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"Americans only learn from catastrophe and not experience."
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Abstract

By sampling �nancial correlation matrices over sliding windows, it has been shown in recent
work that the quantum majorization induced partial ordering on this space of correlation ma-
trices known as the "quantum Lorenz ordering" (QLO) can be used to characterize systemic risk
by clustering correlation matrices according to their degree centrality on the associated directed
graph called the "quantum majorization graph" (QMG). In this work, clusterings of the QMG are
used to construct an online Bayesian nonparametric alarm system for the prediction of stock mar-
ket crashes via the so-called "reinforced urn process" (RUP). To test the e�cacy of this modelling
methodology we exploit extreme value theory to systematically de�ne stock market crashes by
studying the tail of an appropriately �tted generalized pareto distribution (GPD) for stock market
drawdowns. This approach identi�ed 13 extreme drawdowns between 1985-2020, for which the
RUP was trained from 1986-2005 to predict the 8 extreme drawdowns from 2005-2020. Of the
three correlation metrics used to test this approach, the QLO corresponding to the set of upper
Tail-Dependence λU matrices was shown to outperform the others: Pearson’s ρ and the Gini
correlation γG. Tail-Dependence was able to predict all 8 crashes with just 5 false alarms over a
12 month time horizon, all 8 with 7 false alarms over an 8 month time horizon, 7 out of 8 with 9
false alarms over a 4 time horizon, and 7 out of 8 with 17 false alarms over a 2 month time hori-
zon. This approach was then tested against the usage of the Log-Periodic Power Law Singularity
(LPPLS) model’s con�dence indicators with promising results. The quantum Lorenz ordering is
meant to rank a set of correlation matrices by the amount of dispersion re�ected in their spectra:
a true heterogeneity. We consider this dispersion from the standpoint of measurement error as
has been in the application of random matrix theory (RMT) to correlation matrices in portfolio
risk theory. We provide analytical relations between quantum majorization and random matrix
cleaning for a few RMT �ltering schemes posing quantum majorization as a desirable condition
for RMT �ltering. The RUP is tested using these RMT cleaned correlation matrices as well.
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1
Introduction

1.1 | Brief

In this thesis, we develop an Urn-Based Alarm System for Predicting Stock Market Crashes via
the usage of a recently developed methodology for the characterization of systemic risk based
on correlation matrices: quantum majorization. We explain how quantum majorization charac-
terizes systemic market risk, from the standpoint of Markowitz portfolio optimization schemes.
We then show that, by sampling Correlation Matrices for the constituents of major Stock Mar-
ket Indices over sliding windows, we are able to predict the "Black Monday" Cash of 1987, the
"Great Recession" of 2008, the "COVID-19" Crash of 2020, along with most other major stock mar-
ket events, by analyzing a Correlation Matrices position on the so-called Quantum Majorization
Graph (QMG), which associates to each correlation matrix a speci�cally coloured marble in an
Urn.

By representing the quantum lorenz ordering with the so-called quantum majorization Graph,
we show that we are able to develop an Alarm System for stock market crashes using the Rein-
forced Urn Process (RUP), with good results. In its own right, this application of the RUP extends
previous modelling methodologies utilized in Credit Risk and Epidemiology, into an entirely new
domain: the prediction of Stock Market Crashes. Using Extreme Value Theory (EVT), we identify
13 notable stock market crashes between the years of 1980-2020 including infamous crashes such
as "Black Monday", the "Tech Bubble", the "Sub-Prime Mortgage Crisis", "Corona", among other
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smaller events. We train and test our RUP from Jan 1, 1985 to Dec 31, 2020 in an online fashion
and show that our model is able to predict most crashes with relatively few "false alarms" on
3, 6, and 12 month time horizons. We permute these results across a wide variety of correlation
metrics including Pearson’s ρP, Gini’s γG, and even the Upper ,and Lower, Tail-Dependencies λU

and λL, respectively. We show that the RUP based on λU outperforms other correlation metrics.
Furthermore, we believe that unifying the theory of portfolio risk, Random Matrix Theory

(RMT) "cleaning recipes", and quantum majorization will help make our Urn-Based Alarm Sys-
tem that much more intuitive, interpret-able, and robust in practice. Indeed, any alarm system,
that is based on the sequential sampling of correlation matrices, may be sensitive to the particular
type of correlation matrix the practitioner uses, which could easily be one of these RMT inspired
"cleaning recipes". Since RMT inspired "cleaning recipes" aim to reduce portfolio risk by narrow-
ing the dispersion of a correlation matrices eigenvalues, and quantum majorization characterizes
portfolio risk by ranking two di�erent correlation matrices based on how dispersed their eigan-
values are, their relationship needs to be explored, and accounted for, in the development, and
assessment of, our Urn-Based Alarm System.

Hence, the goal of this thesis is threefold: First, in Chapters 2 and 8, we discuss the relation-
ship between the dispersion of eigenvalues of a correlation matrix and portfolio risk through the
lens of RMT inspired correlation matrix "cleaning recipes". Second, in Chapter 6, we develop the
mathematical framework for our urn based alarm system. Third, in Chapter 8 we analyze the
results of our model in proper historical back-tests and permute said results over several of the
aforementioned "cleaning recipes" to see how they a�ect our results.

We hope to encourage the reader that correlation matrices are both an interesting and power-
ful tool for measuring, characterizing, and modelling systemic market risk. Additionally, as deep-
learning based methodologies for tackling such problems become more and more prevalent, we
hope to convince the reader that there is still a place for the development of pure mathematical
models in the modern world. And that the RUP is, for example, one of such approaches.

1.2 | Setting the Stage

The contents of this work are built on top of the so-called Quantum Majorization Graph (QMG),
developed by Fontanari et al. [2019], which represents the Quantum Lorenz Ordering (QLO) on
the space of d × d correlation matrices in the form of a directed acyclic graph. By sequentially
sampling Correlation Matrices of the daily returns for the constituents of major Stock Market
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Indices over sliding windows, Fontanari et al. [2019] showed we can characterize the temporal
evolution of market risk, over said windows, by analyzing a correlation matrices position on the
QMG via spectral clustering, as is common practice in machine learning and the study of complex
networks, in general. Using this clustering, we can choose an arbitrary number of k-Clusters and
associate to each node in the QMG (correlation matrix) a level of risk l ∈ {1, . . . ,k} based on
which "cluster" a correlation matrix (node) belongs to according to the spectral clustering.

In this work, we exploit the QMG formalism from Fontanari et al. [2019] to develop an Urn-
Based Alarm System for Stock Market Crashes by associating to each cluster, mentioned earlier,
a speci�cally coloured marble in a Polya urn. In this way, we are able to follow the approach
of Cirillo and Hüsler [2011] and develop an Alarm System as a so-called Reinforced Urn Process
(RUP) in true "Bayesian" and "Online" fashion along the lines of the framework developed by
Antunes M and FK [2003].

By "correlation matrix", we consider a Universe S ofd Financial Assets S = {S1, . . . , Sd} that we
observe at (daily) frequencies, emphasizing that we could also consider weekly, or even monthly
frequencies. We sample a vector of (log) Daily-Returns Rι(Si) for Asset Si over the time interval
ι = [tm, tn]

Rι(Si) =


Rtm(Si)

...
Rtn(Si)

 , Rt(Si) = log(
Si,t

Si,t−1
) ∀t ∈ ι = [tm, tn] (1.1)

where ι = [tm, tn] can be thought of as a "Sliding-Window" within a (much) larger Time-Interval
I = [0, T ] where 0 6 tn < tm 6 T . Here, we de�ne a d × d correlation matrix ρ = ρι whose
elements are sampled over the interval ι

ρι(i, j) =

ρ(Rι(Si),Rι(Sj)), if i 6= j

1, otherwise
(1.2)

for some Correlation or Dependence Metric ρ(X, Y) ∈ [−1, 1].

1.2.1 | Portfolio Risk & the �antum Lorenz Ordering

More generally, by "correlation matrix" we mean a d × d positive-semidefnite (PSD) hermitian
operator ρ de�ned on a Hilbert space Hd of dimension d = dim(Hd) with diag(ρ) = |1〉
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ones down the diagonal, exclusively. That is to say, ρ ∈ PSD(Hd), for the set of PSD Matrices
PSD(Hd), where Tr[ρ] = d. As such, any correlation matrix ρ ∈ PSD(H) can be decomposed
into

ρ =

d∑
i=1

λi(ρ)|ψi〉〈ψi| (1.3)

with eigenvalues λ(ρ) := {λi(ρ) : i = 1, . . . ,d} and eigenbasis {|ψi〉}di=1, by the spectral theorem
of hermitian operators. Hence, since ρ ∈ PSD(Hd), and Tr[ρ] = d, we know {λi(ρ) > 0}di=1

de�nes a (discrete) distribution on λ(ρ) ∈ Rd+. Thus, a correlation matrix ρ can be referred to as
a "density operator". This "eigen"-distribution, if you will, is the central object of this work.

The so-called "Lorenz Ordering" is a partial-ordering on the space of probability distribution
functions (PDF). Here, one PDF p is "higher up", on the Lorenz Ordering, than another PDF, say
p∗, if p "majorizes" p∗, written as p � p∗. The "majorization condition" p � p∗ implies

α∑
i=1

p↓i >
α∑
i=1

p∗↓i ∀α = 1, . . . ,d∫α
−∞ xp(x)dx >

∫α
−∞ xp

∗(x)dx ∀α 6 ∞ (1.4)

for discrete and continuous PDF’s, respectively. The reason we call this the "Lorenz" Ordering is
because 1.4 happens to correspond to the "Lorenz Curve" of a PDF

Lα(p) =

α∑
i=1

p↓i

Lα(p(α)) = µ
−1

∫α
−∞ xp(x)dx

(1.5)

for the discrete and continuous case with corresponding "majorization condition(s)"

p � p∗ ⇔

Lα(p) > Lα(p∗) ∀α ∈ {1, . . . ,d}

Lα(p(α)) > Lα(p∗(α)) ∀α ∈ {1, . . . ,d}
(1.6)

for discrete and continuous PDF’s, respectively. Aptly so, applying this "majorization condition"
to the eigenvalues λ(ρ) and λ(ρ∗) of density operators (or quantum states), ρ and ρ∗, gives us the
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de�nition of "quantum majorization"

ρ � ρ∗ ⇔
α∑
i=1

λ↓i (ρ) >
α∑
i=1

λ↓i (ρ
∗) ∀α ∈ {1, . . . ,d} (1.7)

and the subsequent "quantum lorenz ordering" (QLO) which can be equivalently expressed ac-
cording to the de�nition of the so-called "quantum lorenz curve" (QLC)

Lα(ρ) :=
1
d

d∑
i=1

λ↓i (ρ)

ρ � ρ∗ ⇔
α∑
i=1

Lα(ρ) >
α∑
i=1

Lα(ρ
∗) ∀α ∈ {1, . . . ,d}

(1.8)

de�ned on the space of density operators, and thus, correlation m matrices.

1.2.2 | �antum Majorization & Random Matrix Theory

Max Otto Lorenz [1905] �rst invented the lorenz curve to study the distribution of wealth among
the members of a society. Thus, the Lorenz curve Lα(·) has become synonymous with the study
of statistical variability, in general contexts. Furthermore, in their seminal work, Fontanari et al.
[2019] alluded to the distinction, originally made by Gini [1912], between the two di�erent types
of statistical variability;

1. Measurement Error

2. Socioeconomic Variability

Socioeconomic variability re�ects a true heterogeneity (distribution of wealth within a society)
whereas measurement error re�ects a sort of ignorance for the true underlying value (precise
height of a mountain). Gini [1912] argued that the amount of Statistical Variability ought to be
measured di�erently when dealing with the two di�erent types of statistical variability. Speci�-
cally, Fontanari et al. [2019] considered the Lorenz Curve Lα(ρ), of a correlation matrix ρ, within
the context of the 2nd variety: socioeconomic variability. As fruitful and sound as that line of rea-
soning may be, we believe that studying the Lorenz Curve Lα(ρ) in the context of the 1st variety,
measurement error, reveals a novel connection between quantum majorization and the "Random
Matrix Theory" (RMT) inspired correlation matrix "cleaning recipes" as extensively analyzed by
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the likes of, for instance, Bouchaud and Potters [2009] and Bun et al. [2017].
As noted by Bouchaud and Potters [2009], the "Modern Portfolio Theory" (MPT) of Markowitz

[1952] shows us how Measurement Error can (potentially) e�ect the "optimally" obtained weights
of a PortfolioΩ∗ = Ω∗(S) for a set of Financial Assets S = {S1, . . . , Sd}. Indeed, the whole point
of MPT 1952 is to minimize the risk σ2 = σ2(ΩS) of a portfolioΩ = ΩS

σ2(ΩS) =

d∑
i=1

d∑
j=1

ωiσiρi,jσiωi (1.9)

to �nd a set of "optimal" weights
Ω∗S = {ω∗1 , . . . ,ω∗d} (1.10)

noting that the ρi,j’s of equation 1.9 denote the elements of the d × d correlation matrix ρ for
the (daily) returns on the set of �nancial assets S = {S1, . . . , Sd}. Here, we see that the "optimal"
WeightsΩ∗S = {ω∗1 , . . . ,ω∗d} take the form

ω∗i ∝ µi +
d∑
j=1

d∑
k=1

(λ−1
j (ρ) − 1)ψj,iψj,kµj (1.11)

for the eigenvalues λi(ρ) of the correlation matrix ρ, with ψi,j denoting the jth element of the
ith eigenvector |ψi〉 and expected return µi = µ(Si) for the �nancial asset Si. Since each ω∗i is
a function of the inverse λ−1

i (ρ) of the eigenvalues of ρ, such a strategy tends to allocate large
ω∗i to �nancial assets Si associated with ρ’s smallest eigenvalues. However, the measurement
of these small eigenvalues may entirely be dominated by measurement error, meaning, that our
Ω∗S = {ω∗1 , . . . ,ω∗d} may not be optimal at all. Hence, such a portfolio’s "realized" (future) risk, is
directly related to how "dispersed" our eigenvalues λ(ρ) are. Which is exactly what the Lorenz
curve Łα(ρ) is meant to study.

In fact, the RMT "cleaning recipes" of Bouchaud and Potters [2009] and Bun et al. [2016] in-
tend to "distort" the distribution of λ(ρ) in a manner that "lowers" ("raises") the large (small)
eigenvalues. Hence, these RMT "cleaning recipes" can be seen as an attempt to �lter out the mea-
surement error, and get to the "true" Spectrum λ(ρ) that honestly re�ects the heterogeneity in
the relationships between the �nancial assets S = {S1, . . . , Sd}: socioeconomic variability. For
this reason, we �nd it important to build the upcoming Alarm System with a perspective that
respects this intermediate attempt to "clean" correlation matrices that accounts for measurement

7



error and socioeconomic variability.

1.2.3 | �antum Majorization Graph

By considering the constituent �nancial assets S = {S1, . . . , Sd} of major stock market indices,
we can track the temporal evolution of market risk by treating the index itself as a portfolio we
wish to hedge. From the standpoint of correlation matrices, we can measure said market risk
by sequentially sampling correlation matrices over sliding-windows with windows and shifts of
arbitrary size, forming a collection of correlation matrices ρ = {ρ1, . . . , ρn} over the Time-Interval
I := [t0, T ] of interest. Hence, each ρi ∈ ρ corresponds to its own time-interval ιi ∈ I. In this
way, any risk-measure, de�ned on a particular correlation matrix ρi = ριi ∈ ρ, characterizes the
risk of the market over the time interval ιi spanned by the samples used to construct ρi = ριi .

Using this collection ρ = {ρ1, . . . , ρn}, we can represent the corresponding QLO on the so-
called quantum majorization Graph (QMG), as per the work of Fontanari et al. [2019]. In short,
the adjacency matrix A ∈ {0, 1}n×n, associated to the QMG G = (V ,E), is de�ned according to

A = Ψ− In such that Ψi,j =

1 if ρi � ρj

0 otherwise
(1.12)

with "Quantum Majorization Matrix" (QMM) Ψ and edge-set E ∼ A, corresponding to A, to
remove self-directed loops, along with vertex-set V ∼ ρ corresponding to the set of correlation
matrices ρ = {ρ1, . . . , ρn} of cardinality |V | = n. Trivially, such a QMG G = (V ,E) is a special
kind of directed acyclic graph (DAG). "Directed" because the quantum lorenz ordering "ranks"
two di�erent correlation matrices ρi and ρj and "acyclic" because the QLO is, well, an ordering.

As is common practice in Machine Learning and the study of complex networks, in general,
Fontanari et al. [2019] clustered the Vertex-Set V ∼ ρ using the spectral clustering algorithm. By
choosing k = {2, 3}-Clusters, Fontanari et al. [2019] showed that these clusters corresponded to
appropriately chosen discriminating thresholds for the in-out degree centrality θ(vi) of a Vertex
vi ∈ V

θ(vi) =
1
2 +

1
2n(deg

+(vi) − deg
−(vi)) ∈ [0, 1] (1.13)

with deg+(vi) and deg−(vi) denoting the "out", and "in", "degrees" of the Vertex vi ∈ V where
θ = 1 corresponds to the "riskiest" correlation matrix (time-interval), and θ = 0 the "safest". Intu-
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itively enough, for k = 2-clusters, the appropriate discriminating threshold d∗, for distinguishing
between "risky" and "safe" time periods, turns out to be d∗ = 0.54. Whereas for k = 3-Clusters,
we have discriminating thresholds {d1,d2} = {0.38, 0.64}, distinguishing between "safe", "moder-
ate", and "risky" time periods in the market.

1.2.4 | Reinforced Urn Alarm System

Interestingly, we can use the QMG to construct a so-called "Reinforced Urn Process" (RUP). Using
the spectral clustering, discussed earlier, we can associate a speci�c correlation matrix ρi ∈ ρ to
one of the k-Clusters ρi ∈ {C1, . . . ,Ck}. With a little imagination, we can associate a ColourCi to
each of these k-Clusters {C1, . . . ,Ck} and model the temporal evolution of risk, as characterized by
quantum majorization, using an Urn model, such as the RUP. In this way, we think of observing a
new ρi the same way as drawing a coloured marble out of a Polya urn. For instance, by choosing
k = 3-Clusters, we can associate any ρi ∈ ρ to ρi ∈ {C1,C2,C3} belonging to "Safe", "Moderate",
and "Risky" regions for colours C = {C1,C2,C3}, respectively, depending on ρi’s position on the
G = (V ,E) QMG as per the spectral clustering.

It has been shown by Cirillo and Hüsler [2011], and Peluso et al. [2015], that the RUP may
be of practical interest for developing alarm systems and catastrophe models. The idea is simple:
De�ne a State-Space Swith elements s = (n, l) ∈ S that denote the "level" of risk l at time-instant
n. The process evolves over time in such a way that

X0 = (0, 0)→ (1, l1)→ (2, l2)→ (3, l3)→ · · · → Xn∗ = (n∗,L)→ X0 = (0, 0) (1.14)

the process returns to the initial (0, 0)-State once the "catastrophic" Level L is reached at the crit-
ical time-instant n∗. Here, State-Transitions between Xn = s = (n, l) → Xn+1 = (n + 1, ln+1)

are entirely characterized by the sampling of colours C = {C1, . . . ,Ck} out of the "composition"
of the Urn U(s) according to the Rule-of-Motion (RoM) d : S× C→ S

d(s,Ci) = (n+ 1, l(Ci)), ∀Ci ∈ {C1, . . . ,Ck} (1.15)

where the new Risk-Level l = l(C) depends on which category of risk the newly sample corre-
lation matrix ρi belongs to. This construction creates a sequence of r stopping-times, which are
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denoted by τ := {τ1, . . . , τr},

τs = inf{n > τs−1 : Xn = (0, 0)} (1.16)

that signify when the process X su�ers a catastrophic failure.
Along the lines of Antunes M and FK [2003], an alarm system can be constructed using this

Process X. In general, we "cast" an "alarm" At, at time t, for a "catastrophe" Ct+j, in j time-steps,
when we have

P[Ct+j|~X1] > γ, γ ∈ (0, 1) (1.17)

where ~X1 denotes the "Past" ~X1 = {X1, . . . ,Xt−k} information for some arbitrarily chosen k > 0
that distinguishes ~X1 from the "present" ~X2 = {Xt−k+1, . . . ,Xt}. Here, it is said that the "Alarm"is
of "size" γ. Clearly, according to the RUP, a "catastrophe" Ct+j is nothing more than the event
Xn+j = (n+ j,L), or, in terms of our Stopping-Times

P[Ct+j|~X1] > γ→ P[τr+1 = n+ j|{τ1, . . . , τr}] > γ (1.18)

which can be easily computed thanks to the underlying urn U(s) construction of the evolution
of the Process X. Indeed, all that needs to be computed are the total number of possible sampling
sequences out of the Urns U(s) that result in Xn+j = (n+ j,L).

1.3 | A Reader’s Guide to this Thesis

The contents of this Thesis are collected into 2 Parts: Part II, and Part III. Part II State-of-the-Art
o�ers more detailed introductions to the core mathematical objects that we will be using to de-
velop our Urn-Based Alarm System for Stock Market Crashes. Part III Implementation discusses
the implementation details of the Urn-Based Alarm System. In particular, Part II contains Chap-
ters 2, 3, and 4. Whereas Part III consists of Chapters 6, 7, and 8.

In Chapter 2, we touch on the general theory of Portfolio Risk and build a stronger intuition
for as to why we should be interested in the statistical dispersion of a correlation matrices Eigen-
values from the lens of RMT inspired "cleaning recipes". In Chapter 3, we cover the key elements
from Fontanari et al. [2019] and build the quantum majorization graph (QMG), whose spectral
clustering essentially de�nes our urn model. Then, in Chapter 4, we cover the details of the Re-
inforced Urn Process (RUP), and bayesian alarm system of Antunes M and FK [2003], and outline
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how they �t together using the Urn-Based Alarm System model of Cirillo and Hüsler [2011].
Then, in Part III, we begin with Chapter 6 where we discuss the Data we’ll be using, the dif-

ferent measures of correlation we’ll be considering, and quickly explain the methodology we’ll
be using to precisely de�ne a Stock Market "Crash" using a novel approach based on Extreme
Value Theory (EVT). In Chapter ?? we rigorously de�ne the RUP, and corresponding alarm sys-
tem, we’ll be implementing along with new analytical results on the relationship between the
quantum majorization and several prominent "cleaning recipes" inspired from RMT which we’ll
be permuting our urn model over. Lastly, in Chapter 8, we analyze said results for the di�erent
correlation measures, and RMT "cleaning recipes".
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II
State of the Art
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2
Portfolio Risk & Random Matrix Theory

In this section, we outline the intimate relationship that the eigenvalues of an empirical corre-
lation Matrix ρ share with the "optimality" of �nancial portfolios, under the Modern Portfolio
Theory (MPT) framework of Markowitz [1952]. In particular, many authors including Bouchaud
and Potters [2009], comment on how the optimality criteria of MPT optimized portfolios are of-
ten compromised by measurement errors in the empirical correlation matrix itself. Interestingly
enough, Gini [1912] characterize statistical variability in two varieties:

1. Measurement Error

2. Socioeconomic Variability

Bouchaud and Potters [2009] show how measurement errors in the emprical correlation matrix
distort the "optimal" portfolio Weights towards small eigenvalues, which are often a�ected by
measurement error. Hence, several authors including Bouchaud and Potters [2009], Bun et al.
[2016], and Bun et al. [2017], have introduced "cleaning" techniques, inspired by Random Matrix
Theory (RMT) (see Marčenko and Pastur [1967]), to narrow the distribution of a correlation ma-
trices spectrum. Later, in chapter ??, we will see how the cleaning techniques of Bouchaud and
Potters [2009], Bun et al. [2016], and Bun et al. [2017] relate to the Quantum Lorenz Ordering
(QLO), but, for now, this chapter will be organized as follows: In section 2.1, we will brie�y re-
cap MPT and discuss the empirical correlation matrices role in portfolio optimization. Then, in
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section 2.2 we discuss how the so-called "Out-of-Sample" risk is related to how dispersed a corre-
lation matrices eigenvalues are. Lastly, in section 2.3, we will de�ne a handful of RMT "�ltering"
schemes for empirical correlation matrices that have intriguing relationships to the QLO, which
will be discussed later.

2.1 | Correlation Matrices & Portfolio Risk

Correlation matrices have always been used in the problem of minimizing the risk of a portfolio.
Indeed, the correlation matrix ρ for a set of d �nancial assets S = {S1, . . . , Sd} is of central impor-
tance in the "Modern Portfolio Theory" (MPT) of Markowitz [1952]. Under the MPT framework,
we consider the returns Rι(Si) for each of the d �nancial assets Si ∈ {S1, . . . , Sd}

Rι(Si) =


Rtm(Si)

...
Rtn(Si)

 , Rt(Si) = log(
Si,t

Si,t−1
) ∀t ∈ ι = [tm, tn] (2.1)

whose samples are collected over the time-interval ι = [tm, tn]. Using these d vectors of returns
R = {Rι(S1), . . . ,Rι(Sd)}, we de�ne the "empirical" correlation Matrix ρ using equation

ρι(i, j) =

ρ(Rι(Si),Rι(Sj)), if i 6= j

1, otherwise
(2.2)

for an arbitrary correlation metric ρ(X, Y) ∈ [−1, 1]. Here, the aim of MPT is to �nd the set
of optimal weights Ω∗(S) = {ω∗1 , . . . ,ω∗d} to assign to each �nancial asset by minimizing the
portfolio’s Π(S) = {ω1S1, . . . ,ωdSd} risk R2 = R2(Π(S)) according to the program

min R2 =

d∑
i,j=1

ωiσiρi,jσiωi

s.t. µ∗ =

d∑
i=1

ωiµi, µi = E[Rι(Si)]
(2.3)

subject to obtaining a desired returnµ∗. Solving the quadratic program of equation(s) 2.3 provides
the optimal weights Ω∗(S) = {ω∗1 , . . . ,ω∗d} corresponding to the time period used to sample
individual asset volatilities σi and correlations ρi,j. However, the performance of the resulting
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"optimal" portfolio Π∗(S) = {ω∗1S1, . . . ,ω∗dSd} will be subject to the future time period for which
the samples σi and ρi,j were not used in the optimization program (we cannot predict the future).
To formalize this, we introduce the following three notions for the empirical correlation matrix
ρ, the "True" correlation matrix P and 〈ω̃ρ| = {ω∗1σ1, . . . ,ω∗1σ1} denotes the optimal weights for
ρ:

• "In-Sample" risk R2
in is the Risk for the optimal portfolio over the time period used to build

it.
R2
in = 〈ω̃ρ|ρ|ω̃ρ〉 (2.4)

• "True" risk R2
true is the Risk in the ideal world where the true correlation matrix P is used.

R2
true = 〈ω̃P|P|ω̃P〉 (2.5)

• "Out-of-Sample" risk R2
out is the risk of the portfolio constructed using the empirical cor-

relation matrix ρ, but is observed in the next time period.

R2
out = 〈ω̃ρ|ρ−1Pρ−1|ω̃ρ〉 (2.6)

Interestingly, Bouchaud and Potters [2009] show that one can use a convexity argument to say

〈ω̃ρ|ρ|ω̃ρ〉 6 〈ω̃P|P|ω̃P〉 (2.7)

where A denotes the long-run average for the matrix A, from which we notice

R2
in 6 R2

true (2.8)

as one might expect. By optimality, we can say something similar with respect to the "True" and
"Out-of-Sample" Risks

R2
true 6 R2

out (2.9)

and thus we have the full relation

R2
in 6 R2

true 6 R2
out (2.10)
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for "In", "True" and "Out-of-Sample" Risks R2
in, R2

true, and R2
out, respectively. Hence, the risk

that an "optimized" portfolio Π∗ will be exposed to in the future will always be greater than, or
equal to, the risk suggested by the quadratic program used to constructΠ∗ in the �rst place. Since
this procedure relies on the empirical correlation matrix ρ, with spectral decomposition

ρ =

d∑
i=1

λi(ρ)υiυ
T
i (2.11)

it would be interesting to see how the "optimal" weights Ω∗(S) = {ω∗1 , . . . ,ω∗d} are related to
the correlation matrices eigenvalues λi(ρ). Reason being, the eigenvalues of a correlation matrix
turn out to have strong �nancial interpretations that allow us to characterize portfolio risk in an
interesting way. We explain this relationship next.

2.2 | Spectral Dispersion & Portfolio Risk

From the previous section we saw how Markowitz "optimized" portfolios are exposed to substan-
tial "out-of-sample" risk. In this Section, we want to see if we can use the Empirical Correlation
Matrix ρ to characterize the amount of "out-of-sample" risk R2

out a portfolio Π∗(S) might be ex-
posed to. We know that any correlation matrix ρ will have a spectral decomposition of the form

ρ =

d∑
i=1

λi(ρ)υiυ
T
i (2.12)

since correlation matrices are hermitian (symmetric). Hence, it might be interesting to see if we
relate the "optimality" of a portfolio Π∗(S) to the eigenvalues λ(ρ) of ρ.

We begin by solving the quadratic program of equation(s) 2.3. Using lagrange-multipliers, we
�nd that the optimal weightsΩ∗(S) = {ω∗1 , . . . ,ω∗d} obey the relation

ω∗iσi = µ
∗

∑
j ρ

−1
i,j
µj
σj∑

i,j
µi
σi

∑
j ρ

−1
i,j
µj
σj

(2.13)
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using individual asset volatility’s σi = σ(Si) and correlation matrix elements ρi,j. We can sim-
plify the above expression forω∗iσi

ω∗i ∝ µi +
d∑
j=1

d∑
k=1

(λ−1
j (ρ) − 1)υj,iυj,kµj (2.14)

for the eigenvalues λ(ρ) = {λ1(ρ), . . . , λd(ρ)} of ρ and Eigenbasis {υi}di=1 where υi,j denotes the
jth element of the ith eigenvector υi. Equation 2.14 reveals something interesting:

Markowitz optimization schemes tend to allocate large weights to small eigenvalues.

However, as alluded to in Bouchaud and Potters [2009], the measurement of small eigenvalues
may be entirely dominated by measurement error: the 1st variety of statistical variability. Hence,
since Ω∗(S) = {ω∗1 , . . . ,ω∗d} is meant to minimize the risk of our portfolio R2 = R2(ΠS), our
entire notion of portfolio risk is directly related to the amount of dispersion in the distribution
of the eigenvalues λ(ρ) of the correlation matrix ρ. Thus, the amount of "out-of-sample" risk a
portfolio will be exposed to is potentially compromised by the shape of the Spectrum λ(ρ). For
this reason, the spectrum λ(ρ) of the empirical correlation matrix ρ, a core element of this thesis,
becomes an object of interest for the characterization of systemic market risk. For instance, we
can consider correlation matrices for the 30 constituents of the Dow Jones Industrial Average
(DJIA) and use λ(ρ) as means to measure systemic market risk.

To address all of this, several "Cleaning Recipes", inspired by Random Matrix Theory (RMT),
have been developed and studied in Bouchaud and Potters [2009] among others. We introduce a
few of these next in hopes they bear an interesting relationship with the quantum lorenz ordering
(QLO), later.

2.3 | Some Filtering Procedures

We will brie�y de�ne, and discuss, a few of the most prominent random matrix cleaning tech-
niques Bun et al. [2017]: The Basic Linear Shrinkage Estimator (BLS), Eigenvalue Clipping (CLP),
and the Rotationally Invariant Estimator (RIE). We denote with ΞBLS[ρ], ΞCLP[ρ], and ΞRIE[ρ] their
respective cleaning operations Ξ∗[·]. For the remainder of this section, we will refer to the fol-
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lowing Spectral Decomposition for a cleaned �nancial correlation matrix Ξ*[ρ]

Ξ∗[ρ] =

d∑
k=1

ξ∗kυiυ
T
i (2.15)

with "cleaned" eigenvalues {ξ∗k}dk=1 ∈ λ(Ξ∗[ρ])while preserving the original eigen-basis {|ψ〉k}dk=1

from the "raw" Correlation Matrix ρ with eigenvalues {λk(ρ)}dk=1 ∈ λ(ρ). We begin with BLS.

De�nition 2.1 (Basic Linear Shrinkage). The Basic Linear Shrinkage, or Linear Shrinkage, es-
timator for the true correlation matrix ΞBLS[ρ] is de�ned as,

ΞBLS[ρ] :=

d∑
i=1

ξBLS
i υiυ

T
i , ξBLS

i = βλi(ρ) + (1 − β) (2.16)

that is, ΞBLS[ρ] = βρ+ (1 − β)Id, for some constant β ∈ [0, 1].

Though quite simple, this method proves to be di�cult to outperform in practice Bun et al. [2016].
It is not unreasonable to think that the e�ectiveness of this procedure may be related to the
e�ectiveness of the Talmudic " 1

N
" allocation Duchin and Levy [2009]. Indeed, ΞBLS[ρ] forms a

convex combination between ρ and Id, the identity matrix which corresponds to the Talmudic
" 1
N

" allocation.

Remark 2.2. It has been shown in Bun et al. [2017] that an optimal choice for β is β := (1 +

2qκ)−1 where q = d−1T , d = dim(ρ), and κ a hyper-parameter for an Inverse-Wishart prior.

De�nition 2.3 (Eigenvalues Clipping). The Eigenvalues Clipping, Clipping, or Clipped, estima-
tor for the true correlation matrix ΞCLP[ρ] is de�ned as,

ΞCLP[ρ] :=

d∑
i=1

ξCLP
i υiυ

T
i , ξCLP

i :=

λi(ρ), if i 6 ddβe

γ, otherwise
(2.17)

where the top ddβe eigenvalues are untouched andγ is an appropriately chosen trace-preserving
constant such that Tr[ΞCLP[ρ]] =Tr[ρ] = 1.

Remark 2.4. A typical procedure is to choose β such that eigenvalues beyond the Marcenko-
Pastur upper edge (λi(ρ) > (1 +

√
d/T)2, see Bouchaud and Potters [2009]) are kept (signals),

and normalize the rest (noise).
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Figure 2.1: RMT Cleaning recipes as functions of the Raw Spectrum

Plotting ξi(ρ) against λ(ρ) for the RMT �ltering schemes RIE, BLS, and CLP..

The idea with eigenvalue clipping is that, perhaps, the top ddβe eigenvalues represent a suf-
�cient rank-ddβe approximation to the true correlation matrix. Thus, normalizing the bottom
(d−ddβe)-eigenvalues, with (say) a trace-preserving constant γ, will suppress noisy �uctuations
in the spectra, while retaining the strong signals indicated with the top ddβe-eigenvalues.

De�nition 2.5 (Rotationally Invariant Estimator). The Rotationally Invariant, Nonlinear Shrink-
age, or Oracle Estimator for the true correlation matrix ΞRIE[ρ] is de�ned as,

ΞRIE[ρ] :=

d∑
i=1

ξRIE
i υiυ

T
i , ξRIE

i :=
λi(ρ)

|1 − q+ qzigρ(zi)|2
(2.18)

for q = d−1T , | · | the complex modulus of a complex number, and gρ(zi) the Stieljes transform,
the normalized trace of the Resolvent Gρ(zi), that is gρ(zi) = 1

d
Tr[Gρ(z)], of ρ, de�ned below

Gρ(zk) =

d∑
i=1

λk(ρ) + iη

(λk(ρ) − λi(ρ))2 + η2υiυ
T
i (2.19)

where zk = λk(ρ) − iη and λk(ρ) an eigenvalue λk(ρ) ∈ λ(ρ).
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Similar to the Basic Linear Shrinkage estimator in 2.1, the RIE estimator in 2.5 "shrinks" the top
eigenvalues while "growing" the bottom ones. However, unlike the BLS estimator, it does so in
"nonlinear" fashion, shrinking and growing eigenvalues at a rate proportional to their relative
size. In Bun et al. [2017] it is shown how this induces a "systemic bias" towards small eigenvalues
λi(ρ) → 0, and thus, one needs to be careful when implementing the RIE estimator, especially
for small d and T (as is usually the case with Financial Portfolios).
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3
A Naive Alarm-System using the

�antum Lorenz Order

Consider a Market consisting of d �nancial assets S := {S1, . . . , Sd}. In Fontanari et al. [2019], a
novel approach to characterizing market risk was introduced: the Quantum Lorenz Order. The
Quantum Lorenz Order is a Partial Ordering between Hermitian Matrices of equal trace that
was originally developed for Quantum Statistical Mechanics to study the dynamics of Quantum
States (see Nielsen and Vidal [2001], and Sagawa [2020]). In a �nancial context, this ordering can
be used to rank Correlation Matrices based on the amount of risk embedded in the assets they
represent Fontanari et al. [2019]. Risk managers often use determinant-based, and physically
inspired risk measures like the Frobenius-Norm, and Entropy, to compare correlation matrices.
In Fontanari et al. [2019], it is shown that these measures are monotonic with respect to this
Ordering and de�ne a special sub-class of risk-measures: the Mλ-Class Fontanari et al. [2019].
Thus, if we sequentially sample Correlation Matrices over sliding windows, we can track the
temporal evolution of Mλ risk-functionals with respect to S. If we take S to be the (say) DOW
Jones Industrial Average, we are now, perhaps, in a position to build an alarm system for market
crashes using the Quantum Lorenz Ordering (QLO) of �nancial correlation matrices Cirillo and
Hüsler [2011]. In section 3.1, we introduce the central object used to de�ne the Quantum Lorenz
Ordering: the Quantum Lorenz Curve (QLC). and relate its interpretation to Markowitz’ Modern
Portfolio Theory (MPT) Markowitz [1952], and modern Random Matrix cleaning techniques Bun
et al. [2017].
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3.1 | The �antum Lorenz Curve

Changing gears, we take a more general view of Financial Correlation Matrices. This perspective
reveals the appealing mathematical properties of Correlation Matrices that make the Quantum
Lorenz Curve such an interesting object to study. Here, we refer to a Correlation Matrix, in
the most general sense, according to Axiom 3.1 and display sample Correlation and Covariance
matrices, in Figure 3.1, for 25 constituents of the Dow Jones Industrial Average.

(a) Correlation Matrix ρ (b) Covariance Matrix Σ

Figure 3.1: DOW Jones Industrial Average Correlations

Correlation 3.1(a) and Covariance 3.1(b) Matrices for 27 of the 30 DJIA constituents.

Axiom 3.1 (General Properties of Correlation Matrices). We refer to the set of d×d Correlation
Correlation Matrices ρ ∈ P(S) on a market S = {S1, . . . , Sd} with the following axioms:

• ρ is a Positive Semi-De�nite Matrix on a Hilbert Space H = Rd, that is ρ ∈ PSD(H).

• ρ is a Hermitian Matrix on H, that is ρ = ρ†.

• ρ neceassrily has trace d, with d necessarily d = dim(H), that is Tr[ρ] = d,

• ρ has entries between −1 and 1 with 1’s on the diagonal, that is ρi,j ∈ [−1, 1] with ρi,i = 1.

By the Spectral Theorem of Hermitian Matrices, we know any Correlation Matrix ρ ∈ P(S)
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has the following spectral decomposition

ρ =

d∑
k=1

λk(ρ)υkυ
T
k (3.1)

with λ(ρ) := {λk}
d
k=1 denoting the spectrum of ρ with eigenbasis {υk}

d
k=1. Additionally, since

ρ has trace Tr[ρ] = d, we know that
∑d
k=1 λk(ρ) = d. Furthermore, since ρ ∈ PSD(H) is a

Positive Semi-De�nite Matrix, we also know pk > 0, ∀λk ∈ λ(ρ). Thus, the spectrum λ(ρ) of a
(Financial) Correlation Matrix ρ ∈ P(S) de�nes a distribution onRd! However, once normalized,
λ(ρ) de�nes a probability distribution. This is why we choose the letter p to de�ne the spectrum
λ(ρ) = {λk}

d
k=1.

Figure 3.2: Pareto Chart for a Financial Correlation Matrix

Sorted Eigenvalues λ↓i (ρ) from 3.1(a) with the corresponding Quantum Lorenz Curve Lα(ρ).

The extent to which the dispersion of the distribution λ(ρ) does indeed characterize a true
heterogeneity , and underlying Systemic Risk in the Market S = {S1, . . . , Sd}, a natural object to
consider is the Cumulative Distribution Function (CDF) of λ(ρ). We plot the example Spectrum
λ(ρ) from Figure 3.1 in Figure 3.2. In fact, this heterogeneity precisely corresponds to the so-called
"Lorenz-Curve" of Lorenz [1905], which Max Otto Lorenz invented to study wealth distributions
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of societies. When applied to the Spectra of Hermitian Matrices, and thus Financial Correlation
Matrices, we get the Quantum Lorenz Curve in De�ntion 3.2.

De�nition 3.2 (Quantum Lorenz Curve). Let A be a Hermitian Matrix on a Hilbert Space H.
The Quantum Lorenze Curve Lα(A), of order α, for A is de�ned as

Lα(A) :=
1

Tr[A]

α∑
k=1

λ↓k(A), ∀α ∈ {1, . . . ,d} (3.2)

with λ↓k(A) ∈ λ(A) denoting the sorted eigenvalues in descending order.

De�nition 3.2 precisely corresponds to the red -line depicted in Figure 3.2. Furthermore, the
Quantum Lorenz Curve, has an incredibly intuitive interpretation of risk: Lα(ρ) represents the
total percentage portfolio variance explained by the top α in�uential assets (top α eigenvalues).
This interpretation hints at the possibility of using the Quantum Lorenz Curve to order Corre-
lation Matrices. Indeed, suppose Lα(ρ2) > Lα(ρ1), ∀α ∈ {1, . . . ,d}. This would suggest that,
∀α ∈ {1, . . . ,d}, every rank-α approximation of ρ2 is better than the corresponding rank-α ap-
proximation of ρ1. In fact, this is exactly the de�nition of Quantum Majorization!

De�nition 3.3 (Quantum Majorization). Let A,B be Hermitian Matrices on a Hilbert Space H.
We say B Quantum Majorizes A, written as B � A, if, and only if,

Lα(B) > Lα(A), ∀α ∈ {1, . . . ,d} (3.3)

with Lα(·) denoting the Quantum Lorenz Curve.

Before calling Quantum Majorization an Ordering, it is important to verify a few properties.
The reader is encouraged to see Fontanari et al. [2019] for all of the details, but we will glance
over the main points with Axiom 3.4.

Axiom 3.4 (Order Conditions). To guarantee �nancial interpret-ability, an Order on Financial
Correlation Matrices should obey the following properties:

P1 Minimal Element: The least risky element is the Identity Matrix ρ = Id

P2 Maximal Element: The most risky element is the set of rank-1 matrices ρ = |ψ〉〈ψ|
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Figure 3.3: Pareto Chart for a Financial Correlation Matrix

Sorted eigenvalues λ↓i (ρ) from 3.1(a) with the corresponding Quantum Lorenz Curve Lα(ρ).

P3 Monotonic: The order should not increase in the rank of the Correlation Matrices.

P4 Quasi-Convexity: A convex combination of two Correlation Matrices should not be less
risky than the riskiest of the originals.

Proposition 3.5. De�nition 3.3 satis�es properties P1 − P4 stated in Axiom 3.4.

We state Proposition 3.5 without proof and refer the reader to Fontanari et al. [2019] for further
details, but note that the proof is immediate from the de�nition of the Quantum Lorenz Curve
3.2.

Though it is not obvious why De�nition 3.3 works, we refer the reader to Fontanari et al.
[2019] for the proof. Additionally, we refer the reader to Fontanari et al. [2019], Arnold and
Sarabia [2018], and Sagawa [2020] for complete discussions on the general theory of Majorization,
and Quantum Majorization, respectively, including proofs and alternative de�nitions. For our
purposes, this de�nition is clear, concise, and provides a nice geometric interpretation that is
easily exploitable for characterizing risk, especially from the standpoint of Bouchaud and Potters
[2009]. However, it is easy to see how the de�nition of Quantum Majorization simply applies
the notion of (Classical) Majorization Arnold and Sarabia [2018] to the spectrum of Hermitian
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Figure 3.4: �antum Lorenz Curve for a �antum Majorization Relation

Quantum Lorenz Curves depicting a ρl � ρk relation between Lα(ρ∗) and Lα(ρ).

Matrices, and thus Financial Correlation Matrices.
Indeed, since we consider Financial Correlation Matrices ρ ∈ P(S) of the same dimension

d = dim(ρ), the Quantum Lorenz Curve 3.2 of a Financial Correlation Matrix ρ is

Lα(ρ) :=
1
d

α∑
k=1

λ↓k(ρ) (3.4)

with eigenvalues {λ↓k}. Thus, we say a Financial Correlation Matrix ρ majorizes another ρ̃, that
is ρ � ρ̃, if, and only if,

1
d

α∑
k=1

λ↓k(ρl) >
1
d

α∑
k=1

λ↓k(ρk) (3.5)

which precisely corresponds to the de�nition of the Classical Majorization of vectors ⇀p, ⇀q ∈ Rd

Arnold and Sarabia [2018] since λ(ρk), and λ(ρl) are also vectors in Rd, that is, λ(ρk), λ(ρl) ∈
Rd. Thus, the Quantum Majorization of Hermitian Matrices (of equal trace) corresponds to the
Classical Majorization of their respective eigenvalues.
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3.2 | The �antum Majorization Graph

The question becomes, how can we use this characterization of Risk, the Quantum Lorenz Order-
ing, to measure Systemic Risk. Quantum Majorization allows us to compare the Risk embedded
in two di�erent Correlation Matrices, of the same size, but how can this characterize Systemic
Risk in the Market. To take advantage of the Quantum Lorenz Ordering, Fontanari et al. [2019]
sequentially sampled Correlation Matrices, for the constituents of major Financial Indices, over
sliding windows. For convenience, we capture this with De�nition 3.6 below.

De�nition 3.6 (Temporal State Space of Financial Correlations). For a Market of d �nancial
assets S := {S1, . . . , Sd}, and a sliding-window ∆ = (h,m, I), corresponding to the time-interval
I = [t0, T ], we de�ne the Temporal State Space of Financial Correlations P∆(S; I) as

P∆(S; I) := {ρk = ριk(S) : ιk = [kh,kh+m] ∈ I, ∀k ∈ {0, . . . ,n− 1}} (3.6)

where n = |P∆(S)| is the cardinality of P∆(S) and is explicitly calculable: n =
⌊
T
h

⌋
−
⌊
m−h
h

⌋
.

Example 3.7. Suppose we want to sample correlation matrices for the DOW Jones Industrial
Average constituents over the T = 252-day trading period for the year 2019. We can de�ne a
Sliding-Window∆ = (10, 100, [0, 252]) withm = 100-day windows and h = 10-day shifts. Then
ρ0 would correspond to the time-interval ι0 = [0, 100], and ρ1 to ι1 = [10, 110], so on so forth,
until we have a collection of n = 16 Financial Correlation Matrices {ριk}n−1

k=0 = P∆(S) ∈ P(S).

The Temporal State-Space P∆(S; I) creates a temporal sequence of Correlation Matrices that
can be used to track Systemic Risk when those Correlation Matrices represent the constituents
S = {S1, . . . , Sd} of a major Financial Index, such as the Dow Jones. Using this collection, we can
build the Quantum Lorenz Ordering by checking which Correlation Matrices ρi, ρj ∈ P∆(S; I)
Quantum Majorize each other. Fontanari et al. [2019] embedded the Quantum Lorenz Ordering
into a {0, 1}n×n Matrix for n = |P∆(S; I)| the number of Correlation Matrices in P∆(S; I). We
introduce the so-called Quantum Majorization Matrix next with De�nition 3.8.

De�nition 3.8 (Quantum Majorization Matrix). Given a Temporal State Space P∆(S; I), the so-
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called Quantum Majorization Matrix Ψ = Ψ(P∆(S)) has entries

Ψk,l :=

1, if ρl � ρk ∀ρk, ρl ∈ P∆(S)

0, otherwise
(3.7)

We display the Quantum Majorization Matrix, for the Quantum Lorenz Ordering, built using
the 30 constituents of the Dow Jones sampled between January 1, 1990 until December 31, 2020
using 100-day Windows, and 10-day Shifts in Figure 3.5(b). The thick horizontal bands in the
Quantum Majorization Matrix of Figure 3.5(b) correspond to major Stock Market Events. For an
in depth analysis on this object, we direct the reader to Fontanari et al. [2019] for all the details. In
short, the reader can check, by de�nition 3.8, that Correlation Matrices in these bands Quantum
Majorize more Correlation Matrices than other Correlation Matrices Quantum Majorize them.
Hence, they are "Riskier". Referring to the Quantum Majorization Matrix on the left, in Figure
3.5(b), the black cell in position {3, 1} states that Correlation Matrix ρ3 � ρ1.

Fontanari et al. [2019] then used a directed acyclic graph (DAG) to represent the QLO aptly
named, the Quantum Majorization Graph (QMG). Representing this information in a graph has
many advantages as graphs have become very popular Data-Structures in the study of complex
networks. We introduce the QMG next.

(a) Jan 1, 1990 - Nov 1, 1990 (b) Jan 1, 1990 - Dec 6, 2020

Figure 3.5: Sample �antum Majorization Graphs

Quantum Majorization Graphs with black-entries representing some majorization relation ρl � ρk.
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De�nition 3.9 (Quantum Majorization Graph). Given a Temporal State Space P∆(S; I), the so-
called Quantum Majorization Graph is the ordered-pair G = (V ,A) where

• V is the set of nodes {vi}di=1 ∈ V corresponding to {ρi}
d
i=1 ∈ P∆(S; I)

• A is the Adjacency Matrix A = Ψ− In corresponding to the QMM Ψ.

It is easy to see why the QMG G = (V ,A) is a DAG. Indeed, since each edge represents an
ordering between two correlation Matrices ρi � ρj, each edge will be directed. Secondly, since
the QLO is transitive, cycles cannot exist. Hence, G = (V ,A) is directed and acyclic. For this
reason, using a DAG to represent the QLO feels natural. We display a sample QMG over the same
time period as that of the QMM of �gure 3.5(a) with �gure 3.6. For a more detailed analysis, we
encourage the reader to see Fontanari et al. [2019]. In short, the reader can verify in the two
Figures that thick horizontal bands in the QMM Ψ correspond to correlation matrices with many
directed-edges coming out of them in the QMG G = (V ,A).

Figure 3.6: Pareto Chart for a Financial Correlation Matrix

Sorted Eigenvalues λ↓i (ρ) from 3.1(a) against the induced CDF
∑
λ
↓
i (ρ).
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3.2.1 | Two Simple Risk-Measures on G = (V ,A)

Given these two mathematical objects representing the QLO, we want to see if we can measure
systemic risk using these two objects: the QMM Ψ and QMG G = (V ,A). Fontanari et al. [2019]
introduced two such measures. For all the details, we refer the reader to Fontanari et al. [2019]. For
our purposes, however, it su�ces to De�ne these two measures and brie�y discuss their relative
interpretations. Here, we introduce the "Degree Centrality" of a correlation matrix ρi ∈ P∆(S; I),
and the "Ψ-Density" of the QMM.

De�nition 3.10 (Degree Di�erence: θ(ρi)). Given a QMG G = (V ,A), the Degree Centrality
of a correlation matrix ρi ∈ P∆(S; I) is de�ned as

θ(ρi) =
1
2 +

1
2n(deg

+(vi) − deg
−(vi)) ∈ [0, 1] (3.8)

where deg+(vi) and deg−(vi) denote the number of outgoing, and incoming, edges for the
node vi ∈ V corresponding to the correlation matrix ρi, respectively.

For instance, we refer to the G = (V ,A) depicted in �gure 3.6. Here, we can easily see that
θ(ρ9) = 1 while θ(ρ0) = 2

10 . As such, ρ9 represents a time-interval ι9 = [90, 190] that is much
riskier in the market than that of ρ0 over ι0 = [0, 100]. Hence, we’d expect the market to be more
more turbulent for times ∀t ∈ [90, 190] than ∀t ∈ [0, 100].

It’s easy to see when θ(ρi) takes the two extreme values: 0 and 1. Indeed, if ρi quantum
majorizes every other correlation matrix ∀ρj ∈ P∆(S; I), then θ(ρi) = 1. On the other hand, if ρi
is quantum majorized by every other correlation matrix ∀ρj ∈ P∆(S; I), then θ(ρi) = 0. Hence,
the 1

2 +
1

2n term is simply a normalization constant. If one correlation Matrix were to be riskier
than another, we’d expect the degree centrality to be greater than the other. Furthermore, it turns
out that the degree centrality belongs to a much broader class of centrality measures in the study
of complex networks. Thus, any centrality measure found in the literature can (in theory) be
used on the Graph G = (V ,A) and be given an interpretation based on risk. Lastly, we have the
Ψ-Density Υ(Ψ) of the quantum majorization matrix Ψ. We introduce this below with de�nition
3.11.

De�nition 3.11 (Ψ-Density: Υ(Ψ)). Given a Quantum Majorization Matrix (QMM)Ψ = Ψ(P∆(S; ι)),
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we de�ne the Ψ-Density Υ(Ψ) with

Υ(Ψ) =
2
∑m
i=1

∑m
i 6=jΨi,j

m(m− 1) ∈ [0, 1] (3.9)

on any (sub)interval ι ∈ I where ∀m 6 n denotes the Cardinality m = |P∆(S; ι)| of the
P∆(S; ι) ∈ P∆(S; I).

We introduce the notation P∆(S; ι) in the above de�nition to stress that the Ψ-Density can be
used to track systemic risk in a temporal fashion, over sliding windows, just like the correlation
matrices themselves. Furthermore, theΨ-density is normalized to the [0, 1] range via the constant
2/m(m − 1). For instance, the Ψ-Density Υ(Ψ) for the QMM depicted in Figure 3.5(a) is equal
to 30/40 = 0.75. Indeed, higher levels of Υ(Ψ) indicate time-periods where more quantum ma-
jorization is present. We’d expect this to mean that the market is riskier over those time-intervals.
We encourage the reader to see Fontanari et al. [2019] for more details.

3.3 | An Alarm-System using the �antum Lorenz Order

Fontanari et al. [2019] applied spectral clustering to the QMGG = (V ,A) in an attempt to cluster
correlation matrices according to their relative positions onG = (V ,A). The idea is that correla-
tion matrices, with similar risk pro�les, should belong to similar "communities", in analogue with
social networks. In fact, spectral clustering is a very popular algorithm for community detection
in the study of complex networks, in general. Spectral clustering relies on the spectral decompo-
sition of the graph Laplacian L(G) associated the graph G = (V ,A) of interest, the QMG in our
case. Before moving forward, let us de�ne the graph Laplacian for a directed graph.

De�nition 3.12 (Directed Graph Laplacian). The Laplacian matrix of a directed graph G =

(V ,A), of cardinality n = |V |, is de�ned as

L := In −
1
2(Φ

1
2PΦ− 1

2 +Φ
1
2PTΦ− 1

2 ) (3.10)

where In is the n × n Identity Matrix, P is the "Transition Matrix" of the graph, and Φ is a
matrix such that diag(Φ) = φ(P), 0’s elsewhere, where φ(P) denotes the "Perron Vector" of P.

For our purposes, the precise de�nitions of the transition matrix P and perron vector φ(P)
are unnecessary. The curious reader can easily �nd details in the literature. The important thing
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to understand is that we can use the spectral decomposition of the Graph Laplacian L = L(G)

L =

n∑
i=1

λi(L)υiυ
T
i (3.11)

to cluster each node vi ∈ V into an arbitrary number of k-Clusters, the principle advantage to
other clustering algorithms that don’t enforce a speci�c number of clusters. The spectral cluster-
ing algorithm follows a relatively simple procedure, which we outline next.

De�nition 3.13. The spectral clustering algorithm, given a Graph G = (V ,A) of Cardinality
n = |V |, with a speci�ed number of k-Clusters, follows these steps:

1. Compute the graph Laplacian L=L(G) and its associated Spectral Decomposition

L =

n∑
i=1

λ↓i (L)υ
↓
iυ
↓
i
T . (3.12)

with eigenvalues λ↓(ρ) and eigenbasis {υ↓i }ni=1 sorted in descending order.

2. Identify the k eigenvectors {υ↓(n−k+1),υ
↓
(n−k+2), . . . ,υi} associated to the k-smallest Eigen-

values λ↓n−k+1(L), . . . , λ↓n(L).

3. Stack the k eigenvectors into a n × k Matrix, with each column being one of the n × 1
Eigenvectors.

4. Run the k-means clustering algorithm on this n× k column matrix.

This procedure will cluster each node v ∈ V into one of k-clusters based on their position in the
k-(lower)dimensional spectral projection.

Fontanari et al. [2019] showed that this approach can cleanly cluster each correlation matrix
ρi ∈ P∆(S; I) into k = {2, 3}-Clusters corresponding to the degree centrality θ(ρi). The au-
thor(s) argued that more clusters are unnecessary. Hence, by sampling correlation matrices, in
a temporal fashion, over sliding windows, we can assign each new correlation matrix to a clus-
ter using the θ(ρi) risk measure at each iteration. We depict such a clustering corresponding to
Tail-Dependence matrices in �gure 3.7.

Surprisingly, this procedure seems to assign cluster membership quite accurately, according
to periods of sever market turbulence. For instance, notice the time-period 2007-2008 where red
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Figure 3.7: Naive Alarm System

θ(ρi) clustered according to ρi, ρi, and ρi plotted with the Dow Jones Industrial Avaerage Index from
Jan 1 2005, until Dec 31 2020.

clusters are very dense. On the other hand, the subsequent rally is very green, and hence "safe(r)".
Something similar can be said about the late 2000’s, 2018, 2019, and 2020 where the Market was
known to be turbulent. Furthermore, periods of dense red clusters are all preceded by periods of
yellow clusters, a crucial feature for any alarm system. The question thus becomes, can we use
this naive alarm system as the basis for a more advanced methodology. A natural candidate is
to utilize the so-called "Reinforced Urn Process" (RUP) of Cirillo and Hüsler [2011] by modelling
these cluster memberships as the sampling of coloured marbled out of a state space of Polya Urns.
We explore this topic in the next section.
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4
Urn-Based Alarm Systems

When considering some natural, or even man-made (for that matter), phenomenon, it is often
vital to predict whether the variable of interest will surpass a critical threshold sometime in the
(near) future. Examples that have (potentially) catastrophic impacts on human life include, black-
outs, �oods, epidemics, and stock market crashes. In Antunes M and FK [2003] and de Mare
[1980], rigorous and generalized bayesian alarm systems have been developed with interesting
applications to infectious disease outbreaks and gaussian processes, respectively. In Section 4.1,
we will brie�y introduce the bayesian framework that was developed in Antunes M and FK [2003]
and de Mare [1980]. In section 4.4.1 will go over a novel approach, taken in Cirillo and Hüsler
[2011], to building Bayesian Alarm Systems using a Polya-like urn model for solar sunspot data.

4.1 | Alarm Systems

Many times, the temporal evolution of the variable of interest can be represented by a discrete
parameter stochastic process (or Time Series), such as ~X = {X0, . . . ,XT }. To formalize this idea,
we can break the time series ~X up into 3 di�erent sections: the "past"→ ~X1, "present"→ ~X2 and
"future"→ ~X3. After choosing some s > 0, we can break the time sequence {0, . . . , t − 1, t, t +
1, . . . , T } up, and de�ne ~X1 = {X0, . . . ,Xt−s}, ~X2 = {Xt−s+1, . . . ,Xt}, and ~X3 = {Xt+1, . . . ,XT }:
the "past", "present", and "future", respectively. Intuitively, a "Catastrophe" is considered to be
an event (albeit small and rare in probability) in the σ-algebra generated by the "future", that is
σ(~X3). More formally, we de�ne the notion of a "Catastrophe" with De�nition 4.1.
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De�nition 4.1 (Catastrophe). An event Ct+r ∈ σ(~X3) is a "catastrophe" if P[Ct+r|~X1, ~X2] 6 η

for a small enough η and r > 1.

Remark 4.2 (What is a Catastrophe?). In practice, η is simply an abstraction that helps charac-
terize the sort of phenomenon we are dealing with.

When developing an alarm system, the objective is to construct an "event predictor" (detection
region) so that, whenever the process (~X) enters the region, an "Alarm" is cast. In Antunes M and
FK [2003], the so-called "Operating Characteristics" of an alarm system were constructed. We
begin introducing these characteristics with de�nitions 4.3 and 4.4 below.

De�nition 4.3 (Alarm). An event At ∈ σ(~X2) is an "alarm" for a "catastrophe" Ct+j ∈ σ(~X3) if
P[Ct+j|At] > ε for some threshold ε ∈ [0, 1] in j time-steps into the future.

De�nition 4.4 (Alarm Size). The "Alarm" At ∈ σ(~X2) has "Size" P[At|~X1] = αt and "Detection
Probability" P[Ct+j|At, ~X1] = χt.

Intuitively, an Alarm System should be "Optimal" if it outperforms all other possible Alarm
Systems of equal "size" P[Ã|~X2] = αt. Indeed, we borrow from Antunes M and FK [2003] and
de�ne this "Optimality" condition with De�nition 4.5 below.

De�nition 4.5 (Alarm Optimality). The "Alarm" At ∈ σ(~X2) is said to be "optimal" of "size" αt
if,

P[Ct+j|At, ~X1] = sup
Ãt∈σ(~X2)

P[Ct+j|Ãt, ~X1] (4.1)

where the supremum is taken over all subsets Ãt ∈ σ(~X2) such that P[Ãt|~X2] = αt.

There are several other quantities of interest associated to an Alarm System. We will borrow
the so-called "Operating Characteristics" from Antunes M and FK [2003], further elaborating on
De�nitions 4.3 and 4.4 with de�nition 4.6.

De�nition 4.6 (Operating Characteristics of an Alarm System). Operating Characterstics

OC1 Alarm Size: P[At|~X1]

OC2 Probability of Detecting a Catastrophe: P[Ct+j|At, ~X1]
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OC3 Probability of a Correct Alarm: P[At|Ct+j]

OC4 Probability of a False Alarm: P[At|Cct+j]

OC5 Probability of an Undetected Catastrophe: P[Ct+j|Act , ~X1]

Thinking in terms of a confusion matrix, De�nition 4.6 contains all of the information one
could possibly want to know about an alarm system. Indeed, OC1 corresponds to a "true neg-
ative", OC2 corresponds to a "true positive", OC3 a "False-Positive (Type-I Error)", and OC4 a
"False-Negative (Type-II Error)". Intuitively, we want an alarm system, among other things, to
have a P[At|Ct+j] → 1 as close to 1 as possible. On the other hand, we want to minimize the
number of "false alarms", i.e. P[At|Cct+j] → 0. To address this, we state the following Theorem
4.7, without proof. For the proof, we direct the reader to de Mare [1980].

Theorem 4.7 (Optimal Alarm System). An Alarm System ~A := {A1, . . . ,Ar} is optimal of "Size"

~α := {α1, . . . ,αr} if,

At = {X2 ∈ ~X2 :
P[Ct|X2, ~X1]

P[Ct|~X1]
6 ζt} (4.2)

where ζt is taken such that P[At|~X1] = αt.

This rather simple bayesian framework for catastrophe (event) prediction is quite robust, and
allows us to build alarm systems for a wide variety of statistical models. Again, for an application
of this construction to the detection of Infectious Disease Outbreaks, see Antunes M and FK
[2003]. For an application to Gaussian Processes, see de Mare [1980]. In fact, in Section 4.4.1, we
will see how we can exploit Polya-like Urn Models for Event Detection using the composition of
Urns to build Bayesian priors to construct an Alarm System and evaluate its accuracy using the
Operating Characteristics from 4.6.

4.2 | Reinforced Random Walk

Now that we have a Bayesian framework for Event Prediction, we must ask: What kind of process
do we want ~X to follow? A natural candidate is to consider the so-called "Reinforced Random
Walk", or RRW, for short. The reason for using this class of Stochastic Processes for Event Pre-
diction is simple: A RRW has the tendency to "circle back" to familiar territory. To see how this
works consider an Integer-Valued Stochastic Process ~X de�ned on a State-Space S with elements
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~X := {X0 = (0, l0),X1 = (1, l1), . . . ,Xn = (n, ln)}, n ∈ Z+, l ∈ Z (4.3)

such that each tuple s = (n, l) is an element of the State-Space s ∈ S. If we associate to each "In-
terval" {(n, l), (n, l+ 1)} a "Weight"w(n,l), we can recursively updatew(n,l) = w(0,l)+

∑m
k=1 ak

when ~X has "crossed" {(n, l), (n, l+ 1)} some number ofm-times where w(0,l), and each ak, are
an arbitrary initialization, and "reinforcement" parameter, respectively. In this way, whenever
Xn = (n, l) ends up "crossing" into Xn+1 = (n+1, l+1) it becomes more and more likely that ~X
will do so again in the future since the "Weight"w(n,l) associated to the "Interval" {(n, l), (n, l+1)}
keeps getting updated. In other words, the Probability P[Xn+1 = (n+1, l±1)|~Xn] that Xn+1 will
be in state s = (n+ 1, l± 1) will somehow be proportional to the "Weights"w(n,l−1), andw(n,l),
associated to the "Intervals" {(n, l− 1), (n, l)}, and {(n, l), (n, l+ 1)}, respectively. Up until now,
we have omitted a few technical details that fully characterize the RRW. Before moving forward,
let us go ahead and formally de�ne the RRW with de�nition 4.8.

De�nition 4.8 (Reinforced Random Walk). A RRW, de�ned on a State-Space S, is a sequence
of integer-valued Random Variables ~X = {Xn = s : s = (n, l) ∈ S}, with n ∈ Z+ and l ∈ Z,
whose transition probabilities p(l, l+ 1) are equal to

p(l, l+ 1) = P[Xn+1 = (n+ 1, l+ 1)|~Xn]

= 1 − P[Xn+1 = (n+ 1, l− 1)|~Xn]

=
w(n,l)

w(n,l) +w(n,l−1)

(4.4)

where ~Xn denotes the history of the process ~X, up until time n, such that

w(n,l) = w(0,l) +

m∑
k=1

αk & w(n+1,l) −w(n,l) > 0 (4.5)

with equality when (Xn,Xn+1) are neither {(n, l), (n+ 1, l+ 1)} or {(n, l+ 1), (n+ 1, l)} while
m denotes the number of times ~X "crossed" from (n, l) → (n, l + 1) with Hyper-Parameters
w(0,l) and αk.

It is easy to verify that such a Process ~X, as de�ned above in de�nition 4.8, is a markovian since
p(l, l± 1) > 0 and p(l, l+ 1)+p(l, l− 1) = 1. More interestingly, however, Diaconis Diaconis P
[1980] showed that, if we take αk = 1, such a Process ~X is equivalent to equipping every State

37



in the State-Space s ∈ S with an independent Polya urn U(s) where each w(n,l) and w(n,l−1)

correspond to the number of, say, Black and Red marbles B0 and R0 inU(s). Thus, the probability
that Xn = (n, l) moves to Xn+1 = (n+ 1, l± 1) can be thought of as the probability of sampling
a certain colored marble from the Urn U(s). We’ll go more into the details of the Polya urn
construction next, in Section 4.3, before moving onto the more general Reinforced Urn Process
(RUP) P. Muliere [2000] in Section 4.4.

4.3 | Polya Urn Models

Polya urn models have a long-standing history in the study of Probability and Statistics. The
construction proposed by Polya HM [2009] is simple, yet ingenious. Consider an Urn with an
initial composition containing B0 and R0 number of Black, and Red, marbles, respectively. For
every time t = 1, 2, 3, . . . we draw a marble from the Urn and update the composition of the
Urn according to some rule that characterizes the Urn Model. This setup generates a sequence of
Random Variables {Xt}, either 0 or 1, depending on whether a Black or Red marble was drawn,
respectively, at time t. If we let PBt = Bt

Bt+Rt
be the proportion of Black marbles in the Urn U at

time t, then Xt+1 has distribution,

Xt+1 ∼ Bern(PBt) (4.6)

for all t > 0 whereBern(PBt) denotes the Bernoulli Distribution. In Polya’s original construction
HM [2009], the Urn was "reinforced" with δ > 0 number of Black, or Red, marbles whenever a
marble of that color is drawn. Mathematically, if we de�ne the Composition Ct = Ct(U) of the
Urn U at time t with Ct = {Bt,Rt}, containing Bt Black marbles and Rt Red marbles, we have

Ct+1 =

{Bt+1 + δ,Rt+1}, with Probability PBt
{Bt+1,Rt+1 + δ}, with Probability 1 − PBt

(4.7)

since Xt+1 ∼ Bern(PBt) = P
Xt
Bt
(1 − PBt)

Xt and Xt ∈ {0, 1}. Hence, in keeping with the analogy
to RRW’s alluded to in Section 4.3, Polya’s Urn model can replace the Weight-Interval updating
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mechanism used to construct the RRW. Here, we can replace the weight updating mechanism

w(n,l) = w(0,l) +

m∑
k=1

ak → Bn = B0 +

m∑
k=1

δ

w(n,l−1) = w(0,l−1) +

m∑
k=1

ak → Rn = R0 +

m∑
k=1

δ

(4.8)

meaning the Transition Probability p(l, l + 1), in de�ntion 4.8 of the RRW, can be equivalently
expressed as

p(l, l+ 1) = P[Xn+1 = (n+ 1, l+ 1)|~Xn]

= 1 − PRn

=
Bn

Bn + Rn

(4.9)

completing the analogy. The advantage of the approach using Urns to characterize Transition
Probabilities between States of a RRW are two-fold:

1. Inter-pretability: In practice these models are easier to visualize and understand.

2. Generalized Reinforcement Schemes: This allows us to use a plethora of Urn reinforcement
schemes that would complicate the formulation of the traditional RRW.

This concludes this Section on Polya’s urn Model. We move onto the so-called "Reinforced Urn
Process" next.

4.4 | Reinforced Urn Process

Thanks to P. Muliere [2000], we can de�ne a Reinforced Random Walk on a countable State-
Space of Urns: A "Reinforced Urn Process", or RUP for short. Reinforced Random Walks were
introduced earlier to model the tendency of a Random Walker to return to past locations. The
precise de�nition of a RRW relies on the transition probabilities between States in the State-Space
s ∈ S. The ingenuity of Polya’s Urn construction allows for a simple, yet robust, mechanism for
calculating transition probabilities between two states s, s ∈ S in the State-Space S by viewing
the Weights associated to any two states ws,ws as the proportion of colored marbles in an Urn
U(s). Hence, by endowing each state s ∈ S with an Urn, say U(s), we can construct a RRW and
use Urns to compute transition probabilities "nonparametrically" as we observe the evolution of
~X in an "online" fashion. The RUP speci�cation relies on four elements.
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De�nition 4.9 (RUP Speci�cation). The RUP speci�cation relies on the four following ele-
ments.

E1: A countable State-Space S with elements s ∈ S.

E2: A �nite set of Colours C with colors. c = (c1, . . . , cκ) ∈ C of cardinality κ > 1.

E3: An Urn "Composition Function"U(s) that maps S to the set of κ-tuples of non-negative
real numbers whose sum is a strictly positive number.

E4: A "Rule of Motion" RoM d : S × C → S that speci�es the state transitions for the
RRW.

Each s ∈ S comes equipped with its own UrnU(s) containingms(c) > 0 marbles for each colour
c ∈ C. Without loss of generality, the RoM satis�es the additional condition that there exists no
more than one colour c = c(s, s) such that d(s, c(s.s)) = s for any two s, s ∈ S. We are now
ready to full specify the behavior of the RUP with De�nition 4.10.

De�nition 4.10 (Reinforced Urn Process). A RRW ~X on S starting at state s0 ∈ S is de�ned
recursively:

1. Initialize ~X with X0 = s0.

2. For Xn−1 = s ∈ S, when ∀n > 1 a marble of colour c is drawn from U(s) and is then
"reinforced" with r(s) marbles of that colour c, i.e. ms(c)→ ms(c) + r(s).

3. If the colour of the marble drawn was c ∈ C, we set Xn = d(s, c).

We say that ~X ∈ RUP(S,C,U,d).

In P. Muliere [2000], a closed-form expression for the �nite-dimensional laws of ~X was derived.
From this expression, it is shown that the Process ~X is partially-exchangeable in the sense of
Diaconis & Freedman Diaconis P [1980]. We state the partial-exchangeability condition with
Axiom 4.11.

Axiom4.11 (Partial-Exchangeability). According to Diaconis P [1980], ~X is partially-exchangeable
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if, for two "equivalent" sequences s = {s0, . . . , sn} and s = {s, . . . , sn}, we have

P[X0 = s0, . . . ,Xn = sn] = P[X0 = s0, . . . ,Xn = sn] (4.10)

where "equivalence" is de�ned as having the property that the number of transitions between
any two states si, sj ∈ S are the same for both processes.

Before stating the Theorem that de�nes the �nite-dimensional law of ~X, as alluded to a moment
ago, we need to introduce some additional notation and terminology:

• "Admissibility": A sequence s = {s0, . . . , sn} is said to be "admissible" if there exists a �nite
sequence of sampled coloured marbles ~c = {c0, . . . , cn} such that d(si, ci) = si+1.

• hs(c): We count the total number of states t(s, s∗ = d(s, c)) that are reachable from a state
s ∈ S, after sampling a marble of colour c, with the quantity hs(c) = t(s, s∗).

• H(s): We count the total number of possible transitions between s, and any other state
s∗ ∈ S, with the function H(s) =

∑
s∗∈s t(s, s∗).

We now have all the pieces in place to introduce theorem 4.12, which we state without proof. For
the proof, we direct the reader to P. Muliere [2000], or Cirillo and Hüsler [2011].

Theorem 4.12 (Finite-Dimensional Law). For all n > 1, and any �nite-sequence s = {s0, . . . , sn}
with elements si ∈ S, we have

P[~X = {X0 = s0, . . . ,Xn = sn}] = 0, if s is not "admissible" (4.11)

otherwise we have

P[~X = {X0 = s0, . . . ,Xn = sn}] =
∏
s∈S

∏
c∈C

∏hs(c)
j=0 (ms(c) + jr(s))∏H(s)−1

k=0 (kr(s) +
∑
c∈Cms(c))

(4.12)

with "reinforcement" r(s), number of c-coloured marbles in state s,ms(c), and the convention that
Π0

−1 = 1.

The reader can �nd an interesting application (in Peluso et al. [2015]) of the above RUP con-
struction to credit risk modelling where the process ~Xmodels the credit-rating l of a company at
time t with a state-space S and corresponding elements s = (t, l) ∈ S. The author(s) considered
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l = 0 to be the "safest" credit-rating and L to be the "riskiest". The RoM is speci�ed to transition
between credit-ratings as per the rule

d(s, c1) = (t+ 1, l)

d(s, c2) = (t+ 1, l+ 1)

d(s, c3) = (t+ 1, l− 1)

d(s, c4) = (t+ 1,L)

(4.13)

with colours {c1, . . . , c4) ∈ C where sampling a c1-coloured marble leaves the credit-rating un-
changed while sampling a c4-coloured marble immediately sends the company into default. Fur-
ther details are omitted and are left for the reader to explore in Peluso et al. [2015]. For now, we
move on and wish to explore the possibility of using the RUP construction to build an Alarm-
System along the lines of Antunes M and FK [2003] and that discussed earlier in Section 4.1.

4.4.1 | An Urn-Based Alarm System

The authors of Cirillo and Hüsler [2011] built a Bayesian Alarm System ~A for Catastrophe Pre-
diction following the framework of Antunes M and FK [2003] (Section 4.1) using the Reinforced
Urn Process (RUP). Generally speaking, Urns have become a popular modelling methodology
in "Bayesian Nonparametrics" (see, for example, HM [2009]). To see how we can translate the
RUP into the language of an Alarm System ~A, �rst consider a Time-Series ~Y = {Y0, . . . ,YT } de-
noting the variable of interest with ~Y1, ~Y2, and ~Y3 the "Past", "Present", and "Future", respectively,
as in Section 4.1. We can discretize the process ~Y into a new process ~Y∗ using k di�erent re-
gions so that when Yt ∈ [d0,d1) ⇒ Y∗t = 0, Yt ∈ [d1,d2) ⇒ Y∗t = 1 and so on up until
Y∗t ∈ [dk−1,dk] ⇒ Y∗t = k − 1. We now have a Process ~Y∗ = {0, 1, . . . , k − 1} with individual
elements {0, 1, . . . , k − 1} that can each be associated to speci�c colours {c1, c2, . . . , ck} ∈ C of an
Urn. We now have a fully speci�ed RUP, ~Z ∈ RUP(S,C,U,d).

In the Solar Flare Event Prediction problem of Cirillo and Hüsler [2011], the author(s) showed
that the RUP ~X ∈ RUP(S,C,U,d) is capable of learning the periodicity of extreme Solar Flare
outbursts. The raw data is shown in Figure 4.1, along with a stylized idea of the discretization
procedure described earlier, represented by the colours green, yellow, orange, and red. In this
setup, S = Z+ × {0, 1, . . . ,L} with s = (n, l) denoting the "level" of risk l at instant n. Here,
l = 0 corresponds to the "safest" state and L = 3 represents a "Catastrophe" Cn∗ . As before, each
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Figure 4.1: Naive Alarm System

~Y clustered according to Yi∈ [0, 0.25], Yi∈ [0.25, 0.85], and Yi∈ [0.85, 1.0].

State s ∈ S is endowed with an Urn U(s) on a set of four colors C = {c1, c2, c3, c4} containing
ms(c) number of c-coloured marbles for each color c ∈ C with reinforcement mechanism r(s).
The RUP(S,C,U,d) is then characterized by its RoM d : S × C → S. The authors de�ned the
function d according to De�nition 4.13 below.

De�nition 4.13 (Rule of Motion). The RoM is a d : S× C→ S mapping of the form

d(s, c) :=



(n+ 1, l− 1), if c = c1

(n+ 1, l), if c = c2

(n+ 1, l+ 1), if c = c3

(n+ 1, 3), if c = c4

(4.14)

Whenever a "Catastrophe" Cn∗ strikes in state s = (n∗,L), we reset the process ~X to the initial
state ~Xn∗ → X0 = (0, 0) and start the process over until Catastrophe strikes again. Now, we
de�ne τ0 = (0, 0) and, for r > 1, we set τr = inf{n > τr−1 : Xn = (0, 0)}. This process generates
a sequence ~τ = {τ0, τ1, . . . , τr} between two consecutive visits of the initial state, X0 = (0, 0) by
the process ~X. Restarting the process after each Catastrophe allows the process to learn from the
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past to make predictions about the future. In particular, if a state s has already been visited by ~X,
then the composition of the Urn U(s) has been updated via reinforcement. Otherwise, if a state
s∗ has not yet been visited, its corresponding Urn U(s∗) simply contains the prior information
related to the Urns initial composition. According to this model, ~X can only reach a "Catastrophic"
risk-level if either:

1. we happen to repeatedly sample c3-coloured marbles

2. we happen to extract a c4-coloured marble.

We say that the Process ~X is recurrent if

P[
∞⋂
r=0

{τr < +∞}] = 1 (4.15)

or, alternatively, if the following condition

lim
n→+∞

n∏
k=1

m(k,l)(c1) +m(k,l)(c3)∑4
i=1m(k,l)(c1)

= 0 (4.16)

is satis�ed. It is easy to visualize the evolution of ~X in terms of the sequence of stopping-times
~τ = {τ0, τ1, . . . , τr}. If ~X is recurrent, given we reset ~X → (0, 0) every time l reaches L, meaning
a "Catastrophe" occurs, then we generate a sequence of "0-Blocks" associated to the sequence
~τ = {τ0, τ1, . . . , τr}. A "0-Block" can be thought of as a "Block" of states in S that start in s0 = (0, 0)
and up in sn = (n,L), where n > 1. In the model of Cirillo and Hüsler [2011], L = 3. In this
way, an example of ~X could be

~X = {(0, 0), (1, 0), (2, 1), (3, 1), (4, 2), (5, 3),

(0, 0), (1, 1), (2, 2), (3, 3),

(0, 0), (1, 0), (2, 0), (3, 3),

(0, 0), (1, 1), (2, 2), (3, 2), (4, 2), (5, 3), . . . }

(4.17)

which would generate the following set of "0-Blocks" Figure 7.1.

0, 0, 1, 1, 2, 3︸ ︷︷ ︸
Block-1

|

Block-2︷ ︸︸ ︷
0, 1, 2, 3 | 0, 0, 0, 3︸ ︷︷ ︸

Block-3

|

Block-4︷ ︸︸ ︷
0, 1, 2, 2, 2, 3 (4.18)
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An interesting point made in Cirillo and Hüsler [2011] is that, given ~X is recurrent and "Exchange-
able", then, by Diaconis & Freedman Diaconis P [1980], each "0-Block" is a Markov Chain. There-
for, the process ~X is a mixture of Markov Chains. As such, Muliere P. Muliere [2000] showed that,
given the construction of the RUP ~X ∈ RUP(S,C,U,d), Reincorced Urn Processes are generally
conjugated which turns out to be connected to the conjugacy of the Product Dirichlet Process, of
which our RUP construction is related to. The details outlining this relation are left for the reader
to explore in P. Muliere [2000] and Cirillo and Hüsler [2011]. For our purposes, all this means is
that we can use the RUP for Nonparametric Bayesian Prediction, i.e. Antunes Antunes M and
FK [2003] and Cirillo Cirillo and Hüsler [2011]. All that is left is for us to de�ne an "Alarm-
Region", along the lines of Antunes M and FK [2003] and Section 4.1, for which to associate our
~X ∈ RUP(S,C,U,d) to. The author(s) of Cirillo and Hüsler [2011] showed that an appropriate
Alarm-Region is the probability of our Process ~X reaching the risk threshold L exceeding some
predetermined threshold, γ, in n + k time-steps, following the "0-Block" terminology. It turns
out, thanks to Theorem 4.12, that this probability is relatively easy to compute.

De�nition 4.14 (RUP Alarm Region). We cast an "Alarm" An at time n if

P[τr = n+ k|~τr−1] > γ, γ ∈ [0, 1] (4.19)

where ~τr−1 denotes the sequence of stopping-times {τ1, . . . , τr−1} and γ is a predetermined
threshold, which can be explicitly calculated via Theorem 4.12 using

P[τr = n+ k|~τr−1] =

h∑
j=1

Pj[(n, l), (n+ k,L)] (4.20)

where Pj[(n, l), (n + k,L)] denotes the probability of the jth-feasible path, out of h, taking
(n, l)→ (n+ k,L), occurring.

All of the details, including the speci�c implementation and application details to the Solar Flare
data set can be explored in Cirillo Cirillo and Hüsler [2011]. In short, every RUP application
is going to be a little di�erent based on the application. Detailing the entire implementation
in Cirillo and Hüsler [2011] would be redundant for our purposes. As a teaser for the curious
reader, the hyper-parameters γ, k-future time steps, and reinforcement mechanism r(s) were all
optimized so as to minimize the Alarm Systems ~A number of "False-Alarms". We will come back
to this modelling approach later in Chapter 6 where we’ll make a few adaptations for the problem
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of predicting stock market crashes. For now, we move onto the next section.
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5
Bubbles & Crash Theory

In order to test the e�cacy of an alarm system, or any sort of predictive model for that matter,
we need to de�ne what we want our model to predict, precisely. In the case of this work, we
are trying to predict stock market crashes. Thus, we need to de�ne what a stock market crash
is, exactly. There is no general concensus on how to (rigorously) de�ne a stock market crash. It
is easy to quantify what a crash does, but not what it is. In this chapter, we review one of the
more well-known approaches to de�ning stock market crashes: that of Didier Sornette [2006]. In
Section 5.1, we formally de�ne a stock market drawdown, and show what they look like. Second,
in Section 5.2, we show how we can use the �tting, of the distribution of drawdowns, to the
"Stretched-Exponential" as a means to de�ning stock market crashes as "outliers" to this �tting.
Lastly, in Section 5.3 we cover an (sort of) alarm system for stock market crashes developed by the
same author, Didier Sornette [2006], based on the so-called "Log-Periodic Power Law Singularity"
(LPPLS) model. In this way, not only do we lay the foundation for a new methodology for de�ning
stock market crashes, which we will introduce later, but also provide a State-of-the-Art stock
market crash model, or "bubble detector", as the author(s) Didier Sornette [2006] refer to it, that
we can test our Urn-Based alarm system against.

5.1 | Drawdowns

Stock Markets are in a constant state of �uctuation. Some days the market rises. On other
days, it falls. However, every once in awhile, the Stock Market will not only fall, but "Crash".
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Counter-intuitively, it’s hard to pinpoint what this means, precisely, in a systematic way. Typi-
cally, "Crashes" are associated to time periods in which the Stock Market falls by a large amount
with "large" being (say) ∼ 25%. This begs the question: When does the time-period start? When
does it end? What if a 6-day long "Crash" is interrupted by a 1-day positive return on day three?
Do we calculate the Loss from the top of that interruption? Or the original descent? It’s easy to
see how tricky of a question it becomes. Thankfully, we can rely on the De�nition of a "Draw-
down" to de�ne Stock Market Crashes, which we do next.

A Stock Market "Crash" is nothing more than an extreme Stock Market "Drawdown". Simply
put, a "Drawdown", according to Didier Sornette [2006], is the cumulative loss (negative return)
associated to a time-period in which a Stock Market Index sees consecutively negative (daily)
returns. Think, for example, of the DOW Jones Industrial Average (DJIA). More precisely, we
capture this notion with De�nition 5.1.

De�nition 5.1 (Drawdown). Suppose {Pt}
T
t=1 is a time series representing the value of some

Financial Index at closure. Consider Pmax = Pt? a local maximum, and Pmin = Pt?+δ to be the
next corresponding minimum. The "Drawdown" associated to Pmax and Pmin is de�ned as the
percentage

Dt? :=
Pmin − Pmax

Pmin
(5.1)

where Pmax and Pmax both satisfy the condition Pmax = Pt? > Pt?+1 > · · · > Pt?+δ = Pmin

where t? > 2 and δ > 1. Each Drawdown has an associated (D, t∗, δ) tuple.

One of the most infamous stock market crashes in history was the "Black Monday" Crash of 1987.
For the readers convenience, we display the 1987 "Black Monday" crash in �gure 5.1.

On October 14, 1987, the DJIA began a 4-day period of negative consecutive daily returns
culminating in a 22% loss on "Black Monday" October 19, 1987. During this 4-day "drawdown",
the DJIA lost a little over 30% of its value.

Thanks to de�nition 5.1, we now have a precise way of measuring the timing, duration, and
intensity, of Stock Market drawdowns: t?, δ, and D, respectively. Naturally, we now must deter-
mine which of these drawdowns D := {Dt?} correspond to a "Crash". Following the approach
developed in Didier Sornette [2006], we can de�ne a "Crash" (loosely speaking) as a drawdown
Ct? ∈ D that is an outlier to an appropriately �tted "Stretched Exponential" distribution of the
Rank-Ordered drawdowns, D[1] < D[2], . . . ,< D[N], where D[1] is the smallest (most negative)
drawdown. Here, n ∈ {i}Ni=1 is the rank of the Order Statistics alluded to above. Now, D[n] can
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Figure 5.1: Log-Periodic Power Law Singularity (LPPLS) DOW Jones Industrial Average (1985-2020)

be plotted against the rank numberN(D[i]) ∈ {i}Ni=1 allowing us to �t the rank-distributed draw-
downs with pretty good results. For all the details, we encourage the reader to see Didier Sornette
[2006]. For now, we move ahead and de�ne the "Stretched Exponential" with De�nition 5.2 be-
low.

De�nition 5.2 (Stretched Exponential Distribution of Ranked Drawdowns).

N(D;A,b, z) = Ae−b−z|D|z (5.2)

As mentioned in Didier Sornette [2006], the "Stretched-Exponential" is not particularly interest-
ing, it just so happens to �t the bulk of the distribution (well enough) to allow us to single out
"extreme" drawdowns. The author(s) of Didier Sornette [2006] took the log-transform of de�ni-
tion 5.2, as follows,

logN(D) = logA− b|D|z (5.3)

in order to guarantee the robustness of the �tting procedure. We �tted Equation 5.3 using the
(Log) Daily-Returns of the DOW Jones Industrial Average (DJIA) from Jan 1,1985 to Dec 31, 2020.
We plot the results in Figure 5.2 highlighting drawdowns D > 0.20. Precisely distinguishing
Crashes from the bulk of the distribution is complicated. In Didier Sornette [2006], the authors
de�ne a "Crash" as an "outlier" to the distribution ofN(D) that does not �t in the continuation of
the statistics accountable for at least 95% of the distribution. We highlight what we believe to be
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Figure 5.2: Strecthed Exponential Distribution of Ranked DJIA Drawdowns: 1985-2020

these points in �gure 5.2 which, coincidentally, correspond to drawdowns {Dt∗i } 6 −20% below
the −20% threshold. These "crashes" coincide with the 2008 Financial Crisis (−23%) and Black
Monday (−30%).

5.2 | Price Coarse-Graining Drawdowns

In practice, the drawdown of de�nition 5.1 might be insu�cient. To see why, a drawdownDt? , ac-
cording to de�nition 5.1, is the cumulative loss from the local maximum Pt? to the next local min-
imum Pt?+δ regardless of how small each positive (daily) log-return rt?+δ+1 = log

Pt?+δ+1
Pt?+δ

> 0
is. However, since �nancial data is very noisy, we can introduce a threshold ε that ignores any
rt?+δ+i 6 ε. To this end, Didier Sornette [2006] introduces a "Price Coarse-Graining" algorithm,
and associated "ε-drawdown", that interrupts consecutive daily losses only when the reverse
positive daily return exceeds the threshold ε. Since every Financial Asset behaves di�erently,
Didier Sornette [2006] propose the usage of an individual assets volatility, say σDJIA for the DJIA,
to determine such a threshold.

We display an example of when the ordinary drawdown doesn’t capture interesting �nancial
behavior in Figure 5.4. On August 27, 2001, the Dow Jones Industrial Average (DJIA) began a
−22% drawdown. However, this drawdown was interrupted by a series of positive daily returns,
displayed in red. The ordinary de�nition 5.1 of a drawdown would exit the algorithm early and
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Figure 5.3: Stock Market Crashes: DOW Jones Industrial Average (1985-2020)

not re�ect the true severity of the drawdown. To address this, we introduce the "Price Coarse-
Graining Algorithm" of Didier Sornette [2006] with de�nition 6.21.

De�nition 5.3 (Price Coarse-Graining Algorithm & ε-Drawdown). The Price Coarse-Graining
algorithm, and associated ε-drawdown, works as follows:

• Identify a local maximum Pε,max = Pt? as before

• Identify a local minimum Pε,min = Pt?+δ such that rt?+δ+1 > ε.

• Calculate Dε as Pε,min−Pε,max
Pε,min

.

• Ignore any resulting drawdowns such that Dε > 0.

De�nition 6.21 allows us to de�ne the Stretched Exponential Distribution for ε-Drawdowns,
just as before.

De�nition 5.4 (Coarse-Grained "Stretched" Exponential Distribution of Drawdowns).

N(Dε;A,b, z) = Ae−b|Dε|
z (5.4)

We follow the same �tting procedure discussed in Section 5.2 and �t the log ranks of the draw-
downs in Figure 5.5. Following the approach of Didier Sornette [2006], we consider ε = {0, σ2 , σ4 }
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Figure 5.4: Stock Market Crashes: DOW Jones Industrial Average (1985-2020)

where σ is nothing but the volatility (standard-deviation) of the Financial Index of interest cal-
culated as

σ2 = N−1
N∑
i=1

(ri+1 − E[r])2 (5.5)

where ri+1 = log(
Pt+1
Pt

) and E[r] is the long run average. Expressing the ε-thresholds in units of
volatility immunizes our Price Coarse-Graining algorithm from noisy return data.

Looking at �gure 5.5 we notice that the three thresholds for ε = {0, σ2 , σ4 } yielded similar
results in terms of identifying outlier drawdowns. However, the ε-threshold ε = σ

2 identi�ed a
drawdown during the so-called "Tech Bubble" beginning on August 27, 2001. Referring to Fig-
ure 6.6, we plot the oulier drawdowns from the (Price Coarse-Grained) drawdown algorithm(s)
against the DJIA over the time period 1985-2020.

5.3 | LPPLS

In this section, the derivation of the LPPLS model is outlined based on the original work of An-
ders Johansen and Sornette [2006]. The LPPLS Model is a nonlinear function that aims to regress
the Expected Log-Price E[log(p(t))] of a Financial Asset p(t) at time t. Before moving forward,
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Figure 5.5: Strecthed Exponential Distribution of Ranked DJIA Drawdowns for ε = {0, σ2 , σ4 }: 1985-2020

we provide the LPPLS Model, for the readers convenience, below with Equation 5.13.

E[log(p(t))] = A+ B(tc − t)
m + C(tc − t)

mcos(ωlog(tc − t) − φ) (5.6)

The LPPLS model assumes that agents are risk-neutral, have rational expectations and ig-
nore arbitrage, interests-rates, dividends, risk aversion, information asymmetry, along with the
market-clearing condition. As such, the rise of the expected asset price must compensate for the
expected risk, implying that the asset price is necessarily a martingale

E[p(t)|Fs] = p(s), ∀s 6 t (5.7)

for the conditional expectationE[·|Fs] on the �ltrationFs. We use a discontinuous jump-di�usion
process, J to model the occurence of a crash taking place, taking a value of 0 before, and 1 after, the
critical time tc. We can use a CDF F(t) to model tc with density f(t) = dF(t)

dt
and crash hazard

rate h(t) = f(t)
(1−F(t)) representing the probability of a crash occurring between t and t + dt,

provided that the crash hasn’t happened yet. We can calculate the expectation of an increment
for the discontinuous jump-di�usion process dJ as E[dJ] = h(t)dt. If the price of the asset falls
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Figure 5.6: Stock Market Crashes: DOW Jones Industrial Average (1985-2020)

at a �xed percentage α ∈ [0, 1] then we have

dp = µ(t)p(t)dt− (t)dJ+ σ(t)p(t)dW(t)

dp

p
= µ(t)dt− kdJ+ σ(t)dW(t)

(5.8)

for the increment dp of p(t), time-dependent return µ(t), time-dependent volatility σ(t), and
brownian motion W(t) ∼ N(0, 1). However, since p(t) de�nes a martingale, we have µ(t) =

kh(t) which implies that the risk of the crash h(t) is proportional to the time-dependent return
µ(t). Conditioning on no Crash occurring, we get

dp

p
= µ(t)dt− kp(t) · 0 + σ(t)dW(t)

= µ(t)dt+ σ(t)dW(t)

(5.9)

which, upon Integrating and taking Expectations, yields

E[log(
p(t)

p(t0)
)] = k

∫ t
t0

h(s)ds, t0 6 s 6 t (5.10)

for initial condition t0. The �nal step is the speci�cation of the crash hazard rate h(t), which aims
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to quantify the probability that a large number of agents will all take the same sell position at the
same time. Anders Johansen and Sornette [2006] propose a model that captures the "imitative
local micro-interactions" of the agents, which takes the form of

si = sgn(K

N∑
i=1

sj + σεi) (5.11)

where si ∈ {−1,+1} when Agent i is "selling", or "buying", respectively. Furthermore, Kis simply
a coupling constant between the set of Agents and sgn(·) is simply the "sign"-Function. Omitting
details, which we encourage the reader to see Anders Johansen and Sornette [2006] for, we get

h(t) ≈ a(tc − t)m−1(1 + bcos(ωlog(tc − t) + φ)) (5.12)

which, after plugging back into the expression for E[log(p(t))] as per Equation 5.10, yields

E[log(p(t))] = A+ B(tc − t)
m + C(tc − t)

mcos(ωlog(tc − t) − φ) (5.13)

where several (arbitrary) simpli�cations are made to get back to the LPPLS Model of Equation
5.13. We plot a sample LPPLS �t to the Dow Jones Industrial Average (DJIA) from January 1, 1900
to December 31, 2020 in Figure 5.7.

This bring us to the LPPLS con�dence indicator (CI) which provides a measure of con�dence
to the observation of a true Log-Periodic Power Law Singularity pattern. As such, a high level
for the LPPLS "Positive" CI indicates a future drop or higher levels of volatility. The opposite
for the LPPLS "Negative" CI. Loosely speaking, the LPPLS CI is de�ned as the number of Fitting
Windows, each of size dt = (t2 − t1), in which the �tted LPPLS Model satisfy the speci�ed
Filter Conditions. Hence, each LPPLS CI takes a value CI ∈ [0, 1]. We compute the CI with the
following procedure:

1. Creating Fitting (Time) Windows by shrinking t1 toward the endpoint t2.

2. De�ne the search space for the calibration procedure.

3. Calibrate the LPPLS Model for each Fitting Window.

4. Specify the �lter conditions and catalog the number of Fitting Windows that satis�ed the
�lter conditions.

55



Figure 5.7: LPPLS Model for the DOW Jones Industrial Average (Jan 1, 1900-Dec 31, 2020)

5. Divide the number of �tting Windows from Step: 4 by the total number of �tting windows,
yielding the "Positive" CI.

Following this approach, we calculated the positive and negative CI’s for the LPPLS model on
the entirety of the DJIA price dataset from January 1, 1900 until December 31, 2020. We display
the resulting CI’s in Figure 5.8. For visualization purposes, we only plot the results from 2010
onward, to avoid cluttering.

This model is interesting for our purposes since these CI’s can be used in direct one-to-one
correspondence with the probability of witnessing a catastrophic event

P[τr = n+ k|{τ1, . . . , τr}] (5.14)

from the bayesian alarm system discussed in chapter 4. Hence, we’ll be able to compare the CI’s,
from the LPPLS model, with that of the stopping-time probabilities from Equation 5.14 in direct
correspondence with one another under the guise of the formal online bayesian alarm system.
Thus, the Reinforced Urn Process, which we will develop later, can be tested against a state-of-
the-art stock market crash prediction model. Furthermore, understanding how the LPPLS model
works will help us analyze the two methodologies and discuss, what we believe to be, their relative
strengths and weaknesses.
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Figure 5.8: LPPLS Positive and Negative COnfidence Indicators (2010-2020
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Implementation
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6
Methodology

In this chapter, we will focus on three things: 1. Gathering the data that we will need to build
our alarm system. 2. Familiarizing ourselves with di�erent forms of correlation and dependence.
3. Implementing Extreme Value Theory (EVT) as a means to systematically de�ne stock market
crashes. As such, this chapter is broken down into thre di�erent sections. In section 6.1 we
will take a closer look at the Dow Jones Industrial Average (DJIA) and discuss the historical
constituents that we will be considering to calculate our correlation matrices so as to avoid the
so-called "survivorship bias". Additionally, we will specify the sliding window structure we will
be using to build the QLO (Quantum Lorenz Ordering). Then, in section 6.2, we will cover three of
the main correlation metrics commonly used in the �nancial literature: Pearson’s ρ, Spearman’s
ρS, and Kendall’s τK. Additionally, we will cover two other correlation and dependence metrics,
that are more exotic and less frequently used: Gini’s γG and Upper (Lower) Tail Dependence λU.
Lastly, in section 6.3, we will show how we can use the so-called "Generalized Pareto Distribution"
(GPD) to not only �t the distribution of drawdowns, but also estimate the threshold where the
GPD’s tail begins. Hence, any drawdown beyond this threshold will be consider a crash. We
identify 13 such drawdowns between 1985-2020 on the DJIA index.

6.1 | Data

We kick things o� by considering the Dow Jones Industrial Average (DJIA) as the index of interest
to track stock market crashes. Others candidates included the S&P 500, Russel 2000, and Nasdaq.
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Figure 6.1: DOW Jones Industrial Average (1985-2020)

However, given the nature of this work, we choose to work with the DJIA for two reasons.

1. Historical DJIA data extending back to 1900 (even 1896) can be gathered via freely available
data sets, and hence, we can infer better statistics for our EVT analysis.

2. More importantly, the DJIA is composed of 30 constituents (12 originally in 1896), and thus,
our correlation matrices will be of a more manageable size 30× 30 as opposed to the S&P
500 which has 500 components.

We will see in a moment how we lied (a little bit) in the second point above. For now, the point is
that the DJIA will allow for faster calculations and better EVT inference. For the readers conve-
nience we plot the DJIA index from January 1, 1985 to December 31, 2020. The DJIA, as mentioned
before, is a weighted price index for 30 of the largest US market cap stocks. Some of these com-
panies include Apple Inc. (AAPL), Caterpillar (CAT), AT&T (T), and the Minnesota Mining and
Manufacturing Co. (MMM). As the economy changes, however, companies enter, and exit, the
index so as to re�ect the state of the economy at the time, which is what stock market indices,
like the DJIA, are intended to re�ect for investment and even public policy e�orts. Hence, the
DJIA is a standard index to track if one is interested in studying stock market crashes, which we
are.

Now comes the question of building our correlation matrices for the 30 DJIA constituents.
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Since we are trying to predict stock market crashes via the QLO, a partial-ordering de�ned on
the eigenvalues for the set of symmetric PSD hermitian operators, a set of which any (sym-
metric) correlation matrix belongs to, we will collect the correlation matrices for DJIA con-
stituents by computing the correlation coe�cient ρi,j ∈ [−1, 1] between the log returns Ri(Si) =
{Ri,hn, . . . ,Ri,hn+m} andRj(Sj) = {Rj,hn, . . . ,Rj,hn+m} collected over time intervals ιn = [hn,hn+
m] representing our sliding windows, as per the language of chapter 3, corresponding to each
pair of assets (Si, Sj) ∈ S = {Ss1, . . . , S30}. In so doing we form a collection of correlation ma-
trices P∆(S; I), for ∆ = (h,m), S = {S1, . . . , S30}, and time interval I = [0, T ], that we called the
temporal state space of correlation matrices. or just temporal state space for short.

At this point, we need to specify what we want our sliding windows, as characterized by the
∆ = (h,m) tuple, to look like. For reasons we will get into in the next chaper, chapter 7, we
choose to sample our correlation matrices ρn = ριn ∈ P∆(S; I) over sliding windows of 40 days,
each of length 100 days, that is ∆ = (40, 100). If the reader needs to be refreshed on what the
temporal state space looks like, in more detail, we refer them back to de�nition 3.6 of chapter 3.
The only thing left to discuss is the actual set of constituents we will be gathering our correlation
matrices over, which we do next in section 6.1.1.

6.1.1 | A Note on "Survivorship" Bias

At �rst glance, ones �rst instinct, when trying to build the model we are considering in this work,
might be to look at the 30 constituents in the DJIA today (present time) and see how many of
those constituents were on the market dating back to some arbitrary time in the past. For instance,
we found that, of the 30 DJIA components on December 31, 2020, 25 were on the market (being
publicly traded) back in May 1986. Hence, the practitioner might build the QLO, using the set of
25× 25 correlation matrices corresponding to those 25 assets. However, consider the example of
AAPL, which went public in March of 1986. Apple Inc. wasn’t added to the DJIA until June 2015.
Hence, the model trying to predict stock market crashes on the DJIA, by tracking correlation
matrices consisting of assets that weren’t present in the DJIA at the time (as would be the case
for AAPL) can potentially take away from the models historical performance, and add a bias to
the time period closer to the date of its addition to the index (June 2015 for AAPL). This is known
in the industry as "survivorship bias" and is infamous among modelers trying to back-test trading
strategies based on stock market indices such as the DJIA. Since the RUP alarm system, which we
are considering in this work, has to be trained in the past, to make predictions about the future,
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this is something we should consider.
Our �rst attempt was to track the 30 constituents present in the DJIA at every moment in

time. In fact, since 1985, roughly 50 di�erent companies (excluding mergers & acquisitions) have
been in the DJIA at some point in time. However, using freely available data, the greatest number
of assets we were able to include in a dynamically updated set of DJIA constituents was 21 since
many companies have gone out of business since. We found that using just 21 assets e�ected
the informativeness of quantum majorization. Thus, we changed gears and grabbed every single
asset that ever existed in the DJIA index (dating back to 1985) that is still being traded today, but
isn’t necessarily still in the index today. Such companies include. but are not limited to, Alcoa
Inc. (AA), International Paper (IP), and Navistar (NAV) which left the DJIA in 2013, 2004, and
1991, respectively. We believe this simple ad hoc modi�cation helped our model better track,
and re�ect, systemic risk in the market over time to the full extent that quantum majorization
does. Hence, even though the DJIA consists of 30 companies, our temporal state space consists of
correlation matrices ρn = ριn ∈ P∆(S; I), each of dimension dim(ρn) = 43, sampled over 40 day
sliding windows ιn = [40n, 40n+ 100] of length 100 days over the time interval I corresponding
to May 6, 1986 until December 31, 2020 for the set of assets (variables) S = {S1, . . . , S43}.

6.2 | Correlations & Dependence

In this section we familiarize ourselves with a few correlation metrics to test our upcoming alarm
system with. These metrics include the well-known Pearson’s ρ, Gini’s γG correlation and Up-
per (Lower) Tail Dependence λU (λL). All in all, this section will leave us with three measures
of correlation and dependence with corresponding temporal state spaces P∆(S; I), ΓG∆ (S; I), and
ΛU∆(S; I), respectively, which we build the QLO with.

The most commonly used measure of Correlation is the so-called "Pearson Product-Moment
Correlation", or just "Pearson’s ρ", for short. Pearson’s ρ measures the amount of linear correla-
tion between two sets of data. In words, it is essentially the standardized Covariance between X
and Y (see De�nition 6.1).

De�nition 6.1 (Pearson’s Product-Moment Correlation: ρ). Pearson’s rho is de�ned as

ρ(X, Y) = Cov(X, Y)
σXσY

(6.1)
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where σX and σY are the respective Standard Deviations between X and Y.
Pearson’s ρ is considered to be a reliable measurement of correlation when the variables of in-
terest are known to follow Normal and Elliptical distributions. Thus, Pearson’s ρ should be used
with caution when considering variables known to exhibit nonlinear behavior.

As we will see in a couple sections, we will need the so-called Kendall’s τK correlation metric
to de�ne tail-dependence so, even though we won’t be testing our alarm system with it, we will
go ahead and de�ne it here, for convenience.

De�nition 6.2 (Kendall’s Tau Rank Correlation: τK). Given two random variablesX and Y, both
of length n, the Kendall’s τK correlation is de�ned as

τK(X, Y) = 2
n(n− 1)

∑
i<j

sgn(Xi − Xj)(Yi − Yj) (6.2)

for the sgn function sgn(x) = x−1|x|.

Kendall’s τK belongs to the class of "rank" correlation metrics with some interesting properties
that can be found in the literature including the seminal work of KENDALL [1938]. For now, we
move onto the so-called Gini Correlation, which deserves special attention, next.

6.2.1 | Gini Correlation

The standard Gini Correlation plays an important rule in describing the correlation structure
between random variables under the presence of heavy-tailed phenomenon. Loosely speaking,
the Gini Correlation between two Random Variables X and Y is based on the Covariance between
X and the rank of the other G(Y), that is Cov[X,G(Y)]. Therefor, for a pair of Random Variables
(X, Y), there will be two Gini Correlations: one based on Cov[X,G(Y)], and the other based on
Cov[Y, F(X)].

De�nition 6.3 (Gini Correlation). The standard Gini Correlation(s) γ1(X, Y) and γ2(X, Y) are
de�ned as

γ1(X, Y) := Cov(X,G(Y))
Cov(X, F(X)) & γ2(X, Y) := Cov(Y, F(X))

Cov(Y,G(Y)) (6.3)

where F(X) and G(Y) denote the marginal Distribution Functions for X and Y, respectively.

In the literature, see for example Vanderford et al. [2020], it is common to simply denote the stan-
dard Gini Correlation between X and Y using γ(X, Y) where γ(X, Y) 6= γ(Y,X) is an Asymmetric
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measure of dependence. However, one can easily "symmetrize" the standard Gini Correlation by
taking either the Arithemtic, or Geometric, mean between γ1(X, Y) and γ2(X, Y) as per De�ntion
6.4. We borrow from Vanderford et al. [2020] the following de�ntion.

De�nition 6.4 (Symmetrized Gini Correlation: γ). We de�ne the "Symmetrized" Gini Correla-
tion γ(X, Y), between two Random Variables X, Y as,

γ(X, Y) := 1
2(γ1(X, Y) + γ2(X, Y)) or γ(X, Y) :=

√
γ1(X, Y)γ2(X, Y) (6.4)

corresponding to the Arithmetic and Geometric means, respectively.

"Symmetrizing" the standard Gini Correlation enables us to construct a symmetric (Gini) Correla-
tion Matrix γ that retains the Spectral properties allowing us to build the Quantum Lorenz Order
of the corresponding Temporal State-Space of (Gini) Correlation Matrices Γ∆(S).

De�nition 6.5 (Gini Correlation Matrix).

γi,j :=

γ(Xi,Xj), if i 6= j

1, otherwise
(6.5)

where γ(X, Y) is as De�nition 6.4.

As for e�ciently computing γ(X, Y), that is a seperate problem. However, a clever solution is
proposed in Sang et al. [2016]. Following this approach, we can estimate the standard Gini Cor-
relations γ1(X, Y), and γ2(X, Y) by using a ratio of U-statistics.

De�nition 6.6 (Gini Correlation Estimation). We express γ1(X, Y), and γ2(X, Y) as per De�n-
tion 6.3 using the following ratio of U-statistics

γ1(X, Y) = U1

U2
& γ2(X, Y) = U3

U4
(6.6)
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where U1,U2,U3 and U4 are computed using the following formulae

U1 :=
1

4
(
n
2

) n∑
i=1

(2i− 1 − n)XY(i) & U2 :=
1

4
(
n
2

) n∑
i=1

(2i− 1 − n)X(i)

U3 :=
1

4
(
n
2

) n∑
i=1

(2i− 1 − n)YX(i)
& U4 :=

1
4
(
n
2

) n∑
i=1

(2i− 1 − n)Y(i)

(6.7)

where X(i) and Y(i) denote the ith (ascending) Order-Statistic for X and Y while XY(i) and YX(i)

denote the X and Y corresponding to the X(i) and Y(i) Order-Statistics, respectively.

With De�nitions 6.3, 6.4, 6.5, and 6.6, we now have all of the machinery in place to add yet
another Correlation Metric to our arsenal with corresponding Temporal State-Space Γ∆(S), as
per De�nition 3.6.

6.2.2 | Tail Dependence

Steering away from the notion of Correlation, we can also consider the concept of "Tail-Dependence".
In Probability, Tail-Dependence aims to provide a measure of how much a pair of Random Vari-
ables X and Y move with each other in the tails of their respective distributions. Tail-Dependence
can be measured in the Upper, and Lower, tails of the distribution according to De�nitions 6.7
and 6.8 below.

De�nition 6.7 (Upper Tail Dependence: λU).

λU := lim
p→1

P[X > F←(p)|Y > G←(p)] (6.8)

De�nition 6.8 (Lower Tail Dependence: λL).

λL := lim
p→0

P[X 6 F←(p)|Y 6 G←(p)] (6.9)

It is relatively straightforward to construct nonparametric estimators for λU and λL using their
respective Order-Statistics, X(i) and Y(i), by considering the Joint-Indicator function of the co-
appearance of observations Xi and Yi above (or below) a certain threshold k in X(k) and Y(k). To
this end, we use the following Nonparametric estimator described in De�nition 6.9.
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De�nition 6.9 (Nonparametric Estimator for Tail-Dependence). We estimate λU and λL with
λ̃U = λ̃U(k

∗) and λ̃L = λ̃L(k
∗) where λ̃U(k) and λ̃L(k) are computed using

λ̃U(k) =
1
k

n∑
i=1

I{Xi > X(n−k), Yi > Y(n−k)}

λ̃L(k) =
1
k

n∑
i=1

I{Xi 6 X(n−k), Yi 6 Y(n−k)}
(6.10)

where k∗ is chosen such that ∀λ̃[·](k) ∈ [λ̃[·](k
∗ − ε), λ̃[·](k∗ + ε)] is a relatively stable interval.

The approach in the above de�nition 6.9 works �ne if the number of variables we are considering
are few. In the context of this work, however, we are considering the dependence between a
number of variables d ∼ O(100). This makes the above approach impractical. However, we
can exploit Copulas that are known to exhibit tail-dependence to compute the tail-dependence
between the returns of �nancial assets (Si, Sj) ∈ S. Simply put, a copula C(u, v) is nothing more
than a bi-variate cumulative distribution function of the form

C(u, v) := P[X 6 F←(u), Y 6 G←(v)] (6.11)

with (left) inverse cumulative distribution functions F←(X),G←(Y) for X and Y, respectively.
Two well-known copulas that exhibit Upper, and Lower, tail-dependence are the Gumbel and
Clayton copulas, respectively.

De�nition 6.10 (Tail-Dependence of the Gumbel and Clayton Copulas). Gumbel and Clayton
copulas that "join" two random variables X and Y, denoted by CGθ (u, v) and CCθ (u, v), respec-
tively, take the following form

CGθ (u, v) := e−[(−ln(u))θ+((−ln(v))θ]
1
θ , θ ∈ [−1,∞)

CCθ (u, v) := max{[u−θ + v−θ − 1]− 1
θ , 0}, θ ∈ [1,∞)

(6.12)

where, by taking the appropriate limits below, we obtain the Upper and Lower tail-dependencies
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λL[CGθ (u, v)] and λU[CCθ (u, v)], for the Gumbel and Clayton copulas, respectively

lim
p→1

CGθ (p,p)
1 − p → λU[CGθ (u, v)] := 2 − 2 1

θ

lim
p→0

CCθ (p,p)
p

→ λL[CCθ (u, v)] := 1
2 1
θ

(6.13)

since λL[CGθ (u, v)] = 0 and λU[CCθ (u, v)] = 0.

Naturally, we need to �nd an appropriate parameter θ to exploit equation(s) 6.13. Interestingly
enough, there is an explicitly calculable relationship between θ and the Kendall’s tau correlation
τK(X, Y). We state this (without proof) with proposition 6.11 below.

Proposition 6.11. The Gumbel and Clayton copulas can be parameterized using the relation(s)

θG =
1

1 − τK(X, Y) & θC =
2τK(X, Y)

1 − τK(Y, Y) (6.14)

where λL[CG(u, v)] and λU[CC(u, v)] become

λU[CG(u, v)] := 2 − 2 1
θ , θG =

1
1 − τK(X, Y)

λL[CC(u, v)] := 1
2 1
θ

, θC =
2τK(X, Y)

1 − τK(X, Y)

(6.15)

with θG and θC corresponding to the Gumbel and Clayton copulas, respectively.

Hence, we can build a upper (lower) tail-dependence matrix λU (λL) by simply using the corre-
lation matrix associated to the Kendall’s τ metric τK. For completeness, we formally de�ne the
upper (lower) tail-dependence matrix λU (λU) below, with de�nition.

De�nition 6.12 (Tail-Dependence Matrix).

λU
i,j =

2 − 2 1
θ , if i 6= j

0, otherwise
(6.16)

Without looking too far ahead, we suspect this parameterization of the Gumbel (Clayton) copluas
CG (CC) to provide interesting behavior. Reason being, λU is a nonlinear function of Kendall’s τ.
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Furthermore, λU retains the same spectral properties as any other correlation metric. We illustrate
why with corollary

Corollary 6.13. The diagonal entries of the upper (lower) tail-dependence matrix diag(λU) = ~1
(diag(λL) = ~1 are equal to unity.

Proof. Consider λUi,j = 2 − 2 1
θ with θ = (1 − τKi,j)

−1. If i = j, then τKi,j = 1. In which case we
have,

lim
τKi,j→1

θ→∞. (6.17)

and thus 2 − 2 1
θ → 2 − 1 = 1. A similar argument goes for λL.

Hence, we have Tr[λU] = d for d the number of assets in a portfolio. Trivially, since λU is
symmetric and λUi,j > 0, we know that λU is a PSD matrix with eigenvalues λ(λU) > 0. Thus,
the spectrum of λU too forms a distribution from which a proper lorenz curve is de�ned.

Note that the above argumentation carries over to the lower tail-dependence matrix λL as
well. We encourage the reader to verify for themselves. Lastly, and again for completeness, we
de�ne the temporal state space for λU and λL below

De�nition 6.14 (Temporal State-Space (Tail-Dependence)). We de�ne the temporal state-space(s)

ΛU∆(S; I) := {λUk = λUιk(S) : ιk = [kh,kh+m] ∈ I,∀k ∈ {0, . . . ,n− 1}

ΛL∆(S; I) := {λLk = λLιk(S) : ιk = [kh,kh+m] ∈ I,∀k ∈ {0, . . . ,n− 1}
(6.18)

associated to the upper and lower tail dependence matrices λU, and λL.

6.3 | Defining Crashes using Extreme Value Theory

In this section, we apply a slightly di�erent methodology to distinguishing Stock Market Draw-
downs from the Price Coarse-Graining algorithm of Didier Sornette [2006]: Extreme Value The-
ory (EVT). We keep the de�nition 5.1 of drawdowns, however, we try to �t our drawdowns D to
the so-called "Generalized Pareto Distribution" (GPD) of de�nition 6.15

D ∼ Gθ (6.19)
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instead of the "Stretched Exponential" of de�nition 5.2. The GPD Gθ(x; θ) is parameterized by
the θ = (γ;µ,σ)-tuple with "shape", "location", and "scale" parameters γ, µ, and σ, respectively.
We stress that the shape γ ∈ (−∞,∞) is the parameter of interest in the present analysis.

De�nition 6.15 (Generalized Pareto Distribution).

G(x;γ,µ,σ) =

1 − (1 + γx−µ
σ

)−
1
γ , γ 6= 0

1 − e− x−µ
σ , γ = 0

(6.20)

The GPD is widely used in the study of fat-tailed phenomenon. From the standpoint of quanti-
tative risk management, the GPD is often preferred to other parametric families of distributions
when computing risk-measures such as the Value-at-Risk (VaR), Expected Shortfall (ES) or any
other quantile Q(p) = F−1(p) on the distribution F(L) of losses L. Reason being, the GPD can
model as fat (or thin) of tails as the data wants to suggest, unlike other distributions, such as
the normal N(µ,σ2), which often underestimate (or even overestimate) the severity of the tail.
Thus, for �tting purposes, if one wants to study the distribution of drawdowns D ∼ F, the GPD
F = Gθ would be a natural candidate. In which case, our �rst step would be to �nd γ which can
be achieved with Maximum Likelihood Estimation (MLE)

L(θ;X) =
n∏
i=1

gθ(xi)1{γ(xi−µ)>−σ}, θ = {γ,µ,σ} (6.21)

for the likelihood function L(θ;X), density gθ(x), and parameter set θ = (γ,µ,σ). The reason
for the indicator function 1{γ(xi−µ)>−σ} is easily deduced from the de�nition of the GPD Gθ.
No analytical solution to equation 6.21 exists, however, several estimators based on the so-called
Order Statistics {X(i,n)}

n
i=1 for the raw data X = {X1, . . . ,Xn} do exist

X(n,n) 6 · · · 6 X(k,n) 6 · · · 6 X(1,n) (6.22)

with X(n,n),X(k,n),X(n,n) denoting the minimum, kth-maximum, and maximum, respectively.
We introduce one of the more well-known estimator, the Hill Estimator γ̂H, with de�nition
6.16.
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(a) Hill estimator γ̂H0 (b) Hill estimator γ̂Hσ

Figure 6.2: Hill estimators for the drawdowns D0 and Dσ using ε = {0,σ} truncated a�er k = 350

De�nition 6.16 (Hill Estimator γH).

γ̂H(k;n) = 1
k

k∑
i=1

log(
X(i,n)

X(k,n)
) (6.23)

As suggested by Didier Sornette [2006], we computed the Hill estimator γ̂H for the distribution(s)
of drawdowns Dε for ε = {0, σ4 , σ2 ,σ}. We denote with γ̂Hε the Hill estimator associated to each
respective choice for ε. The estimators for the extreme cases ε = 0 and ε = σ, that is γ̂H0 and γ̂Hσ ,
are plotted for the readers convenience in �gure 6.2. Referring to this �gure, we notice di�erent
behavior for the choices ε = {0,σ}. The key to inferring γ̂H from the Hill plot is to look for
stability. Looking at these two plots, we’re tempted to say that γ̂H0 stabilizes somewhere between
the 30th and 40th order statistics D0,(30,n) = −.09 and D0,(40,n) = −.11. Likewise, for γ̂Hσ we notice
stabilization somewhere between Dσ,(50,n) = −.11 and Dσ,(60,n) = −.13. If this were true, we’d
be in a position to classify drawdowns D0 6 −.10 and Dσ 6 −.12 as "crashes" since these are the
drawdowns that characterize the tails of their respective distributions. The question becomes,
can we verify this.

To address this, we can leverage the following relationship between the shape γ of the GPD
Gθ: The shape γ of a GPD Gθ(x; θ = (γ,µ,σ)) fully speci�es the �niteness of the moments
(mean, variance, skewness, kurtosis) for a Random Variable X ∼ Gθ(x; θ). We state this fact with
proposition 6.17, without proof. The proof is simple enough using basic integration.
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Proposition 6.17. If X ∼ G(x;γ,µ,σ), for an I.I.D. Sequence X = {X1, . . . ,Xn}, then

E[|X|p] <∞⇔ γ > p (6.24)

for any ∀p = {1, 2, . . . , k}.

That is to say, if the GPD Gθ(x; θ) is parameterized by a (say) γ = 1.7, the 1st-Moment (the
mean) might be �nite, but all the others (Variance, Skewness, Kurtosis)

E[|X|2],E[|X|3],E[|X|4], · · · ≮∞ (6.25)

would all be in�nite. If γ = 0.9, on the other hand, even the mean would be in�nite E[|X|]→∞.
Luckily for us, we can look at the so-called Maximum to Sum (MS) ratio for the drawdowns Dε
to understand the behavior of the moments. Looking ahead, if the MS ratio, which we will de�ne
next, tells us which moments for the distribution of drawdowns are �nite, then we’d be in a
position to pinpoint the region of stabilization in the Hill plot from before.

De�nition 6.18 (MS Ratio). For an I.I.D. Sequence ofN Random Variables X = {X1, . . . ,XN} we
denote |X|p = {|X1|

p, . . . , |XN|p} and de�ne the Maximum-to-Sum (MS) Ratio Rn(p) with

Rn(p) =
Mn(p)

Sn(p)
, Sn(p) =

n∑
i=1

|Xi|
p (6.26)

for n 6 N andMn(p) = max(|X|
p).

To take advantage of the MS ratio, we can use the following proposition 6.19 which we state,
without proof. It is a relatively straightforward application of the Law of Large Numbers (LLN).

Proposition 6.19. By the Law of Large Numbers (LLN), we have for the MS-Ratio Mn(p)
Sn(p)

lim
n→∞

Mn(p)

Sn(p)
= 0 ⇔ E[|X|p] <∞ (6.27)

for any moment p = {1, 2, . . . , k}.

That is to say, in a similar fashion to the Hill estimator, we can plot the MS ratioMn(p)/Sn(p)

as a function of n and check for convergence. If the ratioMn(p)/Sn(p) seems to be converging
to 0, for large n, then we can say that moment p is �nite. We visualize this with what we call
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the MS plot. As before, we plot the two extreme cases: the MS ratio for the drawdowns Dε for
ε = {0,σ}. We begin by plotting the MS ratios for the �rst 4 moments p = {1, 2, 3, 4} for the
ε-drawdowns, for ε = 0, in �gure 6.3.

Figure 6.3: MS-Plot for DJIA Drawdowns D0 (1900-2020) for p = 1 (top le�) up to p = 4 (bo�om right)

Referring to �gure 6.3 we notice strong convergence for the �rst 3 moments p = {1, 2, 3} of
the distribution of ε-drawdowns D0 for ε = 0. However, as for the 4th moment, we do not see
convergence at all. From this we conclude that the 4th moment p = 4 for the ε-drawdowns D0

(ε = 0) is in�nite. We use this information to look for stabilization in the Hill plot for γ̂H0 from
before in �gure 6.2(a). Indeed, since the moment p = 3 is �nite, but p = 4 is not, the Hill plot
for γ̂H0 should stabilize somewhere between γ̂H0 ∈ [3, 4]. Now we de�ne any drawdown below
the threshold, for which stabilization �rst occurs, as a crash. We will see what this looks like in
a moment. For now, we take a look at the MS plot for ε-drawdowns for ε = σ in �gure 6.4.

Referring to �gure 6.4 we notice strong convergence for all 4 moments p = {1, 2, 3, 4} of the
distribution of ε-drawdowns for ε = σ. Unlike for the drawdowns associated to ε = 0, we
conclude that the 4th moment p = 4 is �nite. Thus, we will look for stabilization in the Hill
plot for γ̂H0 somewhere above the value for γ̂Hσ = 4. Now we de�ne any drawdown below the
associated threshold as a crash. Again, this will become clearer in a moment when we go back to
the Hill plots, which we do next.

We bring the Hill plots from �gure 6.2 back in �gure 6.5. In �gure 6.5(a) we highlight area for
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Figure 6.4: MS-Plot for DJIA Drawdowns Dσ (1900-2020) for p = 1 (top le�) up to p = 4 (bo�om right)

(a) Hill estimator γ̂H0 (b) Hill estimator γ̂Hσ

Figure 6.5: Hill estimators for the drawdowns D0 and Dσ using ε = {0,σ} truncated a�er k = 350

γ̂H0 ∈ [3, 4] in green. Furthermore, we notice that the plot seems to stabilize somewhere between
the 30th and 40th order statistics indeed. Drawdowns above the threshold of k = 30 correspond
to ε-drawdowns below −0.09. Hence, for the distribution of ε-drawdowns D0, we classify any
drawdown D0 6 −0.09 as a crash. Similarly, for the ε-drawdowns for ε = σ, we highlight
γ̂Hσ ∈ [4, 5] in green since the 4th moment here was shown to be �nite. The associated Hill plot
γ̂Hσ seems to stabilize somewhere between the 20th and 30th order statistics. As we can see along
the secondary (top) axis, this threshold corresponds to ε-drawdowns Dσ 6 −0.14. Hence, any
ε-drawdown, when ε = σ, below −0.14 will be classi�ed as a crash.
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We repeated the same analysis for ε-drawdowns, when ε = {σ4 , σ2 }, as well. In these two cases
we found the appropriate thresholds to be Dσ

4
6 −0.10 and Dσ

2
6 −0.11 for ε = σ

4 and ε = σ
2 ,

respectively. Indeed it makes sense for the threshold associated to the larger ε = σ
2 to be greater

than the threshold for ε = σ
4 since any ε-drawdown obeys the relation Dσ

2
> Dσ

4
, necessarily, as

per the de�nition of an ε-drawdown. It is relatively straight forward for the reader to convince
themselves why this is the case. We give this a formal de�nition.

De�nition 6.20 (Crash). Let D(n,n),ε 6 D(k,n),ε 6 D(1,n),ε denote the order-statistics for the
set of ε-drawdowns Dε, associated to some �nancial asset. We de�ne the set of all crashes Cε
as

Cε = {D∗ε ∈ Dε : D
∗
ε 6 D(k∗,n),ε} (6.28)

where k∗ is the index in the order statistics for which the Hill plot begins to stabilize.

Hopefully the above de�nition clari�es to the reader what we mean, exactly, by a crash. For
convenience, we package the �ndings from the analysis performed on the set of ε-drawdowns
for ε = {0,σ/4,σ/2,σ} in the following table. These values for D(k∗,n),ε correspond to the events
we want our alarm system to predict.

Crashes and the Finiteness of Moments
ε 1st 2nd 3rd 4th D(k∗,n),ε
ε = 0 Finite Finite Finite Finite −.09
ε = σ

4 Finite Finite Finite Finite −.10
ε = σ

2 Finite Finite Finite Finite −.11
ε = σ Finite Finite Finite In�nite −.14

Table 6.1: ε-drawdown moments

Given the time period for which we are building our model (1985-2020), our analysis also
showed that the di�erent choices for ε all identi�ed the same crashes. On the other hand, they
did not agree on the relative magnitudes of said crashes. This is good news for us since this
suggests that the particular choice for ε, in de�ning ε-drawdowns, is arbitrary for the purposes
of identifying and predicting crashes. We display the crashes associated to the ε-drawdowns Dε
for the particular choice of ε = σ, arbitrarily, in �gure 6.6.

In this �gure we notice some clustering of crashes around the infamous 1987 "Black Monday",
2008 "Financial Crisis", and 2020 "COVID-19" crashes. Recall the special case, from chapter 5
(�gure 5.2), that we could no clearly distinguish the COVID-19 crash as an outlier to the stretched
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Figure 6.6: Stock Market Crashes: DOW Jones Industrial Average (1980-2020)

exponentialN(D). This is because COVID-19 consisted of a sequence of large drawdowns all of
which were interrupted by short rallies larger than any reasonable choice for ε. In fact, any ε
large enough to identify the entirety of the COVID-19 crash would de�ne the entire Dow Jones
time series, itself, as a crash. We deal with this case in the next section and propose the (ε, δ)-
drawdown, δ signifying some temporal parameter.

6.3.1 | Time-Price Coarse-Graining Algorithm

In this short section we analyze the special case of the COVID-19 crash from 2020. As mentioned
before, de�ning the entirety of this crash is a nontrivial task as several extreme drawdowns were
witnessed over a very short period of time. We display the 4 crashes identi�ed by the EVT analysis
from the previous section, for ε = σ, just as in �gure 6.6, with �gure 6.7.

Simply allowing these crashes to stand, as they are seen in �gure 6.7, will introduce a potential
bias into our model. Indeed, if we’re sampling correlation matrices over 10-day sliding windows,
the sampling of a single correlation matrix may predict all three of the latter four crashes observed
between March 3rd to March 18th. Since the classi�cation of crashes is a severely imbalanced data
set (very few crashes), allowing this phenomenon to stand might make our model look a lot better
than it actually is. Thus, to make as strong of an argument as possible, and to make sure our model
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Figure 6.7: CODIV-19 phenomenon according to the ε-drawdown for ε = σ/2

re�ects the true psycho-temporal context of �nancial market behavior, we introduce the (ε, δ)-
drawdown to cluster these three crashes, or potentially all four of these crashes, together into
just one which is exactly how people characterize the COVID-19 crash.

De�nition 6.21 ((ε, δ)-Drawdown). The (ε, δ)-Drawdown, works as follows:

• Working backwards recursively, consider each ordered pair (Cti−1,ε,Cti,ε) ∈ Cε and iden-
tify any Cti,ε such that ti − ti−1 6 δ.

• De�ne Pti−1 as the local maximum for the �nancial asset associated to Cti−1,ε, along with
Pti the local minimum associated to Cti,ε, and set Cti−1,ε =

Pti−1−Pti
Pti−1

and discard Cti,ε

from Cε.

We order ε in the (ε, δ) tuple �rst to stress that the ε-drawdown algorithm needs to be imple-
mented �rst. Note that the (ε, δ)-drawdown can be implemented on the drawdowns Dε as well.
We just choose to do so on the already identi�ed crashes Cε given the nature of this work. We
display the resulting (ε, δ)-drawdown, corresponding to the COVID-19 crash, in �gure 6.8.

In the above �gure, we happened to choose a δ = 10, or roughly two weeks, since trading
weeks are typically 5 days long. As a result, the latter three crashes between March 3rd to March
18th were grouped into one beginning on March 3rd. We ignore the magnitude of this newly
de�ned crash since its not important to us. We chose δ = 10 so as to immunize our model
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Figure 6.8: COVID-19 coarse grained according to the (ε, δ) algorithm

from the implicit (potentially) bias mentioned earlier. The time interval associated to the crashes
between February 6th and March 3rd is big enough to consider the two crashes separately. Indeed,
we believe most investors would want an alarm system to be able to predict major market events
separated by a month, as is the case here. Hence, if our model predicts both, the alarm system will
be accurately characterizing the risk present in the market over this time period. This concludes
chapter 6, and we will move on to chapter 7 where we introduce our model.
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7
The Model

In this chapter, we take everything we’ve done so far and build the Reinforced Urn Process (RUP)
that we will be using for our alarm system. To build our RUP we make a couple generalizations
to the framework developed in chapter 4. Additionally, we want our alarm system to run in an
online fashion, only using historical information to make predictions about the future. Doing this
requires attention to detail. Lastly, we revisit the RMT �ltering schemes, which we introduced in
chapter 2, within the context of quantum majorization. Hence, in section 7.1, we generalize the
detection regions, stopping rule, in addition to generalizing the reinforcement scheme of the Urns
themselves. Second, in section 7.2 we explain how we sample, and assign, correlation matrices
ρk ∈ P∆(S, I) to clusters in an online and temporal fashion. Lastly, in section 7.4, calculate the
respective e�ects of each RMT �ltering scheme on the quantum lorenz ordering to get a feel for
how these RMT �ltering schemes may (or may not) help us improve our alarm system. Before
getting started, we encourage the reader to revisit chapter 4, or consult Cirillo and Hüsler [2011],
if they need to be refreshed on some of the above details.

7.1 | A Few Good Generalizations

Recall from chapter 4 how the stopping rule was de�ned: The process ~X, which evolved according
to the RoM (Rule of Motion) d : S × C → S, resets to the initial state s = (0, 0) every time
Xn∗ = (n∗,L) reached the critical risk level L at time instant n∗. As mentioned in Cirillo and
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Hüsler [2011], this stopping rule may yield an alarm system that casts alarms in clusters, as
opposed to in continuity, if the process ~X undergoes the consecutive sampling of the riskiest
colored marbles (red in our case). To remedy this, we can generalize this stopping rule so as to
only reset to the initial state s = (0, 0) if, in addition to Xn∗ = (n∗,L) reaching L, the next
subsequent q marbles are the riskiest (red) as well. In this way, an example set of 0-blocks may
look like

0, 0, 1, 1, 2, 3,
q-times︷ ︸︸ ︷

3, . . . , 3︸ ︷︷ ︸
Block-1

|

Block-2︷ ︸︸ ︷
0, 1, 2, 3, 3, . . . , 3︸ ︷︷ ︸

q-times

| 0, 0, 0, 3,
q-times︷ ︸︸ ︷

3, . . . , 3︸ ︷︷ ︸
Block-3

(7.1)

stressing that, as in the model described in chapter 4, the sequence of qmarbles would necessarily
have to be either c3 or c4 coloured marbles. Though this introduces another hyper parameter into
the RUP, this new stopping rule has powerful consequences. Indeed, the QMG has the tendency
to form dense regions of red around known time periods of high volatility. Thus, we believe this
simple generalization will allow us to build a more robust, and realistic, model. Mathematically,
however, this generalization takes us away from the mixture of Markov chains and moves us into
the class of semi-Markov chains, instead. We don’t address this formalism but rather note that it
would be interesting to consider in future work.

The second generalization involves the reinforcement scheme of the Urn. Up until now, we
have been reinforcing each urn U(s) with an r(s) number of ci coloured marbles whenever a ci
coloured marble is drawn out of the urnU(s). Thisms(ci)→ ms(ci)+r(s) updating mechanism
can be interpreted as a matrix operation via a "Reinforcement Matrix" (RM) with diagonal entries

RM =


c1 c2 c3

c1 r(s) 0 0
c2 0 r(s) 0
c3 0 0 r(s)

 (7.2)

such thatms(ci)→ RM~ei where ~ei is a standard unit vector with entry 1 in the ith place and 0 ′s

elsewhere for ci. It’s easy to see how we can use the RM to de�ne a more general reinforcement
scheme.

De�nition 7.1 (Balanced (Triangular) Reinforcement Matrix). Given a setC of 3 di�erent coloured
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marbles C = {c1, c2, c3}, we de�ne the Balanced (Triangular) Reinforcement Matrix (RM) with


c1 c2 c3

c1 δ1,1 δ1,2 δ1,3

c2 0 δ2,2 δ2,3

c3 0 0 δ3,3

, si =

3∑
j=1

δi,j = δ ∀i ∈ {1, 2, 3} (7.3)

where δi,j denotes the number of Cj coloured marbles to reinforce the Urn with when a Ci
coloured marble is drawn.

The RM allows us to model dependence in the sampling of marbles. For instance, if we believe
that risky states are typically preceded by moderate states, we can set δ2,3 = δ−δ2,2 so that every
time a c2 coloured marble is sampled from U(s), the urn U(s) is reinforced with δ2,2 and δ2,3

number of c2 and c3 coloured marbles. Considering this generalization in our model may allow
the RUP to transition into, and out of, periods of extreme volatility more easily. The author(s)
Cirillo and Husler [2009] posit that the RM allows the RUP to mimic the so-called "risky threshold
mechanism" considered by likes of, for example Allan Gut [1999], in "Extreme Shock" models.

The last generalization we consider concerns the de�nition of the detection region. Recall
from chapter 4 that the detection region took the form

P[τr = n+ k|τ1, . . . , τr−1] > γ ∈ [0, 1] (7.4)

for some predetermined threshold γ. That is, if the probability that the process will reset to
X0 = (0, 0) exceeds the threshold γ, we cast an "alarm". However, what if we want to compute
the detection region of an interval. For example, we may be interested in the probability that a
crash will occur in the next 3, 6, or 12 months. In this case, we’d have to consider the detection
region for the interval

P[τr ∈ [n,n+ k)|τ1, . . . , τr−1] > γ ∈ [0, 1] (7.5)

instead. Computing this interval is straightforward enough. Indeed, we show how to do this with
the following theorem.

Theorem 7.2 (Detection Interval). We calculate the Probability that the rth Catastrophe will take

80



place within the next n+ k steps with

P[τr ∈ (n,n+ k]|~τr−1] =

k∑
i=1

P[τr = n+ i|~τr−1]

=

k∑
i=1

h∑
j=1

Pj[(n, l), . . . , (n+ i,L)|~Xn−1]

(7.6)

where Pj[(n, l), . . . , (n+k,L)|~Xn−1] denotes the Probability of the jth-feasible path, out of h, from

state sn = (n, l)→ sn+i = (n+ i,L).

Proof. The proof immediately follows from the construction of the Process X and theorem 4.12
of Section 4.4.1.

For instance, if we sample correlation matrices over 10-day sliding windows, choosing a k = 6
would roughly correspond to predicting whether a crash will occur in the next 3 months since
trading weeks are typically 5 days long. For 6 months, we would need to choose k = 12 and for
12 months we’d need k = 24. However, a simple combinatorial argument shows that there are
a total of (|C| − 1)k possible sampling sequences for ((n, l), . . . , (n + k)), as in equation 7.6, for
|C| the number of colours in the urn. Hence, and together with the generalized stopping rule we
introduced earlier, the actual number of possible sampling sequences will be even larger. This
makes computing the detection region for k > L

2 computationally expensive. We can easily
work around this by sampling correlation matrices over 20, or even 40, day sliding windows to
compute the detection region(s) corresponding to 6 and 12 month intervals, instead for k = 6 in
both cases.

In summary, the detection region, reinforcement scheme, and stopping rule of chapter 4 were
all generalized in the following ways:

1. Detection region generalized to account for an interval: P[τr ∈ (n,n+ k]|~τr−1]

2. Reinforcement mechanism generalized to account for dependence:

RM =


c1 c2 c3

c1 δ1,1 δ1,2 δ1,3

c2 0 δ2,2 δ2,3

c3 0 0 δ3,3

, si =
3∑
j=1

δi,j = δ,∀i ∈ {1, 2, 3} (7.7)
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3. Stopping rule generalized to account for clustering such that Xn resets to the initial state
(0, 0) only when Xn∗ = (n∗,L) and the next q marbles are all c3.

First, the generalized detection region will allow us to build a more (�nancially) interpret-able
alarm system. Second, the generalized reinforcement mechanism will allow our model to tran-
sition through periods of high volatility. Third, the generalized stopping rule will immunize our
alarm system from the side e�ect of the clustering of alarms.

7.2 | A RUP based on �antum Majorization

At this point, we are probably ready to specify the components of the RUP itself. First things �rst,
so we reiterate that our RUP is de�ned using the set of 3 colours C = {c1, c2, c3} corresponding to
green, yellow, and red coloured marbles, respectively. Needless to say, these colours correspond
to "safe", "moderate", and "risky" time periods of 100 days provided that our temporal state space
P∆(S; I) is de�ned on ∆ = (·, 100). Second, we take advantage of the RM of de�nition 7.1 and
establish a dependence between the sampling of yellow and red marbles according to

RM =


c1 c2 c3

c1 δ 0 0
c2 0 δ2,2 δ2,3

c3 0 0 δ

 δ2,3 = δ− δ2,2 (7.8)

where δ2,3 = δ−δ2,2 enforces the balanced nature of the reinforcement scheme. We go ahead and
fully specify the RUP, and associated alarm system, borrowing from the framework of chapter 4.
For instance, referring to de�nition 9.1, choosing a δ = 8, and (say) δ2,3 = 5 would mean that
every time we sample a c2 coloured marble, we reinforce the urn U(s) with δ2,2 = 3 and δ2,3 = 5
c2 and c3 coloured marbles, respectively. Whereas in drawing either a c1 or c3 coloured marble
we retain the δ = 8 original reinforcement mechanism. As a brief refresher, we review the basic
tenants of the RUP speci�cation below. A RUP is chacterized by the following elements

• State space S = N+
0 × {0, 1, . . . ,L} where the last risk level L corresponds to a catastrophe.

• Colours C = {c1, . . . , ck} of cardinality |C| = k.

• Rule of motion RoM d : S× C→ S
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• State space of urnsU(s), numberms(c) of coloured marbles c inU(s) with reinforcement
scheme according to the RM of equation 9.1.

where Z0 = (0, 0) is recursively updated according to the RoM Zn+1 = d((n, l), ci) which re-
sets to Z0 = (0, 0) the instant Zn∗ = (n∗,L) reaches L at critical time instant n∗. We say
Z ∈ RUP(S,C,U,d). We have reiterated the RUP construction and detailed the handful of gen-
eralizations that make our model unique from previously utilized applications.

Before moving forward, it would be useful to formally de�ne the evolution, and full char-
acterization of, the process Z itself. Recall the Rule-of-Motion (RoM) we will be using in this
construction:

d((n, l), c) =


(n+ 1, l− 1), if c = c1

(n+ 1, l), if c = c2

(n+ 1, l+ 1), if c = c3

(7.9)

De�nition 7.3. Given a set of colours C = {c1, c2, c3}, we de�ne an underlying process ~Y =

{Y1, . . . ,YN} taking elements Yn ∈ C. The process Z ∈ RUP(S,C,U,d) is updated via a RoM
Zn+1 = d((n, l), ci) for Yn = ci where U((n, l)) is reinforced according to the RM

RM =


C1 C2 C3

C1 δ 0 0
C2 0 δ2,2 δ2,3

C3 0 0 δ

 δ2,3 = δ− δ2,2 (7.10)

characterized by the (δ2,3, δ) to model dependence. The process Zn resets to the initial state
Z0 = (0, 0) only when the stopping rule

Zn∗ = (n∗,L) & Yn∗+1 = · · · = Yn∗+q = c3 (7.11)

is satis�ed, implicitly depending on the (q,L) tuple.

As mentioned in the de�nition above, the process Z ∈ RUP(S,C,U,d) is now implicitly depen-
dent on the two tuples (δ2,3, δ) and (q,L) Now we put all the pieces together and formalize
the RUP for the prediction of stock market crashes. We build the temporal state space P∆(S; I) of
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de�nition 3.6 using 40 of the most prominent historical DJIA constituents

S = {S1, . . . , S40} (7.12)

so as to avoid the so-called "survivorship bias" discussed earlier in chapter 6. In P∆(S; I), our
time interval of interest corresponds to the time period ranging from May 6, 1986 up to Dec 31,
2020. We sample correlation matrices over sliding windows corresponding to a ∆ = (40, 100).
For instance, the �rst correlation matrix ρ0 = [0,m] ∈ P∆(S; I) corresponds to the correlation
matrix sampled using the log returns of the constituents S = {S1, . . . , S40} for them days follow-
ing January 7. Hence, letting the model begin on May 6, 1986 ensures that the RUP will be using
purely historical information to make predictions about the future.

The last piece is generating the underlying process ~Y = {Y1, . . . ,Yn} to theZ ∈ RUP(S,C,U,d).
Each element Yn corresponds to the clustering of the nth node in the QMG G = (V ,A) of size
|V | = n according to the spectral clustering algorithm. The QMG is built in an online fashion
as more and more correlation matrices ρn ∈ P∆(S; I) are sampled. This is perhaps the most im-
portant component of our model since the QMG fully speci�es the nature of the composition of
the state space of urns U(s) that our RUP is de�ned on. For clarity, we outline the algorithm
for building the QLO, the corresponding adjacency matrix A, and the clustering of the node set
generating the sequence ~Y ∈ CN of drawn marbles for the directed acyclic QMG G = (V ,A) of
size |V | = N.

De�nition 7.4 (QMG clustering algorithm). We start with a set of colours C = {c1, c2, c3}.

1. Suppose we are in some time t = hn+m.

2. For every 0 6 n 6 N = |P∆(S; I)|, we sample ρn = ριn where ιn = [hn,hn+m].

3. For every 0 6 m 6 n we check whether ρm � ρn or ρn � ρm and set Am,n = {0, 1} and
An,m = {0, 1} accordingly.

4. Form the QMG G = (V ,A) with node set vn ∈ V corresponding to the set of correlation
matrices ρn ∈ P∆(S; I).

5. Assign thenth node ofG = (V ,A) to a cluster according to the risk measure θ(ρn) ∈ [0, 1]
with associated discriminating thresholds 0 6 d1 6 d2 6 1 by setting Yn = ci.
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6. Update the RUP according to Zn+1 = d((n, l), ci).

7. If P[τr ∈ [n,n+ k]|τ1, . . . , τr−1] > γ we cast an alarm. Now repeat.

This algorithm generates a sequence ~Y ∈ {c1, c2, c3}
N that recursively updatesZ ∈ RUP(S,C,U,d)

according to Zn+1 = d((n, l), ci)

The detection region is de�ned using the thresholdγ. All in all, this means that our RUP is de�ned
using a hyper parameter set consisting of 5 values: γ, (q,L), and (δ2,3, δ).

Lastly, since each correlation matrix ρn is sampled over the time interval ιn = [t−m, t], when
we are in time t = hn +m, the model is built using only historical information. Furthermore,
since the next correlation matrix ρn+1 isn’t sampled for another h trading days after that of ρn,
the cluster assignment of ρn ← ci characterizes the risk level the QMG is suggesting the market
will endure for the next (future) h days until the next ρn+1 is sampled, h days later.

7.3 | Predicting Stock Market Crashes with a RUP

We build our RUP for the prediction of stock market crashes starting from the temporal state
space: a collection of correlation matrices sampled over sliding windows. These sliding windows
are characterized by the ∆ = (h,m) tuple such that each correlation matrix in the temporal state
space ρn = ριn ∈ P∆(S; I) is associated to a time period ιn = [hn,hn+m] ∈ I for which the log
returns for each asset Si ∈ S are sampled over. By temporally sampling these correlation matri-
ces ρn ∈ P∆(S; I), as per the 7 step algorithm provided in the previous section 7.2, we generate a
process ~Y = {Y1, . . . ,YN}, forN = |P∆(S; I)| the number of correlation matrices in P∆(S; I), taking
elements Yn ∈ {c1, c2, c3} in the set of colours C = {c1, c2, c3}.

Furthermore, thanks to the three generalizations made in section 7.1, the processZ ∈ RUP(S,C,U,d)
is implicitly characterized by the two tuples (q,L) and (δ2,3, δ) de�ning the RUP’s stopping rule
and reinforcement mechanism, respectively, and the detection region threshold γ. We denote
with Θ = (γ; (q,L), (δ2,3, δ)) this parameter set. We neglect the parameter k in the parame-
ter set Θ since k is being �xed to give the model �nancial interpret-ability. Now, given a RUP
Z ∈ RUP(S,C,U,d), and detection interval P[τr ∈ [n,n+k)|τ1, . . . , τr−1], we can now formally
de�ne the alarm system.

De�nition 7.5 (Alarm System). Given a processZ ∈ RUP(S,C,U,d), along with the parameter
setΘ = (γ; (q,L), (δ2,3, δ)), we denote withAΘ(Z) = A(Z;Θ) an alarm system whose elements
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An ∈ AΘ(Z) take the form

An = 1[p(τr) > γ], τr = inf{n > τr−1 : Zn = (n,L), {Yn+1+i}
q
i=0 = c3} (7.13)

where p(τr) = P[τr ∈ [n,n+ k)|τ1, . . . , τr−1] is the detection interval.
As alluded to earlier, our choice of k is crucial to the e�cacy of AΘ(Z). Indeed, k determines
which time horizon our alarm system AΘ(Z) is making predictions over. Furthermore, the choice
of k is made in correspondence with the sliding windows we use to sample correlation matrices.
Since we want AΘ(Z) to be able to make predictions over long and short time horizons, we �nd
that we need to sample correlation matrices such that our longest time horizon corresponds to a
k no larger than 8 in order to speed up calculations when individuating sampling paths out of the
urns U(s) for the state space s ∈ S. In which case, this would mean we could sample correlation
matrices over sliding windows of ∆ = (40, 100). Indeed, by choosing ∆ = (40, 100) we could
make predictions on 4, 8, and 12 month time horizons corresponding to k = 2, 4, 6, respectively
since a 40 day sliding window corresponds to 2 months of trading.

For instance, if we have a temporal state space of correlation matrices P∆(S; I), with ∆ =

(40, 100), the clustering Y0 = ci for correlation matrix ρ0 ∈ P∆(S; I) would determine the level of
risk the market will be in for the next 40 days (2 months) until ρ1 is sampled 40 days later. Hence,
when Z0 = (0, 0) we can compute P[τ1 ∈ [0,k = 2)] the probability of there being a crash in
4 months, so on and so forth, for k = 4, 6. In this way, the detection region P[τ1 ∈ [n,k = 2)
continually gets updated alongside the evolution of the process Zn = d((n − 1, l), ci). For this
reason, we stick with the choice of sampling correlation matrices over 40 day sliding windows of
length 100 and �x k = {2, 4, 6} so as to make predictions over 4, 8, and 12 month time horizons.
Furthermore, we refer to �gure 7.1 to revisit the crashes we want our alarm system AΘ(Z) to
predict, as identi�ed by the EVT analysis of chapter 6.

Thus, the task of building an optimal alarm system for the prediction of stock market crashes is
simple enough. We use the temporal state space to train a RUPZ ∈ RUP(S,C,U,d) to cast alarms
according to the detection region and �nd an optimal parameter setΘ∗ = (γ; (q,L), (δ2,3, δ)) such
that

Θ∗ = argmax
Θ

u[AΘ(Z)] (7.14)

for some optimality criterion u[AΘ(Z)] ∈ R. As with any predictive model we need to separate
our model Z ∈ RUP(S,C,U,d) into training and testing sets Ztrain and Ztest, respectively. Con-
cretely, we train our process Z ∈ RUP(S,C,U,d) so as to �nd an optimal parameter set Θ∗train
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such that
Θ∗train = argmax

Θ

u[AΘ(Ztrain)] (7.15)

and then evaluate our alarm systems AΘ∗train
(Z) performance using the optimality criterion

u[AΘ∗train
(Ztest)] (7.16)

for some evaluation metric u[·]. All that is left is to specify the RUP’s training and testing periods,
which we do next in subsection 7.3.1.

7.3.1 | Testing & Training

We reiterate that our model samples correlation matrices over 40 day sliding windows of length
100 days. That is, every 40 (trading) days, we sample a correlation matrix using the log returns
of the DJIA historical constituents spanning the previous 100 days. This de�nes a temporal state
space P∆(S; I) with ∆ = (40, 100), S = {S1, . . . , S40} DJIA historical constituents, over the time
interval I spanning May 6, 1986 until January 1, 2020, of cardinality |P∆(S; I)| = 218 number
of correlation matrices {ρn}

218
n=1 = P∆(S; I). These correlation matrices will be used to gener-

ate a process ~Y = {Y1, . . . ,Y218} ∈ {c1, c2, c3}
218, via the algorithm of de�nition 7.4 using the

spectral clustering of the Quantum Majorization Graph (QMG), which recursively updates the
Z ∈ RUP(S,C,U,d) according to Zn+1 = d((n, l), ci) and the general RUP speci�cation. At
each iteration n, the detection region p(τr) = P[τr ∈ [n,n+ k)|τ1, . . . , τr−1] for the rth stopping
time τr = inf{n > τr−1 : Zn = (n,L), {Yn+1+i}

q
i=0 = c3} is computed ∀k = {2, 4, 6} corre-

sponding to 4, 8, and 12 month time horizons. An alarm An = 1 is cast if p(τr) > γ ∈ [0, 1]
for a predetermined threshold γ, where An = 0 otherwise. This generates the alarm system
AΘ(Z) = {A1, . . . ,A218} for which we use a function u[AΘ(Z)] ∈ R to evaluate its performance.
All that is left to do is separate the temporal state space into training and testing sets P∆(S; Itrain)

and P∆(S; Itest), respectively. We use the correlation matrices ρn ∈ P∆(S; Itrain) for bayesian
learning and �nd an optimal paramater set Θ∗ for the alarm system AΘ∗(Ztrain). We use this set
Θ∗ to evaluate AΘ∗(Ztest). We now de�ne the training and testing time intervals Itrain and Itest,
respectively.

To separate the training and testing time intervals Itrain and Itest, we refer back to �gure 7.1 to
look at the 13 crashes C = {C1, . . . ,C13} as identi�ed by the EVT analysis of chapter 6. We want
the training and testing sets to be as balanced as possible. Considering the "Black Monday" crash
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Figure 7.1: Stock Market Crashes: DOW Jones Industrial Average (2000-2020)

of 1987, our choice of sliding windows ∆ = (40, 100) generates a QMG G = (V ,A) of size just
|V | = 9 between our start date May 6, 1986 and October 1987. Hence, our model simply hasn’t
had enough time to say something signi�cant about this "Black Monday" crash. This means we
essentially only have 12 crashes to predict, 8 of which occur after 2005. Thus, we will train our
model from May 6, 1986 until January 1, 2005 and thus test our model from January 1, 2005 until
December 31, 2020. At �rst glance, the relative size of the time intervals Itrain and Itest seems to be
imbalanced. However, we believe this splits the training and testing crashes optimally. Indeed, if
we shorten the training period, the number of training and testing crashes would be even more
imbalanced. If we train even longer, our model won’t have the chance to predict one of the most
infamous global economic recessions in history, the 2008 "Great Recession". Hence, we have the
following training and testing time intervals Itrain and Itest.

Train→May 6, 1986 until January 1, 2005

Test:→ January 1, 2005 until December 31, 2020

We visualize this with �gure 7.2. Hence, we run the algorithm as per de�nition 7.4 from May 6,
1986 until January 1, 2005. This generates a process ~Y = {Y1, . . . ,Yntrain} each element taking values
Yn ∈ {c1, c2, c3}. Needless to say, the temporal state space P∆(S; I) is also split up into training
and testing periods P∆(S; Itrain) and P∆(S; Itest), respectively. Here, Itrain corresponds to the time
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Figure 7.2: Training and Testing sets

period May 6, 1986 to January 1, 2005 of which each correlation matrix ρn = ριn ∈ P∆(S; Itrain) is
sampled over the time interval ιn = [40n, 40n+100] corresponding to sliding windows of length
100 over 40 day (2 month) shifts. Likewise for the testing period Itest, we have a temporal state
space P∆(S; Itest) with Itest corresponding to the time interval January 1, 2005 until December
31, 2020. All in all, the temporal state spaces P∆(S; Itrain) and P∆(S; Itest) contain 116 and 102
correlation matrices, respectively.

In �gure 7.3 we display an example process ~Y = {Y1, . . . ,Yntrain} for the training period. In this
plot, notice that each individual (vertical) band represents a single Yn ∈ {c1, c2, c3} corresponding
to a correlation matrix ρn = ριn ∈ P∆(S; Itrain) for the log returns of DJIA constituents sampled
over the time interval ιn = [40n, 40n+100]. Thus, each vertical band in the �gure has a width of
40 days. Using �gures 7.1 and 7.2 as references, the reader can pinpoint where each crash in the
training set falls in this plot. Indeed, each crash in the training set is either surrounded by red,
preceded by yellow, or even both as in the case of the 1997 "Asian Economic Crisis", and the early
2000’s "Attack of 9-11" and "Dot-com Bubble". The crash corresponding to the 1998 "Russian Flu"
is mildly preceded by yellow whereas our intuition for the 1987 "Black Monday" crash is perhaps
veri�ed since the clustering oscillates between green and red prior to, and after, the crash.
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Figure 7.3: Clustering ~Y ∈ CN: Training period using ΛU∆(S; Itrain)

7.3.2 | Final Notes

Up until now we have glanced over a few details concerning the parametrization of the Z ∈
RUP(S,C,U,d). For instance, we haven’t discussed the initial urn composition U0(s), its re-
lationship with the reinforcement mechanism, or the interpretation of the (q,L) tuple and the
anti-clustering parameter q itself. In addition, we make a note of what of what happens when
we choose shorter sliding windows of size (say) 20, or even 10, days.

We begin by brie�y discussing the (q,L) tuple. We refer to q as the "anti-clustering" param-
eter. As we will see later in chapter 8, stock market crashes tend to be buried in dense regions of
c3 marbles. Hence, during these time periods, the process Z ∈ RUP(S,C,U,d) will be sampling
several {Yn} = c3 consecutively, and possibly, in addition to reaching L. Without considering
this parameter q, Z will keep resetting to (0, 0) which will keep reinforcing the urnU((0, 0)) with
more and more c3 marbles. In turn, this will teach the urn that (0, 0) is not safe which will teach
Z to signal more and more false alarms in "clusters". We’d rather want U((0, 0)) to be reinforced
with c1 (or c2) marbles, instead. Because of this, we’d expect the alarm system to take advantage
of the parameter q for larger time horizons (larger k). More on this later.

Furthermore, in an e�ort to aid our grid search for �nding an optimal Θ∗, we state corollary
7.6 whose proof is immediate.
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Corollary 7.6. Consider the (q,L) tuple. If q+ L > k, then

P[τr ∈ [n,n+ k)|τ1, . . . , τr−1] = 0 (7.17)

for the detection interval of the rth stopping time τr.

The proof follows follows from the construction of the stopping rule. For our purposes, we
can leverage this corollary to simplify our grid search for �nding an optimal Θ∗. For example,
suppose we have k = 6. We know we don’t have to consider any q > k since L > 0 necessarily.
Also, we found that any L > 6 to be sub-optimal in any case. Hence, our grid search need only
consider (q,L) on the [0,k]× [0, 6] interval. This is the convention we adopt in our grid search.

Second, let us discuss the initial urn composition, which we denote with U0(s). We consider
an (almost) uniformly distributed initial urn containing 35 c1, 35 c2, and 30 c3 coloured marbles.
Thus, every urn U(s) will be Dirichlet distributed U(s) ∼ Dir(35, 35, 30). We choose this dis-
tribution in an attempt to give our model more (�nancial) interpret-ability. A crucial feature of
our alarm system would be for the alarm system to be more and more accurate over longer and
longer time horizons. Indeed, an oracle could predict there will be a crash in the next 100 years,
in which case, they’d surely be right every time. A true test would be if the oracle can predict
when a crash is going to happen 2 months in advance. Initializing the urn with fewer c3 mar-
bles (signi�cantly more biased towards c1 and c2 marbles) would make terminal sampling paths
over longer time horizons less likely by the law of compounding small probabilities and thus
(potentially) compromising this crucial feature of the alarm system. This is especially true if the
process Z ∈ RUP(S,C,U,d) �nds itself in unfamiliar territory where it’s having to sample out
of the initial urns frequently. Furthermore, as is the case in �gure 7.3, we don’t see a strong bias
towards any particular ci anyways.

Third, and somewhat related to the above discussion on the initial urn composition, we need
to consider the reinforcement mechanism as per the RM of 9.1. Since our initial urn contains
100 marbles, our reinforcement mechanism, and associated dependence structure, should re�ect
the size of U0(s). The author(s) Cirillo and Hüsler [2011] also considered an initial urn contain-
ing 100 marbles where they argued a reinforcement parameter greater than 10 to be unrealistic.
We follow the same convention and allow δ to range over the [1, 10] interval. Furthermore, the
dependence parameter δ2,3 can be no larger than δ itself. Thus, the grid search for (δ2,3, δ) will
range over the (δ2,3, δ) ∈ [0, 10]× [1, 10] interval.

Lastly, choosing shorter sliding windows like (say) 10, does not change the visualization of
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the clustering. Regions of red, green, and yellow correspond to certain periods of time regardless
of how frequently the correlation matrices are sampled. We found that, since a temporal state
space P∆(S; I) sample over 40 day sliding windows is just a subset of the temporal state space
corresponding to 10 day sliding windows, the intermittent correlation matrices will belong to
similar communities on the QMG. However, choosing sliding windows of size 10 instead, as the
author(s) Fontanari et al. [2019] did, would require us to consider k = 6, 12, 24, 36 to make predic-
tions for 2, 4, 8, and 12 month time horizons. Thus, our choice of 40 is simply an e�ort to speed
up calculations.
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7.4 | RMT Filtering Interlude

In this section we revisit the RMT �ltering schemes introduced in chapter 2. In particular, we
want to see if they can be used to improve the results of our RUP alarm system AΘ(Z). Indeed,
RMT �ltering schemes were developed to �lter out measurement error: the 1st variety of statis-
tical variability as per Gini [1912]. Hence, if the correlation matrices used in the development of
our RUP alarm system are in�icted by measurement error, maybe these RMT �ltering schemes
can improve our results. First we want to see how RMT �ltering a�ects the dispersion of a cor-
relation matrices spectrum. In particular, we want to see if ρ � Ξ∗[ρ] relations can be built for
an RMT �ltering scheme Ξ∗[ρ].

We provide analytical relationships for quantum majorization relations between cleaned cor-
relation matrices for the basic linear shrinkageΞBLS[ρ] and clippedΞCLP[ρ]RMT �ltering schemes.
In addition we provide a heuristic intuition for how an equivalent relation can be drawn for the
rotationally invariant estimator ΞRIE[ρ], but omit a full investigation. As such, we pay particular
attention to basic linear shrinkage and eigenvalue clipping. We begin with basic linear shrinkage
ΞBLS[ρ].

Lemma 7.7. We have ρ � ΞBLS[ρ], ∀ρ ∈ P(S).

Proof. Let us consider the Quantum Lorenz Curve Lα(ΞBLS[ρ]), that is

Lα(Ξ
BLS[ρ]) = (1 − β)λ↓1 + β+ · · ·+ (1 − β)λ↓α + β

= (1 − β)(λ↓1 + · · ·+ λ↓α) + αβ

= Lα(ρ) + β(α− Lα(ρ))

6 Lα(ρ), ∀β ∈ [0, 1]

(7.18)

since α− Lα(ρ) 6 0, by construction of Lα(ρ). Thus, ρ � ΞBLS[ρ], completing the proof.

The astute reader may have recognized that the above proposition can be read as a direct con-
sequence of axiom 3.4. Indeed, the basic linear shrinkage scheme is simply a convex combination
of the correlation matrix ρ, and the least risky element in the ordering, the identity matrix Id.
Thus, the fact that ΞBLS[ρ] can be read as being inherently less risky than ρ itself makes sense.
Let’s see if we can verify something similar for eigenvalue clipping ΞCLP[ρ] next.
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Lemma 7.8. We have ρ � ΞCLP[ρ], ∀ρ ∈ P(S).

Proof. By construction of ΞCLP[ρ] we know Lddβe(ΞCLP[ρ]) = Lddβe(ρ) and that the remaining
d− ddβe eigenvalues of ΞCLP[ρ] are equal to a trace preserving constant γ equal to

γ =
1

d− ddβe
(1 − Lddβe(ρ)) (7.19)

which means that Lα>ddβe(ΞCLP[ρ]) 6 Lα(ρ), by construction of Lα(ρ), completing the proof.

So far, for the eigenvalue clipping and basic linear shrinkage RMT �ltering schemes ΞCLP[ρ]
and ΞBLS[ρ], both are majorized by the original correlation matrix ρ. As for the third RMT �lter-
ing scheme, the rotationally invariant estimator RIE, establishing such a relationship is a little bit
more di�cult, for our purposes.

The same relationship for ρ � ΞRIE[ρ], as is the case for the two schemes above, should hold
in the large N limit. However, for �nite N, which is of the dimension we are working with in
this work, the RIE scheme is not necessarily trace preserving. Hence, a we believe subtle nor-
malization argument is needed to establish the above relation for the RIE scheme. We omit this
exploration in this work and leave it for future work. As a teaser, Bun et al. [2017] show that
Tr[ΞCLP[ρ2]] 6 Tr[ρ2] which essentially means that the spectrum of ΞCLP[ρ] is narrower than
the spectrum of ρ. However, we provide, what we believe to be, evidence for this in �gure 7.4.

We can visualize Lemmas 7.7 and 7.8 by analyzing Figure 7.4. Indeed, we see, for the Cor-
relation Matrix depicted in Figure 3.1(a), the majorization relations ρ � ΞBLS[ρ], ρ � ΞCLP[ρ],
and ρ � ΞRIE[ρ] (after normalization). However, notice we cannot infer a QLO between the
cleaning recipes Ξ[ρ] themselves. However, for this speci�c choice of β, it appears we have
ΞBLS[ρ] � ΞRIE[ρ], but this clearly does not hold in general and depends on β. Furthermore, it is
very di�cult to majorize ΞCLP[ρ], especially for smaller and smaller choices of ddβe, since such
a ΞCLP[ρ] quickly approaches the Quantum Lorenz Curve for the uniform spectrum Lα(λ(Id)).

7.4.1 | Basic Linear Shrinkage

We just saw how basic linear shrinkage generates a new spectrum ΞBLS[ρ] that is majorized by
the original correlation matrix ρ. However, it would be more interesting to see if we can establish
a stronger relationship on the QLO iteslf. For instance what if we have two di�erent correlation
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Figure 7.4: Lorenz Curve of RMT Cleaning recipes

Plotting Lα(Ξ[ρ]) against α for the RMT �ltering schemes RIE, BLS, and CLP.

matrices ρl and ρk such that ρl � ρk. What can we say about ΞBLS[ρl] and ΞBLS[ρk]. Indeed,
understanding this relationship will allow us to understand how basic linear shrinkage e�ects the
QMG and thus, in turn, the RUP alarm system AΘ(Z) itself. We address this with the following
proposition.

Proposition 7.9. Let ρk, ρl ∈ P(S) and �x β ∈ R. We have that ρl � ρk if, and only if,

ΞBLS[ρl] � ΞBLS[ρk].

Proof. (⇒) First, suppose ρl � ρk, that is Lα(ρl) > Lα(ρk) for all α, or, in other words,

λ↓1 (ρl) + · · ·+ λ↓α(ρl) > λ
↓
1 (ρk) + · · ·+ λ↓α(ρk), ∀α ∈ {1, . . . ,d}
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then, after applying the ΞBLS[·] mapping, we just need to verify that

(1 − β)λ↓1 (ρl) + · · ·+ (1 − β)λ↓α(ρl) + αβ > (1 − β)λ↓1 (ρk) + · · ·+ (1 − β)λ↓α(ρk) + αβ

(1 − β)λ↓1 (ρl) + · · ·+ (1 − β)λ↓α(ρl) > (1 − β)λ↓1 (ρk) + · · ·+ (1 − β)λ↓α(ρk)

(1 − β)(λ↓1 (ρl) + · · ·+ λ↓α(ρl)) > (1 − β)(λ↓1 (ρk) + · · ·+ λ↓α(ρk))

λ↓1 (ρl) + · · ·+ λ↓α(ρl) > λ
↓
1 (ρk) + · · ·+ λ↓α(ρk)

Lα(ρl) > Lα(ρk)

(7.20)

and thus, ρl � ρk ⇒ ΞBLS[ρl] � ΞBLS[ρk]. Proving the reverse implication is the same. This
completes the proof.

The immediate implication from Proposition 7.9 is clear and interesting enough to give it its
own corollary: Basic Linear Shrinkage preserves the QLO. Thus, when it comes to the Alarm-
System we are building, applying the Basic Linear Shrinkage Estimator ΞBLS[ρ] will not e�ect our
model. For this reason, we ignore the basic linear shrinkage RMT �ltering scheme and move onto
eigenvalue clipping in the next section.

7.4.2 | Clipping

We now turn our attention to the eigenvalue clipping RMT �ltering scheme ΞCLP[ρ]. This sec-
tion will be organized as follows: We will state, and prove, a proposition that describes how the
eigenvalue clipping RMT �ltering scheme preserves the quantum lorenz ordering (QLO). Then
we will revisit the alarm systems constructed with using the Pearson’s ρ and upper tail depen-
dence λU temporal state spaces P∆(S; I) andΛU∆(S; I), respectively. We choose these two as they
performed well, but for di�erent reasons. Upper tail dependence predicted every crash (for the
most part), but with a few false alarms. Whereas Pearson’s ρ missed a few crashes (about half),
but signalled the fewest false alarms. Thus, we believe that studying these two metrics will o�er
insight into any intuitions we may end up drawing after studying eigenvalue clipping.

We would like to determine whether the �ltering scheme ΞCLP[ρ] preserves, or destroys, the
quantum lorenz ordering (QLO). Indeed, if we want to see how clipping correlation matrices ef-
fects our alarm system, it would be useful to understand how so, exactly. To this end, we state
proposition 7.10 showing the relationship between the raw, and clipped, QLO.
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Proposition 7.10. Let ρl, ρl ∈ P(S) and �x ddβe. Then ∀ρ ∈ P(S), we have ΞCLP[ρl] � ΞCLP[ρk]
if ρl � ρk.

Proof. If ρl � ρk we have Lα(ρl) > Lα(ρk), ∀α ∈ {1, . . . ,d}. By choosing α > ddβe we have

λ↓1 (ρl) + · · ·+ λ↓α(ρl) > λ
↓
1 (ρk) + · · ·+ λ↓α(ρk)

λ↓1 (ρl) + · · ·+ λ
↓
ddβe(ρl) + · · ·+ λ

↓
α(ρk) > λ

↓
1 (ρk) + · · ·+ λ

↓
ddβe(ρk) + · · ·+ λ

↓
α(ρk)

in which case, we need only verify the inequality

λ↓1 (ρl) + · · ·+ λ
↓
ddβe(ρl) + γl(α− ddβe) > λ↓1 (ρk) + · · ·+ λ

↓
ddβe(ρk) + γk(α− ddβe)

where if we let sl = λ↓1 (ρl)+ · · ·+λ
↓
ddβe(ρl), and sk = λ↓1 (ρk)+ · · ·+λ

↓
ddβe(ρk) we can de�ne

γl =
(1−sl)
d−ddβe , with γk de�ned accordingly, and get

sl +
(1 − sl)
d− ddβe

(α− ddβe) > sk +
(1 − sk)
d− ddβe

(α− ddβe)

sl − sk >
(1 − sk)
d− ddβe

(α− ddβe) − (1 − sl)
d− ddβe

(α− ddβe)

sl − sk >
α− ddβe
d− ddβe

(sl − sk)

1 >
α− ddβe
d− ddβe

where the last inequality holds since α is clearly less than d. This completes the proof.

Proving that ΞCLP[ρl] � ΞCLP[ρk] does not imply ρl � ρk is a straightforward procedure, which
we omit. It’s easy for the reader to verify this for themselves. Furthermore, notice the limiting
situations for ΞCLP[ρ]. If β is chosen such that every eigenvalue is "clipped", λ(ΞCLP[ρ]) simply
converges to the uniform spectrum λ(Id). On the other hand, when β is chosen such that no
eigenvalues is "clipped", λ(ΞCLP[ρ]) converges to the original spectrum λ(ρ).

More importantly, the above proposition tells us something useful. Eigenvalue clipping gen-
erates, but does not destroy, quantum majorization relations. Indeed, since ρl � ρk implies
ΞCLP[ρl] � ΞCLP[ρk], but not the other way around, a quantum majorization graph (QMG) can
only become more dense as a result of eigenvalue clipping. Hence, we’d expect eigenvalue clip-
ping to run the risk of making the QMG, and thus our alarm system, in a sense, "noisier". We
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can try to verify this intuition by analysing the respective alarm systems for the Pearson’s ρ and
upper tail dependence λU correlation and dependence metrics.
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8
Results

In this chapter, we will �nally cover the results of our RUP. We want to train the RUP’s detection
regions to predict crashes on short, medium, and long time horizons corresponding to the sam-
pling of correlations matrices over 2, 6, and 12 month (1 year) time-intervals. We believe these
intervals represent realistic investment scenarios. As di�erent correlation and dependence met-
rics are intended to capture and characterize di�erent phenomenon, each of the metrics covered
in chapter 6 were treated separately in our analysis. Indeed, it would be unreasonable to expect
each QMG to yield the same number of optimal clusters for the di�erent metrics. For instance,
the QMG associated to Gini’s γG might have 4 optimal clusters whereas Spearman’s ρS might
only have 2. One more thing to consider is the sheer computational complexity in the individ-
uation of the urns sampling paths, as alluded to by Cirillo and Hüsler [2011]. Thus, for longer
time horizons (3, and 6 months), we increase the size of our sliding windows from 10 to 20 and 40
so as to extend our prediction horizon and increase computational e�ciency. We explain what
we mean by this, exactly, and build individually optimized alarm systems for each correlation
metric in section 8.2. We then take each of these optimized alarm systems and apply the various
RMT �ltering schemes from section 7.4 to their respective temporal state spaces and compare the
e�ectiveness of the RMT schemes. Lastly, we compare the detection regions P[τr ∈ [n,n+ k] of
our RUP, and corresponding alarm systems, to that of the con�dence intervals associated to the
LPPLS of section 8.4 and discuss the relative strengths and weaknesses of the two models.
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8.1 | Evaluation Metrics

Now comes the question of optimizing our alarm system AΘ(Z). Following a similar approach to
Cirillo and Hüsler [2011], we can perform a grid search over the parameter setΘ = (γ; (q,L), (δ2,3, δ))
so as to maximize (or minimize) some optimality criterion for the accuracy of AΘ(Z). Since
AΘ(Z) ∈ {0, 1}N is a binary variable, potential criterion span the set of all evaluation metrics
de�ned on the 2 × 2 contingency table (or confusion matrix) corresponding to the operating
characteristics discussed earlier in chapter 4. Such a confusion matrix (CM) would take the form
of table ?? with TP, FP, FN, TN denoting the number of "True Positives", "False Positives", "False

Confusion Matrix Cn+k = 1 Cn+k = 0

An = 1 TP FP

An = 0 FN TN

Table 8.1: Confusion matrix

Negatives", and "True Negatives". We can easily frame the above CM in correspondence with
the alarm systems AΘ(Z) operating characteristics (OC) according to table 8.2 with P[Ct+k|At]

Diagnostics C Cc

A P[Ct+k|At] P[Cct+k|At]
Ac P[Ct+k|Act ] P[Cct+k|Act ]

Table 8.2: Operating characteristics

corresponding to the probability of AΘ(Z) signaling a true positive TP, and so on for the other
elements.

Though the optimality of an alarm system, as per chapter 4 and the work of Antunes M and
FK [2003], is de�ned according minimizing the probability of casting a false alarm P[Ccn+k|An],
or maximizing the probability of casting a correct alarm P[Cn+k|An], it would be hard for us to
compare our Z ∈ RUP(S,C,U,d) based alarm system AΘ(Z) to that of the (say) LPPLS con-
�dence indicators of chapter 5 since our AΘ(Z) casts alarms every 40 days whereas the LPPLS
con�dence indicators casts alarms every day. Hence, the OC for AΘ(Z) would look very di�erent
than the OC for the LPPLS con�dence indicators. Thus, we should try to use a more balanced
metric that allows for the direct comparison of the two models.
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Furthermore, for the purposes of our AΘ(Z) alarm system, we found that analyzing, and op-
timizing with respect to, the CM yields the same results as the optimality criterion de�ned on the
OC as per chapter 4. That is to say, for the sake of simplicity, we will �nd an optimal parameter
set Θ∗ with respect to a metric de�ned on the CM.

We introduce the metric we will be using and explain why we use this metric in a moment.
The Mathews Correlation Coe�cient MCC, or phi coe�cient φ, is de�ned below.

De�nition 8.1 (Mathews Correlation Coe�cient). The phi coe�cient φ is de�ned as

φ[·] = TP × TN− FP × FN√
(TP + FP)(TP + FN)(TN+ FP)(TN+ FN)

∈ [−1, 1] (8.1)

where TP, FP, FN, and TN are as before and the argument · inφ[·] denotes some binary classi�er.

Since we are trying to predict just 8 crashes C = {C1, . . . ,C8} with over a 100 correlation matrices,
we have a severely imbalanced data set. Furthermore, as with any alarm system, false alarms are
a serious issue. Because of this, we should use a balanced metric that understands the trade o�
between signaling correct predictions (TP’s) and accumulating false alarms (FP’s). For instance,
we can use easily optimize AΘ(Z) with respect to any desirable CM element, such as the number
of TP’s and FP’s, by setting the detection region threshold γ to a relatively extreme level (close
to 1 or 0). By setting γ = 0, or close to 0, we would maximize the number of TP’s (predict
every crash) disregarding the number of false alarms. Likewise, we could minimize the number
of FP’s (signal no false alarms) by setting γ = 1, or close to 1 disregarding the number of correct
predictions.

Hence, unlike the raw FP’s and TP’s, the phi coe�cient φ will naturally try to maximize the
number of TP’s using the number of FP’s as a constraint. This is precisely the sort of balance
we want our alarm system to have. Indeed, we want the alarm system to understand the trade
o� between being correct (maximizing TP) and being believable (minimizing FP). In fact, the φ
coe�cient is precisely the Pearson correlation coe�cient of two binary variables, that is φ =

ρ({0, 1}N, {0, 1}N). Thus maximizing our alarm system AΘ(Z) with respect to φ will tell us how
closely the our alarms are tracking with reality. In this way, when φ = −1, our alarms predict
the exact opposite of reality. When φ = 1, our alarms predict reality, exactly. When φ = 0, our
alarms are no better than random guessing.
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8.2 | Correlation Metrics

As promised, we present the results of our RUP Alarm System AΘ(Z) for each correlation metric,
independently. To keep this section as simple and readable as possible, we only present the results
for the "optimal" alarm systems for each k = {2, 4, 6} corresponding to the di�erent 4, 8, and 12
month time horizons according to the detection region P[τr ∈ [n,n+k)|τ1, . . . , τr−1]. Each alarm
system AΘ∗(Z) is optimized by �nding the optimal parameter set Θ∗ = (γ∗, (q,L)∗, (δ2,3, δ)) as
per the argument

Θ∗ = argmax
Θ

φ[AΘ(Z)] (8.2)

via a simple grid search using the φ correlation coe�cient. Furthermore, we only display diag-
nostic plots for one selected alarm system per correlation metric. In each subsection, however,
we display each temporal state space P∆(S; I) and corresponding clustering for the associated
correlation metirc. Unless stated otherwise, each temporal state space P∆(S; I) is characterized
by the ∆ = (40, 100) sliding window structure, as stated before.

8.2.1 | Pearsons ρ

We start by plotting the clustering associated to Pearson’s ρ in �gure 8.1. This clustering ~Y ∈ CN

happens to correspond to the discriminating thresholds equalling (d1,d2) = (0.48, 0.64) for the
θn = θ(ρn) risk measure of chapter 3. That is to say

Yn =


c1, if θ(ρn) ∈ [0, 0.48)

c2, if θ(ρn) ∈ [0.48, 0.64)

c3, if θ(ρn) ∈ [0.64, 1]

(8.3)

whenever the nth correlation matrix ρn is assigned to a cluster as per the algorithm described in
de�nition 7.4. We notice this clustering is good. Indeed, all the major crashes including the 2008
"Financial Crisis" and 2020 "COVID-19" crash are surrounded by c2 and c3 coloured marbles.
Furthermore, the 2015 "Chinese Sello�" and 2018 "Crypto Crash" are preceded by c3 coloured
marbles. On the other hand, the 2011 "Bear Market" does not seem to be well encapsulated by
this clustering. Having said that, there seems to be a lot of c3 coloured marbles as compared to c2

marbles meaning our Z ∈ RUP(S,C,U,d) may be susceptible to a high number of false alarms.
Let us see the results for ourselves.
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Figure 8.1: Pearson ρ P∆(S, I): Clustering

RUP Performance: Pearson Correlation P∆(S, I)
Operating Characteristics 4-month 8-month 12-month
φ coe�cient 0.61 0.61 0.64
Number of correct Non-alarms 97 97 96
Number of correct Alarms 4 4 5
Number of False Alarms 1 1 2
Number of undetected Crashes 4 4 3

Table 8.3: Pearson ρ P∆(S, I): Operating characteristics

In any case k = 2, 4, 6 for 4, 8, and 12 month time horizons, Pearsons ρ is yielding a φ
coe�cientφ > 0.61. This is quite a strong (positive) binary correlation with the actual occurrence
of stock market crashes. However, as we noted at the onset, there are several undetected crashes
(false negatives) in every case. In order for Pearsons ρ to achieve a high φ coe�cient, it must
sacri�ce detecting a few crashes. This can be read as, any parameter set Θ = (γ; (q,L), (δ2,3, δ)
capable of predicting most crashes would also (necessarily) have to generate a lot of false alarms.
This can be interpreted as Pearson’s ρ inducing a QMG that is noisier than we would like.

Our grid search honed in on a parameter set Θ∗ that limited the number of false alarms. This
corresponds with the notion of optimality discussed in chapter 4 and by Antunes M and FK [2003].
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Interestingly, Pearsons ρ was no better at predicting crashes on a 8 month time horizon as it was
on a 4 month time horizon. The 12 month time horizon prediction was slightly better. Let us now
turn our attention to the grid search used to obtain the 8 month model.

(a) φ varying (q,L) (b) φ varying (δ2,3, s)

Figure 8.2: Pearsons ρ optimal stopping rule and reinforcement hyper paramaters
In 8.2(a) we compute φ varying (q,L). In 8.2(b) we �x (q,L) = (2, 3) varying (δ2,3, δ)

Referring to �gure 8.2 we notice that the 8 month pearson model does not seem to be ben-
e�ting much from the q anti-clustering parameter, but rather wants just increasing L instead.
Additionally we see some interesting activity in �gure 8.2(b). In this snapshot, adding the depen-
dence parameter δ2,3 to the reinforcement mechanism seems to enhance the model. For instance,
starting from δ = 6, adding more and more δ2,3 seems to be improving the model. Let us take a
look at γ.

Referring to �gure 8.3 we plot both the number of false alarms and the φ coe�cient as a
function of the detection region threshold γ. In this particular plot, γ ranged from 0 to 0.60.
Clearly, increasing γ decreased the number of false alarms and increased the φ coe�cient. With
the exception of γ ∈ [0.27, 0.28], the number of false alarms and φ coe�cient evolved in direct
dis-correspondence with one another as γ increased towards 0.60. This illustrates how the φ
coe�cient naturally tries to reduce the alarm systems false alarms. Hence, although it missed
several alarms, the model is very believable since a crash actually occurs 4/5 = 80% of the time
whenever it casts an alarm. We display the optimal hyper parameterizations Θ∗ for the three
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Figure 8.3: P∆(S; I) 8 month (k = 4): φ and # of False Alarms varying γ ∈ [0, 0.6]

models next.
Referring to the table above, we repeated the above analysis for all three 4, 8, and 12 month

Optimal Hyper-parameters: Pearson Correlation P∆(S, I)
Θ∗ 4-month 8-month 12-month
γ 0.48 0.60 0.13
(q,L) (0, 5) (0, 5) (1, 2)
(δ2,3, δ) (2, 6) (3, 7) (2, 7)

Table 8.4: Pearson ρ P∆(S, I): Hyper-parameters

models. We see that the 4 and 8 month models are essentially identical with exception to the
choice of γ. Indeed, we can even change the reinforcement mechanism (3, 7) for the 8 month
model to the (2, 6) mechanism without changing the φ coe�cient. On the other hand, the 12
month model seems to like the anti-clustering parameter q. Naturally, adding this parameter will
reduce the number of viable sampling sequences, and hence, the detection region decreased to
0.13 as a result. Nevertheless, the 12 month model was able to make one more correct prediction,
at the expense of an additional false alarm. This illustrates what theφ coe�cient is doing. Indeed,
φ recognizes the imbalanced nature of the positive class (crashes). In other words, adding a
correct prediction, according to φ, is worth accumulating a certain number of extra false alarms
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Figure 8.4: Pearson ρ P∆(S, I): Detection region: 8-month time horizon

(1 in this case).
We conclude this section by plotting the detection region for the 8 month model along with

the threshold γ. We refer to �gure 8.4. Analyzing this model allows to see which crashes the
Pearson correlation model(s) missed. Here we see that the 2011 "Bear Market", 2015 "Chinese
Sello�", 2018 "Crypto Crash", and the last of the waves associated to the 2008 great recession, i.e.
the 2008 "Great Recession II" in January of 2009. However, it correctly predicted the initial 2008
"Financial Crisis", the �rst 2008 "Great Recession I", and the two extreme drawdowns associated
to the 2020 "COVID-19" crashes.

8.2.2 | Ginis γG

We move to the clustering associated to Gini’sγG in �gure 8.5. This clustering ~Y ∈ CN happens to
correspond to the discriminating thresholds equalling (d1,d2) = (0.48, 0.64) for the θn = θ(ρn)

risk measure of chapter 3. That is to say

Yn =


c1, if θ(ρn) ∈ [0, 0.48)

c2, if θ(ρn) ∈ [0.48, 0.54)

c3, if θ(ρn) ∈ [0.54, 1]

(8.4)
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Figure 8.5: Gini correlation Γ∆(S, I): Clustering

whenever the nth correlation matrix ρn is assigned to a cluster as per the algorithm described in
de�nition 7.4. We notice this clustering is much more yellow and red than that of Pearson’s ρ
clustering. However, all the major crashes including the 2008 "Financial Crisis" and 2020 "COVID-
19" crash are surrounded by c2 and c3 coloured marbles along with the smaller events such as the
2015 "Chinese Sello�" and 2018 "Crypto Crash" as well. The 2011 "Bear Market" is brie�y pre-
ceded by yellow. Furthermore, there seems to be a lot of c3 coloured marbles, especially between
2014-2016, meaning our Z ∈ RUP(S,C,U,d) may be susceptible to signalling a high number of
false alarms over this time period.

Referring to �gure 8.6(a), we see our grid search didn’t honed in on levels L 6 3. Further-
more, it even exploited the anti-clustering parameter q, which we didn’t expect on the shorter
time horizon. However, looking back at the clustering in �gure 8.5, we see that red regions are
particularly dense. Hence, we believe the RUP was trained to detect the probability of sampling
multiple c3 marbles consecutively. As a result, even over the shorter time horizon, the anti-
clustering parameter q helped improve the model.

We turn to �gure 8.6(b) to analyze the (δ2,3, δ) grid search. We see the model wanted to in-
crease, not only the strength of reinforcement δ, but also the dependence δ2,3 parameter as well.
Referring to the clustering in �gure 8.5, we see several periods of red that were preceded by dense
regions of yellow. Hence, by increasing dependence between the sampling of c2 and c3 colored
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(a) φ varying (q,L) (b) φ varying (δ2,3, s)

Figure 8.6: Gini Correlation ΓG∆ (S, I): Grid search
In 8.6(a) we compute φ varying (q,L). In 8.6(b) we �x (q,L) = (2, 3) varying (δ2,3, δ)

marbles, the RUP enabled itself to anticipate entering dense periods of red.
Since we see the anti-clustering parameter q > 0, especially for the relatively low k = 2,

we’d expect to see the detection region threshold to be low as well. Indeed, referring to �gure
8.7 we see that our optimal γ∗ is just 0.11 as compared to something on the order of 0.48, as was
the case for Pearson’s ρ 4 month model. This plot also illustrates what the φ coe�cient is doing.
The instant γ reaches 0.11, our FP’s decreased and φ rose. However, as γ continued, φ dropped
even though FP dropped as well, suggesting that the increase from γ = 0.11 to γ = 0.12 cost our
model at least one TP.

In table 8.5 we see the Gini correlation models operating characteristics. Even though the
φ coe�cient for the 4 month is lower than that of Pearson’s ρ 4-month model, Gini was able
to predict 7/8 crashes, with 17 false alarms. This is interesting suggesting that Pearson’s ρ, by
comparison, simply had a blind spot to those 4 crashes it couldn’t see. So instead of searching for
a parameter set to detect them, it rose γ to 0.48 instead to reduce the number of false alarms. On
the other hand Gini correlation sees those crashes and tries to optimize φ by capturing as many
crashes as possible. Over longer time horizons, however, Gini was able to reduce the number of
FP’s by enough to generate a φ = 0.63, as compared to the 0.61 of the corresponding Pearson’s
ρ 8 month model. We see something similar in the 12 month case.
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Figure 8.7: Gini Correlation ΓG∆ (S, I) 4 month (k = 2): φ and # of False Alarms varying γ ∈ [0, 0.14]

RUP Performance: Gini Correlation ΓG∆ (S, I)
Operating Characteristics 4-month 8-month 12-month
φ coe�cient 0.50 0.63 0.68
Number of correct Non-alarms 81 91 93
Number of correct Alarms 7 7 7
Number of False Alarms 17 7 5
Number of undetected Crashes 1 3 1

Table 8.5: Gini correlations Γ∆(S, I): Operating characteristics

In table 8.6, we see Gini correlation took advantage of the anti-clustering parameter in all

Optimal Hyper-parameters: Gini Correlation ΓG∆ (S, I)
Θ∗ 4-month 8-month 12-month
γ 0.11 0.22 0.06
(q,L) (1, 2) (2, 3) (2, 3)
(δ2,3, δ) (2, 8) (6, 9) (4, 7)

Table 8.6: Gini Correlation ΓG∆ (S, I): Hyper-parameters

three models. For reasons mentioned earlier, related to the associated clustering in �gure 8.5,
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Figure 8.8: 4 month Gini correlation detection region with γ = 0.11

this makes sense. Interestingly, the γ for the 8 month model is much larger than the γ for the 12
month model even though they have the same (q,L) tuple. Lastly, we refer to �gure 8.8 for the
associated detection region. We can infer from this plot that the only crash Gini was missing was
the 2011 "Bear Market". Other than that, Gini correlation seemed to hone in on the others.

8.2.3 | Tail-Dependence λU

We now turn our attention to the upper Tail-Dependence λU metric. We plot the process ~Y =

{Y1, . . . ,YN} ∈ CN corresponding to the set of correlation matricesΛU∆(S; I) of cardinality |ΛU∆(S; I)| =
106 in �gure 8.9, which we now turn our attention to. This clustering ~Y ∈ CN happens to corre-
spond to the discriminating thresholds equalling (d1,d2) = (0.54, 0.66) for the θn = θ(λUn ) risk
measure of chapter 3. That is to say

Yn =


c1, if θ(λUn ) ∈ [0, 0.54)

c2, if θ(λUn ) ∈ [0.54, 0.66)

c3, if θ(λUn ) ∈ [0.66, 1]

(8.5)

whenever thenth tail dependence matrix λUn is assigned to a cluster as per the algorithm described
in de�nition 7.4. We notice this clustering is pretty good. Again, every crash including the 2008
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Figure 8.9: Tail-Dependence Λ∆(S, I): Clustering

"Financial Crisis" and 2020 "COVID-19" crash are surrounded by c2 and c3 coloured marbles in
addition to the 2011 "Bear Market", 2015 "Chinese Sello�" and even the 2018 "Crypto Crash".
Additionally, there seems to be a (roughly) equal amount of c1, c2, and c3 coloured marbles in the
plot. Which, together with the dense regions of red surrounding known crashes, suggests that
the process Z ∈ RUP(S,C,U,d), corresponding to tail dependence, should be able to predict
most (if not all) crashes with relatively few false alarms.

RUP Performance: Tail-Dependence ΛU∆(S, I)
Operating Characteristics 4-month 8-month 12-month
φ coe�cient 0.57 0.70 0.76
Number of correct Non-alarms 89 91 93
Number of correct Alarms 7 8 8
Number of False Alarms 9 7 5
Number of undetected Crashes 1 0 0

Table 8.7: Upper Tail ΛU∆(S, I): Operating characteristics

In any case k = 2, 4, 6 for 4, 8, and 12 month time horizons, tail dependence λU is yielding
a φ coe�cient φ > 0.57. This is quite a strong (positive) binary correlation with the actual
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occurrence of stock market crashes. Additionally, as we noted at the onset, every crash on 8
and 12 month time horizons is being detected with relatively few false alarms. The 4 month
model missed just one crash. Tail dependence λU achieves a high φ coe�cient, without having
to sacri�ce signalling a lot of false alarms. As expected, tail dependence λU became better and
better at predicting crashes over longer time horizons. The 12 month time horizon prediction was
clearly the best with a φ coe�cient of 0.76 and just 5 false alarms. Let us now turn our attention
to the grid search used to obtain the 12 month model.

(a) φ varying (q,L) (b) φ varying (δ2,3, s)

Figure 8.10: Upper Tail ΛU∆(S, I): Grid search
In 8.6(a) we compute φ varying (q,L). In 8.10(b) we �x (q,L) = (2, 3) varying (δ2,3, δ)

Referring to �gure 8.10 we notice that the 12 month tail dependence model bene�ts quite a
bit from the q anti-clustering parameter. Indeed, instead of increasing L closer to (say) 6, the
grid search honed in on a larger q. We suspected this might happen over long time horizons, and
we see it here. Additionally, we see some interesting activity in �gure 8.10(b). In this snapshot,
adding the dependence parameter δ2,3 to the reinforcement mechanism seems to enhance the
model. For instance, starting from δ = 8, adding a dependence factor from δ2,3 = 0 to δ2,3 = 3
increases the φ coe�cient from 0.732 to 0.764.

Referring to �gure 8.3 we plot both the number of false alarms and the φ coe�cient as a
function of the detection region threshold γ. In this particular plot, γ ranged from 0 to 0.08.
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Figure 8.11: Upper Tail ΛU∆(S, I): γ

Clearly, increasing γ decreased the number of false alarms and increased the φ coe�cient up
until γ = 0.07. Beyond γ > 0.07, the number of false alarms may have decreased even further,
however, this came at the expense of losing several correct predictions. We checked and any γ
can be increased up to 0.0705 before losing several correct predictions, at which point, φ coe�-
cient plummets to a φ = −0.12 once γ = 0.08. This illustrates how the φ coe�cient naturally
tries to reduce the alarm systems false alarms. Hence, although it signalled a few false alarms (5),
the model predicted every crash with a high very degree accuracy which we believe is impressive.
We display the optimal hyper parameterizations Θ∗ for the three models next.

Optimal Hyper-parameters: Upper Tail ΛU∆(S, I)
Θ∗ 4-month 8-month 12-month
γ 0.43 0.55 0.07
(q,L) (0, 3) (0, 3) (2, 3)
(δ2,3, δ) (0, 8) (0, 8) (2, 7)

Table 8.8: Upper Tail-Dependence hyper-parameters

Referring to table 8.8 above, we repeated the above analysis for all three 4, 8, and 12 month
models. We see that the 4 and 8 month models are essentially identical with exception to the
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Figure 8.12: Tail-Dependence detection region with γ = 0.07

choice of γ. Indeed, neither returned an anti-clustering coe�cient and both found a reinforce-
ment mechanism without modelling dependence between c2 and c3 coloured marbles. Retroac-
tively, perhaps we could have anticipated this since, with exception to the 2007-2008 range in
�gure 8.9, we don’t see too many dense regions of yellow preceding periods of red. However, we
believe introducing dependence with (δ2,3, δ), as per 8.10(b) mitigated a few false alarms for the
12 month model. Additionally, introducing the anti-clustering parameter q = 2 helped eliminate
the two false alarms between the 8 month and 12 month models. Naturally, adding this parame-
ter q = 2 will reduce the number of viable sampling sequences, and hence, the detection region
decreased to 0.07 as a result. All in all, tail dependence was able predict every crash for both the
8 month and 12 month models: the only metric we’ve seen be able to do this since Spearman ρS.
However, tail dependence λU did so with much fewer false alarms. This illustrates what the φ
coe�cient is doing. Indeed, φ recognizes the imbalanced nature of the positive class (crashes). In
other words, adding a correct prediction, according toφ, is worth accumulating a certain number
of extra false alarms (1 in this case).

We conclude this section by plotting the detection region for the 8 month model along with
the threshold γ. We refer to �gure 8.4. Analyzing this model allows to see which crashes the
Pearson correlation model(s) missed. Here we see that the 2011 "Bear Market", 2015 "Chinese
Sello�", 2018 "Crypto Crash", and the last of the waves associated to the 2008 great recession, i.e.
the 2008 "Great Recession II" in January of 2009. However, it correctly predicted the initial 2008
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Figure 8.13: Clipped Pearson’s ρ: ~Y ∈ CN

"Financial Crisis", the �rst 2008 "Great Recession I", and the two extreme drawdowns associated
to the 2020 "COVID-19" crashes.

8.3 | RMT Filtering

In this section, we explore the RMT �ltering schemes introduced in section 7.4. Remember we
omit the basic linear shrinkage estimator ΞBLS[ρ] in this analysis since this �ltering scheme pre-
serves the QLO. In particular, we consider the eigenvalue clipping ΞCLP[ρ] and ΞRIE[ρ] schemes.
To keep this analysis simple, we only consider the Tail-Dependence and Pearson’s ρ models of
the previous section.

8.3.1 | Eigenvalue Clipping

Using �gure 8.1 from earlier as a reference, we can see that clipping the Pearson’s ρ correlation
matrices seemed to narrow c3 coloured bands in the clustering in �gure 8.13. Additionally, we
see more green coloured marbles c1 than we did before. The main crashes, the 2008 "Financial
Crisis" and 2020 "COVID-19" crashes seem to be covered by the clustering along with the 2015
"Chinese Sello�" and 2018 "Crypto Crash". However, long red bands persist over periods withour
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Figure 8.14: Clipped Tail-Dependence λU: ~Y ∈ CN

crashes, which may be an indication of a few false alarms. We will cover the results in a moment.
Let us turn our attention to �gure 8.14. Using �gure 8.9 from before as a reference, we notice

that clipping the tail dependence matrices created very narrow bands around the 2015 "Chinese
Sello�", the 2018 "Crypto Crash", and the 2020 "COVID-19" crashes. which seems to be a good
sign. However, we also notice the red band surrounding the 2008 "Financial Crisis" got widened
by quite a bit, which may be indication of a lot of false alarms. We see a few transitions between
red and yellow, which is also a good sign. All in all, we don’t expect the clipped tail dependence
matrices to perform better than the raw case. However, Pearson’s ρ correlation matrices may
actually bene�t from the clipping procedure. More on this later. For now, let us look at the
results of the two models.

Interestingly enough, our intuition for the performance of the clipped upper tail dependence
matrices seems to be on point. Indeed, in any case for k = 2, 4, 6, corresponding to 4, 8, and
12 month time horizons, tail dependence is predicting the same number of crashes as before: 7
over 4 months, 8 over 8 months, and 8 over 12 months. Additionally, however, it signalled more
false alarms in all three cases, which is what we anticipated. For completeness, We provide the
following table, for the curious reader, displaying the optimal parameter set found for Θ∗, as
before.

On the other hand, clipping Pearson’s ρ correlation matrices seemed to signi�cantly improve
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Figure 8.15: Clipped Pearsons ρ Alarm System: Detection Region

Clipped ΞCLP RUP Performance: Short time horizon

Operating Characteristics
4-mo. Horizon 8-mo. Horizon 12-mo. Horizon

λU ρ λU ρ λU ρ

φ coe�cient 0.40 0.35 0.57 0.57 0.45 0.76

Number of correct Non-alarms 78 94 79 89 82 93

Number of correct alarms 7 3 8 7 8 8

Number of False alarms 20 4 9 1 16 5

Number of undetected Crashes 1 5 0 1 0 0

Table 8.9: RUP Operating characteristics: Clipped

our results on the 12 month time horizon. In fact, this would rival the best model we have trained
up to date. However, we notice a sharp drop o� in the performance over the 4 and 8 month
time horizons. To investigate why this might be the case, let us analyze the detection region
corresponding to this 12 month model in �gure 8.13. Indeed, it appears as though the clipped
Pearson’s ρ model may just be getting lucky over this time period. Perhaps the model is simply
taking advantage of the relatively longer 12 month time horizon and bene�ting from a higher
margin of error as it simply signals alarms periodically. This would explain why the models
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RUP Performance: Short time horizon

Θ∗
4-mo. Horizon 8-mo. Horizon 12-mo. Horizon

λU ρ λU ρ λU ρ

γ 0.47 0.46 0.39 0.31 0.47 0.42

(q,L) (0, 2) (0, 5) (0, 3) (0, 4) (0, 3) (0, 4)

(δ2,3, δ) (2, 9) (2, 7) (2, 9) (2, 7) (2, 9) (4, 7)

Table 8.10: Eigenvalue clipping: Hyper-parameters

performance drops o� signi�cantly over shorter time horizons.

8.3.2 | Rotationally Invariant Estimator

As before, we plot the resulting clusterings for the rotationally invariant estimator acted upon
P∆(S; I) and ΛU∆(S; I). In �gure 8.16 we see a dramatic change in the associated clustering for
Pearson’s ρ. Indeed, it appears that the rotationally invariant estimator corrupted the QMG cor-
responding to the P∆(S; I) temporal state space of correlation matrices. In this plot, we notice
some red around known crashes, but this correspondence seems to be completely random. Thus,
we’d be tempted to say that the associated alarm system will have a low φ coe�cient, even if it
correctly predicts several crashes.

Turning our attention to Tail-Dependence, under the rotationally invariant estimator, we
see some familiar behavior. Comparing �gure 8.17 to that of the clustering for the raw Tail-
Dependence matrices of �gure 8.9, we notice that the corresponding QMG seems to have been
corrupted as well. Not only have the dense regions of red, surrounding the 2008 �nancial crisis,
been widened, but it seems the 2015, 2018, and 2020 COVID-19 crashes have been disregarded.

Out of curiosity, we trained and tested the associated alarm systems and display the results
in the following table. For the sake of simplicity, we ignore the hyper-parameterization analysis.
We also only display the results over 4, 8, and 12 month time horizons. We immediately notice
that the corresponding φ coe�cient is much lower in any case as compared to the raw instances
from the prior section. With the exception of the 12 month time horizon, the majority of crashes
are going undetected in addition to the signalling of false alarms.
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Figure 8.16: RIE Pearson’s ρ: ~Y ∈ CN

Figure 8.17: RIE Tail-Dependence λU: ~Y ∈ CN
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Nonlinear Shrinkage ΞRIE RUP Performance

Operating Characteristics
4-mo. Horizon 8-mo. Horizon 12-mo. Horizon

λU ρ λU ρ λU ρ

φ coe�cient 0.12 0.11 0.20 0.25 0.23 0.34

Number of correct Non-alarms 81 79 72 77 75 79

Number of correct alarms 4 3 5 5 5 6

Number of False alarms 17 19 26 21 23 19

Number of undetected Crashes 4 5 5 3 3 2

Table 8.11: Operating characteristics for the RIE cleaned correlation matrices

8.3.3 | RMT Takeaways

Perhaps the results of this section should not have come at a surprise. Since RMT �ltering schemes
�lter out measurement error by distorting the (quantum) Lorenz curve closer to the uniform dis-
tribution, correlation matrices become less risky. From a portfolio optimization standpoint, we
want this behavior to make the optimal weightings more conservative. From the perspective of
the QMG (quantum majorization graph), however, cleaning the correlation matrices (in a sense)
seems to "hide" the true exposure to systemic risk from the QLO (quantum Lorenz ordering).
Hence, the QLO gets confused and makes the QMG noisier, corrupting the clustering, and, in
turn, harming our alarm system.

Additionally, we saw that eigenvalue clipping performed better than the rotationally invariant
estimator, which makes sense. Indeed, the majorization of eigenvalue clipping essentially corre-
sponds to the majorization of a sub full rank spectrum. Hence, in eigenvalue clipping we’re only
losing partial information in the least informative region of the spectrum. On the other hand, the
rotationally invariant estimator acts on the entire spectrum distorting the entire spectrum along
with the QLO’s perception of systemic risk.

All in all, we believe that these RMT results can be thought of as, perhaps ironically, a veri�-
cation. Suppose for a moment that these RMT schemes made the alarm system better. This might
mean that their corresponding portfolios would be re�ecting the amount of risk in the market
at the time, instead of dispersing that risk over future time horizons which would make those
portfolios that much more volatile. Hence, the fact that RMT cleaned QLO’s do not know how
risky the market actually is only veri�es their methodology in studying portfolio risk. This is just
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a theory and needs to be explored further.

8.4 | RUP vs. LPPLS

In this section we revisit the con�dence indicators (CI) of the LPPLS model introduced in chapter
5. Recall that a (positive) CI is a measure of con�dence that the LPPLS �tting is signalling an
LPPLS pattern, corresponding to a "bubble" in the price of, in our case, the DJIA. These CI’s are a
measure CI ∈ [0, 1] that can be thought of as a probability that a crash is on the horizon. Hence,
we can consider these CI’s in analogy to the stopping-time probabilities

P[τr ∈ [n,n+ k]|τ1, . . . , τr−1] (8.6)

produced by the process Z ∈ RUP(S,C,U,d) at each iteration of the RUP’s evolution.
To this end, we plot the stopping time probabilities for our RUP, that we will henceforth refer

to as simply the RUP’s detection region, against the CI’s of the LLPLS model in �gure 8.18. This
plot corresponds to the testing period 2005-2020 that we’ve been considering thus far. Further-
more, the RUP detection region depicted in this �gure corresponds to that of the alarm system
associated to the upper Tail-Dependence temporal state space ΛU∆(S; I), from before, scaled up
by a factor of 10 to make the plot more readable. Interestingly, the RUP detection region seems to
be accumulating around known stock market crashes more accurately than the CI’s of the LPPLS
model. For instance, between 2006-2008 the CI’s are sending strong signals, as is the case for
the 2013-2015 and 2016-2017 time periods. Over these same time periods, meanwhile, the RUP
detection region subsides to its relative minimum.

We trained a similar alarm system for stock market crashes using the CI’s over the same time
period as the RUP (1986-2005) in a similar fashion as the RUP. Clearly the CI’s don’t depend on
the (q,L) and (δ2,3, δ) parameters and only depends on the detection region threshold γ. Thus,
we vary γ over the same range as we did the RUP, computing theφ coe�cient over the same 4, 8,
and 12 month time horizons. We depict this optimization scheme in �gure 8.19, corresponding to
the 12 month time horizon, where φ, and the nuber of false alarms FP, are plotted as a function
of γ over the γ ∈ [0, 1.0] range.

On the right vertical axis, notice the scale of FP for the LPPLS model. The sheer number of
FP’s is simply due to the fact that the LPPLS model is signalling alarms every day, whereas our
RUP is signalling alarms every 2 months. As γ increases, however, the number of FP’s quickly
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Figure 8.18: LLPLS vs. RUP Detection Region

Figure 8.19: LLPLS φ coe�icient
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drops to a number FP = 14 whereφ achieved its maximum atφ∗ = 0.33. The corresponding γ is
plotted in 8.18 as the green horizontal line. Referring to table 8.12, we display the resulting oper-

RUP (Tail-Dependence) vs. LPPLS

Operating Characteristics
4-mo. Horizon 8-mo. Horizon 12-mo. Horizon

λU LPPLS λU LPPLS λU LPPLS

φ coe�cient 0.40 0.11 0.57 0.18 0.76 0.33

Number of correct Non-alarms 89 3976 91 3970 93 3984

Number of correct alarms 7 2 8 3 8 4

Number of False alarms 9 31 7 28 5 14

Number of undetected Crashes 1 6 0 5 0 4

Table 8.12: LPPLS vs. RUP: Operating characteristics

ating characteristics of the alarm systems corresponding to the Tail-Depndence RUP and the CI’s
of the LPPLS model. We performed the same optimization scheme over the 4, 8, and 12 month
time horizons. The operating characteristics, and φ coe�cient, seem to favor the RUP model.
Indeed, for every time horizon, the RUP is not only accurately predicting more crashes, but also
signalling fewer FP’s (false alarms). However, the fact that the RUP is signalling fewer FP’s can
be read as a consequence of the relative frequencies of the two alarm systems. On the other
hand, the fact that the RUP is accurately predicting more crashes is a promising sign. Drawing a
stronger conclusion would be unfair to the LPPLS model.
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9
Conclusion

9.1 | That’s a Wrap

In this thesis, we applied the quantum majorization of �nancial correlation matrices to the pre-
diction of stock market crashes via the reinforced urn process (RUP). This was accomplished by
using a directed acyclic graph to represent the partial ordering induced by quantum majorization,
which was aptly named the quantum majorization graph, to cluster each time period associated
to the correlation matrices according to the in-out degree centrality if its corresponding node
in the graph. These clusters were used to represent coloured marbles in an urn to build a rein-
forced urn process to predict stock market crashes. Naturally, several sub-problems came into
view including the precise de�nition of a stock market crash, which correlation metric to use.

9.1.1 | Portfolio Risk and Random Matrix Theory

In prior work, quantum majorization was considered from standpoint of socioeconomic vari-
ability. In chapter 7 we considered quantum majorization from the standpoint of measurement
error. In this vein, several random matrix theory (RMT) "�ltering" schemes have been devised
to rid correlation matrices of measurement noise. We showed that these �ltering schemes bore
interesting relationships with the quantum majorization of said correlation matrices and, in some
cases, even the quantum majorization graph. The RUP stock market crash prediction model was
permuted over these cleaned correlation matrices.
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9.1.2 | Stock Market Crashes

In chapter 6 we exploited a novel approach to de�ning stock market crashes using extreme value
theory. This was accomplished by �tting the distribution of the so-called ε-drawdowns of the
Dow Jones Industrial average (DJIA) to the generalized pareto distribution (GPD). We used the
shape γ of the GPD in tandem with the maximum-to-sum (MS) plot to identify the threshold
that characterizes the tail of the GPD. Any ε-drawdown beyond this threshold was identi�ed as
a crash. Such ε-drawdowns included, but were not limited to, the 1987 "Black Monday", 2000
"Tech Bubble", 2008 "Financial Crisis", and 2020 "COVID-19" crashes. Additionally, we employed
an ad hoc procedure to cluster crashes that occurred very close to eachother, as was the case for
the COVID-19 crash that would otherwise not be identi�ed by the currently utilized approach of
�tting the stretched exponential distribution. In total, 13 crashes were identi�ed for which the
RUP was tasked to predict.

9.1.3 | RUP Model and Alarm System

In chapter 7 we designed an algorithm for the sampling and clustering of �nancial correlation ma-
trices that represented the drawing of marbles out of a state space of polya urns. This algorithm
de�ned an online learning algorithm that belongs to the class of Bayesian non-parametric models.
At each time step the probability of a crash occurring within (several) time horizons was com-
puted where an "alarm" was cast when this probability exceeded a speci�ed threshold de�ning
the detection region. In the RUP speci�cation, a crash corresponded to when the RUP reached a
speci�c terminal state called the stopping rule with associated stopping time. We generalized this
stopping rule so as to place the stricter criteria of sampling a q number of risky correlation matri-
ces consecutively. This was one of three generalizations that we considered including accounting
for a dependence structure between the sampling, and reinforcement, of yellow and red marbles
along with the calculation of the stopping rule’s stopping times over a time interval. This gener-
alization helped not only improve the model but also provide increased �nancial interpret-ability.

9.2 | Results and Takeaways

In chapter 8 we showed that the RUP was able to predict stock market crashes with good ac-
curacy. Of the three di�erent correlation metrics we considered, the so-called measure of Tail-
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Dependence λU performed the best predicting 100% of crashes over the testing period whilst
signalling just 5 false alarms over a 12 month time horizon and 7 false alarms over an 8 month
time horizon. On the shorter time horizons of 2 and 4 months Tail-Dependence predicted 7/8
crashes with 17 and 9 false alarms, respectively.

The stronger performance over longer time horizons showed that the RUP is performing in
correspondence with human intuition, which is a promising sign for the e�cacy of the proposed
RUP methodology. Additionally, though Tail-Dependence performed best, the other two metrics
Gini’s γG and Pearson’s ρ performed well also, showing that the RUP is robust to the choice
of correlation metric which is another promising sign. Furthermore, the two generalizations we
made, concerning the reinforcement mechanism and stopping rule, were shown to dramatically
improve the performance of the model.

We also applied the aforementioned RMT �ltering schemes to our correlation matrices to see
if they would improve our model. Surprisingly, we didn’t see much improvement which might
suggest that RMT �ltering was actually (ironically) doing its job by reducing the RUP’s percep-
tion of risk exposure. In particular, we showed that basic linear shrinkage preserves the QLO,
whereas clipping makes the ordering denser. We did not conclude how nonlinear shrinkage af-
fects the ordering but provided some intuition as to how it might.

Lastly, we compared our RUP methodology to a well known stock market crash (bubble) de-
tector: the Log-Periodic Power Law Singularity (LPPLS) model. We computed the LPPLS’s associ-
ated so-called "con�dence indicators" (CI) as an analog to the RUP’s detection regions. We showed
that the RUP was able to predict more crashes than the LLPLS model and overall performed bet-
ter with respect to several performance metrics de�ned on the confusion matrix including the φ
correlation coe�cient, the risk-ration (RR), and F1 score. We failed to draw a more conclusive
�nding as the LPPLS model and RUP make predictions with di�erent frequencies.

9.3 | Future Work

9.3.1 | Data and Markets

An immediate improvement can be made by accessing paid �nancial data repositories and gath-
ering complete data of historical �nancial index constituent memberships. For instance, one can
get all 500 components of the S&P500 so as to avoid the "survivorship" bias of chapter 6. One can
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then repeat these results over any �nancial index including the FTSE, CAC40, DAX30, or even
the NIKKEI225, HSI, and STI in the asian markets. Avoiding survivorship bias will make the RUP
more re�ective of the index its trying to make predictions over.

9.3.2 | RUP Modelling and Alarm System

As for the RUP itself, several additional considerations can be made. For instance, the reinforce-
ment matrix, which is generalized in this work, can be generalized further to account for time-
dependence and even randomness itself. For instance, one can incorporate seasonality into the
strength, dependence, and even randomness into the reinforcement matrix (RM)

RM =


C1 C2 C3

C1 δ1,1(t;ω) δ1,2(t;ω) δ1,3(t;ω)

C2 0 δ2,2(t;ω) δ2,3(t;ω)

C3 0 0 δ3,3(t;ω)

, si =

3∑
j=1

δi,j(t;ω) = δ, ∀i ∈ {1, 2, 3}

(9.1)
where the random variable ω can be taken such that the δi,j’s are Dirichlet distributed so as to
maintain the balance nature of the RM.

As for predicting stock market crashes, we saw that our RUP in this work was signalling
more false alarms over shorter time horizons, which was to be expected. However, in practice,
this may not be a drawback. For instance, one can incorporate rewards drawn from the payo�s
of american (or european) options as part of the learning procedure. Indeed, out of the money
put options over shorter time horizons are much cheaper. In which case, because of convexity
and the non-linearity of options payo�s, the notion of an alarm systems optimality in a �nancial
context might have a higher tolerance for false alarm signalling over shorter time horizons. In
fact, an alarm system that signals a lot of false alarms over the 2 month interval might produce
a more pro�table trading strategy provided they detect a su�cient number of those crashes. It
would be interesting to see if buying out of the money put options (american or european) be-
yond the EVT threshold would yield a pro�table trading strategy.

This provides a natural lead into Reinforcement Learning (RL). Indeed, the RUP is essentially
a very simple (yet ingenious) rienforcement learning algorithm. The topic of Q-learning is ex-
tensively discussed in, for example, Jang et al. [2019]. The urn compositions of the RUP can be
analogized to the state transition probabilities of Q-learning and RL algorithms in general. The
last piece is introducing some reward for which Q-learning can learn from. One can incorporate
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the put option strategy just discussed to train a RL model to compare against the RUP.
Following the RL line of reasoning, one can move into the framework of geometric deep

learning, or graph neural networks, to learn the dynamics of the evolution of the quantum ma-
jorization graph. A study of graph neural networks can be found in Zhou et al. [2020]. To date,
models for dynamically growing graph neural networks are seldom but shouldn’t be too di�cult
to generalize into. In which case, one can combine the RUP, RL, and the deep geometric learning
of the quantum majorization graph to predict the dynamics of systemic market risk.

9.3.3 | Compositional Data Analysis

One can also consider the so-called compositional data analysis of Aitchison [1982]. The central
object of interest of this work is the (probability) distribution of a correlation matrices eigenval-
ues. The temporal evolution of the quantum majorization graph is simply a consequence of the
stochastic behavior of the correlation matrices eigenvalues. Since the spectrum is a distribution,
if one wanted to study its statistical properties, we’d be studying a distribution of distributions for
the correlation matrices spectrum. Following Aitchison [1982], one can use the inverse mapping
of the softmax function to map the eigenvalues onto Rd for which any multivariate distribution
can be �tted to de�ne a distribution on the simplex. Learning the statistical properties of the cor-
relation matrices eigenvalues would certainly be interesting. For instance, Karrer and Newman
[2009] propose a random graph model for directed acyclic networks. Understanding the statistics
of our correlation matrices spectra might allow us to predict the dynamics of a correlation matrix
since the probability of majorization is obviously related to how dispersed one spectrum is.

9.3.4 | �antum Thermo-Majorization and D-Majorization

The last suggestion we give for future work concerns the generalization of quantum majorizaton
into the so-called thermo-mjorization and D-majorization. Given two probability distributions
p = {p1, . . . ,pd} and q = {q1, . . . ,qd} one can de�ne the so-called relative Lorenz curve Lα(p,q)
by permuting the elements of p and q where pπ = {pπ(1) , . . . ,pπ(d)

} and qπ = {qπ(1) , . . . ,qπ(d)
}

such that
pπ(1)

qπ(1)

>
pπ(2)

qπ(2)

> · · · >
pπ(d)

qπ(d)

.

where Lα(p,q) de�nes the CDF of the uniform distribution , the diagonal line on the [0, 1]× [0, 1]
unit square, when p = q. In view of the RMT �ltering schemes, we propose one can consider
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p = λ(ρ) the eigenvalues of a correlation matrix, and q = Ω the portfolio weights found as
a result of MPT optimization. As discussed in Bouchaud and Potters [2009], if MPT allocates
large weights to small eigenvalues, then the relative Lorenz curve Lα(λ(ρ),Ω) would be highly
distorted as opposed to being uniform if the weights are proportional to the eigenvalues λ(ρ).
Perhaps the Gini index G[Lα(λ(ρ),Ω)] of Gini [1912], and discussed extensively in Fontanari
et al. [2019], can be used as a measure of out-of-sample risk, to whatever extent one believes
their correlation matrix has been corrupted by meaurement noise.

In view of the connection between quantum majorization and RMT �ltering, it might make
sense for the relative Lorenz curveLα(λ(ρ),Ω) to majorize the relative Lorenz curveLα(ξ(ρ),Ωξ)
between the "cleaned" eigenvalues ξ(ρ) and resulting portfolio weights Ωξ since RMT �ltering
is meant to increase the size of small eigenvalues and decrease the weights assigned to them.
Such a majorization condition Lα(λ(ρ),Ω) � Lα(ξ(ρ),Ωξ) is known as "D-majorization" and
is extensively analyzed by Sagawa [2020]. Such a D-majorization condition could be posed as a
necessary condition for the e�cacy of any RMT �ltering scheme. This might be an interesting
line of research.

Additionally, the quantum majorization condition considered in this work Lα(ρ) � Lα(ρ∗)
can be generalized to the so-called quantum thermo-majorization condition via the quantum rel-
ative Lorenz curves Lα(ρ, I) � Lα(ρ∗, I) where the eigenvalues of ρ, ρ∗, and I are permuted as
per the equation of the relative Lorenz curve above where Lα(ρ) = Lα(ρ, I). This has an interest-
ing connection with the second law of thermodynamics extensively discussed in Sagawa [2020]
where quantum thermo-majorization is taken with respect to a "reference" distribution, or Gibbs
state, ρG via the majorization condition Lα(ρ, ρG) � Lα(ρ∗, ρG). In future work, one can repeat
the work conducted in this thesis by using an appropriate Gibbs state ρG. This approach amounts
to specifying a system Hamiltonian which would be an interesting line of future research.
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