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Nash equilibrium seeking under partial-decision information over
directed communication networks

Mattia Bianchi and Sergio Grammatico

Abstract— We consider the Nash equilibrium problem in a
partial-decision information scenario. Specifically, each agent
can only receive information from some neighbors via a
communication network, while its cost function depends on the
strategies of possibly all agents. In particular, while the existing
methods assume undirected or balanced communication, in this
paper we allow for non-balanced, directed graphs. We propose
a fully-distributed pseudo-gradient scheme, which is guaranteed
to converge with linear rate to a Nash equilibrium, under strong
monotonicity and Lipschitz continuity of the game mapping.
Our algorithm requires global knowledge of the communication
structure, namely of the Perron-Frobenius eigenvector of the
adjacency matrix and of a certain constant related to the
graph connectivity. Therefore, we adapt the procedure to setups
where the network is not known in advance, by computing the
eigenvector online and by means of vanishing step sizes.

I. INTRODUCTION

Game theory is a powerful tool to model and control
the decision-making process of selfish agents, that aim at
optimizing their individual, but inter-dependent, objective
functions. This scenario arises in several relevant engineering
applications, such as congestion control in traffic networks
[1], smart-grid management [2], demand response in com-
petitive markets [3] and analysis of social dynamics [4].
Often, the goal (either of the agents or of a coordinator
that pursues network regulation by imposing incentives or
behavioral rules) is the attainment of a Nash equilibrium
(NE), a joint strategy from which it is not convenient for
any agent to unilaterally deviate.

In fact, a recent part of the literature focuses on designing
distributed NE seeking algorithms, where the computational
effort is partitioned among the agents [5]–[7]. Nonetheless,
typically these methods still assume the presence of a central
coordinator that can broadcast some data – for instance, the
average of all the agents’ strategies, in the case of aggregative
games [7]. Unfortunately, this requirement is impractical in
some domains [8]. To overcome this limitation, we consider
fully-distributed schemes, where the agents only rely on the
information locally exchanged over a network, via peer-
to-peer communication. In particular, the main challenge
is that the cost function of each agent may depend on
the strategies of some other non-neighboring agents. One
example is the Cournot competition model described in [9],
where the profit of each of a group of firms depends not
only on its own production, but also on the total supply,
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a quantity not directly accessible by any of the firms. To
remedy the lack of knowledge, each agent can estimate and
eventually reconstruct the strategies of all the competitors
(or an aggregation value), based on the data received from
its neighbors.

Such a partial-decision information setup has only been
introduced very recently. Most of the available results resort
to (projected) pseudo-gradient and consensus dynamics [9]–
[14]. Alternatively, schemes based on a proximal-point iter-
ation were studied in [15]; a fully-distributed fictitious play
algorithm was proposed in [8]. These approaches assume
undirected communication, which might be unrealistic, e.g.,
in wireless systems, if the agents send signals at different
power levels, implying unilateral transmission capability.
Fewer works deal with asymmetric networks. Under the
assumption of balanced weights, continuous-time dynamics
were proposed in [16] for aggregative games; most recently,
we also addressed generally-coupled-cost games via a fixed-
step forward-backward method [17]. To the best of our
knowledge, the only discrete-time NE seeking algorithm that
takes into account non-balanced digraphs is the asynchronous
gossip-based scheme in [18].

Even in the context of distributed optimization, most
algorithms are designed with doubly stochastic adjacency
matrices, which enjoy several convenient properties, not least
that the average of the agents’ estimates is preserved over
time. However, doubly stochastic weights cannot be easily
assigned over directed networks. An alternative is to rely on
column stochastic graphs, which maintain the average invari-
ance and only require the agents to know their out-degree.
Yet, this is impractical in setups where the agents broadcast
some information, but ignoring which of the other nodes can
receive it; or if some of the communication links can fail.
In contrast, distributed design of row stochastic matrices is
straightforward, as it suffices for each agent to locally assign
appropriate weights to the incoming information. However,
the use of row stochastic graphs comes with technical chal-
lenges, since many properties of doubly stochastic matrices
are lost. Of major interest for this work is the approach in
[19]: to correct the imbalance caused by employing row
stochastic weights, the algorithm exploits the information
contained in the Perron-Frobenius (PF) eigenvector of the
adjacency matrix, which is computed online.

Contribution: Motivated by the above, we design the first
synchronous, fully-distributed algorithm to compute a NE
over directed non-balanced communication networks. Our
contributions are summarized as follows:
• We prove that any row stochastic primitive matrix with
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positive diagonal enjoys a contractivity property, in a
Hilbert space weighted by its PF eigenvector. We later
exploit this general result to prove convergence of our
equilibrium seeking dynamics (§II);

• We design a fully-distributed, fixed-step gradient algorithm
to seek a NE over strongly connected directed graphs,
which is guaranteed to converge with liner rate under
strong monotonicity of the game mapping. In our method,
the pseudo-gradient component is divided by the entries of
the PF eigenvector of the network. Although this technique
has already been adopted in distributed optimization [19],
we give a new, powerful, monotone-operator-theoretic in-
terpretation, which greatly simplifies our analysis (§III-A);

• We show that convergence is retained even if the graph is
not known in advance and the PF eigenvector is computed
online, provided that a small-enough step size is chosen.
Since computing the upper bound distributedly can be
troublesome, we also provided convergence guarantees for
vanishing steps (§III-B).

Basic notation: R>0 denotes the set of positive real
numbers. 0n (1n) ∈ Rn denotes the vector with all elements
equal to 0 (1); In ∈ Rn×n denotes an identity matrix; we
may omit the subscripts if there is no ambiguity. eni ∈ Rn
denotes a vector with all elements equal to 0 except the
i-th element, which is 1. For a function g : Rn → R,
∇xg(x) denotes its gradient. For a matrix A ∈ Rm×n, [A]i,j
represents the element on row i and column j; σmin(A) =
σ1(A) ≤ · · · ≤ σn(A) =: σmax(A) are its singular values.
If A ∈ Rn×n is symmetric, λmin(A) = λ1(A) ≤ · · · ≤
λn(A) =: λmax(A) denote its eigenvalues; A � 0 stands for
positive definite matrix. ⊗ denotes the Kronecker product.
diag(A1, . . . , AN ) denotes the block diagonal matrix with
A1, . . . , AN on its diagonal. Given P � 0, 〈x, y〉P = x>Py
and ‖x‖P =

√
x>Px denote the P -weighted Euclidean inner

product and norm, respectively; ‖A‖P := supx 6=0
‖Ax‖P
‖x‖P is

the P -induced norm of A ∈ Rn×n; we omit the subscripts
if P = I . HP := (Rn, 〈· , ·〉P ) is the Hilbert space obtained
by endowing Rn with the P -weighted inner product.

Operator-theoretic notation: An operator A : Rn → Rn is
(µ-strongly) monotone in HP if 〈A(x) − A(y), x − y〉P ≥
0 (≥ µ‖x − y‖2P ), for all x, y ∈ Rn. A is `-Lipschitz
continuous in HP if ‖A(x) − A(y)‖P ≤ `‖x − y‖P , for
all x, y ∈ Rn; if ` ≤ 1 (` < 1), A is nonexpansive
(contractive) in HP . We omit the indication “in HP ” if
P = I . projPS : Rn → S is the Euclidean P -weighted
projection onto a closed convex set S ⊆ Rn, i.e. projPS (x) :=
argminy∈S ‖y − x‖P ; we omit the superscript if P = I .

II. MATHEMATICAL SETUP

A. The game

We consider a set of agents, I := {1, . . . , N}, where
each agent i ∈ I shall choose its decision variable (i.e.,
strategy) xi from its local decision set Ωi ⊆ Rni . Let
x := col((xi)i∈I) ∈ Ω denote the stacked vector of all the
agents’ decisions, with Ω := Ω1×· · ·×ΩN ⊆ Rn the overall
action space and n :=

∑
i∈I ni. The goal of agent i ∈ I is to

minimize its objective function Ji(xi, x−i), which depends
both on the local variable xi and on the decision variables of
the other agents x−i := col((xj)j∈I\{i}). The game is then
represented by the inter-dependent optimization problems

∀i ∈ I : argmin
yi∈Ωi

Ji(yi, x−i). (1)

The technical problem we consider here is the distributed
computation of a NE, as formalized next.

Definition 1: A collective strategy x∗ = col ((x∗i )i∈I) is
a Nash equilibrium if, for all i ∈ I,

Ji
(
x∗i , x

∗
−i
)
≤ inf{Ji

(
yi, x

∗
−i
)
| (yi, x∗−i) ∈ Ω}.

Next, we postulate common regularity assumptions for the
constraint sets and cost functions [14, Ass. 1], [10, Ass. 1].

Standing Assumption 1: For each i ∈ I, the set Ωi is non-
empty, closed and convex; Ji is continuous and Ji (·, x−i)
is convex and continuously differentiable for every x−i. �

Under Standing Assumption 1, a collective strategy x∗ is
a NE of the game in (1) if and only if it is a solution of the
variational inequality VI(F,Ω)1 [20, Prop. 1.4.2], where F
is the pseudo-gradient mapping of the game:

F (x) := col ((∇xiJi(xi, x−i))i∈I) . (2)

Equivalently, x∗ is a NE if and only if

∀i ∈ I : x∗i = projΩi
(x∗i − βi∇xiJi(x

∗
i , x
∗
−i)), (3)

for arbitrary positive scalars βi’s [20, Prop. 1.5.8]. A suf-
ficient condition for the existence and uniqueness of a NE
is the strong monotonicity of the pseudo-gradient [20, Th.
2.3.3], as postulated next. This assumption has always been
used for NE seeking under partial-decision information with
fixed step sizes, e.g., [14, Ass. 2], [11, Ass. 4], [10, Ass. 2].

Standing Assumption 2: The pseudo-gradient mapping F
in (2) is µ-strongly monotone and `0-Lipschitz continuous,
for some µ, `0 > 0. �

B. Network communication

The agents can exchange information with some neighbors
over a directed communication network G(I, E). The ordered
pair (i, j) belongs to the set of edges, E , if and only if
agent i can receive information from agent j. We denote
W ∈ RN×N the weighted adjacency matrix of G and
wi,j := [W ]i,j , with wi,j > 0 if (i, j) ∈ E , wi,j = 0

otherwise; di =
∑N
j=1 wi,j and Ni = {j | (i, j) ∈ Ek} the

in-degree and the set of in-neighbors of agent i, respectively.
Standing Assumption 3: The communication graph G is

strongly connected. �
Standing Assumption 4: The adjacency matrix W satis-

fies the following conditions:
(i) Self-loops: wi,i > 0 for all i ∈ I;

(ii) Row stochasticity: Wk1N = 1N . �
Remark 1: Standing Assumption 4 can be fulfilled on any

digraph, if the agents can access their own in-degree, by
locally assigning weights to the received information. �

1Given a set S ⊆ Rm and a mapping ψ : S → Rm, the VI(ψ, S) is the
problem of finding ω∗ ∈ S such that 〈ψ(ω∗), ω−ω∗〉 ≥ 0, for all ω ∈ S.
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Under Standing Assumptions 3-4, by the PF theorem,
W has a simple eigenvalue in 1; all the other (complex)
eigenvalues of W have absolute value strictly smaller than
1. Besides, there exist a vector q = col((qi)i∈I) such that

q ∈ RN>0, q>W = q>, 1>Nq = 1. (4)

We call q the (left) Perron-Frobenius eigenvector of W . Let

Q := diag((qi)i∈I). (5)

Clearly, Q � 0. Unless W is doubly stochastic, W is not
nonexpansive in HI , i.e., σmax(W ) > 1. This is one of
the main technical challenges to face when studying fixed-
point iterations over directed graphs [18]. To deal with this
complication, it was shown in [21, Lemma 1] that W is
nonexpansive (averaged, indeed) in HQ. Next, we provide
an additional contractivity result, which we exploit later on.

Lemma 1: For any y ∈ RN , ‖W (y−1Nq
>y)‖Q ≤ σ̄‖y−

1Nq
>y‖Q, where σ̄ := σN−1(Q

1
2WQ−

1
2 ) < 1. �

If W is also column stochastic, Lemma 1 holds with q =
1
N 1N and Q = IN , and we recover a well-known property
of doubly stochastic matrices [17, Eq. 4].

Remark 2: [19, Lemma 1] states that there exist a norm
and σ̄ > 0 such that the property in Lemma 1 holds; instead,
we explicitly characterized both the norm and σ̄, which
proves very advantageous in our analysis, see §III. �

C. Partial-decision information scenario

In our setup, agent i ∈ I can only access its own feasible
set Ωi and an analytic expression of its own cost function
Ji. However, the agents cannot evaluate the actual value of
the cost Ji(xi, x−i) (or the partial derivative ∇xi

Ji(xi, x−i)),
since they cannot access the strategies of all the competitors
x−i. Instead, the agents only rely on the information ex-
changed locally with their neighbors over the communication
graph G. To cope with the lack of knowledge, the general
assumption for this partial-decision information scenario
is that each agent keeps an estimate of all other agents’
actions [14], [9], [11]. Then, the agents aim at reconstructing
the actual values, based on the data received from their
neighbors. We denote xi = col((xi,j)j∈I) ∈ Rn, where
xi,i := xi and xi,j is agent i’s estimate of agent j’s action,
for all j 6= i; xj,−i = col((xj,l)l∈I\{i}); x = col((xi)i∈I).
As in [14, Eq.13-14], we define

Ri :=
[

0ni×n<i
Ini

0ni×n>i

]
, (6)

where n<i :=
∑
j<i,j∈I nj , n>i :=

∑
j>i,j∈I nj . In simple

terms, Ri selects the i-th ni-dimensional component from
an n-dimensional vector, i.e., Rixi = xi,i = xi. We denote
by R := diag ((Ri)i∈I); thus, we have x = Rx. Moreover,
we define the extended pseudo-gradient mapping F as

F (x) := col ((∇xiJi (xi,xi,−i))i∈I) . (7)

Lemma 2 ([22, Lemma 3]): The mapping F in (7) is `-
Lipschitz continuous, for some ` ∈ [µ, `0]: for any x,y ∈
RNn, ‖F (x)− F (y)‖ ≤ `‖x− y‖. �

We remark that in (7), each agent i evaluates its partial
gradients ∇xi

Ji (xi,xi,−i) on the local estimate xi,−i, not

on the actual strategies x−i. Only when the estimates of all
the agents coincide with the actual value, i.e., x = 1N ⊗ x,
we have that F (x) = F (x). As a consequence, the mapping
R>F is not monotone, not even under strong monotonicity
of the game mapping F in Standing Assumption 2. Indeed,
the loss of monotonicity is the main technical difficulty
arising in the partial-decision information scenario [14], [10].

III. FULLY-DISTRIBUTED NASH EQUILIBRIUM SEEKING

In this section, we present a pseudo-gradient method
(along with some variants) to seek a NE in a fully-distributed
way. Before going into details, we need some definitions. Let

Q̄ := diag((qiIni
)i∈I), Q := Q⊗ In. (8)

We define the consensus subspace as E = {y ∈ RNn|y =
1N ⊗ y, y ∈ Rn} and its orthogonal complement in HQ as
EQ
⊥ = {y ∈ RNn|(q ⊗ In)>y = 0n}. Thus, any vector of

estimates x ∈ RNn can be written as x = x‖ + x⊥, where
x‖ = projQE(x) = (1Nq

> ⊗ In)x, x⊥ = projQ
EQ
⊥

(x), and
it holds that 〈x‖,x⊥〉Q = 0. Clearly, if the estimates of the
agents x ∈ E, then xi = x for all i ∈ I, namely the estimate
of each agent coincides with the actual collective strategy x.

A. Case 1: Known q and σ̄

Our basic fully-distributed NE seeking algorithm is sum-
marized in Algorithm 1, where α is a fixed step size. Each
agent update its estimates according to consensus dynamics,
then its strategy via a projected pseudo-gradient step. We
remark that each agent computes the partial gradient of its
cost in its local estimate, not on the actual joint strategy x.

Compared to similar pseudo-gradient dynamics proposed
in the literature [10], [17], the novelty of Algorithm 1 is
that the cost related components ∇xi

Ji are weighted by the
reciprocal of the elements qi of the PF eigenvector. This
operation enables convergence on row stochastic graphs, and
in fact it is not necessary for doubly stochastic graphs, for
which q = 1. The idea behind this key modification is that
(W − 1q>) is contractive in HQ, while the game-mapping
F is strongly monotone in HI ; instead, we would like both
properties to hold in the same space. Division by the PF
eigenvector achieves this goal, as we show next. Let

F̄ (x) =: Q̄−1F (x), F̄ (x) := Q̄−1F (x). (9)

Lemma 3: F̄ is µ̄-strongly monotone and ¯̀
0-Lipschitz

continous in HQ̄, for some µ̄, ¯̀
0 > 0; F̄ is ¯̀-Lipschitz

continuous from HQ to HQ̄, for some ¯̀> 0, i.e., for any
x,y ∈ RNn, ‖F̄ (x)− F̄ (y)‖Q̄ ≤ ¯̀‖x− y‖Q. �

Remark 3: Lemmas 1 and 3 provide a general, operator-
theoretic interpretation of the approach in [19], where a
similar technique is used in the context of distributed op-
timization. �

In compact form, Algorithm 1 reads as

xk+1 = projΩ(F(xk)), (10)

where Ω := {x ∈ RNn | Rx ∈ Ω}, W := W ⊗ In and

F(x) := Wx− αR>F̄ (Wx). (11)
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Algorithm 1
Initialization: ∀i ∈ I, set x0

i ∈ Ωi, x0
i,−i ∈ RN−ni .

Iterate until convergence: each agent i ∈ I does:

x̂ki =
∑
j∈Ni

wki,jx
k
j

xk+1
i = projΩi

(x̂ki,i − α
qi
∇xi

Ji(x̂
k
i ))

xk+1
i,−i = x̂ki,−i.

The following Lemma shows a contractivity property of the
operator F and represents the cornerstone we use to prove
convergence of our NE seeking schemes. The result is based
on the strong monotonicity of F̄ in HQ̄ and on Lemma 1.

Lemma 4: Let

Mα :=

[
1−2αµ̄λmin(Q)+α2 ¯̀2 (2α¯̀)σ̄

(2α¯̀)σ̄ (1+2α¯̀+α2 ¯̀2)σ̄2

]
(12)

If the step size α > 0 is chosen such that

ρα := λmax(Mα) = ‖Mα‖ < 1, (13)

then the operator F in (11) is
√
ρα-restricted contractive

in HQ with respect to the consensus subspace E, i.e., for
any x ∈ RNn, y ∈ E, it holds that ‖F(x) − F(y)‖Q ≤√
ρα‖x− y‖Q.
Remark 4: The condition in (13) can always be satisfied

by choosing α small enough; an explicit upper bound can be
obtained as in [17, Lemma 2]. �

Theorem 1: Let α > 0 satisfy the condition in (13). Then,
for any initial condition, the sequence (xk)k∈N generated by
Algorithm 1 converges to x∗ = 1N ⊗ x∗, where x∗ is the
NE of the game in (1), with linear rate: for all k ∈ N,

‖xk − x∗‖Q ≤ (
√
ρα)

k ‖x0 − x∗‖Q.
Proof: By (3), we infer that x∗ is the NE if and only if

x∗ = projΩ(x∗ − αQ−1F (x∗)). Together with Wx∗ = x∗

and F (x∗) = F (x∗), this implies that x∗ is a fixed point
for the iteration in (10). Therefore we can write

‖xk+1 − x∗‖Q = ‖projΩ(F(xk))− projΩ(F(x∗))‖Q
= ‖projQΩ(F(xk))− projQΩ(F(x∗))‖Q
≤ ‖F(xk)−F(x∗)‖Q ≤

√
ρα‖xk − x∗‖Q,

where the second equality follows by Q = Q ⊗ In and
the definition of Ω (note that proj

qiIni

Ωi
= projΩi

), the first
inequality follows by nonexpansiveness of the projection [23,
Prop. 4.16], and the second inequality by Lemma 4.

We note that Algorithm 1 requires a priori knowledge
of the communication graph G, both to compute the PF
eigenvector q and to tune the step size α. In the next
subsection, we relax this hypothesis.

B. Case 2: Online computation of q

When the PF eigenvalue q is not known in advance, it can
be computed online in a distributed fashion. The procedure
is illustrated in Algorithm 2. Each agent i ∈ I keeps an
extra variable q̂i = col((q̂i,j)j∈I), which is an estimate of q,
initialized as the i-th vector of the canonical basis eNi ∈ RN .

Algorithm 2
Initialization: ∀i ∈ I, set x0

i ∈Ωi, x0
i,−i ∈ RN−ni , q̂0

i = eNi .
Iterate until convergence: each agent i ∈ I does:

q̂k+1
i =

∑
j∈Ni

wki,j q̂
k
j

xk+1
i = projΩi

(x̂ki,i − αk(q̂ki,i)
−1∇xi

Ji(x̂
k
i ))

xk+1
i,−i = x̂ki,−i x̂ki =

∑
j∈Ni

wki,jx
k
j .

Notably, each estimate q̂i converges to the real value q. In
fact, the updates in Algorithm 2 can be written compactly as

q̂k+1 = (W ⊗ IN )q̂k, (14)

where q̂ := col((q̂i)i∈I). Therefore, by the PF theorem
(and by Standing Assumptions 3-4), q̂k converges linearly
to (1Nq

> ⊗ IN )q̂0 = 1N ⊗ q. In particular, q̂ki,i → qi. Also,
q̂ki,i > 0 for all k ≥ 0, since q̂0

i,i > 0 and W is nonnegative
with positive diagonal. As such, Algorithm 2 is always well
defined. We first show its convergence for a fixed step size.

Theorem 2: Let α > 0 satisfy the condition in (13), and
αk = α ∀k ∈ N. Then, for any initial condition, the sequence
(xk)k∈N generated by Algorithm 2 converges to x∗ = 1N ⊗
x∗, where x∗ is the NE of the game in (1), with linear rate:
for any ε > 0, there exists K > 0 such that, for all k ∈ N,

‖xk − x∗‖Q ≤ K (
√
ρα + ε)

k ‖x0 − x∗‖Q.
While in Algorithm 2 the PF eigenvector is estimated

online, the upper bound on α in Theorem 2 is still a function
of the network parameter σ̄, which can be difficult to com-
pute distributedly. Upper/lower bounds might be available
for some classes of networks, e.g., unweighted graphs. This
is analogous to [19, Th. 2], where q is computed online, but
the step size depends on global, not easily accessible, infor-
mation. In fact, this notion of fixed but small-enough step
sizes is not uncommon in distributed algorithms literature.

When estimating a step α that satisfies (13) is impossible,
convergence to a NE can still be guaranteed by allowing for
diminishing step sizes. In this case, also the information on
the game (i.e., Lipschitz and monotonicity constants of the
pseudo-gradient) is not needed for the tuning.

Theorem 3: Let (αk)k∈N be a positive nonincreasing se-
quence such that

∑
k∈N α

k =∞ and limk→∞ αk = 0. Then,
for any initial condition, the sequence (xk)k∈N generated by
Algorithm 2 converges to x∗ = 1N ⊗ x∗, where x∗ is the
NE of the game in (1). �

IV. NUMERICAL EXAMPLE: A NASH-COURNOT GAME

We consider the Cournot competition model in [14, §6].
N firms produce an uniform commodity that is sold to m
markets. Each firm i ∈ I = {1, . . . , N} is allowed to
participate in ni ≤ m of the markets; its decision variable is
the vector xi ∈ Rni of quantities of product to be delivered
to each of the ni markets, bounded by the local constraints
0ni ≤ xi ≤ Xi. Let Ai ∈ Rm×ni such that [Ai]k,j = 1 if
[xi]j is the amount of commodity sent to the k-th market
by agent i, [Ai]k,j = 0 otherwise, for all j = 1, . . . , ni,
k = 1, ...,m. Hence, Ax =

∑N
i=1Aixi ∈ Rm, where A :=
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Fig. 1. Distance from the Nash equilibrium, with the step sizes that ensure
convergence (solid lines) and with a fixed step size chosen 400 times bigger
than the theoretical upper bound (dashed lines).

[A1 . . . AN ], are the quantities of product delivered to each
market. Firm i aims at maximizing its profit, i.e., minimizing
the cost Ji(xi, x−i) = ci(xi)−p(Ax)>Aixi. Here, ci(xi) =
x>i Qixi + q>i xi is firm i’s production cost, with Qi � 0;
p : Rm → Rm associates to each market a price that
depends on the amount of product delivered to that market.
Specifically, for k = 1, . . . ,m, [p(x)]k = P̄k -χk[Ax]k,
where P̄k, χk > 0. We set N = 20, m = 7. The market
structure (i.e., which firms participate in each market) is
defined as in [14, Fig. 1]. Therefore, x = col((xi))i∈I) ∈ Rn
and n = 32. We select randomly with uniform distribution
rk in [1, 2], Qi diagonal with diagonal entries in [14, 16],
qi with elements in [1, 2], P̄k in [10, 20], χk in [1, 3], Xi

in [5, 10], for all i ∈ I, k = 1, . . . ,m. This setup satisfies
Standing Assumptions 1-2 [14, §6]. The firms communicate
over a randomly generated strongly connected row stochastic
directed network, but cannot access the production of all the
competitors. We set α ≈ 3 × 10−5 to satisfy the condition
in (13). We compare the performance of Algorithms 1 and
Algorithm 2, the latter both with a fixed (αk = α) and
vanishing step size (αk = 1

k+1 ), in figure 1. Due to the small
α, the schemes with fixed step are almost indistinguishable,
and diminishing step sizes result in faster convergence. The
good performance obtained with vanishing step suggests that
the choice of α is quite conservative. Indeed, Algorithms 1-
2 still converge, and much faster, with a fixed step size 400
times larger than its theoretical upper bound (dashed lines).

V. CONCLUSION

Certain properties of doubly stochastic matrices carry on
to row stochastic matrices, but in a different Hilbert space,
weighted by their left Perron-Frobenius eigenvector. We
exploited one such contractivity property to solve, in a fully-
distributed way, Nash equilibrium problems over directed
networks. Any requirement for global knowledge of the
graph and of the game mapping can be avoided in the case
of vanishing step sizes.

The extension of our results to generalized games, where
the agents share some common constraints, is left as future
research. It would be also valuable to relax our connectivity
and monotonicity assumptions, namely allowing for jointly
connected networks and (strictly) monotone game mappings.

APPENDIX

1) Proof of Lemma 1: By W1N = 1N , it suffices to show
that ‖W−1Nq

>‖Q = σ̄ < 1. Let p := col((
√
qi)i∈I). Then,

‖W − 1Nq
>‖2Q = ‖Q 1

2 (W − 1Nq
>)Q−

1
2 ‖2

= λmax((Q
1
2WQ−

1
2 − pp>)>(Q

1
2WQ−

1
2 − pp>))

(a)
= λmax(Q−

1
2W>QWQ−

1
2 − pp>) := λmax(M − pp>),

where in (a) we used p>p = 1, and M = Q−
1
2W>QWQ−

1
2 .

Since M is symmetric and Mp = p, M has a basis of eigen-
vectors, say {v1, . . . , vN−1, p}, with associate eigenvalues
{s1, . . . , sN−1, 1}. By orthogonality and p>p = 1, it follows
that the eigenvalues of M−pp> are {s1, . . . , sN−1, 0}, with
associate eigenvectors {v1, . . . , vN−1, p}. Since M � 0,
it suffices to show that si < 1, for i = 1, . . . , N − 1.
Seeking a contradiction, let j ∈ {1, . . . , N − 1} such that
sj ≥ 1, and v̄ := Q−

1
2 vj . Thus, we have ‖Wv̄‖2Q =

v>j Q
− 1

2W>QWQ−
1
2 vj = v>j Mvj ≥ v>j vj = v̄Qv̄ =

‖v̄‖2Q. By [21, Lemma 1], it also holds, for some γ > 0,
for any y ∈ RN , that ‖Wy‖Q ≤ ‖y‖Q − γ‖(IN −W )y‖Q.
Hence, by Standing Assumption 3, it must hold that v̄ =
β1N , for some β 6= 0. Equivalently, vj = βp. This is
a contradiction, since p and vj must be orthogonal. The
conclusion follows with σ̄ =

√
λN−1(M). �

2) Proof of Lemma 3: For any x, y ∈ Rn it holds that
〈Q̄−1(F (x) − F (y)), x − y〉Q̄ = 〈F (x) − F (y), x − y〉 ≥
µ‖x − y‖2 ≥ µ

λmax(Q̄)
‖x − y‖2

Q̄
, and that ‖Q̄−1(F (x) −

F (y))‖2
Q̄

= ‖F (x) − F (y)‖2
Q̄−1 ≤ λmax(Q̄

−1)
λmin(Q̄)

`20‖x − y‖2
Q̄

.
Analogously, by Lemma 2, it holds that, for any x,y ∈ RNn,
‖Q̄−1(F (x)− F (y))‖2

Q̄
≤ λmax(Q̄

−1)
λmin(Q) `2‖x− y‖2Q.

3) Proof of Lemma 4: We use the shorthand notation F̄ x
and F̄ x in place of F̄ (x) and F̄ (x). Let x ∈ RNn, y =
1⊗y ∈ E, and x̂ := Wx = x̂‖+x̂⊥ = 1N⊗x̂‖+x̂⊥ ∈ RNn,
with x̂⊥ ∈ EQ⊥ . Thus, we have

‖F(x)−F(y)‖2Q
= ‖(x̂− αR>F̄ x̂)− (y − αR>F̄ y)‖2Q
= ‖x̂‖ − y‖2Q + ‖x̂⊥‖2Q + α2‖R>(F̄ x̂− F̄ y)‖2Q
− 2α〈x̂⊥,R>(F̄ x̂− F̄ y)〉Q
− 2α〈x̂‖ − y,R>(F̄ x̂− F̄ x̂‖)〉Q
− 2α〈x̂‖ − y,R>(F̄ x̂‖ − F̄ y)〉Q

(15)

≤ ‖x̂‖ − y‖2Q + ‖x̂⊥‖2Q + α2 ¯̀2(‖x̂⊥‖2Q + ‖x̂‖ − y‖2Q)

+ 2α¯̀‖x̂⊥‖(‖x̂⊥‖Q + ‖x̂‖ − y‖Q)

+ 2α¯̀‖x̂‖ − y‖Q‖x̂⊥‖Q − 2αµ̄λmin(Q)‖x̂‖ − y‖2Q,

and to bound the addends in (15) we used:
• 3rd, 4th, 5th terms: Lipschitz continuity of F̄ , the Cauchy-

Schwartz inequality, ‖R>v‖Q = ‖v‖Q̄ for any v ∈ Rn,
‖x̂− y‖2Q = ‖x̂‖ − y‖2Q + ‖x̂⊥‖2Q (by orthogonality);

• 7th term: 〈x̂‖ − y,R>(F̄ x̂‖ − F̄ y)〉Q = 〈x̂‖ − y, F̄ x̂‖ −
F̄ y〉Q̄ ≥ µ̄‖x̂‖ − y‖2

Q̄
≥ µ̄λmin(Q̄)‖x̂‖ − y‖2 =

µ̄λmin(Q̄)‖x̂‖ − y‖2Q, and the last equality follows since
x̂‖,y ∈ E, Q = Q⊗ In and 1>Nq = 1.
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Besides, for every x = x‖ + x⊥ ∈ RNn, with x‖ ∈ E
and x⊥ ∈ EQ

⊥ , it holds that x̂ = Wx = x‖ + Wx⊥, where
Wx⊥ ∈ EQ

⊥ (since (q⊗In)>Wx⊥ = (q⊗In)>x⊥ = 0n, by
definition of W and q). Consequently, by Lemma 1 and by
x⊥ = (INn−1Nq

>⊗In)x, we have ‖x̂⊥‖Q = ‖Wx⊥‖Q ≤
σ̄‖x⊥‖Q. Therefore, we can finally write

‖F(x)−F(y))‖2Q ≤
[
‖x‖ − y‖Q
‖x⊥‖Q

]>
Mα

[
‖x‖ − y‖Q
‖x⊥‖Q

]
≤ λmax(Mα)(‖x‖ − y‖2Q + ‖x⊥‖2Q)

= λmax(Mα)‖x− y‖2Q.

4) Proof of Theorem 2: We recast Algorithm 2 as

xk+1 = projΩ(F̂k(xk)),

where F̂k(xk) := Wxk − αR>(Q̄+ Q̃k)−1F (Wxk), and
Q̃k = diag(((q̂ki,i−qi)Ini)i∈I). We noted in §III-B that (Q̄+

Q̃k) = diag((q̂ki,iIni
)i∈I) � 0, for all k; also, q̂ki,i − qi → 0,

for all i ∈ I. Intuitively, Theorem 2 is based on the fact that
F̂k approaches F in (11) asymptotically (i.e., when Q̃k ≈ 0),
hence a contractivity property similar to Lemma 4 can be
ensured for any big-enough k. Specifically, we note that (Q̄+
Q̃k)−1 = Q̄−1−(Q̄(Q̄+Q̃k))−1Q̃k =: Q̄−1−P k, since the
matrices involved are diagonal. Therefore F̂k(x) = F(x) +
αF̃k(Wx), with F as in (11) and F̃k(x) := R>P kF (x).
Analogously to Lemma 3, it can be shown that F̃k is ˜̀k-
Lipschitz in HQ, with ˜̀k := λmax(P k)`

√
λmax(Q)/λmin(Q).

Then, by Lemma 4, F̂ is (
√
ρα + α˜̀k)-restricted Lipschitz

in HQ with respect to E (cf. Lemma 4). Then, analogously
to Theorem 1, it holds, for all k ∈ N, that

‖xk+1 − x∗‖Q ≤ (
√
ρα + α˜̀k)‖xk − x∗‖Q.

We remark that ˜̀k → 0, since Q̃k → 0. Hence, for any
ε > 0, the conclusion follows with K = (

∏k̄
k=1 max{√ρα+

α˜̀k, 1})(√ρα + ε)−k̄, where k̄ := max{k | α˜̀k > ε}.
5) Proof of Theorem 3: Analogously to the proof of

Theorem 2, for all k ∈ N, it holds that ‖xk+1 − x∗‖Q ≤
δk‖xk−x∗‖Q, δk := (

√
ραk+αk ˜̀k), with ραk as in (13) and

(˜̀k)k∈N a vanishing nonnegative sequence. The conclusion
follows because

∏∞
k=0 δ

k = 0, as we show next. By explicit
computation of the quantity in (13) and Taylor expansion
at α = 0, it holds, in a neighborhood V0 of α = 0, that√
ρα = 1 − µ̄λmin(Q)α + o(α), where o(α) is a series of

monomial terms at least quadratic in α. Take k̄ such that, for
all k ≥ k̄, ˜̀k ≤ `∗ < µ̄λmin(Q) for some `∗, αk ∈ V 0 and
δk < 1 (which is always possible, because ˜̀k → 0, αk → 0
and δk = 1 − (µ̄λmin(Q) − ˜̀k)αk + o(αk) if αk ∈ V 0).
Then,

∏∞
k=k̄ δ

k = 0 if and only if
∑∞
k=k̄ − log(δk) = ∞.

In turn, by the asymptotic comparison theorem and by the
Taylor expansion at αk = 0, the latter series diverges if the
series

∑∞
k=k̄ α

k(µ̄λmin(Q) − ˜̀∗) diverges, which holds by
the assumption on (αk)k∈N.
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algorithm for distributed Nash equilibrium seeking,” in 2018 IEEE
Conference on Decision and Control (CDC), 2018, pp. 3561–3566.

[11] C. De Persis and S. Grammatico, “Distributed averaging integral Nash
equilibrium seeking on networks,” Automatica, vol. 110, p. 108548,
2019.

[12] M. Ye and G. Hu, “Distributed Nash equilibrium seeking by a
consensus based approach,” IEEE Transactions on Automatic Control,
vol. 62, no. 9, pp. 4811–4818, 2017.
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