression gives rise to a numerically well-conditioned
problem, we can therefore justify our choice from a numerical

where (35)

(36)

(37)
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Fig. 2. Error [see (33)] in discrete filters obtained by using different orders of hold circuits and Padé approximation. Keys: solid lines for hold circuits
(labeled as “H”) and dashed lines for Pad´e approximations (labeled as “P”); the number after the letter indicates the order of approximation.

point of view. The use of Laguerre filters was, in fact,
implicitly suggested by Johansson [5] as well for improvement
on numerical properties. The suggested scheme orthogonalizes
the family of filters , and it can be shown that it
effectively expresses these lowpass filters as a sum of Laguerre
functions.

Let be a discrete-time zero-mean white noise sequence
with variance ( is the sampling interval), and let
denote the discrete-time approximation of the continuous-
time function . We shall investigate the property of the
following covariance matrix

(38)

where

...
...

...
...

(39)

Due to the preservation in allpass structure in , it
can easily be shown, for example, by considering the cross
spectrum, that for a nonzero

corr

corr (40)

where corr denotes the cross correlation between two sto-
chastic sequences. This implies that the covariance matrix

has the structure of a symmetric Toeplitz matrix. (Note

that identical results are proved by Wahlberg [20] when
these discrete-time filters are, in fact, discrete-time Laguerre
functions.)

The following theorem asserts that filters are
approximately orthogonal.

Theorem 4.3:If is derived from using Pad́e
approximation of order 1, 2, or 3, then

(41)

where denotes the identity matrix for first- and
third-order approximations, and for second-order
approximation.

Proof: See Appendix B.
4) Stability: By using Jury’s stability test [6] or root locus,

it can be shown that the filters obtained by applying second-
and third-order Pad́e approximations to are unstable
for all positive . Straightforward implementation of these
unstable filters will certainly cause problems in parameter
estimation, but this can be overcome by implementing them as
causal/anticausal filters. Appendix A shows how any unstable
filter can be converted into a causal/anticausal filter, and it
also contains an example to illustrate the concept.

5) Discussions:An alternative way to obtain an approxi-
mation to is to solve the model reduction problem

(42)

where is the set of all rational functions of order,
and is a frequency weighting that can used to take



354 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 2, FEBRUARY 1999

into account the system bandwidth. This method may produce
filters with better approximation property than those obtained
from Pad́e approximation. A drawback to this method is
that a model reduction problem has to be solved for each
Laguerre filter used. Furthermore, the approximate filters may
not have a tapped delayed line structure and, therefore, cannot
be efficiently implemented.

To conclude, we have shown in this section that the ap-
proximate filters obtained from applying the Pad´e scheme to
Laguerre filters have certain desirable properties. We therefore
recommend this approximation scheme instead of HOH. Fur-
ther remarks on HOH can be found in Remarks 5.1 and 5.2
and the comparison study in Section VII.

V. PARAMETER ESTIMATION: NOISE-FREE CASE

Recall from Section III that the coefficients and can be
recovered from the null space of the matrix in (24). Since
only samples of and are available, will be esti-
mated by using approximate filters, as discussed in Section IV.
If the approximation scheme is FOH or Tustin transformation,
then under the conditions that the input signal is persistently
exciting and that approximation error is insignificant, then the
coefficients and can be computed from the null space of

(43)

where the matrices and are defined in the same way
as and [refer to (22) and (23)], except that their elements
are computed from discrete approximation of .

However, for the case where either a second- or third-order
Pad́e approximation scheme is used, we need to compensate
for the effect of unknown end conditions of these mixed
causal/anticausal filters. We shall show how we can deal with
these unknown end conditions in Section V-A. After that, in
Section V-B, we will derive a transformation that enables us to
calculate the differential equation coefficientsand from
and . Finally, in Section V-C, we will present a computation
scheme to calculate and .

A. Corrections for Unknown End Conditions

Note that the initial conditions of the discrete filters can be
chosen to be zero without causing any problems. However, this
is not the case for the end conditions if causal/anticausal filters
are used since these end conditions are generally nonzero.
There are two possible solutions here: We may either choose
to estimate these end conditions as in [19] or to compensate
for their effect in some way. The latter approach will be taken
here.

Note that when we use causal/anticausal filters, the correct
output is given by the sum of response due to the input with
zero end condition and the response due to zero input with
nonzero end conditions. (This fact is illustrated in the example
in Appendix A.) As an example, consider the case where the
signal is filtered by a discrete approximation of ,

. The correct output is given by

(44)

where

response due to zero end conditions;
vector of end conditions;
vector whose th element is the response at
time due to the end conditions , where
is the unit vector whoseth element is unity.

Similarly, we have

(45)

for .
Substituting (44) and (45) into (18), we have

(46)

Define the matrices

...
...

... (47)

and

(48)

where and are defined in a similar way as and in
(22) and (23), except their elements are given by
and . Under the conditions that the input is per-
sistently exciting and that the error in approximating the
continuous-time filter is negligible, then the coefficients

and can be retrieved from the null space of the matrix
.

Since both the second- and third-order Padé approximations
of have unstable poles, the number of columns
in the matrix as defined above contains
columns, of which many are identical when . This
is due to both the structure of the Laguerre functions and
the preservation of allpass property by Padé approximations.
By exploiting these structures, we can reduce the number of
columns in to .

B. Parameter Transformation

In this section, we derive a transformation that relates the
coefficients and in (18) to those in the differential
equation (1): and . For convenience, we define to be 1.

From (11) and (13), we have

(49)

(50)



CHOU et al.: CONTINUOUS-TIME IDENTIFICATION OF SISO SYSTEMS USING LAGUERRE FUNCTIONS 355

By comparing the coefficients on both sides of the above
equation, we arrive at the relation

(51)

where

(52)
and is a by matrix whose
element is the coefficient of in the polynomial

. In addition, the matrix is invertible if and only if
.

Recall from Section III that the polynomial is related
to in exactly the same manner; hence, withand
defined similarly as and , respectively, we have

(53)

C. Computing the Coefficients and

At this stage, we assumed that we have the matrix
computed according to (48) if filtering schemes such as ZOH,
FOH, or the Tustin transform is used or, according to (43),
if the filter used is a mixed causal/anticausal one. Since we
are only interested in computing the coefficientsand ,
we shall first perform a QR factorization on the matrix.
This operation also reduces the amount of data that we have
to handle later. It is reasonable to assume that the matrix
has more rows than columns, and we have

(54)

Here, the number of rows in the matrix is the same as
the number of columns in either or [see (24) and
(48)], whichever is appropriate. Furthermore, is square
matrix of dimension and

where (55)

where the degree of approximation depends on the integration
error introduced by the filter approximation scheme. Note that
the solution to the above problem is not unique as the length
of the vector is unknown. The extra constraint required to
guarantee this uniqueness is obtained from the assumption that

is equal to 1. From the first row of (51), we arrive at the
following constraint on the parameter vector.

(56)

where is the th row of the matrix .
Note that (51) and (53) may be used to introduce further

constraints on the coefficients and . For example, if it
is known that the system is strictly proper, i.e., , and

equals to the constant, then we have the following
constraints:

(57)

Furthermore, we can also impose constraints that are linear
in the coefficients and . Finally, we would like to remark
that similar methods to impose constraints (such as the relative
degree or the number of integrators) are also mentioned in [9]
and [12].

Let us assume that all the constraints imposed onare
summarized in the matrix equation

(58)

and the total number of constraints is. We can now obtain
the parameter estimateby solving the following total least-
squares problem:

such that and

The solution to the above estimation problem is given in [3],
or it can also be reformulated as a restricted total least squares
problem [18]. The key step in solving the above problem is
to reformulate it as follows: Find the smallestsuch that the
equation below is consistent.

(59)

If , the matrix , which is of dimension
(where ), is generically of rank .

In order to obtain a consistent solution to the above linear
equation, must be modified such that its rank becomes

. For example, consider the simple case where
and ; we have

rank rank rank (60)

and therefore the original problem becomes one of finding the
, which has the smallest Frobenius norm such that the rank

of is . Let diag
be the SVD of ; then, the required is given by

diag .
Remark 5.1:Although the above algorithmic description

assumes that discrete filters obtained from the same ap-
proximation scheme are applied to both and , the
above algorithm can be modified such that filters from two
different approximation schemes are applied, respectively, to

and . This extra degree of freedom is useful in some
circumstances. For example, if it is known that the input
is a piecewise constant signal over the sampling interval, then
ZOH approximation should be used as the Padé schemes will
try to smooth the signal out.

Remark 5.2:Since the Pad́e approximations of Laguerre
filters can be implemented as a tapped delay line alike structure
(see Section IV-B2), this means the columns of
can be obtained from th-order filters, where is the
order of approximation. For a -state, -input, -output
state space system, it takes multiplications
to simulate one time step. Thus, the total number of operations
for all these filters per time step is . On the
other hand, as the higher order hold discrete approximations
of continuous-time Laguerre filters do not take this special
structure, we need to use a first-order, a second-order,and
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an th-order filters with inputs, where is the
order of the hold circuit. The operation count for hold circuit
is therefore

and is likely to be
more than that needed by Pad´e filters.

Remark 5.3:Due to the use of anticausal filtering, the
above algorithm cannot be implemented on line. However,
since it can cope with both unknown initial and end conditions,
it can be used in a quasi-on-line manner to cope with a
large data set or to combine data obtained from different
experiments. For example, assume that data for

is available, and we first divide it into two
batches with the first batch consists of data
and the rest in the second one. From the first data batch, we
arrive at the intermediate result [cf. (55)] and note
that this relation is independent of the unknown initial and end
conditions. We then process the second data batch as though
it is a fresh set of data, and we obtain the intermediate result

. Finally, can be estimated by solving these two
sets of linear equations together with multiplied by a
forgetting factor if needed. Note that there is a lower limit to
the number of data points in each data batch to be processed
this way; it is bounded from below by the number of columns
in (43) or (48), whichever is appropriate.

VI. OUTPUT CORRUPTED BY WHITE NOISE

In this section, we will show how to compute the coefficients
of the differential equation (1) when the measured output
is corrupted by discrete-time white noise of zero mean
and variance . In other words, the measured output is
given by

(61)

where is the noise-free output given by (1). Our parameter
estimates will be analyzed based on the concept ofasymptotic
consistency[1]. Let be an estimate of the true parameter
vector ; then, is said to be asymptotic consistent if

(62)

where denotes the number of samples.
In the first step of our algorithm, we filter and

through some discrete approximations of Laguerre filters
. We shall, as before, assemble these filtered quantities

in a matrix

(63)

where contains all the terms used for compensating the
effect of unknown initial and end conditions. The matrix
contains the filtered measured output and can, in fact, be
written as the sum of the filtered noise-free signal and
the filtered noise , i.e.,

(64)

Let and be the vectors as defined in Section V-B; then,
the noise-free continuous-time signals satisfy the relation

(65)

Here, contains all the coefficients that are due to unknown
initial and end conditions, but they are not of interest to us.
In order to compute and , we need to modify the matrix

by a matrix , which depends on the covariance matrix
of such that the equation

(66)

has a solution. We shall now state the theorem in this section.
Theorem 6.1:Given the QR factorization

(67)

and under the condition that the matricesand have full
rank, the limits

(68)

(69)

(70)

hold, where is given in Theorem 4.3.
Proof: From (65) and Theorem 4.3, it can be shown that

(71)

After substituting the given QR factorization into the above
equation, the first block row gives

(72)

Under the assumption that has full rank, the matrix

(73)

is therefore nonsingular, and hence, we have (68).
The second block row of (71) gives

(74)
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Fig. 3. Error in estimating parametera1 using different filter approximation schemes. Keys: solid lines for hold circuits (labeled as “H”) and dashed lines
for Pad́e approximations (labeled as “P”); the number after the letter indicates the order of approximation.

By using the assumption that is of full rank as well as
(68), we arrive at (69).

Finally, we consider the third block row of (71), which is

(75)

We then obtain (70) as a consequence of (68) and (69). QED
This theorem suggests that we can solve forand in two

separate steps. For a sufficiently large and a nonzero ,
(70) can be written as

(76)

where is defined in (38). We have shown thatbecomes
as tends to zero, and our experience shows that this

is a good approximation if is small enough. However, we
found that better results are obtained if we computefor
a nonzero , and we shall show how this can be done in
Appendix C. The above equation says thatis given by the
solution of a generalized eigenvalue problem. Alternatively,
the problem can be solved by using generalized singular value
decomposition [4], and this is given in Appendix D. Finally,
we can solve for by using (69) as

(77)

Similar to the algorithm for the noise-free case given in
Section V-C, we can also impose linear constraints on the
parameters of the differential equation. This can be done
by first removing the noise in by setting the smallest
generalized singular value to zero, and then, the rest proceeds
as before.

Remark 6.1:Following Remark 3.1, the above parameter
estimation algorithm can be appliedmutatis mutandisin the
discrete-time case, when the measured output is corrupted by
discrete-time white noise.

VII. SIMULATION EXAMPLE

In this section, we present a simple simulation example
to illustrate the properties of our proposed algorithm. This
example is based on the following second-order continuous-
time system:

(78)

The bandwidth of this system is approximately 0.16 Hz, and
it is excited by a chirp signal that lasts for 200 s with starting
and end frequencies at 0.02 and 0.14 Hz, respectively.

Study 1—Noise-Free Case:The aim of this study is to
look at the effect of sampling interval on the accuracy of
parameter estimates. In this experiment, the time window for
observation is fixed at 200 s; hence, the number of data points
available is inversely proportional to the sampling period.
The discretization schemes used are first-, second-, and third-
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Fig. 4. Average error on the estimates ofa1 over 50 simulations. The solid lines indicate the error in the noise-free case and they are, from top to
bottom Tustin, Pad´e second-order, Pad´e third-order, respectively. The other curves show the average error; keys: Tustin (dashed). Pad´e second-order
(dotted). Pad́e third-order (dash-dot).

order hold circuits with (see Appendix E for the
meaning of and how these HOH’s are implemented) as
well as Pad́e approximations of orders 1 to 3. Fig. 3 shows the
estimation error for the parameter, and the estimation errors
for the other coefficients show a similar pattern. Note that there
is almost a one-to-one correspondence between how well a
parameter is estimated (Fig. 3) and how well a discretization
scheme works (Fig. 2); this means that Padé approximation
generally gives a smaller estimation error than higher order
hold circuit of the same order. It can also be seen from the
figure that if the schemes based on first- and second-order Padé
approximations are to give the same accuracy, then we needs
to sample 10 to 100 times faster in the former case.

Study 2—Noisy Case:In this experiment, the sampling fre-
quency is 1 Hz, and white measurement noise that corresponds
to a signal-to-noise ratio of 36 dB is added to the output.
Our identification algorithm based on Padé approximations
is used to estimate the parameters. Altogether, 50 different
noise realizations are used, and the mean parameter estimates
are computed. In Fig. 4, we plot the mean of the error on
the parameter against the number of samples used in
identification. There are two sources of error: variance error
due to noise and integration error due to finite sampling
interval, which is given by the error in noise-free case.
For the Tustin transform, the two sources of error are of a
similar order of magnitude. For both second- and third-order
approximations, the variance error dominates for small sample
sizes, and the error converges to the noise-free level as the
sample size grows.

VIII. C ONCLUSIONS

In this paper, we have proposed a parameter estimation
scheme for the identification of continuous-time transfer func-
tion based on an “ARX-like” Laguerre model and discrete-time
filters that are obtained from applying higher order Padé
approximation to continuous-time Laguerre functions. If the
measured output is corrupted by white noise, the proposed
scheme is shown to give an asymptotically consistent estimate.
The identification scheme based on Padé approximation is
compared with one that is based on higher order hold circuits,
and it is found that the former algorithm gives more accurate
parameter estimates. A comparison between the proposed
scheme and an indirect identification method based on noise-
free data generated by a simulation model of an induction
motor shows that the proposed scheme gives superior param-
eter estimates [7].

APPENDIX A
CAUSAL/ANTICAUSAL FILTERING

The aim of this Appendix is to show how an unstable
filter can be transformed into a form that is suitable for
causal/anticausal filtering. We will start with a particular state
space equivalent of the unstable filter where thematrix is
in real Schur form

(79)

where the block contains all the stable poles, whereas the
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block contains all the unstable poles. We can partition the
state vector and the other state-space matrices conformally as

, as follows:

(80)

(81)

First, perform the substitutions and .
By expressing , , and as the subject of the
equations, in terms of , , and , we arrive at the
following form after some algebraic manipulations:

(82)

where

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

The set of equations given in (82) can now be used for
simulation. The procedure is to first solve for using the
second state transition equation; the computedcan then be
used to solve for using the first state transition equation.

Example 8.1:As an illustration, consider the following
state space system with both stable and unstable modes:

(91)

(92)

Let us assume that the initial condition , and the input is
, where is the discrete-time impulse function. Then,

the system response is

for

for .
(93)

The system transformation given above will lead us to the
following causal/anticausal system:

(94)

Since , the two state transition equations are in-
dependent of each other, and they may therefore be solved

independently. We begin by solving the first state transition
equation with and , and its solution is

for
for .

(95)

With the final condition (where ) and
, the second state transition equation gives

for

for .
(96)

The output of the causal/anticausal system can now be com-
puted and is equal to

for

for

for .

(97)

By comparing this with the output of the original system, it can
readily be seen that these two representations give identical
output if the end condition is chosen to be . Let

denote the discrete-time unit step; then, the output of
the causal/anticausal system may be written compactly as

(98)

This illustrates that if the initial condition is zero, the output
can be written as the sum of the response due to the input
with zero final condition and the response due zero input with
an end condition. Furthermore, the response due to zero input
with an end condition is linear function of the end condition.
These facts are used in Section V-A to derive the system
identification algorithm.

APPENDIX B
PROOFS

Proof of Theorem 4.2:From (26) and the fact that the
th-order Pad´e approximation has error of order [11],

we have

(99)

Substituting , we have

(100)

By writing as a ratio of two polynomials ,
we have

(101)

By substituting (100) in (101), we arrive at the result stated in
Theorem.
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Proof of Theorem 4.3:Let us define the transfer function

(102)

and let its two-sided -transform or Laurent series expansion
[15] be given by

(103)

It can be shown that the element of the covariance matrix
(38) is given by the constant term of the Laurent series

expansion, i.e., of . Therefore, Theorem 4.3 can
be restated as

if
if

(104)

where takes a value that depends on the order of approx-
imation.

We will use and to denote, respectively, the stable
and unstable poles of the transfer function ; then, the
Laurent series expansion converges for all complexwithin
the annulus .
It can be shown, by using the expressions of the transfer
functions, that for any , the poles of do not
lie on the unit circle. Therefore, the set is nonempty. The
coefficients can be computed from the integral

(105)

where is any contour within the annulus , and without
loss of generality, we shall choose to be the unit circle.
Let res denote the residue of the function at the
isolated singularity ; then, by the Cauchy’s residue theorem,
the coefficient is given by

res res (106)

where the second sum is over the different isolated stable poles
of .

The proof will be divided into three parts according to the
type of approximation scheme used.

Case 1—Tustin Transformation:We first consider the situ-
ation where . We have

(107)

where is . By computing the appropriate
residues, it can be shown that

(108)

and therefore

(109)

For the case where , let , and we have

(110)

For , the coefficient is given by

res res (111)

By using the expression of given above, it can be
shown that

res (112)

res

(113)

(114)

Since as , we have

(115)

Case 2—Second-Order Pad´e Approximations:The discrete
approximation of the filter using second-order
Pad́e approximation can be written as

(116)

where and are the roots of the equation
. It can be shown by using root locus

that for any positive , this equation always has two distinct
real roots, and one of them is always stable, whereas the other
one is always unstable. We shall assume here thatis the
stable pole and that is the unstable pole. It can further be
shown that

(117)

(118)

We first consider the case where . We have

(119)

Provided that so that , we have

res res

res (120)
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By evaluating these residues, it can be shown that

res

(121)

res res

(122)

Finally, by taking the limit

(123)

The proof for the case where is similar to that of Case
1 and is omitted. See [2] for details.

Case 3—Third-Order Pad´e Approximations:The proof for
this case is similar to those of the previous two cases and is
omitted. The details can be found in [2].

APPENDIX C
COMPUTING

We see in Appendix B that the element of is given
by the constant term in the Laurent series expansion of the
causal/anticausal transfer function

(124)

Let us assume that has already been converted to the
form given in (82); then, the required constant term is also
given by the unit impulse response of at time
subject to the initial condition and end condition

.
Using the state transition equation for the anticausal state

in (82), it is straightforward to show that

for
for

(125)

By using this result and the state transition equation for the
causal state, we have

(126)

(127)

The matrix can be shown to satisfy the Sylvester equation

(128)

Finally, the required answer is given by

(129)

APPENDIX D
SOLVING FOR

Recall from Section VI that is given by the solution of
the equation

(130)

Let be a Cholesky factor of , i.e., . The above
equation can be solved by using the generalized SVD [4] of
the matrices and as

(131)

(132)

such that both and are orthogonal matrices, and
is invertible. Both and are diagonal matrices with non-
negative elements

diag (133)

diag (134)

Furthermore, the generalized singular values are defined as

(135)

By substituting (131) and (132) into (130), we have

(136)

This implies that an estimate for is given by the smallest
generalized singular value, say,; then, an estimate of is
then given by the th column of .

APPENDIX E
IMPLEMENTATION OF HIGHER ORDER HOLDS

This section discusses how the HOH’s used in the simula-
tion example in Section VII are implemented. These HOH’s
are specified by two parametersand , where is the
order, and determines the part of the data that is used for
interpolation. We assume the continuous-time filter is given in
state space form

(137)

(138)

This gives the following discrete-time state equation

(139)

The idea of th (where ) order hold is to approximate
for by a th-order polynomial

(140)

The coefficients are determined from the inputs
, where is a prespecified
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integer in . Specifically, ’s are determined by
the interpolation conditions

for

(141)

and they have to be solved for each. By replacing
by its approximation, (139) can be written as

(142)
Let ; these matrices can be computed by
using the recursion

(143)

for (144)
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