FAST SYMMETRY DETECTION WITH DEEP LEARNING AND GECONV

PhD Candidate: T. Mkhoyan Department: Supervisor 1st: Dr.ir.R. De Breuker Supervisor 2nd: Dr.ir.C.Visser Promotor

Contact:

Dr.ir.R. De Breuker T.mkhoyan@tudelft.nl

Aim

SMART-X

This study: Develop Fast 2axis reflectional symmetry detection routine for estimation of aircraft wing orientation. Two methods developed and comtraditional computer vision (GeConv) versus pure Deep learning (RotNet).

High level: Robust machine learning pipeline for prediction of wing deflection for aeroservoelastic control from raw images.

The Experiment

GeConv

Image filters and clustering (DBSCAN):

Sort and rotate points:

$$\mathbf{P}_{\theta hull} = sort(\mathbf{P}, sort(\boldsymbol{\theta}_{cp_k})); \ \mathbf{R} = \begin{bmatrix} \cos(\theta_k) & -sin(\theta_k) \\ \sin(\theta_k) & cos(\theta_k) \end{bmatrix}$$

Geometric convolution and symmetry score:

$$\mathbf{P}_{ heta_k} = (\mathbf{R} \cdot (oldsymbol{ heta_{k-1}} - oldsymbol{ heta_{cp}})^T)^T + oldsymbol{ heta_{cp}}$$

 $\theta_{Vsymm} = min(|mean(|\sin(|\boldsymbol{\theta}_{k_{cp}}|)|), \theta_{Vsymm})$ $\theta_{Hsymm} = min(|mean(|\cos(|\boldsymbol{\theta}_{k_{cp}}|)|), \theta_{Hsymm})$

GeConv: Geometric Convolution process

DCNN structure

DCNN: training Deep Convolutional Neural Network

Planning Smart-X

