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ABSTRACT 
 
The Material Point Method (MPM) has been applied successfully to problems in engineering which involve large 
deformations and history-dependent material behavior. However, the classical method suffers from some shortcomings which 
influence the quality of the numerical solution significantly. High-order B-spline basis functions solve the problem of so-
called ‘grid crossing errors’ completely due to their higher continuity at inter-element boundaries. Adopting a consistent mass 
matrix instead of its lumped counterpart, which is common practice in standard MPM, further improves the convergence 
properties of the MPM. However, solving a linear system of equations resulting from a B-spline discretization is considered a 
challenging task. In this paper, we present a solution technique using p-multigrid methods to efficiently solve linear systems 
arising in B-spline MPM. 
 
KEY WORDS:  B-spline Material Point Method; Iterative solvers; p-Multigrid;  
 
INTRODUCTION 
 
The Material Point Method (MPM) (Sulsky et al., 1994; Sulsky et al., 1995) has been applied to a wide range of 
challenging problems in engineering. For example, the modelling of sea ice dynamics (Sulsky et al., 2007) or 
multiphase flows (Zhang et al., 2008). However, the method suffers from some shortcomings which seriously 
influence the quality of the numerical solution. 
 
The use of piecewise-linear basis functions often leads to unphysical oscillations triggered by particles crossing 
the discontinuity of the gradient of these basis functions at element boundaries. These so-called ‘grid-crossing 
errors’ significantly deteriorate the quality of the numerical solution and may even lead to a lack of convergence 
(Steffen et al., 2008). Over the years, different mitigation strategies have been proposed in the literature, for 
example, the Generalized Interpolation Material Point Method (GIMP) (Bardenhagen et al., 2004), the Dual 
Domain Material Point Method (DDMPM) (Zhang et al., 2011) and the use of reconstruction techniques (Gong et 
al., 2015; Wobbes et al., 2018). 
 
As an alternative solution, high-order B-spline basis functions can be adopted in MPM, which overcome the 
problem of grid-crossing errors completely due to their higher inter-element continuity. Furthermore, they lead to 
a continuous representation of stress fields and, potentially, higher convergence rates. Recently, the use of high-
order B-spline basis functions within MPM has become more popular (Tielen et al., 2017; Gan et al., 2018).   
In MPM, typically, the consistent mass matrix is replaced by its lumped counterpart when solving the equation of 
motion. Although the use of the lumped mass matrix decreases the computational costs of solving the resulting 
linear system of equations, it also limits the spatial accuracy  to O(h2) (Steffen et al., 2010) and causes the loss of 
conservation of energy and linear momentum (Love et al., 2006). 
 
Combining high-order B-spline basis functions with a consistent mass matrix gives rise to a new challenge, the 
efficient solution of the equation of motion at every time step. Since for B-splines the condition number of the 
mass matrix scales exponentially with the order of the basis functions p, the use of (standard) iterative methods 
becomes computationally expensive for higher values of p. Recently, different solvers have been developed for a 
discretization resulting from high-order B-spline basis functions (Sangalli et al., 2016).   
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An alternative approach lies in the use of multigrid methods in which a hierarchy of different levels is constructed. 
The general idea of multigrid methods is to obtain a computational less expensive solution at the coarsest level 
combined with the application of a basic iterative method at all other levels. 
 
In h-multigrid methods, a hierarchy is constructed based on discretizations with coarser and finer meshes. h-
Multigrid methods have been applied successfully for B-spline discretizations of elliptic partial differential 
equations (Gahalaut et al., 2013; Hofreither et al., 2017). In this paper, we propose the use of p-multigrid methods 
to solve these linear systems. In p-multigrid methods, a hierarchy is constructed based on discretizations resulting 
from different approximation orders p of the basis functions. In contrast to h-multigrid methods, the coarse grid 
correction is obtained at level p=1, where B-spline basis functions coincide with piecewise-linear Lagrange basis 
functions. This enables us to adopt solution techniques known for standard Lagrange finite elements. 
 
The structure of this papers is as follows. In Section 2, the p-multigrid method is described in detail. Numerical 
results obtained with p-multigrid as a solver are presented and compared with other solvers in Section 3.  Finally, 
conclusions are drawn in Section 4.     
 
P-MULTIGRID METHOD 
 
This paper focuses on solving the equation of motion, resulting from a discretization with high-order B-spline 
basis functions, needed at every time step of the MPM. One-dimensional B-spline basis functions of order p are 
defined by a knot vector Ξ = { ξ1 , ξ2 , … , ξn+p+1 }, which consists of a sequence of real and non-decreasing 
numbers ξi called knots. A knot vector of length n+p+1 defines n basis functions of order p by starting from the 
constant B-spline basis functions: 

 

𝜙௜,଴ = {
1, 𝑖𝑓𝜉௜ ⩽ 𝜉 < 𝜉௜ାଵ,

0, 𝑒𝑙𝑠𝑒.
                                                              (1) 

 
The Cox-de Boor recursion formula (De Boor C., 2001) is then used to define higher-order B-spline basis 
functions: 

 

𝜙௜,௣(𝜉) =
కିక೔

క೔శ೛ିక೔
𝜙௜,௣ିଵ(𝜉) +

క೔శ೛శభିక

క೔శ೛శభିక೔శభ
𝜙௜ାଵ,௣ିଵ(𝜉),                                     (2) 

 
where ξ in [ξ1, ξn+p+1]. In this paper, open uniform knot vectors are considered, implying that the knots are equally 
distributed and the first and last knot are repeated p times. As a consequence, basis functions of order p are Cp-1 

continuous, which ensures a continuous gradient (or better) for p ≥ 2. The one-dimensional B-spline basis 
functions can be extended to multiple dimensions by taking the tensor product.   
By considering the weak formulation of the conservation of linear momentum equation and approximating the 
solution by a linear combination of the basis functions 𝜙௜,௣, the following approximation of the equation of motion 
is obtained: 
 

 𝑀h,p𝑎h,p=Fh,p                                                                (3) 
 
Here, 𝑀௛,௣ denotes the mass matrix, 𝑎௛,௣ the acceleration vector and 𝐹௛,௣ the force vector. A single entry of the 
mass matrix is defined as follows: 

 
൫𝑀௛,௣൯௜,௝ = ∫ 𝜙௜,௣𝜙௝,௣𝜌𝑑𝛺ఆ

                                                               (4) 

 
where 𝜌 denotes the density field and 𝛺 the considered domain. The subscripts h and p denote the mesh width and 
approximation order of the basis functions, respectively. Equation (3) can then be solved by a p-multigrid method. 
Starting from an initial guess 𝑎௛,௣

(଴) , the steps of a two-grid correction scheme are as follows: 
 
 
(1) Apply 𝜈ଵ presmoothing steps on the high-order problem: 
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𝑎௛,௣
(଴,௠ାଵ) = 𝑎௛,௣

(଴,௠)
+ 𝑆൫𝐹௛,௣ −𝑀௛,௣𝑎௛,௣

(଴,௠)
൯,𝑚 = 1,… , 𝜈ଵ,                                       (5) 

 
where S is a smoother, a basic iterative method like Jacobi or Gauss-Seidel.  
 
(2) Transfer the residual to level p-1 by applying the restriction operator 𝐼௣

௣ିଵ: 
 

𝑟௛,௣ିଵ = 𝐼௣
௣ିଵ

ቀ𝐹௛,௣ −𝑀௛,௣𝑎௛,௣
(ఔభ)ቁ.                                                          (6) 

 
(3) Obtain the coarse grid correction 𝑒௛,௣ିଵ at level p-1 by solving the residual equation: 

 
𝑀௛,௣ିଵ𝑒௛,௣ିଵ = 𝑟௛,௣ିଵ.                                                                   (7) 

 
(4) Transfer the coarse grid correction to level p by applying the prolongation operator 𝐼௣ିଵ

௣  and update the 

solution 𝑎௛,௣
(ఔభ) by adding the transferred coarse grid correction: 

 

𝑎௛,௣
(଴,ఔభ): = 𝑎௛,௣

(଴,ఔభ) + 𝐼௣ିଵ
௣

൫𝑒௛,௣ିଵ൯.                                                               (8) 
 

(5) Apply 𝜈ଶ post smoothing steps on the high-order problem: 
 

𝑎௛,௣
(଴,ఔభା௠ାଵ)

= 𝑎௛,௣
(଴,ఔభା௠)

+ 𝑆 ቀ𝐹௛,௣ −𝑀௛,௣𝑎௛,௣
(଴,ఔభା௠)

ቁ ,𝑚 = 1,… , 𝜈ଶ,                                (9) 

 
 
The two-grid correction scheme described above is applied recursively until level p=1 is reached, resulting in a V-
cycle. However, different schemes can be applied, for example a W-cycle as shown in Figure 1. At level p=1 the 
residual equation is solved by adopting a Conjugate Gradient (CG) solver.      
 

 
Figure 1 Description of a V-cycle and W-cycle 

 
To restrict the residual and prolongate the coarse grid correction, transfer operators have to be defined. The 
prolongation operator 𝐼௞ିଵ

௞  that transfers the residual from level k-1 to level k is defined as follows: 
 

𝐼௞ିଵ
௞ : = ൫𝑃௞

௞൯
ିଵ
𝑃௞ିଵ
௞ ,                                                                   (10) 

where 𝑃௞
௞ିଵ is given by 

 
𝑃௞
௞ିଵ = ∫ 𝛷௞

்𝛷௞ିଵ𝑑𝛺ఆ
                                                                   (11) 

 
Here, 𝛷௞

் = [𝜙ଵ
௞, … , 𝜙௡

௞] denotes the vector consisting of basis functions of approximation order k. The restriction 
operator to transfer the coarse grid correction from level k to level k-1 is defined in a similar way: 

 

𝐼௞
௞ିଵ: = ൫𝑃௞ିଵ

௞ିଵ൯
ିଵ
𝑃௞ିଵ
௞                                                                         (12) 
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To circumvent the solution of a linear system, both 𝑃௞
௞ and 𝑃௞ିଵ

௞ିଵ are lumped in the prolongation and restriction 
operator, respectively. A mathematical derivation of the transfer operations can be found in (Sampath et al., 2010). 
 
At each level p≥1, a fixed number of smoothing steps is applied. As a smoother, an incomplete LU factorization 
with dual treshold strategy (Saad., 1994) is adopted. The operators 𝑀௛,௣, needed at every level, are obtained by 
means of rediscretization. 
 
NUMERICAL RESULTS 
 
To illustrate the potential of p-multigrid solvers, we consider Equation (3) obtained from a discretization with B-
spline basis functions of order p and mesh width h. The domain 𝛺 is chosen to be the unit square. Here, we 
assume a constant density equal to 1 [kg/m3]. The force vector is chosen to be constant and equal to -9.81 [m/s2], 
simulating a gravitational force.  For different values of p and h the resulting linear system is solved with the p-
multigrid method as described in the previous section. For all numerical experiments, the number of pre- and 
postsmoothing steps is chosen to be constant (𝜈ଵ = 𝜈ଶ = 1). As a stopping criterion, a reduction of the initial 
residual is chosen: 

 
௥೓,೛
(೔)

௥೓,೛
(బ) < 𝜖 = 10ି଼                                                                      (13) 

 
Here, 𝑟௛,௣

(௜) denotes the residual after iteration i. As an initial guess, the zero vector is adopted for all numerical 
experiments. At level p=1, the residual equation is solved by means of a CG solver, using the same stopping 
criterion with 𝜖 = 10ିସ. The number of iterations required by the p-multigrid to converge are presented in Table 1.  
Note that for higher values of p, the number of iterations remains constant. p-Multigrid exhibits furthermore, as h-
multigrid methods, the h-independence property, which implies that the number of iterations necessary is 
independent of the mesh width h.   
 

Table 1  Number of iterations needed with p-multigrid 
for different values of h and p. 

 p=1 p=2 p=3 p=4 p=5 
h=2-4 1 3 3 2 2 
h=2-5 1 3 3 3 3 
h=2-6 1 3 3 3 3 
h=2-7 1 3 3 3 2 

 
For comparison, the number of iterations needed with a CG method, adopting the same tolerance, are presented in 
Table 2. The number of iterations are significantly higher compared to the p-multigrid method, especially for 
higher values of p.    
 

Table 2  Number of iterations needed with the Conjugate Gradient method 
for different values of h and p. 

 p=1 p=2 p=3 p=4 p=5 
h=2-4 18 34 66 92 156 
h=2-5 18 46 93 178 242 
h=2-6 18 46 95 196 252 
h=2-7 17 44 91 187 227 

 
CONCLUSIONS 
 
In this paper, a p-multigrid method has been presented to solve the equation of motion in MPM resulting from a 
discretization with high-order B-spline basis functions and the use of a consistent mass matrix. Numerical results  
show that the use of p-multigrid methods leads to h-independence. Furthermore, the number of iterations does not 
depend on the approximation order p of the B-spline basis functions. p-Multigrid methods have the potential to 
solve the equation of motion efficiently. Further research remains to be done to apply p-multigrid methods on 
more advanced geotechnical problems. 
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