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Structure and dynamics of C¢, molecules in liquid CS, from neutron scattering
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By means of inelastic neutron scattering we determine the dynamic structure factors S(k,w) of two di-
lute suspensions of C¢, molecules dissolved in liquid CS, (C¢, number densities 0.0034 and 0.0067 nm ~3)

at 1 bar and 293 K for wave numbers 1 <k <15 nm™! and high energy resolution Aw>0.0015 ps™!.

1

S(k,w) can be described by a sum of a narrow and a broad Lorentzian. The intensity of the narrow
Lorentzian agrees perfectly with that calculated for a single C¢, molecule. The area of the broader line is
in good agreement with that obtained from fluctuations in the total number density of the mixture. This
contribution is small for k <5 nm™!, but it dominates for k >7 nm~!. From the widths of the narrow
Lorentzians we find the diffusion coefficient of Cg in CS,, Dg=1.04X107° m?s™!, significantly smaller
than those obtained from the Stokes-Einstein relation (1.30X107° m? s™!) and the kinetic theory for

binary mixtures (1.5X107° m?s™}).

PACS number(s): 61.12.—q, 66.10.Cb, 05.20.Dd

I. INTRODUCTION

The dynamics of dilute monodisperse suspensions of
neutral spherical colloidal particles in a solvent has been
extensively studied by means of dynamic light scattering
techniques [1]. The quantity that is in fact obtained is
the coherent dynamic structure factor S (k,w) of the col-
loidal particles as a function of wave number k and fre-
quency .

At very low volume fractions ¢<0.01 (with
¢=mno?/6, n the number density of the colloidal parti-
cles, and o their diameter, typically 10 <o <1000 nm),
S (k,w) is for practically all k described by one Lorentzi-
an line in ® with a k-dependent half-width
oy(k)=Dgk?. Here Dg; is the Stokes-Einstein
diffusion coefficient of one colloidal particle at infinite di-
lution,
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with T the temperature, kz Boltzmann’s constant, and 7
the shear viscosity of the solvent. The continuum
Stokes-Einstein description of S (k,w) [cf. Eq. (1)] is ex-
pected to break down when the diameter o of the col-
loidal particles becomes of the order of that of the fluid
particles (typically ~0.3 nm). In that case one must rely
theoretically on kinetic theories for binary mixtures and
experimentally on inelastic neutron scattering. In partic-
ular it has been shown that the spectra obtained from
neutron scattering on Ne-He and Ar-He mixtures can be
understood very well on the basis of the so-called revised
Enskog theory (RET) [2] for binary mixtures of hard
spheres [3]. Here the Ne or Ar atoms in the mixture can
be considered as heavy spherical ‘“colloidal” particles,
with a diameter o however, which is not more than about
30% larger than the diameter of the He, “‘solvent” atoms.
Although the RET can describe such colloidlike mix-
tures, it cannot be extended to real colloidal suspensions
(0 >10 nm) since it does not lead to Eq. (1) for the
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diffusion coefficient of one heavy particle in the solvent
[4].

In this paper we study the dynamic behavior of a sys-
tem that is intermediate between a colloidal suspension
and a binary mixture such as Ar-He. We do so to investi-
gate the usefulness of the Stokes-Einstein and kinetic
theory descriptions in the intermediate region
0.5 <o <10 nm, where both might be relevant but where
both theories are not obviously valid. Therefore we con-
sider at room temperature 7=293 K two solutions of Cg,
molecules (“fullerenes”) dissolved in liquid CS, with
number density ncs, = 10 nm 3 and Cg¢, number densities

nc,,=0.0034 and 0.0067 nm’. Each of these systems is a

dilute essentially monodisperse solution of perfect Cg,
spheres with a diameter 0 =0.91 nm [5], which is consid-
erably larger than the effective diameter of the solute par-
ticles (0.42 nm) [5] and in the region 0.5<o0 <10 nm of
present interest. We use CS,, since its effective diameter
is the smallest among the solvents in which C4, molecules
can be dissolved sufficiently [6] to be actually measured
by neutron scattering. We consider two solutions of Cg,
particles to study the dependence on the number density
nc,,» in particular to see whether the Cq, molecules move

independently of each other.

We show that quasielastic neutron scattering is suited
for studying the dynamics of these C¢y-CS, systems. At
small wave numbers k =1 nm™!, S (k,w) is dominated by
the contribution of the slowly moving Cg, molecules.
Then S (k,w) should be measured with an energy resolu-
tion of about Aw <2wg(k)~2Dgk?~0.003 ps~! [cf. Eq.
(1) with 7=0.363X10"3 kgm~'s™! for CS, [7]]. Such
high energy resolutions can be achieved with the inelastic
neutron scattering IRIS spectrometer of ISIS (Rutherford
Appleton Laboratory, United Kingdom). For increasing
k the Cgq, contribution widens and in addition one starts
to observe the faster motion of the CS, molecules. Then
larger energy resolutions may be used.

Using the IRIS spectrometer, it appears for all k that
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S (k,w) can be described by a narrow Lorentzian in o
(mainly due to the heavy Cg, molecules dominating for
k<5 nm™!) and a broad Lorentzian (mainly due to the
CS, molecules dominating for k>7 nm™~!). Their inten-
sities as a function of k are in good agreement with those
calculated for a binary mixture of hard spheres with non-
central scattering centers as in the actual molecules. The
half-widths of the two Lorentzians in S (k,®) agree only
qualitatively with those calculated from the revised En-
skog theory. For both solutions we obtain a diffusion
coeﬁicwnt of the Cg, molecules in CS,, Dg=1.04X10"°
m?s™!, which is significantly smaller than that obtained
from the Stokes-Einstein equation [Eq. (1)]
Dgg=1.3X10"° m?s™! and from the revised Enskog
theory Dy =1.5X10"° m?s™ ..

This paper is organized as follows. In Sec. II we de-
scribe the neutron scattering experiment, show typical in-
elastic neutron scattering spectra I(k,w) from which
S (k,0) is determined, and present the results for the k-
dependent intensities and half-widths that describe
S(k,w). In Sec. III we summarize the theory for the
structure and dynamics of binary mixtures of hard sphere
molecules and compare with experiment. We end with a
discussion in Sec. IV.

II. EXPERIMENT

We discuss the sample preparation (Sec. II A), the neu-
tron spectrometer (Sec. II B), the data collection (Sec.
II O), and give the experimental results (Sec. II D).

A. Sample

We prepared two solutions of Cg, in CS, following the
recipe described by Ruoff et al. [6]. Pure Cgq, (Syncom,
greater than 99.9%) was weighed and dissolved in CS,
(BDH, greater than 99.9%). After stirring 12 h in the
dark, 20 ml of the solutions (with 4.0 and 7.9 mg Cg,/ml
CS,, respectively) were transferred to aluminum cylindri-
cal sample cans (inner diameter 20 mm) used in the neu-
tron scattering experiments. The corresponding number
densities of the Cg, molecules are nc,, =0.0034 and

0.0067 nm 3, respectively. Since CS, is extremely vola-
tile and reactive with rubber, the sample cans were sealed
with Teflon O rings and tested by weighing to be leak
proof. During the preparation and experiments the sam-
ples were kept at room temperature.

B. Spectrometer

The experiments were performed on the spectrometer
IRIS at the pulsed neutron source ISIS. IRIS is a so-
called time of flight inverted-geometry spectrometer,
which can achieve energy resolutions up to 0.0015 ps~!
(full width at half maximum) by using the (002)
reflection of mica analyzers in nearly backscattering
geometry [8]. The analyzed neutron wavelength is
Amcoo2=2.0 nm, so that the smallest momentum
transfer Kk, =47 sin(¢n/2)/Apmcooz=1.3 nm™! with
D min—24.00° the smallest angle at which spectra can be
measured. Employing the full intensity of ISIS, using the
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TABLE I. Settings of the IRIS spectrometer in 50-Hz mode
with symmetric energy windows, for analyzer crystals, analyzed
wavelength A, energy resolution Aw, maximum energy transfer
Wpmax (“‘energy window”), and minimum wave number K ;..

Analyzer A (nm) Aw (ps™!)  @Opax ST kg, mTY)
MC002 2.0 0.0018 0.025 1.3
MC004 1.0 0.0073 0.25 2.6
PG002 0.67 0.025 0.75 4.4

50-Hz mode, the energy transfer is limited to

—0.025<w<0.025 ps~! due to frame overlap of two
subsequent pulses. We have extended the energy transfer
range considerably by using the mica (MC) (004) and py-
rolytic graphite (PG) (002) analyzer reflections, with ana-
lyzed wavelengths Apcoosa=1.0 nm and Apgop, =0.667
nm, respectively. In these modes we have an energy
transfer range of —0.25<w <0.25 ps~! for mica (004)
and —0.75<w <0.75 ps~ ! for PG (002), whereas the en-
ergy resolutions are Aw=~0.0075 and 0.025 ps ™!, respec-
tively. In this way a large momentum and energy
transfer range with sufficiently high energy and momen-
tum transfer resolution is covered. The properties of the
IRIS spectrometer are summarized in Table 1.

C. Data collection

For the 7.9-mg/ml sample we determined the neutron
intensities /;(¢,?) as a function of scattering angle ¢ and
time of flight ¢ for the Cg;-CS, system using the mica
(002) reflection for 53 h (j=MCO002), the mica (004)
reflection for 33 h (j=MCO004), and the pyrolytic graph-
ite (002) (j=PGO002) reflection for 13 h. For the 4.0-
mg/ml sample we used the mica (004) reﬂectiogs9 h. We
also determined the corresponding spectra I;” *(¢,t) of
pure CS, for both mica reflections in 17 and 10 h, respec-
tively. Due to a failure of the ISIS spallation source we
could not measure the pure CS, spectra in the PG (002)
mode. By following the neutron intensities in the course
of time (in steps of a few hours) we found that the sample
and the performance of the spectrometer did not change
during the full experiment and that the spectra were
reproducible.

In our experiment a constant scattering angle ¢ corre-
sponds to a constant wave number k =47r)\.j_lsin(¢/2)
for all j, since the energy transfer is very small. The time
of flight ¢ is used to calculate the energy transfer w from
the neutron to the sample (positive w corresponds to en-
elz%y gain in the sample). Thus we wrlte I,(¢,t) and

I;"*(¢,t) henceforth as I;(k,w) and I (k,w). In Fig. 1
we show spectra I;(k, ) for k=1.3'nm"! (j=MC002)
and k=3.8 nm™! ( j=MCO004). The dashed hnes 1n Figs.
1(a) and 1(b) are the corresponding CS, data I 2(k ).
Around w=0 one observes a tiny narrow contrlbutlon
due to the incoherent elastic scattering from the Al sam-
ple can. In Fig. 2 the sample I;(k,») (j=PGO002) are
shown for k=5.6, 7.3, 10.1, and 12.4 nm~!. Note the
strong broadening of the spectra for increasing k in Figs.
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FIG. 1. Neutron intensities I(k,w) as functions of w for
k=13 (a) and 3.8 nm™~! (b): Cg in CS, (7.9 mg/ml), crosses;
pure CS,, dashed curve; best Lorentzian fit [cf. Egs. (2) and (3)],
solid curve.
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FIG. 2. Neutron intensities I (k,w) as a functions of w for
k=5.6 (a), 7.3 (b), 10.1 (c), and 12.4 nm~! (d) of Cg in CS, (7.9
mg/ml) (crosses). The upper curve shows the best two Lorentzi-
an fits [cf. Egs. (2) and (3)]. The lower solid curve is the
Lorentzian contribution from fluctuations in the total number
(N) density (i.e., from the solvent).
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1(a), 1(b), and 2.

In order to determine the resolution functions R j(k,co)
(j=MC002, MC004, and PGO002) of the spectrometer
and the efficiencies of the detectors E j(k), we performed
measurements on an elastically, incoherently scattering
sample with the same geometry as the Cg,-CS, sample.
For mica (004) and PG (002) vanadium was used, but for
mica (002) we used a polythene sample since the absorp-
tion cross section of vanadium for these long wavelengths
(analyzed wavelength Apcoo,=2.0 nm) is rather high.
After correction for self-shielding [9] we find the relative
efficiency of each detector E;(k) and the normalized
resolution functions Rj(k,0) [ [dwR;(k,0)=1]. At
fixed j, the efficiencies E j(k) are used to normalize the
spectra I;(k,w) relative to one another for varying k
values. The spectra I;(k,w) are normalized relatively to
each other for varying j=MC002, MCO004, and PG002
by equating the spectra at overlapping k values. Thus the
intensities of the spectra shown in Figs. 1 and 2 can be
compared with one another.

The energy resolutions Aw;(k)
width at half maximum of R;(k,®)] are
0.0017 < Awpcooa(k) <0.0020 ps~! for “mica (002),
0.0067 < Awpcoos( k) <0.0079 ps~! for mica (004), and
Awpgona(k)=0.025 ps~! for PG (002). They increase
slightly (and approximately linearly) from the smallest to
the largest scattering angle, due to the finite size of the
sample can. The correction for the resolution is taken
into account in the fitting procedure.

[i.e., the full

D. Results
The neutron spectra are given by
Ij(k,co)=f_+:dw’[Sexp,(k,w’)+cj8(co')+bj(k,az’)]
XR;(k,0o—a'), (2)

with j=MC002, MC004, and PG002. ¢ jﬁ(co) represents
the (weak) incoherent elastic scattering from the alumi-
num sample can [see Figs. 1(a) and 1(b), dashed lines],
which is assumed to be constant for each j. The function
bj(k,m) is for each j and k a linear function of o,
effectively representing the very small background
scattering that is observed at w>>0 and o <<O.
Sexpt(k,@) is the experimental dynamic structure factor
of the C¢,-CS, system.

We find that the » dependence of I;(k,w) can be de-
scribed by S, (k,@), which consists of a narrow and a
broad Lorentzian line in w, with labels ¢ and N, respec-
tively, i.e.,

w (k) /7
o (k2 +o?

with k-dependent areas I (k) and Iy(k) and half-widths
w.(k) and wy(k). We will show in Sec. III that these two
Lorentzians are due to fluctuations in the concentration
(label ¢) and total density (label N). Absolute normaliza-
tion of the spectra is obtained from the property that for
k— oo, fdcoSexpt(k,m)=l, as will be discussed in Sec.
II1.

CON(k)/ﬂ'
NEk)———— (

S, (kw)=1.(k
xpt (K @) =1 (K) oy(kP+o?
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FIG. 3. Neutron intensities Iy(k) and I.(k) as functions of k
for Cg in CS, at (a) 7.9 mg/ml and (b) 4.0 mg/ml. (a) Experi-
ment: for I.(k), MCO002, (H), MCO004 (®), PG002 (V); for
Iy(k), PG002 (O). (b) Experiment: for I.(k), MC004 (O). The
solid curves are theoretical for hard spheres [cf. Eq. (42)].

The energy window covered by the mica reflections
[/=MCO002 and MC004 (cf. Table I)] is too restricted to
observe clearly the broad Lorentzian term (with label N).
Then the second term in Eq. (3) is indistinguishable from
the linear background term b;(k,w) in Eq. (2) [see Figs.
1(a) and 1(b)]. Only the PG (002) energy window (cf.
Table I) is large enough to observe clearly a second
Lorentzian (see Fig. 2).

For the 7.9-mg/ml solution the fitted areas I.(k) and
Iy(k) are shown in Fig. 3(a). I (k) is plotted with solid
squares (j=MCO002), dots (j=MCO004), and triangles
(j=PGO002), whereas the Iy(k) is plotted with open
squares. The intensities I, (k) scattered by the 4.0-mg/ml
solution are plotted in Fig. 3(b). The 4.0-mg/ml solution
scatters clearly less (about 50%) than the 7.9-mg/ml solu-
tion. In Fig. 4 the half-widths w (k) and wy(k)> (k)
are plotted as a function of k for the 7.9-mg/ml solution.
The widths wy(k) (open squares) are in the order of 0.5
ps~ !, which is about the energy range that could be
reached with the PG002 analyzers (see Fig. 2). This
causes a large spread (and possibly systematic errors) in
the fitted intensities I (k) [see Fig. 3(a)] and half-widths
wy(k) (see Fig. 4). Three dead detectors between
49°<¢$ <52° are the reason for missing data between
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FIG. 4. Neutron half-widths w.(k) and wy(k) as functions of
k for Cq in CS; at 7.9 mg/ml. Experiment: for wy(k), PG002
(O); for w.(k), PG002 (V), MC004 (®), and MCO002 (M). The
solid curves wcsz(k) and w.(k) are from the Enskog theory (cf.

Fig. 8). The dashed line is the best fit w.(k)=Dgk? with
Dg=(1.04+0.01)X 10~° m2s~ 1.

7.5<k <9.5 nm~! in Figs. 3 and 4. In Fig. 5 we show
the half-widths w (k) as a function of k for the 4.0-
mg/ml (circles) and 7.9-mg/ml solutions (squares, dots,
and triangles) on a double logarithmic scale. The half-
widths of the 4.0-mg/ml solution do not significantly
differ from those obtained from the 7.9-mg/ml solution,
although the statistical errors are larger due to the intrin-
sically lower intensity and the shorter measuring time.
The half-widths in Fig. 5 are represented very well by
o (k)=Dgk? with Dg=(1.0410.01)X107° m?s™! the
self-diffusion coefficient of one Cg, molecule (straight
dashed line in Fig. 5).
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FIG. 5. Neutron half-widths o (k) as functions of k for Cg,
in CS,. Experiment: for 7.9 mg/ml, PG002 (V); MC004 (@),
and MCO002 (l); for 4.0 mg/ml, MC004 (O ). The straight lines
are w.(k)=Dk? with, from top to bottom, D =DE (Enskog),
D = Dgg (Stokes-Einstein), and D = Dy (best fit).
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III. THEORY

We discuss the theory of binary molecular mixtures in
Sec. IIT A, the continuum approximation for the neutron
intensities in Sec. III B, specify the theory to the present
C¢o-CS, mixtures in Sec. III C, and compare the theoreti-
cal results with experiment in Sec. III D.

A. Binary molecular mixtures in general

We extend straightforwardly the general theory de-
scribed by Lovesey [10] for the static structure factor of a
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of species 1 and N, (small) molecules of species 2 with
N=N;+N, and x;=N, /N the mole fraction of species
Jj=12. Each molecule of species j=1,2 consists of Z;
atoms that all scatter coherently with coherent neutron
scattering lengths b;, (¢ =1,...,Z;). As a result, the
molecules scatter in general both coherently and in-
coherently.

Sexpt(k, @) observed in neutron scattering is the Fourier
transform of the intermediate dynamic structure factor
I(k,t),1i.e.,

one-component molecular fluid to the dynamic structure Sexpt(ky@)=—— f *dt exp(iot)I (k,t) (4)
factor of a two-component molecular fluid. We consider,
in a volume V, a binary mixture of N, (large) molecules with
J
I(k,t)= b2 > 2 b; b o{exp{ik-[R; (0)—R ,(t)+r;, (0)—1; ,» (2)]}) . (5)
5pq J'p'a’

Here b is the average scattering length of the molecules Z;
defined by Fipk, )= 2 b, ,explik-r;, (£)] . (11)

Z;
bi= > x; Eb]%q , (6)
j=12 ~g=1
the angular brackets denote the canonical ensemble aver-
age over all atoms, k is a wave vector with length &, and
(2) is the location at time ¢ of atom g =1, »Z; on
molecule p =1, » N; of species j =1,2 relatlve to the
center of mass position R; ,(¢) of the molecule to which it
belongs. The intermediate dynamic structure factor is
normalized such that lim,_,  I(k,z =0)=1 [cf. Egs. (5)
and (6)]. We write I (k,t) as

I(k,t)=I"k,t)+I"(k,t) , (7

where I°°%k,¢) and I'™(k,t) are due to coherent and in-
coherent scattering of the molecules, respectively.

First, we consider I°°"(k,¢), which is given by the time
correlation function of the microscopic scattering length
density

JP‘I

1%k, 1) =—1—2(5p(k 0)[8p(k,1)]*) . (8)

Here the angular brackets denote the equilibrium canoni-
cal ensemble average over the molecular center of mass
positions, the asterisk denotes complex conjugation, and
the microscopic scattering length density 8p(k,?) at time
tis
Sp(k,0)="3 x}72fM(k)dn;(k,1) . ©)

ji=12

The extent of one molecule of species j is represented by
the coherent angular averaged molecular form factor

()= F, , (K1) g » (10)

with 57]-, p(k,t) the microscopic molecular form factor of
molecule p of species j at time ¢,

The normalized average )ang in Eq. (10) extends over
all angular orientations of molecule p so that f; coh( k) only
depends on j=1,2 and k but not on p and ¢. The micro-
scopic density at time ¢ of molecules of species j in Eq. (9)
is given by

1Y

— exp[ik-R; (#)] . (12)
2, LR, (0]

To derive Eq. (8) from Eq. (5) one assumes that the corre-
lation between the orientations of different molecules can
be neglected.

In a dense fluid mixture, the time relaxations of the
two microscopic densities dn;(k,?) are correlated. They
are both determined by the independent decay times of
the microscopic concentration 8c(k,?) and microscopic
total number density 8N (k,?) [11], defined by

SN(k,t)E[x%/2522(k)_"x;/Zslz(k)]anl(k,t)
SN (k,t)=[x1728,,(k)—x1/%S,(k)]6n,(k,?)
+[x37%8 (k) —x 1728 ,(k)]8n,(k,1) ,

on,(k,1)=

(13)

where the partial molecular static structure factors S;;(k)
are given by

S, (k)= 8n,(k,0)[8n;(k,0)]*) . (14)

By taking the inverse relations of Eq. (13), one obtains
(j=12)

8n;(k,t)=TF(k)dc(k,t)+TN(k)SN(k,1) , (15)
with TNk)=x}"?/S,.(k), Tg(k)=[x2/25“(k) —x172/
SIZ(k)]/Scc(k)’ and T;(k)=[ X /2S22(k) +x1/2/

S1,(k)1/S . (k), where S (k) ={8c(k,0)[8c(k,0)]* ) is
the static structure factor for concentration fluctuations.
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Thus the microscopic scattering length density 8p(k, )
of Eq. (9) can be written as

8p(k,t)=bC (k)bc (k,t)+bCy(K)ON (k,t) , (16)
with
1 COo. C,
Celk)=~ =12x,-‘”f,- NK)Tf (k) ,
11 ’ 17
CN(k =; = ijl/szOh(k)TjN(k)

the relative dimensionless strengths of concentration and
total number fluctuations in 8p(k,t). The coherent inter-
mediate dynamic structure factor I°°P(k,z) in Eq. (8) is
then given by

Ik, t)=C,(k)*F,(k,t)+Cy(k)Fyy(k,1)

+2C (K)Cy(K)F (K, t) , (18)
where
F,.(k,t)={8c(k,0)[8c(k,2)]*) ,
Fyn(k,t)=(8N(k,0)[8N (k,2)]*) ,
and
F.y(k,t)={(8c(k,0)[8N (k,1)]*)

are the time correlation functions of molecular concen-
tration and total number fluctuations. _

Next we consider the incoherent contribution I'"°(k,t)
to I(k,t) in Eq. (7). I'"°(k,t) is given by

I'"(k,t)= > X; F’°‘ k, t)F“a"s(k t), (19)
=12
where
FPU(k, t)———{<$7 KON F; (K, 1)]*) g

—(F, (K, 1)) 20} (20)

is due to the rotational motion of one molecule (labeled p)
of species j=1,2 and

F}rans(k’t)=<exp{lk'[Rj,p(0) Rj,p(t)]}> (21)

is due to its translational motion. Using Egs. (20) and
(21) in Eq. (7), one obtains the final result for the total in-
termediate dynamic structure factor

I(k,t)=[C (k)J*F . (k,t)+[Cy(k)*Fyy(k,1)
+2C,(k)Cy(Kk)F, 5 (k,t)

+ 3 X FkDF(k, ) . (22)
ji=1,2

The integrated intensity S, (k) is given by

Semlk)= "

so that

d@ S g (k, 0) =1 (k,t =0) (23)
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Sexpt(K)=[C (k) ]2S (k) +[Cy (k) PSyy (k)
2

+ 3 x;F°(k), (24)

j=1
with  F{*(k)=F[°(k,t =0), and Syy(k)=Fyy(k,0)
—<5N(k O)[SN(k 0)]* ) is given by Egs. (13) and (14).

To derive Eq. (24) we have used that for all k,
F,y(k,0)={(8c(k,0)[8N(k,0)]*)=0 since the fluctua-
tions in the concentration and total number density are
uncoupled at t=0 and that F;™"(k,z =0)=1. In hydro-
dynamics (k—0) the fluctuations in the concentration ¢
and the total number density N are uncoupled for all
times ¢, implying that F,y(k,t)=0 for all t. We assume
that this decoupling property holds also for the finite k
values relevant in this paper. Hence the experimental
spectrum S, (k, ) is the sum of two coherent contribu-
tions due to fluctuations in the concentration ¢ and the
total number density N and two incoherent contributions
due to the rotational and translational motion of single
molecules of species j=1,2. The k behavior of the total
coherent intensity

INk)=[C,(k)]1*S,..(k)+[Cyn(k)]*Syn(k) (25)

to Sexpt(k) in Eq. (24) can be estimated easily using the
so-called contrast or continuum approximation, discussed
in the following subsection.

B. Continuum approximation

In the continuum approximation[10,12], for I°°*(k) the
details of the large molecule (j=1) are taken into account
exactly, but the smaller molecules (j=2) are replaced by
a continuum background (“medium” or “solvent”). One
starts from Eq. (8) for I°°"(k)=1I°"(k,t=0), which is, for
k0, equivalently given by

1ov=—(| [ dRpROexpticR[) . 26

Here p(R) is the scattering length density at R in the
volume V given by

N
p(R)= 3 fih(k) S 8(R—R,,). @7
ji=12 p=1

In the continuum approximation one assumes that
p(R)=p,, is independent of R when RE V,, the volume
occupied by the medium. Here p,, is the average scatter-
ing length density of the medium defined by

Pom f dRp(R)—n2f°°h(k) i (28)

Then one has in the continuum approximation (CA) for
large spherical particles with diameter o,

IR (k)= ;[f M (k) —nyv k(K FPR(K) PSR (K)

(29)

with v;=70}/6 the volume of a large particle, 4 (k) its
normalized form factor



r<a‘/2drexp(ik-r)=6j1(kal/2)/(k01) ,

(30)

where j,(x) is the spherical Bessel function of order 1,
and SA(k) is the partial static structure factor of the
large particles in the continuum approximation (i.e., in
the absence of the medium particles). Thus S$* (k) is
equal to the static structure factor of N, hard spheres
with diameter o in vacuum in a volume V.

The expressions for I°®"(k) given by Egs. (25) and (29)
are the same if one also uses the continuum approxima-
tions S (k) and S$* (k) for the partial structure factors
S2(k) and S,,(k), which appear in the expressions for
C.(k), Cy(k), S..(k), and Syy(k). These can be derived
from Eq. (14) in a manner completely similar to that de-
scribed above for I&P (k), with the result
172
S k)=~ nyv k(KSR (L),

2

(31)
b
S%A(k)=;;—[nzvlhl(k)]zslc{"(k) .

Thus we obtain the continuum approximation

(’51"2)1/2 f?Oh(k)_”zvlhl(k)fSOh(k)

CeMh= b X, +xnyvh (k) ’
SCCCA(k)=;12—[x2+x1n2v1h1(k)]25‘1:1“(k) , (32)
SEA(K)=0 .
Therefore,

IS (k)=CEA (k)2 SSAK) (33)

which is Eq. (25) in continuum approximation. Note that
SGR(k)=0 so that the intensity I} (k) is completely due
to concentration fluctuations.

C. CGO in CS2

Here we apply the general results for S, (k,®) [cf.
Egs. (4) and (22)] and S, (k) [cf. Eq. (24)] to the C¢-CS,
mixtures considered in this paper. First we evaluate the
coherent angular averaged molecular form factors
fj°°h(k) of Eq. (10). For a C¢y molecule (j=1) one has

%‘;‘;(k)=60bcj0(krc) , (34)

with b-=6.646 fm the coherent scattering length of one
carbon atom, r-=0.354 nm the nuclear cage radius of
Ceo [13], and j,(x) the spherical Bessel function of order
0. For a CS, molecule (j=2) one has the form factor

F%?s“z(k)=bc+2bsjo(krcs) , (35)

with bg=2.847 fm the coherent scattering length of one
sulphur atom and rcg=0.155 nm the distance between
the C and S nuclei in the CS, molecule.

Next we consider the rotational form factors F;°(k,?)
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of Eq. (20). Due to the almost perfect spherical symme-
try of a Cg, molecule, one has for k <25 nm ™! [14] that

F2 (k,t)=0 . (36)

Coo

For CS, one finds for =0 that
b3
Fg’s'z(k)=27)7[1+j0(2krcs)—2j3(krcs)] , (37)

where F rC"S‘Z(k) vanishes proportional to k* for k —0. We

assume that the ellipsoidal shaped CS, molecules cannot
rotate easily in the mixture so that we take
Fg’stz(k,t)=F S’s‘z(k) for all times ¢ relevant for our experi-

ment. Thus, in fact, we have for the experimentally ob-
served dynamic structure factor

Sexpt(k,w)=[Cc(k)]zScc(k,cu)+[CN(k)]ZSNN(k,a))
+xcst’C"st2(k)Sg§'z‘s(k,w) ) (38)
with corresponding intensities
Sexpt(k)=[Cc(k)]ZSCC(k)-F[CN(k)]2SNN(k)
+xcs, E’S‘Z(k). (39)

Therefore S, (k,») can be described as a sum of three
Lorentzian lines in o,

Seoullo) =L ()~ Ty (2B
expti 0 (k) +o? v oy(k)+o?
+Icsz(k)—wc—sz(k7)/1; , (40)
wcsz(k) +ow
with intensities I(k)=[C,(k)]*S,.(k), Iy(k)

=[Cn(k)PSyy(k), and Ics,(k)=xcs F&, (k) and half-
widths @ (k), wy(k), and ocg (k), which are the decay
rates of (coherent) concentration fluctuations (c¢) and to-
tal number fluctuations () and the (incoherent) density
fluctuations of one CS, molecule (CS,).

The partial structure factors S;;(k) (i,j =1,2) that ap-
pear in the expressions for C.(k) and Cy(k) [Eq. (17)],
and S, (k) and Syy(k) are calculated with the Percus-
Yevick theory for binary mixtures of hard spheres. We
determine the effective hard sphere molecular diameters
0c,=0.91 nm and o¢s,=0.42 nm as before [S]. The

relevant number densities nc,, and ncg and mole frac-
tions are summarized in Table II. The partial structure

TABLE II. Properties of the two Cg,-CS, mixtures.

Cgo content 7.9 mg/ml 4.0 mg/ml
Property
neg (nm™3) 6.7%x1073 3.4%x1073
nes, (nm™3) 10.0 10.0
Xcg, 6.7X107* 3.4%X107*
b (fm) 7.883 7.828
DE (m%s™!) 1.5x107° 1.5x107°
Dész (m2s™1) 7X107° 7X107°
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FIG. 6. Static structure factors as functions of k from the
Percus-Yevick theory for a hard sphere mixture representing
C60 in CSZ at 7.9 mg/ml. (a) S]l(k),Szz(k),Slz(k) [Cﬁ Eq. (14)];
(b) S (k),Syn(k). Note that S;(k)=S.(k)=1 and
S22(k)zSNN(k).

factors S;;(k) (i,j=1,2) and S, (k) and Syy(k) are plot-
ted in Fig. 6 for the mixture with 7.9 mg/ml. Since
x;=xc, =6.7X107* is very small, one sees that

S11(k)=14+0(x,) and S, (k)=1+4+0(x,) are practically
indistinguishable from 1 (cf. Fig. 6). However, deviations
of S,,(k) from zero are clearly observed since for x; —0,
S1,(k) is proportional to x9-> (=0.026). These significant
deviations are enlarged in Fig. 7, where we show the re-
duced cross correlation function

0.5

X
21 sk, 41)

sp(k)=—

X1

which is independent of x; for small x; (including x; =0).
In Fig. 6, Syy(k) and S5, (k)=Syy(k)+0(x,) [cf. Eq.
(13)] are determined almost completely by the CS, parti-
cles and show the features typical for a dense single-
component fluid of particles (x,=0), i.e., a sharp max-
imum near k =2m/0cs, =15 nm ™!, while Syy(k) <<1 for
k << 277'/ch2 due to the low compressibility of a dense
fluid. We have shown before that the theoretical Syy(k)
given in Fig. 6(b) agrees very well with the experimental

Syn(k) obtained from neutron diffraction on pure CS,
[5]. The intensities I, (k), In(k), and Ics, (k) are plotted
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75—

s,,(K)
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FIG. 7. Reduced hard sphere cross correlation functions
s12(k) [cf. Eq. (41)] as functions of k for Cg in CS; at 7.9 mg/ml.
Solid curve, Percus-Yevick theory, dashed curve, continuum ap-
proximation [Eq. (31)].

in Fig. 8(a). Using that x, is small one finds that

LK) =L { £ (k) — SO0 (k[ Sy (k) +515(K) ]}

¢ _bz{ 1 f3 [Swy s1p(k) ]}
+0(x?),

IN(k)=Z%fg“‘(k)zSNN(k)-f-O(xl) , (42)

Icsz(k)ng’stz(k)"'o(xl) ’

where s,,(k) is defined by Eq. (41) and correction terms
of higher order in x; are irrelevant here. For small k,
Fh(k)=50.6b[1—(kres)?/6+0(k*)] and  f5P(k)
=1.565b[1—0.077(krcg)*+0(k*)] [cf. Egs. (34) and
(35) and Table II]. Thus, as one observes in Fig. 8, I.(k)
is the dominant contribution to the total intensity for
k<5 nm~!. For k >5 nm~!, Iy(k) starts to dominate
due to the decrease of I (k) and the increase of Syy(k)
(cf. Fig. 6).

The incoherent intensity I csz(k)~k4 is negligible for

small k and contributes significantly to the total intensity
only for kK >20 nm ™! (cf. Fig. 8). One also sees in Fig. 8
that the intensity I (k) is reasonably well represented by
its continuum approximation I&P (k) [cf. Eq. (29), with
SCA(k)=1]. The reason is that both are dominated by
the same leading contribution x,[f$"(k)/b]%. The
significant difference between I.(k) and IEP(k) is due,
first, to the fact that for I.(k), Syy(k)70 (cf. Fig. 6)
while S5a(k)=0 for &2 (k) [cf. Eq. (32)]. Second, s,,(k)
in Eq. (41) differs from its continuum approximation
s$M(k), given by Egs. (31) and (41), ie,
s (k)=n,v h, (k). This is shown in Fig. 7 for s,,(k),
where also s (k) is plotted. One has for small k
I(k)=I(0)[1—L(kR,)*+0O(k"], .
ISME)=ISMO)[1—LHKRSA+0 (kD] ,

where R, is by definition the radius of gyration of the Cg
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FIG. 8. (a) Neutron intensities I (k) and (b) halfwidths w(k)
as functions of k for a hard sphere mixture representing Cg, in
CS, at 7.9 mg/ml. (a) Solid curves, I.(k), Iy(k), and Icsz(k)
from Percus-Yevick theory; dashed curve, I.(k) from the con-
tinuum approximation [cf. Eq. (29)]. (b) Solid curves, wy(k),
wcsz( k), and w.(k) from the Enskog theory.

molecule [10]. We find I,(0)=1.11 and IE2(0)=1.32 (cf.
Fig. 8), and R, =0.994r and RS*4=0.995r(, with r¢ the
nuclear cage radius of Cg,. It appears therefore that the
continuum approximation describes the gyration radius
R, in I (k) very accurately (within 1%), but not the ini-
tial value I,(0).

We have calculated the half-widths o (k),0y(k), and
wcsz(k) of Eq. (40) using the revised Enskog theory for
binary mixtures of hard spheres [2]. To do so, one needs
the partial structure factors S,-j(k), which we take from
the Percus-Yevick theory. The results are shown in Fig.
8(b). One sees that for all k the decay rates of concentra-
tion fluctuations w,(k) are much smaller than those for
fluctuations in the total density wy(k). Furthermore, for
k<13 nm ! the incoherent decay rate ocs,(k) of one CS,

molecule is smaller than the decay rate of fluctuations in
the total density since wy(k)=~awcs,(k)/Syy(k) [1]. For

k>13 nm™ !, oy(k) and @cs,(k) become of the same or-
der. For k <13 nm™! the frequencies w,(k) and wcsz(k')
are proportional to k2 and given by
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w.(k)=DEk?, mcsz(k)zpfészk2 , (44)

where the Enskog diffusion coefficients DF and Dé‘;s2 are
for x, —0 given by

DE_ 3(kBT)0.5
¢ 8nyohgn(op)2mu)® )
. 3(kpT)%3
Dgs, = 2 0.5’
81,0382 (05,)(2Tm,)

where the label 1 refers to C¢y and 2 to CS,, u is the re-
duced mass (u~'=mi'+m; "), and g,;(r) are the par-
tial equilibrium pair correlation functions. Using the
Percus-Yevick theory for g,(0,) and g,,(0,,), we find
DE=1.5X10"° m?s~! and Dgs2 =7X10"° m?s”!. One
notes that the translational motion of one CS, molecule
( ~Dgsz) is about five times faster than that of a C¢, mol-

ecule (~DE).
We have performed similar theoretical calculations for
the 4.0-mg/ml mixture with x; =xc_=3.4X10"% The

results for the intensities Iy(k) and Ics (k) and half-
widths w (k), wy(k), and cocs2(k) are practically the

same as for the 7.9-mg/ml mixture with x; =6.7X 1074,
since all these quantities are independent of x, for x, —0.
The only (trivial) difference is in the intensity I.(k), since
I.(k) is proportional to x .

D. Comparison with experiment

The intensities I.(k) of the narrow Lorentzian in
Sexpt(ks@) [cf. Eq. (3)] obtained experimentally for the
4.0- and 7.9-mg/ml solutions agree well with the I (k)
calculated from the Percus-Yevick theory, as shown in
Fig. 3. For both solutions the corresponding experimen-
tal half-widths w,(k) are in reasonable agreement with
the o (k) calculated from the revised Enskog theory, as
can be seen in Figs. 4 and 5. Hence we identify the nar-
row Lorentzian in S, (k,®) of Eq. (3) with the contribu-
tion in Se,p,(k,®) of Eq. (40) due to concentration fluc-
tuations (labeled c). Note, however, that there is a
significant difference in diffusion coefficients (cf. Fig. 5).
In experiment one finds . (k)=Dgk? with
DS=(1.04:i:O.01)><10’9 m?s~ !, while in the Enskog
theory w,(k)=DZEk? with DE=1.5X10""m?s~ 1.

The intensity Iy(k) of the broad Lorentzian in
Sexpt(Ks@) [cf. Eq. (3)] obtained experimentally for the
7.9-mg/ml solution is in agreement with the theoretical
Iy(k) calculated for the total number fluctuations, as
shown in Fig. 3(a). In particular, the strong increase of
the experimental Iy (k) for kK > 10 nm™! is well described
by Iy(k) from theory. We remark that the theoretical
Iy(k) [cf. Eq. (42)] is determined only by fg’shz(k), which
is known exactly, and by Syy(k), which agrees by itself
with experimental results of pure CS,. Furthermore, the
incoherent intensity Ics, (k) is much smaller than Iy(k)

[cf. Fig. 8(a)] and shows a very different k behavior com-
pared to Iy(k). Therefore we are sure that the broad
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Lorentzian in S, (k,®) is due to total number fluctua-
tions in the mixture and not to incoherent density fluc-
tuations of single CS, molecules.

The experimental half-widths wy (k) (cf. Fig. 4) appear
to be much smaller than the Enskog results for wy (k) [cf.
Fig. 8(b)]. In fact, the experimental wy(k) behave more
like the theoretical half-widths a’csz(k) of incoherent CS,
fluctuations, as shown in Fig. 4. This suggests that for
the CS, solvent wy(k)=~wcs (k) not only for k>13

nm™!, but also for k <12 nm ™.

unclear at present.

The reason for this is

IV. DISCUSSION

The experimental dynamic structure factor S, (k,)
obtained from neutron scattering for 1 <k <15 nm™~! for
dilute suspensions of Cqy molecules in a dense CS, liquid
consists of one narrow Lorentzian in o with intensity
I.(k) and half-width o (k) due to concentration fluctua-
tions (c) and a broad Lorentzian with area Iy(k) and
half-width wy(k), due to fluctuations in the total number
density N [cf. Eq. (3) and Figs. 3-5]. The incoherent
scattering due to the CS, molecules proportional to
I csz(k) in Eq. (40) for S, (k,) is too weak to be detect-
ed in this k region. We first discuss the results for the in-
tensities I.(k) and Iy(k). We find that the k behavior of
I.(k) and Iy(k) can be understood very well on the basis
of the Percus-Yevick theory for the partial structure fac-
tors S;;(k) of binary mixtures of hard spheres of species
j=1,2, which have neutron form factors f$°"(k) and
FS$°R(k) as the actual Cgy and CS, molecules, respectively
[cf. Fig. 3(a)]. Like one usually does in small-angle neu-
tron scattering (SANS), we also present our data for I_(k)
in a “Guinier plot” [15] (cf. Fig. 9), i.e., we show
In(I(k)) as a function of k2, for which one has
In(I(k))=In(1(0))—(kR,)*/3+0(k*) at small k [cf.
Eq. (43)]. One observes in Fig. 9 that In(7(k)) is linear in
k? up to about k2=30 nm~2. In the inset of Fig. 9 we

- an |
g O »Mo 1

16

0.1F

f L s L P

100 150

0.01

K3 (nm?)
FIG. 9. Neutron intensity I, (k) as a function of k2 for Cg in
CS, at 7.9 mg/ml. Experiment, MCO002 (H), MC004 (®), and

PGO002 (V); Percus-Yevick theory, solid line. In[I(k)] is linear
in k2 up to k2=30 nm 2 (inset).
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show a best linear fit in this k? region leading to
R,=0.35£0.02 nm, in perfect agreement with the nu-
clear cage radius r,=0.355 nm of Cg, reported in the
literature [13]. We remark that R, =r within 1%, also
in the continuum approximation, as discussed in Sec.
III C. Recently, Affholter et al. [16] studied by SANS
the static structure of dilute suspensions of Cg, in liquid
CS, at room temperature and concentrations of 7.75 and
5.45 mg/ml, which are comparable to ours. They report
Guinier plots for In(I,(k)) and k*<10 nm~2 and derive
from the slope a radius R, =0.382 nm. Using their data
for In(I.(k)) versus k? in the linear k2 region, we find
that the uncertainty in R, is at least 10%. Therefore
Affholter’s result for R, (0.382+0.04 nm) is consistent
with the value found here (0.35+0.02 nm).

Second, we discuss the results for the half-widths w_ (k)
of the narrow Lorentzian in S, (k,©). We find that
w.(k) is quadratic in k, w.(k)=Dgk? with a diffusion
coefficient Dg=(1.04+0.01)X 10~ m?s™!, significantly
smaller than the Stokes-Einstein value Dgg=1.3X107°
m?s™! [Eq. (1)] and the Enskog value DEF=1.5%x10"*
m?s™ 1. It appears therefore that for C¢, molecules in CS,
both descriptions have some relevance but are not very
accurate.

To investigate whether such differences are systematic
we consider the diffusion coefficients Dg of Cq, molecules
in toluene, benzene, and carbon tetrachloride obtained re-
cently by Castillo, Garza, and Ramos from the Taylor
dispersion technique [17]. In Table III we compare Dy
with the Stokes-Einstein values Dgp [Eq. (1) with 7 from
Table III] and the Enskog values DF [Eq. (45)] using

0c60=0.91 nm, 0'C52=O,42 nm, O uene=0.54 nm,
abenzene:o-Sl nm, and UCCI4=O'53 nm. Here the

effective hard sphere diameters of toluene, benzene, and
CCl, are rough estimates using that for typical liquids the
reduced density no3=0.9. One observes in Table III that
Dy of benzene is exceptionally large. The reason for this
is unclear. The theoretical Enskog values DCE of toluene,
CCl,, and CS, are systematically larger than the experi-
mental values Dg. For toluene and CCl,, Stokes-Einstein
Dgg is somewhat smaller than Dg while for Cs,, Dgg is
larger than Dg. It appears systematically that Stokes-
Einstein agrees better with experiment than Enskog but
both descriptions are insufficient. It would clearly be of
interest to consider the continuous interactions of the Cg,
molecules with the solvent particles to possibly under-
stand the differences. For C¢, in CS, we expect attractive
interactions of Cg with CS, that make the diffusion
coefficient Dg smaller than Stokes-Einstein Dgg due to a
larger drag of the C¢, molecules. Attractive interactions
between Cg, and CS, are indicated by very recent inter-
mediate angle neutron diffraction experiments on Cg,-CS,
systems [18] and are consistent with the anomalous large
solubility of C¢, in CS, [6]. For Cg, in toluene the in-
teractions are negligible while for C¢, in CCl, they are
possibly repulsive. We remark that interactions between
two Cg, molecules in the CS, solvent are irrelevant. This
follows from the fact that w (k)=Dgk? is perfectly quad-
ratic in k and Dy is independent of the Cqy concentration
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TABLE III. Stokes-Einstein Dgz and Enskog DF and experimental diffusion coefficients Dg for Cq,
in various solvents.
T n Dsg Df Dy
Solvent (K) (1073 kgm™'s™!) (107° m?s™1) (107° m?s™1) (107° m2s™1)
toluene 303 0.526 0.93 1.5 0.97+0.04*
benzene 303 0.564 0.86 1.4 2.38+0.03%
CCl, 303 0.843 0.57 1.1 0.80+0.12*
CS, 293 0.363 1.30 1.5 1.0410.01
*Reference [17].
(cf. Fig. 5). detector angles ¢ as found in a new calibration experi-

Finally, we note that the half-width wy(k) of the broad
Lorentzian in S, (k,®) is much smaller than that calcu-
lated from the Enskog theory [cf. Figs. 4 and 8(b)]. It is
clearly important to test the validity of the Enskog theory
for wy(k) for one-component molecular fluids, which
have not been done so far.

A brief report of a part of the present experiment has
been given before [5]. There we use the (at that time)
standard ISIS tables for the detector angles ¢ of the IRIS
spectrometer to convert the spectra from constant ¢ to
constant wave number k. In the present paper we use the

ment, which are slightly different. This is the source of
small but systematic differences for the half-widths o (k)
presented before [5] and shown here as part of the results.
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