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Supercurrents in Unidirectional Channels Originate from Information
Transfer in the Opposite Direction: A Theoretical Prediction

Xiao-Li Huang and Yuli V. Nazarov
Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

(Received 21 July 2016; revised manuscript received 30 January 2017; published 25 April 2017)

It has been thought that the long chiral edge channels cannot support any supercurrent between the
superconducting electrodes. We show theoretically that the supercurrent can be mediated by a nonlocal
interaction that facilitates a long-distance information transfer in the direction opposite of electron flow.
We compute the supercurrent for several interaction models, including that of an external circuit.
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The proximity effect in normal metal-superconducting
structures has been known for a long time [1,2] but still is a
subject of intense theoretical and experimental research
[3,4]. The most prominent manifestation of the proximity
effect is a supercurrent flowing through a normal metal
between distant superconducting electrodes. The interest-
ing feature of the effect is that the induced superconducting
correlations persist in a normal metal for long distances.
The distance even diverges at energies close to Fermi level
ϵ≡ E − EF → 0, L≃ vF=jϵj for ballistic structures with a
typical electron velocity vF [1].
In the quantum Hall (QH) regime, the conducting

electrons are restricted to the quantized transport channels
at the structure edge [5]. Importantly, these channels are
chiral: the electrons propagate in one direction only.
Superconducting leads connected to the edge modes may
induce the proximity effect. Interestingly, the Andreev
reflection phenomena [6,7] and the supercurrent in chiral
channels [8–10] have been thoroughly investigated.
Notably, it was shown that the supercurrent carried by a
chiral channel requires the closing of the channel and is
inversely proportional to the full perimeter of the QH
sample. Therefore, there seems to be no current in the
situation when this perimeter is macroscopically long, for
instance, in the situation given in Fig. 1(a). An heuristic
explanation is that the supercurrent is due to the bouncing of
electrons and Andreev-reflected holes between the super-
conducting electrodes. In a chiral channel, both electrons
and holes move in the same direction and no bouncing can
occur unless a particle encircles the perimeter of the whole
macroscopic sample. If there were transport channels
propagating in the opposite direction, we would have a
current of the scale evF=L, L being the distance between the
superconducting electrodes. The absence of the supercur-
rent seems a simple but fundamental property of the chiral
channels. It is not affected by local electron-electron
interactions in the channel that can be easily be taken into
account in a framework of a Luttinger-like model [11].
In this Letter, we show that the supercurrent in a chiral

channel can be induced by a nonlocal interaction that

potentially provides an information flow in the upstream
direction, that is, opposite to the propagation direction of
the electrons.
We compute the supercurrent for several interaction

models and demonstrate that the current is limited by a
typical information transfer rate. The effect persists in the
ground state where no actual event of information transfer
takes place: rather, the supercurrent indicates potential for
such events. A transport mechanism based on information
transfer is rather exotic for electrons, and its experimental
observation would be rewarding. We consider a situation of
special experimental relevance where the interaction is
arranged by means of an external electric circuit.
The primary setup under consideration is shown in

Fig. 1(a). Assuming the macroscopically large QH sample,
we consider an infinite 1D chiral channel at the sample
edge. For simplicity, we concentrate on a single spin-
degenerate channel: adding more channels does not change
the results qualitatively. Two superconducting electrodes
separated by distance L ¼ x2 − x1 are in contact with the
channel, the contact length being≪ L. They are kept at the
superconducting phase difference ϕ ¼ ϕ2 − ϕ1. We assume
low energies at the scale of Landau level separation. In this
limit, the electron states in the channel can be described by
a simple linearized Hamiltonian,

H0 ¼ −ivF
X
σ

Z
dxψ†

σðxÞ∂xψσðxÞ; ð1Þ

ψσðxÞ being the annihilation operator of an electron, with
spin σ at point x. The normal-electron Green’s function in
the Matsubara representation is explicitly chiral,

Gωðx − x0Þ ¼ −
isgnðωÞ

vF
e−

ω
vF
ðx−x0Þθ(ωðx − x0Þ); ð2Þ

it extends to the right (left) for positive (negative) ω and is
zero on the left (right). The lowest-order anomalous
Green’s function Fωðx; x0Þ, induced by a superconducting
pairing at point x1 [Fig. 1(b)], encompasses the normal
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Green’s functions at opposite frequencies Fωðx; x0Þ ¼
Δðx1ÞGωðx; x1ÞG−ωðx0; x1Þ. This describes the supercon-
ducting correlations that are essentially nonlocal and,
owing to chirality, vanish at the same point x ¼ x0. The
superconducting current is expressed through the phase-
dependent energy correction. This one could emerge from
the transfer of the superconducting correlations to the
second contact ≃P

ωFðx2; x2ÞΔðx2Þ [Fig. 1(c)], yet it
vanishes since the correlations vanish at the same point.
The main point of this Letter is that a nonlocal interaction
can change this. Let us consider a diagram shown in Fig. 2.
Here, at positive ω, the correlations propagate from x1 to
the separated points x > x1 and x1 > x0. The nonlocal
interaction between these distant points can flip the
frequency sign of the electron line ω0 < 0 so the correla-
tions move in opposite directions to meet at the point x2.
This works, provided x0 < x1 < x2 < x. We see that the
interaction should connect the region to the left of both
electrodes, with the region to the right of both.
Let us proceed with the evaluation of the current. We

start with noninteracting Green’s functions in the system;
those are easy to evaluate in all orders in pairing potential,
which is incorporated in a form of a unitary transformation

in the Nambu space. This transformation relates the
electron-hole amplitudes before and after the electrode
and reads Û ¼ exp½−i R dxΔ̂ðxÞ=vF�, Δ̂≡ ð0;Δ;Δ�; 0Þ,
where integration is taken in the vicinity of an electrode.
Following [12], we can conveniently parameterize this
matrix with the probability p of the Andreev electron-
hole conversion at the corresponding contact Û1;2 ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − p1;2

p
;−i ffiffiffiffiffiffiffiffi

p1;2
p

eiϕ1;2 ;−i ffiffiffiffiffiffiffiffi
p1;2

p
e−iϕ1;2 ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p1;2

p Þ. In
the usual Nambu spinor formulation, for x and x0, situated
at opposite sides of both superconducting contacts,

Gðiω; x; x0Þ ¼ −
i
vF

e−
ω
vF
ðx−x0Þ½θðωÞθðx − x0ÞÛ2Û1

− θð−ωÞθðx0 − xÞÛ†
1Û

†
2�: ð3Þ

We evaluate the correction to the energy brought by
interaction and differentiate it with respect to ϕ to obtain
the current,

IðϕÞ ¼ −8eR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2ð1 − p1Þð1 − p2Þ

p
sinϕ; ð4Þ

R≡
�
T
vF

�
2X
ω;ω0

Θð−ωω0Þ
Z

x1

−∞
dx

Z
∞

x2

dx0;

Vðω − ω0; x; x0Þejω−ω0jðx−x0Þ=vF : ð5Þ

T is the temperature in energy units. We give most results at
vanishing temperature. Here, we have not yet specified the
form of interaction Vðν; x; x0Þ. We see that the current
assumes a usual sinusoidal Josephson phase dependence
and is proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2ð1 − p1Þð1 − p2Þ

p
< 1=4,

indicating that the current comes about the interference
of two processes: (i) an electron propagation with Andreev
reflection in superconductor 1 and no Andreev reflection in
superconductor 2, and (ii) the propagation with no reflec-
tion in superconductor 2 and Andreev reflection in super-
conductor 2. All details of the contacts are incorporated in
p1;2, while the coefficient R characterizes the interaction in
the setup. Further, we evaluate the coefficient R for various
interaction setups and prove its relation to the rate of the
upstream information transfer. For detailed derivation of (4)
and (5), see Supplemental Material [13].
We start with a rather artificial but instructive setup. Let

us consider a harmonic oscillator with eigenfrequency ωb
that is coupled to the edge states in two points x3;4. The
coupling is described with

HI ¼ ½α3n̂ðx3Þ þ α4n̂ðx4Þ�ðb̂þ b̂†Þ: ð6Þ

where n̂ðxÞ≡P
σψ

†
σðxÞψσðxÞ. Owing to the coupling, the

quanta of the oscillator can be absorbed by the edge states,
with the rates Γ3;4 ¼ α23;4εb=v

2
F. The oscillator provides a

channel of upstream information exchange whereby an
excitation at the point x4 is absorbed and transferred to the

(a)

(b) (c)

FIG. 1. (a) The basic setup: two superconducting leads biased at
phase difference ϕ ¼ ϕ2 − ϕ1 are attached to the edge of a QH
sample. (b) The lowest-order anomalous Green’s function.
(c) The noninteracting lowest-order contribution shown vanishes
for chiral channels.

FIG. 2. Nonvanishing contribution to the superconducting
current. The wavy line represents interaction. By virtue of
chirality, the points x, x0 are on opposite sides of both x1 and
x2. This is only possible if x0 < x1 < x2 < x and ω and ν are of
opposite signs.
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upstream point x3. The information flow rate through the
oscillator is limited by the emission or absorption rates and
thus, can be estimated as minðΓ3;Γ4Þ.
Let us look at the superconducting properties, assuming

x3 < x1 < x2 < x4. The oscillator provides an effective
electron-electron interaction (x > x0),

Vðx; x0; νÞ ¼ α3α4ωb

ω2
b þ ν2

δðx − x3Þδðx0 − x4Þ: ð7Þ

Making use of the relation (5) and integrating over the
frequencies, we arrive at the coefficient R characterizing the
current,

R ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffi
Γ3Γ4

p
C; ð8Þ

where the dimensionless coefficient C in two opposite
limits ωb ≪ vF=L and ωb ≪ vF=L is evaluated as C ¼
lnðωbL=vFÞ and C ¼ ðvF=LωbÞ2, respectively. We see that
for ωb ≪ vF=L, the coefficient R is of the order of the
information transfer rate. This correspondence is not exact,
as seen from the different dependence on the Γ3=Γ4 ratio.
This is not surprising since, distinct from information
transfer, no real events are associated with the supercurrent
that results from quantum interference. However, such
correspondence is remarkable even on a qualitative level.
As seen from (5), the relevant frequency window for
supercurrent formation is limited by vF=L. This explains
suppression of R at ωb ≫ vF=L: the oscillator cannot
efficiently transmit such low frequencies.
A QH sample is always mounted on a substrate. This

makes electron-phonon interaction a default mechanism for
a long-range upstream information flow: an electron-hole
pair can be converted to a phonon that propagates upstream
and is absorbed there. We describe the electron-phonon
interaction by the Hamiltonian,

He-ph ¼ A
X
q⃗

iq⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρωq⃗V

p
Z

dx⃗eiq⃗·x⃗n̂ðx⃗Þðaq⃗ þ a†−q⃗Þ: ð9Þ

Here, ρ is the density of the substrate material, V is the
normalization volume, q⃗ is the phonon wave vector, and
ωq⃗ ¼ cjq⃗j, with c being the sound velocity. For electrons in
the edge channel, x⃗ is one-dimensional. This results in the
following long-range electron-electron interaction:

Vðx; x0; νÞ ¼ −
A2

2ρV

X
q⃗

q⃗2

ν2 þ ω2
q⃗

eiq⃗·ðx⃗−x⃗0Þ: ð10Þ

Let us note the analogy with the previous setup: each
phonon mode is, in fact, an oscillator that is coupled to the
electrons both upstream and downstream of the super-
conducting contacts.

The strength of the interaction is convenient to express in
terms of the electron relaxation rate, which is proportional
to ϵ3, ϵ being the electron energy above the Fermi level,

ΓðϵÞ ¼ A2

12πρvFc4
ðϵÞ3 ≡ dΓ

dϵ3
ϵ3: ð11Þ

Integrating over all oscillators, we arrive at the super-
conducting current defined by

R ¼ 3

16π2
dΓ
dϵ3

c
vF

�
c
L

�
3

: ð12Þ

The typical energies involved in the integration are of the
order of inverse sound propagation time between the
superconducting junctions c=L. To estimate the typical
information transfer rate, let us consider electrons excited
to these energies. The phonon information transfer rate is
the number of relevant excitations times the relaxation rate
of a single excitation ðdΓ=dϵ3Þðc=LÞ3. The relevant exci-
tations are at the space scale ≃L, so their number is
ðc=vFÞ ≪ 1. This reproduces R by order of value.
However, for realistic structures, the intrinsic electron-

phonon effect is fairly small, albeit intrinsic. For typical
GaAs parameters, c=L ¼ 1010 Hz, c=vF ¼ 102 [14], and
we estimate dΓ=dϵ3 ≃ ω−2

D ≃ 5 × 10−28 Hz−2. All this
gives R≃ 0.1 Hz, and the corresponding current is truly
unmeasurable. At low energies, the electron-electron inter-
action, that is, interaction with electricity fluctuations, is
more important for relaxation than for the phonons [14].
However, it is not obvious that electron-electron interaction
alone can provide the upstream information transfer
required. For instance, the edge magnetoplasmons transfer
information only downstream.
There is a simple way to circumvent this: one can embed

the QH sample edge into an external electric circuit that will
transfer the electric signals upstream (Fig. 3). This is the

FIG. 3. The QH edge with superconducting contacts included
into an external circuit characterized by (frequency-dependent)
impedances ZA;B. The superconducting current between the
terminals 1,2 is proportional to the cross-impedance Z34. Dark
grey: metal contacts covering the QH structure.
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last setup that we consider. It has advantages of tunability
since the strength of the long-range interaction is deter-
mined by the circuit parameters. As we will see, it also
provides large values of the supercurrent.
To describe the connection of the edge with an external

circuit, we cover it with two metallic electrodes that are
spread at x < x3 and x > x4, respectively, (x4 − x3 ¼ ~L)
and are characterized by fluctuating voltages V̂3;4. It is
convenient to make a gauge transform introducing
φa;bðtÞ ¼ e

R
t
−∞ dτV̂abðτÞ that is a phase shift induced by

the corresponding voltage. With this, the interaction with
the external circuit is local,Hφ ¼ −vF½φ̂3n̂ðx3Þ − φ̂4n̂ðx4Þ�,
and is similar to that in the setups considered. The effective
interaction is expressed in terms of the correlator of the
phases,

Vðx; x0; νÞ ¼ v2F
2
hφ3ðνÞφ4ð−νÞiδðx − xaÞδðx0 − xbÞ; ð13Þ

which is related to the frequency-dependent cross imped-
ance Z34ðνÞ between the leads 3 and 4, hφ3ðνÞφ4ð−νÞi ¼
Z34ðνÞ=ν. For the circuit in Fig. 3, Z34 ¼ Z2

B=ðZA þ 2ZBÞ.
We obtain the current coefficient from (5)

R ¼ e2

π2

Z
∞

0

dωe−
ω
vF

~LZ34ðωÞ: ð14Þ

A simple relation is obtained for a frequency-independent
cross impedance,

R ¼ Z34

πRQ

vF
~L
; ð15Þ

RQ ≡ πℏ=e2 being the self-impedance of the QH sample
edge. This also can be interpreted as a potential information
transfer rate, given the bandwidth vF= ~L and the fraction of
information transferred upstream, defined as the ratio of
impedances Z34=RQ. Upon increasing the impedance of the
external circuit to the values of the order RQ, this fraction
becomes of the order of 1, and the effect is maximized up to
R of the order of the bandwidth. To give an example
of a practical device, for ~L ¼ 1 μm, the bandwidth
vF= ~L≃ 1011 Hz. For typical high-frequency impedances,
Z≃ 102 Ω. and the corresponding supercurrent≃100 pA.
The resistors used in nanocircuits can be in the 1 − 10 kΩ
range, corresponding to the supercurrents ≃0.1 − 1 μA.
In conclusion, we have demonstrated theoretically that a

supercurrent can exist in long chiral channels. In distinction
from all known mechanisms of a supercurrent, it essentially
requires interaction. Moreover, it requires a special kind of
nonlocal interaction that connects points that are down-
stream of the superconducting electrodes to the points
upstream of those. This connection is not galvanic: it is not

the charge that is transferred upstream but rather the
information about the charge transfer. We argue that
the maximum value of the supercurrent is associated with
the rate of upstream information transfer, at least at the
qualitative level. Even at this level, this relation is rather
intriguing since the supercurrent is a property of the ground
state where no process associated with information transfer
can occur. This suggests that the supercurrent can probe the
potential for information transfer without actually trans-
ferring the information. This may be useful in the context of
defining quantum information flows [15,16]. On the
practical side, this property of the supercurrent makes it
feasible to check if in more complex QH states, all of the
edge channels actually flow in the same direction [17]. It is
feasible to observe the effect experimentally. The tradi-
tional difficulties of good contact between metals and 2D
gas can be circumvented if utilizing the edge channels in
graphene [18,19]. The best setup is likely the one with the
external circuit, provided the impedances involved can be
controlled on chip, proving the scaling predicted by (14).
Here, we present the results at vanishing temperature. We
expect the temperature to start playing a role at kBT ≃
vF=L at the current to decrease exponentially,
R ∝ expð−kBTL=vFÞ, at kBT ≃ vF=L.
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