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Abstract
In clinical brain SPECT, correction for photon attenuation in the patient is essential to obtain images
which provide quantitative information on the regional activity concentration per unit volume
(kBq. -ml 1). This correction generally requires an attenuationmap (mmap) denoting the attenuation
coefficient at each voxel which is often derived from aCTorMRI scan.However, such an additional
scan is not always available and themethodmay suffer from registration errors. Therefore, we propose
a SPECT-only-based strategy for mmap estimation that we apply to a stationarymulti-pinhole clinical
SPECT system (G-SPECT-I) for 99mTc-HMPAObrain perfusion imaging. Themethod is based on the
use of a convolutional neural network (CNN) andwas validatedwithMonte Carlo simulated scans.
Data acquired in listmodewas used to employ the energy information of both primary and scattered
photons to obtain information about the tissue attenuation asmuch as possible.Multiple SPECT
reconstructions were performed fromdifferent energy windows over a large energy range. Locally
extracted 4D SPECTpatches (three spatial plus one energy dimension)were used as input for the
CNNwhichwas trained to predict the attenuation coefficient of the corresponding central voxel of the
patch. Results show that AttenuationCorrection using theGroundTruth mmaps (GT-AC) or using
theCNNestimated mmaps (CNN-AC) achieve comparable accuracy. This was confirmed by a visual
assessment as well as a quantitative comparison; themean deviation from theGT-ACwhen using the
CNN-AC iswithin 1.8% for the standardized uptake values in all brain regions. Therefore, our results
indicate that aCNN-basedmethod can be an automatic and accurate tool for SPECT attenuation
correction that is independent of attenuation data fromother imagingmodalities or human
interpretations about head contours.

1. Introduction

In SPECT, attenuation of photons in tissue hampers quantitative analysis of regional tracer uptake andmay lead
to image artefacts. Attenuation correction (AC) is thus required to improve the diagnostic value and quantitative
accuracy of reconstructed images. Besides, quantitative SPECT (i.e. SPECT that provides a precise estimate of
the activity level in kBq. -ml 1) is also important for dosimetry planning (Bailey andWillowson 2013).

Correction for photon attenuation is commonly based on a 3Dmap (attenuationmap or mmap) that
quantifies the amount of attenuation in each voxel within the patient at the given photon energy. Today, these m
maps are often derived from an additional CT orMRI scan.However, such an additional scanmay not be
available, can add radiation dose in case of CT, and is prone to registration errors (King et al 2004, Goetze et al
2007, Berker and Li 2016). Besides the use of additional CT orMRI scans, simplemethods based solely on
emission data that delineate the object contour and assume a uniform attenuationwithin the contour are used.
Currently,manual placement of an ellipse approximating the head contour is still themost widely implemented
approach for brain studies with commercial SPECT systems (Zaidi andHasegawa 2003). Such amethod
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however can be highly subjective and suffer from limited accuracy due to the operator dependency, coarse
approximation of the skull contour and lack of internal head anatomy.

In clinical SPECT, photon-interactions in biological tissues are dominated byCompton scatter while
photoelectric absorption is almost negligible. For example, for photons at 140 keV traveling through brain, only
1% (a linear coefficient of 0.0015/cm) of the total attenuation (0.1461/cm) is due to photoelectric effects.
Therefore, onemight expect that the detected scattered photons contain essential information about attenuation
maps. Conventionally, the use of SPECT images reconstructed from scattered photons or projections in scatter
windows for mmap generation has been investigated in the 90s for brain (Macey et al 1988) and body (cardiac
and liver) SPECT (Macey et al 1988,Wallis et al 1995, Pan et al 1996, Younes et al 1998), yet inmost cases solely a
contourwas estimated from a single scatter windowwhile a uniform attenuation coefficient was assigned to the
volumewithin the contour. This approach is seldom applied clinically, possibly due to the increased complexity
in light of the limited improvement of accuracy compared to the ellipsemethod.With the advance of SPECT
instruments, listmode acquisition—inwhich case the estimated interaction position aswell as the energy are
recorded simultaneously for every detected event—is gaining popularity. In thework of Jha et al (2013), the
authors studied the information content in SPECT listmode data and proposed aMLEMapproach using
scattered photons from the observed listmode data to jointly reconstruct the attenuation and activitymap. This,
however, remains a theoretical study due to the complexity of the approach. Similarly, jointly reconstructing the
attenuation and activitymap using both the photopeak and scattered projectionswas also proposed in a newly
publishedwork for PET scanswithout time offlight information (Brusaferri et al 2020).

Recently, deep learningwith convolutional neural networks (CNNs) has beenwidely investigated inmedical
image restoration and analysis, e.g. for tissue segmentation, image de-noising, and image transformation (e.g.
MRI toCT) (Beekman 1993, Gong et al 2018, Leynes et al 2018,Mok et al 2018,Wang et al 2019, Shi et al 2020,
Shiri et al 2020). These networks can capture relevant information inherent in data and establish highly
nonlinearmapping from input to output. This enables the extraction of energy-spatial information from the
scatter- and primary-window reconstructed SPECT images for mmap estimation. Successful implementations
of this deep learning based strategy have been demonstrated in Shi et al (2020) for 99mTc-tetrofosmin SPECT
scans, and in Liu et al (2018a), Reimold et al (2019) for 18F-FDGbrain PET scans. Specifically in Shi et al (2020),
the authors performed image reconstructions from two energy windows (primary and one scatter window) of
99mTc-tetrofosminmyocardial SPECT; a generative adversarial networkwas used to transform 4DSPECT image
patches (3D SPECTover two energywindows) to 3D attenuationmap patches. Results were validated on clinical
myocardial scans acquired fromaGEdual-head parallel-hole SPECT/CT850 system.

The aimof the present work is to develop and validate a CNNapproach for estimating mmaps of
99mTc-HMPAObrain perfusion scanningwith a full ring stationary SPECT system (G-SPECT-I, (Beekman et al
2015)). The full emission data including both primary and scattered photons over a broad energy rangewas
utilized viamultiple image reconstructions at different energywindows. A patch-basedCNNapproachwas
implemented in the present work. Such an approach is often applied inmedical image restoration and analysis
(Beekman 1993, Guo et al 2018, Leynes et al 2018, Liu et al 2018b)due to the reduced number of parameters and
increased amount of training data that is required compared to the full-image to full-image approaches e.g.
U-Net (Ronneberger et al 2015). In the present study, a large number of 4D (i.e. XYZEdimensions) SPECT
patches (sub-volumes of 21×21×21 voxels× 5 energies)were used as input for theCNN to estimate the
attenuation coefficient of the corresponding central voxel of the patch.Our proposedmethodwas tested on
Monte Carlo (MC) simulated 99mTc-HMPAOSPECT scans based on theG-SPECT-I geometry.

2.Methods

2.1. G-SPECT-I system
TheG-SPECT-I is amulti-pinhole systemwith stationary detectors that demonstrates excellent resolution down
to 2.5mm (resolved rod size forDerenzo hot rod phantom) and a central sensitivity of 415 cps/MBqwhen using
a dedicated brain collimatorwith 3mmÆ pinholes (Beekman et al 2015). This system (see figure 1) consists of
nine large-areaNaI detectors, an interchangeable collimator and a precisely controlled xyz-stage used for bed
translation. The collimator assumed in this paper was developed for high sensitivity brain and pediatric imaging
and has a total of 54 pinholes with a pinhole diameter of 4.5mm.TheG-SPECT-I has a focused geometry design,
similar to that of its preclinical predecessors, i.e. various versions ofU-SPECT/CTandVECTor/CT scanners
that are now in use bymany labsworldwide (Beekman et al 2005, van derHave et al 2009, Goorden et al 2013,
Ivashchenko et al 2014). Such focused geometries entail that all pinholes simultaneously ‘view’ a central volume
inwhich a very high sensitivity and complete data (without bedmovement) is obtained. This central volume is
termed the complete data volume (CDV). This CDVhas a transaxial diameter and axial length of 100mmand
60mmrespectively (seefigure 1). For a scan of an object larger than theCDV, the bed is translated to extend the
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volume inwhich sufficient sampling is obtained for optimal image reconstruction. In the present paper, for a
whole brain perfusion scan, 18 bed translations with overlapping CDVs are used for sufficient sampling of the
entire scan volume based onfindings in (Chen et al 2020). All pinhole projections from all bed positions together
are used simultaneously for image reconstruction using the so called scanning focusmethod (Vastenhouw and
Beekman 2007). Other details concerningG-SPECT-I are described inChen et al (2018).

2.2. SPECTdata simulations
TheCNNestimation of the mmaps is based entirely onMC simulated SPECT list-mode data for theG-SPECT-I
geometry using head phantoms. As the presence of noise in theMC simulated realistic brain imagesmay hamper
visualization of AC effects when evaluating the mmaps, we additionally performed a voxelized ray tracing (VRT)
simulation (Goorden et al 2016,Wang et al 2017) to generate noise-free images, such that the accuracy of AC and
thus the quality of the mmaps could be studied on noisy as well as on noiseless images. These simulations are
described in detail below (see alsofigure 2).

2.2.1. Digital phantoms for simulation
The publicly available Brainweb databasewith digital phantoms generated based on normal subjects (Aubert-
Broche et al 2006)were used to simulate 99mTc-HMPAObrain perfusion scans. This type of scanwas chosen
given thewide application of perfusion SPECT in the diagnosis of cerebrovascular (e.g. stroke), neurological
(e.g. epilepsy) and psychiatric disorders (e.g. post-traumatic stress disorder) (Catafau 2001, Juni et al 2009,
Amen 2015). A total of six phantoms (thefirst six phantomswhen ordered by subject number)were used in this
work, withfive used for training and one for testing in a leave-one-out cross validationmanner.

For each phantom, the activitymapwas generated by assigning tracer concentrations to greymatter, white
matter and background regions (e.g. skin, skeletalmuscle)with amean ratio of 80:20:5 (Glick and Soares 1997,
Stodilka et al 2000, Pato et al 2015) tomimic a realistic blood flow. This ratiowas introducedwith a random
variation (normally distributed)with a standard deviation of 10% for each number tomake the activity
distribution variable among phantoms. Besides, a total activity of 50MBq in averagewas set in the head
(resembling an injected dose of 25mCi as in (Laere et al 2000,Nobili et al 2002, Bowen et al 2011)). This number
was inducedwith a standard deviation of 10% (normally distributed) for each phantom. Simulations assumed a
scan time of 30 min.

The attenuationmapwas obtained by segmenting the phantom into different regions. ForMC simulations,
themapswith each region assignedwith amaterial (e.g. water)were used (seefigure 2(a)), while for VRT
simulations, themapswith each region assignedwith an attenuation coefficient were used (subject to the
different requirements of both simulators). A total of eight different regionswere segmented, i.e. skull, skin,
blood,muscle, brain, water, fat and air, with a corresponding coefficient of 0.248, 0.155, 0.149, 0.147, 0.146,

Figure 1. Illustration of theG-SPECT-I scanner. TheG-SPECT-I systemhas three optical cameras and a user interface for volume of
interest (VOI) selection. Based on the selected VOI,G-SPECT-I software automatically adjusts parameters for optimal imaging of the
VOI. TheCDV is the volume ‘seen’ by all pinholes; it has a transaxial diameterRc of 100mmand an axial length Lc of 60mm.
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0.142, 0.128 and 0 cm−1 respectively. These values were calculated based on the chemical component of each
tissue and themass attenuation coefficient given inNIST (National Institute of Standards&Technology) for
photons at 140 keV. Themapwith given attenuation coefficient is also the ground truth (GT) mmap thatwas
used in the cross-validation step for training and for evaluation of the network predicted mmaps. All phantoms
for simulationswere down-sampledwith trilinear interpolation to have a voxel size of 1×1×1mm3 from its
original voxel size of 0.5×0.5×0.5mm3.

2.2.2. NoisyMC simulations
The software used forMC simulationswas theGeant4 Application for Tomographic Emission (GATE) (Jan et al
2004), withGeant4 v10 andGATE v8.0 installed on aCentOS 6.6 cluster. The long scanning time (30 min)
simulationwas divided intomultiple simulations with shorter time intervals (randomly seeded) that were
executed in parallel on a computer cluster.

The system geometry inGATEwas designed to closely represent the actual G-SPECT-I design, namely, the
computer-aided design (CAD)drawing of theG-SPECT-I collimatorwas put intoGATE. Additionally, nine
NaI-scintillators were created natively by defining a 497×410×9.5mm3 box and replicating it with a ring
repeater with a collimator center to detector distance of 757mm (same as in theG-SPECT-I prototype). The full
emission spectrumof 99mTcwas used in the simulations. Physics processesmodelledwere photoelectric effect,
Compton andRayleigh scattering for gammaphotons; bremsstrahlung andmultiple scattering for electrons.
Within the scintillators, the interaction time, total deposited energy, and energy-weighted average interaction
location for each gammaphotonwere recorded. The uncertainty of the scintillation process and light collection
is not fullymodelled in theMC simulations, but rather accounted for by taking random samples from aGaussian
distribution in both the spatial and energy domain for each photon recorded on the detector. This is to accelerate
the simulation process. The full width at halfmax (FWHM) of theGaussians were set according tofindings in
(Nguyen et al 2019): for photons at 140 keV, the respective spatial and energy blurringwere 3.5mmand 10%
FWHM (based onmeasurements of detectors at our institute); for photons at other energies these two values
were calculated based onmodels from literature (Nguyen et al 2019).

Background counts due to cosmic radiationwere emulated tomake the simulationmore realistic. This was
done by acquiring a long void scan (10 h scanwithout radioactivity)with theG-SPECT-I prototype, followed by
count scaling (by dividing the count numbers by 360 to emulate a 100 s scan at one bed position) and Poisson
statistics generation. This process was performed for all 18 bed positions to emulate a total acquisition time of
30 min. Finally, the background counts at each bed positionwere added to the corresponding projections
obtainedwith theMC simulation.

Figure 2. Illustration of SPECTdata simulation. (a)MCsimulations of the head phantoms; for each phantom, an activity and
attenuationmapwere generated andwere used forMC simulation. Background counts due to cosmic radiationwere added to theMC
simulated projection data. Five SPECT reconstructions were performed fromdifferent energy windows. (b)VRT simulations to
generate noise-free images onwhich the effects of attenuation correctionwith different mmapswere studied. In the figure, ‘bkg’
stands for background, ‘WM’ is the whitematter and ‘GM’ is the greymatter.
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2.2.3. Noise-free VRT simulations
TheVRT simulator takes the system geometry (i.e. the precise pinhole and detector positions and detector
orientations) as input andmodels the collimator and detector crystal penetration but ignores scattering
(Goorden et al 2016,Wang et al 2017). For these noise-free VRT scan simulations, the same scanner geometry
and the same acquisition parameters (e.g. the same 18 bed positions) as in theMC simulationwere assumed.
Cosmic radiation counts were not added in theVRT simulations. Effects of patient attenuationwere included in
theVRT simulated projection data.

2.3. Image reconstruction
For theMC simulated projection data, five SPECT reconstructions were performed (see figure 2(a)); one
used the photons detected in the photopeak window combinedwith a triple energy window (TEW) scatter
correction (28 keVwidth centered at 140 keV for the photopeakwindow and 5.6 keVwidth at each side for
scatter correction) and four additional reconstructions were done fromdifferent scatter windows (28 keV
width centered at 120, 100, 80 and 60 keV respectively). For the VRT simulated projection data, only primary
photons were simulated and could thus be reconstructed, resulting in noise- and scatter-free SPECT scans
(see figure 2(b)).

All image reconstructions were performed on a 1.5mmgrid, larger than the voxel size of the digital
phantoms, tomimic a continuous activity distribution reconstructed on a discrete grid. The systemmatrix for
reconstructionwas calculated using theVRT simulator for photons at 140 keV and excludes effects of object
scatter. This systemmatrix was used in image reconstruction for all energywindows. No attenuation correction
was performed during reconstruction. Similarity regulatedOSEM (Vaissier et al 2016)with 8 subsets and 10
iterationswas implemented for image reconstruction.

2.4. Attenuationmap (mmap) estimation
2.4.1. SPECT image preprocessing
Before being used as input to theCNN to estimate mmaps, the reconstructedMC simulated SPECT images were
preprocessed (see alsofigure 3). Firstly, the reconstructed noisyMC simulated SPECT images (from all energy
windows)weremasked to remove artefacts outside the head (figure 3(a)). Themask usedwas a cylinder with a
relatively large diameter of 240mm to safely preserve the brain/head structures. Secondly, intensity
normalizationwas performed to compensate for variance of reconstructed image intensity among phantoms
(figure 3(a)). Here for each phantom, themaximum intensity from the photopeak reconstructed imagewas
firstly calculated. To reduce the effects of noise and/or any strong edge artefacts (whichmight appear at the
edge slices of the reconstructed volume), thismaximumvaluewas obtained from slightly filtered SPECT
scans (with a 6mmFWHMGaussian) and from the central 36-mm-thick slices of the reconstructed volume
(the reconstructable length evenwith one bed position in the axial direction ofG-SPECT-I, see figure 1).
Subsequently, allfive reconstructions fromdifferent energy windowswere normalized by division by this
maximumvalue such that the images fromdifferent phantoms that are used as input toCNNhave a similar
dynamic range.

TheMCSPECT images were interpolated (tri-linearly) to a voxel size of 3×3×3mm3 froman original
voxel size of 1.5×1.5×1.5mm3 before being fed into the neural network. This is to speed up the training
process with a relatively larger image voxel size.

2.4.2. CNN regression
The neural network takes 4D (XYZ and energy) patches centered at each voxel as input andwas trained to predict
the attenuation coefficient of the corresponding central voxel in object space (figure 3(b)). The patch size used
was 21×21×21 voxels× 5 energies. The voxel size of the patch images is 3×3×3mm3.Weused a typical
CNNarchitecture that consists ofmultiple stages of convolution, batch normalization, ReLU activation andmax
pooling, followed by a fully connected layer with a sigmoid for voxel regression (see figure 3(b)). The network
that takes in totalfive energy windows as input is termedCNN5E. In addition, we included two networks using
less energy windows to investigate the effect of energy range of scattered photons on mmap estimation. These
two networks are termedCNN3E andCNN1E respectively, with three energy windows (one photopeakwindow
and the two high-energy scatter windows, seefigure 2(a)) and only the photopeakwindow involved respectively.
Convolutionwas performedwith a kernel size of 3×3×3. The number of the filters is 32, 64, 128, 256 and 512
as indicated in thefigure. Poolingwas donewith a grid of 2×2×2.

Leave-one-out cross validationwas performed usingfive phantoms in training and one for testing (see
figure 3(c)). Each networkwas trainedwith a balanced set containing 5k samples (4Dpatches) randomly selected
from each of the threemain tissue classes (0�μ<0.07/cm for air voxels, 0.07�μ<0.20/cm forwater-like
voxels and 0.20�μ<0.25/cm for bone voxels; thus 15k samples in total).Meanwhile, for each epoch during
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training, a new selection of 15k samples wasmade in order to feed the networkwith asmany samples as possible,
similar as inMoeskops et al (2016). The network used in this studywas trained tominimize themean square
error between the predicted attenuation coefficient m and theGT mmap (see description in section 2.2.1 for
definition).

The proposed networkwas implemented using TensorFlow. TheAdamoptimizer (Kingma and
Jimmy 2014)with default settings (learning rate=0.001, b1=0.9, b2=0.999)was used to train the network.
Amini-batch of 15 4Dpatcheswas used.No validation set was used to determine the optimal epoch due to the
limited number of phantoms in this study. Themodel was trained for 200 epochs for convergence.

2.5. Attenuation correctionwith estimatedmaps
As the aim is to use the mmaps to realize quantitative SPECT, attenuation correctionwas implemented using the
estimatedmaps. Correctionwas done using an adapted first-order Chang’smethod (Chang 1978). In Chang’s
methodwith traditional parallel-hole collimation, the transmission along every projection line from a given
voxel is calculated, and the transmission fraction (TF ) for that voxel is defined as the average transmission value
among all projection lines (equation (1)).

Figure 3. Illustration of attenuationmap estimation. (a) SPECT image preprocessing; (b) architecture of theCNN; n is the number of
energy windows. Three networkswere tested. The network that takesfive, three or one energywindow as input is termedCNN5E,
CNN3E andCNN1E respectively. ‘Conv’ and ‘BN’ are short for convolution and batch normalization respectively. The number of the
filters is 32, 64, 128, 256 and 512 as shown in thefigure. (c) Leave-one-out cross validationwith six phantoms; for testing on each
phantom, the otherfive phantoms are used for training.
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Due to the (multi-pinholemulti-bed-position) characteristic of G-SPECT-I, for a given voxel at a given bed
position, only photons that travel toward some distinct directions will be captured by one of the pinholes (see
figure 4). Thus, herewe implemented an adaptedmulti-pinhole Chang’smethod. This was done by first
checking—at every bed position—if a voxel is seen by a pinhole. If yes, the transmission along this projection
line (from that voxel center to the pinhole center) is counted, andweighted by the pinhole’s sensitivity for that
voxel (see equations (2)–(4)). The parameters used in the adaptedmulti-pinhole Chang’smethod
(equations (2)–(4)) are summarized in table 1.
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2.6. Evaluation
2.6.1. Visual inspection
The network estimated mmapswere compared to theGT mmaps. Besides, attenuation corrected SPECT images
using the three CNNestimated mmaps (CNN5E-AC, CNN3E-AC andCNN1E-AC)were compared to the
ground-truth-AC (GT-AC) images which use theGT mmaps for correction.

2.6.2. Quantitative analysis

2.6.2.1. Standard uptake value (SUV)
As often used in absolute quantification for PET and SPECT, the standardized uptake values SUVswere
calculated in a number of regions of interest (ROIs). The SUV (in units of g ml−1) is themean concentration in a
region CROI (Bqml−1)normalized by the injected dose per patient weight (Bq g−1), as shown in equation (5). In
this work a clinically injected dose of 25mCi and a bodyweight of 70 kgwere assumed for brain perfusion scans
for all phantoms. To define the ROIs, a template phantombased on the ‘Colin 27Average Brain’ (Collins et al
1998)provided by the Brainweb databasewas registered to subject phantoms. ROIswere generated bywarping

Figure 4. Illustration of the adaptedfirst-order Chang’smethod used in this study.WithG-SPECT-I, for a given voxel at a given bed
position, only photons that travel toward some distinct directionswill be captured by one of the pinholes, as shown in thefigure.
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the automated anatomical labeling (AAL v3) template (Tzourio-Mazoyer et al 2002) to subject space using the
same transformation. A total of 166 regionswere defined in the AAL template. These localized regions have a size
in the 0.07–41.15ml rangewith amedian value of 3.75ml (mean of 6.40ml) respectively (across all phantoms).

The capability to achieve quantitative SPECTwas assessed by comparing the SUVs calculated from the
attenuation corrected SPECT images to those of the digital phantom image. This direct comparison of the SUVs
was performed in eight big structures as inGong et al (2018), Yang et al (2019), including four big lobes
(temporal, occipital, parietal and frontal lobe), three subcortical structures (thalamus, putamen and caudate
nucleus) and the cerebellum.Here in ourwork these eight structures were further separated into 16ROIs by
hemispheres (e.g. thalamus in the left hemisphere and in the right).

( ) ( )
/

=-SUV
C

Dose Weight
g ml . 5ROI1

2.6.2.2. Difference fromGT-AC
Differences in units of SUV (DIFF)when using theCNNestimated mmaps for attenuation correction
compared to that of theGT mmapswere evaluated (see equation (6)). The distribution of the differences were
presented in Bland–Altman plots as in Yang et al (2019). Differences (in percentage) from theGT-AC images,
which is termed deviations (DEV ) here, were calculated as in equation (7). Statistical significance of the
deviationswas assessed using paired t tests (p<0.05 is considered as statistically significant) as in Liu et al
(2018a), Yang et al (2019)

( ) ( )= - -DIFF SUV SUVSUV 6GT AC

( ) ( )=
-

´-

-
DEV

SUV SUV

SUV
% 100%. 7SUV

GT AC

GT AC

For all SPECT images shown in this paper, a 3DGaussian post filter with 6mmFWHMwas applied. For
quantitative analysis,measurements were performed on the unfiltered SPECT images to avoid any bias from
filtering.

3. Results

3.1. Visual inspection
Figure 5 shows a comparison of theCNNestimated and theGT mmaps. Five slices obtained fromone of the
phantoms (indicated by the solid black lines) are displayed. A full comparison of results for all six phantoms is
included in the appendix (figure A1). Figure 5 shows that compared to theGT, mmaps can bewell estimated
withCNN5E andCNN3E inwhich cases scatter windows (besides the photopeakwindow)were involved as
input to theCNN; in these cases, the shape and size of the heads arewell retrieved. The improvement by
including two additional low-energy scatter windows fromCNN3E toCNN5E is small.

Table 1.Parameters used in the adaptedmulti-pinhole Chang’s
method.

Symbol Description

N Number of bed positions in data acquisition

P Number of pinholes ‘seeing’ the voxel

Sn p, Sensitivity of the given voxel corresponding to pinhole p

at bed position n (Paix 1967)
m Attenuation coefficient along the line Ln p, from voxel to

pinhole p center at bed position n

rn p, Voxel-to-pinhole distance, given pinhole p and bed

position n

qn p, Angle between the line of voxel to pinhole center and the

line of collimator center to pinhole center, given pin-

hole p and bed position n (see figure 4)
de Equivalent pinhole diameter

d Actual pinhole diameter (4.5mmhere)
m0 Attenuation coefficient (24.3 cm−1,measured experi-

mentally) for pinholesmade of hard lead (antimonial

lead, containing amixture of Pb and Sn)
a Pinhole opening angle (27° here)
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CNN1Ehas inferior performance compared toCNN5E andCNN3E; the head size can be inaccurately
predictedwithCNN1E as in the example shown infigure 5where the predicted mmaps appear incorrectly large.
Besides, an insufficient estimation of the air and bone structures was observed for CNN1E as demonstrated in
figure A1 (phantomnumber 5). Thismight be due to the fact that input toCNN1E includes only the photopeak
windowwhich represents solely the activity distribution. Information to correctly determine the air and bone
voxels where there is barely any tracer accumulation is thus insufficient.

Figure 6 shows a comparison of the SPECT images as well as the image profiles when using theGTorCNN m
maps for attenuation correction. SPECT images presented in thisfigure are the noiseless scans fromVRT
simulations to better visualize the effects of attenuation correction. Results of corrections performed on the
realisticMC simulated scans are included in the appendix (figure A3). Figure 6 shows that the image and image
profile differences from the ground-truth-AC are small for CNN5E-AC andCNN3E-AC images, while CNN1E-
AC images deviatemore from the ground-truth-AC.

3.2.Quantitative analysis
3.2.1. SUV
The absolute quantification results when using the ground-truth-AC andCNN-AC are shown infigure 7. The
SUVs in the 16merged ROIs (8 structures×2 hemispheres) are plotted. Figure 7 shows that attenuation
correction is essential to achieve accurate quantification; without correction, an underestimation of about 70%
for the SUVs is observed. Compared to the digital phantom, the ground-truth-AC, CNN5E-AC andCNN3E-AC
images suffer from slight underestimation of the SUVs, which could be due to the partial volume effects given
thefinite system resolution (~3.5mm) or the imperfect attenuation correctionmethod.

3.2.2. Difference fromGT-AC
In the Bland–Altman plot (figure 8), the distribution of the SUVdifferences is assessed. Figure 8(a) plots the
distribution formeasurements taken from themerged 16×6 regionswhile those from the localized 166×6
regions over the entire brain are given infigure 8(b). Infigure 8, differences from the ground-truth-AC are small
(close to the zero line) for both theCNN5E-AC andCNN3E-AC. Among these twomethods, CNN3E-AC shows
a slightlymore diverging distribution and thus a larger difference. A deviation from the ground-truth-ACof

Figure 5.Comparison of the ground truth andCNNestimated mmaps. Five slices (equally distributedwith 25.5mm separation)
obtained fromone of the phantoms are displayed. Locations of the are indicated by the solid lines. The predicted mmaps of CNN1E
appear incorrectly large.
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10% is highlighted by the semi-transparent grey region. ForCNN5E-AC, allmeasurements are within 10%
deviation across all regions.

Themean value of the deviations formeasurements among all ROIs is summarized in table 2 for different
CNN-ACmethods. For CNN5E-AC andCNN3E-AC, themean deviations across 16×6 regions arewithin
1.60% and are statistically insignificant (p>0.05), while for assessments across 166×6 localized regions, the
mean deviations are within 1.82% (p<0.05).

3.3. Counts from each energywindow
Table 3 provides the number of counts detected in each energy window. An example of the energy spectrum
fromone phantom is shown infigure 2(a). Table 3 shows that (i) the detected counts from tracer emission
decreases for energywindows going fromE1 to E5, and (ii) contribution of cosmic radiation to the total increases
(from5% to 15%) for energy window going fromE1 to E5.

Figure 6.Comparison of the attenuation corrected SPECT images using different mmaps. (a)Attenuation corrected SPECT images;
image profiles through each slice are included and shown in panel (b). These profiles are taken from a linewith awidth and thickness
of 4.5mm.A zoomed viewof some parts of the profiles are displayed in panel (c).
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4.Discussion

The current work shows the feasibility of estimating attenuationmaps by using SPECTdata only without
additional (radiation) scans or the need to draw head contours. This could facilitate SPECT imagingwith

Figure 7.Comparison of the SUV values when using various ACmethods in 16 regions (8 structures×2 hemispheres). Themean
and standard deviation from all 6 phantoms are displayed for each region.

Figure 8.Bland–Altman plotswhen using different CNN-ACmethods.Measurements taken from themerged 16×6 regions are
plotted in (a)while those from the localized 166×6 regions are given in (b).
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minimal ionizing radiation or user interactions, enabling quantitative brain perfusion SPECT to be independent
fromdata fromother scanners, thereby avoiding registration issues betweenmodalities as well.

Figures 5–7 andA1 show that despite of the inadequate mmap estimation of CNN1E, a reasonable
quantification accuracy could still be obtainedwith thismethod. Thismight explain the broad use of an
ellipsoidal region for attenuation correction in clinical routine given its benefit of simplicity and decent
effectiveness (i.e. the improved accuracy compared to that of not performing a correction at all).While various
contour-basedmethods have been proposed to attain a uniform mmap, devising one here that is suitable for our
work is beyond the scope of this paper. Alternatively, a ground-truth-uniform (GT-uniform) mmap, which can
be regarded as the best achievable mmapusing the contour-basedmethod, was generated by replacing all tissues
in theGT mmapwith the attenuation coefficient of brain tissue (m=0.146/cm). This part of the results is
included in the appendix (figure A2 and table A1). GT-uniform-AC suffers fromunderestimation of the SUVs
compared to theGT-AC since all bone voxels are replaced by brain. The Bland–Altman plot of GT-uniform-AC
shows amore diverging distribution of the SUVdifferences compared to those of theCNN5E-AC andCNN3E-
AC. Themean deviation fromGT-AC iswithin 3.78%,which is also larger thanCNN5E-AC (1.63%) and
CNN3E-AC (1.82%). Note that theGT-uniform mmap is the ideal mmapone could get using the contour-
basedmethod. In reality, obtaining such a contour generally requires image processing steps, which involve a set
of parameters (e.g. smoothing and threshold) that are sensitive to tracer distribution and noise in image.On the
other hand, with the proposedCNNmethod, an optimalmappingwith a large number of parameters is
generated automatically. Here our results show that, even though the tracer distribution and the amount of
activity were variable for each phantom,CNNcould still accurately estimate the attenuationmapwhen trained
on a small set with five phantoms.

Three neural networks (CNN5E, CNN3E andCNN1E)were tested in this work, where we found that
compared to the use of only the photopeakwindow (CNN1E), the involvement of scatter windows as done in
CNN3E andCNN5E improves the performance. The use of five energywindows (CNN5E) instead of three
(CNN3E) only has a limited effect on results. Thismight be due to (i) the intrinsic weak correlation between
themulti-order scattered photons and the attenuation coefficients and (ii) the relatively low scatter signal
compared to the level of noise in the additional two low-energy scatter windows of CNN5E (see table 3). The
results also indicate that investigating the utilization of photons fromhigh-energy scatter windows close to the
photopeakmight be beneficial. In this paper, energy windows used all have an equal width of 28 keV and are
already slightly overlapping (see figure 2(a)), thus adding additional high-energy scatter windowsmay not lead
to improvements. Given better energy resolution, the incorporation ofmore energywindowsmay be possible
by narrowing the width of eachwindow. This could provide the network with photons withmore precise
energy-spatial information. However, the exact effect onCNN estimation of mmaps requires additional
studies.

Table 2. SUVdeviation (mean±standard deviation) from the ground-truth-AC across 16
mergedROIs and 166 small localizedROIs for all six phantoms. P<0.05 is defined as the
significance level.

16×6 regions CNN5E-AC CNN3E-AC CNN1E-AC No-AC

DEVSUV (%) 1.60±1.53 1.59±1.68 7.35±8.91 67.50±5.30
P 0.368 0.616 0.002 <0.001

166×6 regions CNN5E-AC CNN3E-AC CNN1E-AC No-AC

DEVSUV (%) 1.63±1.66 1.82±1.90 7.53±8.80 69.25±4.40
P <0.001 0.016 <0.001 <0.001

Table 3.Comparison of the count number fromdifferent energywindows (keV). Themean counts across all phantoms
are given. ‘M’ stands for the unitmillion. Thefirst row gives themean counts detected from tracer emission based on
Monte Carlo simulations. The second row gives the background counts from cosmic radiation based on a long void scan
(10 h scanwithout radioactivity)with theG-SPECT-I prototype. Note that these two types of counts were added in
projections for image reconstruction.

Mean counts Photopeak E1 (126–154) E2 (106–134) E3 (86–114) E4 (66–94) E5 (46–74)

From tracer 7.50M 4.20M 3.59M 3.29M 2.19M

From cosmic 0.45M 0.44M 0.45M 0.54M 0.35M

Cosmic/tracer 6.0% 10.5% 12.5% 16.4% 16.0%
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In this paper, evaluation of attenuation correctionwith the CNN estimated mmapswas performed on the
noise-free VRT simulated scans (for better visualization of the AC effects when using different mmaps).
Results of correction performed on the realisticMC simulated scans are included in the appendix (figure A3).
These results show that visually the differences of using GT-AC,GT-uniform-AC, CNN5E-AC andCNN3E-
AC are small on theMC simulated scans. Besides, comparing the realisticMC simulated SPECT images to the
noiseless VRT scans (figure 6(a)), one could see that the effects on image quality due to, e.g. noise and
imperfect scatter correction as in the former scans can be larger than effects caused by using different CNN-
ACmethods (e.g. CNN5E-AC andCNN3E-AC). This is not surprising as noise generally plays a critical role in
SPECT.While we aim to estimate the attenuationmap using deep learning for automatic and accurate
attenuation correction, future development that could achieve SPECT denoising can be beneficial, and using
deep learning techniques for this task is also being actively investigated (Ramon et al 2018, Reymann et al 2019,
Zhang et al 2019).

As a feasibility study based onMonte Carlo simulated data, limitations of this work include a validation
using experimental scans which is required to bring themethod closer to clinical applicability. For
implementation on experimental data, we expect that the networkmay be trained on physical scans with CT
GT attenuationmaps acquired from only a few patients, as it was shown that the proposedCNNneeded only a
limited number of training samples. Besides, the effect of subtle differences of attenuation correctionwhen
using a CNN instead of a CT mmap needs to be evaluated on real patient data by human readers with a specific
clinical task to ultimately prove themerit of the proposed CNN approach. Additionally, we used discretized
maps consisting of a limited number of tissue classes (eight classes) as the GT attenuationmap. For brain scans
with relatively simple attenuationmaps, this approximation could be acceptable. For other applications
especially those involving fine structures, e.g. myocardium imaging,more complex attenuationmaps with
more tissue classes or with continuous attenuation coefficients would be preferable. Furthermore, the
proposedmethodwas tested on aG-SPECT-I geometry as it is an ultra-high resolution systemwe are
developing at our institute. Given the validity of the proposed approach onG-SPECT-I, it would be worthy to
try it for other standalone SPECT devices as well.Moreover, the proposedmethodology was validated only for
brain perfusions scans with 99mTcHMPAO in the present work.We expect that the approachmay be
applicable to other types of scans when the CNN is trained on that specific scan, yet the accuracy and effectivity
have to be validated.

5. Conclusion

Wehave implemented and validated a neural network approach to generate attenuationmaps solely from
SPECT emission data for 99mTc-HMPAObrain perfusion scans. This could enable quantitative SPECT imaging
withminimal ionizing radiation andmake SPECT independent of data fromother imagingmodalities, while the
fully automated approach could reduce the subjectivity due to intra- or inter-observer variability.

Acknowledgments

Financial disclosures of authors: FB is employee and shareholder ofMILabs BV. Thiswork is conductedwith
financial support of theNetherlandsOrganization for Scientific Research (NWO-I), Physics Valorization Prize
2015 ‘Ultra-fast, ultra-sensitive and ultra-high resolution SPECT’ co-financed byMILabs BV.

Appendix

Comparison of theGT andCNNestimated mmaps for all six phantoms are given infigure A1. Five slices with an
equal separation of 25.5mmare displayed for each phantom. Figure A2 and table A1 provide the quantitative
analysis results of GT-uniform-AC. The results fromCNN5E-AC are shown together here as a comparison.
Figure A3 displays theMC simulated realistic SPECT scans after attenuation correctionwith different mmaps.
Quantitative analysis on theseMC simulated scans of the deviations from theGT-AC for various CNN-AC
methods are not included. These deviations are the same as those given in table 2where assessments are
performed on the noiseless VRT scans as the deviations depend only on the transmission fraction of the mmaps
(see equation (2)).
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Figure A2.Bland–Altman plots for SUVs calculated from the noiseless VRT simulated SPECT imageswhen using ground-truth-
uniform-AC. The results fromCNN5E-AC are also plotted as a comparison. The difference for ground-truth-uniform-AC are
negative since all bone voxels are replaced by the attenuation coefficient of brain tissue.

Figure A1.Comparison of the ground truthGT and theCNNestimated mmaps for all six phantoms. Five slices from the top to the
bottomof the head (equally distributedwith 25.5mm separation) are displayed.
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