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SUMMARY

This report gives information about the hydrodynamic coefficients of
a box-shaped ship with zero speed of advance in case of pure swaying and
yvawing on shallow water.
In the horizontal plane a harmonically oscillating motion is imposed on
the ship; the hydrodynamic coefficients for the modes of motion of the
ship are determined from the exciting forces in a theoretical as well
as in an experimental way.
The analytical approach is based on an existing theory for wave generators
adapted to the present case; use is made of the strip theory.
The experiments are carried out in the form of forced pure sway and
forced pure yaw tests with zero speed of advance.
The theoretical and experimental results for the hydrodynamic coeffi-
cients are compared with one another. It is found that the system
ship-fluid for swaying can be considered as linear in case of small
oscillations, at least for the frequency range examined. In case of very
small oscillations for yawing the system ship-fluid may also be considered
as linear. Application of the strip theory with neglect of viscous
effects is adequate for swaying on shallow water in case of small/moderae
to high frequencies. In the frequency range considered the strip theory

is not satisfactory for yawing on shallow water.




LOMENCLATURE

VII

1. General conventions

- The subscript s indicates 'ship('s wall)'.

The subscript ke indicates 'keel clearance'.

The subscript fl indicates ‘'fluid!

2. Coordinate systems

OXyz

oyz
Gxyz

3.

space fixed right-handed system of Cartesian coordinates ;

DXy coincides with the water surface at rest; Oxz coincides
with the starting-position (equilibrium position) of the ship's
longitudinal plane of symmetry, the origin 0 is situated at
mid-length of the body; the Oz-axis is positive downwards
(see fig., 2).

0xyz-coordinate system minus OX-axis (see fig. 1).

moving right-handed system of Cartesian coordinates fixed with
respect to the ship; the origin G is the ship's centre of
gravity; Gxz coincides with the longitudinal plane of symme-
try of the ship; the Gy-axis is positive to starboard, the

Gz-axis is positive downwards (see fig. 2).

List of symbols

Symbols not included in the list below are only used at a specific place

and are
a
a. .

1]
a

vy
a , a
Yo vy

explained where they occur.

amplitude of ship motion; amplitude of sway motion; amplitude
of motion of struts of horizontal oscillator.

hydrodynamic coefficient of mass term in i-equation as a re-
sult of motion in j-direction in Gxyz.

added mass for swaying motion (a&y = idem per unit length).
hydrodynamic coupling coefficient of mass (moment of inertia)

term.
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added mass moment of inertia for yawing motion.

hydrodynamic coefficient of damping force in i-equation

as a result of motion in j-direction.

sway damping force coefficient (b}'ry = idem per unit length).
hydrodynamic coupling coefficient of damping moment/force.
vaw damping moment coefficient.

acceleration due to gravity.

water depth at rest (mean water level); nt = h + e with eio.
/=1,

keel clearance underneath ship.

half distance of struts of horizontal oscillator

mass of ship.

usual wave number.

-

wave number satisfying (n - 2)m < m:h < nm (n = 1,2,3,...
mass of ship model for horizontal motion.

fluid pressure.

vaw angular velocity and yaw angular acceleration (= §, &),
time-coordinate.

translational velocitv and transiational acceleration

of origin of body axes G (= y,#).

horizontal velocity component of fiuid (in region R).
horizontal fluid velocity in keel elesrance underneath ship.

amplitude of v

ke’
vertical veloecity component of fiuid (in region R).
surge motion.
sway motion.
position of ship's wall.
heave motion.
coefficients in expression for ¢ (v = 1,2,3,....).
dimensionless expressions for A,

beam of ship (model).

coefficierts in expression for ¢ (n = 1,2,3,....).
dimensionless expressiors for BO’ Bn (n = 1,2,3,....0.




IX

D draught of ship (model).
F horizontsl hydrodynamic force on ship per unit length.

4 centre of gravity of ship (model).

Izz mass moment of inertia of ship (model) around Gz-axis.
L length of ship (model).

N vaw moment in Gxyz.

Nosc exciting harmonic moment.

F fluid region in which the Laplacian is (to be) solved.
pericd of harmonic oscillation.

simple-harmonic function of time.

T

T

U unity step function.

Y sway force in Gxyz.

Y exciting harmonic (lateral) force.

Y amplitudes of cosine force components as measured in strut
1t and 2 of the horizontal oscillator.

Y1,const.’ constant force components as measured in strut 1 and 2 of

Y the horizontal oscillator.
2,const.

Y1,si’ Y2,si amplitudes of sine force components as measured in strut
1 and 2 of the horizontal coscillator.

8 phase difference between periodic motion of both the struts
and motion of G.

B phase difference between fluid motion in keel clearance and
ship motion.

p specific mass density of fluid.

) Kk harmonic function.

v, ¥, ¥ vaw angle, yaw angular velocity and yaw angular acceleration.

¥ amplitude of (pure) yaw motion.

w circular frequency.

) velocity potential.

) velocity potential resulting from motion of mass of water

underneath ship.

velocity potential resulting from motion of ship.







GENERAL TINTRODUCTION

Ships are becoming larger and larger; as a consequence berthing
facilities have to be newly constructed or adapted to the larger units.
Up to now reliable design criteria, based on a scientific foundation,
are scarcely available: the lacking of good design criteria is the most
important reason for making researches into the possibilities of an
experimental and /or theoretical determination of the impact forces on
berthing facilities.

As berthing manoeuvres and impact phenomena take place mainly in the
horizontal plane and on shallow water, only the sway and yaw motiong of
the ship on shallow water are of importance.

If the impact forces are determined in a theoretical way knowledge of
the so-called hydrodynamic coefficients is necessary. If the impact for-
ces are determined in an experimental way insight into the behaviour of
the hydrodynamic coefficients will be very useful. Anyhow, the determina-
tion of the hydrodynamic coefficients in case of swaying and yawing on
shallow water is an important and useful matter.

The report is divided into three parts:

part A: Theoretical determination of hydrodynamic coefficients.

part B: Experimental determination of hydrodynamic coefficients.

part G: Comparison of theory and experiment. Conclusions.




part A: THEORETICAL DETERMINATION OF HYDRODYNAMIC COEFFICIENTS

Section A1: Introduction

Tn this part of the report it is attempted to provide a (simple)
method for estimating hydrodynamic coefficients of a schematized ship
in case of swaying and yawing on shallow water.

The ship is considered as a rigid prismatic body with a rectangular
cross-section. This schematization is justified by the fact that many
sea-going vessels and even more inland ships have a more or less box-
like shape, being slightly streamlined at bow and stern.

The ship's forward speed is supposed to be zero or negligible; this
assumption is justified in part by the fact that in several problems of
interest the forward speed is indeed zero or small (e.g. vessels carrying
out berthing operations, etc.). Without doubt a forward speed of the
ship will be of great influence on the values of the hydrodynamic quanti-
ties., Up to now, however, the knowledge about this phenomenon is still
very small. This yields another reason to confine this research project
to the case of zero speed of advance.

Special attention is pald to the case when shallowness of the water
is of dominant importance, bypassing the intermediate range of 'finite'
water depth.

On the schematized ship with zero speed of advance - in the horizon-
tal plane - a harmonically oscillating motion is imposed; then, the
hydrodynamic coefficients can be determined from the exciting forces.

Tn Section A2 a general formulation of the hydrodynamic model is
provided. The two very important assumptions made to this point are that
the displacement of the ship is small and that the fluid motion is two-
dimensional (strip theory). Further it is assumed that the fluid is in-
viscid and incompressible and moves irrotationally.

Section A3 deals with the harmonic analysis of the ship-fluid system.
The mathematical approach is based on an existing theory for wave gene-
rators [1] adapted to the present case. The nydrodynamic ccefficients for
pure swaying and yawing are calculated as a function of circular fre-

quency and keel clearance; a survey of the results obtained theoretically




is provided.

Section A2: General formulation of hydrodynamic model

The ship is regarded as a rigid prismatic body with a rectangular
cross-section. In rest and during motion the keel clearance of the
ship is supposed to remain constant; so heaving, pitching and rolling
are neglected. Hereby it is assumed implicitly that the heave, piteh
and roll motions ~ which do occur in reality - do not influence the
hydrodynamic quantities for the horizontal plane.

It is supposed that the displacements of the ship are small and
that the fluid motion is two-dimensional. Consequently, only motions in
planes perpendicular to the longitudinal plane of symmetry of the ship
will be considered; the calculations relate to the unit length.
Furthermore it will be assumed that the velocities remain low so that the
governing equations can be linearized.

The bottom is horizontal. The horizontal dimensions of the water sur-
face are unlimited.

The origin of a fixed rectangular Oyz-coordinate system is situated
in the still water level. The Oy - axis is horizontal. The vertical oz -
axis is positive downwards and coincides with the starting-position of
the ship's longitudinal plane of symmetry.

The time-coordinate is represented by t.

The water depth at rest (i.e. the mean water level) is represented by h,
the keel clearance by k, the draught, the beam and the length of the
ship by D = h - k, B and L, respectively. For a definition sketch see

fig. 1.
In virtue of above-stated assumptions the mathematical problem may

be formulated in terms of a velocity potential, ¢ = &{(y,z,t), defined

through

where subscripts y and z indicate partial differentiation with respect
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fig.1 — Definition sketch.

to the chosen coordinates. The horizontal and vertical velocity compo-

nents of a fluid particle with coordinates y and z at the time t are:

vfl = ®§ and W = - 3

the subscript fl refers to fluid.

The velocity potential ¢ must satisfy the Laplace equation

2 2
v2@=ag+ag =0
3y 3z

in the field of flow, subject to relevant boundary conditions on all
boundary surfaces and at infinity.

It is obvious that on each side of the ship a velocity potential exists.
As only small motions of the ship are considered it can be stated that
these respective velocity potentials are antimetric. Coupling of the fields
of flow on both sides of the ship will be done by applying the law of con-
servation of momentum to the mass of water underneath the ship. As a con-
sequence, 1t is sufficient to determine the veloecity potential only on one
gide of the ship.

Now define a region R, occupied by fluid, in which the Laplace equation is
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to be solved:
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(h -k)2z<h.

The boundary conditions on all boundary surfaces and at infinity must
be known; they are given below.

The free-—surface boundary condition states that the pressure along the
free-surface, ignoring surface tension, is constant and that fluid parti-
cles which are on the free-surface remain there as time passes.

This boundary condition is in linearized form:

é"% - g %$-= 0 on v 2 1B, z =0,
ot
where g = acceleration due to gravity.

At the wall of the ship the horizontal fluid velocity is equal to the
velocity of the ship in that direction. As only small displacements of the
ship from its starting-position are considered, the boundary condition for

the velocities at the ship's wall applies at y = 3 B and can be written as:

%% = (U(z) - U(Z - n + &)} %€'§s on ¥ =18,
where
U(z) = unity step function = [0 on 2z <0
1 on z >0,
&S = §S<E,t) = position of ship's wall, the subscript s refers to

ship('s wall).

Between the underside of the ship and the bottom (i.e. the keel clearance)
the vertical velocities are neglected; the horizontal velocity distribu-
tion is supposed to be uniform. On the analogy of the above-mentioned eq.

the boundary condition for the velocities across the keel clearance also




(1)

applies at § = 3 B and can be expressed as:

% _ = = + .2
5 {U{z -n+%k) -U(z -1 )} Vee O ¥ =3B,
where
Ve = ch(z,t) = horizontal fluid velocity in keel clearance, the
subscript ke refers to keel clearance,
+

h = h+ e with ¢ tending to zero (e ¢ 0).

At this stage the functions §s = §S(E,t) and v, = vkc(E,t) are not

yvet specified. Solving the velocity potential for a particular case

relevant expressions for is and v, will be prescribed.

ke
The complete boundary condition on the plane ¥ = 3 B then can be

written as:

= (U(7) —U(Z—h+k)}g~t—§s+ WE -n+x) -0 -0 v,
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Supposing the bottom impervious simply implies the boundary condition:

on § > 1 B, z =nh.
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The boundary condition at infinity states that:

8(y,z,t) Fote — outgoing dispersive wave,

or, at infinity only simple-harmonic waves propagating in positive
y-direction are possible.
As a supplementary condition it is supposed that in region R the func-

tion ¢{y,z,t) together with its first derivatives remsin finite:
6(y.2,t), @1(§,2,t) being finite in R;

the superscript 1 means Pirst derivative.




Summarizing: the velocity potential #(y,z,t] has to satisfy the homo-
geneous linear partial differential equation (1) plus a set of non-homo-
geneous boundary conditions (2), (3), (4) and (5) and the supplementary
condition (6). The solution of egs. (2), (3), (4) and (5) specifies a

mixed boundary-value problem for the Laplace equation.

Section A3: Harmonic analysis

A3.1 : Solution of mixed boundary-value problem

The hydrodynamic problem as formulated in Section A2 will be solved
for the particular case that a simple-harmonic motion is imposed on the
ship. The harmonic oscillations take place about an equilibrium position
(viz. the considered starting-position of the ship's longitudinal plane
of symmetry) with period T.

Then the position of the ship's wall is = is(i,t) may be represented by

B - ig(z)eiwt

POl

Yog T

where £(z) = amplitude of ship motion, £(z) > 0, limited and real,

H
"
b
;

Hlm
=3

= circular frequency.

During the oscillation the ship's walls remain vertical. Therefore the
amplitude of ship motion is independent of z and will be denoted further

by &:

™y
—
SR}
~

i
24

As the motion imposed on the ship is harmonic in time, the expression

for the horizontal fluid velocity in the keel clearance, v, , will be

ke
of the form:




N ei(wt - 8)
ke © ke ?

where

<

o = amplitude of horizontal fluid velocity in keel clearance,

ch > 0, independent of z and real,
§ = phase difference between fluid motion in keel clearance and

ship motion, 6 = constant and real.

With the above-prescribed expressions for y_ and Ve the boundary con-

dition (3) is modified into:

v .
2 W(AWU(E) - (T - n e )} ST U(E - k) .

B.

ol

-u(z - nH)N eiwt on y =

It is essential to note that so far ch and 6 are unknown quantities.

At determining the velocity potential, however, it is necessary

to suppose that v and 6 are known constants. Once having calculated

ke
the velocity potential on basis of this supposition, ?kc and 6 can be
determined by applying the law of conservation of momentum to the mass

of water underneath the ship.

Now it can be stated that the velocity potential ¥(y,z,t) is a simple-

narmonic function of time which has to satisfy the Laplace equation (1)
plus the set of non-homogeneous bouncary conditions (2), (3'), (k) and
(5) and the supplementary condition (6).
The problem of determining this velocity potential is that treated by
F. Biésel [1]. The solution can be considered as an extension of his work
and is outlined in Appendix I. From this Appendix I the general solution
for the velocity potential ¢(y,z,t) is seen to be given by:
B
my )

Dyjetlut - my

- i@
e” t )cosh{mo(h -z 2 0+

]
o(y,z,t) = 1 = (AO + B,




o mnB
o _m S s
- z Y (A +B e 1e)e m.y 2 cos{m {(h - z)}elwt R
m n n n
n=1 "n
where
.. 2
m, = positive root of w” = gmg tanh(moh) ,
m = positive roots of we = - am tan(mnh) (n=1,2,...3
m,o<m, <l <m < ),

ﬁg i 2 31nh(moh) - 51nh(mok)}

~ 7 - H ’

a 0 moh + Slnh(moh)cosh(moh)
ﬁg e 2{51n(mnh) - 51n(mnk&

£ n m h + sin(ia h)cos(m h) ?

n n n

Bow L 2 51nh(mok)

Yo 0 mOh + 31nh(moh)cosh(moh)

B w 2 sin{m k)

O n

¥e n mh o+ 31n(mnh)cos(mnh)

(8%) and (Bb) are the relationships for the wave numbers: m, is the usual

wave number and the mn's satisfy (n - 3)r < mnh < nm.

A3.2.1 : Determination of hydrodynamic forces

The fluid pressure can be obtained from the linearized equation of

Bernouili for unsteady flow:

% .p

st "o A0

where
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p = p{y,z,t) = fluid pressure |,
p = specific mass density of fluid.

Substituting the velocity potential ®(y,z,t) as represented by eq. (7) into
the equation of Bernoulli the fluid pressure on the vertical plane

§ = % B becomes:

2 . .
- w ~16 - 1wt
p(3B,z,t) = p—5 (A  + B, e Jeoshimy(h - z)}e +

M

s s -i6 -\, it -
+ —_— + -
0 Z i (An B e )cos{mn(h z)le + pgz .,
n=1 m
n
The horizontal force per unit length as exerted by the fluid on the ship's

wall in question, fs(t), then is:

h-k

£ (t) = p(} B,z,t) dz =
o
w2 -6 it
=p '—5'(AO + By e Xsinh(moh) - sinh(mOk)}e +
m
0
v w2 -ig iwt
+p) i —-——E-(An +3B e ){51n(mnh) - 31n(mnk)}e +
n=1 m,

o
+3pg(h - k)7 3

the first two terms in the right-hand side of this expression represent
the hydrodynamic part of the force, the last term is the hydrostatic
part.

On each side of the ship a velocity potential exists. These respective
velocity potentiais are antimetric. The antimetry of the fields of flow
on both sides of the ship is the cause of the fact that - at determining

the total horizontal force - the hydrostatic contributions to the individual




iR

horizontal forces on each wall of the ship cancel. Then the total horizontal
(nydrodynamic) force on the ship per unit length, Fs(t), becomes twice the

hydrodynamic contribution to the force on a single wall of the ship:

2 . .
w -i6 . . 1wt
(11) F(t) =20 = (AO + By e ){smh(moh) - smh(mok)}e +
nm
0
et 2 i6 Lt
. W -1 . . i
+ 2p z i ~—§-(An +B e ){51n(mnh) - 51n(mnk)}e :
n=1 m
n
the real part of Fs(t) is:
(112) Re{Fs(t)} = 2p 9—5 {sinh(moh) - Sinh(mok)}{AO cos{wt) +
m
0
L 2
+ B cos(wt - 8)} =20 } 2— {sin{m h) - sin(m k)}-
0 2 n n
n=1m
n
-{An sin{wt) + B sin(wt - 8)} ,
and the imaginary part:
b m2
(11°) Im{Fs(t)} = 2p ——E-{sinh(moh) - sinh(mok)}{AO sin(wt) +
m
0
oo w2
+ B, sin(wt -~ 6)} + 2p nZ1 ;fa'{sin(mnh) - sin(mnk)}'
n

‘{An cos(wt) + B, cos{wt - 8)} .

In & similar way it can be derived for the total horizontal (hydrodynamic)
force on the mass of water underneath the ship per unit length, i.e.

ch(t):
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. . o 2
- . t .
(12) Fo(t) =20 25 (& + B e )sinn(m k)™t + 2o T 18—
ke 5 Ao+ By 0 2
mO n=1 mn

(A + B e_le)sin(m k)elwt
n n n

A3.2.2 : Coupling of fields of flow on both sides of the ship

Coupling of the fields of flow on both sides of the ship will be done
by applying the law of conservation of momentum to the mass of water under-
neath the ship. This procedure renders possible the calculation of the un-

known quantities ¥, and 6, which - up to now - were supposed to be known

ke
constants.
Neglecting friction effects the law of conservation of momertum as applied
to the mass of water underneath the ship yields:

- ch(t) dt =dM v ),

ke
where M = o B k = mass of water underneath the ship per unit ship's length.
By substitution of ch(t) as represented by eq. (12) into this expression

one obtains (with w # 0):

Ho~18

. -i6, .
0 o i ~2§~(An + Bn et )31n(mnk) =
mo n=1 m

2 -i8, .
> (A, + B, e )31nh(mok) +

<>

=__in_}§£€—19;
w

equating the respective real and imaginary parts then gives:

2 { . 2 . .
— 5] — =
5 AO + BO cos/( )}81nh(mok) + 5 Bn 31n(mnk)31n(9)

m, n=1 0

Hie~18

=]

7
= - Bk =% sin(s)
w

and




(13%)

(13b)

113%)
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2 . . v 2 .
—_ = + =
5 B, 51nh(mok)51n(6) + Z 5 {An Bn cos(e)}51n(mnk)
m n=1m
0 n
= - Bk ke cos(e)
©
Introduction of the quantities
2 AO' o 2 An'
ay = 73 81nh(mok) s a = Z 5 51n(mnk) s
m n=1m
0 n
ZBO' o 2 B!
bO =7 51nh(mok) s bn = X 81n(mnk) ,
m n=1nm
0 n
and
c =Bk

into these two equations, using the relationships (9a’b) and (WOa’b),

finally yields:

B0 . o
T 8"t bO cos{B8) + bn sin(8) ¢ sin{(8)
ke
and
A w . _
ch a - b, sin(8) + bn cos(8) = - ¢ cos(8)

These last two expressions represent a set of two equations with two
unknowns, viz. Gk and 6. For ags 2 s bo, bn and ¢ are known in principle,

because both AO‘ through An' and B.' through Bn' can be calculated for

b .
all values of w from egs. (Qa’b) and (10a’ } together with egs. (Ba) and

(Bb). The solution for 6 and ch can be written in the dimensionless form:

- +
anbo ao(bn c)

p— — + »
aObO an(bn c)

tan(6) = , 8 = atan {anbO - ag (bn +c) ,

- aobO - an(bn + )},




(15)

1h

»

ke _ ) N &

w 8 by cos(8) + (bn + c¢)sin(e) o, sin(8) - (bn + c)cos(8)

A3.3: Determination of hydrodynamic coefficients

A3.3.1: Introductory remarks

The space fixed (two-dimensional) rectangular OyZ - coordinate system,
as defined in Section A2, is extended now to a {three-dimensional) right-
handed Cartesian 0xyz - coordinate system, such that the OX-axis coincides
with the equilibrium position of the ship’s longitudinal plane of symmetry.
The associated moving coordinates fixed with respect to the ship are deno-
ted by (x,y,z), the right-hand convention is applied so that the y-axis
is positive to starboard, and y = O is taken tc be the longitudinal plane
of symmetry of the ship; the origin coincides with the ship's centre of
gravity G.

Considering merely ship motions in ﬁheihorizontal plane in addition to
which the forward speed is supposed to be zero, a force ¥, a moment N,

a translational velocity v and an angular velocity r can be indicated;
all these guantities are defined in relstion to the ship-fixed Gxyz-coor-
dinate system. The angular orientation of the ship is defined by the sym-
bol ¢ (yaw): if the Gxyz-coordinate system coincides initially with the
fixed Oxyz - coordinate system, then the orientation is obtained by a
yaw angular displacement with respect to the Gxyz-coordinate system and
in the right-hand sense.

For a definition of symbols see fig. 2.

For reasons of simplicity the mass distribution of the ship is supposed
to be symmetrical with respect to the plane y = O.

Neglecting the longitudinal surge motion together with the forces in the
surge direction, and supposing that waves and current do not occur, the
linearized 'equations of motion' in the Gxyz - coordinate system can be

represented vy (see refs. [2] and [3]):
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fig.2 — Definition of symbols.

y+a  b+D p=Y . (sway motion) ,

v+ Gt+ta F+by=DN (yaw motion) ,
Vot o by T by Y o W

x|
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where m = mass of ship,
IZZ = mass moment of inertia around the Gz-axis,
aij = hydrodynamic coefficient of mass term in i-equation as

a result of motion in j-direction in Gxyz,

bij = hydrodynamic coefficient of damping force in i-equation
as a result of motion in j-direction in Gxyz,
Yosc = exciting harmonic (lateral) force,
ose exciting harmonic moment;

dots over the quantities y and ¥ mean derivatives with respect to time. The
linearization of these equations is based on the supposition that the un-
steady motions are small perturbations of an initial steady state situation
(e.g. a situation of rest).

As shown in refs. [2] and [3] the values of the hydrodynamic quantities
with respect to the Gxyz -~ coordinate system, viz. aij and bij’ in case of
purely horizontal motions are not influenced by the position of the centre
of gravity G in height. Therefore it may be supposed that the Gxyz - coor-
dinate system in the equilibrium position coincides with the fixed OxXyz -
coordinate system.

The 'equations of motion' in case of pure swaying follow from eq. (16)

by equalizing all other motions to zero, i.e. { = §= O:

(m + ayy)y + byy v =Y .

¢ pure swaying

Likewise the 'eguations of motion' for pure yawing can be determined from

eq. (16) by substitution of y = §# =0:




(13)

(1)

7

v vy osc

> pure yawing

]
=

<Izz * aww>m * bww b osc)

The two sets of equations (17) and (18) hold only good if all variables
depend sinusoidally on time at a same frequency. The hydrodynamic coeffi-
cients are considered to pertain to a sinusoidal displacement of the ship
with respect to the equilibrium position, and therefore they are functions
of the frequency. For a more comprehensive explanation of the character of
these so-called 'equations of motion' is referred to refs. (4] ana [5].

The hydrodynamic coefficients are independent of the distribution of mass
over the ship, they do depend on the geometry of the hull. For this reason
in the following the quantities m and Izz may be omitted from the 'squa~
tiong of motion'.

Supposing that in case of pure swaying ayy and byy are known for every
transverse section of the hull (at x), the hydrodynamic coefficients for the

entire ship can be obtained by integration over the length:

, 1 a (%) b
Yy yyY ¥y
= a (x)dx =1 , =
o VY 1.2
a X vy a_(x)
v L 12 vy [
1 b
yy(X)
= b (x) dx =1L s
2 W 1% (x)
L\* 12 v X

and




18

awy ay¢ ayy(x)

L B L R

Since the geometry of the hull of the schematized ship is symmetrical with

r t to th lane x = 0, this means that a =g = 0and b =b =0
espect to The P ’ vy N2 by v

The'equations of motion' in the respective cases of pure swaying and
pure yawing then can be written as:

(17%) s F*b T =Y,

and

13
=

a -
(185 ey ¥ Py = g

A3.3.2 : Determination of hydrodynamic coefficients for swaying

As indicated in Section A3.1 the horizontal displacement of the ship
. . .oadw .
in case of pure swaying can be represented by y =-1 & el t. Substitution

of this expression into eq. (172) yields:

- & w2 ayy sin(pt) + & o byy cos(wt) + i {& m2 8y cos(wt) +

+
oy

w byy sin(uwt)}= ¥ ose

The total horizontal force on the ship per unit length, Fs(t), as resul-
ting from a harmonically oscillating motion (viz. pure swaying) is provided

by eq. {(11). Consequently it must hold good that

YOSC - FS(t)

By combining the two expressions mentioned above and equating the respec-

tive real and imaginary parts one obtains:

-3 wg ayy sin(ut) + 8 w byy cos{wt) = Re {Fs(t)}
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and

. 2 - . _
8o e cos{wt) + & w byy sin(wt) = Im{FS(t)} s
where Re{FS(t)} and Im{Fs(t)} are given by eq. (11%) and eq. (11b), res-
pectively. The sum of the terms containing the respective factors cos(uwt)

and sin{wt) must equal zero; this yields:

2
2 pELE-{AO + BO cos(6)} {sinh(moh) - sinh(mok)} +

o
o0 2
3 . N B . I
+ 20 z JL~§ B sin(8) {31n(mnh) 31n(mnk)} g uw byy’
n=1 n
n
. w2
2 p——ErBO sin(8) {31nh(moh) - s1nh(m0k)} +
n
0
o w2
-2p ) ~—§-{An + B, cos{6)} {31n(mnh) - 51n(mnk)} =
n=1 m
n
~ 2
=~ 8w a_ .
Yy

. b .
Using eqs. (9a’b) and (10%°°) and the two above expressions the hydro-
dynamic coefficients of the mass term and the damping force can be derived

as functions of the two-dimensional transverse section at x:

)

_ 1 ke . Ypoe .
ayy(x) -2 p;~§ = sin(8) BO {51nh(m0h) 51nh(mok)} +
0
= 1 ch
P 1 — A\ 3 .
+ 2p Z 5 {An + = cos(s) Bn } {51n(mnh) - 51n(mnk)} .
n=1 mn
[ ch
P - o 1 _BC [ . _ ad
Oyy<x> 2 pm > {AO + o cos(G)BO } {51nh(m0h) sxnh(mok)} +
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~
-]

V.
r2p ] 25 5%9 sin(8) B ' {sin(m h) - sin(m k)}
n=1m

e

Because of eq. (19) the hydrodynamic coefficients for the entire ship
in case of pure swaying then become:

-~

%
1 ke . . .
a = - EC ' n) -
{20%) - 2 p L[ 553 sin(@) B, {51nh(mon) 51nh(mok)} +
e
PO Tee
L ' XL ' : o al
+ 21 > {An + o cos(8) Bn }{Sln(mnh) sln(mnk)}]
n=1m
and
8 b, =2 p L[> {A ' + ke cos(6) B, '}{sinh(m h) - sinh(m k)} +
(217) vy 2 Yo tia 0 0 0
%o
© w ke . ' . o
+ Z e sin(6) Bn {s1n(mnh) 51n(mnk)}].
n=1 mn

A3.3.3: Determination of hydrodynamic coefficients for yawing

n account of eq. (19) the hydrodynamic coefficients for the entire

ship in case of pure yawing can be written as:

b 1 2
20 = =1
(20 fyp T2 7 By
and
b _1 .2
(217) bw =L byy s

where 2y and byy are represented by eg. (20%) and eq. (21a), respectively.

A3.3.Lk: Hydrodynamic coefficients in case w + 0 and w - o

Eqs. (20%, 21?) ana eqs. (20b, 21b) represent the hydrodynamic coeffi-
cients for the entire ship in case of pure swaying and pure yawing, res-

pectively. In the case that w » 0 or w -+ ® the relevant transitions to
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the limit for the hydrodynamic coefficients have to be determined.

Congidering the case w ~ O one obtains from egs. (20a, 20b) and egs.

(b

v

)

I}
no
©

lim
w0

lim
w>0

one obtains for w

a b
(21%, 21°):
(22%) lim
w>0

(22°) lim
w0

and

(23%) lim
w>0

(23°) lim
w>0

Likewise
(243 1im
et

(21P) lim
>

and

(25a) lim
Uy >0

(25b) 1lim

v

%yy )

2

k

(a

(b

>

vy

©o 3

)

{B(h - k)2 4

h o
+2 2= 7
k2 n=

- DN+ sin{% (en - 1) %}]2

2 [>+]
=L p Lh ) +
n=1 {(on - 1)%}3
of sin{% (on - 1) %} [C- 1%+ sin{% (on - 1)%}]]2
n=1 {(en - 1) £33
- ozo sin®E (20 - 1) D)
= 4
1n° n=1 {(on ~ 1) -;— }3
1 .2 ..
= -— L% 1im (a )
12 v TV
= 0 N
12
5 L i,if: (bw)
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Hydrodynamic coefficients in case of zero keel clearance

A3.3.5:

The relevant expressions for the hydrodynamic coefficients in the case

under consideration can be derived by taking the transition for k - 0 to
the limit from egs. (20%, EOb) and (217, 21b). The results are:

a = I T

(26™) ayy!k=0 20 L nz1 5 An 51n(mnh) .
my

a = L Vo

(27%) byy %=0 2oL - 5 A 51nh(m0h)
0
and

b 1.2
(267) gm0 = 2 Y Byylk=0

b 1.2
(217) bwwlk=o 12 Dyy1k=0 s

where m, and m  are represented by the respective egs. (8%) ana (8b),

o 2 sinh(moh)
a LI T =
(28%°°) Ay . A

+ g1 )i
m,h 31nh(mon)cosh(moh)

2 sin(m h)
n

mh + sin{m h)cos(m h)
n n n

¢

Likewise it holds good that

(29%) lin (a -n) =0,

/ w0 yylk 0

(29°) lim <a¢¢1k‘0) = %E‘LQ lim (&, k—oj
w0 - wro VT

and

(30%) lim (v _n) =20 Lh/gh ,
w0 yy1k 0

(30°) lim (bw¢!k=0) = %5 L? lim (b \k*O) ,
w>Q wro IVIEE
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whereas
2 < 1
(31%) lim (a_|,_.) =k p Lh® | ——————
e Y.YlK o n=1 {{2n - 1) 2}3
b . 1 2 ..
( =
{(317) lim (a | _ ) = LT 1im (& 1 )
s Ww}k 0 12 wg Y k=0
and
(32%) lim (v ) =0,
s nyK—O
b . 1 2 .
(32°) 1im (b )= = 1% lim (b )
e wwik—o 12 o Y k=0
A3.L: Burvey of theoretical results
A3.L4.1: Summary of most important formulae
The hydrodynamic coefficients for the entire ship in case of swaying and
yaving with non-zero keel clearance are:
- hydrodyriamic coefficient of mass term in swaying and yawing:
(20%) = 2oL f~—l-X££ sinf8) B ' {sinn{mh) - sinh(m k)} +
By o 2 wa - 0 0 0
m
0
° 1 vkc
+ E Y {Ah' + 5@”’005(8) Bn'}{sin(mnh) - sin(mnk)}],
n=1 m
n
i
(20°) a _ 1 .2 )
\PHJ“ 121" ay.y ]
- hydrodynamic coefficlent of damping force/moment in swvaying and yawing:
v
& w xe . .
(217) byy =2 p L {“‘5’{AO' + = cos(8) BO‘}{Slnh(mOh) - 31nh(mok)} +

)



(21°)

2k

>

+ Z —Q§~;%9 sin(e) Bn' {sin(mhh) - sin(mnk)}] s

=}

_ the relevant guantities in these formulae are:

(9%

(,’Oa,b)

(1)

(15)

(13%)

(13°)

(13%)

0= positive root of w2 = gmg tanh(moh) y
- positive roots of w2 = -gm tan(mnh) {n = 1,2,..3%
m1<m2< ceew <my <o)
Z{Sinh(moh) - sinh(mok)} 2{sin(mnh) - sin(mnk)}
A= : , A ' = .
+
0 moh + 51nh(moh)cosh(moh) n m h 51n(mnh)cos(mnh)
2 sinh(mok) 2 sin(mnk)
B.' = T ,B'= T 5
+ +
0 moh 51nh(moh)cosh(m0h) n m h 51n(mnh)cos(mnh)

anbo - ao(bn + c)

= = _ +
tan(®) = =2 o T4 (b + ) , 0 = atan {anbo aO(bn e),
070 n' n
- - +
aObO an(bn )},
s - a
ke _ & - n
wd bo cos(B8) + (bn ¥ c) sin(8) bo sin(@) - (bn + c) cos(®) ’
2 A w 2 A
a, = 51nh(mok) . a = nZ1 - 51n(mnk) R
) n
2 B.! wQBn'
by = 51nh(mok) , b = ) 5 51n(mnk) ,
m n=1m
0 n
c = Bk;
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- the special limit cases w - 0 and w * « are:

2 b oo
. B(h - k) h . 2 k
(22a) lim (a ) =2 p L {——F—"—+ 2 = Z sin“(nr =)}
wro Y 2k 2 n=1 (mr) h
b . o2
(227) (:—1:8 (aw) =L ;_l;(y)l (ayy) ,
a . _
{237) lim (byy) =0 ,
m»)-o
b . 1 2 ..
(237) lim (b ) = — 1L 1im (v ) 3
w0 V¥ 2 w0 Y
k T2
o [(-1) +sin{Z (2n - 1) 3 ]
(2u%) lim (a_) =Y p1n® § b — e .
wreo Y n=1 {{on - 1) 5}
[ ozo sin{% (2n - 1) 2} [( - 1)n+sin{% (2n~1)%}]r
n=1 {{en - 1) g }3
B N T ’
Be § sin {E‘(Qn - 1) 5}
wm®  w=1 {(ea- 1) 533
b . 1 2 .
(247) 1im (a ) = —= L° lim (a__ ) ,
S 12 oo IV
a . _
(257) ii: (byy) =0,
b : R
(257) ii: (bww) - L ii: (v. )

The hydrodynamic coefficients for the entire ship in case of swaying and

yawing with zero keel clearance are:
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- hydrodynamic coefficient of mass term in swaying and yawing:

a = 4 [P
(267) ayy[k:@ 2pL ) 5 A sin(m h) ,
n=1m
n
b =142 .
(267) Syplk=0 = 12 T ayylk=0 3
- hydrodynamic coefficient of damping force/moment in swaying and yawing:
a = W IR
(27%) byy!k=0 2pL—5 A, 51nh(m0h) ,
m
0
b 1 2
= — I, :
(277 Pyple=0 =12 F Pyy|r=0
- the relevant quantities in these formulae are:
(8%) m, = positive root of w2 = em, tanh(moh) s
(8b) m = positive roots of m2 = - en tan(mnh) (n=1,2,...3
m, < m, < <m < ),
2 sinh{(m.h) 2 sin{m h)
(283,b) A'Y = . 0 , A" = _ n) ) ;
0 mgh + 51nh(moh)cosh(m0h) n mnh + 51n(mnh cos(mn
- the special limit cases w + 0 and w > « are:
a .
(297) lim (a _)=0,
w>0 YY!k 0
b . 1 2 L.
(297) lim (a _) =517 1lim (a ),
0 ople=0’ = 12 0 vy k=0
(30%) Lin (b1, o) = 2 0 Ln/gh ,

w>0




(30°)

(312)
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1 2

lim (b, . _ ) ===1L° 1im (b |, _) 3
0 ¢¢!k-o [ER— yyfk—o
s 1
lim (a A =lbop Ln® ] —,
w0 yy‘k~0 n=1 {(2n - 1} %}3
lim (a tk*O) = %E-Lg lim (a r =O) s
W b k= [Dnasd v
lim (byylkzo) =0,
wree
Lin (b1, o) = 15 1% 1in (v |eo)
e VVIES oo TR

The series occurring in egs. (20%), (21%), (13%), (13b), (22%), (24%),
(26%) ana (31%) can be proved to be convergent: consequently it is possible

to develop a break-off criterion for these series.

A3.4.2: Presentation and discussion of calculational results

Using the above-mentioned expressions calculations are carried out
particularly for the hydrodynamic coefficients.
The hydrodynamic coefficients for the swaying motion will be represented
in dimensionless form and per unit length by:
a’

L = dimensionless added mass per unit length for swaying motion,

pBD

and
bl
yy./ B . . . .. o
= = dimensionless sway damping force coefficient per unit length,
pBD g

where the prime used as superscript means 'per unit length'. As for the
yawing motion the hydrodynamic coefficients per unit length can be repre-

sented by:

a a'\ b' b! gy
R O e R |- Y T
i 2] e 7
12 ey PBD 12 orpp & PED T8

b 12
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in this case additional calculations are not required.

The results of the calculaticns are represented in figs. 3,&,5,6a,6b and
T:

in figs. 3,4 and 5 a:y_l}',(pBD)_1 and by&(DB?)*1(B/g)% are plotted versus

the dimensionless circular frequency w(B/g)° with the dimensionless water

depth %'as a parameter;

1
in figs. 6°, 6° ana 7 %m;(pBD)—1 and by&(pBD)_l(B/g)g are plotted versus

POl

the dimensionless keel clearance h 5 D with w(B/g)® as a parameter,

In both cases the dimensionless parameter 5 has a constant value (viz.

D = 2.50).
The selection of the three values for %>(viz. 1.333, 1.167 and 1.000) and

of the value for %—(Viz. 2.50) is based on experiments as described in part

B of this report.

1
For very large values of w(B/g)° a '(pBd)  approaches a horizontal

asymptéfé (see fi@. 3) and b '(éBD)_ (B/g)% approaches asymptotically1the
horizontal w(B/g)i ~ axis (see fig. 4). The curves of b '(pBD)—1(B/g)§
versus w(B/g)% for the1respective values of % are goingyzo coincide for
large values of m(B/g)f: generally it may be sEated that for large values
of m(B/g)% (say w(B/g)? > 3.9) by&(pBD)"1(B/g)é becomes independent of %-

In fig. 5 a '(pBD)n1 epproaches a horizontal asymptote and

Nt

b '(pBD)—l(B/g)ﬁ approaches asymptotically the horizontal w(B/g)°- axis
1

for (very) large values of w(B/g)?. Considering fig. 5 with reference to
1

fig. 4 the statement that for large values of w(B/g)% by&(pBD)—w(B/g)é
becomes independent of % may be affirmed. :

The relation between the curves of ay&(pBD)*] versus w(B/g)é for non-
zerc and zero keel clearance can be understood as follows. For decreasing
magnitude of a1 the 'image' of the curve of ay}'f(pBD)~1 versus w(B/g)% shifts
to the left; the branch of the curve on the left of the minim?m value of
ayl'r(pBD)_1 becomes steeper, the value of ay;(pBD)—] for w(B/g)? = 0 moves
along the a '(pBD)_1 - axis in upward direction, the minimum value of

1
a, '(pBD)_1 sags down and shifts to smaller values of w(B/g)°, the value

[

which ay&(pBD)_] approaches asymptotically for large w(B/g)° increases

slightly. A limit case is attained for % = 1.000: the (now degenerated)
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branch of the curve on the left of the minimum value of a.y}',(pBD)_1 coin-
cides with the a ‘(pBD)-1 - axis (the originsl ' point of intersection of the
curve with the a '(pBD)“1 - axis is at positive infinity), and the branch
on the right touches the w(B/g)% ~ axis in the origin.

A similar explanatlon applies to the relation between the curves of

b '"(pBD)” (B/g)2 versus w(B/g)§ for non-zero and zero keel clearance.

Pl

D
versus w(B/g)? shifts to the left; the branch of the curve on the left
1

For decreasing magnitude of h the image' of the curve of by&(pBD)~1(B/g)
1

of the max1mum value of b '(pBD)” (B/g)% becomes steeper, the maximum value
of by;(pBD) (B/g)2 increases and shifts to smaller values of w(B/g)2
A limit case is attained for % = 1.000: the (now degenerated)1branch of
the curve on the left of the maximum value of b '{pBD)” (B/g)? coincides
with the b '(pBD) (B/g)%—axis between by}'r(pBD)“1 (B/g)% = 0 and
byy(pBD) 1(B/g) = max%mum (the original maximum value of the curve is now
on the by&(pBD) (B/g)z—axis).
In figs. 6a, 6b and 7 the values aiready calculated in behalf of the
respective figs. 3 and 4 have been marked by crosslets.

In addition to the hydrodynamic coefficients, the dimensionless ampli-
tude of the fluid velocity in the keel clearance (i.e. ? (mé)—j) and the

phase difference between fluid motion 1n keel clearance and ship motion

(i.e. 8) are calculated as functions of 5 = with w(B/g) as a parameter.
The results of these calculations are plotted in figs. 8 and 9, respec-
tively. '

From fig. 8 it can be seen that in case of zero keel clearance (i.e.
h-D = 0) a 'fluid velocity underneath the ship' is possible without

D
being necessarily equal to zero. This can be explained from the fact that,

caused by the oscillating ship motion, always a pressure drop exists
across the ship, whether there is a keel clearance or not. This pressure
drop causes a fluid velocity underneath the ship, even if the keel

clearance is equal to zero. The discharge through the keel clearance,

however, is then zero.
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fig. 6"~ Added mass for swaying motion as function of keel ctearance.
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fig. 7= Sway damping force coefficient as function of keel clearance.
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part B: EXPERIMENTAL DETERMINATION OF HYDRODYNAMIC COEFFICIENTS

Section Bl: Introduction

This part of the report provides information about experiments to
determine hydrodynamic coefficients in case of swaying and yawing on
shallow water. These experiments were carried out in the form of forced
pure sway and forced pure yaw tests with zero speed of advance.

The main purpose of this experimental research is to check the theo-
retical results derived in part A. For this reason the schematization of
the ship {(model) is the same as in part A and the forward speed is equal
to zero.

In Section B2 an outline of the main particulars of the ship model
is provided, together with a survey of the experimental equipment and
other test facilities.

In Section B3 the execution of the experiments is outlined; likewise the

results obtained experimentally are presented and discussed.

Section B2: Experimental eguipment

B2.1: Main particulars of ship model

The ship model is a prismatic body with a rectangular cross-section. The
main dimensions (length, beam and draught) are based on a model of the Todd
Sixty Series with block coefficient 0.80 and model scale 50. The ship model
is made of wood and on the outside sheathed with polyester. The distribu-
tion of mass along the length is homogeneous.,

The main particulars of the ship model are given in Table 1,

Table 1. Main particulars of ship model.

length (on the water-line) L 2,438 m
beam B 0.375 m
draught D 0.150 m
volume of displacement L.B.D 0.1371 m3
area of cross-section B.D 0.056 m2
water-line area ..B 0.92L mg
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lateral plane area L.D 0.366 m2
block coefficient 1.000

centre of gravity (with respect to frame 10) 0 m
centre of gravity in height {(with respect to

keel point) 0.1k0 m
mass for horizontal motion my 134,27 kg
mass-moment of inertia I, 50.90 kg m
radius of gyration 0.610 m

With this ship model harmonic oscillation tests (pure swaying and pure
yawing with zerospeed of advance) were carried out at calm shallow water
with relatively large horizontal dimensions.

The draught of the ship model together with the fact that special
attention is paid to the case that shallowness of the water is of domi-
nant importance, explain the selection of the two water depths in these
experiments, viz. h = 0.200 m and h = 0.175 m.

The values for the dimensionless water depths then become %~= 1.333 and
% = 1.167, respectively; the dimensionless parameter % = 2.50. The values
of above-mentioned dimensionless parameters are identical to those used
in Section A3.4.2.

Further, in the experiments p = 1000 kg m—3 and g = 9.81 m 8—2; the

same values for o and g were used in the calculations of the theoretical

results for the hydrodynamic quantities (Section A3.L.2}.

2.2: Planar-motion mechanism: horizontal oscillator and measuring system

The hydrodynamic coefficients in case of swaying and yawing with zero
speed of advance could be determined experimentally by means of the so-cal-
1~d planar-motion mechanism (P.M.M.) from the Shipbuilding Laboratory of
the Department of Naval Architecture, Delft University of Technology. This
».4,M. consists of a horizontal ship's oscillator with a coupled measuring
system, With this experimental equipment - in the horizontal plane - an
arbitrary harmonically oscillating motion can be imposed on a ship model,

{1~ st the same Lime the exciting forces are measured. For (general)




Lo

details see ref. [6] .

Unlike the P,M,M, as described in ref. [6] the version used in these
experiments had a degree of freedom in vertical direction, achieved

by means of a ball bushing construction in the struts of the horizontal
oscillator. This vertical degree of freedom implied that the ship model
was allowed to heave and pitch without restraint during the forced hori-
zontal harmonically oscillating motion.

The exciting forces were measured by means of two strain gauge dynamo-
meters. These dynamometers - mounted in the ship model's longitudinal plane
of symmetry, at equal distances from the centre of gravity - connected
(the struts of) the oscillator to the ship model. Only forces in the plane
of the water-line with a direction perpendicular to the longitudinal plane
of symmetry of the ship model were measured.

The distance between the centre-lines of the dynamometers was 1.0000 m.

One of the dynamometers was fixed, the other admitted some longitudinal
sliding. With the P.M.M. used the pure yawing mobtion ~ as distinet from the
version as described in ref. [6] - needed not to be corrected for a slight
swaying motion.

The measuring system forming part of the P,M.M. was able to measure
first, second and third harmonic components of the sway and yaw forces as
well in amplitude as in phase-relation to the motion of the ship model. This
was performed by a mechanical-electronical Fourier-analyzer. For further
details see ref, [6].

The maximum amplitudes for the sway and yaw motion were 0.2500 m and
0.4636 rad. (i.e. atan 0.5000). The circular frequency of the oscil-
latory motions could vary continuously between 0.196 rad.s“3 and 3.927 rad.
5_1; this corresponds with a period range from 32.0 s to 1.6 s.

The maximum capacity of the dynamometers was about hundred newtons each,
The accuracy of the P.M.M. as a measuring device depended mainly on the
occufénce of adequately large forces, which had to exceed values from 0.2 N
to 0.4 N. Therefore the scale (i.e. actually the dimensions) of the ship
model had to be chosen such that particularly for combinationsof low fre-
quency and small amplitude measurable forces occurred.

According to Section B2.1 the mass of the ship model, as based on the
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volume of displacement, amounted to 137.10 kg, whereas the mass for hori-
zontal motion as used in the dynamic tests, my, was 13L.27 kg, This differ-
ence can be explained by the presence of the ball bushing constructions in
the struts of the oscillator: the weight of the shafts of the ball bushing
constructions plus two times half the weight of the dynamometers did con-
tribute to the weight (or rather the volume of displacement) of the ship

model, but they did not contribute to the mass forces on the dynamometers.

B2.3: Other experimental facilities

The pure sway and yaw tests with zero speed of advance were excecuted
in the middle of a rectangular basin with relatively large horizontal dimen—
sions, viz. length = 32.34 m and breadth = 13.98 m. The basin had a hori-
zontal bottom and was bounded by vertical walls. The P.M.M. was mounted on
a rectangular steel frame of very great rigidity ; this frame had four legs,
stood in a fixed position in the basin and was adjustable in height. The
dimensions of the horizontal cross-section of the legs were relatively small
with respect tc the main dimensions of the ship model. The longitudinal
plane of symmetry of the ship model in its state of rest (i.e. the equili-~
brium position) coincided with the respective breadthwise axes of symmetry
of the basin and the frame. The distancesof the legs of the frame to the
ship model were relatively large, even during the oscillations.

For a schematical representation of the model installation see fig. 10.

As a result of the oscillatory motions of the ship model during the
dynamic tests waves were generated with a direction of propagation which
was mainly parallel to the lengthwise axis of the basin; these waves were
reflected against the (short) basin walls.

In order to attain faster wave damping the basin was provided with two
simple wave damping constructions in the form of walls of perforated bricks
with a relatively great percentage of holes (for the location see fig. 10).
The wave damping properties of these perforated walls were rather good for
short period waves, but fairly bad for long period waves.

The natural frequencies of the combination frame - P,M.M. in both hori-
zontal and vertical direction turned out to be at least several times grea-—
ter than the frequencies considered in the experiments; the natural frequen-

cies of the strain gauge dynamometers for different directions were many
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times greater.

Section B3: Execution of model experiments and survey of results

B3.1: General remarks

For the dynamic tests the circular frequency and the amplitude of
motion had to be considered as independent variables; for a certain dyna-
mic test they were fixed quantities.

The hydrodynamic coefficients could be determined - as functions of circu-
lar frequency and amplitude of motion - from the measurement of the first

harmonic components of the lateral exciting forces in a way as is pointed

out briefly in Appendix II.

Because of the limitations of the experimental equipment no data could
be obtained for values of the circular frequency w lower than 0.196 rad.sﬂy

Some combinations of the independent variables (viz. high frequency
together with large amplitude) set upper limits to the dynamic tests. One
absolute upper limit was formed by the maximum capacity of the dynamometers.
Another more relative upper limit was formed by the vertical degree of
freedom of the ship model. By this the oscillating ship model could run
the risk of touching the bottom for certain combinations of amplitude and
frequency. This phenomenon was caused by the velocity effect: the ship
model could sink deeper into the water during the oscillating motions than
the draught as indicated for the state of rest. For obvious reasons this
could not be accepted so that the amplitude of motion had to be bounded
as a function of frequency.

Each experiment was started with the water level at rest; it had to be
terminated at the moment when the first wave reflections against the
(short) basin walls were expected at the walls of the ship model; for,
reflected waves arriving at the walls of the ship model during a measure-
ment should influence the test results.

The minimum length of time required for the execution of one dynamic
test was equal to the duration of time of the transient phenomena of the
experimental equipment plus the period time.

The greater part of the dynamic tests could be carried out before the

reflected waves arrived at the walls of the ship model. In a few cases,
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however, the model experiments were disturbed by the reflected waves, viz.
for w < 0.L4 rad.s _1: this has to be understood in this sense that only
the test results for w > 0.k rad.s“1 could be reproduced in a satisfacto-
ry way. Although the disturbancé of the model experiments by the reflec-
tion phenomena was small, the test results for w < 0.b rad.sm1 have to
be considered with some reserve, because they are not completely reliable.
Despite the fact that a perfectly horizontal bottom was tried for, the
part of the bottom of the basin covered by the oscillatory motions of the
ship model showed differences in height. The water depth as well as the
position in height of the bottom were determined with respect to the
centre of the bottom of the basin: the bottom under the fore-part of the
ship model was tolerably horizontal, whereas the bottom under the hind-
part sloped downwards, starting from and mainly in a direction perpendi-
cular to the lengthwise axis of the basin, with a maximum difference in
height of 0.5 % 10730, The (possible) inaccuracies in the test results in
consequence of this uneveness of the bottom of the basin were accepted.
In case of a perfectly horizontal bottom the respective hydrodynamic for-
ces on the fore-part and the hind-part of the ship model have to be equal
to one another for reasons of symmetry. Therefore the hydrodynamic coup-
b, , a and b then have to be equal to zero.

vy’ Yy’ Ty vy

As a result of the uneven bottom, however, the (absolute) values of the

ling coefficients a

hydrodynamic forces on the fore-part of the ship model (measured by dyna-
mometer 1) turned out to be systematically greater than those on the hind-
part {measured by dynamometer 2). This held good for the in-phase compo-
nents of the forces as well as for the ninety degrees out-of-phase compo-
nents (for the concepts of in-phase and out-of-phase see Appendix II).

For h = 0.175 m these differences were stronger than for h = 0.200 m. The
hydrodynamic coupling coefficients were (slightly) different from zero.
From the test results it can be verified that in case of a perfectly hori-
zontal bottom, for the frequency range considered in the experiments and
for both water depths, the (real) values of By byy’ S and,b¢¢ gene-
rally will be (slightly) greater than the measured values: this holds

good for b and b¢¢’ whereas for ayy and aww this roughly holds good up

tow=2.3 rad.s_] and w = 2.9 rad.s —1, respectively. The differences
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from the measured values in case of h = 0.175 m will be somewhat stronger
than in case of h = 0.200 m; for both water depths the differences in case
of © and ©,, will be more significant than in case of ayy and aww, eg—

Yy

pecially for small amplitudes of motion.

During the oscillatory motions the vertical degree of freedom of the
ship model, as a result of the velocity effect, led to a reduction of the
original keel clearance. For a certain o a larger amplitude of motion yiel-
ded a larger amplitude of (angular) velocity and as a consequence a deeper
sinking of the ship model with respect to the undisturbed water level.

The influence of this temporary (i.e. only during the oscillatory motions)
reduction of the keel clearance on the test results, however, could not
be determined distinctly and unambiguously, the more so as the phenomena
of vortex shedding and separation of flow at the 'bow', the 'stern' and

the 'bilges' of the ship model came through more explicitlyas the ampli-

tude of motion increased.

B3.2: Presentation and discussion of experimental results

The hydrodynamic coefficients, determined experimentally for the
entire ship model in the respective cases of pure swaying and pure yawing

with zero forward speed, will be represented in dimensionless form by

a
Ei%% = dimensionless added mass for swaying motion,

b
gi%%vg- = dimensionless sway damping force coefficient,

and
a
7___?$£__,: dimensionless added mass moment of inertia for yawing
1 L4pLBD X
12 motion,
Yy \[B
120 LED é'= dimensionless yaw damping moment coefficient.

72
The dynamic test results are plotted for several amplitudes of motion as
2
functions of the dimensionless circular freguency w{B/g)° with the dimen-

. h
sionless water depth B-as a parameter.
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B3.2.1: Test results in case of pure swaying

From the series of dynamic swaying €xperiments only the test results
are given for the following amplitudes of motion: & = 0.01, 0.03, 0.05
and 0.10 m. These results are plotted in fig. 11 through fig. 14 as cen-
tred symbols. ;

For both values of %, ?yy(pLBD)“1 and byy(pLBD)—1(B/g)§ are subject to
large changes when -;u(B/g)2 increases. For the frequency range considered
in the experiments, ayy((})LBD)_1 in case of the smaller water depth
(—% = 1.167) up to w(B/g)? = 0.450 (i.e. w = 2.3 rad.s ") is greater than
ayy(pl'_.BD)_1 in case of the greater water depth (%—= 1.333); for w(B/g)é

> 0.450 a.yy(pLBD)-1 in case of %~= 1.167 seems to be somewhat smaller

1
than in case of % = 1,333. For %~= 1.167 byy(pLBD)_1(B/g)2 is greater
than for L 1.333.

D
For that part of the frequency range where the test results are not
1

influenced by (reflected) waves (i.e. if w(B/g)2 > 0.08, or w > 0.h4 rad.sas
-1 . - 3 . .
ayy(pLBD) slightly decreases and byy(pLBD) 1(B/g)2 slightly increases in
1
case of increasing & for certain w(B/g)®. Generally this holds good up to

& = 0.05 m for both water depths; in case of % = 1.167 this is more signi-

ficant than in case of % = 1.333, particularly for lower frequencies.
Probably this phenomenon is caused by friction effects of the fluid in

the keel clearance. Supposing a friction force for the fluid in the keel
clearance which is proportional to certain (positive) power of the under-
keel velocity, its influence on the hydrodynamic coefficients becomes
greater as the amplitude of motion increases; the influence on the sway
damping force coefficilent will be more significant than on the added mass
for swaying motion. Friction effects in the keel clearance have a similar
influence as a reduction of the keel clearance, which reduction is greater
as the amplitude of motion (and consequently the friction force} is lar-
ger. The resp;ctive figs. €% and T (theoretical results) show that for
0.08 iim(B/g)5 < 0.57 2 slight decrease of a (pLBD)_1 and a small increase
of byy(pLBD)_1(B/g)5 in case of a reduction g? the dimensionless keel
clearance can be expected.

During the sway experiments it was observed that for & > 0.05 m the phe-
nomena of vortex shedding and separation of flow at the 'bow', the 'stern’

and the 'bilges' of the ship model were going to play an increasingly im-
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portant part, such that an extension of the preceding explanation to
larger amplitudes of motion does not seem to be justified.

The results of the dynamic sway tests indicate that the system
ship-fluid may be considered as being linear (i.e. independent of the
amplitude of motion), at least within the frequency range considered
in the experiments. Apparently the assumption of linearity of the sys-
tem ship-fluid in case of swaying is a good working approximation notably
for small to moderate amplitudes (say up to & = 0.05 m) of model ship

forms as used.

B3.2.2: Tegt results in case of pure yawing

From the series of dynamic yawing experiments only the test results
~%¢ = 0.02, 0.06,

are given for the following amplitudes of motion: wo =

0.10 and 0.20 rad. where 1 = 0.5000 m. These results are plotted in fig.

15 through fig. 18 as centred symbols.

For both values of (——-LZpLBD)~1 remains almost constant and

5 oy
ww(T%LZOLBD) (B/g)2 is subject to large changes when w(B/g) increases.
For the frequency range considered in the experiments, aww(1;L2 LBD)"1

in case of the smaller water depth‘(% = 1.167) up to w(B/gf = 0.567
(i.e. w = 2.9 rad.s—1) is greater than aww(T;szLBD) in case of the
greater water depth (%-= 1.333): for w(B/gf > 0.567 W(TéLZpLBD)'
in casge of b 1.167 seems to be somewhat smaller than in case of

D

:
1.167. For % = 1.167 bww(EEszLBD)_1(B/g)§ is greater than for
1.333.

For that part of the frequency range where the test results are not in-
1

it

[whi=iwliay

fluenced by (reflected) waves (i.e. if w(B/g)? > 0.08, or ¢ > 0.4 rad.s_1)

1

the values of a (12L2pLBD) for the various amplitudes of motion coinei-

de - for certalgwm(B/g) - reasonably well; generally this holds good up
to ¢O = 0.10 rad. for both water depths. During the yaw experimentsit
was observed that for wO > 0.10 rad. the phenomena of vortex shedding
and separation of flow at the 'bow', the 'stern' and the 'bilges' of the
ship model were going to play an increasingly important part. This last
fact seems to affirm that the influence of the smaller amplitudes of mo-

. 1. .
tion on a 1.2pLBD)"  is of secondary importance.

ww(12
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For w(B/g)% > 0.08 b¢¢( %ELZpLBD)—1(B/g)% for certain m(B/g)% {slightly)
increases as wo increases; generally this holds good for both water depths,
This phenomenon may be explained in a similar way as in the case of
pure swaying, viz. b¥ friction effects in the keel clearance. For
bww(T%szLBD)_1(B/g)é an extension of this explanation to amplitudes of
motion wo > 0.10 rad. does not seem justified for reasons of the increa-
singly important part played by vortex shedding and separation of flow.
The results of the dynamic yaw tests indicate that the added mass moment
of inertia for yawing motion - unlike the yaw damping moment coefficient -
may be considered as independent of the amplitude of motion, at least within
the frequency range considered in the experiments, Nevertheless 1t will be
supposed that the system ship-fluid also in case of yawing is linear, and
that this supposition of linearity of the system ship-fluid is a good wor-

king approximation notably for (very) small amplitudes of motion (say up %o

by = 0.06 rad.) of model ship forms as used.

To conclude with Section B3 a number of three comments have to be made.

One is tempted to assume that the values of the various hydrodynamic
coefficients for zero frequency will be the same as those for very low
frequencies, but particularly with respect to the added mass for swaying
motion and the added mass moment of inertia for yawing motion one has to
be very careful with this extrapolation. Concerning the hydrodynamic dam-
ping coefficients the problem seems to be less complicated.

It looks like that the symmetry relations ayw = a¢y, byw = bwy are con-
firmed by experiments only in the low-frequency domain. At higher frequen-
cies the inequality of the respective hydrodynamic cross-coupling coeffi-
cients is probably due to the shedding of vorticity and separation of flow.

Apart from the conducted model experiments the guestion remains whether
at higher frequencies the linear 'equations of motion' (see Appendix T1)
would satisfy to describe the lateral ship motions. There seem to be objec~
tions to the use of the independent variables & (wo) and w. It might be
better to carry out the dynamic tests for constant values of the velocity -

and acceleration amplitudes, respectively, for these are the variables
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which are considered in the 'eguations of motion' (see Appendix II). In
that case suitable combinations of & (wo) and w have to be chosen. A plot
of the various hydrodynamic coefficients on a basis of velocity - and
acceleration amplitudes, respectively, could be useful to judge the sepa-

rate effects of both these variables.




part C: COMPARISON OF THEORY AND BEXPERIMENT, CONCLUSTIONS

Section C1: Introduction

In this part of the report the theoretical and experimental results
of the hydrodynamic coefficients -~ as derived in the respective parts
A and B -~ are compared with one another,

In part A the hydrodynamic coefficients for the three-dimensional
ship form are obtained by combining the contributions from the separate
cross-sections in a simple stripwise manner, If the hydrodynamic guanti-
ties, calculated in this way, are in agreement with test results, then
this is an obvious support to two propositions: firstly that the separate
contributions for all cross-sections of the ship have been predicted correct
ly, and secondly that the measure in which the cross-sections influence one
another is negligible. For it is considered to be very improbable that zero,
first and second order moments of the various quantities are correct, if
their distribution along the length of the ship is not.

In presenting the results derived theoretically (see Section A3.4.2) the
effects of the strip theory applied and the neglect of viscosity as well as
the end effects (i.e. the circulation around 'bow' and 'stern') have not
been discussed. Hence, in Section C2, first some remarks will be made with
regard to the effects of strip theory and neglect of viscosity on the
theoretical results for the hydrodynamic coefficients, before passing on to
a comparison of theory and experiment; likewise, the end effects will be
discussed.

In Section C3 the theoretical and experimental results for the hydrody-
namic coefficients in case of pure swaying and in case of pure yawing are
compared with one another.

Some general conclusions are presented in Section Ch,

Section C2: General discussion and remarks

The dependence of force and moment coefficients on the frequency of

oscillation is caused originally by the wave effects associated with the
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unsteady mogibn of the ship (model) atughe free surface and.é& the vor-
ticity which 1s shed from the oscillating hull.
There is some evidence to suggest that the presence of the free surface
plays a more important role in the damping components of force and moment
than in the corresponding added mass (moment of inertia) components. This
is to be expected since in an ideal unbounded fluid the hydrodynamic force

(moment) is entirely in phase with the {angular) acceleration.

For the low frequency range the viscous effects come into play rather
than the free surface effects.
For sufficiently small frequencies the pseudo-steady-state analysis is
valid (i.e. pertaining to steady state hydrodynamic forces and moments

acting on a ship)(e.g., see Appendix ITI).

C2.,1: Effect of strip theory

By strip theory is simply understood the stringing of a series of two-
dimensional elements to construct an approximative solution for a three-
dimensional problem: each cross-section of the ship (model) is considered
to be part of an infinitely long prismatic body and each two~dimensional
problem so constructed is solved separately, after which the solutiors are
combined in some way to yield a solution for the entire ship. Consequently
two stages can be distinguished in the strip theory approach. Firstly, the
solution of the two-~dimensional problem of oscillating prisms: in this
stage the elementary local values of the hydrodynamic coefficients must
be determined. Secondly, the combination of these values to approximate
the three-dimensional coefficients (at zero forward speed): here physically
three-dimensional effects come into play, but only as far as the strip
theory neglects them.

Using strip theory it i1s obvious that the longitudinal translation
(surge) cannot be dealt with: therefore this motion has been left out of
consideration.

In the two-dimensional theoretical problem as dealt with in part A
the cross-section can only perform swaying. A solution for the three-
dimensional yawing has been obtained by making the hypothesis that locally

this rotational motion is equivalent to a transverse translatory motion
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of angle times the distance from the axis of rotation.

The strip theory has the great drawback that it neglects the mutual
interactions between the various cross-sections. For slender bodies strip
theory results logically from the truely three-dimensional theory for high
frequencies of motion. Therefore it may be expected that the correctness of
this neglect depends primarily on the range of frequencies involved in re-
lation to the size of the body or, in physical terms, on the relative length
of the waves generated by the oscillations and the dimensions of the body:
short waves will not be affected distinetly by parts of the body being
many wave lengths away (and vice versa), but for long waves the same parts
are close to the source of the disturbance and will directly attribute to
the hydrodynamic phenomena.

Looking at the matter in this physical way another aspect is formed by the
phase relation of the motions of the various sections. A phase identity for
all sections as with sway motions resembles two-dimensional conditions, while
a phase transition of g radians at mid-length as with yaw promotes inter-
ference effects.

Naturally the basic principle of strip theory breaks down at the ends of
the body.

The above is only a qualitative evaluation; it is very difficult to say
where the limits of relatively high frequencies or of long waves are, or to

what extent the end effects influence the ultimate results.

C2.2: Effect of neglect of viscosity

Viscous contributions appear in two forms: skin friction and separation
of flow. Usually these viscous components are of a non-linear nature.

Skin friction is proportional to some positive power of a velocity (gra-
dient) and will contribute mainly to the damping coefficients, while sepa-
ration of flow changes the flow pattern about the body to a certain extent
so that it may influence both the damping and the added mass (moment of
inertia),

Skin friction may be left out of consideration since, probably, it will
be small with respect to flow separation, although in unsteady flow motions

large velocity gradients and consequently large shear forces may occur.
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Separation of flow occurs at relatively sharp edges of the ship (mo-
del). This is a source of energy loss due to eddy formation which contri-
butes mainly to the damping coefficients: probably, the shedding of eddies
does not seriously affect that part of the pressure distribution which is
in phase with the body acceleration. In cases where the damping due to
wave radiation is small, the influence of separation of flow cannot be
neglected, however; such cases are e.g. the hydrodynamic forces at the
ends of the ship in transverse motion, may be the (local) forces on the
bilges.

The viscous contributions at the ends of the ship (model) in swaying
and yawing may be locally significant, but probably they are negligible
with respect to the magnitude of the total damping.

C2.3: End effects: circulation around bow and stern

Strip theory cannot account for the side force and the yaw moment asso-
ciated with a small keel clearance, because in this case the circulation
around 'bow' and 'stern' may become important.

It may be expected that the influence(s) of the ends of the ship does (do)
not dominate the integrated pressures due to two-dimensional potential
flow, if the ratios of ship's length to wave length are great enough and
as long as there is no forward speed: at least the circulation effects
will relatively diminish. For short(er) ships deviations can be expected.

In physical terms one thing and another implies the following. Using a
two-~dimensional theory it is not possible to obtain results always relia-
ble, because three-dimensional effects can be of crucial importance.

In swaying distinction must be made between situations in which fluid easi-
ly can pass under the keel of the ship {model), and situations in which
most of the fluid must move lengthwise, passing around the ends of the
ship. Only in the former situation added mass and damping coefficients

may be calculated in a simple stripwise manner, neglecting three-dimensio-
nal effects. In the latter situation, which has as its extreme case that

of a grounded ship touching the bottom along its whole length, the given
theory holds good only for an infinitely long ship (model) and, as a con-
sequence, the results must be regarded with utmost care. Therefore it

is possible to state in advance that for a ship with finite keel clearance
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and finite length a two-dimensional theory produces values for the hydro-
dynamic coefficients in cage of swaying which are too high.

The hydrodynamic coefficients for yawing are determined from those for
swaying in a simple stripwise manner. In yawing the lengthwise motion of
fluid passing around the ends of the ship (i.e. circulation) is rather
important - certainly in case of a finite keel clearance - so that (very)
inaccurate or even wrong results for the hydrodynamic coefficients can be

expected from a two-dimensional theory.

Section C3: Comparison of theoretical and experimental results

C3.1: Comparison of theoretical and experimental results in case of pure

svaying
The theoretical results for the hydrodynamic coefficients in case of

pure swaying are plotted as solid lines in the figs. 11 through 1L4. This
implies that the theoretical results as presented in Section A3.4.2 (figs.
3 and L) are restricted to the frequency range considered in the experi-
ments.

Making allowance for the fact that - as a result of the uneven bottom
in the experiments - the (real) values of ayy and byy generally will be
(slightly) greater than the measured values (see Section B3.1), the agree-
ment between the theoretically derived and the experimentally determined
results for the hydrodynamic coefficients in case of swaying i3 quite sa-
tisfactory; notably this holds good for moderate to high frequencies (i.e.
if 0.15 < w(B/g)%1< 0.58) for both values of % . For the low frequency
range (say w(B/g)? < 0.15) the theoretical and experimental results do not
agree. This is caused by the fact that in the theoretical determination
of the hydrodynamic coefficients the respective effects of strip theory
and neglect of viscosity as well as the so-called end effects are not
taken into account. In addition to this the experimental results for
w(B/g)é < 0.08 were influenced by (reflected) waves. It is very difficult
to evaluate to what extent the reflection phenomenon influences the test
results for a (pLBD)_} and byy(pLBD)_1(B/g)%: anyhow, the test results

for w{B/g)° < 0.08 have to be considered with some reserve {(see Section

B3.1).
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Application of the strip theory implies a neglect of the mutual interac-
tions between the various cross-sections of the ship (model); the influence
of this on the hydrodynamic coefficients derived theoretically finds expres-~
sion mainly in the low freguency range, because there the length of the wa-
ves generated by the oscillations is relatively great with respect to the
size of the body. As explained before, the influence of the ends of the

hull ('bow' and 'stern') on the hydrodynamic phenomena then may become
relatively important.

For the low frequency range the viscous effects in themselves come into
play rather than the free surface effects and may present an increasing in-
fluence on the hydrodynamic phenomena as the fregquency decreases. For fur-
ther details about the effect of the neglect of viscosity see Section C2.2.
For Lo 1.333 the agreement between theory and experiment in case of swaying
turns out to be slightly better than for L 1.167. This is caused by the

D

fact that for %‘= 1.167 the keel clearance underneath the ship is smaller

than for = 1.333., In case of a smaller keel clearance the circulation

effect is stronger. For more details see Section C2.3.

o

C3.2: Comparison of theoretical and experimental results in case of pure

yaving

The theoretical results for the hydrodynamic coefficients in case of
pure yawing are plotted as solid lines in the figs. 15 through 18. As in the
case of swaying the theoretical results (as presented in Section A3.h4.2)
are restricted to the frequency range considered in the experiments.

Even when regard is paid to the fact that - as a result of the uneven
bottom in the experiments - the (real) values of S and bww generally will
be (slightly) greater than the measured values (see Section B3.1), the theo-
retically derived and the experimentally determined results for the hydro-
dynamic coefficients in case of yawing do not agree, at least as far as the
considered frequency range is concerned; notably this holds good for

1
a (—1L20L3D>~1 » in case of bw‘p(T—;'szLBD)_T(B/g)2 the theoretical and ex-

vz
perimental results present the same trend. The effect of the neglect of vis-
cosity yields no satisfactory explanation. Therefore it is obvious to think
of an explanation in terms of the effect of the strip theory in combination

with the so-called end effects.
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Essentially the strip theory is two-dimensional; consequently the solution
for the three-dimensional yawing is obtained by hypothesizing that locally
this rotational motion is equivalent to a transverse translatory motion of
angle times the distance from the axis of rotation. Besides, in the strip
theory the mutual interactions between the various cross—-sections are ne-
glected, while another complicating aspect is formed by the phase relation
of the motions of the various cross-sections. For a discussion of the res-
pective consequences of using the strip theory is referred to Section C¢2.1.
In addition to the effects of the strip theory another complicating Factor
is formed by the fact that the strip theory cannot account for (the side
force and) the yaw moment associated with a small keel clearance, because
in this case circulation (i.e. the lengthwise motion of fluid, passing
around the ends of the ship) belongs to the eventualities. For more detail
see Section C2.3.

It will be obvious by now that the effects of the strip theory together
with the circulation effect are responsible for the general disagreement
between the theoretically derived and the experimentally determined results

for the hydrodynamic coefficients in case of yawing.

Section Ch: Conclusions

For swaying the system ship-fluid can be considered as linear in case of
small oscillations, at least for the frequency range examined. In case of
very small oscillations also for yawing the system ship-fluid may be consi-
dered as linear.

Application of the strip theory with neglect of viscous effects is ade-
quate for swaying on shallow water in case of small/moderate to high fre-
quencies. In the frequency range considered the strip thecry is not satis-
factory for yawing on shallow water.

Further research into the hydrodynamic coefficients in case of swaying
and yawing on shallow water has to be focused on three-dimensional condi-

tions for low frequencies.
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APPENDICES

Appendix I: Qutline of solution of mixed boundary-value problem

According to SectionsA? and A3.1 the governing equation, the boundary
conditions and the supplementary condition for the (first order) veloci-

ty potential &(y,z,t) are:

2 2
(1-1) v2®=§:?2—+9~_—i—=0 in R, (1)
3y az
2
20 29 _ - .
(1-2) % -g3-=0 on yzzB 2=0, (2}
at “ -
. 20 fimy e B TR L D
(1-3) 5.?=w[a{U(z) Uz ~h+ k) + e T HU(z - bt oK)+
+ i - =
- u(z - nhyyett on F=%B, (3")
-} 2o on FraiB, Z=n, (4)
a7 = 2
I- 6(¥,z,t)]~ — = oubgoing dispersive wave, (5)
5 y > + oo
(1-6) o(¥,2,t) , ol(y,z,t) being finite in R , (6)
where _ 1 _
N 5 B, 0 z < h

R = (fluid) region




U(z) = wnity step function = [0 on z <0
1 on 2 ;AO N
= 9 - 2%
Ve1 TAF 2 Vel T BT ¢

Because of linearity of the problem the velocity potential ®(§,E,t)
can be conceived of as being composed of the velocity potential @S(§,Z,t)
resulting from the motion of the ship only, and the velocity potential
@kc(§,2,t) resulting from the motion of the mass of water underneath the
ship:

(I-7) o(y,z,t) = o (¥,z,t) + ¢ (¥,z,t)
each single velocity potential must satisfy the Laplace equation and
relevant boundary conditions.
¢(y,z,t), and consequently @S(§,E,t) and @kc(§,§,t), are simple-harmonic
functions of time t. Therefore the assumed sinusoidal time dependence may

be factored out:

(1“8) @S,kc(yazat) = (bs,kc(y’Z) TS,RC(t) 5
where ¢y kc(§,§) = harmonic (in v and z) function,
3
jwt ilwt - 8)
Ts(t) = e . ch(t) = e

Substitution of &_ kh(x,Z,t) as stated by eq. (I-8) into the eqs. {(T-1),
s, ke
(1-2), (I-4) and {I-6) yields
2
g = 1 R
(I-11) v (bS,kC 0 n s
g g ke 1
i -+ e Ean o o s = -
(1-2") 's ke 5 T3 0 on yzzB8,z2=0,




ad>s ke 1 -
(I-h4") *"3%"* =0 on ¥y ;:E-B, z =h ,
, " . .. .
(1-6") ¢s,kc . ¢s,kc being finite in R ,

respectively.
Solution of the Laplacian (I-1') will be found by means of separation

of variables:

(I“g) ¢S,kc(§’§) = YS,kC<§) ZS,kC<Z) ’

where Ys,kc(y) = function of y only, and Zs,kc(z) = function of z only.

With this expression for dq kc(§’z) eq. (I-1') gives:
3

2

L e ) = =2l (@2 (7)) = o,

s, ke s, ke

where a2 = constant of separation; the double prime used as superscript

means 'ordinary second derivative'. The solution of these equations is:

- + _ _ + i sz
Y (y) = Ae Yoy ope” W and 7 (z) = ge’ 102 1oz

+ De N
where A, B, C en D are constants of integration.

Starting from the general assumption that o is a constant complex quantity,
written as a = a, * iai with Re(a) = o, Im(a) = a. (o and oy real), it

i r
can be proved that merely the three following cases have to be considered:

Using o = a, * iui the expressions for Y (y) and Zg kC(Z) can be written
b

s ,ke




and

0.2
- i - .
Zs,kc(z) = (De + Ce ) cos(arz) - i(De +

i
=3
N

-ce * ) sin(arz) .

Introduction of the supplementary condition (I-6') then yields the
results

[N
[E
jng

- 3 - . - -
Zs,kc(z)’ Zs,kc(z) being finite on 0 <

and

— 1 — . . . - l .

Y (¥), Ys,kc(y) being finite on ¥ =3 B, if
. o o .

either o =0 (cases 1~ and 3, respectively) ,

or,both o, > 0 and A = 0 (case 2°) . ;

or,both a < 0 and B = 0 (case 2°) .

the prime used as superscript means ‘ordinary first derivative'.
Introducing the boundary conditions (I-4') and (I-2') into the three

above-mentioned cases successively and using eq. (I-9) it is obtained:

1°: for a = 0 : ¢ kc(§,§) =0 (the zero-solution);
o ’ - ur§
27t fora =oa,: ifa, > 0, ¢S,kc(y,z) = Ke cos{dr(h - z)}
with w2 = - ga_ tan{a_h)
: T r 2
+ ar§
1 Jv.z) = K - 7))}
and,if a, < 0 , ¢s’kc(y,z) K'e cos{ar(h z))
with m2 = - ga_ tan{a_b) ;
r r’ 2
o w Ty e __: vos (0. v 1 1 v
37: for o = io s ¢S,kc(y,z) {E cog(diy) + i F 81n(ai vt

- . 2
.cosh{ui(h - 2)} withw =g oy tanh(aih) .
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where K, K', E and F are constants of integration.
With regard to case 2% it has to be noted that the equation
2 . . .
w=~g o tan(arh) contains two series of real roots for 0., with the same

absolute values but opposite signs:

for o, > 0 it holds: = 4+ M,y F Moseesoey T M 4000
r d Op 1° 2° ? n?

for a. < 0 it nolds: = — M,y — Moseseeey =M geaees
r Oy 1° 27 ? n’

with mo > 0, arranged in order of increasing magnitude. The complete

solution for case 2% is composed of linear combinations of
- ary _ + ary _
Ke cos&§(h - z)} and K'e cos&¥(h - z)} for the respective values

of O and can be written as:

- - n -
by ge(¥s2) = ) C, e cos{m_(n - 2)} ,
n=1
where 0 - constant of integration ,
b - L. 2 _ _ .
(1-10") m = positive roots of v = - gmntan(mnh) (n=1,2,...3
my <My <. o<m < . (8°)

.. . . . 2 .
Similarly, with regard to case 3°, the equation w” = ga; tanh(aih) contains
two real roots with the same absolute values but opposite signs:

a; =i > 0. The complete solution for case 3° is composed of a

0> ™o
linear combination of {E cos(ui§) +1F sin(ui§)} coshhﬁ(h - 2z)} for the

respective values of a;, and can be written as:

¢ (¥,2) = {A cos(m,y) + i B sin(m.y)} coshim (h - 2)} ,
s, ke 0 0 0
where A, B = constants of integration ,
(1-10%) my = positive root of w2 = g m, tanh(moh) . (8%)

(I—lOa) and (I—10b) are the relationships for the wave numbers: m, is
. . 1
the usual wave number and the mn's satisfy (n - Bﬁﬁ < mhh < NT.
The solution for ¢ kc(§,£) which satisfies the Laplacian (I-1'), the
-]

boundary conditions (I-2') and (I-4') and the supplementary condition
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(1-6'), is compesed of a linear combination of the solutions for the res-

pective cases 10, 29 and 3°:

¢s,kc(§’z) = {A cos(mo§) + ﬂ}sin(mo§)} cosh{mo(h -z +
+ ) C_ e cos{m _(h - 2z)} .
Lo D n

Because of eq., (I-8) then it can be written:

@S’kc(§,5,t) = [{A cos(moi) + 1B sin(moi)} Cosh{mo(h - 7))+
- - my _
+ g c e cog{m_(h - z)}] Ts’kc(t) .

n=1

Introduction of boundary condition (I-5) into this expression yields:

- imoy
®s,kc(§’z’t> = [CO cosh{mo(h - z)le +
o _ mn§ _
+ nqune cos{mn(h - z)}] Ts,kc(t) R
where CO = constant of integration.

According to eq. (I-7) o(¥,z,t) is composed of a linear combination of
@s(§,5,t) and @kc(§,2,t). By means of eg. (I-8) the velocity potential
o(y,2,t), satisfying the equation of Laplace (I-1), the boundary condi-
tions (I-2), (I-4) and (I-5) and the supplementary condition (I-6), now

becomes:
m B

w -16 - ilut - mOD—[ *
(1-11) 3(y,z,t) =1 — (A, + B. ¢ ) coshim.(h -z)}e +
mo 0 0 0
.= Myt —
W -1 n
(g + BT e
T n

]
o~ 8

n

0’ An’

Substitution of ¢(y,z,t) as formulated by ea. (I-11) iato boundary con-

where Ag, B Bn = {so far) unknown constants of integration.
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dition (I-3) gives the result (supposing that w # 0):

(1-12) (A, + B e—ie) coshimy(h - z)} o+ (A, + Bne-ie) cos{m (n - z)} =

0 0

o~18

n=1

- - %k 16 - +
=§{U(Z)—U(Z—-h+k)}+—w—Ce—l Uz ~h+ k) -0z -h )} .

On account of Weierstrass's theorem the series

n21 (An +Be 16)cos{mn(h - z)}
is supposed to be uniformly convergent on the closed interval O < z < hs
as a consequence, this series can be differentiated and integrated term
ie) and (An + Bne_ i9> in eq. (I-12) may

by term. The factors (A, + B.e~

0
be congidered as the coefficients of cosh{mo(h - z)} and cos{mn(h - z)},
respectively. Resolution of the right-hand side of eq. (I-12) into terms
conformably to the left-hand side of this equation on O £ z < h is, gene-

rally, only possible if the row of even functions

(1-13) COSh{mO(h - z)}, cos{m](h -2)}, cos{mg(h e Z) e enees

cos{mn(h 2 ) S

is complete on this interval. Concerning to this point the line will be
taken that the functions (I-13) form a complete row (basis) on O <z < h.
Besides the functions (I-13) are orthogonal an 0 2:2 < h. The so far un-
xnown constants of integration AO, BO, An and B in eq. (I-11) then can
be determined by applying the principle of orthogonality to eq. (1-12) on
0 < 7 < h. To that end eq. (I-12) is multiplied by coshi{my(h - z)} and

COS{mj(h —zZ) (3= 1,2, , Nye....), respectively and subsequently

integrated over the interval in gquestion, yielding:

h
- 10 2 _— =
(AO + Bye ) j cosh {mo(h - z)}ldz +
0
- h
-is, f - - -
A+ ! - - =
+ Z ( Lt oBe ) ) cosh{mo(h z)} cos{mn(h z)} dz

n 0




= 8 J U(z) - Uz - h + k)} cosh{mo(h - z)} az +

0
% o
+ —fg e *® f {(U(Z -n + k) - U(Z - h+)}cosh{m0(h -3)} az
0
and
) h
(AO + Boe- le) J cosh{mo(h - E)}cos{mj(h - 32)} az +
0
oo . h
+ ) (An + Bne- 16) J cos{mj(h - 2)} cos{mn(h -z)} dz =
n=1
0
h
=8 j {u(z) - U(z - n + k)} cos{mj(h - z)} dz +
0
. h
Ve - 1o _ _ . _ _
+ —EE e f {U(z ~nh+ k) -~Ulz -h )} cos{mj(h - z)} dz .
0]

Using eqs. (I-10%) and (I—10b) it can be verified that

h
f cosh{mo(h - E)}cos{mn(h - 2z)}dz = 0 for all n,
0
and
h
J cos{mj(h - E)}cos{mn(h -z)} az

0 . .
#F 0 if n=7j .

By means of these relationships finally it can be derived for Ay BO, A

and Bn:
2{Sinh(moh) - sinh(mok)}

h)

= A ' = -
A moh + 81nh(m0h)cosh(m

Q”JOID

(1-14%)
0
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b fg L 2{51n(mnh) - 51n(mnk)} b
(I-157) a A= mh + sin{(m h)cos(m h) ’ (97)
n n n

B.w 2 sinh{m k)
a 0 0 a
I-1 = = '= - ’
( 57) Ve By myh + 51nh(moh)cosh(moh) ’ (10%)
B ow 2 sin{m k)
(1-15°) R -y e e WY mn (10°)
e b n(m h)cos(m h

The velocity potential ¢(y,z,t) has been fully defined by now: e(y,z,t)
as formulated by eq. (I-11) with constants of integration Ay» BO’ A, and B,
a,b a,4b . .
represented by egs. (I-147°7) and (I-15 "), satisfies Laplace's equation

(I-1) plus the set of boundary conditions (I-2), (I-3), (I-4) and (I-5) and
the supplementary condition (I-6).

Appendix II1: Basic formulae for dynamic tests

I1.1: General introduction

In this Appendix IT it will be explained in which way the hydrodynamic
coefficients for pure swaying and yawing with zero speed of advance can be

determined from the measurement of the exciting forces.
If, in the horizontal plane, a harmonically oscillating motion is impo-

sed on the ship model, then the reactive forces of the fluid as well as the
exciting forces on the ship model will be harmonic with the same period
(supposing at least that merely first harmonic components of the forces

are considered). By the linearity assumed the magnitude of the reactive
forces of the fluid is directly proportional to the motion amplitudes.

In behalf of a description of the dynamic tests reference is made to
fig. IT.a; the notation is as explained in Section A3.3. The quantities
relating to the fastening points of the struts of the oscillator at fore-
part and hind-part of the ship model will be indicated by the subscripts
1 and 2, respectively. The distance from a fastening point to the centre

4

of gravity G is denoted by 1.



|

y

fig La ~ Definition of symbols in dynamic tests.

The motion of the two struts of the horizontal oscillator may be

represented by:

y] = _ 3 Sil’l(b))ﬁ + (S), y2 = -3 sin(mt - S) s

= amplitude (excentricity) of the motion of the struts,

W)

where
w = circular frequency of the motion (of the struts),

phase difference between the periodic motion of both

=23
1]

the fastening points and the motion of G.

As the forward speed of the ship model is zero and the lonpgitudinal surge
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motion is neglected, the coordinates of G are given by:

_= ="’+" - _ A .
XG constant , Vg (y1 ye)/2 & cos{8)sin(wt).

If the phase difference § is supposed to be a time independent quantity,
then the translational velocity v and the translational acceleration ¥

of G relative to the undisturbed fluid can be written as:

-~ , o - " 2 .
v = = - & w cos{8)cos(wt) , v =y, =8w cos(8)sin(wt).

a,b>
G G

(111

The rotation of the ship model with respect to the centre of gravity can
be found as follows (see fig. II.b). The geometrical relations during

yawing tests are:

centre Line strut 1

i
i
|
1

D ¢ centre line basin . __ . __
— e AY e e . .
] ) h equilibrium position ship model
! .
!
!
1 t
t |
I |
. . |
Gl fixed distance ! BT
2
’ hrs tanty) = BA/BG = BA/L
| >
|5 BA =CA-CB =CA—DG
bz
Poe
P03
!
|
dynamometer o |
~ 4 1
A

fig.I.b — Geometrical relations during yawing tests.
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tan(Y) = ﬁK/ﬁE = Ez/l and

BA=CA-CB=CA~-DC=-3 sin(pt + 8) +

-~

+ & cos(8)sin(wt) = - & sin(&)cos{wt) ;
consequently it holds good that:

tan(y) = -

— o
|

sin(8)cos(wt) , or ¢ = atan {- — sin(&)cos(wt)},

Because of the fact that !% sin(8)cos(wt) |

fin

1 ¢ can be developed into a

series:
Y o= - g sin(8)cos{wt) + l-{é sin(é)}3 cosB(wt) +
1 3 71
- %— %- sin(d)}5 cos5(mt) + %‘{% sin(é)}7 cosT(wt) — e
where cos3(mt) = %{3 cos{wt) + cos(3uwt)},

COSS(wt> = %g {10 cos(wt) + 5 cos(3wt) + cos(Swt)},

COSY(mt> = %g‘{SS cos(yt) + 21 cos(3wt) + T cos(Swt) +

+ cos{Tuwt)}.

(1)

This yields for the first harmonic component of ¢, denoted by Yyarm. -

(1)

wharm.

)
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{1

As merely first harmonic components are considered, wh
arm.

will be
indicated further by y:

(17-2%) v =y, cosluwt) ,
where by = - % sin(8) [ - %{
- A’ e ] L

For the yaw angular velocity r and the yaw angular acceleration # then

one obtains:
(11_3a’b) r= o= - by o sin(wt) , =10 = - N w coslwt) .

I1.2: Pure swaying tests withvzero speed of advance

Swaying is characterized by 6 = 0; this means that, on account of

the egs. (T1-2%) ana (171-3%7).

Eq. (II~1a’b) then becomes:

d

(11-1%°%) v =-4uwcos{wt) , v =38 w® sin{wt) .

The measured lateral forces are split up electronically into the following

components by means of a Fourier analysis:

= + . sl Cos e
Y1 Y],const. Yl,sl sinuwt) + ¥ co oslut) ,

Y
2 2,const, 2,81

where the added subscripts const., si and co indicate a constant force

component, a sinus force component and a cosinus force crmponent, respec—




A-1h

tively. The resulting exciting force, acting in the centre of gravity, is

a force oscillating harmonically:

- = = +Y
(1T-4) Yosc. Y? * YE <Y1,const. 2,const.) *

.+ . i .
+ (Y1,51 Y2,51) sin(wt) + (Y1,co + YZ,CO) cos{wt)

The resulting exciting moment about the centre of gravity then is:

= Y _ = -
(I1-5) Nosc. l<‘1 YQ) l<YW,const. Y2,const.) *

+ 1(y R .) sin(wt) + l(Y] - Y ) cos (wt) .

,CO 2,c0
According to Section A3.3 the 'equatiors of motion' in case of pure yawing

are:

. C o =
n+a )i+ §=Y

(11-6) pure swaying. (17)

- .
awy S bwy ¥ josc

Substitution of egs. (11—1c’d), (1T-L) and {(II-5) into eq. (II-6) -
bearing in mind thereby that in eq. (II-6) ¥ = v and ¥ = ¥ - and succes-
sive equalization of the coefficilents of the corresponding terms with

sin(wt) and cos{wt), respectively, then yields:

(11-7) Y],Congt_ = YQ,const. =05
Y1 i + Y, o
_ . = —t28h 2,51
(11-8) LI _ 2 :
a
Y1 co T, co
(11-9) by T TE T
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(Y Y )
(11-10) a = Uiei o
12 ) w2
1(y -Y
(T1-11) b - 1,co0 2,C0 i
vy -8

II.3: Pure yawing tests with zero speed of advance

Yawing is characterized by § = 5 ; this means that, on account of

eq. (17-1%°0):

o=

Eq. (II—Qa) then can be written as:

(II—Qb) b= g cos{wt) , where by = = %—41 - %‘(%) +
1,84 5 4.6
+§<T) —m\f) T A

According to Section A3.3 the 'equations of motion' in case of pure

yawing are:

(11-12) pure yawing . (18)

. . a,l .
Substitution of egs. (II-3 ’D), (IT-4) and (TI-5) into eq. (II-12) and
successive equalization of the coefficients of the corresponding terms with

sin{wt) and cos(wt), respectively, then yields:

1I- = =
( ) Y1,Const. Y2,const. o
A ‘] + Y/\
> > ,co
(11-13) - R

- YL w

"0
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fisi T Yot
ITI-14 b = e s
( ) yi =Yy
1(y - Y )
_ 1,co 2,c0
(II-15) I, * aWW = R )
4/0 w
1(y - Y. )
) _ 1,81 2,51
(11-16) wa = e
0
Only small amplitudesof motion will be considered, i.e. - in this

. . . i.n .
linearized case - amplitudes for which it holds good that (%) << 1 31f

n > 2; eq. ﬁﬁ_gb) then changes into:

)

(11-2%) v = ¥, cos(ut), where Vg = -

By the results derived above it can be seen that the mass forces {mo-

ments) are in phase and the damping forces (moments) are out of phase with

the sway {(vaw) motion.

Appendix IIT: Rough estimation of hydrodynamic_coefficients for low

frequencies

In this Appendix III a highly approximative method will be provided
for estimating the hydrodynamic coefficients in case of {(pure) swaying
on shallow water.

This method -~ originally developped by P.A. Kolkman - starts from the
principles of the long wave theory; consequently its validity is res-
trict;d to very low circular frequencies. Just as in vart A of this report

the determination of the hydrodynamic coefficients will cccur in a simple

¢ manner., Therefore, besides the restricticrs being inherent to
3 £

cation of the long wave theory one has alz. to o in this method
Wwith the drawbacks assoclurod wiliu the strip theory {see Seotion ce,1ls
likewise no gecount i take: of the gso-called end eiiscts (ses Section
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The nydrodynamic coefficients will be derived for the same ship (model)
as in the report and, as much as possible, the same notation will be used.

For a definition sketch see fig. III.a.

- 7 Cw =Vgh
‘_‘fé"“‘“‘;_—{_”:;’z;_: s T4 T 1 =
Cy =Vgh D
V=0 — B —Vy |b Vy=0
= Vie

fig.M.a - Definition sketch.

The harmonic oscillations of the ship take place in exactly the same way
and under similar conditions as outlined in Sections A2 and A3.1.

The horizontal transverse translatory velocity of the ship is indicated
by v . Let the height (or 'amplitude') of the generated long wave be n

fig., III.a); n is supposed to be very small with respect to the wa-

wer depth h: n << h. With neglect of friction effects, assuming that the
wave propagates without distortion, the velocity of propagation can be
represented by Sy = VEE} In conformity with the long wave theory the
(forinontal) fluid velocities under the long wave (i.e. vfl) are supposed
to be uniformly distributed in the vertical plane; this also holds good
2t g {very) short distance from the ship's wall. The velocities in the
sndisturbed fluid region are equal to zero. Further it 1s supposed that
the horizontal velocities in the keel clearance are distrilbuted uniformly

and cun be represented by:
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Applying the law of conservation of momentum to the mass of water under-

neath the ship one obtains (per unit length):

dvkC

dt

(111-2) pB(h - D) = - 20gn(h - D) - B v,

where B v, represents a linearized friction force (B = proportionality

ke
constant > 0).

From the long wave theory it can be derived that:

. f1
(III~3) h - nygh = 0 R or n = .

Vel
The equation of continuity reads as follows:

(I11-4) vy D+ v, {(h - D)= ho.

ke Vel

Elimination of n from eqs. {III-2) and {(IIT-3) and substitution of Vo

yields for Vfl:

¢ B . g .
(1I1-5) Ve T - - 9, cos{wt) - ——r—————— sin{wt) .

5 EE— ke (h - D) r;— kc

By substitution of the expressions for Ve and Ve into eq. {III~h)
4 C B

v becones:

(111-6) v, = ch {01 cos(wt) + 02 in(wt)} = ch yC] + Cé sin{wt + §)
C
with tan(zg) = Fl s
,
where
(111-7%) c = _ wB/gh ¢ = _b=-D_ 5Veh )
] 2gb 7 2 D 2ped(n - D)

the acceleration of the ship is:
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—= = % {- c, sin(wt) + C, cos(wt)?} .
The (horizontal) hydrodynamic force acting on thé ship per unit length is:
F o = 20gnD 3

Elimination of v., from eq. {(III-3) by means of eq. (ITT-5) yields for n:

ji

8

wB o s
2pg(h - D) 'ke

n=-=—%cos(wt) ~

2z ke gin(wt) .

Substituting n into the expression for the hydrodynamic force on the ship

it can be derived for FS:

(III—Ba) F_ = ﬁkc {C3 cos(wt) + Ch sin{wt)?} ,
where
(111-97) Cy=-puwBD , C=-y73

Eq. (III—Ba} can be reduced to:

- 2 17k .
o= wv ; {C, cos{wt) -~ C, sinfwt)} +
S ke -(C2 + 02) 2 1
Wiy 2
+ 0
. C1 C3 L2 Ch .
+ 9. 5 5 {C1 cos(uwt) + C, sin(wt)} ,
C1 +C,
- dvO
which formula by means of the expression for EE: and eq, (III-6) can be
written as:
co¢ -0 C .
. L A e
(111-87) P Y N T T
m(c1 + ) oo+ §

The sway added mass a'! and the sway damping force coefficient b;v (per
J )

unit length) can be determined from those vespective parts of the hydro-
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dv
dynamic force which are directly proportional to the acceleration *a% and

the velocity v, of the ship, therefore:

(I71-10) a = """*"‘mcz R
- = 5
Iy w(02 + C2)
1 2
and
(1) o =13 %20
) Iy @+ c? ’
1 2
where the prime used as superscript. means 'per unit length'. For a pris-
matic body with length L it then holds good that:
C2 C3 - C1 Ch
(I11-12) &y = Le——g—2"
w(C1 + C2)
. . C1 C3 + 02 Ch
(111-13) vy *"E;;:Tz;;"" .
1 2
From eq. (III-6) it follows that:
T
ke 1
(IT1-14) =< = : s
2 2
cC, +C
1
where 4 = amplitude of (harmonically oscillating) ship motion.
The phase difference 7 (i.e. identical with 8) between the fluid motion in
the keel clearance underneath the ship and the ship motion becomes:
(III-15) r = atan (CX’ 02)

If the friction in the keel clearance 1s neglected - which amounts to
the supposition B = 0 -~ the respective coefficients Cyo Cg, C3 and C),

reduce to:
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b - =
(T11-77) 1= - e Cp = -
and
b - —
(111-97) C3 = - pwBD , Ch =0 .

Using these expressions for Cys C2, C3 and C) the respective egs. (I11-12),
(I11-13), (IIT-14) and (II1-15) can be written as:

Lk pgBD (n - D)

(III-—Té) a, = - 3

Iy math + bg(h - D)2
222
(11117) b =1 Qe ED /gh —
w B h + hg(h - D)

T
ke _ 2DVa

(IT1-18) —== =

/P52, 1 bg(h - D)°

and

- - wBYgh
(111-19) T = atan {— Paln - D7)
Taking the transition w - 0 to the limit - with the restriction
(h ~ D) #0 - it is obtained from the respective egs. (ITI-16), (III-~17)J
(III-18) and (I1I-19):

2
. - D
(111-20) lim (ayy) = pLB 3 °
w0
(111-21) lim (b ) =0 ,
w0 4
3
. key _ D
(111-22) lin (77) = o=
w0

and
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(IT1-23) lim (g) = - 7 .

T _1£

Taking the transition h -+ D to the limit the egs. (III-16), (ITI-17),
(1I1-18) and (III-19) change into:

(TI1-24) lim (a_ ) = 0 ,
wn VY

(IT1-25) 1im (b ) = 2pLh\eh
hsD I

v

(I11-26) lim (=€) = 2Veh
N wa wB
n-+D

and

(T1I-27) lin (g) = - %,

h-D

respectively. It has to be noted that the egs. (TII1-2h) and (ITI-25) are
independent of the circular frequency .

In the above, expressions are derived for estimating the values of
the hydrodynamic coefficients in case of (pure) swaying on shallow water,
In order to compare the results of this highly approximative method with
the theoretical and experimental results as presented in the respective
parts A and B of this report, one has to start from the situation with
zero friction in the keel clearance,i.e. ayy and byy have to be calculated
on account of egs. (III-16) and (II1-17), respectively. The values calcu-
lated in this way are plotted as dotted lines in the figs. 11 through 1k,
It can be stated that, generally, the agreement between the theoretical
and experimental results as presented in Section C3.1 and the results based
on the long wave approximation is quite reasonable, at least as far ae the
considered frequency range is concerned. For the influence of the effects
of strip theory and neglect of viscosity as well as for the circulation
effect on the calculational results is referred to Section C2.

Wanting to gain an insight into the Influence of the friction effects




in the keel clearance on ayy and byy’ one has to start from the respective

Il

eqs. (III-12) and (III-13) together with the expressions for Cys Cp’ Cq
gs. (TTI-7%) and (I11-9*). Substitution of

®

and C) as presented in the

C1, C2, C3 and Ch into the expressions for ayy and byy yields:
Iy BDg(h D)
- pE -
(I17-12") 8oy = L=—575 5
v {w™B™h + hg(h = D)7} + Wl
and
"o 2 EDE/—{ 1)
20w B veh{1 + 232 (W1 - W2
(II1-13") b, =0 o2 = EN ’
’ {wB™h + hg(nh - D)7} + W1
Lep(n - D)°Vah + 8%n 2BVen
where w? = . 5 and W, = JHBJ“ R

W, and W? indicate the influence of the friction effects in the ke=l

clearance. The proportionality constant 8 in the linearized friction
force, as introduced in eq. (ITI-2), is positive. On account of the

eqs. (III-12') and (III-13') it will be obvious then that an increase

of B will decrease gy and will increase b__, at ast as far as the

Yy
frequency range considered in the experiments is concerned. From calcu-

fects in the

lations it appears that the influence of the friction e

kg NN

keel clearance in case of a is smaller than in case of bvv'
[t might be cxpected that the influence of the friction effects in the

kxeel clearance finds expression in the experimental results, notably at

larger amplitude of shily motion 4: for, the lincarized friction force

is directly proportional to the amplitude of motion. Indeed,for amplitudes

of motion up to 4 = 0.0% m the tendency is foun a glightly de-—

Ly
JJd

il

creases and b when A increases; naturally this holds good only

i

v
VNN oL y S N 1 ; . . .
iTw>» 0.4 rad.s . Une thing and another confirms the supposition, made in

Section

relaling to the presence of friction effects in the fluid

widerneail Lhe ship.

As o a ma of fact, Lhere can only be

Approximat ion 17 w = 0.
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between the theoretical results as derived in part A of this report and the
results of the long wave approximation. However, the contrary is the case.
As cause might be mentioned the supposition - inherent to the long wave
approximation - that already in vertical planes at extremely short dis-
tances from the ship's walls the horizontal fluid velocities are uniformly
distributed along the height, what is generally not the case in the theo-
retical approach from part A. In this latter case there will be only
question of a uniform velocity distribution in the vertical planes very
close to the ship's walls, if the keel clearance tendsz to zero. Therefore,
the relevant results of the theory as presented in part A and the long
wave approximation are only allowed to be compared if both w tends to zero
(i.e. pure long wave approximation) and h tends to D (i.e. zero keel

e eqs. (297

clearance). Indeed it can be ascertained that the respe
/ ol 5 17 ga +th capant s s (20%) 4 25 pe
and {I1I~2L4} as well as the respective eqgs. (307) and -25) do agree.,

Likewise, the above explains why there exists in case of — = 1.167 a
better agreement between the theoretical results from part A and the

, . . . . h .
results of the long wave approximation than in case of D= 1333,

1



