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Continuous-Time Identification of SISO
Systems Using Laguerre Functions

Chun Tung Chou, Michel Verhaegen, and Rolf Johansson

Abstract—This paper looks at the problem of estimating the equation. The prime motivation of this approach is that the
coefficients of a continuous-time transfer function given sam- yndesirable action of differentiating noisy data is replaced by
ples of its input and output data. We first prove that any he gction of this bank of filters. Various choices of filters
nth-order continuous-time transfer function can be written as h b d f le. th fi h
a fraction of the form Y __ beLi(s)/ 3" _ , axLe(s), where Nave been suggested, for example, the use of integrators has
Li(s) denotes the continuous-time Laguerre basis functions. been suggested by Sagara and Zhou [13] and Schoukens [14],
Based on this model, we derive an asymptotically consistent and the use of low-pass filters by Johansson [5] and Moonen
parameter estimation scheme that consists of the following two et g|. [10]. In this paper, we have chosen these filters to be

steps: 1) Filter both the input and output data by Li(s), and ; i : - .
2) estimate {@, bx} and relate them to the coefficients of the gﬁg?::r;u?z:tse:lme Laguerre functions, and we shall justify this

transfer function. For practical implementation, we require the ' ) .
discrete-time approximation of Le(s) since only sampled data ~ This paper looks at two different scenarios of the

is available. We propose a scheme that is based on highercontinuous-time identification problem. We shall first study
order Padeé approximations, and we prove that this scheme the noise-free case, and then, we shall look at the case where
produces discrete-time filters that are approximately orthogonal the output is corrupted by white measurement noise

and, consequently, a well-conditioned numerical problem. Some - . . . . .
other features of this new algorithm include the possibility to ~ 1he noise-free case for continuous-time identification is
implement it as either an off-line or a quasi-on-line algorithm not as straightforward as its discrete-time counterpart. Since
and the incorporation of constraints on the transfer function only the sampled versions of the continuous-time signals are
coefficients. A simple example will be given to illustrate the ayailable, the output of the state variable filters can only
properties of the proposed algorithm. be computed from discrete approximations of these filters.
Index Terms—Asymptotic consistency, continuous-time sys- We find that discrete-time filters obtained from first-order
tems, Laguerre basis functions, Pae"approximation, parameter  approximation methods [for example, first-order-hold (FOH)
estimation, system identification, total least-squares. or Tustin transform] have two main drawbacks. First, these
approximations are only accurate when the sampling frequency
I. INTRODUCTION is very high compared with the bandwidth of the system to be

HIS PAPER looks at the problem of estimating thidentified. Second, the estimated continuous-time model may
coefficients of single-input single-output (SISO) dynamiEe unstable even if the given continuous system is a stable one.

models specified by a linear differential equation with constantn Order to overcome these problems, we propose a scheme
cosfficionts. to compute discrete-time approximation of continuous-time

The approach taken here can be classified as the stzfg@uerre filters by applying second- or third-order &ap-

variable filter approach according to an earlier survey pap%rpximations in a particular way. Besides the fact that these

on continuous-time identification by Young [22] or as thgiscretg—time filter.s give excellent approximatipn over a large
“linear dynamics operations” approach according to a lafBgndwidth, there is an added advantage that is due to the use
survey paper on the same topic by Unbenhauen and Rao [fg]!_aguerre. filters Wlth h!gher order Padipprommatlon. The
This particular approach consists of two steps. In the firgSulting discrete-time filters are approximately orthogonal,
step, the input/output data is passed through a bank of filte@é‘.c_j th(=T numerical .condmonmg of the associated parameter
This filtering action is chosen in such a way that the filtere@Stimation problem is therefore improved. However, the above
input and output are related by an equation whose unkno@fided advantage comes with a price. These higher order
coefficients are related to those of the differential equatiog;ti_screte—time filters are unstable. Although unstable filters can
The second step then consists of estimating these unkndihimplemented as causal/anticausal filter, there is the problem

coefficients and relating them to those of the differenti@f unknown end conditions.
Our main contribution is that we have derived an
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the differential equation. This transformation also allows I1l. OUTLINE OF SOLUTION
us to incorporatea priori knowledge such as the relative | g section, we outline the solution to the identification

degree of the transfer function. Finally, this algorithm can Bgopem in the noise-free case. This consists of two steps.
implemented in either an off-line or quasi-on-line fashion. |, yhe first step, the measured input and output are filtered

This paper is organized in the following way. We firSi, o,,9h a bank of Laguerre functions. It can be shown that the
define the parameter estimation problem in Section Il, aflered input, filtered output, and the impulse responses of the
then, we present the outline of the solution for the noise-frge,q erre filters are related by a linear equation with constant
case in Section lll. In Section IV, we suggest a scheme Weficients and that these coefficients can be computed from
obtain discrete-time approximations of continuous-time filtegge 1| space of a specific matrix. Once these coefficients are
and compare its accuracy with higher order hold circuityeermined, the coefficients of the differential equation can be

We also prove, in this section, that the discrete-time filte(})nnyted via a linear transformation, and this is the second
obtained by applying our proposed approximation scheme

continuous-time Laguerre filters are approximately orthogonaI.W'e first define a few notation that will be used in this paper.

The parameter estimation algorithm for the noise-free cagg; , pe any positive real number andbe the allpass filter
is then presented in Section V and for the noisy case in

Section IV. Section VIl gives a simple example that illus- w=->_% 7)
trates the properties of the proposed algorithm. Finally, the sta
conclusions are given in Section VIIl. In addition, let{Lx(s)} for & = 0, 1, 2, --- be the set of

Laplace domain Laguerre functions where
Il. PROBLEM STATEMENT

/o k
We consider a continuous-time SISO system whose input Li(s) = 2a <S — a) (8)
u(t) and outputy(¢) are related by a linear constant coefficient sta\sta
differential equation of order and {/;(t)} be their corresponding functions in the time
YD) 4 an_1y O & - 4 agy(t) domain.

Consider the Laplace transform of the differential equation
= b, u™ (t) + bn_lu("_l)(t) + -+ bou(t) (1) defined by (1) p q

where y(")(¢) denotes thenth derivative of the continuous- A()Y ()

= B(s)U C 9
time signaly(¢). The system is assumed to be subjected to an (5)U(s) +Cls) ©)
arbitrary set of initial conditions whereU(s) andY (s) are, respectively, the Laplace transforms

wo =[u(0) w®P(0) - u=D(0) 2 pf the_ input«(t) and the outputy(t). The polynomialC(s)
) (1) is defined as
vo =[¥(0) ¥(0) - yT(0)]. ©)
_ . C(s) = cno1s" 14+ co (10)
Furthermore, we make two assumptions on the polynomials
A(s) and B(s), which are defined as and it contains the part of system response due to the unknown
" 1l initial conditions. Note that the coefficients depend on the
A(s) =s"+ a1 + -+ ag 4)

. unknown parameters; andb; as well as the unknown initial
B(s) =bps" +bp18"7" + -+ bo. (5) conditions.

First, these two polynomials are assumed to be relativelyBy substituting

prime. Second, the roots of the polynomi&{s) are assumed 14w
to have negative real parts; in other words, the system defined STAT T
by (1) is assumed to be asymptotically stable.

For the identification problem, it is assumed that th
continuous-time signala(t) and y(¢) are sampled at regular

(11)

into (9) and multiplying both sides of the resulting equation
y (1 —w)™, we arrive at a model of the form

time interval 7. The measured outpuf(t) is assumed to be A(w)Y (s) = B(w)U(s) + C(w) (12)
corrupted by an additive white measurement neifg with
variance(1/7T)A?; in other words, where
2(t) = y(t) +e(t). (6) Alw) = (1 wm(a 1+_“’) (13)
—w

The data available for identification i&u(kT), z(kT)} (for o o

k = 0,---, N), and they will be denoted abu(k), z(k)} and the polynomialsB(w) and C(w) are similarly defined.

when the context makes it clear that they denote samplesFefithermore, we shall denote the coefficients of these three

the continuous-time signals. polynomials by
The identification problem can now be stated as follows: I - 4t4a (14)

Given the sampled datdw(k), 2(k)}, determine the co- - _ -0

efficients a,_1, ---, ap and by, ---, by of the differential B(w) =b,w™ +---+bo (15)

equation model. C +--+7. (16)
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Note that an identical transformation technique is also used by pic.rete-time T Diseretetime Discrete-time
Johansson [5], except that is chosen to béa/(s + a)). In signal #(KT) P filter Baea(s) signal [Fa](kT)
general, this type of transformation is referred to as a linear
dynamic operation in the survey paper on continuous-timg
identification by Unbenhauen and Rao [16].

By multiplying both sides of (12) by the lowpass filter
V2a/(s + a), we arrive at the Laguerre model structure that Continuous-time [ Continuous-time ,  Contimnous-time

signal z er F(s signal [Fz
will be used in this paper. gnal 200 flter F1s) nal (77100
(6 L (s) 4o EOLl(s))Y(S) Fig. 1. Two approaches to Problem 4.1.
= (bnLn(s) + - - 4 boLo(s))U(s)
+ (€ Ln(s) + -+ CoLo(s)).
Note that in the ab derivati h frectively sh A Note on Notation:Both continuous and discrete-time
ote thal in the above derivation, we have ellectively s Oy\gfgnals and filters will appear in this section. We ugé) and
that annth-order transfer function can be written as a ratio

£ two li functi ‘L basis functi q th;Jc(kT) to denote the continuous-time signal and its sample.
of two Tinear functions of Laguerre basis functions, anc thig, notation[F'z] is used to denote convolution in both time

representation is coined as the generalized ARX model B}Smains; the nature of filteF' should make it clear. Finally,

Wahlberg [20]. Note also that the above derivation is in shal P’a:](kT) may mean either “samples &f(s) convoluted with
contrast to the present literatures on using Laguerre functi )" or “F(z) convoluted withz(kT")"; this again can be

and other orthonormal basis functions for.sys_tem ident_ificati cided from whatf” is.
[8], [17], [20], [21], where a transfer function is approximate
by a truncated Laguerre expansion or, more generally, a finite o
sum of orthonormal basis functions. A. Approximation Scheme
In terms of time domain signals, (17) can be written as  Recall from the last section that the first identification step
_ _ — requires the value ofL;u|(t) and [L;y](t) att = 0, 7T, ---.
AnlLo)(#) + Gns[Ln-1](#) + -+ + Gl Loy](£) Since only samples Exfc(t;(a)nd y(tg arl:( azvailable, this gives
= bn[Lyu](#) + bp—1[Ln—10] () + - - + bo[Lou](?) the motivation to study the problem:
+Cnln(t) + 1 lp1(t) + - + Colo(t) (18) Problem 4.1: Let z(¢) be a unknown continuous-time sig-
nal whose bandwidth is below the Nyquist frequency, and

Interpolation

Sampling

17) IV. DISCRETE APPROXIMATION OF FILTERS

where . . . . . L7
F(s) is a given continuous-time filter. The problem is, given
[Liy](t) = 4:(t) * y(t) (19) sampled data:(kT), compute[F'z](kT).
[Liu](t) = £:(¢) * u(t) (20) There are two ideal solutions to this problem. The first

one is to use Shannon reconstruction to compt(te from
z(kT). The signalF'z](kT") can then be obtained via filtering
and sampling. This approach is depicted in Fig. 1 by the

and x denotes the convolution operator.
Define the matrices

o 4n(0)  £na(0) -+ £o(0) thick solid line path. Practically, the Shannon reconstruction
W= - : : : : (21) is approximated by some higher order hold (HOH) circuits.
L (N) £, 1(N) --- £o(N) _The se_cond_ideal solution is a more direct one: I§ there a
(Lo (0)  [Lo_1u](0) -+ [Low(0) Q|screte—t|me_ filter whose output [sF_x](kT) wher: its mpuE _
— . is (kT)? This solution path is depicted by the “dashbox” in
L[Lpu](N)  [Lp—au](N) -+ [Lou](N) Theorem 4.1:Based on problem formulation 4.1, we main-
(Lny](0)  [Ln—ay](0) -+ [Lou](0) tain that the discrete-time filter
= 5 L (23) .
La](N) [Lacrg)N) - [Zog](N) Baea(2) = (7 1os(2)) 25)

Under the assumption that the input signét) is persis-
tently exciting, then we can recover the coefficiemsb;, z; has the propertyFigeaz|(KT) = [Fz](kT).
from the null space of the following matrix. Proof: Consider the discrete Fourier transform (DFT)
I of [Faeaz](kT), which is equal toFijea(e’“T)X (e/T),
M=Ww U Y] (24) where X (¢/“T) is the DFT of x(kT). By (25), we have
We shall show in Section V how we can compute the coefffiye.i(¢’“T) = F(jw), and the bandlimited assumption of
cients of the differential equation (1) given andb;. z(t) implies that X (¢/*T) = X(jw). This means that the
Remark 3.1:Note that it is also possible to write an order signals[Fiqe.1z](kT") and [Fz](kT") have the same spectrum,
discrete-time transfer function as a ratio of two linear functiorend this completes our argument. VAN
of discrete-time Laguerre functions. The steps are completelyEquation (25) indicates that this ideal discrete-time filter
analogous to those used above with— a)/(s + «) and cannot be realized as a finite-dimensional rational transfer
v2a/(s + a) replaced, respectively, bjl — az)/(» —a) and function. In the next paragraph, we suggest a scheme to
V(1—-a)T/(z—a), where—1 < @ < 1. approximate this filter based on Radpproximation, and we
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shall examine the properties of these approximate filters wheriTheorem 4.2:Let p,, be as defined in (26); then
F'is a Laguerre function in Section IV-B. o opt1
Let ¥,(¢(z)) denote apth-order Pad approximation of F(s) = Flpp(e™)) = O(TFT). (31)

¢(). Define the function Consequently, letep,qe , denote the error in estimating

[Fz](kT) using pth-order Pad approximation; then

1
pp(Z) = T \ij(log(l + -T))|a::z—l (26) €Padé,p = O(T2p+1), (32)
and we propose Proof: See Appendix B.

This theorem shows that the approximation error is of the
27) same order as one that is based on the trué Bpdroximation.

As a comparison, under the assumption that the continuous-
i o time signalz(¢) is sufficiently smooth, ath-order hold circuit
Note that this approximation is not of Radype, but we ives an approximation error ¢f(Z77*+1), which is larger than
shall show in Theorem 4.2 that it has, in a certain sense, I?P]%t of Pa@ approximation of the same order.
same accuracy as Ratype of approximations. Bearing thisin = o ,5re empirical approach would be to compare the fre-
mind and in order to avoid expressions such as “discrete—tiraﬁency domain error measure
approximation off'(s) based ompth-order Pad approximation
of ...,” we shall simply refer to it aspth Pad approximation (T = |Ey(e’™7T) — Fyeal(e’*7)] (33)
of F(s).” .
So(m)e of the discussion later on will be limited to BadWherefu(z) an approximation tdqc.i. Here, we assume that

approximation of orders one to three. For completeness, dxts) iS Li(s) with a = 1 and7" = 0.01s. The error in ap-

Flaeal(z) = F(pp(2)).

pressions fop,(z) (n = 1, ---, 3) are given below. proximating L, (s) using first-, second-, and third-order holds
and the scheme based on Baapproximations orders 1 to 3
221 are plotted in Fig. 2. It can be seen that drastic improvement
p1(z) = T7+1 (28) can be obtained by using higher order Papproximations,
3 ) 221 as second-order approximation introduces nearly zero error up
pa(z) = TR+ a1 (29) to 1/10007, whereas third-order approximation gives almost
1 “1173 + 9722 _ 97y — 11 zero error up tal /1007". _Thls shows that we can get a good
pa(2) = === 3 2 “ . (30) interpolation property without too much oversampling.
3T 224927+ 92+ 1 2) Tapped Delay Line StructureAn advantage to using
o ) ) . Laguerre filters is that they can be implemented efficiently in
Note thatp:(z) coincides with Tustin transformation. a manner similar to a tapped delay line. Recall the definitions
of w in (7); we have

B. Properties of the Approximate Filters

k

This section examines the properties of the approximate Lidpr(2)) = Lolep(2)yuwlor(2))"- (34
filters obtained from Padapproximation. Note that the sectioriThis shows that these approximate filters can again be imple-
on accuracy is applicable to any rational filt€¢s), whereas mented like a tapped delay line; note that this does not apply
the rest applies only to Laguerre filters. to HOH's. Furthermorew(p,(z)) for p = 1, 2, 3 are allpass

1) Accuracy: This aim of this section is to examine thefilters, as shown in (35)—(37) at the bottom of the page. This
accuracy of the Pa@dapproximation scheme. In order to derivallpass property will be made use of in Section 1V-B3.
an expression for the error, we first argue that this scheme car) Approximate Orthogonalityit is a well-known fact that
also be viewed as a filter-dependent interpolation scheme, dlie Laguerre functiond.;(s) are orthonormal functions. We
the thick-lined path in Fig. 1. It can be shown, using the sansball show that if we apply our proposed approximation
type of argument in Theorem 4.1, that if we first interpolatscheme toL;(s), the resulting discrete-time filters are ap-
z[kT) by F(s)"'F(p,(e*?)) and then follow by filtering by proximately orthogonal in a sense that will be defined later.
F(s) and sampling, then the resulting discrete-time signal Based on this result and a result proved by Wahlberg [20],
given by[F(p,(2))z](kT). This interpretation implies that the which states that the use of discrete-time Laguerre functions in
approximation error of Pa@dmethod is identical to that of linear regression gives rise to a numerically well-conditioned

1 — F(s)7t*F(py(e™)). problem, we can therefore justify our choice from a numerical
az—1 2—al
w(p1(z)) = po— where « = ol (35)
_ (aT —3)2* + 4aTz + (aT + 3)
wle2(2)) = = T 37 S s + (aT —3) (36)
wips()) = — (3aT — 11)23 +27(aT — 1)22 +27(aT + 1)z + (3aT + 11) 37)
PV = T BaT 1 11)2° 4 27(al + 1)2% + 27(al — 1)z + (3aT — 11)
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2
10 ——————.

10° F SERREE

error

10 10 107 107 107 10 10 10
frequency (omega * T)

Fig. 2. Error [see (33)] in discrete filters obtained by using different orders of hold circuits aréd @padoximation. Keys: solid lines for hold circuits
(labeled as “H") and dashed lines for Radpproximations (labeled as “P”); the number after the letter indicates the order of approximation.

point of view. The use of Laguerre filters was, in factthat identical results are proved by Wahlberg [20] when
implicitly suggested by Johansson [5] as well for improvemetttese discrete-time filters are, in fact, discrete-time Laguerre
on numerical properties. The suggested scheme orthogonalizegtions.)
the family of filters{(a/(s + a))*}, and it can be shown thatit The following theorem asserts that filte{d.; 4(2)} are
effectively expresses these lowpass filters as a sum of Laguexpproximately orthogonal.
functions. Theorem 4.3:1f Ly, q(#) is derived fromLy(s) using Paé

Let ¢(¢) be a discrete-time zero-mean white noise sequenagproximation of order 1, 2, or 3, then
with variancel /T" (T is the sampling interval), and I8, 4(z)
denote the discrete-time approximation of the continuous-

time function Ly (s). We shall investigate the property of the . . o i
following covariance matrix where I denotes the identity matrix = 1 for first- and

third-order approximations, and = 4/3 for second-order

lim II = &I (42)
T—0

e lim ~ETE (38) @pproximation. _
N—ooo N Proof: See Appendix B.
where 4) Stability: By using Jury’s stability test [6] or root locus,
it can be shown that the filters obtained by applying second-
[ Enael©) Lo ae](0) - [Lo,acl(0) and third-order P&l approximations tal,(s) are unstable
E= : : : : . for all positive 7. Straightforward implementation of these
[Ln,ae](N) [Ln-1,ae](N) -+ [Lo, qe](N) unstable filters will certainly cause problems in parameter

(39) estimation, but this can be overcome by implementing them as

causal/anticausal filters. Appendix A shows how any unstable

Due to the preservation in allpass structurefin q(z), it fiiter can be converted into a causal/anticausal filter, and it
can easily be shown, for example, by considering the croggo contains an example to illustrate the concept.

spectrum, that for a nonzerb 5) Discussions:An alternative way to obtain an approxi-
corr([L; qe](t), [L;, ac](t)) mation to Fige.1(#) is to solve the model reduction problem
= COM([Lyi—j41,acl(®), [L1, ac](?)) (40) min j{ W (2)(Faeat(=) — Q)12 dz 42)
QEICE(P) J)z|=1 Z

where corr denotes the cross correlation between two sto-
chastic sequences. This implies that the covariance matwkere >(p) is the set of all rational functions of order,
IT has the structure of a symmetric Toeplitz matrix. (Notand W (z) is a frequency weighting that can used to take
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into account the system bandwidth. This method may produsbere
filters with better approximation property than those obtained [Lx. 4. 0u)(t) response due to zero end conditions;

from Pa@ approximation. A drawback to this method is T, k vector of end conditions;

that a model reduction problem has to be solved for eacth(t) vector whoseith element is the response at
Laguerre filter used. Furthermore, the approximate filters may time ¢ due to the end conditions;, wheree;
not have a tapped delayed line structure and, therefore, cannot is the unit vector whoséth element is unity.
be efficiently implemented. Similarly, we have

To conclude, we have shown in this section that the ap-
proximate filters obtained from applying the Rascheme to [Liy](t) = [Li. ay](t) = [Li,a.00](t) + ()T ny. k. (45)
Laguerre filters have certain desirable properties. We therefore
recommend this approximation scheme instead of HOH. Fdor £ = 0, 1, 2, ---.
ther remarks on HOH can be found in Remarks 5.1 and 5.2Substituting (44) and (45) into (18), we have

and the comparison study in Section VII.
@n[Ln, a,09)(t) + @n1[Ln—1,a,00](t) + - -

V. PARAMETER ESTIMATION: NOISE-FREE CASE +@o[Lo, a,00](t) + ZEiC}(t)Tny,i
Recall from Section 1lI that the coefficieris andb, can be B _ =0
recovered from the null space of the matfix in (24). Since 2 by [Ly g ouw(t) + bp1[Ln—1,a 0u](t) + -
only samples ofu(t) andy(¢) are available M will be esti- _ no_
mated by using approximate filters, as discussed in Section V. + bo[Lo, 4, 0u](t) + Z biCi(t) 1,
If the approximation scheme is FOH or Tustin transformation, i=0
then under the conditions that the input signal is persistently +Cnln(t) + Cn1ln1(t) + - +2obo(t).  (46)

exciting and that approximation error is insignificant, then the _ i
coefficientsa; andb; can be computed from the null space OPeﬁne the matrices
— OO GO - G0)F
My =W Ug Y] (43) T— : : :

where the matrice¥/, andY, are defined in the same way o) GW)T - G

asU andY” [refer to (22) and (23)], except that their elementg

are computed from discrete approximationgf(s). L
However, for the case where either a second- or third-order My=[W F U Y4 (48)

Pace approximation scheme is used, we need t0 compensg@ifure7, andY , are defined in a similar way d% andY in
for the effect of gnknown end conditions of these m|xe' 2) and (23), except their elements are giver{by 4. ou](t)
causal/anticausal filters. We shall show how we can deal w 'ﬁd [Ln. 4 oy](t). Under the conditions that the input is per-
these unknown end conditions in Section V-A. After that, 'Qistently exciting and that the error in approximating the

Section V-B, we will derive a transformation that enables us {gntinyous-time filtet,, (s) is negligible, then the coefficients
calcylate the differential equation coefficientsandd; from a; @; andb; can be retrieved from the null space of the matrix
andb;. Finally, in Section V-C, we will present a computationMQ_

(47)

scheme to calculate; and b;. Since both the second- and third-order @agproximations
of Lx(s) have(k + 1) unstable poles, the number of columns
A. Corrections for Unknown End Conditions in the matrixF’ as defined above contaif& + 1)(n + 2))/2

Note that the initial conditions of the discrete filters can beelumns, of which many are identical when > 2. This
chosen to be zero without causing any problems. However, thisdué to both the structure of the Laguerre functions and
is not the case for the end conditions if causal/anticausal filtdR§ Preservation of allpass property by Bapproximations.
are used since these end conditions are generally nonz&h.exploiting these structures, we can reduce the number of
There are two possible solutions here: We may either chod@dumns in " to (2n 4 1).
to estimate these end conditions as in [19] or to compensate )
for their effect in some way. The latter approach will be take- Parameter Transformation
here. In this section, we derive a transformation that relates the

Note that when we use causal/anticausal filters, the correeefficients@; and b; in (18) to those in the differential
output is given by the sum of response due to the input wigljuation (1)a; andb,. For convenience, we defing, to be 1.
zero end condition and the response due to zero input withFrom (11) and (13), we have
nonzero end conditions. (This fact is illustrated in the example

in Appendix A.) As an example, consider the case where the _[(sta " (s—a

. S : I A(s) = A (49)
signal u(t) is filtered by a discrete approximation &, (s), 2a s+a
Ly 4(z). The correct output is given by 1

G L a - (60)
=0

[Lau)(t) = [Ln, aul(t) = [Li, a,00)(t) + G (8) 0, (44)



CHOU et al: CONTINUOUS-TIME IDENTIFICATION OF SISO SYSTEMS USING LAGUERRE FUNCTIONS 355

By comparing the coefficients on both sides of the abowurthermore, we can also impose constraints that are linear

equation, we arrive at the relation in the coefficients:; andb;. Finally, we would like to remark
that similar methods to impose constraints (such as the relative
a=® % 1 < @ (51) degree or the number of integrators) are also mentioned in [9]
(2a)" and [12].
where

Let us assume that all the constraints imposedpoare

summarized in the matrix equation
a=la, - a]t @a=[a - @]’ (52)

and® is a(n+1) by (n+1) matrix whosg(n+1—i, n+1-) Cp=d (58)

element is the coefficient af in the polynomial(s — a)? (s + d th | ber of ints ds Wi btai
a)"~4. In addition, the matrix® is invertible if and only if and the total number of constraints¢sWe can now obtain

@+ 0 the parameter estimageby solving the following total least-

Recall from Section Il that the polynomid (w) is related squares problem:

to B(s) in exactly the same manner; hence, withand 3 min ||Al|% such thatRy, + A)p=0 and Cp=d.
defined similarly asy and @, respectively, we have
1 The solution to the above estimation problem is given in [3],
B=ax X . (53) oritcan also be reformulated as a restricted total least squares
(2a)" problem [18]. The key step in solving the above problem is
- to reformulate it as follows: Find the smalleatsuch that the
C. Computing the Coefficients and b; equation below is consistent.
At this stage, we assumed that we have the mabdx c —d1 T
computed according to (48) if filtering schemes such as ZOH, |:R22 LA 0 } [J =0 (59)

FOH, or the Tustin transform is used or, according to (43),
if the filter used is a mixed causal/anticausal one. Since we H

are only interested in computing the coefficieatsand b;, |t A — o, the matrix&, which is of dimension(2n + 2+ q) x

we shall fir§t perform a QR factorization on the matrix. (2n+2+1) (whereq > 1), is generically of ranK2n+2+1).
This operation also reduces the amount of data that we ha¥eprder to obtain a consistent solution to the above linear
to handle later. It is reasonable to assume that the madrix equation, H must be modified such that its rank becomes

has more rows than columns, and we have (2n + 2). For example, consider the simple case where 1
Ri1 Ris and d # 0; we have
M = Q 8 RO22 . (54) rank(H) — rank([C —d]) + rank(R22 + A) (60)

and therefore the original problem becomes one of finding the
A, which has the smallest Frobenius norm such that the rank
of (Ray + A) is (2n + 2). Let Udiagloy, -+, 02,42)V7T

be the SVD of Rs,; then, the requiredA is given by
—Udiag(O, -+ 0, 027,,+2)VT.

_ _ B Remark 5.1: Although the above algorithmic description
Ropp~0 where p= [a} (55)  assumes that discrete filters obtained from the same ap-
o ) proximation scheme are applied to botf) and y(¢), the
where the degree of approximation depends on the integratiflve algorithm can be modified such that filters from two
error introduced by the filter approximation scheme. Note thaferent approximation schemes are applied, respectively, to
the solution to the above problem is not unique as the Ieng;@) andy(t). This extra degree of freedom is useful in some
of the vectorp is unknown. The extra constraint required tQj;cumstances. For example, if it is known that the inp(f)
guarantee this uniqueness is obtained from the assumption {83{ piecewise constant signal over the sampling interval, then
a, is equal to 1. From the first row of (51), we arrive at theoH approximation should be used as the ®adhemes will

Here, the number of rows in the matri;» is the same as
the number of columns in eithé¥ or [W F] [see (24) and
(48)], whichever is appropriate. Furthermomg;, is square
matrix of dimension2(n + 2) and

following constraint on the parameter vectar try to smooth the signal out.
@7 0 p=1 (56) Remark 5.2:Since the Pail approximations of Laguerre
L Pix(nt) filters can be implemented as a tapped delay line alike structure
where @7 is the ith row of the matrix®. (see Section IV-B2), this means tige + 1) columns of U,

Note that (51) and (53) may be used to introduce furthéan be obtained fronin + 1) pth-order filters, where is the
constraints on the coefficients, and b,. For example, if it order of approximation. For &.-state, n;-input, n,-output
is known that the system is strictly proper, i.k,, = 0, and State space system, it tak@s, +n;)(n.. +n,) multiplications
b._1 equals to the constant, then we have the following to simulate one time step. Thus, the total number of operations

constraints: for all these filters per time step i + 1)(p + 1)2. On the
0 &7 other hand, as the higher order hold discrete approximations
{ Dx(n+1) L :|ﬁ = {0} (57) of continuous-time Laguerre filters do not take this special
O13¢(n41) o3 X structure, we need to use a first-order, a second-ordeand
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an (n + 1)th-order filters with(p + 1) inputs, wherep is the Let@ and 3 be the vectors as defined in Section V-B; then,
order of the hold circuit. The operation count for hold circuithe noise-free continuous-time signals satisfy the relation
is therefore(1 +p)(1 + 1)+ (24+p)2+ 1)+ +(n+1+

P)n+1+1) 2 (n?/3) + (p+ 1)(n2/2) and is likely to be s
more than that needed by Raéilters. W U Y]|B|=0 (65)
Remark 5.3:Due to the use of anticausal filtering, the a

above algorithm cannot be implemented on line. However,

since it can cope with both unknown initial and end conditionsiere, § contains all the coefficients that are due to unknown
it can be used in a quasi-on-line manner to cope with iaitial and end conditions, but they are not of interest to us.
large data set or to combine data obtained from differelit order to computér and 8, we need to modify the matrix
experiments. For example, assume that dat@), y(k)} for Zq by a matrix A, which depends on the covariance matrix

kE=1,---,2N is available, and we first divide it into two of £y such that the equation

batches with the first batch consists of data= 1, ---, NV 3

and the rest in the second one. From the first data batch, we . _

arrive at the intermediate resulirg]—a ~ 0 [cf. (55)] and note W Ua Za+A]|5| =0 (66)
that this relation is independent of the unknown initial and end a

it is a fresh set of data, and we obtain the intermediate res s a solution. We shall now state the theorem in this section.

conditions. We then process the second data batch as thotﬂ:
R[2221]_) ~ 0. Finally, 7 can be estimated by solving these two heorem 6.1:Given the QR factorization

sets of linear equations together wi [12] multiplied by a Ry Rip Ry
forgetting factor if needed. Note that there is a lower limit to - 77 = 0 Ry R

o W Uyq Z4)= 67
the number of data points in each data batch to be processed [ ¢ al=@x 0 0 Ry (67)
this way; it is bounded from below by the number of columns 0 0 0

in M, (43) or M, (48), whichever is appropriate. » o —
1 (43) 2 (48) pprop and under the condition that the matridésandl/; have full

rank, the limits
VI. OuTPUT CORRUPTED BY WHITE NOISE

1 _ _
. . . - li li — (R Ri28 + Riza) =0 68
In this section, we will show how to compute the coefficients ~ Tws0 N ,/N( né+ fiofi+ Rasa) (68)

of the differential equation (1) when the measured outgtit

is corrupted by discrete-time white noisét) of zero mean M Lim \/_ (R22f + Roa@) =0 (69)
and variance\?/T". In other words, the measured output is ] ] 1, )
given by lim - lim = Rz Resa =kA"a@ (70)

2(t) = y(t) + e(t) (61) hold, Whe.ren is given in Theorem 4.3. _

Proof: From (65) and Theorem 4.3, it can be shown that
wherey(t) is the noise-free output given by (1). Our parameter ) wT 3
estlmates will be anélyzed base_d on the concepisgmptotic lim lim — | U7 |[W Ty Zd B
consistency1]. Let § be an estimate of the true parameter T—0 N—oo —p .
vector p; then, 7 is said to be asymptotic consistent if Zy «
0 0
lim lim p=p (62) = hl_r)l 0 = 0 . (71)
T—0 N—oo =01 11w kN’

where N denotes the number of samples. After substituting the given QR factorization into the above

In the first step of our algorithm, we filtes(t) and z(¢) equation, the first block row gives
through some discrete approximations of Laguerre filters

Li(s). We shall, as before, assemble these filtered quantities hm lim RlTl(RnEJr R128 + Riz@) = 0. (72)

in a matrix 0 N=oo N
- Under the assumption th&Y has full rank, the matrix
=W Ug Z4] (63) .
Jom, i e 79

where W contains all the terms used for compensating the
effect of unknown initial and end conditions. The matéy is therefore nonsingular, and hence, we have (68).
contains the filtered measured output and can, in fact, beThe second block row of (71) gives

written as the sum of the filtered noise-free signal and 1 3 B

the filtered noiseFy, i.e., lim - lim N[RITQ(RHS + Ri2f3 + R13@)

Z VAT R, (Rysf3 + Roz@)] = 0. 74
Zy=Y4+Ey (64) + Ryp(Ro2f3 + Roza)] (74)
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error in parameter at

Sampling period

Fig. 3. Error in estimating parametes using different filter approximation schemes. Keys: solid lines for hold circuits (labeled as “H") and dashed lines
for Pace approximations (labeled as “P”); the number after the letter indicates the order of approximation.

By using the assumption thdf, is of full rank as well as  Similar to the algorithm for the noise-free case given in
(68), we arrive at (69). Section V-C, we can also impose linear constraints on the

Finally, we consider the third block row of (71), which is Parameters of the differential equation. This can be done
by first removing the noise ims3 by setting the smallest

lim  lim i[R1T2(R11§+ R12B + Ri3@) generalized singular value to zero, and then, the rest proceeds
T—0 N—oo IV i _ . ) as before.
+ Roy(R22f + Rostr) + RazRasa] = kA" Remark 6.1: Following Remark 3.1, the above parameter

(75 estimation algorithm can be appliedutatis mutandisn the
discrete-time case, when the measured output is corrupted by
We then obtain (70) as a consequence of (68) and (69). QEiscrete-time white noise.
This theorem suggests that we can solved@nd /3 in two
separate steps. For a sufficiently largeand a nonzerd’, Vil
(70) can be written as

. SIMULATION EXAMPLE

In this section, we present a simple simulation example
to illustrate the properties of our proposed algorithm. This
example is based on the following second-order continuous-
time system:

1
N
wherell is defined in (38). We have shown thHtbecomes

xI asT tends to zero, and our experience shows that this G(s) = s—1 (78)
is a good approximation i’ is small enough. However, we 5=

(s+1)*
found that better results are obtained if we complitéor .The bandwidth of this system is approximately 0.16 Hz, and

a nonze_roT, and we shall Sh_OW how this ca_n be done it is excited by a chirp signal that lasts for 200 s with starting
Appendix C. The above equation says thais given by the 54 eng frequencies at 0.02 and 0.14 Hz, respectively.

solution of a generalized eigenvalue problem. Alternatively, stydy 1—Noise-Free Cas&@he aim of this study is to
the problem can be solved by using generalized singular valgek at the effect of sampling interval on the accuracy of
decomposition [4], and this is given in Appendix D. Finallyparameter estimates. In this experiment, the time window for
we can solve for3 by using (69) as observation is fixed at 200 s; hence, the number of data points
available is inversely proportional to the sampling period.
Ry B+ Rzt = 0. (77) The discretization schemes used are first-, second-, and third-

RL Rsza ~ \Tla (76)
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Fig. 4. Average error on the estimates ©f over 50 simulations. The solid lines indicate the error in the noise-free case and they are, from top to
bottom Tustin, Pagel"second-order, Padthird-order, respectively. The other curves show the average error; keys: Tustin (dashedsePawd-order
(dotted). Pad third-order (dash-dot).

order hold circuits withm = p — 1 (see Appendix E for the VIIl. CONCLUSIONS
meaning ofm, p and how these HOH's are implemented) as |, this paper, we have proposed a parameter estimation
well as Paé approximations of orders 1 to 3. Fig. 3 shows thg.peme for the identification of continuous-time transfer func-

estimation error for the parameter, and the estimation errors ;o - <d on an “ARX-like” Laguerre model and discrete-time

fortre other coefficients ShOW&SIIT(]jIlal’ pat;ern.Notehthatth liﬁers that are obtained from applying higher order ®ad
s almost a one-to-one correspondence between how we roximation to continuous-time Laguerre functions. If the

parameter is estimated (Fig. 3) and how well a discretizati easured output is corrupted by white noise, the proposed

scheme wqus (Fig. 2); this means that é’eubprox]matlon scheme is shown to give an asymptotically consistent estimate.
generally gives a smaller estimation error than higher ord?he identification scheme based on Baabproximation is

hOId CII’CUI"[ of the same order. It can also be seen frof“ tr(‘: mpared with one that is based on higher order hold circuits,
figure that if the schemes based on first- and second-ordér Pad .. . . .

L . and it is found that the former algorithm gives more accurate
approximations are to give the same accuracy, then we needs

to sample 10 to 100 times faster in the former case parameter estimates. A comparison between the proposed

Studv 2—Noisy Caseln this experiment. the sam Ii‘n frE!_scheme and an indirect identification method based on noise-
Y y o P " ping frge data generated by a simulation model of an induction

quency is 1 Hz, and white measurement noise that corresponds ) .

to a signal-to-noise ratio of 36 dB is added to the outpur{'Otor ShOWS that the proposed scheme gives superior param-

Our identification algorithm based on Radpproximations eter estimates [7].

is used to estimate the parameters. Altogether, 50 different APPENDIX A

noise realizations are used, and the mean parameter estimates

are computed. In Fig. 4, we plot the mean of the error on ) i o

the parameters; against the number of samples used in 1he @im of this Appendix is to show how an unstable

identification. There are two sources of error: variance errBer can be transformed into a form that is suitable for

due to noise and integration error due to finite Samp"rrgalusallanticausal filtering. We will start with a particular state
interval, which is given by the error in noise-free caséPace equivalent of the unstable filter where thenatrix is

For the Tustin transform, the two sources of error are ofig real Schur form

similar order of magnitude. For both second- and third-order Al Ap
approximations, the variance error dominates for small sample A= [ 0 AQJ
sizes, and the error converges to the noise-free level as the

sample size grows. where the block4;; contains all the stable poles, whereas the

CAUSAL/ANTICAUSAL FILTERING

(79)



CHOU et al: CONTINUOUS-TIME IDENTIFICATION OF SISO SYSTEMS USING LAGUERRE FUNCTIONS 359

block A5, contains all the unstable poles. We can partition thiedependently. We begin by solving the first state transition
state vector and the other state-space matrices conformallyegsation withz§ = 0 andu(k) = 6(k — 5), and its solution is
A, as follows:

. {0, 6 fork <6 (95)
C C 2y = o
Try1| _ Ay A || T n By " (80) k (%) , fork>6.
xZil 0 AQQ xzc BQ
5 With the final conditionz% = #» (where ¥ > 5) and
e =[C1 (] L“c} + Duy. (81) w(k) = 6(k — 5), the second state transition equation gives
k
First, perform the substitutions; — z§, and zg° — z3 . . (5" ", for N>k>5
By expressingz;,,, zz2,, and y; as the subject of the v = A=k \N—4 | for It < 4 (96)
equations, in terms ofg, 2g¢, and u;, we arrive at the (3) ((3) = 3)’ ores =

following form after some algebraic manipulations: .
The output of the causal/anticausal system can now be com-

By = f:lllz,i + A}QZZC + Biug puted and is equal to
2l = AQQZZ(i + BQUkN (82) k6 Nkl
yx = Curzg + Cazf® + Duy (3) +(3) 0, fork>6
where w=1 (3" -4, for k=5 @7
i BB -3), fork<a
A =An (83)
Agp = A12A2_21 (84) By C(_)mparing this with the output of the origir_wal sys_tem_, it can
Ay = AT} (85) readily be seen that these two representations give identical
- 22 . output if the end conditiorn; is chosen to be3V—5. Let
Efl =Dy — ApAy; Bo (86) H(k) denote the discrete-time unit step; then, the output of
By = — A3} By (87) the causal/anticausal system may be written compactly as
Ci=C (88) k—6 6—k N—k
- . — kL T +1
Ch = Cr Az 89) v =(3) H(k=6)—(3)" "HO6-k)+(3) " n (98)
. .
D =D 04y, By, (90) This illustrates that if the initial condition is zero, the output

The set of equations given in (82) can now be used ssan be written as the sum of the response due to the input

. . . \ : with zero final condition and the response due zero input with
simulation. The procedure is to first solve feg® using the P P

Iy . an end condition. Furthermore, the response due to zero input
second state transition equation; the compufgdcan then be . L . o

PR . " .~ with an end condition is linear function of the end condition.
used to solve for;, using the first state transition equation.

Example 8.1:As an illustration, consider the following These facts are used in Section V-A to derive the system

state space system with both stable and unstable modes: identification algorithm.

_ |2 APPENDIX B
11 = + . 91
Tt [0 3}“ [Jw B PROOFS
yr =[1 1wx. (92) Proof of Theorem 4.2:From (26) and the fact that the
pth-order Pad approximation has error of ordéxp+1) [11],

Let us assume that the initial conditiep = 0, and the inputis |,o nave
6(k —5), whereé is the discrete-time impulse function. Then,

the system response is 1
’ P T log(1 4 z) = p,p(1 + z) + O(z® ). (99)
0, fork <6
Yk = (é)k—ﬁ L34 fork > 6. (93)  substitutingz = ¢*7 — 1 = sT + O((sT)?), we have
sTy _ 2p+1
The system transformation given above will lead us to the pp(e”) = s+ O(TT7). (100)

following causal/anticausal system: - ] )
By writing F(s) as a ratio of two polynomialép(s)/q(s)),

Zhy1 = %z,‘i + uyg, we have
ac 1 _ac 1
1= EZk — guk (94) . p(s)g CST q(s)p CST
T F(s) - Flpy(e™) = P = alple™) =gy
Yk = 25+ 321 3 Uk q(s)q(e’™)

Since 4,2 = 0, the two state transition equations are inBy substituting (100) in (101), we arrive at the result stated in
dependent of each other, and they may therefore be solvigteorem. AN
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Proof of Theorem 4.3:Let us define the transfer function  For the case where# j, let k = |i — j|, and we have

1 1 1
Hij(2) = TLIi—jl-I-l,d(z)Ll,d(;) (102) Hij(z) =Lk,d(Z)L1,d<;>
2 k—1
and let its two-sidedZ-transform or Laurent series expansion __~2T (z +1)*(ez — 1) (110)
[15] be given by (24 aT)? (z — )kt
Hij(z) =+ hi ji 22724 hi sz  + R jio For o # T'/2, the coefficienth; ;.o is given by
hi i1z4hi 02?4+, 103 H; (2 H;(z
+ ,J;l7+ 71727 + ( ) hi,j;O — res( 1(7)’ 0) +reS< 1(7)’ Oé) (111)
z <

It can be shown that th@g, j) element of the covariance matrix
II (38) is given by the constant term of the Laurent seri®®y using the expression aoff;;(z) given above, it can be
expansion, i.e.h; ;.o of H;;(z). Therefore, Theorem 4.3 canshown that

be restated as - _
reef Zu®) o) o _=2L 1 (112)
(104) # (

. Kk, ifi=j 2+ al)? okt
lim h; j.0 = o,
T—0 7 07 if 4 7&] re H“(Z) ) —2aT %
y ¢ = 75 1 o
where . takes a value that depends on the order of approx- ? (24 aT)?
imation. lim - dF (21D ez — 1)k
We will usep;_; andp,;_; to denote, respectively, the stable z—a kl dzk z
and unstable poles of the transfer functiffy;(z); then, the (113)
Laurent series expansion converges for all complaxithin —2T 1 aF a2 —1)
the annulusA = {z € C: max|p,, ;| < |z| < min |p,s |} = 2+ al? k o2 (114)
It can be shown, by using the expressions of the transfer
functions, that for anya7" > 0, the poles ofH;;(z) do not Sincea — 1 as? — 0, we have
lie on the unit circle. Therefore, the sdtis nonempty. The K B oo = 0O (115)
coefficientsh; ;;o can be computed from the integral Tp 90 T
1 Hi(2) Case 2—Second-Order Pad\pproximations: The discrete
hijio=— ¢ "L dy (105) ot : ; _
2 Js 205 J,  z approximation of the filten/2a/(s + a) using second-order

Pack approximation can be written as
where v is any contour within the annulud, and without

loss of generality, we shall chooseto be the unit circle. V2uT 2 +42+1 (116)
Let regf, z) denote the residue of the functiofi at the 3+ aTl (z—p1)(z — p2)

isolated singularityz; then, by the Cauchy’s residue theore

m .
- S Wherep; andp, are the roots of the equatiqla? + 3)22
the coefficienth; ;. is given by p1 andpz quatianT + 3)z" +

4aTz + (T — 3) = 0. It can be shown by using root locus
H;i(z H,:(» that for any positivel’, this equation always has two distinct
hi,j;O = res<ﬁ, 0) + Z res<ﬁ, ps,i> (106) yp d y
4 - 4
v one is always unstable. We shall assume here ghas the
where the second sum is over the different isolated stable potésble pole and thai, is the unstable pole. It can further be

of H;;(z). shown that
The proof will be divided into three parts according to the I _1 117
type of approximation scheme used. o= (117)
Case 1—Tustin TransformatioriVe first consider the situ- lim p, = — 1. (118)
ation wherei = j. We have =0
1 We first consider the case whete= j. We have
Hi2) = Lo a3 ) o 2aT
y iilZ) =
2T (z+1)2 107 (B+aT)(aT - 3)
T2+al)? z—a)(z+a) (107) y (22 + 42 + 1)? (119)
1 1\’
where is (2 — aT') /(2 +aT'). By computing the appropriate (z — p1)(z — p2) <Z - —> <Z - —>
. . b1 P2
residues, it can be shown that
. 9 108) Provided thatl” # 3/a so thatp; # 0, we have
1,40 =
T 2 T H;(~ H;i(z
ta hi izo :res<ﬁ, 0) + res<ﬁ, p1>
and therefore z z

Hii z 1
lim h7 0 = 1. (109) + res<ﬁv _> . (120)
T—0 e z D2

real roots, and one of them is always stable, whereas the other
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By evaluating these residues, it can be shown that APPENDIX D
" SOLVING FOR @
res< ”(z), 0) Recall from Section VI thatv is given by the solution of
o the equation
20T (121)
= 1
(3+al)(al - 3) v s R = N1l (130)
res, ——, p1 ) tresf ——, — . T
z z D2 Let L be a Cholesky factor ofl, i.e., Il = LL*. The above
-1 2(pipz —1)2 equation can be solved by using the generalized SVD [4] of
T AT =3 pilp—pa) (122)  the matrices(1/v/N)Rs; and LT as
. . - 1 _
Finally, by taking the limit \/—NRgg =VgAP! (131)
Lim hi 0 = 2. (123) LY =v,BpP™! (132)

such that bothVg and V;, are orthogonal matrices, ang
is invertible. BothA and B are diagonal matrices with non-
negative elements

The proof for the case wheie# j is similar to that of Case
1 and is omitted. See [2] for details.
Case 3—Third-Order PadApproximations:The proof for

this case is similar to those of the previous two cases and is A=diagay, -, 1) (133)
omitted. The details can be found in [2]. B =diagBy, -, fus1). (134)
APPENDIX C Furthermore, the generalized singular values are defined as
COMPUTING 1I p— (135)
We see in Appendix B that th@g, j) element ofll is given pi

by the constant term in the Laurent series expansion of tB§ substituting (131) and (132) into (130), we have
causal/anticausal transfer function

(AZ - N*BHrta=0. (136)
1
Hij(z) = Lli—j|+1,d(z)L1,d<;)~ (124)  This implies that an estimate fox is given by the smallest
generalized singular value, say;, then, an estimate of is

Let us assume thall;;(») has already been converted to théhen given by thejth column of P.
form given in (82); then, the required constant term is also

given by the unit impulse response #f;;(z) at timet = 0 APPENDIX E
subject to the initial COﬂditiOﬂZioo = 0 and end condition IMPLEMENTATION OF HIGHER ORDER HOLDS
2% = 0.

. . : . This section discusses how the HOH'’s used in the simula-

Using the state transition equation for the anticausal ste%te . . . ,
. o : Ion example in Section VIl are implemented. These HOH's
in (82), it is straightforward to show that o i

are specified by two parametegsand m, wherep is the

e 0, fork=0,1,-- order, andi» determines the part of the data that is used for

= {422k1327 fork=—1,-2,--- (125) interpolation. We assume the continuous-time filter is given in
state space form

By using this result and the state transition equation for the

causal state, we have (t) = Ax(t) + Bu(?) (137)
y(t) =Cz(t) + Du(t). (138)
75 =y Al A", (126) This gives the following discrete-time state equation
k=0
T
o\ L X _ AT (1. Ar ) _
(3 At s A§2> B aony k+11) = Ma(kD) + /0 AT Bu((k + )T — 1) dr.
k=0 (139)

The idea ofpth (wherep > 0) order hold is to approximate
The matrix P can be shown to satisfy the Sylvester equation((k + 1)T — 7) for = € [0, T'| by a pth-order polynomial

P — A;1PAy = Ajs. (128) w((k+1)T —7) =~ gk, 7)

. . o = go(k) + g1(F)7 + -+ + gp(R)7". (140)
Finally, the required answer is given by
The coefficientgy; (k) are determined from théy + 1) inputs

I;; = C1PBy + D. (129) u((k—m)T), ---, u((k—m+p)T), wherem is a prespecified
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integer in[0, p — 1]. Specifically,g;(k)’'s are determined by [21]
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, “System identification using Kautz modeldEEE Trans. Au-

i i iti tomat. Contr.,vol. 39, pp. 1276-1282, June 1994.
the mterp0|atlon conditions [22] P. C. Young, “Parameter estimation for continuous-time models—A
u((k _ 7’)T) _ g(k (7’ + 1)T) for r=m, -, m—p survey,” Automatica,vol. 17, no. 1, pp. 23-39, 1981.
? ? ? ?
(141)
and they have to be solved for eakhBy replacingu((k + Chun Tung Chou was born in Hong Kong in 1967.

1)T — 7) by its approximation, (139) can be written as

2((k4+1)T) = AT (KT) + gi(k) /T At dr B,
0

Let A(z) = jOT A7 7t dr; these matrices can be computed b
using the recursion

(1]

(2]

(3]

(4]
(3]
(6]
(7]

(8]

(9]

[20]

(11]

[12]
(23]

[14]
[15]
[16]
[17]

(18]

[19]

[20]
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from University of Cambridge, Cambridge, U.K.,
in 1994.

He is currently a Post-Doctoral Research Fellow
with the Department of Electrical Engineering, Delft
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His current research interests are system identifica-
tion of linear and nonlinear systems.

p

1=0
(142)

A(0) =A™ - 1) (143)
AG+1) = A 1ATTH — (14 1) A®%))
fori=0,1, - (144) Michel Verhaegenwas born in Belgium on Septem-

ber 2, 1959. He received the Bachelor's degree in
engineering/aeronautics from the Delft University of
Technology, Delft, The Netherlands, in August 1982
and the Doctoral degree in applied sciences from
the Catholic University Leuven, Leuven, Belgium,
in November 1985. During his graduate study, he
held an IWONL Research Assistantship in the De-
partment of Electrical Engineering.
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