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Abstract

Most physical systems of interest are chaotic in nature, that is, they exhibit strong sensitivity to their

initial conditions and evolve “seemingly random" patterns. Quick and reasonably accurate solutions for

these systems are essential to various fields such as the design of effective control mechanisms, and

early-stage design, amongst others. However, their chaotic nature also leads to them being computa-

tionally expensive to model using traditional numerical techniques. Reduced Order Modelling (ROM)

is an umbrella term that describes any method wherein a system state is projected into a simplified
state space in order to extract meaningful information about its dominant components, and/or make

the system state’s propagation-in-time easier. Traditional ROMs whilst highly effective in capturing

statistical information of a dynamical system, tend to neglect the smaller-energy components responsible

for short-term dynamics. With the rapid advances seen in data-driven approaches over the past

decade, namely in machine learning (specifically deep learning), these methods seem to offer attractive

alternatives to traditional ROM techniques.

Part I of this report sketches out the problem in more detail, and presents the research objective of

this project along with the necessary research questions guiding the investigation. Part II details the

requisite theoretical background, with Chapter 3 detailing the fundamentals of chaotic systems and the

quantification of chaos, and Chapter 4 detailing the fundamentals of modern machine learning. Chap-

ter 5 deals with ROMs, both traditional (Proper Orthogonal Decomposition with Galerkin Projection)

and the different existing ML based approaches, in broad strokes. This chapter also summarises the

advantages and drawbacks of the discussed approaches and identifies the gaps in existing literature.

It is found that there is no consensus on which ML models to use and no real extensive comparative

studies either. Further, there is no unified approach to training the different RNN models, and only one

surveyed study utilises an auto-regressive optimization strategy. This is a major pitfall, since the RNNs

are only trained for single-step prediction but tested on multi-step prediction - a clear contradiction in

the training and testing objectives. Additionally, no studies have been performed on true Runge-Kutta

methods-inspired layering architectures, which show initial promise in increasing prediction horizons at

little additional compute cost. As such, an extensive comparative study is performed, pitting long-short

term memory networks, gated recurrent unit networks and echo state networks against each other.

Further, the effect of RK-inspired layering is tested against a standard single-layer network. Moreover,

the auto-encoders themselves are augmented to try and produce easier-to-model latent spaces. To this

end, the effect of additional contractive loss incorporation is investigated, as is the incorporation of a

self-attention layer in the CNN-based models. Lastly, it is noted that all these methods are trained and

operated on single-parameter-set regimes, whereas for general-purpose prediction a model with the

ability to operate on multiple regimes would be required. For this purpose, the first steps are taken and

multi-regime autoencoders also tested.

Part III describes the methodology adopted, and provides an overview of the general workflow of

programming and testing. It also details the four chaotic systems selected for investigations, namely the

Lorenz ‘63 system, the Charney-DeVore system, the Kuramoto-Sivashinsky system and the Kolmogorov

flow system. Note the progressively increasing complexity of the systems, chosen such to be able to

identify trends across systems.

For the experiments with the auto-encoders, the results are clear. Contractive loss minimizes

the magnitude of the latent space vectors without significantly affecting the reconstruction error or

providing the kind of improved latent spaces as were hoped. The incorporation of attention in the

convolution auto-encoders - in the Kolmogorov flow system - does not have as significant an impact on

the reconstruction errors as do the kernel sizes. This is attributed to the small physical dimensions of

the system tested, wherein the receptive fields of the kernels are able to cover the entire input, thus

negating the need for the kind of global information that attention is used to provide. Additionally,
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the auto-encoders being non-linear processes, are found to be much better at capturing statistical

information than straightforward PCA (as expected), and the results for the respective systems are

discussed in Chapter 9. Lastly, multi-regime auto-encoders are found to be quite feasible, with vividly

separated yet coherently shared latent spaces and minor performance penalties.

Experiments with the RNNs show that additional auto-regressive training campaigns are crucial

in improving the prediction horizons of the back-propagation trained RNNs, and should be adopted

as standard practice, whereas they have little-to-no effects on the predictive performance of the ESN

based models. Further, the RK-inspired layering is found to be only marginally effective at improving

prediction performance, and eventually adding more layers only leads to diminishing results. Lastly,

it is found that echo-state networks outperform or (at their worst) rival the back-propagation trained

RNNs even with these additional tweaks. Add to this their relative ease of training and it becomes clear

the ESNs represent a far more accessible and accurate prediction method.

The report ends with a section offering concluding remarks, as well as recommendations for future

research. The study performed herein and the additional training procedures tested are by no means

exhaustive in nature, but should serve as a clarifying and standardising launch-board for future research.
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1
Introduction

All natural dynamical processes that are of research (and practical) interest - stemming from fields

as differing as climate systems, ocean circulation, fluid dynamics, nonlinear electrodynamics and

optics, and even mechanical systems - are generally governed by partial differential equations, and

possess dynamics occurring at multiple spatio-temporal scales [76, 31, 1, 74, 78]. The study of fluid

dynamics is no exception, and every scale regime is important - with the smallest affecting the largest

and vice-versa1[70]. Adding to this strong multi-scale linkage, is the fact that these systems often possess

high intrinsic dimensionality2. The combination of these factors leads to such systems repeatedly

exhibiting chaotic behaviour, leading to their study through classical techniques being only so effective.

Traditional methods to study such systems have involved two approaches. The first, to identify the

governing equations, and then study the structure and properties of these identified systems through

experimentation and mathematical modelling. This kind of work was the only way to study chaotic

systems before the introduction and wide-scale adoption of computers. Examples of these kinds of

investigations include the works of Rayleigh, Prandtl and Kolmogorov (for turbulent flows) [70]. The

second approach involves using the identified governing equations (and their discovered properties) to

create appropriate discrete models, and then using computers to solve for approximate solutions of these

discrete models [2]. This has become the standard approach to modelling chaotic systems over the past

seven decades. The ability to compute chaotic solutions has ushered in an era of technological advances,

from more efficient airplanes and wind turbines to better designed heart valves and construction

materials. However, this method is not without its pitfalls. The linkage of multi-scale dynamics leads

to a requirement of extremely fine spatial and temporal discretization for a stable solution, which can

be prohibitively expensive. As such, cheaper to compute sub-optimal models of these equations are

employed, all of which use approximations to avoid a full-scale simulation. Examples include Reynolds

Averaged Navier-Stokes (RANS) models, Large Eddy Simulations (LES) and the Euler equations for

compressible flows, among others. Further, their also exists a variety of discretization methods to choose

from (such as Finite Volume Methods, Finite Element Methods, mesh-free Lagrangian methods, et cetera).

While high-fidelity approaches (such as Direct Numerical Simulations) can yield extremely accurate

solutions, their aforementioned computational cost confines them to the research domain. In real-world

applications, simpler yet faster models which can produce reasonable results within realistic time-frames,

are more frequently utilized (such as RANS and LES). Even still, these less-accurate models can be

quite computationally expensive, as is the case for large scale LES. To tackle this, model-reduction

techniques have been proposed, which operate on the assumption that the full-scale system dynamics

are a higher-dimensional representation of the actual core dynamics, taking place in a lower-dimensional

latent space. Thus, these methods aim to construct an optimal reduced space, model the dynamics in

this space and then reconstruct the full-scale system from the propagated reduced space variables. As

can be inferred, errors are introduced at every step of the aforementioned approach, and these classical

reduced order models have found limited (but not non-existent) success in modelling chaotic behaviour

1As is typified in the energy cascade and back-scatter observed in well-developed turbulent flows.

2In traditional discretized systems, the discretized system also ends up possessing an extremely high dimensional state vector.
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[38, 71].

The need for fast and accurate models is even more pronounced in domains where each simulation

is only a single step in a larger multi-query process, such as preliminary design, fluid-dynamic and/or

structural-stress based shape optimization, model-predictive control and non-intrusive system moni-

toring [48, 79, 61, 81]. In such environments, even the aforementioned sub-optimal models can be too

costly, and reduced order models (with all their inaccuracies) are generally settled for. In this context

of fast yet not-very-accurate solutions, switching to the domain of imprecise computation seems only

logical. Specifically, the domain of Machine Learning (ML) has seen rapid growth in the past decade,

both in terms of the mathematical analysis, and the specialized hardware/software frameworks involved.

Indeed, there have been a spate of promising studies in recent years which have shown the potential

of ML based models to serve as surrogates for various chaotic systems, at a fraction of the computation

cost. Even then, naïvely applying traditional ML models to full-order dynamics can be costly, and

other ML based models have been used to reduce the system’s dimensionality. However, each such

study utilises different ML models and/or different training methods, and there seem to be few-to-none

comparative studies to judge them side-by-side. Also, due to the very nature of this rapidly evolving

field, there exist models and techniques that have not yet been explored within the context of chaotic

systems prediction - namely Runge-Kutta methods inspired skip connections. Lastly, the great advantage

of machine learning based systems is that they can learn spatio-temporal co-dependencies directly from

raw data and do not require pre-defined governing equations (as opposed to traditional numerical

solvers). This can be especially useful in cases where it is too tedious to construct a governing equation,

or those where only directly observed data is available.

The aim of this thesis project is twofold. First to perform effective dimensionality reduction by

means of an auto-encoder, and try to augment them so as to produce easier-to-model latent spaces

themselves. To this end, in addition to a standard auto-encoder, a contractive auto-encoder is tested,

along with a novel idea for a multi-regime auto-encoder that has significant consequences for future

research. Second, to investigate the different aspects of time-series modelling using RNNs. These

include bridging the gap between RNN training and testing objectives with the exploration of the effect

of auto-regressive training, as well as performing a comparative study between four popular time series

modelling ML models - the long-short term memory networks, the gated recurrent unit network, the

vanilla (simple) recurrent neural network and the echo state network. Also investigated is the effect

of RK-inspired skip-connected layer architectures when compared to a standard single-layer architecture.

With these goals, this report is organised into five parts. Part I serves as an introduction, and Chapter 2

details the research objective and scope of this project. Part II details the requisite theoretical background,

namely the fundamentals of chaos, machine learning and the traditional numerical techniques used

for data generation, with Chapter 5 providing an overview of the literature on present state-of-the-art

ML-based ROMs. Part III presents the experimental methodology followed and describes the general

workflow of the project, along with the tested chaotic systems. Part IV presents and discusses the results

of this project, with Chapter 9 focusing on discussing the developed auto-encoders and Chapter 10 the

results of the time-series modelling of the combined AE-RNN models. Part V serves as the culmination

of this project report, by offering concluding remarks and detailing the recommendations for future

research directions.



2
Research Questions

This chapter identifies and presents the key research questions based on the goals of this project. It

further lists out the sub-questions contained within each, and their motivations touched upon.

2.1. Identified Research Gaps
As can be gleaned from the various studies presented in Chapter 5, there is no consensus on which ML

models to use. Each study employs and tests different ML models. Further, there is no unified approach

to training the different models, and only one surveyed study utilises an auto-regressive optimization

strategy (for the RNNs). This appears to be a major pitfall in the rest of the studies, since the RNNs

are only trained for a single-step prediction but tested on multi-step prediction. This presents a clear

contradiction in the training and testing objectives.

There is also no true test of RK residual methods. Even the study that tests RK methods, uses a single

ANN to model the time-series as opposed to any RNNs. Further, the network is constructed such that the

ANN essentially learns to predict only the time derivative. This seems less powerful than incorporating

a RK-inspired skip architecture into the residual model itself. Lastly, no studies investigate the possibility

of using these ML based ROMs to model multiple dynamical regimes of a system. This would be crucial

if these methods are to be used as effective surrogates in the kinds of applications mentioned in Chapter 1.

To this end, a comparative study of a broad slice of machine learning based model-free prediction

techniques for chaotic systems is performed. Since chaos is a property also shared by many systems

simpler than fluid dynamical systems, it would be helpful to start by applying these methods to such

systems. This would help build testing/training pipelines, and intuition, before moving on to a fluid

dynamics case. Additionally, effective dimensionality reduction by the auto-encoders is also investigated,

and a contractive-loss penalty is tested to try and produce ‘smoother’ latent spaces. Further, the first step

in the multi-regime modelling paradigm is taken with the tested multi-regime auto-encoders. These

goals lend themselves to the following research questions.

2.2. Research Objective and Questions
Based on the identified knowledge gap, the overarching research objective of this thesis is:

to identify and quantify how accurately are different machine learning based ROMs able to forecast

the evolution of chaotic systems, particularly a fluid dynamical system, and the best strategies for

their training.

In this thesis, chaotic systems of different complexity are considered, starting from low-order systems

governed by a set of ODEs moving on to those governed by PDEs. This progressive increase in

complexity is to help build models and intuition along the way, before finally dealing with a chosen

representative fluid dynamical system. To help achieve this objective, the main research questions are

outlined below:

4
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1. Can the AE be augmented to provide better constructed latent spaces?

(a) Specifically, does the incorporation of a contractive loss improve accuracy? This penalizes the

Jacobian of the latent variable w.r.t. the input variable, which penalizes changes in the latent

variable w.r.t. small changes in the input variable. This can help produce a smoother latent

variable distribution, thereby making its time-series modelling easier.

(b) For the CNN-based AE, how much does the incorporation of self-attention affect accuracy? CNNs excel

at capturing and preserving local interactions, but the same architecture leads them to neglect

global information. Attention can help overcome this, by capturing global dependencies that

the CNN neglects, and should ideally produce more informed lower-level representations.

(c) Can the model parameters be incorporated into the AE architecture in a meaningful way such that
it produces a multi-regime AE? Up till now the analysis focused on systems characterized

by a single value of its dependent parameters. Investigating this sub-question can help

extend the prediction power of the ML-ROM to span multiple regimes, thus making a more

general-purpose ROM.

2. Which series-to-series ML models are better suited to the combined AE-RNN ROM paradigm,
according to a suitably defined prediction horizon (as the accuracy metric)? This will entail the

assessment of various architectures, specifically simple RNNs, LSTMs, GRUs and ESNs will be

considered. This will further be investigated through the following sub-questions:

(a) How is the BPTT-trained RNN1 based model’s accuracy affected when they are trained auto-regressively
vs. when they are trained using teacher-forcing? Teacher-forcing essentially trains them for

one-step-ahead prediction, whereas the auto-regressive training optimizes them for multi-

step-ahead prediction. This tackles the misalignment of the training and testing objectives

mentioned earlier.

(b) How does an additional BPTT-based auto-regressive training campaign affect an already (non-BPTT)
trained ESN based model’s accuracy? ESNs are ‘trained’ using linear regression, which involves

a single matrix inversion. However, this too is teacher-forcing the network, since the output

to match for the regression problem is the next time-step’s output. Thus the networks are

again trained for one-step-ahead prediction, but tested on multi-step-ahead predictions. The

output matrix obtained from the linear regression can be used as its initial value, whereas

the auto-regressive training can be used as a way of fine-tuning it for the multi-step-ahead

prediction task.

(c) How do these ML-based ROMs compare against a traditional POD-Galerkin approach? Are there

improvements in

i. prediction horizons?

ii. long-term statistical behaviour of predicted data?

Answering the above questions solidifies the training procedures for the different RNNs. Then the

layer-connection architecture can be explored satisfactorily by considering the following question:

3. How does layering affect prediction accuracy in BPTT-trained RNNs, specifically GRUs?

(a) How is accuracy affected when using a single layer and multiple layers with RK-inspired skip
connections?

Answering the above research questions leads to achieving the stated research objective, and

successfully concludes this thesis project.

1these being GRUs, LSTMs and simple RNNs
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3
Fundamentals of Chaotic Systems

Dynamical systems are systems that evolve over time. They can be found in every modern field of study,

from history to physics. By creating an appropriate mathematical model, these systems can be studied

in great detail. As mentioned in Chapter 1, all such systems of interest are found to be characteristically

chaotic, necessitating an additional field of study to deal with them - namely chaos theory. This section is

by no means a treatise on the subject, but rather aims to familiarize the reader with some key concepts

and chaos-quantification measures that are useful for the present project.

3.1. Chaotic Attractors, a Brief Overview
In mathematical modelling, an attractor refers to a set of states or values which a dynamical system

tends to orbit over time. It represents the system’s long-term behaviour and provides insights into its

stable patterns or recurrent behaviour. Attractors are a fundamental concept used to understand and

analyze dynamical systems across various disciplines.

In chaos theory, chaotic attractors are fascinating and intricate patterns that emerge in dynamical

systems characterized by sensitive dependence on initial conditions. These attractors are central to

understanding chaotic behaviour and are often associated with complex and unpredictable dynamics.

Chaotic attractors exhibit a few defining characteristics. First and foremost, they are nonperiodic, and do

not repeat in a regular, predictable manner. Instead, chaotic attractors display a seemingly random and

ever-changing nature. This property arises from the system’s extreme sensitivity to initial conditions,

often referred to as the ‘butterfly effect’. Even the tiniest perturbation in the initial state can lead

to drastically different outcomes over time, causing trajectories to diverge and explore the system’s

phase space in intricate patterns. This was first observed and reported on by Edward Lorenz [49] (see

Figure 3.1).
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Figure 3.1: The well-known Lorenz attractor.

The exploration of chaotic attractors is not limited to mathematical curiosity; it has practical

implications across numerous fields. In physics, chaotic behaviour can be observed in celestial

mechanics, fluid dynamics, and even in simple systems like double pendulums. Chaotic attractors have

been instrumental in understanding weather patterns, as even small changes in initial conditions can

have a profound impact on long-term weather forecasts.

3.2. Quantifying Chaos
Owing to their non-periodic and sensitive nature, chaotic systems require certain additional techniques

in order to glean meaningful information about them. Quantifying chaos involves employing various

methods and measures to analyze the complexity, unpredictability, and sensitivity to initial conditions

exhibited by these systems. These quantitative approaches provide insights into the nature of chaotic

dynamics and help distinguish them from regular or random behaviour. Some of the key methods used

to quantify chaos are listed below [5, 56]:

1. Lyapunov Exponents: Lyapunov exponents characterize the rate of exponential divergence or

convergence of nearby trajectories in phase space. Positive Lyapunov exponents indicate sensitive

dependence on initial conditions and chaotic behaviour, while zero or negative exponents suggest

stability or convergence. The largest Lyapunov exponent is often used as an indicator of chaos.

2. Fractal Dimensions: Chaotic attractors possess intricate and self-similar structures. Fractal

dimensions measure the complexity and space-filling nature of these attractors. Methods such as

box-counting and correlation dimension estimation are used to estimate the dimensionality of a

chaotic attractor, revealing the system’s self-similarity and complexity.

3. Power Spectra and Fourier Analysis: Chaotic signals often exhibit a broad range of frequencies

due to their complex and non-periodic nature. Power spectra and Fourier analysis are used to

examine the frequency content of chaotic systems. These methods help identify the presence of

different frequency components and provide insights into the system’s dynamics.

4. Recurrence Plots and Recurrence Quantification Analysis (RQA): Recurrence plots visualize

recurrent behaviour in chaotic systems. They represent the times at which states revisit a specific

region in phase space. RQA measures, such as recurrence rate, determinism, and entropy, quantify

the presence of patterns, predictability, and complexity of recurrent behaviour in chaotic systems.

5. Entropy Measures: Entropy measures capture the complexity and information content of a

system’s dynamics. The Kolmogorov-Sinai entropy (also known as metric entropy) characterizes
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the rate at which information about initial conditions is lost due to sensitivity and divergence

in chaotic systems. Permutation entropy and other entropy-based measures provide additional

insights into the complexity and randomness of a system’s behaviour.

6. Poincaré Maps and Return Time Statistics: Poincaré maps are two-dimensional slices of a

higher-dimensional chaotic attractor. They capture the intersections of the trajectory with a

specific plane or surface in phase space. Analyzing the return time statistics of these intersections

provides information about the periodic or chaotic nature of the system and the distribution of

time intervals between successive returns.

7. Bifurcation Diagrams: Bifurcation diagrams illustrate the different attractors and their stability as

control parameters are varied in a system. They help identify critical points where qualitative

changes occur, leading to the emergence of new attractors or transitions from stable to chaotic

behaviour.

Of interest to this project are the first two measures, which are discussed in further detail below.

3.2.1. Lyapunov Exponents
In the context of chaos theory, Lyapunov exponents are a fundamental concept used to quantify the

degree of chaos and the sensitivity to initial conditions exhibited by dynamical systems. They provide

valuable insights into the exponential divergence or convergence of nearby trajectories in a system’s

phase space. These exponents measure the average rate at which nearby trajectories in the system’s

phase space separate or come together. Positive Lyapunov exponents indicate chaotic behaviour, while

zero or negative exponents indicate stability or convergence [35, 64].

To understand Lyapunov exponents, consider a system described by a set of differential equations or

iterative equations that govern its evolution over time. The phase space of the system represents all

possible states or configurations of the system. Trajectories in phase space represent the evolution of

the system starting from different initial conditions. The Lyapunov exponents quantify the divergence

or convergence of nearby trajectories in the system’s phase space. They are defined as the average

exponential growth rates of the distances between nearby trajectories over time:

|z1(𝑡) − z2(𝑡)| ∝ |z1(𝑡0) − z2(𝑡0)|𝑒Λ(𝑡−𝑡0)
(3.1)

For a system with 𝑛-dimensional phase space, there are 𝑛 possible orthogonal ways of choosing

|z1(𝑡0) − z2(𝑡0)| and hence 𝑛 Lyapunov exponents, each associated with a particular direction in the

phase space. The largest Lyapunov exponent, also known as the maximal Lyapunov exponent (MLE),

denoted as Λ𝑀𝐿𝐸, is of particular interest. It characterizes the dominant exponential growth rate of

nearby trajectories and serves as an indicator of the system’s sensitivity to initial conditions. If Λ𝑀𝐿𝐸 is

positive, the system exhibits sensitive dependence on initial conditions, and even tiny differences in the

initial conditions can lead to significantly divergent trajectories over time.

Lyapunov exponents can be computed numerically using iterative methods such as the Gram-

Schmidt process or by analyzing the evolution of tangent vectors in the system’s phase space. In practice,

the computation of Lyapunov exponents requires tracking the trajectories of a set of nearby initial

conditions and calculating the exponential growth rates of their separations.

Lyapunov Time
Lyapunov time is a handy measure to non-dimensionalize the time-axis when comparing results across

chaotic systems. Noting the presence of the MLE in the exponent, and that 𝑒Λ(𝑡−𝑡0) = 𝑒
𝑡−𝑡

0

1/Λ
, it is defined

as 𝑡𝐿 = 1/Λ𝑀𝐿𝐸. This is an effective normalisation measure, and the measure of a ‘prediction horizon’ is

also defined with its help.

3.2.2. Fractal Dimensions
While a chaotic system can exhibit its dynamics in an 𝑛-dimensional phase space, the structure of its

attractors can usually be described accurately within a much smaller dimensional space. The Lyapunov
dimension (also known as the Kaplan-Yorke dimension) provides an estimate of the Hausdorff

dimension of the chaotic attractor (see [23] for an exact definition). A higher Lyapunov dimension
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implies a more complex and intricate attractor. It is derived from the Lyapunov exponents, which as

mentioned above quantify the exponential divergence or convergence of nearby trajectories in a chaotic

system.

The Kaplan-Yorke conjecture states that the sum of the positive Lyapunov exponents converges to a

finite value, and the Lyapunov dimension is equal to the Hausdorff dimension. This conjecture allows

us to estimate the fractal dimension of chaotic attractors using the Lyapunov exponents, providing a

practical method for characterizing the complexity of chaotic systems:

dim𝐿𝑦𝑎𝑝𝑆 = 𝑗 +
∑𝑗

𝑖=1
Λ𝑖

|Λ𝑗+1 |
(3.2)

where 𝑆 is the set of all possible chaotic trajectories, Λ𝑖 is the 𝑖th Lyapunov exponent1, and 𝑗 is the

last index where

∑𝑗

𝑖=1
Λ𝑖 ≥ 0. Further details and extensive examples can be found in [30]. The

Kaplan-Yorke conjecture is particularly significant because it relates the quantitative measure of chaos,

captured by the Lyapunov exponents, to the qualitative measure of complexity, captured by the fractal

dimension. It establishes a connection between the dynamical behaviour and the topological properties

of chaotic systems.

While the Kaplan-Yorke conjecture has been validated for many chaotic systems, it is important to

note that it is not universally applicable. However, in the commonly encountered chaotic systems, the

conjecture holds true and provides valuable insights into the fractal dimensions of chaotic attractors.

This can be interpreted as the minimum number of effective dimensions needed to represent the system,

which is helpful in deciding the dimensions of the latent space of the auto-encoders.

1after having been arranged in a descending order



4
Fundamentals of Machine Learning

In order to develop machine learning models for dynamical systems, it is important to understand

the concepts underlying modern day ML. This chapter details the mathematical concepts and training

strategies that modern ML, and especially deep learning, rely on. It also outlines certain kinds of model

architectures with specific purposes such as model order reduction and series-to-series transformations

which will be useful in this project.

4.1. Fundamentals of Machine Learning
4.1.1. The Artificial Neuron
The artificial neuron is a crude approximation of the functioning of a biological neuron, that nonetheless

serves as the bedrock for most modern machine learning methods [32]. A single artificial neuron takes

a vector 𝒙 as input, performs a dot product on it with its weight vector 𝒘 and adds a bias term to it.

Finally, it passes this computation through an activation function, which is generally nonlinear in nature.

Diagrammatically it is represented in Figure 4.1.

Figure 4.1: Flowchart of an artificial neuron.

The output 𝑦 can be formally written as:

𝑦 = 𝑓 (𝒘𝑇𝒙 + 𝑏) (4.1)

4.1.2. The Feed-Forward Artificial Neural Network
Stacking artificial neurons together yields a densely connected layer, whose output vector 𝒚 can then be

written as 𝒚 = 𝑓 (𝑾𝑇𝒙 + 𝒃), where:

• 𝑾 is the weight matrix of the layer, and each column is the weight vector of one of the neurons in

the layer,

11
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• 𝒃 is the vector formed from the concatenation of all the biases of the layer’s neurons and

• 𝑓 is applied elementwise on its argument.

This layer of neurons forms the building block of all feed-forward Artificial Neural Networks (ANNs).

Just as the neurons were stacked to create a layer, the layers can be stacked (with the output of one layer

being fed as input to the next) to form a densely connected feed-forward ANN (as shown in Figure 4.2).

𝑥1

𝑥2

𝑥3

𝑥4

𝑦1

𝑦2

Hidden

layer #1

Hidden

layer #2

Input

layer

Output

layer

Figure 4.2: A feed-forward ANN.

4.1.3. The Activation Function
The choice of the activation function 𝑓 is important as it directly impacts the output of an ANN and the

computational resources used (for both training and inference). The activation function is also the only

place where a nonlinearity is injected into the network. Different kinds of activation functions exist, and

some popular choices are listed below [32]:

• Linear - 𝑓 (𝑥) = 𝑥

• Sigmoid - 𝑓 (𝑥) = 1

1+𝑒−𝑥

• Hyperbolic tangent (tanh) - 𝑓 (𝑥) = 1−𝑒−2𝑥

1+𝑒−2𝑥

• Rectified Linear Unit (ReLU) - 𝑓 (𝑥) =
{

0 if 𝑥 < 0

𝑥 if 𝑥 ≥ 0

• Leaky ReLU - 𝑓 (𝑥) =
{
−𝛼𝑥 if 𝑥 < 0

𝑥 if 𝑥 ≥ 0

(𝛼 is a small positive number)

• Exponential Linear Unit (ELU) - 𝑓 (𝑥) =
{
−1 + 𝑒𝑥 if 𝑥 < 0

𝑥 if 𝑥 ≥ 0

The sigmoid is the classically popular activation function that was eventually phased out in favour of

the hyperbolic tangent. These two functions, however, have a ‘quashing’ effect wherein substantially

positive/negative inputs tend to get ‘saturated’ around the limits of their (respective) outputs. While

this might be seen as a desirable property in the output layers as it naturally bounds the output, it is not

very useful for the hidden layers [32]. In the hidden layers often a near-linear activation function - like

the ReLU (or one of its variants) - is used so that the gradient does not get ‘zeroed out’ for large layer

inputs.

4.1.4. Universal Approximation Theorem
The universal approximation theorem [32, 40] states that any multi-layer feed-forward ANN with a

linear output layer and at least one hidden layer with a quashing function is capable of representing

a Borel measurable function from one finite dimensional space to another to any desired degree of

(non-zero) accuracy, provided sufficient hidden units are available. A discussion on Borel sets and the
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Borel measure is beyond the scope of this study, but suffice it to say that the discrete representations of

the dynamical systems described in Chapter 6 fall into this category.

While this theorem was initially stated for quashing functions, similar approximation theorems

have also been proved for other classes of activation functions, such as the ReLU [47]. All of these

approximation theorems point to the fact that the dynamics of a chaotic system are indeed ‘learnable’

by a sufficiently large ANN.

4.1.5. Stochastic Gradient Descent
There are several heuristic training algorithms for optimizing the weights of an ANN w.r.t. a defined

cost function - such as Newton’s method, genetic algorithms, conjugate gradient method, et cetera

- however, of interest to this study is only the Stochastic Gradient Descent (SGD) method [32]. It is

arguably the most widely used heuristic training algorithm and a wildly popular choice for optimizing

the weights and biases of an ANN.

To build intuition, consider the function 𝑦 = 𝑓 (𝑥). Through simple calculus, 𝑓 (𝑥 + 𝜖) ≈ 𝑓 (𝑥) + 𝜖∇𝑥 𝑓 ,
for small values of 𝜖. Then, one way of minimizing 𝑦 is to find 𝜖 such that 𝑓 (𝑥 + 𝜖) < 𝑓 (𝑥). This can

be ensured if the term 𝜖∇𝑥 𝑓 is negative, which can be achieved if 𝜖 is of the form 𝜖 = −𝜂∇𝑥 𝑓 . This

gives 𝑓 (𝑥 + 𝜖) = 𝑓 (𝑥) − 𝜂|∇𝑥 𝑓 |2. Thus, this outlines an indirect method to minimize 𝑦 by affecting tiny

changes to 𝑥.

In the context of ANNs, 𝑦 from the previous discussion is the cost function 𝐽(𝜽) (which is to be

minimized), and 𝑥 is 𝜽 (the weights and biases of the ANN). The entire procedure then boils down to

two steps:

• selecting a suitable value for 𝜂 (known as the learning rate) and

• selecting an appropriate way of computing/approximating ∇𝜽 𝐽(𝜽)

The original gradient descent algorithm approximates the gradient of the cost function over the

entire set of training samples using the empirical probability over the training data as follows:

∇𝜽 𝐽(𝜽) = E𝒙 ,𝑦∼�̂�
data

(𝒙 ,𝑦) [∇𝜽𝐿 ( 𝑓 (𝒙;𝜽), 𝑦)]

=
1

𝑚

𝑚∑
𝑖=1

∇𝜽𝐿
(
𝑓 (𝒙 𝑖 ;𝜽), 𝑦 𝑖

)
(4.2)

where:

• 𝐽(𝜽) = E𝒙 ,𝑦∼�̂�
data

(𝒙 ,𝑦) [𝐿 ( 𝑓 (𝒙;𝜽), 𝑦)] and 𝐿
(
𝑓 (𝒙 𝑖 ;𝜽), 𝑦 𝑖

)
is an appropriately defined loss function

per sample 𝒙 𝑖 ,
• �̂�data(𝒙 , 𝑦) is the probability distribution of the training data, and 𝑚 is the total number of samples

available in the training data.

As can be seen, the cost of a single update grows linearly with the sample size 𝑚. Nowadays it is

not uncommon to have hundreds of thousands of training samples, which makes gradient descent in

this form prohibitively expensive. A simple tweak that results in faster convergence and lesser overall

computational effort arises from the observation that the LHS in Equation 4.2 is simply an expectation of

the gradient. This expectation can be computed over a smaller number 𝑚′
of randomly drawn samples,

an update performed, and this process repeated until the entire training data set is exhausted. These

smaller baskets of samples are called ‘mini-batches’, and this procedure is known as the Mini-batch

Stochastic Gradient Descent or simply the Stochastic Gradient Descent.

This still leaves the task of computing the gradient ∇𝜽𝐿 ( 𝑓 (𝒙;𝜽), 𝑦) for a particular sample. This is

done using automatic differentiation and back-propagation, the details of which can be found in [32].

The optimal choice of 𝜂 and 𝑚′
is still an area of research and often stems from the researcher’s own

experience with training ML models. They are canonically referred to as hyper-parameters.

4.1.6. Regularization
A key concern with trained ANNs is how well they generalize to data unseen during training. To

that end, strategies exist to reduce the test error (possibly at the expense of training error), and these

strategies are collectively known as regularization [32]. Listed below are some of the commonly used

regularization techniques:
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• Penalty based regularization
The common theme here is to add an additional penalty to the cost function as:

𝐽(𝜽) = E𝒙 ,𝑦∼�̂�
data

(𝒙 ,𝑦) [𝐿 ( 𝑓 (𝒙;𝜽), 𝑦)] + 𝜆𝑝𝑒𝑛𝑎𝑙𝑡𝑦Ω ( 𝑓 (𝒙;𝜽), 𝒚, 𝜽)

where 𝜆𝑝𝑒𝑛𝑎𝑙𝑡𝑦 is a hyper-parameter that determines how much the penalty Ω ( 𝑓 (𝒙;𝜽), 𝒚, 𝜽) affects

the cost function. This is a compelling idea, of letting the learning strategy itself optimize the new

cost function and regularize the ANN. It is also easy to program since it does not require any

changes to the network or the learning strategy other than the augmented cost function. Common

choices for the function Ω (�̂�, 𝒚, 𝜽) include the 𝐿1
and 𝐿2

norms of 𝜽 [32].

• Noise robustness
Noise can be added to the inputs, hidden units, outputs, and weights during training. The various

analyses are provided in [32], and the underlying current through all these augmentations is that

noise-injection is a stochastic implementation of Bayesian inference over the quantities to which it

is added. This generally results in a network that has been galvanized against variations in the

noise-injected quantities and a more robust ANN overall.

• Dropout
Dropout is a particular method of noise-injection in the hidden units that merits its own separate

mention. It is a practical (stochastic) method of training an ensemble of networks without actually

having to train multiple networks. At every weight update step, some non-output hidden units

are randomly selected and set to zero. An in-depth discussion can be found in [32].

• Early stopping
Typically learning curves during the training of an ANN look like the one shown in Figure 4.3.

The training loss keeps on reducing with every epoch. However, the validation loss drops to a

point and eventually starts increasing. This signals over-fitting - where the ANN starts to model

the training data better and better but, in the process, loses out on its ability to generalize on

unseen data. To combat this, a general strategy is presented. A copy of the parameters 𝜽 is stored

every time the validation loss improves. In parallel, a count of the number of epochs for which

the validation has not improved is also kept. If this count exceeds a pre-defined value (called

patience), the training is halted and the parameters restored to the stored ones (corresponding to

the best achieved validation loss). It can be seen as a computationally efficient way of selecting a

hyper-parameter - the number of training epochs.

Figure 4.3: Typical loss curves obtained during training [32].

4.2. Generative Adversarial Networks and Autoencoders
Generative Adversarial Networks (GANs) are a kind of ML algorithm/framework that involves the

simultaneous training of two networks pitted against each other in an adversarial manner (hence the

name). The goal here is to develop a generative model that serves as a mapping from a latent space

(that the data is hypothesized to reside in) to the data itself, where the model successfully approximates

the probability 𝑝𝑑𝑎𝑡𝑎(𝒙). The first network is called the Generator, and its task is to learn a mapping from

the latent space to the space of the data. In contrast, the second network is called a Discriminator, and its

task is to predict whether a given input was generated by the generator or belongs to the actual data.

The combined cost function can then be written as:

𝐽(𝜽𝐺 , 𝜽𝐷) = E𝒙∼�̂�
data

(𝒙) [𝐿 (𝒟 (𝒙))] + E𝒛∼𝑝
latent space

(𝒛) [𝐿 (1 − 𝒟 (𝒢(𝒛)))]
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where 𝐿 is an appropriate loss function, 𝒢(𝒛) is the output of the generator, 𝒟(𝒙) is the output of the

discriminator (which is the probability that its input is fake, i.e. produced by the generator). Further

details can be found in [32, 33], but this is sufficient to motivate a discussion on Autoencoders.

Autoencoders are a ML strategy that seeks to find a meaningful alternative representation of a

given data set and be able to decode that representation such that the reconstruction error is minimized

[6]. Like GANs, they too consist of two ANNs placed adversarially against each other and trained

simultaneously. The Encoder network takes as input a sample drawn from the data distribution 𝑝
data

(𝒙).
It produces an encoded representation (said to reside in the latent space). The decoder, on the other

hand, takes a sample drawn from the latent space’ distribution 𝑝
latent space

(𝒛) and aims to produce data

points distributed according to the original data distribution 𝑝
data

(𝒙). In practice, this boils down to

minimizing the following cost function:

𝐽(𝜽
encoder

, 𝜽
decoder

) = E𝒙∼�̂�
data

(𝒙) [𝐿(𝒟(ℰ(𝒙)), 𝒙)]

where 𝐿 is an appropriate reconstruction error function (generally the mean squared error function),

ℰ(𝒙) is the encoded representation produced by the encoder and 𝒟(𝒛) is the reconstructed vector

produced by the decoder. All the regularization techniques mentioned in subsection 4.1.6 can be applied

here, and an in-depth discussion is provided in [6]. Note that if the latent space is defined to have a

lower dimensionality than the original data, then the autoencoder can potentially find a meaningful

compressed representation of the original data Figure 4.4.

Figure 4.4: An autoencoder setup that is tasked with finding a compressed representation of the original data [6].

An interesting kind of autoencoders worth mentioning here are contractive autoencoders, wherein an

additional penalty is added to the cost function. This penalty is the Frobenius norm of the Jacobian of

ℰ(𝒙) w.r.t 𝒙 [6]. This penalty seeks to minimize the variation in the encoded representation w.r.t. small

changes in the encoder input. This should, in theory, result in a smooth latent space representation if

the data being encoded is smooth - which is the case in all the systems mentioned in Chapter 6.

4.3. Networks for Series to Series Transformations
So far, the models mentioned act on individual samples, assuming no correlation between those samples.

This section describes specialized ANNs that act on series of sequential data, actively considering the

fact that the samples are drawn form a coherent sequence. This family of ANNs is called Recurrent
Neural Networks (RNN), and the critical feature shared amongst all its members is the presence of a

hidden cell state that is passed along and captures some information about the data seen by the ANN so

far. Figure 4.5 is a diagrammatic representation of an RNN, and the arrow originating and ending at the

hidden unit represents the passed-along hidden state (i.e. the recurrence). Such networks can be trained

using the same SGD strategy described in subsection 4.1.5, with the gradient computed using a tweaked

back-propagation algorithm called Back-Propagation Through Time (BPTT). This unrolls the network in

time (as shown in Figure 4.6) and then computes the gradients using regular back-propagation [32].
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Figure 4.5: Typical graph of an RNN [32]. Figure 4.6: Unrolled graph of an RNN [32].

4.3.1. Simple RNN
The simple RNN is one of the least complicated RNNs. It consists of a single hidden cell state that is

updated at every time step and is also used to produce the output. Its update equations are provided

below:

𝒂(𝑡) = 𝑾 ℎℎ𝒉
(𝑡−1) +𝑾 ℎ𝑥𝒙

(𝑡) + 𝒃ℎ (4.3)

𝒉(𝑡)
= tanh

(
𝑎(𝑡)

)
(4.4)

𝒐(𝑡) = 𝑾 𝑜ℎ𝒉
(𝑡) + 𝒃𝑜 (4.5)

This simple setup performs extremely well at learning time series representations, however it suffers from

the well-known vanishing/exploding gradient problem [32] which can make its training challenging.

4.3.2. Long Short-Term Memory Networks
As mentioned in the previous section, simple RNNs suffer from an unstable gradient, either vanishing

or exploding, thus making the learning of long-term dependencies tough. Long Short-Term Memory

Networks (LSTMs) are a cell architecture to combat the vanishing gradient problem, by introducing

memory cells, and were proposed by Hochreiter and Schmidhuber in [39]. These cells are self-recurrent

neurons, with input, forget and output gates which determine how much of the input’s information to

use, how much of the previous state’s information to forget and how much to pass on (respectively).

This is one of the earliest examples of a gated RNN architecture where instead of all information from

the inputs and the hidden states being propagated forward, some is purposefully ‘forgotten’ [75, 32]. Its

update equations are provided below, and the cell’s architecture is shown in Figure 4.7.

(input gate) 𝒊(𝑡) = 𝜎
(
𝑾 𝑖ℎ𝒉

(𝑡−1) +𝑾 𝑖𝑥𝒙
(𝑡) + 𝒃𝑖

)
(4.6)

(forget gate) 𝒇 (𝑡) = 𝜎
(
𝑾 𝑓 ℎ𝒉

(𝑡−1) +𝑾 𝑓 𝑥𝒙
(𝑡) + 𝒃 𝑓

)
(4.7)

(output gate) 𝒐(𝑡) = 𝜎
(
𝑾 𝑜ℎ𝒉

(𝑡−1) +𝑾 𝑜𝑥𝒙
(𝑡) + 𝒃𝑜

)
(4.8)

(candidate cell memory) �̃�
(𝑡)

= tanh

(
𝑾 𝑐ℎ𝒉

(𝑡−1) +𝑾 𝑐𝑥𝒙
(𝑡) + 𝒃𝑐

)
(4.9)

(updated cell memory) 𝑪(𝑡) = 𝒊(𝑡) ◦ �̃�
(𝑡) + 𝒇 (𝑡) ◦ 𝑪(𝑡−1)

(4.10)

(updated output) 𝒉(𝑡)
= 𝒐(𝑡) ◦ tanh

(
𝑪(𝑡)

)
(4.11)
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Figure 4.7: An LSTM cell and its inner connections [75].

4.3.3. Gated Recurrent Units
Gated Recurrent Units (GRUs) were first proposed by Cho et al. in [14] as an improvement over a simple

RNN cell for modelling long-term dependencies. This cell architecture also uses gates - the update and

reset gates - and, just like the LSTM, manages to avoid the vanishing gradient problem. Its update

equations1 are given below, and the cell’s architecture is shown in Figure 4.8.

(update gate) 𝒛(𝑡) = 𝜎
(
𝑾 𝑧ℎ𝒉

(𝑡−1) +𝑾 𝑧𝑥𝒙
(𝑡) + 𝒃𝑧

)
(4.12)

(reset gate) 𝒓 (𝑡) = 𝜎
(
𝑾 𝑟ℎ𝒉

(𝑡−1) +𝑾 𝑟𝑥𝒙
(𝑡) + 𝒃𝑟

)
(4.13)

(candidate activation) �̃�
(𝑡)

= tanh

(
𝑟(𝑡) ◦

(
𝑾 ℎℎ𝒉

(𝑡−1)
)
+𝑾 ℎ𝑥𝒙

(𝑡) + 𝒃ℎ
)

(4.14)

(updated activation) 𝒉(𝑡)
= 𝒛(𝑡) ◦ �̃�

(𝑡) +
(
1 − 𝒛(𝑡)

)
◦ 𝒉(𝑡−1)

(4.15)

Figure 4.8: A GRU cell and its inner connections [3].

This cell architecture, while safe from the vanishing gradient problem, is still prone to the exploding

gradient problem, much like the LSTM. It has been reported in [15] (and numerous studies since) that

GRUs perform comparably to LSTMs. As can be gleaned from the fewer update equations and a missing

gate, they are also more computationally efficient than an LSTM cell.

4.3.4. Echo State Networks
The RNNs described thus far are all trained using BPTT, and prone to unstable gradients. Additionally,

the training itself is quite computationally expensive making it time-consuming and resource-heavy.

An easier alternative was proposed by Jaeger in [41], called Echo State Networks (ESNs). These class

of models are a subset of what has now been come to known as Reservoir Computing (RC). The key

insight here is that for a sufficiently large and adequately initialized ‘reservoir’ (the recurrent matrix in a

simple RNN), not all the weights need to be trained. Only optimizing the weights of the output layer is

1These are the so-called ‘gate after’ equations, where the reset gate is applied after the matrix multiplication 𝑾 ℎℎ𝒉
(𝑡−1)

. This

formulation has lately become the standard, having lent itself to a more efficient GPU implementation as compared to the original

(where the reset gate was applied to 𝒉(𝑡−1)
before the multiplication with 𝑾 ℎℎ ).



4.3. Networks for Series to Series Transformations 18

sufficient to learn an effective series-to-series representation. The update equations are given below:

(candidate activation) �̃�
(𝑡)

= tanh

(
𝑾 𝑖𝑛𝒙

(𝑡) +𝑾 𝑟𝑒𝑠𝒉
(𝑡−1) + 𝒃ℎ

)
(4.16)

(updated activation) 𝒉(𝑡)
= (1 − 𝛼)𝒉(𝑡−1) + 𝛼�̃�

(𝑡)
(4.17)

(updated output) �̂� = �̂� 𝑜𝑢𝑡𝒉
(𝑡) + 𝒃𝑜 (4.18)

where 𝑾 𝑖𝑛 is the input matrix, 𝑾 𝑟𝑒𝑠 is the ‘reservoir’, �̂� 𝑜𝑢𝑡 is the output matrix and 𝛼 is the leaking

rate (𝛼 ∈ (0, 1]). Note that �̂� 𝑜𝑢𝑡𝒉
(𝑡) + 𝒃𝑜 = 𝑾 𝑜𝑢𝑡

[
1; 𝒉(𝑡)

]
, where the 𝑾 𝑜𝑢𝑡 is simply �̂� 𝑜𝑢𝑡 concatenated

column-wise with 𝒃𝑜 .
With these equations, the ESN setup task is then:

• setup 𝑾 𝑖𝑛 and 𝑾 𝑟𝑒𝑠 suitably (these weighs are fixed and not updated during training),

• train the weights of 𝑾 𝑜𝑢𝑡 such that the cost function 𝐽(𝜽) = E𝒙∼𝑝𝑑𝑎𝑡𝑎 (𝒙) [𝐿 (�̂�, 𝒚)] (𝐿 being some

pre-defined loss function and �̂� the output of the ESN for the input 𝒙) is minimized.

Taking the loss 𝐿 to be the mean square error function, the weights of the matrix 𝑾 𝑟𝑒𝑠 can be

computed using least squares regression, as opposed to using SGD. This has the benefit of greatly

speeding up the training of an ESN when compared to other RNNs that rely on BPTT for weight

optimization. This can be done as follows:

𝑾 𝑜𝑢𝑡 = 𝒀 �̂�
𝑇
(
�̂� �̂�

𝑇
)−1

(4.19)

where:

• 𝒀 ∈ R𝑛𝑦×𝑛𝑇 is the column-wise concatenation of all 𝒚 (the true output) and

• �̂� ∈ R(𝑛ℎ+1)×𝑛𝑇
is the column-wise concatenation of all

[
1; 𝒉(𝑡)

]
(the concatenated activation).

The inverse term in Equation 4.19 may not exist if �̂� �̂�
𝑇

is singular or poorly conditioned. To combat

this, a small additive matrix is added to it as follows:

𝑾 𝑜𝑢𝑡 = 𝒀 �̂�
𝑇
(
�̂� �̂�

𝑇 + 𝛽𝑰
)−1

(4.20)

While this addition is primarily done to aid in the numerical stability when taking the inverse, it is

well-known that this term, when viewed through the lens of the cost function, is equivalent to adding

an additional 𝐿2
-norm penalty:

𝐽(𝜽) = E𝒙∼𝑝𝑑𝑎𝑡𝑎 (𝒙) [𝐿 (�̂�, 𝒚)] +
𝛽

2

∥𝑾 𝑜𝑢𝑡 ∥
2

(4.21)

What is now left is to see how to set up the matrices 𝑾 𝑖𝑛 and 𝑾 𝑟𝑒𝑠 , and how to choose 𝛼. A detailed

discussion on both parameter tuning and the respective influences of 𝑾 𝑖𝑛 and 𝑾 𝑟𝑒𝑠 on the output can

be found in [50]. Only a few salient points are touched upon below:

• The Input Matrix, 𝑾 𝑖𝑛
Elements of 𝑾 𝑖𝑛 are taken from a uniform distribution in the interval [−𝑎, 𝑎], where 𝑎 is known as

the input scaling. It serves to scale and shift the input before it is fed into the reservoir. Canonically

𝑾 𝑖𝑛 has been taken to be a dense matrix, but in recent years it has been noticed that making

𝑾 𝑖𝑛 sparse has no discernible effect on the outputs. Thus, the only important parameter here is

the input scaling 𝑎, since it determines how non-linear the reservoir responses are (by virtue of

residing within the argument of tanh(·) in Equation 4.12). For linear tasks, 𝑎 should be small, thus

allowing the tanh(·) to operate in its linear region. A similar argument can be made for nonlinear

tasks, although a large input scaling could saturate the tanh(·) leading to worse results.
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• The Reservoir, 𝑾 𝑟𝑒𝑠
As described in [50], the reservoir really serves two purposes. Firstly, much like a kernel method

it serves as a higher dimensional expansion of the input, where the dynamics of the system are

hopefully easier to predict. Second, it also serves as the memory of the ESN, telling it which values

and how much of them to pass on. Thus, this is a crucial aspect of ESNs, and a poorly initialized

reservoir will lead to poorly positioned outputs. Three things determine the reservoir, its size, its

sparsity and its spectral radius.

– The size of the reservoir 𝑛ℎ is specified in [50] to be at least 𝑛𝑥 × �̂�𝑇 where �̂�𝑇 is the number

of time-steps the reservoir is expected to remember. However, it is also noted in [50] that

the non-linear dynamics typically can lend themselves to reservoirs with acceptable sizes

smaller than 𝑛𝑥 × �̂�𝑇 . Anecdotal evidence points to 10
2𝑛𝑥 being a good initial guess.

– It is recommended to make the reservoir highly sparse by setting most of the weights to zero

[41, 50]. This has the added benefit of sped-up computations. Lukoševičius notes that the

degree of sparsity has little effect on the final outputs and is not that important a parameter.

– The spectral radius 𝜌(𝑾 𝑟𝑒𝑠) is perhaps the most important parameter of the reservoir. It is the

maximum of the absolute value of the eigenvalues of 𝑾 𝑟𝑒𝑠 . It is crucial to the functioning of

an ESN that the reservoir satisfy the so-called ‘echo state property’, which (loosely speaking)

states that for a long enough input history of 𝒙, the reservoir state 𝒉 should not depend on

the initial conditions. Large values of 𝜌 can lead to reservoirs that violate this property and

in general 𝜌 < 1 enforces the echo state property. However, these are not axioms, and it is

possible to have reservoirs with 𝜌 < 1 that violate the echo state property and those with

𝜌 > 1 that satisfy it.

• The choice of 𝛼 is harder to make, and must be set through trial and error. Lukoševičius provides

a rough comparison between 𝛼 and Δ𝑡 in an Euler time-stepping scheme in [50], but even they

note that there is no analytical way to compute it.

4.4. Summary
An overview of the basics of machine learning is provided in this chapter, along with a general purpose

gradient based optimization method and generalization-ability enhancing devices (regularization).

Further, a machine learning based strategy to produce reduced-order representations is outlined in the

section on auto-encoders, and various state-of-the-art network models for handling time-series data are

also outlined in their respective sections.



5
Reduced Order Modelling

This chapter provides a foundational overview of reduced order modelling (ROM) techniques, offering

insights into the fundamental concepts and principles that underpin this field. Covered here are the

basics of traditional ROM (based on proper orthogonal decomposition and Galerkin projection) along

with a review of existing literature on machine learning based ROM techniques.

5.1. Classical POD with Galerkin Projection
5.1.1. Proper Orthogonal Decomposition
Proper Orthogonal Decomposition (POD) is closely related to the concept of Principal Component

Analysis (PCA) from statistics. It can in fact, be seen as a simple application of PCA to dynamical data.

It was first applied to the analysis of turbulence by Lumley in [52, 51] and has since been applied to a

host of other non-linear chaotic systems [37, 8, 9, 62]. The principle driving POD is to find a reduced

basis of the phase space, such that the linear projection onto this basis has the greatest contribution

to the ‘energy’ of the system. The term ‘energy’ here is defined as the square of the 𝐿2
norm of the

phase vector. The problem can then also be viewed as simply finding a reduced basis with the lowest

reconstruction mean squared error (MSE).

Let the basis Φ be composed of 𝑛𝑝 unit vectors {𝝓
1
,𝝓

2
, . . . ,𝝓𝑛𝑝

}, where 𝑛𝑝 ≤ 𝑛𝑢 (𝑛𝑢 being the

dimension of the phase space of the original system, and 𝝓𝑖 ∈ R𝑛𝑢 ). A projection of 𝒖 onto the basis Φ

can be written as:

𝒖𝑝𝑟𝑜 𝑗 = 𝑷𝒂 (5.1)

𝒂 = 𝑷𝑇𝒖 (5.2)

where 𝑷 ∈ R𝑛𝑢×𝑛𝑝 is a matrix whose 𝑖𝑡ℎ column is the vector 𝝓𝑖 , 𝒂 ∈ R𝑛𝑝 is a vector of the coefficients

(that each of the basis vectors 𝝓𝑖 are to be multiplied by) and 𝒖𝑝𝑟𝑜 𝑗 is the linear projection of 𝒖 onto the

basis Φ. Formally, finding the basis Φ can then be written out as an optimization task:

𝑷 = argmin

𝑷
E𝒖∼𝑝(𝒖)

[
∥𝒖 − 𝑷𝑷𝑇𝒖∥2

]
(5.3)

This has been shown to be equivalent to solving the following eigenvalue problem [51]:

𝑪𝒗 𝑖 = 𝜆𝑖𝒗 𝑖 (5.4)

where 𝑪 ∈ R𝑛𝑢×𝑛𝑢 is the covariance matrix of the snapshots matrix 𝑺𝑢 ∈ R𝑛𝑢×𝑛𝑡 , 𝒗 𝑖 its eigenvectors and

𝜆𝑖 its eigenvalues. The snapshots matrix 𝑺𝑢 is a matrix composed of the column-wise concatenation of

𝑛𝑡 ‘snapshots’ of the state vector 𝒖 taken at different time instances, while 𝑪 is defined as:

𝑪 =

(
1

𝑛𝑡 − 1

)
𝑺𝑢 𝑺𝑇𝑢 (5.5)

20
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Clearly, 𝑪 is real and symmetric, and hence its eigenvalues are real and its eigenvectors orthogonal to

each other. Thus, its eigenvectors can be used to form an orthonormal basis, and 𝑪 can be decomposed

as follows:

𝑪 = 𝑽𝚲𝑽𝑇 = 𝑽𝚲𝑽−1

(5.6)

where,

𝚲 =


𝜆1 0 · · · 0 0

0 𝜆2 · · · 0 0

...
. . .

...
0 0 · · · 0 𝜆𝑛𝑢

 ∈ R𝑛𝑢×𝑛𝑢

𝑽 =
[
𝒗1 𝒗2 · · · 𝒗𝑛𝑢

]
∈ R𝑛𝑢×𝑛𝑢

It is easy to see that tr

(
𝑪
)
= tr

(
𝚲
)
=

∑
𝑖 𝜆𝑖 . If the ‘energy’ of the system, as mentioned earlier, is

defined as the square of the 𝐿2
norm of the state vector, then

∑𝑛𝑡
𝑗=1

|𝒖(𝑗) |2
2
= (𝑛𝑡 −1)tr

(
𝑪
)
= (𝑛𝑡 −1)tr

(
𝚲
)
=

(𝑛𝑡 − 1)∑𝑖 𝜆𝑖 , and the projection along 𝒗 𝑖 can be seen as contributing a fraction 𝜆𝑖/
∑
𝑖 𝜆𝑖 to the total

energy.

Hence, the reduced basis Φ is composed of the eigenvectors corresponding to the 𝑛𝑝 largest

eigenvalues of the matrix 𝑪.

It is worth noting that it is general practice to subtract the mean vector �̄� = 1

𝑛𝑡

∑𝑛𝑡
𝑗=1

𝒖(𝑗)
from the state

vectors 𝒖 before computing the snapshot matrix1, in essence only modelling the variations around a

time-mean of the state vector. In this context, it also becomes easy to see where the ‘energy’ analogy

comes from, since in a fluid dynamical system where 𝒖 is the concatenation of the velocities at different

grid points,
1

2

(
1

𝑛𝑡

∑𝑛𝑡
𝑗=1

|𝒖(𝑗) − �̄� |2
2

)
= 𝑇𝐾𝐸 (the average turbulent kinetic energy).

5.1.2. Galerkin Projection
Galerkin projection methods are a family of methods based around the principle of finding a reduced set

of basis functions that can be used to represent a dataset, and then modelling the coefficients attached

with these basis functions instead of computing the original field itself. Within the context of POD,

this would imply, having computed a suitable basis 𝝓, computing the time-evolution of the coefficient

vector 𝒂 (from Equation 5.2) directly, as opposed to computing the time-evolution of the entire vector 𝒖
[8, 9, 62, 37]. The state vector 𝒖 at any time instance can then be computed from the coefficient vector

and the basis vectors. As done earlier, consider a system composed of linear and non-linear parts:

¤𝒖 = 𝑳𝒖(𝑡) + 𝑵 (𝒖(𝑡))
𝒖(𝑡 = 0) = 𝒖0

Replacing 𝒖 with 𝑷𝒂 yields:

𝑷 ¤𝒂 = 𝑳𝑷𝒂(𝑡) + 𝑵 (𝑷𝒂(𝑡))

=⇒ 𝑷𝑇𝑷 ¤𝒂 =

(
𝑷𝑇𝑳𝑷

)
𝒂(𝑡) + 𝑷𝑇𝑵 (𝑷𝒂(𝑡))

=⇒ ¤𝒂 =

(
𝑷𝑇𝑳𝑷

)
𝒂(𝑡) + 𝑷𝑇𝑵 (𝑷𝒂(𝑡)) (5.7)

since (considering all the columns of 𝑷 are a subset of the set of orthonormal eigenvectors of the

covariance matrix 𝑪),

𝑷𝑇𝑷 =


𝒗𝑇

1
𝒗1 𝒗𝑇

1
𝒗2 · · · 𝒗𝑇

1
𝒗𝑛𝑢

𝒗𝑇
2
𝒗1 𝒗𝑇

2
𝒗2 · · · 𝒗𝑇

2
𝒗𝑛𝑢

...
. . .

...

𝒗𝑇𝑛𝑢𝒗1 𝒗𝑇𝑛𝑢𝒗2 · · · 𝒗𝑇𝑛𝑢𝒗𝑛𝑢


= 𝑰𝑛𝑢

1Easy to see where the name ‘covariance matrix’ comes from now.
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All that remains is to compute the new operators, and then the time-evolution of the coefficients-

vector 𝒂 can be proceeded with as any other system. Since the reduced basis is generally much lower

in dimensionality than the original state vector, this approach has the benefit of cutting down on a

significant amount of computational effort.

5.1.3. Limitations
The POD-Galerkin approach is known to suffer from a number of problems [73]. Its key pitfall is

that it only models the statistically important modes, neglecting the rest. This completely neglects any

dynamical properties of the system, in which even statistically insignificant modes may play key roles

(such as conduits for the exchange of energy between more active modes [65]). Further, the non-linear

operator 𝑵 (𝑷𝒂(𝑡)) is assumed to depend only on the coefficients 𝒂. This is known as the ‘flat Galerkin’

approximation [73], and is known to introduce additional errors in the evaluation of the time-derivative

of 𝒂 which also degrades performance. Take for example the POD-Galerkin approach applied to the

Charney-DeVore system, as presented in [73]. Even though the three and four mode reduced system

capture 97.6% and 98.9% (respectively) of the total variance, the Galerkin model of these POD projections

end up producing a single-point attractor. This is in contrast to the strange attractor that has far richer

dynamics, that failed to get modelled in this linear approach (Figure 5.1).

Figure 5.1: 2000 time-unit trajectories of the CDV system, projected to the first two POD modes [73].

5.2. Deep Learning Approaches
The explosion of deep learning, along with its associated specialized hardware and frameworks, has

made it an attractive option to try and model physical systems. As such, in recent years, it has been

applied to various dynamical systems, in an ever-increasing variety of ways. It thus becomes essential

to separate these approaches out into specific categories, so as to be able to identify the common threads

among these differing approaches. Typical deep learning based ROMs can broadly be classified into

two categories:

• using a single ANN model (like a RNN or another architecture adapted to time-series prediction)

and applying it to either the full order model or a POD-ROM,

• using two separate ANN models - one for the construction of a reduced order model and the other

for the propagation of the reduced state in time.

A parallel classification can also be inferred based on whether the training (and/or network

architecture itself) uses information from the specific model of the physical system being predicted -

model-free methods and model-supplemented methods2. Model-supplemented methods include the likes

of Physics Informed Neural Networks [11]. This study, however, focuses only on model-free methods.

5.2.1. Single-Model Prediction
Single-model prediction methods, while united in their usage of a single model, differ widely in the

choice of ANN models used, the architecture and workflow of the network and even the training strategy.

This section provides an overview of such methods.

2Note that the Galerkin projection method is a model-supplemented method since it uses the structure of the original system’s

time-evolution equation to create the time-evolution equation for the vector of coefficients (𝒂).
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Simple Feed-forward ANNs
A single memory-less deep feed-forward ANN has been a popular choice in this field, owing to its relative

simplicity. It has been employed in several studies, often alongside other models in an attempt to predict

the evolution of the system. Chattopadhyay, Hassanzadeh, and Subramanian in [13] used a single deep

ANN to model a multiscale three-tier extension of the Lorenz 96 system - a climate model with multiple

time-scales mimicking the dynamics found in an actual full-scale atmospheric model. The ANN is

trained using the SGD algorithm to map an input 𝒖(𝑡)
to Δ𝒖(𝑡) = 𝒖(𝑡+1) − 𝒖(𝑡)

. In the predictive phase,

the output 𝒖(𝑡+1)
is computed using the Adams-Bashforth method as 𝒖(𝑡+1) = 𝒖(𝑡) + 1

2

(
3Δ𝒖(𝑡) − Δ𝒖(𝑡−1)

)
.

This convoluted process is undertaken because a simple feed-forward ANN is observed to better predict

Δ𝒖(𝑡)
as opposed to 𝒖(𝑡+1)

directly. The normalized RMSE is plotted w.r.t. the time (non-dimensionalized

with the Lyapunov time) in Figure 5.2, and as can be clearly observed that despite all the precautions

taken, the ANN performs worse than the RNNs in terms of accurate short-term predictions.

Figure 5.2: Time evolution of the normalized RMSE for three different prediction methods - ESN (red), LSTM (cyan) and

feed-forward ANN (blue). [13]

This is attributed to the lack of any system memory possessed by the feed-forward ANN, and is a

clear win for RNN models with a passed along hidden state.

In [83], Zhuang et al. model the temperature distribution (and variation) of a heat-sink using a

similar ANN-based time-modeller as in the previous study. However, here they employ POD to effect

model-order-reduction first. Further of interest is the fact that in addition to a simple ANN, they also

test the effect of Runge-Kutta inspired networks, namely the Euler and the RK4 methods. However,

these methods are tested by simply letting the ANN learn the time-derivative in the RK setting instead

of employing an actual residual connection. The study finds the RK networks to perform marginally

better for coarser time-stepped data, whilst at a lower time-step neither architecture could conclusively

be said to possess superior performance.

CNNs
Lee and You use an interesting approach in [46], wherein they train a set of CNNs to operate on four

consecutive time instances of velocity and pressure fields in order to predict their values at the next

(i.e. the fifth) time instance. Further, they also make use of the concept of a GAN, wherein they train a

discriminator in tandem, whose job it is to predict whether a given snapshot came from the original

data or was generated by the set of CNNs. They train this network on the canonical problem of flow

past a circular cylinder, using the incompressible Navier-Stokes equations. The CNNs all operate on

different resolutions of the domain, the aim here being that different networks then specialize and learn

features from different spatial scales. Further, information from the larger scales is also passed onto the

CNNs operating on finer grid resolutions. The chaining together of four consecutive time instances, to

be used as a combined input, can be seen as providing the network with some dynamical information

about the system just prior to the update step. Having trained on multiple Reynolds number flow cases,

they find that the networks have slower error growth rates for lower Reynolds numbers. This implies

that the networks learn to model large scale vortical structures (such as those active in vortex shedding)

more accurately than the smaller scale ones. This is also apparent in the networks’ inability to model

smaller scale structures (in the wake) accurately in larger Renolds number flows. It is also important to

note here that this approach is not entirely model-free, since they do use physics-inspired penalties

in the loss function (mass and momentum conservation). They have trained an equivalent network

without these penalties, and found that without the imposition of these penalties un-physical vortical

structures tend to develop after a few time steps. This approach is also quite complex in terms of the
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programming involved, owing to the complex structure of the network and how the different CNNs

interact with each other, and takes a long time to train.

LSTMs, GRUs and ESNs
LSTMs, GRUs and ESNs are mainstays of time-series modelling, and have been used extensively

to predict the evolution of chaotic systems. Briefly summarised below are some important studies

employing these in the service of the prediction of chaotic systems.

In [13], Chattopadhyay, Hassanzadeh, and Subramanian train ANNs, LSTMs and ESNs on a multi-

scale three-tier extension of the Lorenz 96 system. The RNNs are single-layered, and for the ESN they

perform a study on the effect of 𝜌 and reservoir dimension on the prediction horizon. The main resultant

plot is presented in Figure 5.2, which shows that the ESN performs the best, with the LSTM trailing

behind it and the ANN performing the worst (as mentioned previously). They make an interesting

observation regarding the dimension of the ESN’s reservoir, that there does seem to exist a point of

diminishing returns where increasing the reservoir size leads to huge increases in computation time but

only a marginal increase in the prediction horizon.

Wan et al. present another approach in [75] wherein they first construct a reduced order model using

POD, and a new set of update equations for the reduced space using a flat Galerkin projection. The

relevant equations are given below:

𝒖 = 𝒀𝝃 + 𝒁𝜼 + 𝒃 (5.8)

d𝝃
d𝑡

= 𝑭𝝃 (𝝃) + 𝑮 (𝝃, 𝜼) (5.9)

where 𝒖 is the original state vector, the columns of 𝒀 form an orthonormal basis for an 𝑛𝑚 dimensional

subspace 𝑌 of R𝑛𝑢 and the columns of 𝒁 form an orthonormal basis for 𝑍 ∈ R𝑛𝑢−𝑛𝑚 - the orthogonal

complement of 𝑌 in R𝑛𝑢 . 𝝃 and 𝜼 are the projection vectors associated with 𝒀 and 𝒁, 𝑭𝝃 (𝝃) is the linear

projection of the update equation for 𝒖 onto the subspace 𝑌 (the same as described in Equation 5.7).

𝑮 (𝝃, 𝜼) is the non-linear interaction between 𝝃 and 𝜼 that is neglected in a flat/linear Galerkin projection,

and is often the cause of the loss in dynamical characteristics in such an approach. Wan et al. model

𝑮 (𝝃, 𝜼) as a function of 𝝃 (at the present and previous time instances) only, cutting out the need to model

𝜼. They use an LSTM to model �̂� (𝝃) ≈ 𝑮 (𝝃, 𝜼), add it to 𝑭𝝃 (𝝃) and integrate the resulting time-derivative

to obtain 𝝃 at the next time step3. They also detail a multi-staged multi-level training strategy for the

LSTM, wherein the first stage is teacher-forced and the second stage is trained auto-regressively using

progressively increasing output time-steps. This is one of the only auto-regressive training strategies

described in any chaotic-modelling literature, in addition to being quite straight-forward to implement.

These modelling methods are applied to the CDV system reduced to 5 dimensions and a Kolmogorov

flow reduced to just 3 wave-number modes. The obtained results showed that the LSTM aided models

consistently outperforming the unaided flat Galerkin projections. However, it is important to note that

the method described so far is not model-free, since the underlying system equation is used to construct

𝑭𝝃 (𝝃). The authors also describe a model-free method, which can be arrived at by simply allowing the

network to approximate the entire RHS of Equation 5.9. This method performs worse than both the

data-assisted and the flat Galerkin method for the CDV case (where the reduced space actually captures

a lot of statistical variation), but outperforms the flat Galerkin approach in the case of the Kolmogorov

flow (where the reduced space does not capture as much of the system’s dynamics).

Vlachas et al. combine the superior short-term predictions of an LSTM with more traditional

data-based approaches such as Gaussian Process Regression (GPR) and Mean Stochastic Modelling

(MSM) in [73]. Here too, like in [75], the target of the learning process is not the state 𝒛 itself but rather

¤𝒛, which is then integrated to arrive at the updated 𝒛. They present a mixed algorithm, where first

the probability density function of the data is estimated using a mixture of Gaussian kernels. Then

given a data-point, if it is determined to lie in a region of high probability the LSTM is used otherwise

the MSM model is used. The reasoning behind this approach is that regions of low probability lie

3In spirit, this approach is similar to how the feed-forward ANNs are used to predict Δ𝒖 in [13] instead of 𝒖 itself (d𝝃/d𝑡 can

be viewed to be Δ𝝃/Δ𝑡 with 1/Δ𝑡 being a simple scaling factor).
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far away from typical attractor orbits and the LSTM would have trouble modelling the dynamics in

these regions, whereas an MSM model will at least produce outputs that will bear similar statistics

to the actual data. A similar mixed model is also created for the GPR. These are applied to reduced

order models of the Lorenz 96 system, the KS equation and a realistic barotropic climate model. An

RMSE plot for the methods applied to the Lorenz 96 system is presented in Figure 5.3. The results are

representative of all three cases, and show the LSTM to possess superior short-term performance but

quickly diverging for large time periods (owing to the accumulation and propagation of errors during

prediction and integrations). Other models perform reasonably well with the mixed LSTM-MSM having

the best short-term prediction accuracy and closest long-term statistics.

Figure 5.3: Time evolution of the normalized RMSE of the Lorenz 96 system, for different prediction methods. [73]

Pathak et al. use ESNs to model the Lorenz 63 system, the homogeneous and the in-homogeneous

KS equation in [58]. They note the importance of accurately selecting the ESN’s key parameters - the

reservoir’s spectral radius, the input scaling and the leaking coefficient. Their trained networks perform

quite well on the data, and are able to successfully recreate the Lyapunov spectra of these systems as

well. Further, they test the effect of adding noise to the input signal for the case of the KS system, and

find that the trained ESN generalize to noisy input data reasonably well.

Pathak et al., in [57], build upon their earlier work in [58] to advance chaos prediction using

reservoir computing. Two important improvements are presented here. The first is the introduction of a

non-linearity in the ESN architecture, right before the final matrix multiplication. Instead of feeding

the updated reservoir state 𝒓 (𝑡) into the output linear map 𝑾 𝑜𝑢𝑡 , they pass in 𝒓 (𝑡) which is a non-linear

function of 𝒓 (𝑡). They’ve explored three different nonlinearities in the appendix, and the one that

works best is to simply square each evenly-indexed element of 𝒓 (𝑡). This breaks the symmetry of the

reservoir, which is important since not all problems (and especially the in-homogeneous KS equation

they test on) admit this symmetry. This approach produces ESNs with low errors over long good

prediction horizons. Their second contribution stems from the observation that the cost of training

and performing inference on very large reservoirs grows quite rapidly with the reservoir size. The

reservoir size needs to grow with increase in the number of grid-points (either due to a finer resolution

requirement or a larger domain size or both) in order to have reasonable predictive power. Thus, it

would seem ESNs are not too viable for large domain sizes, from a computational efficiency point

of view. Their solution is to split the entire spatial domain into smaller regions, each with its own

moderately sized reservoir performing predictions for its local domain (as shown in Figure 5.4). This

takes advantage of the local nature of interactions even in large dynamical systems. This approach is

similar to the operating principle of a CNN. They investigate the effects of sharing the reservoirs and the

output weights, as opposed to using different reservoirs and differently trained output weights. They

report that the shared reservoirs/weights method performs as well as the different reservoirs/weights

method on the homogeneous KS equation. However, when applied to the in-homogeneous case, the

different reservoirs/weights method turns out to be superior (which seems intuitive enough as well). It
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is worthwhile to note here that while this method is quite successful at modelling large systems at a

reduced cost, it can only be applied in cases where local interactions play a strong role in determining

the dynamics of a system.

Figure 5.4: Parallelized scheme of moderately sized reservoirs operating on their own local regions. [57]

Vlachas et al. perform a comparative study of RC and RNN approaches to chaos prediction in

[74]. They compare the predictive performance, RAM utilisation and training times of ESNs (trained

with simple linear regression), LSTMs, GRUs and Unitary RNN (all trained with teacher-forced BPTT).

Further, they also extend the BPTT-trained RNN architectures to multiple residual layers. In the first part

of this study, the Lorenz 96 system is reduced to a set of observables using POD, and then the ESN and

other RNN models applied to these reduced spaces. Here, they find that the ESNs struggle to perform

accurate predictions, whereas the BPTT-trained RNN models perform relatively better. However, all the

models, from an absolute standpoint, possess poor prediction horizons (none crossing even a single

Lyapunov time interval). In the second part of this study, the idea of a large number of parallel (smaller)

RNN/RC models being applied to data with strong local interactions from [57] is utilized. The test

used here are the Lorenz 96 and the KS system. It is found when predicting the full order dynamics,

the ESNs fare much better than the BPTT-trained RNNs with much lower training times and memory

usage requirements. Even from an absolute value standpoint, all the networks have excellent predictive

performances, with prediction horizons ranging anywhere from 3.5 to 4 Lyapunov time intervals. Lastly,

to check whether the trained models are actual surrogates of the modelled systems, the power spectra

and Lyapunov spectra are computed. Both of these match the original systems’ respective spectra within

reasonable error rates, with the Lyapunov spectra diverging (slightly) only for the negative values. It

is indeed the positive Lyapunov coefficients that determine a system’s chaotic properties, and hence

this result can be interpreted to mean that the trained models are accurate surrogates of the original

systems’ dynamics.



5.2. Deep Learning Approaches 27

5.2.2. Multi-Model Prediction
The common thread running through multi-model predictors is that they all use some form of an

auto-encoder to reduce the dimensionality of some high fidelity data (in a non-linear manner), and

then a ‘reasoner’ network (ESN, RNN, et cetera) to advance that reduced order representation in time.

Some key studies illustrating the important principles of using combined-models of this nature are

summarised in this section.

Doan, Polifke, and Magri present a deep learning based ROM approach to learning turbulent features

in [19], which uses a Convolutional Auto-Encoder (CAE) to produce a reduced order representation of

the Kolmogorov flow and an ESN to model the temporal propagation of this compressed representation.

Their approach differs from the ROMs described so far in that after the initial separate training of the

CAE and ESN, a final ‘enmeshing’ of the two networks is performed wherein the networks are trained

jointly. This has the effect of accelerating the training, as compared to having the joint network train

from scratch. While no comments are made on the prediction horizon of the trained network, owing

to the chaotic nature of the system, they provide analyses of the statistics of the generated from the

joint network when run auto-regressively. These statistics, such as the time-averaged vorticity and

𝑥 and 𝑦 direction velocity profiles are provided, and they bear good resemblance to the actual data.

Further, an error analysis is presented which shows the normalized RMSE to be less than 6% for the

various quantities. This implies that at least in a statistical sense (for the first-moment) the network

succeeds in learning the underlying dynamics of modelled system. The approach presented here, of

separately training the two networks and then a final enmeshing, is important for DL based ROMs since

the combined training of two large models is indeed tedious and time-consuming.

Wu et al. in [78] present a similar convolutional auto-encoder + LSTM approach as [19], and apply

it to the classical case of a flow past a circular cylinder. The key improvement here is that they

also incorporate a self-attention4 mechanism into the CAE itself, enabling the convolutional layers to

incorporate global information as well. They compare their new model against a traditional convolution

based auto-encoder and a simple MLP based auto-encoder, and find the incorporation of self-attention to

be quite beneficial. Figure 5.5 shows a plot of the absolute errors at different time-steps for the compared

ROMs. As can be observed, the self-attention based model has consistently low error profiles. This

study proves that the addition of self-attention is a valuable component in a CNN based ROM, which

can add essential global information that the CNN overlooks, and can be added at low computational

cost. They also perform a study on the feasibility of transfer learning within this context, by transferring

the weights learned for this problem to another network and training it on a separate problem of flow

past a series of spoilers. They note that the training time of the new network is greatly reduced when

using transfer learning, as opposed to starting the learning procedure from scratch. This points to the

conclusion that their original model learns some universal features of the dynamics of the underlying

flow itself, as opposed to it ‘over-fitting’ (in a sense) to the cylinder problem.

4Self-attention, and attention in general, is the key DL breakthrough behind recent successes such as transformers, Google’s

BERT model, and (the recently popularised) GPT models from OpenAI.



5.2. Deep Learning Approaches 28

Figure 5.5: Absolute error in the velocity fields between the true and predicted data at the 199
𝑡ℎ

(left column) and 399
𝑡ℎ

(right

column) time-steps, having been fed only 10 time-steps as the input history. [78]

Mohan et al. in [55] use a similar CAE and LSTM architecture as discussed above, to model 3D

turbulence. Their key contribution here is to use a Convolutional-LSTM (C-LSTM), instead of a regular

one. They note that most chaotic phenomena (turbulence included) are spatio-temporal phenomena,

and posses strong local interactions. In the cases described previously, while the CAE is able to leverage

these local-interactions in building a reduced order representation, its output is then flattened before

being fed into the LSTM. This has the disadvantage of losing any spatial structure captured in the

compressed representation, which as mentioned might be uniquely important in capturing dynamical

phenomena. A C-LSTM is an extension of the regular LSTM cell architecture, where all the matrix

multiplications involved in an LSTM cell (as described in subsection 4.3.2) are replaced with convolution

operations. This has the effect of both preserving the spatial structure of the compressed representation

and using the local interactions captured in it. An additional advantage is the parameter-sharing that

the use of convolutional kernels in the LSTM cell bring with them, namely the reduction in the number

of parameters to be learned. This makes the training of DL based ROMs of spatially large data-sets more

tractable. They apply this model to two test cases - homogeneous isotropic turbulence in a box with and

without additional forcing passive scalars. In both cases, they analyse the statistics of the predictions

and compare them to the those of the original DNS data. Excellent agreement is found between the

predicted case and the original data both in the energy spectra and the velocity gradient PDFs. Only

a small variance is found for the high wave-number regions, corresponding to small scale phenom-

ena, which was in fact predicted by the authors in an analysis of the design of the CAE. Overall, the

authors present a promising approach using a natural extension of the LSTM cell into the spatial domain.
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5.2.3. Some Other Considerations
This section describes additional techniques that can be used to construct better models for deep learning

based ROMs.

With the exception of [74], all the studies mentioned so far use single RNN/ESN networks. The

advantage of using stacked RNN layers has been known for quite some time now, and further using

residual layers (as introduced in [36]) as opposed to simple stacked layers has the advantage of letting

the networks learn a small change in contrast to a complete transformation. This smaller problem can

be thought of as ‘less challenging’ to learn, and hence residual networks tend to possess higher accuracy

and shorter training times. These residual networks bear a strong similarity to time-stepping schemes,

which has led researchers to incorporate connection-maps inspired from classical numerical methods

such as Runge-Kutta methods and other time-stepping schemes into deep learning architectures. Some

representative studies of this concept can be found in [63, 59, 83], all of which use different types of

ANNs to approximate the time-derivative and then incorporate this into a multi-step time stepping

scheme. A common thread running through their results seems to be the accumulation of error which

eventually leads to the predictions diverging from the actual system dynamics. It is also worth noting

that these systems use the full network to model the time derivative, whereas the residual network

concept is to use additional layers stacked on top of the RNN layer itself, before passing the combined

output through a dense layer. However, such an approach has to date not been used in the context of

multi-step methods.

Lastly, an important study was performed by Wu et al. in [77], wherein the authors trained a series

of GANs to generate physically accurate solutions to a Rayleigh-Bénard convection system. The GAN

architecture is quite complex, and is not detailed here because it is out of the scope of present work.

Their key contribution is the enforcing of what they call ‘statistics-informed’ penalties. This involves

introducing an additionally penalty in the cost function while training the networks, which is simply

the Frobenius norm of the difference in the covariance matrices of the predicted data and that of the

training data. It should be noted that this method is still model-free since no information about the

model’s parameters or structure is used. Simply the first moment of the training data is being used to

introduce an additional penalty. This simple yet powerful concept has a major impact on their trained

GANs, and the networks trained with this penalty not only have more physically accurate solutions but

also converge faster when compared to networks trained without this penalty term. They also note

that the imposition of this first moment penalty leads to the predicted solutions having more accurate

higher moments. Of equal importance is the fact that this penalty is both cheap to compute and to

back-propagate, hence adding huge improvements at negligible cost.

5.3. Summary
This chapter outlines the various state-of-the-art methods using machine learning to predict the

time-evolution of chaotic systems. As can be observed, different models can be combined in various

architectures (single-layered versus multi-layered versus residual networks). Further, there exists a great

variance in training strategies as well as a general mismatch in the training and testing objectives of the

RNNs. Clear from these, is the fact that there exist no standard comparisons of the different machine

learning models, and no standard metric to compare against either (since the mentioned prediction

horizons are all computed differently in different studies). Neither do any of the mentioned studies

attempt to model multiple dynamical regimes, or test RK-methods in an actual residual setting.
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6
Chaotic Systems Selected for

Investigation

This chapter presents the different chaotic systems that have been selected for investigation, and

provides justification for the inclusion of each. Section 6.1 describes the Lorenz’63 system, Section 6.2

the Charney-DeVore truncated set of equations, Section 6.3 the Kuramoto-Sivashinsky equation and

finally Section 6.4 presents the equations describing the Kolmogorov flow. Loosely speaking, these

systems increase in their complexity (in terms of analysis and computation), with the first two being

Ordinary Differential Equations (ODEs) and the final two being Partial Differential Equations (PDEs).

Further the Lorenz ’63 system has only three dimensions while the CDV system has 6 and displays two

different types of behaviours in its natural evolution. The KS equation is one-dimensional whereas the

Kolmogorov flow is two dimensional in space and hence presents other challenges in the construction

of its ML models. These systems have been presented and investigated in the mentioned order so as to

build up intuition and models along the way.

6.1. The Lorenz ’63 System
The Lorenz ’63 system of equations was proposed by Edward Lorenz in 1963 [49] as a simplified system

exhibiting what he termed ‘nonperiodic deterministic flow’. It is a simplified solution of a convective

flow occurring in a layer of fluid of uniform depth with a constant temperature difference (Δ𝑇) held

between its two boundaries. The flow is effectively two dimensional since no variation is assumed to

be present in the direction orthogonal to the depth and parallel to the boundaries (in the standard

coordinate system, if the direction of depth is taken to be the 𝑧 axis and the direction of flow the 𝑥
axis, then this would mean no variation in the 𝑦 direction). This has often been viewed as a simplified

‘cell’ (Figure 6.1) for the study of atmospheric behavior. The equations are a set of ordinary differential

equations and are presented below:

¤𝑥1 = −𝜎𝑥1 + 𝜎𝑥2 (6.1)

¤𝑥2 = −𝑥1𝑥3 + 𝜌𝑥1 − 𝑥2 (6.2)

¤𝑥3 = 𝑥1𝑥2 − 𝛽𝑥3 (6.3)

Here 𝜎 = 𝜈/𝜅 (𝜈 being the kinematic viscosity and 𝜅 the thermal conductivity) denotes the Prandtl

number, 𝜌 is the ratio between the Rayleigh number (𝑅𝑎 = 𝑔𝛼𝐻3Δ𝑇𝜈−1𝜅−1
, 𝑔 is the acceleration due to

gravity and 𝛼 the thermal expansion coefficient) and the critical Rayleigh number (𝑅𝑐 = 𝜋4𝑎−2(1 + 𝑎2)3,

𝑎 = 𝐻/𝐿 is the ratio of the geometric lengths of the cell). The parameter 𝑏 depends purely on the

geometry of the cell and is given by 𝛽 = 4(1 + 𝑎2)−1
. Further, the time-derivatives on the LHS are

themselves with respect to a non-dimensional time 𝜏 = 𝜋2𝐻−2(1 + 𝑎2)𝜅𝑡.

31
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Figure 6.1: Typical Lorenz cell.

For certain values of the coefficients 𝜌, 𝜎 and 𝛽, the above set of equations displays unstable behaviour.

The detailed analysis of the critical values for which this behaviour can be observed is provided in [49],

and it states that for 𝜎 > 𝛽 + 1 there exists a critical value of 𝜌 and for sufficiently high values the steady

convective flow described by these equations is unstable. Canonical values used to demonstrate this

property are 𝜎 = 10, 𝛽 = 8/3 and 𝜌 = 28. The time evolution of a solution trajectory in the phase space is

plotted in Figure 6.2 and the time evolution of the individual components given in Figure 6.3. Note that

in Figure 6.2 only the strange attractors are plotted. There is another attractor at 𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0

however this is not a strange attractor.

This is a fairly simple set of equations displaying intermittency and chaotic behaviour. As such, it is

an ideal starting point for testing out different modelling techniques.
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Figure 6.2: Time evolution of the solution (integrated

using the RK4 method with Δ𝑡 = 0.01) in the phase space.
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(integrated using the RK4 method with Δ𝑡 = 0.01).
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6.2. The Charney-DeVore System
The Charney-DeVore (henceforth referred to as CDV) system of equations was first proposed in 1979

by Jule Charney and John DeVore [12] as a reduced model to study the behaviour of planetary-scale

zonal atmospheric motion in a barotropic environment. They present an equation for the conservation

of ‘potential vorticity’ on a 𝛽-plane1 and then project it onto the eigenfuncions of the Δ operator. The

ensuing spectral expansion is truncated to just six terms, whose coefficients are time-varying and to be

computed. However, these coefficients are complex in nature and hence after a suitable transformation

the final set of ODEs (with variables in the real space) are arrived at.

The equations presented here are scaled versions [18] of the original set of ODEs proposed by

Charney and DeVore and have lately become a standard set used in testing predictive models [75, 20]:

¤𝑥1 = �̃�1𝑥3 − 𝐶(𝑥1 − 𝑥∗
1
) (6.4)

¤𝑥2 = −(𝛼1𝑥1 − 𝛽1)𝑥3 − 𝐶𝑥2 − 𝛿1𝑥4𝑥6 (6.5)

¤𝑥3 = (𝛼1𝑥1 − 𝛽1)𝑥2 − 𝛾1𝑥1 − 𝐶𝑥3 + 𝛿1𝑥4𝑥5 (6.6)

¤𝑥4 = �̃�2𝑥6 − 𝐶(𝑥4 − 𝑥∗
4
) + 𝜖(𝑥2𝑥6 − 𝑥3𝑥5) (6.7)

¤𝑥5 = −(𝛼2𝑥1 − 𝛽2)𝑥6 − 𝐶𝑥5 − 𝛿2𝑥4𝑥3 (6.8)

¤𝑥6 = (𝛼2𝑥1 − 𝛽2)𝑥5 − 𝛾2𝑥4 − 𝐶𝑥6 + 𝛿2𝑥4𝑥2 (6.9)

The various coefficients used above are computed as:

𝛼𝑚 =
8

√
2

𝜋
𝑚2

4𝑚2 − 1

𝑏2 + 𝑚2 − 1

𝑏2 + 𝑚2

𝛽𝑚 =
𝛽𝑏2

𝑏2 + 𝑚2

𝛿𝑚 =
64

√
2

15𝜋
𝑏2 − 𝑚2 + 1

𝑏2 + 𝑚2

�̃�𝑚 = 𝛾
4𝑚

4𝑚2 − 1

√
2𝑏

𝜋

𝜖 =
16

√
2

5𝜋

𝛾𝑚 = 𝛾
4𝑚3

4𝑚2 − 1

√
2𝑏

𝜋(𝑏2 + 𝑚2)
for 𝑚 = 1, 2. This just leaves the six constants 𝑥∗

1
, 𝑥∗

4
, 𝐶, 𝛽, 𝛾 and 𝑏. An extensive study on the stability

and various kinds of equilibrium points that develop depending on the values of these six constants is

provided in [18]. For the purpose of testing predictive models, the values2 𝑥∗
1
= 0.95, 𝑥∗

4
= −0.76095,

𝐶 = 0.1, 𝛽 = 1.25, 𝛾 = 0.2 and 𝑏 = 0.5 are suitable since they result in the model intermittently alternating

between two distinct regimes of behavior, as shown in Figure 6.6. Further, the two flow regimes - zonal
and blocked - can also be seen occupying distinct regions when viewed in the 𝑥1-𝑥4 plane, as shown in

Figure 6.5.

1A 𝛽-plane is an approximation of a patch of atmosphere, and is taken to be a plane tangent to the earth’s surface (as shown in

Figure 6.4). The plane is bounded in the 𝑥 (𝑢-axis in Figure 6.4) and 𝑦 (𝜈-axis in Figure 6.4) directions. On this plane the Coriolis

coefficient 𝑓 is approximated by a linear function of the latitude (𝜙), which is what characterises this tangent plane patch as a

𝛽-plane.

2This choice of the model parameters results in each non-dimensional time unit corresponding to roughly one day.
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Figure 6.4: A plane tangent to a sphere [69].

Figure 6.5: 150,000 points sampled from the CDV

attractor, projected to the 𝑥1-𝑥4 plane. The different flow

regimes occupy distinct spaces.
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Figure 6.6: Time evolution of all the state variables (integrated using the RK4 method with Δ𝑡 = 0.1), with the blocked flow

regime clearly highlighted.
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6.3. Kuramoto-Sivashinsky System
The Kuramoto-Sivashinsky (henceforth referred to as KS) equation is a non-linear PDE of the fourth

order. It was arrived at independently by Yoshiki Kuramoto [45] and Gregory Sivashinsky [66] in the late

seventies, in completely different research contexts. Kuramoto was researching the behaviour of point

concentrations in a turbulent reaction-diffusion system (such as the Brusselator) while Sivashinsky was

researching the time evolution of a laminar flame front. It is yet another example of how two different

physical systems can be described by similar mathematics.

It describes a system that is well known to be prone to chaos, and the 1D KS equation is given below:

𝜕𝑢

𝜕𝑡
= −𝜈1𝑢

𝜕𝑢

𝜕𝑥
− 𝜈2

𝜕2𝑢

𝜕𝑥2

− 𝜈3

𝜕4𝑢

𝜕𝑥4

+ 𝐺(𝑢, 𝑥, 𝑡) (6.10)

where 𝜈1, 𝜈2, 𝜈3 are constants, all typically set equal to 1 and 𝐺(𝑢, 𝑥, 𝑡) is an additional forcing term

which is canonically set to zero. The spatial domain 𝑥 ∈ [0, 𝐿] and the scalar field 𝑢(𝑥, 𝑡) is considered to

be periodic within this domain. The domain size 𝐿 plays an important role in determining the behavior

of the system since the maximal Lyapunov exponent depends directly upon it [24].

Considering the solution to be periodic and taking the Fourier transform of the equation yields:

d�̂�𝑘
d𝑡

= −𝜈1ℱ
[
𝑢
𝜕𝑢

𝜕𝑥

]
(𝑘) +

(
𝜈2𝑘

2 − 𝜈3𝑘
4

)
�̂�𝑘 + ℱ [𝐺(𝑢, 𝑥, 𝑡)](𝑘) 𝑘 ∈ 2𝜋𝑚

𝐿
, 𝑚 ∈ Z (6.11)

where ℱ denotes the Fourier transform, 𝑖 =
√
−1 and 𝑘 is the wave number. The non-linear advection

term is typically transformed before taking the Fourier transform as follows:

𝑢
𝜕𝑢

𝜕𝑥
=

1

2

𝜕𝑢2

𝜕𝑥

=⇒ ℱ
[
𝑢
𝜕𝑢

𝜕𝑥

]
(𝑘) = 𝑖𝑘

2

ℱ
[
𝑢2

]
(𝑘)

This gives:

d�̂�𝑘
d𝑡

= − 𝑖𝑘𝜈1

2

ℱ
[
𝑢2

]
(𝑘) +

(
𝜈2𝑘

2 − 𝜈3𝑘
4

)
�̂�𝑘 + ℱ [𝐺(𝑢, 𝑥, 𝑡)](𝑘), 𝑘 =

2𝜋𝑚
𝐿

, 𝑚 ∈ Z (6.12)

It is clear from Equation 6.12 that for positive values of 𝜈2 and 𝜈3 the second derivative term acts as an

energy source whereas the fourth derivative term acts as an energy sink. The advection term appears to

re-distribute energy between different wave numbers. All of these combined lead to the spatio-temporal

chaotic behaviour that this equation is know for. Further, for the typical values 𝜈1 = 𝜈2 = 𝜈3 = 1 and

𝐺 = 0 it can be seen that the smaller wave numbers (corresponding to large wavelengths) have energy

added to them whereas the higher wave numbers (corresponding to small wavelengths) have energy

drained from them. Figure 6.7 shows the time evolution of a KS system with 𝜈1 = 𝜈2 = 𝜈3 = 1, 𝐺 = 0

and 𝐿 = 35.
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Figure 6.7: Time evolution of KS equation, with 𝐿 = 35 (integrated using the ETDRK4 method with 100 gridpoints and Δ𝑡 = 0.1).

6.4. Kolmogorov Flow
Consider the Navier-Stokes equations for incompressible flow in two dimensions:

𝜕𝑡𝒖 = − (𝒖 · ∇) 𝒖 − ∇𝑝 + 1

𝑅𝑒
Δ𝒖 + 𝒇 (6.13)

∇ · 𝒖 = 0 (6.14)

where 𝒖 =
(
𝑢𝑥 𝑢𝑦

)𝑇
is the velocity field of the fluid, over the domain (𝑥, 𝑦) ∈ Ω = [0, 2𝜋] × [0, 2𝜋],

𝑝 is the pressure field over the same spatial domain and 𝒇 is a volume forcing term. 𝑅𝑒 denotes the

Reynolds number and the non-dimensional viscosity 𝜈 is related to it as 𝜈 = 1/𝑅𝑒. Periodic boundary

conditions are imposed on 𝒖 and the forcing function is taken to be of the form 𝒇 =
(
sin(𝑘 𝑓 𝑦) 0

)𝑇
. The

solution to this particular boundary value problem is known as the 2D Kolmogorov Flow [75, 19, 60, 26].

This particular formulation was introduced by Andrey Kolmogorov in a seminar as an example of a

simple linear instability problem.

This problem admits a laminar solution 𝒖 =

(
𝑅𝑒 𝑘−2

𝑓
sin(𝑘 𝑓 𝑦) 0

)𝑇
[19, 75]. The solution grows

unstable and chaotic for large values of 𝑘 𝑓 and 𝑅𝑒. Typical contours of 𝑢𝑥 , 𝑢𝑦 and the vorticity are shown

in Figure 6.8, Figure 6.9 and Figure 6.10.

Figure 6.8: Iso-contours of 𝑢𝑥 , 𝑅𝑒 = 30

[19].

Figure 6.9: Iso-contours of 𝑢𝑦 , 𝑅𝑒 = 30

[19].

Figure 6.10: Iso-contours of the

vorticity, 𝑅𝑒 = 30 [19].

The three statistical quantities of interest are the kinetic energy (𝐸), the dissipation (𝐷) and the
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energy input (𝐼):

𝐸(𝒖) = 1

|Ω|

∫
Ω

1

2

|𝒖 |2dΩ

𝐷(𝒖) = 𝑅𝑒−1

|Ω|

∫
Ω

|∇𝒖 |2dΩ

𝐼(𝒖) = 1

|Ω|

∫
Ω

𝒖 · 𝒇 dΩ

where |∇𝒖 | is the Frobenius norm of the Jacobian of 𝒖 and |Ω| = (2𝜋)2 is the area of the domain. It is

worth noting that the statistical quantities mentioned above, in the context of Kolmogorov flow (i.e.

incompressible flow with periodic boundary conditions), obey the relationship
¤𝐸 = 𝐼 − 𝐷 and:

𝐷(𝒖) = 𝑅𝑒−1

|Ω|

∫
Ω

|∇𝒖 |2dΩ

=
𝑅𝑒−1

|Ω|

∫
Ω

𝜔2

dΩ, (6.15)

with 𝜔 = (∇ × 𝒖) · �̂�3 being the only non-zero component of the vorticity.

Owing to the periodicity of 𝒖, it can be easily analysed in the Fourier domain, and its Fourier

expansion can be written as [75, 60, 26]:

𝒖(𝒙 , 𝑡) =
∑
𝑘

𝑎(𝒌 , 𝑡)
|𝒌 |

(
𝑘2

−𝑘1

)
𝑒 𝑖𝒌·𝒙 (6.16)

where 𝒙 =
(
𝑥 𝑦

)𝑇
is the spatial co-ordinate, 𝒌 =

(
𝑘1 𝑘2

)𝑇
is the wave number vector corresponding to

the Fourier space and 𝑎(𝒌 , 𝑡) is the Fourier coefficient (𝑘1 ∈ Z, 𝑘2 ∈ Z and 𝑎 ∈ C). Additionally, since 𝒖 is

real valued, 𝑎(𝒌 , 𝑡) = −𝑎(−𝒌 , 𝑡). This particular formulation of the Fourier expansion (with a unified

Fourier coefficient) is possible owing to the divergence-free nature of 𝒖 3.

To find a suitable time-evolution equation for 𝒂(𝒌 , 𝑡) requires the removal of the dependence on the

pressure term in Equation 6.13. This can be done by using the Leray projection operator 𝒫. This is a

pseudo-differential operator that (loosely speaking) takes the orthogonal projection of its argument

onto a subspace (this subspace is not arbitrary and is itself used to define 𝒫). In the present case

of the Kolmogorov flow, 𝒫 is taken to operate on vectors from the ℒ2
space onto the subspace of

divergence-free vectors [16]. Applying 𝒫 to Equation 6.13 yields:

𝒫 (𝜕𝑡𝒖) = −𝒫
(
(𝒖 · ∇) 𝒖 − ∇𝑝 + 1

𝑅𝑒
Δ𝒖 + 𝒇

)
=⇒ 𝜕𝑡𝒫 (𝒖) = −𝒫 ((𝒖 · ∇) 𝒖) − 𝒫 (∇𝑝) + 1

𝑅𝑒
𝒫 (Δ𝒖) + 𝒫 ( 𝒇 ) (6.17)

Since 𝒖 is divergence-free (Equation 6.14), Δ𝒖 is divergence-free (∇ · (Δ𝒖) = Δ (∇ · 𝒖) = 0) and it can be

shown that ∇𝑝 is orthogonal to any divergence-free vector, Equation 6.17 can be simplified as follows:

𝜕𝑡𝒖 = −𝒫 ((𝒖 · ∇) 𝒖 − 𝒇 ) + 1

𝑅𝑒
Δ𝒖 (6.18)

Taking a Fourier transform at this stage results in Equation 6.19 [75, 26].

¤𝑎(𝒌 , 𝑡) =
∑

𝒑+𝒒=𝒌
𝑖
(𝑝1𝑞2 − 𝑝2𝑞1)(𝑘1𝑞1 + 𝑘2𝑞2)

|𝒑| |𝒒 | |𝒌 | 𝑎(𝒑, 𝑡)𝑎(𝒒 , 𝑡) − 1

𝑅𝑒
|𝒌 |2𝑎(𝒌 , 𝑡) − 1

2

𝑖(𝛿𝒌 ,𝒌 𝑓 + 𝛿𝒌 ,−𝒌 𝑓 ) (6.19)

3This can be derived by simply assuming separate Fourier expansions for 𝑢𝑥 and 𝑢𝑦 individually and then enforcing the

divergence-free property.
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It is easy to see from the above time-evolution equation that the Fourier mode with wave number 𝒌 is

impacted (in a non-linear manner) by any pair of modes with wave numbers 𝒑 and 𝒒 that satisfy the

relationship 𝒑 + 𝒒 = 𝒌. Such a group is called a triad. Additionally, note that even modes that do not

form triads with 𝒌 can affect it indirectly, by affecting the modes that do.

This type of flow is also prone to sharp intermittent bursts in kinetic energy and dissipation, and in

[26] it is reported that the triad formed by the modes (0, 𝑘 𝑓 ), (1, 0) and (1, 𝑘 𝑓 ) is the most influential to this

phenomena. The time evolution of the dissipation and the absolute value of the mode corresponding to

(1, 0) is shown in Figure 6.11.

Figure 6.11: Time evolution of the dissipation and the absolute value of the mode (1, 0), 𝑅𝑒 = 40 [75].

6.5. Summary
This chapter introduces four different chaotic systems, with increasing orders of complexity. This order

and range is ideal in its choice of systems, since it allows the gradual build-up of complexity in both

analysis methods and developed models. The final chosen system is a 2D PDE system, the Kolmogorov

flow system, a fluid-dynamical system, and can be considered the final ‘verification’ system that all the

developed models and techniques will be applied to.



7
Traditional Numerical Solvers

Data is an important aspect of any machine learning pipeline. As the saying goes, ‘garbage in, garbage

out’. Thus, to have proper data for the ML models to train on, and adequate control over its parameters,

it is important to be able to accurately solve the selected systems and generate high quality data. The

systems selected for investigation and their details are presented in Chapter 6. This chapter presents the

various numerical methods used to achieve this.

7.1. Runge-Kutta Solvers
Runge-Kutta (henceforth referred to as RK) methods are a class of implicit and explicit iterative numerical

solvers, used for the time-discretization of a set of ODEs [10]. They were introduced in the early twentieth

century by Carl Runge and expanded upon by Wilhelm Kutta and others, and have been popular

ever since - owing to their extremely simple iterative nature, high accuracy and ease of programming.

Assuming an initial value problem as follows:

¤𝒙 = 𝒇 (𝒙(𝑡), 𝑡) (7.1)

𝒙(𝑡 = 0) = 𝒙0

the general 𝑚-stage explicit RK method can be written down as:

𝒙𝑛+1 = 𝒙𝑛 + Δ𝑡

𝑚∑
𝑖=1

𝑏𝑖𝒌 𝑖 (7.2)

(𝒙𝑛 = 𝒙(𝑡𝑛), 𝑡𝑛 = 𝑡0 + 𝑛Δ𝑡)

where:

𝒌1 = 𝒇 (𝒙𝑛 , 𝑡𝑛)
𝒌2 = 𝒇 (𝒙𝑛 + (𝑎2,1𝒌1)Δ𝑡 , 𝑡𝑛 + 𝑐2Δ𝑡)

...

𝒌𝑚 = 𝒇 (𝒙𝑛 + (𝑎𝑚,1𝒌1 + 𝑎𝑚,2𝒌2 + · · · + 𝑎𝑚,𝑚−1𝒌𝑚−1)Δ𝑡 , 𝑡𝑛 + 𝑐𝑚Δ𝑡)

The coefficients 𝑎𝑖 , 𝑗 , 𝑐𝑖 and 𝑏𝑖 (𝑖 ∈ {1, . . . , 𝑚}, 𝑗 ∈ {1, . . . , 𝑖 − 1}) determine a particular RK method, and

are often visualized in the form of Butcher tableau (as in Table 7.1).

39
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0

𝑐2 𝑎2,1

𝑐3 𝑎3,1 𝑎3,2

...
...

. . .

𝑐𝑚 𝑎𝑚,1 𝑎𝑚,2 · · · 𝑎𝑚,𝑚−1

𝑏1 𝑏2 · · · 𝑏𝑚−1 𝑏𝑚

Table 7.1: A typical Butcher tableau for an 𝑚-stage explicit RK method.

Further conditions are imposed upon the coefficients to ensure desirable properties. The method

is consistent (i.e. limΔ𝑡→0 Δ𝑡𝜙(𝑠,Δ𝑡) = 0, where 𝜙(𝑠,Δ𝑡) is the local truncation error) if and only if∑𝑚
𝑖=1
𝑏𝑖 = 1. To ensure the method is of order 𝑝, i.e. the local truncation error is of the order 𝒪(Δ𝑡𝑝+1),

additional conditions can be derived from the Taylor series expansions of the various stages.

Of all these methods, of interest to this study is the widely popular RK4 method. It’s Butcher tableau

is given in Table 7.2. It is a 4
𝑡ℎ

order method with 4 stages, and the local truncation error is of the order

𝒪(Δ𝑡5).

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

Table 7.2: Butcher tableau for RK4 method.

7.2. Exponential Time Differencing with RK4
The exponential time differencing with RK4 (henceforth referred to as ETDRK4) scheme was put forth

by Cox and Matthews [17] and is a time-stepping scheme designed expressly to deal with stiff ODEs.

There is no formal definition of a stiff system of ODEs is, but commonly accepted descriptions include:

• a system where the time step is restricted not by the required accuracy but by the stability of the

numerical method,

• a system of ODEs that describe a physical problem covering a wide range of time-scales, in effect

requiring careful tuning of the time step for regular explicit time-stepping methods.

Often the spectral and pseudo-spectral methods that aim to analyse a PDE with spatially periodic

boundary conditions in the Fourier domain result in a stiff system of ODEs [17], thus requiring the

application of either explicit methods with extremely small time steps or implicit methods. Both these

approaches end up being very computationally expensive. The method described here completely

side-steps this issue by separating out the stiff linear part and the explicitly time-differenceable non-linear

part of the equation. Consider a system of stiff ODEs, having decomposed it into its linear portion 𝑳𝒙(𝑡)
(𝑳 is a matrix) and non-linear portion 𝑵 (𝒙(𝑡)):

¤𝒙 = 𝑳𝒙(𝑡) + 𝑵 (𝒙(𝑡)) (7.3)

𝒙(𝑡 = 0) = 𝒙0

Integrating Equation 7.3 exactly yields:

𝒙(𝑡) = 𝑒𝑳𝑡𝒙0 +
∫ 𝑡

0

𝑒𝑳(𝑡−𝜏)𝑵 (𝒙(𝜏))d𝜏 (7.4)

Note that the first term here is easily computable and requires no special handling. The second term, i.e.

the integral, is what needs to be approximated. Cox and Matthews approximate the integral using the

RK4 time-stepping scheme, and the resulting method turns out to be extremely stable and extremely

fast. However, their formulation is only applicable to cases with a diagonal 𝑳 matrix and is also prone to

instability owing to a few singularities. These issues are dealt with by Kassam and Trefethen in [43] by
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explicitly diagonalizing the 𝑳 matrix and using the residue theorem from complex analysis to side-step

computing the singularity directly. This formulation is given below, but first Equation 7.4 needs to be

reformulated into another form.

Changing the integration limits in Equation 7.4 to [𝑡𝑛 , 𝑡𝑛+1] (𝑡𝑛 = 𝑡0 + 𝑛Δ𝑡) results in:

𝒙𝑛+1 = 𝑒𝑳Δ𝑡𝒙𝑛 +
∫ Δ𝑡

0

𝑒−𝑳(Δ𝑡−𝜏)𝑵 (𝒙(𝑡𝑛 + 𝜏))d𝜏 (7.5)

Now the final formulation from [43] is as follows:

𝒙𝑛+1 = 𝒇
1
(Δ𝑡𝑳)𝒙𝑛 + Δ𝑡𝜶(Δ𝑡𝑳)𝑵 (𝒙𝑛) + Δ𝑡𝜷(Δ𝑡𝑳) [𝑵 (𝒂𝑛) + 𝑵 (𝒃𝑛)] + Δ𝑡𝜸(Δ𝑡𝑳)𝑵 (𝒄𝑛) (7.6)

where:

𝒂𝑛 = 𝒇
1

(
Δ𝑡𝑳

2

)
𝒙𝑛 +

Δ𝑡

2

𝒇
2

(
Δ𝑡𝑳

2

)
𝑵 (𝒙𝑛)

𝒃𝑛 = 𝒇
1

(
Δ𝑡𝑳

2

)
𝒙𝑛 +

Δ𝑡

2

𝒇
2

(
Δ𝑡𝑳

2

)
𝑵 (𝒂𝑛)

𝒄𝑛 = 𝒇
1

(
Δ𝑡𝑳

2

)
𝒂𝑛 +

Δ𝑡

2

𝒇
2

(
Δ𝑡𝑳

2

)
[2𝑵 (𝒃𝑛) − 𝑵 (𝒙𝑛)] (7.7)

𝜶(Δ𝑡𝑳) = 𝒇
2
(Δ𝑡𝑳) − 3 𝒇

3
(Δ𝑡𝑳) + 4 𝒇

4
(Δ𝑡𝑳)

𝜷(Δ𝑡𝑳) = 2 𝒇
3
(Δ𝑡𝑳) − 4 𝒇

4
(Δ𝑡𝑳)

𝜸(Δ𝑡𝑳) = − 𝒇
3
(Δ𝑡𝑳) + 4 𝒇

4
(Δ𝑡𝑳) (7.8)

𝒇
1
(Δ𝑡𝑳) = 𝑒Δ𝑡𝑳

𝒇
2
(Δ𝑡𝑳) = (Δ𝑡𝑳)−1

(
𝑒Δ𝑡𝑳 − 𝑰

)
𝒇

3
(Δ𝑡𝑳) = (Δ𝑡𝑳)−2

(
𝑒Δ𝑡𝑳 − Δ𝑡𝑳 − 𝑰

)
𝒇

4
(Δ𝑡𝑳) = (Δ𝑡𝑳)−3

(
𝑒Δ𝑡𝑳 − (Δ𝑡𝑳)2/2 − Δ𝑡𝑳 − 𝑰

)
(7.9)

The above equations are not easily arrived at and Cox and Matthews themselves used a symbolic

manipulator to derive their original forms. The singularities present themselves in Equation 7.9 where

𝒇
2
, 𝒇

3
and 𝒇

4
are just higher dimensional analogues of (𝑒𝑧 −1)/𝑧, (𝑒𝑧 − 𝑧−1)/𝑧2

and (𝑒𝑧 − 𝑧2/2− 𝑧−1)/𝑧3

- all of which contain removable singularities. To see how these singularities can be removed, assume

𝑳 is diagonal (if it is not, it can be diagonalized and the ensuing analysis applied to those diagonal

elements only), and 𝑙 is one element from its diagonal. Then, making use of the residue theorem:

𝑓𝑗(𝑙Δ𝑡) =
1

2𝜋𝑖

∮
Γ

𝑓𝑗(𝑙Δ𝑡)
𝑧 − 𝑙Δ𝑡d𝑧, 𝑗 ∈ {2, 3, 4}

As done in [43], a circle in the complex plane centered at 𝑙Δ𝑡 is used as the path Γ, and the integral

approximated using 𝑚 equally spaced points on the circle:

𝑓𝑗(𝑙Δ𝑡) =
1

𝑚

𝑚∑
𝑘=1

𝑓𝑗(𝑙Δ𝑡 + 𝑟𝑒2𝜋𝑖(𝑘−1)/𝑚)

where 𝑟 is a suitable radius. Further, if 𝑙 is real, this integral can be approximated by taking just the

upper half of the circle.
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7.3. Pseudo-Spectral Method
Spectral methods are a family of numerical methods for computing approximate solutions of various

PDEs, by expanding the terms involved into a set of orthonormal basis functions (that span the entire

domain of the problem at hand). Pseudo-spectral methods are a family of methods based on the spectral

method, that compliment the spectral basis with additional basis functions, in order to simplify and

speed-up the computation of non-linear terms [27]. Of interest to this study is the pseudo-spectral

method based on the Fourier series [28]. As an illustrative example, consider Equation 6.12 from

Section 6.3:

d�̂�𝑘
d𝑡

= − 𝑖𝑘𝜈1

2

ℱ
[
𝑢2

]
(𝑘)︸      ︷︷      ︸

𝒜

+
(
𝜈2𝑘

2 − 𝜈3𝑘
4

)
�̂�𝑘 + ℱ [𝐺(𝑢, 𝑥, 𝑡)](𝑘), 𝑘 =

2𝜋𝑚
𝐿

, 𝑚 ∈ Z

The exact expansion of the the term 𝒜 on the RHS, which is non-linear in nature, would be:

ℱ
[
𝑢2

]
(𝑘) = 1

𝐿2

∑
𝑞

∑
𝑝

�̂�𝑘𝑝 �̂�𝑘𝑞 ⟨𝜙𝑘 , 𝜙𝑘𝑝𝜙𝑘𝑞 ⟩, 𝑘𝑝 =
2𝜋𝑝

𝐿
, 𝑘𝑞 =

2𝜋𝑞

𝐿
, 𝑝, 𝑞 ∈ Z

where 𝜙𝑘 = 𝑒 𝑖𝑘𝑥 is the discrete Fourier basis function and ⟨𝑎, 𝑏⟩ =
∫ 𝐿

𝑥=0

𝑎𝑏 d𝑥 is the inner product on this

space. In the discrete case, with𝑁 grid-points, the above term is 𝒪(𝑁2) in its computational cost. Instead

of performing this quadratic calculation, one simply computes 𝑢(𝑥 𝑗 , 𝑡) using the inverse FFT, squares it

and then performs the FFT on this new squared quantity. This replaces the quadratic multiplication

with a 𝒪(𝑁 log𝑁) operation (the FFT), and hence the computational cost drops to 𝒪(𝑁 log𝑁). This

approach, while attractive on the surface, does introduce an additional error - the aliasing error [27].

The effect of this error can be seen in this very example. Consider the squared quantity 𝑢2(𝑥 𝑗 , 𝑡):

𝑢2(𝑥 𝑗 , 𝑡) = ©­« 1

𝑁

𝑁/2∑
𝑚=−𝑁/2

�̂�𝑘 𝑒
𝑖𝑘𝑥 𝑗ª®¬

2

=
1

𝑁2

𝑁/2∑
𝑞=−𝑁/2

𝑁/2∑
𝑝=−𝑁/2

�̂�𝑘𝑝 �̂�𝑘𝑞 𝑒
𝑖(𝑘𝑝+𝑘𝑞 )𝑥 𝑗 , 𝑥 𝑗 = 𝑗Δ𝑥, 𝑘𝑝 =

2𝜋𝑝

𝑁Δ𝑥

Clearly, this summation involves quantities with wave numbers 𝑘𝑛𝑒𝑤 = 𝑘𝑝 + 𝑘𝑞 and for 𝑁 such wave

numbers |𝑘𝑛𝑒𝑤 | > 𝜋/Δ𝑥. When taking the discrete Fourier transform of this term, all such wave numbers

would be ‘aliased’ and their contribution added to the mode corresponding to the wave number

𝑘 = 𝑘𝑛𝑒𝑤 − 𝜋/Δ𝑥. To tackle this, additional steps can be taken, such as:

• adding modes (with value zero) corresponding to these problematic wave numbers (|𝑘𝑛𝑒𝑤 | =
𝑙𝜋/Δ𝑥, 𝑙 ∈ {1, 1 + 2/𝑁, 1 + 4/𝑁, · · · , 2}) before applying the inverse FFT operation,

• then truncating the modes to the original set of wave numbers after applying the final FFT

operation.

This is the general idea of pseudo-spectral methods, to avoid computing convolutions in the basis

functions’ domain, by performing the non-linear operation in the original function’s space. The

transformation is then applied on this newly computed non-linear quantity. The method retains the

high accuracy and convergence rates of spectral methods, while offering an improved computational

cost.

7.4. Lyapunov Spectrum Computation
The Lyapunov spectrum is an attempt at a quantitative measure of chaos. In a dynamical system within

an 𝑛-dimensional phase space, there exists a set of 𝑛 orthogonal vectors, along whose 𝑖𝑡ℎ vector, two

infinitesimally close trajectories evolve with an average separation rate of 𝑒Λ𝑖 𝑡
. The set of values Λ𝑖 is

known as the Lyapunov spectrum. The presence of even a single positive value in this set implies the

presence of chaos, since it represents the presence of local instability in that particular direction [35, 64].

The largest value of Λ𝑖 is called the maximal Lyapunov exponent (MLE) - Λ𝑀𝐿𝐸. Considering a system
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with a positive MLE, two narrowly separated vectors (with the separation vector being in an arbitrary

direction) will eventually grow apart at a rate 𝑒Λ𝑀𝐿𝐸 𝑡 1. Hence the MLE is an excellent quantifier of the

chaos inherent in a system, and is often used in the study of predictive models to normalize time when

comparing/presenting results.

A method of estimating the Lyapunov spectrum of the KS system, with a relatively high accuracy

and small computational time is provided in [57]. This can easily be adapted to any dynamical system,

and this extended formulation is provided here.

Consider a dynamical system:

¤𝒖 = 𝒇 (𝒖 , 𝑡)

with an initial condition 𝒖(𝑡 = 0) = 𝒖0 and an 𝑛-dimensional phase space. Consider now a matrix 𝑴
made up of orthogonal columns each of whose Euclidean norm is Δ𝑢, where Δ𝑢 is a small number2.

These are the initial set of orthogonal separation vectors along which the system shall now be evolved.

Effectively, there are now 𝑛 + 1 trajectories that need to be evolved - starting from 𝒖0 (called 𝒖(𝑡)) and

𝒖0 + 𝑴 𝑗 (called 𝒚 𝑗(𝑡), where 𝑴 𝑗 is the 𝑗𝑡ℎ column of the matrix 𝑴). After 𝜁 time steps, the matrix of

separation vectors is recomputed as 𝑴 𝑗 = 𝒚 𝑗(𝑡) − 𝒖 𝑗(𝑡). A 𝑄𝑅 decomposition is performed on this

re-computed 𝑴 which yields the matrices 𝑸 and 𝑹. The absolute values of the diagonal elements

of 𝑹 are stored, 𝑴 is reset to Δ𝑢𝑸 and the whole computation repeated a total of 𝜉 times. Then the

Lyapunov exponents are computed as the average of the exponents over each of those 𝜁 time steps:

Λ𝑗 =
1

𝜉

𝜉∑
𝑖=1

log

(
𝑅 𝑗 𝑗(𝑖)

)
𝜁Δ𝑡

where 𝑅 𝑗 𝑗(𝑖) is the stored 𝑗𝑡ℎ diagonal element of 𝑹 (of the 𝑖𝑡ℎ iteration).

7.5. Summary
This chapter provides an overview of the different solvers to be used. As can be seen, the PDEs require

special treatment under the pseudo-spectral and ETDRK4 methods, since their simulation using regular

Runge-Kutta methods would require extremely fine time-steps and large computational resources. Also

covered is an approximate method of computing the Lyapunov spectrum of a given system, thereby

quantifying its inherent chaos. This is important since as outlined Chapter 3, these quantities are

essential to computing both the KY dimension and the Lyapunov time.

1The separation vector will typically have a component in the direction corresponding to Λ𝑀𝐿𝐸 , and owing to the exponential

growth rates eventually the growth in the MLE’s direction will outpace all other growth directions.

2This value depends on the kinds of values 𝒖 takes on during the system’s evolution, but anywhere between 10
−9

to 10
−7

is

generally considered small enough.



8
General Workflow

This chapter describes the general methodology adopted for the entire project, across the different

chaotic systems. Starting with the simulation of the chosen chaotic systems, Section 8.1 describes in

detail the solvers used to generate the training/testing datasets, and the parameters used to do so.

Section 8.2 details the layering architectures of the auto-encoders and the selection of hyper-parameters,

along with the utilized error metrics and other comparison methods. Section 8.3 deals with design of the

RNNs - the layering architectures and sizes - along with their training and hyper-parameter selection.

8.1. Simulation and Data Generation
8.1.1. The Lorenz ’63 System
The Lorenz ’63 system equations as described in Section 6.1 are directly integrated using the RK4

method, with a time-step Δ𝑡 = 0.01. The first 1000 time-units (i.e. the first 100000 time-steps) are

discarded to remove the influence of the initial condition, and the next 42000 time-units stored as the

useable dataset.

For the single parameter-set case, the canonical parameters 𝜎 = 10, 𝜌 = 28, 𝛽 = 8/3 are used

(Figure 6.2), whilst for the multi-regime auto-encoder the parameter-set obtained from all possible

combinations of 𝜎 ∈ (10, 20), 𝜌 ∈ (35, 45) and 𝛽 ∈ (4/3, 8/3) is used. These parameter sets are chosen to

ensure chaotic dynamics are observed, by ensuring 𝜎 > 𝛽 + 1 and 𝛽(𝜌 − 1) > 0 (Section 6.1). The various

phase spaces are shown in Figure 8.1. The differing dynamics caused by the changing parameters

can also be clearly observed. The increase in 𝜎 appears to increase the size of the lobes, in addition

to making the trajectory stay farther away from the attractor positions. This is to be expected since

it governs the magnitude of ¤𝑥1. Aside from changing the attractor positions, the increase in 𝜌 and 𝛽
appear to correspond to increased larger lobes and more chaotic trajectories as well. The MLE, KY

dimension and the Lyapunov time (as discussed and defined in subsection 3.2.1 and subsection 3.2.2) of

the different cases are provided in subsection A.1.1. These different dynamics should be able to test the

multi-regime auto-encoder’s compression abilities well.

44
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.1: Phase space of the Lorenz system with different parameter sets.
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8.1.2. The Charney-DeVore System
The CDV system equations (Section 6.2) are directly integrated using the RK4 method with a time-step of

Δ𝑡 = 0.1. The first 1000 time-units (i.e. the first 10000 time-steps) are discarded to remove the influence

of the initial condition, and the next 50000 time-units are stored as the useable dataset.

The parameter set (𝑥∗
1
, 𝑥∗

4
, 𝐶, 𝛽, 𝛾, 𝑏) = (0.95,−0.76095, 0.1, 1.25, 0.2, 0.5) is used for the single

parameter-set case. It is harder to find parameter sets that produce chaotic trajectories for the CDV

system, as noted in [18], and one method of doing so is to follow 𝑟 = 𝑥∗
1
/𝑥∗

4
= −0.801, keeping the other

parameters constant. Even then, the trajectories need to be inspected lest they possess a non-chaotic

attractor (Figure 8.3). Here, the first three cases result in constant trajectories, and only the 𝑥∗
1
= 0.95

case is truly chaotic. The remaining two appear to be quasi-periodic rather than fully chaotic (as can be

seen in the 𝑥1 − 𝑥4 plane Figure 8.2). Hence following this parameter search, for the multi parameter-set

case, only a single additional set (0.99,−0.79299, 0.1, 1.25, 0.2, 0.5) is added. The MLE, KY dimension

and Lyapunov times are given in subsection A.1.2. A deeper analysis (subsection A.1.2) reveals that this

parameter set produces not just a quasi-periodic but a fully periodic solution trajectory. This gives the

auto-encoder two dynamical regimes to model.

Figure 8.2: CDV solution trajectories, plotted in the 𝑥1 − 𝑥4 plane.

8.1.3. The Kuramoto-Sivashinsky System
The KS system equations (Section 6.3) are solved using the pseudo-spectral method with time-stepping

using the ETDRK4 method (using a provided in-house solver), with a time-step of Δ𝑡 = 0.1, on a periodic

spatial domain of length 𝐿 = 35 and 64 points to discretize the domain. The first 10000 time-units (i.e.

the first 100000 time-steps) are discarded to remove the influence of the initial condition, and the next

50000 time-units are stored as the useable dataset.

The parameter set (𝜈1 , 𝜈2 , 𝜈3) = (1, 1, 1) is used with 𝐺(𝑢, 𝑥, 𝑡) = 0 for the single parameter-set case.

For the multi parameter-set, (𝜈1 , 𝜈2 , 𝜈3) = (1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2) are used (Figure 8.4). Only

the first two sets result in chaotic dynamics, with the rest resulting in periodic solutions (subsection A.1.3).

This is even more visible when the mean kinetic energy, the mean dissipation rate and the mean turbulent

kinetic energy are plotted (Figure A.2, Figure A.3, Figure A.4). In the first two cases, the increase in

𝜈1 can be interpreted to lead to more ‘active dynamics’, since this controls the rate at which energy is

redistributed amongst the different modes (Equation 6.12). This can also be observed in the marginally

smaller Lyapunov time of the second case as compared to the first (subsection A.1.3), implying nearby

trajectories will tend to diverge just a little bit faster as compared to the first case. These four cases

provide the auto-encoder with enough regime changes to model.
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Figure 8.3: Time evolution of the individual components in a CDV system, for different parameter sets.
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Figure 8.4: Time evolution of the KS system with different parameter sets.

8.1.4. The Kolmogorov Flow System
The 2D incompressible Navier-Stokes equations (Section 6.4) are solved on a 2𝜋 × 2𝜋 doubly-periodic

spatial domain using a provided in-house solver that employs the pseudo-spectral method after first

applying the Leray projection operator. The equations are time-integrated in Fourier space using the

RK4 method. The Fourier transform is taken using 32 wave-number pairs (a total of 65 modes) each in

the 𝑥 and 𝑦 directions. The solution is computed on a 50×50 grid in the spatial domain using the inverse

Fourier transform. The equations are time-stepped using Δ𝑡 = 0.01, however owing to storage size

constraints the solution is saved only every 0.25 time-units (i.e. 25 time-steps). The first 500 time-units

are discarded to remove the influence of the initial condition, and Reynolds number 𝑅𝑒 = 30, 40 along

with 𝑘 𝑓 = 4 (the forcing frequency) are used to produce chaotic solutions.

Snapshots and means of the 𝑥-direction and 𝑦-direction velocities (𝑢𝑥 , 𝑢𝑦) and the vorticity 𝜔 =

(∇ × 𝒖) · 𝒆3 =
𝜕𝑢𝑥
𝜕𝑦 − 𝜕𝑢𝑦

𝜕𝑥 are plotted Figure 8.6 and Figure 8.5. The forcing function 𝒇 can be observed

in the mean 𝑢𝑥 (𝑢) plot, where the alternating of the four sinusoids (corresponding to 𝑘 𝑓 = 4) are

clearly visible (Figure 8.6d). Further, the fact that the energy spectrum (provided in Figure 8.7b) exactly

replicates that in [25] justifies the choice of using 32 wave-number pairs to accurately model the system

dynamics.

Further dynamics can be observed in the mean kinetic energy, mean turbulent kinetic energy and

mean dissipation rate plots (Figure A.6, Figure A.7). Other chaos quantifiers such as the 𝑀𝐿𝐸, the KY

dimension and the Lyapunov times are provided in subsection A.1.4.
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Figure 8.5: Iso-contours of 𝑢𝑥 , 𝑢𝑦 and vorticity 𝜔 (𝑅𝑒 = 30) - snapshots a, b, c and time means d, e, f.
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Figure 8.6: Iso-contours of 𝑢𝑥 , 𝑢𝑦 and vorticity 𝜔 (𝑅𝑒 = 40) - snapshots a, b, c and time means d, e, f.



8.2. Auto-encoders 50

0 10 20 30 40

k

10−20

10−16

10−12

10−8

10−4

100

E
(k

)
/
∑

n
E

(n
)

Energy Spectrum

(a) 𝑅𝑒 = 30

0 10 20 30 40

k

10−16

10−12

10−8

10−4

100

E
(k

)
/
∑

n
E

(n
)

Energy Spectrum

(b) 𝑅𝑒 = 40

Figure 8.7: Energy spectrum of the Kolmogorov flow system.

8.2. Auto-encoders
This section delves into the fundamental principles of auto-encoder training, including the choice of

network architectures, loss functions, and optimization techniques. Further discussed are the strategies

adopted to mitigate over-fitting and optimal selection of certain hyper-parameters.

8.2.1. Layering and Network Architecture

Fully Connected Auto-Encoder Network
For the first three systems - the Lorenz, CDV and KS systems - the input feature vector is one-dimensional.

Thus a simple fully-connected feed-forward network architecture is used for both the encoder and

decoder networks. The exponential linear unit (ELU) function is used as the activation function in the

intermediate layers, and the hyperbolic tangent used as the final layer’s activation function for both the

encoder and decoder networks (chosen for its quashing property - subsection 4.1.4). The ELU function

has been found to perform better than the ReLU function. This is owed to its tail in the 𝑥 < 0 regime

which helps add balance to the layer’s output. This assists with the issues of non-centeredness and

‘dying’ neurons that plague ReLU units (much like the leaky ReLU [80]).

In the single regime case, the general architecture of the auto-encoder looks like Figure 8.8a. Here

the system’s state vector is fed into the network, and the reconstructed data is its output. The latent

state vector z is the output of the encoder and the input of the decoder. Similarly, for the multi-regime

auto-encoders, an initial test is performed using this architecture (as shown in subsection 9.1.3). However,

noting its generally poor performance and failure to segregate different regimes in the latent space, a

second architecture (Figure 8.8b) is tested. Here, the parameters specific to each regime are passed

into encoder as an additional input, and generated by the decoder as an additional output. The

reconstruction error on these parameter vectors is included in the cost function, thus forcing the network

to learn to separate the different regimes. In practice, this is implemented by simply appending the

parameter vector to the system state vector and then commencing the training as per usual.

Encoder 
Block 

 Decoder
 Block

Input
x

Output
xpredict

 z 

(a) Only system state treated as input feature vector.

Encoder 
Block 

 Decoder
 Block

Input
x

Output
xpredict

Parameters
Φ

Parameters
Φpredict

 z 

(b) System state and parameter set treated as input feature vectors.

Figure 8.8: Typical flow-charts of the auto-encoder configurations.

The exact layer sizes and number of layers for each case are given in subsection A.2.1. The general

strategy adopted in picking the layer sizes for the encoder network is to double the input’s dimensionality
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(to the nearest power of two), and then go on reducing the dimensions in successive layers. The decoder

network is simply the encoder network’s layer configuration in reverse.

Convolutional Auto-Encoder Network
For the Kolmogorov flow system, since the input data resides in a R𝑁𝑥×𝑁𝑦×2

space1 and possesses strong

spatial relationships, a convolutional auto-encoder is employed to generate the latent space [19, 78, 55].

Convolution (Figure 8.9a) is a weight-sharing measure oft used in cases where the data displays spatial

relationships such as images and videos [32]. However, since it is a local operation it tends to neglect

global relationships. This is mitigated by adding self-attention skip-layers in the encoder and decoder

networks, allowing them to detect large-scale patterns [78, 82]. The exact layer-configurations can be

found in subsection A.2.1.

Convolutions are only employed in the encoder, the decoder utilitzes de-convolutions, also known as

transposed convolutions [22]. These are the exact reverse operation of a convolution, and are an effective

method of super-sampling a lower dimensional input. An example is shown in Figure 8.9b. Like the

convolutions, these too are local operations, and thus self-attention skip-layers are incorporated in the

decoder as well.

Further, instead of a single filter-size kernel, a multi-scale network is used to construct the auto-

encoder [21]. The general auto-encoder architecture can be seen in Figure 8.10. Here, there exist parallel

encoder and decoder networks, operating independently on their inputs. A weighted sum is performed

on the individual outputs to produce the final output. The weights used to compute the outputs are

themselves learnable parameters and are optimized during training, starting from initial values 1/𝑛𝑝
(𝑛𝑝 being the number of parallel networks). Lastly, keeping the periodic nature of the system in mind,

periodic padding is employed to pad the inputs before performing the convolutions.

For the multi-regime case, the Reynolds number is treated as an additional data channel, effectively

transforming the data into a R𝑁𝑥×𝑁𝑦×3
space. This amounts to adding 𝑁𝑥𝑁𝑦 ‘parameter variables’ to the

original state vector and gives the final data channel (corresponding to the Reynolds number) too much

sway over the loss function. Note that in all previous cases the respective parameter sets are appended

to the state vector only once, thus resulting in only a single instance of each system parameter in the

augmented input data. In order to mitigate the undue influence resulting from its multiplicity, the MSE

error is modified as follows:

MSE
augmented

(
xtrue , xpredict

)
= MSE

(
xtrue

(1,2) , x
predict

(1,2)

)
+

(
1

𝑁𝑥𝑁𝑦

)
MSE

(
xtrue

(3) , x
predict

(3)

)
, (8.1)

where x(𝑖 , 𝑗 ,... ) represents the slice of x containing only the 𝑖𝑡ℎ , 𝑗𝑡ℎ , . . . data channels. This removes the

added data channel’s undue influence on the loss function, and then training is proceeded with as usual.
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(a) Convolution operation performed on a 2D matrix using a 2 × 2

kernel (with periodic padding, highlighted in yellow).

(b) Transposed convolution operation performed on a 2D matrix using

a 3 × 3 kernel (note the 3 × 3 input matrix gets up-sampled to a 5 × 5

matrix).

Figure 8.9: Examples of the convolution and transposed convolution operations.

Choice of Latent Space Dimension
The choice of the latent space dimension is crucial for accurate data reconstruction. Here, it is motivated

by an argument from differential topology. Assume the chaotic attractor represents a 𝑚-manifold ℳ (𝑚
being the Lebesgue covering dimension), and has a Hausdorff dimension 𝐷𝐻 . It is known that 𝑚 ≤ 𝐷𝐻

1𝑁𝑥 and 𝑁𝑦 are the domain sizes in the 𝑥 and 𝑦 directions, respectively (both being equal to 50 in the present case).
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Figure 8.10: Multi-scale Convolutional Auto-encoder (𝑤𝑒
𝑖

and 𝑤𝑑
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are the weights for the outputs of the parallel encoders and

decoders, respectively).

[23, Theorem 6.3.10 on p.183], and that the mainfold ℳ can be embedded in a Euclidean space R𝑛 with

𝑛 ≥ 2𝑚 (under suitable assumptions of smoothness, see Whitney’s strong embedding theorem [67]).

This implies that the chaotic attractor should be able to be accurately represented in a Euclidean space

R𝑝 with 𝑝 = ⌈2𝐷𝐻⌉ 2. The Hausdorff dimension 𝐷𝐻 is estimated using the Kaplan-Yorke dimension 𝐷𝐾𝑌

(subsection 3.2.2), and thus 𝑛 𝑙𝑠 = ⌈2𝐷𝐾𝑌⌉ is chosen to be the dimensionality of the latent space for the

auto-encoders.

8.2.2. Error Metrics
Error metrics play a pivotal role in assessing the accuracy and efficacy of the model. This subsection

focuses on the selection and application of error metrics, which quantitatively evaluate the reconstruction

performance of auto-encoders. In addition to the standard MSE, another error metrics that has been

monitored is the Normalized Mean Squared Error (NMSE). These are defined below:

MSE

(
xtrue , xpredict

)
= Ex

[
|xtrue − xpredict |2

𝑛𝑥

]
(8.2)

NMSE

(
xtrue , xpredict

)
= Ex

 1

𝑛𝑥

∑
𝑖

(
𝑥true

𝑖
− 𝑥predict

𝑖

𝜎𝑖

)2 , (8.3)

where x represents the flattened feature vector, 𝑥𝑖 is its 𝑖𝑡ℎ component, 𝜎𝑖 the standard deviation of 𝑥𝑖
and 𝑛𝑥 the length of vector x. The NMSE is a good normalized error metric that equalizes the different

components in magnitude. As noted in subsection 5.1.3, the smaller components may not be statistically

significant but are important to the dynamics of a system and this ensures they do not get neglected. To

present the results in Chapter 9, another error metric, the Normalized Root Mean Squared Error (NRMSE),

has been utilized. This has the same benefit as the NMSE of being normalized and additionally is of the

same dimensional units as the input data.

NRMSE

(
xtrue , xpredict

)
= Ex


√√√√

1

𝑛𝑥

∑
𝑖

(
𝑥true

𝑖
− 𝑥predict

𝑖

𝜎𝑖

)2 (8.4)

8.2.3. Loss Function
The choice of appropriate loss functions for training is of utmost significance, since they quantify the

dissimilarity between the reconstructed output and the original input data. The standard loss function

2𝐷𝐻 ≥ 𝑚 =⇒ ⌈2𝐷𝐻⌉ ≥ 2𝑚
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used is:

𝐽 (𝜽) = MSE

(
xtrue , xpredict

)
+ 𝜆reg𝐿

2

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝜽) , (8.5)

where 𝐿2

𝑝𝑒𝑛𝑎𝑙𝑡𝑦
(𝜽) is the 𝐿2

norm of the network’s weights and biases (𝜽), and 𝜆reg a hyper-parameter

controlling the amount of added penalty.

Contractive Loss
As mentioned in Section 4.2, a contractive loss is added to the loss function as follows:

𝐽 (𝜽) = MSE

(
xtrue , xpredict

)
+ 𝜆reg𝐿

2

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝜽) + 𝜆contractive∥∇xz∥2 , (8.6)

where ∥∇xz∥2
is the Frobenius norm of the encoded latent space vector (z) w.r.t. the input feature vector

(x), and 𝜆contractive the hyper-parameter controlling how much of it to add to the loss. The idea behind

this addition is to have the network itself train to place similar inputs close to each other in the latent

space, thereby ‘smoothening out’ the variations, hopefully leading to an easier-to-model time series for

the RNNs.

8.2.4. Training
The Adam optimizer [44] is used to train the networks, in three successive rounds. Each round has a suc-

cessively lower learning rate, starting from 10
−3

, progressing to 10
−4

and eventually 10
−5

. The maximum

number of epochs per round is limited to 200, and early stopping with patience (subsection 4.1.6) set to

10 epochs is utilized. This training strategy is found to perform quite well, and a typical training curve

is provided in Figure 8.11. It can be observed how the loss decreases even further between successive

rounds. The latter rounds essentially fine-tune the weights, as evidenced by the minimal changes in the

loss function. The data is split into three sections - 80% is used for training, 10% for validation and the

remaining 10% for testing.
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Figure 8.11: Typical auto-encoder training curves.

Data Normalization before Training
The input data, as can be seen in Section 8.1, covers a vast range of scales, all of which are not suitable

for use in ML training. Most activation functions work in a narrow range, generally around the interval

(−1, 1), and hence input data needs to be altered before training can commence. To this end, the input

data in all cases is first mean-centered by subtracting the mean, and then standardised by dividing each

entry 𝑥𝑖 by 3𝜎𝑖 . This normalization ensures the data is both zero-centered and roughly within the

interval (−1, 1). Other normalization options exist, such as the min-max normalization which forcibly

rescales the data to be in the range [0, 1] or [−1, 1] using the minimum and maximum values. This was

considered unsuitable since it lends too much weight to the outliers in the data and has a tendency to

skew the input distribution [32].

Noise Addition
Gaussian noise is added to the input data in order to speed up the training and make the network robust
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to errors in the input. The mean of the noise distribution is always set to zero, and all that needs to be

specified is its standard deviation, 𝜎𝑛𝑜𝑖𝑠𝑒 . This set as:

𝜎noise = 𝑓noise𝜎mean , (8.7)

where 𝜎mean = (∑𝑖 𝜎𝑖) /𝑛𝑥 is the mean of the standard deviations of the individual components of the

input feature vector. Then 𝑓noise becomes the hyper-parameter that needs specification, and its selection

process is detailed in subsection 8.2.5.

8.2.5. Hyper-Parameter Selection
The success of any ML training campaign hinges upon the judicious selection of hyper-parameters,

and this section describes the methodology employed in this project. The different hyper-parameters

and their selection strategies are given in Table 8.1. The learning rate(s), maximum epochs per round,

early stopping patience, and the total number of rounds are set based on prior experience and initial

exploratory experiments.

Hyper-parameter Selection method Value
learning rate(s) constant, pre-set

{
10

−3 , 10
−4 , 10

−5

}
𝜆reg Bayesian optimization problem dependent

𝜆contractive Bayesian optimization problem dependent
𝑓noise Bayesian optimization problem dependent

early stopping patience constant, pre-set 10

maximum epochs (per round) constant, pre-set 200

number of rounds constant, pre-set 3

batch size constant, pre-set 64

Table 8.1: Hyper-parameters and their selection methods.

Bayesian Optimization
Bayesian optimization (using Gaussian process regression [53, 68, 29]) utilizes a probabilistic surrogate

model to model a blackbox function and efficiently explores the hyper-parameter space, minimizing

said blackbox function. It is ideal for use in cases where each function evaluation is expensive, and

hence perfectly suited for hyper-parameter tuning within the machine learning context. As such, it is

used to optimize the values of the hyper-parameters 𝜆reg, 𝜆noise and 𝑓noise.

The general strategy employed is to provide the optimizer with an initial set of input vectors, and

the function evaluations at those initial points. The optimizer then finds new optimal points using the

specified acquisition function. The Expected Improvement acquisition function is used which is said to

balance exploration of the search space with straightforward optimization of the computed surrogate

model (termed ‘exploitation’). Table 8.2 provides the bounds imposed and the priors assumed on the

different hyper-parameters.

The search is carried out in two stages. In the first stage, 𝜆contractive is set to 0 and the search space is

two-dimensional, made up of 𝜆reg and 𝑓noise. Twenty initial points are sampled from a space filling curve

to ensure that the search space is adequately represented. Auto-encoders are trained on these initial

points and the testing data’s reconstruction MSE is used as the blackbox function to minimize. The

Bayesian optimization is allowed to run for an additional 10 iterations, which is found to be sufficient to

find the optimal values of 𝜆reg and 𝑓noise. The hyper-parameters are found for the single parameter-set

case and then the same values are used for the multi-regime auto-encoders.

Hyper-parameter Bounds Prior
𝜆reg [10

−7 , 10
−3] log-uniform

𝜆contractive [10
−6 , 10

−1] log-uniform

𝑓noise [10
−4 , 10

−1] log-uniform

Table 8.2: Hyper-parameters, their imposed bounds and assumed priors.
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Once the optimal 𝜆reg and 𝑓noise have been found, stage two is commenced, in which the Bayesian

optimization strategy is used to find the optimal value of 𝜆contractive. Ten initial values are chosen for

𝜆contractive and again the testing data’s reconstruction MSE used as the objective to minimize. Further

twenty iterations are run for the Bayesian optimization algorithm to find the optimal value.

8.2.6. Latent Space Principal Directions
Once the auto-encoders are trained, the identified latent space is analysed through its principal directions.

These are computed by applying the POD method described in subsection 5.1.1 to the computed latent

states:

p𝑙𝑠𝑖 =
𝜆𝑙𝑠
𝑖∑
𝑗 𝜆

𝑙𝑠
𝑗

𝜙𝑙𝑠𝑖 + z, (8.8)

where z is the mean of the latent states (subtracted before performing the decomposition), 𝜙𝑙𝑠
𝑖

is the 𝑖𝑡ℎ

principal direction unit-vector obtained from the decomposition and 𝜆𝑙𝑠
𝑗

are the eigenvalues associated

with each principal direction. The term

𝜆𝑙𝑠
𝑖∑
𝑗 𝜆

𝑙𝑠
𝑗

is meant to weigh each direction with its contribution to

the cumulative variance of the mean subtracted data (see subsection 5.1.1).

Likewise, the principal directions of the original data are computed as:

p𝑡𝑟𝑢𝑒𝑖 =
𝜆𝑡𝑟𝑢𝑒
𝑖∑
𝑗 𝜆

𝑡𝑟𝑢𝑒
𝑗

𝜙𝑡𝑟𝑢𝑒𝑖 + x, (8.9)

with x being the subtracted mean of x and the remaining terms defined similarly as before. Then 𝒟
(
p𝑙𝑠
𝑖

)
,

where 𝒟(·) represents the application of the decoder network, is plotted and analysed alongside p𝑡𝑟𝑢𝑒
𝑖

.

Further, a correlation matrix 𝑪 defined as:

𝐶𝑝,𝑞 =
𝒟

(
p𝑙𝑠𝑝

)
· p𝑡𝑟𝑢𝑒𝑞

∥𝒟
(
p𝑙𝑠𝑝

)
∥ ∥p𝑡𝑟𝑢𝑒𝑞 ∥

, (8.10)

is computed to better understand the relationships between the latent and physical spaces.

8.3. Recurrent Neural Networks
Once the auto-encoders are trained and the latent states computed, the task at hand switches to

modelling the time-series they represent. This section details the RNN design choices - the layer sizes

and their connectivity - along with their training and hyper-parameter optimization strategies.

8.3.1. Error Metrics
The error metrics used here are the same as those for the auto-encoders, the only difference is that now

there is an additional dimension corresponding to the time-series that is added to the data being worked

on.

Prediction Horizon
To quantify the effectiveness of a time-series modelling system, a separate metric called the prediction
horizon is defined. This is defined as the first moment the NRMSE increases past a pre-set threshold

value:

Prediction Horizon = argmin

𝑡

{
𝑡 | NRMSE

(
xtrue(𝑡), xpredict(𝑡)

)
≥ 𝜖𝑡

}
, (8.11)

where 𝜖𝑡 is the error threshold and 𝑡 is the time from the start of the prediction cycle. In this project,

𝜖𝑡 = 0.5 has been used. The prediction horizon is normalized by the Lyapunov time of the system when

reporting.
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8.3.2. Training
In this stage the RNNs are trained on the latent states computed by the encoder networks of the

auto-encoders. These are then normalized using the same technique as subsection 8.2.4. The RNNs are

then trained in a teacher-forced mode.

Teacher-forced training
Teacher-forced training refers to a specific technique in which, during the training phase, the RNN

receives the true ground-truth data as inputs at each time step, rather than its own predictions from the

previous step. This implies that they are essentially trained in a single-step prediction mode, as can be

seen in Figure 8.13. Whilst imperfect, this method has the advantage of decoupling the inputs to a cell

from previous outputs, thus enabling faster training times [32].

The ESNs are trained by simply setting up the required matrices and computing an inverse, as

described in subsection 4.3.4. The remaining RNNs are trained using BPTT, employing the Adam

optimizer and a multi-round set-up as done for the auto-encoders in subsection 8.2.4. A typical training

curve is shown in Figure 8.12.

Note that for the ESNs, it is common practice to train an ensemble and use their averaged outputs as

the prediction [41, 50]. The randomly initialized reservoir and input connections in an ESN introduce

variability in the network’s behaviour, leading to differences in its performance for different runs. The

use of an ensemble addresses the issue of variability and instability in individual ESNs. By creating

multiple ESN instances, each with different random initializations of the reservoir, the ensemble captures

a broader range of behaviours. In this project, an ensemble of 10 ESNs is used for this purpose.
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Figure 8.12: Typical RNN teacher-forced training curves.
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Figure 8.13: Teacher-forced RNN training flow-chart, where i𝑡𝑛 and o𝑡𝑛 represent the input and output (respectively) vectors, s𝑡𝑛
the RNN state being received by the cell, all at time instance 𝑡𝑛 . The mauve cells represent the RNN cells and their internal

structure, while the red squiggly arrows mark the direction of gradient-flow.

8.3.3. Layering and Layer Sizes
Based on the reports surveyed, two trends are observed (Figure 8.14). First, the layer-sizes of the

BPTT-trained RNNs (GRUs, LSTMs) are of the order of 10
1

times the dimensionality of the data being

modelled. Second, the layer-sizes of the ESNs are of the order of 10
2

times the dimensionality of the data
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being modelled. Based on these observations, a strategy for picking the layer sizes is decided as follows:

RNN layer size = 𝑛𝑟 × 𝑛 𝑙𝑠 , (8.12)

where 𝑛 𝑙𝑠 is the number of latent states being modelled, and 𝑛𝑟 the factor of multiplication. Based on

this, the values of 𝑛𝑟 chosen for this project are given in Table 8.3. Note that only the GRU and ESN are

tested at multiple layer sizes, and all network types are compared at the highest 𝑛𝑟 values against each

other.
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Figure 8.14: 𝑛𝑟 values computed for the various reported

studies. 𝐴 is [13], 𝐵 is [75], 𝐶 is [73], 𝐷 is [57], 𝐸 is [74], 𝐹 is

[19], 𝐺 is [55].

Network type 𝑛𝑟 values

ESN {200, 500, 800}
GRU {20, 50, 80}
LSTM {80}

Simple RNN {80}

Table 8.3: Chosen values of the multiplicative factor 𝑛𝑟 .

RK-inspired Layering
Runge-Kutta methods are numerical techniques commonly used to solve ordinary differential equations

(ODEs) with improved accuracy and stability. Drawing inspiration from these mathematical solvers,

multi-layer RNNs are tested to adopt a similar hierarchical approach to model sequences of data. Note

that in Section 7.1, each stage of the RK method essentially involves a weighted sum of Δ𝑡f(· · · ). In

this spirit, the general layering architecture of the tested RK RNNs involves an initial RNN layer that

expands the input into the RNN’s hidden layer dimension (𝑛𝑟 × 𝑛 𝑙𝑠) and subsequent applications of RK

layers. Each RK layer maintains its owns hidden states, but shares the weights with all other RK layers.

The RNN cell (representing the layer’s weights and biases) they use is called the 𝑅𝐾 𝐶𝑒𝑙𝑙. The weighted

sums of the outputs of each of the layers results in the final output. These weights are taken directly

from the different RK schemes. In essence, the 𝑅𝐾 𝐶𝑒𝑙𝑙 learns to model the function Δ𝑡f(· · · ).
The effect of RK-inspired layering is tested on the GRU networks with the highest 𝑛𝑟 values, and

weights from the RK1 (Euler method), RK2 and RK4 schemes are tested. Figure 8.15 shows the flow-chart

of the RK1 and RK2 inspired layering architectures. Note that the RK1-inspired network is simply a

skip-layer, which is known to be beneficial for deep neural networks.

8.3.4. Hyper-Parameter Selection
The ESNs and the BPTT-trained RNNs, having been built using different philosophies, possess different

and separate sets of hyper-parameters. All of these are optimized using Bayesian optimization, as

outlined below (similar to subsection 8.2.5). For this section, the objective-to-minimize for the optimizer

is not the MSE of the reconstructed data, rather it is the negative of the 50
𝑡ℎ

percentile of the prediction

horizons3. This effectively maximizes the prediction accuracy of the networks.

ESNs
ESNs depend on 6 hyper-parameters, listed in Table 8.4. The first five are optimized using Bayesian

optimization, and their ranges given in Table 8.5. The degree of connectivity represents the average

number neurons each reservoir neuron is connected to. Lukoševičius [50] reports this to not have much

of an effect on the ESN’s performance, and recommends setting it to a small constant value.

Fifty initial points are chosen, using the same space-filling curve to cover the defined domain.

Twenty additional iterations are run for the optimizer to maximize the prediction horizons. The

3Computed using 50 initializations from the testing data-set.
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1
𝑠𝑡 𝑅𝑁𝑁 𝐶𝑒𝑙𝑙

𝑅𝐾 𝐶𝑒𝑙𝑙

(a) Flow-chart for RK1 inspired (simple skip layer) RNN network.
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𝑠𝑡 𝑅𝑁𝑁 𝐶𝑒𝑙𝑙

1/2

𝑅𝐾 𝐶𝑒𝑙𝑙

𝑅𝐾 𝐶𝑒𝑙𝑙

(b) Flow-chart for RK2 inspired RNN network.

Figure 8.15: Flow-charts depicting the RK-inspired layering architectures. Note that the weights are shared amongst the RK-cells.

hyper-parameters are optimized for the ESN with the smallest 𝑛𝑟 value, and the found values are used

for the higher 𝑛𝑟 cases [50].

Hyper-parameter Selection method Value
input scaling, 𝜔𝑖𝑛 4 Bayesian optimization problem dependent

reservoir spectral radius, 𝜌𝑟𝑒𝑠 Bayesian optimization problem dependent
leaking rate, 𝛼 Bayesian optimization problem dependent

noise, 𝑓noise Bayesian optimization problem dependent
regularization, 𝜆reg 5 Bayesian optimization problem dependent

degree of connectivity constant, pre-set 3

Table 8.4: Hyper-parameters and their selection methods.

Hyper-parameter Bounds Prior
input scaling, 𝜔𝑖𝑛 [0.1, 2.5] uniform

reservoir spectral radius, 𝜌𝑟𝑒𝑠 [0.2, 1.2] uniform

leaking rate, 𝛼 [0.5, 1.0] uniform

noise, 𝑓noise [10
−4 , 10

−1] log-uniform

regularization, 𝜆reg [10
−9 , 10

−3] log-uniform

Table 8.5: ESN hyper-parameters, their imposed bounds and assumed priors.

BPTT trained RNNs
The hyper-parameters here too are selected in the same manner as in subsection 8.2.5. The different

hyper-parameters and their selection strategies are given in Table 8.6. The bounds on the hyper-

parameters 𝜆reg and 𝑓noise are given in Table 8.7. Similar to the ESN case, the hyper-parameters are

found for the smallest 𝑛𝑟 value networks and then reused for the higher 𝑛𝑟 cases (if applicable).

4denoted by 𝑎 in subsection 4.3.4

5denoted by 𝛽 in subsection 4.3.4
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Hyper-parameter Selection method Value
learning rate(s) constant, pre-set

{
10

−3 , 10
−4 , 10

−5

}
𝜆reg Bayesian optimization problem dependent
𝑓noise Bayesian optimization problem dependent

early stopping patience constant, pre-set 10

maximum epochs (per round) constant, pre-set 200

number of rounds constant, pre-set 3

batch size constant, pre-set 32

Table 8.6: Hyper-parameters and their selection methods.

Hyper-parameter Bounds Prior
𝜆reg [10

−9 , 10
−3] log-uniform

𝑓noise [10
−4 , 10

−1] log-uniform

Table 8.7: Hyper-parameters, their imposed bounds and assumed priors.

8.4. Combined AE-RNN
So far, the RNNs have been trained in a single-step prediction mode, which differs from the objective on

which the combined AE-RNN models are evaluated - multi-step prediction. To this end, the combined

AE-RNN model is trained in an auto-regressive setting, as described in the following section.

8.4.1. Training

Auto-regressive training
Auto-regressive training in the context of RNNs involves a unique approach, where instead of operating

on the ground-truth data, the network is trained to predict trajectories by treating its own outputs as

inputs for the next time-step. This self-predictive mechanism imbues the RNN with the ability to better

estimate future trajectories recursively. It not only helps the RNNs learn to operate on their imperfect

outputs rather than the true data values, but also allows the auto-encoder and RNN to enmesh and

account for each others’ errors. A flow-chart representing this is provided in Figure 8.16.

A sequential training protocol is adopted, as done in [75], wherein the network is trained to predict

a progressively increasing number of output steps. The network is ‘warmed up’ with one Lyapunov

time’s worth of time-steps to properly intitialize the RNNs’ internal states. Since the system is chaotic

and the trajectories are bound to diverge, in [75] the authors attach a progressively decreasing weight to

each time-step so as to not have the training focus on latter time-steps, and this practice too is adopted.

An additional penalty inspired from [77] is added to the loss function, in terms of the Frobenius

norm of the difference between the covariance matrices of the outputs. This is a penalty on a statistical

property of the output, and thus still model-independent. It was observed to aid in AR training in the

initial experiments and was suitably used throughout the project then.

𝐽 (𝜽) = MSE

(
xtrue , xpredict

)
+ 𝜆reg𝐿

2

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝜽) + 𝜆covmat𝐿
Fr

𝑝𝑒𝑛𝑎𝑙𝑡𝑦

(
𝑪true − 𝑪predict

)
, (8.13)

where 𝑪 is the covariance matrix of the ‘snap-shots’, as defined in Equation 5.5 in subsection 5.1.1, and

𝐿Fr

𝑝𝑒𝑛𝑎𝑙𝑡𝑦
(·) the Frobenius norm. The hyper-parameter 𝜆covmat is not explicitly optimized, and chosen

such that the added penalty is of the same order as the 𝐿2
regularization penalty.

Lastly, in initial experiments it was observed that for higher output time-steps the training would

not proceed as expected and the network would end up learning nothing, with prediction performance

degrading. Upon closer inspection, this was attributed to unstable back-propagated gradients character-

ized by high values of the gradient’s norm. The vanishing/exploding gradient problem is well known in

the context of training RNNs [32]. This is dealt with by scaling the gradients for successive output time-

step training rounds, with the maximum value of the gradient’s norm from the previous time-step round.
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Figure 8.16: Auto-regressive training flow-chart of the combined AE-RNN. ℰ(·) and 𝒟(·) represent the application of the encoder

and decoder networks (respectively), and the remaining symbols are defined as in Figure 8.13

8.4.2. Long-term Prediction Statistics
In addition to testing the short-term predictive capabilities (by means of the prediction horizons), the

long-term statistical behaviour of the AE-RNN models w.r.t. the true data is also analyzed. This is done

via the Wasserstein distance (also known as the Kantorovich-Wasserstein metric) [34, 4, 42, 7]. This

metric measures the similarity between two probability distributions, and the empirical distributions

of the attractors obtained from the long-term predictions are compared against those obtained from

the true data using it. It is defined in terms of a linear programming problem, wherein one needs to

compute the optimal amount of flow (𝜋𝑖 , 𝑗) required to transform one distribution into the other, and is

defined as:

𝑊𝑝(𝜇, 𝜈) :=
©­«min

𝜋∈𝑈

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑑(x𝑖 , y𝑗)𝑝𝜋𝑖 𝑗ª®¬
1

𝑝

, (8.14)

where𝑊𝑝 is the 𝑝𝑡ℎ order Wasserstein distance, 𝜇, 𝜈 are the two probability distributions being compared

(

∑𝑛
𝑖=1

𝜇𝑖 = 1 and

∑𝑚
𝑖=1

𝜈𝑖 = 1), 𝑑(x𝑖 , y𝑗) is suitably defined distance metric between the two elements x𝑖
and y𝑗 and the set𝑈 is defined as:

𝑈 :=


∑
𝑗=1,...,𝑚 𝜋𝑖 𝑗 ≤ 𝜇𝑖 𝑖 = 1, . . . , 𝑛∑
𝑖=1,...,𝑛 𝜋𝑖 𝑗 ≥ 𝜈𝑗 𝑗 = 1, . . . , 𝑚

𝜋𝑖 𝑗 ≥ 0 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚.

 (8.15)

As can be observed, computing this metric for multi-dimensional distributions is computationally

challenging, and its efficient computation is still an active area of research [7, 4]. However, for 1D PDFs,

the𝑊1 metric has an easy-to-compute analytic solution [72, Theorem 2.18 on p.74]:

𝑊1(𝜇, 𝜈) =
∫
R
|𝐹𝜇(𝑥) − 𝐹𝜈(𝑥)|d𝑥, (8.16)
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where 𝐹𝜇 and 𝐹𝜈 are the cumulative distribution functions corresponding to the probability distri-

butions 𝜇 and 𝜈. The scipy library provides a standard implementation of this in the function

scipy.stats.wasserstein_distance, which is used in the present project.

The quantities used to track the attractor trajectories are defined in Table 8.8. These are the quantities

whose individual PDFs are compared using the𝑊1 metric, and presented in Chapter 10.

System Quantities used to
represent the attractor

Lorenz ’63 𝑥1 , 𝑥2 , 𝑥3

Charney-DeVore 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6

Kuramoto-Sivashinsky

turbulent kinetic energy (𝑇𝐾𝐸)

and mean dissipation rate (𝐷)

Kolmogorov Flow

turbulent kinetic energy (𝑇𝐾𝐸)

and mean dissipation rate (𝐷)

Table 8.8: Quantities used to track attractor trajectories for different systems.

8.5. Software and Libraries
This project is written in Python 3.8, with NumPy, SciPy and Matplotlib being the major libraries used

for numerical analysis and plotting. The well-known Tensorflow [54] library with the Keras backend

is employed for the machine learning aspects. The scikit-optimize library is used for the Bayesian

optimization of the hyper-parameters.
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Results and Discussion



9
Dimensionality Reduction Using

Auto-encoders

This chapter details the outcomes of the data compression achieved by means of an autoencoder

applied to the different chaotic systems. The research questions tackled here those pertaining to the

auto-encoders (item 1 from Section 2.2 of Chapter 2), specifically:

1. Does the incorporation of a contractive loss improve accuracy?
2. Can the model parameters be incorporated into the AE architecture in a meaningful way such that it produces

a multi-regime AE?
3. For the CNN-based AE, how much does the incorporation of self-attention affect accuracy?

Also compared against these results is the traditional POD model reduction technique, both in terms

of the computed reduced modes and the total variance captured. All the metrics presented here are

computed in the testing data-set of their respective cases. Unless specified otherwise, the analysis is

conducted for the single-parameter-set case.

9.1. The Lorenz ’63 System
The Lorenz ’63 system is fairly simple in complexity. The KY dimension and MLE for the different

parameter-cases are given in subsection A.1.1. Note that the maximum KY dimension for any of the

tested cases is 2.06, thus making the value ⌈2𝐷𝐾𝑌⌉ = 5 greater than the dimensionality of the original

data-set itself. Nonetheless, the auto-encoders are constructed with the latent space’s dimensionality

chosen to be 2. The compression exercise undertaken here is more to familiarize oneself with the

auto-encoders and POD, and test the idea of a multi-regime auto-encoder.

By applying Bayesian optimization to the hyperparameters 𝑓noise and 𝜆reg, we obtain the values

2.68 × 10
−4

and 10
−7

(respectively). The evolution of Mean Squared Error (MSE) across iterations is

visualized in Figure B.1a. Interestingly, the optimal value is discovered within the initial point-set, and

despite exploring the search domain, the algorithm fails to find any further improvements.

9.1.1. Contractive Loss
With the noise and regularisation hyper-parameters fixed, the contractive loss constant 𝜆contractive is

searched for. The iteration-wise evolution of the MSE is shown in Figure B.1b, and the optimal value

is computed to be 4.34 × 10
−4

. The NRMSE (reconstruction error), the mean RMS values and the

cumulative variance of the latent states, for both the cases with and without a contractive loss are shown

in Figure 9.1.

Clearly, the reconstruction error is marginally worse than if no contractive loss is used, and the mean

RMS and cumulative variance are less than half of their non-contractive-loss counterpart. This suggests

that the contractive penalty appears to force the network into learning latent space representations

63
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Figure 9.1: Various computed metrics for the auto-encoders with and without contractive loss.

with smaller norm values, as opposed to any meaningful additional contractions. This effect is further

clarified when the penalty term is itself analyzed a bit more:

∥∇xz∥︸︷︷︸
Jacobian norm

= (∥∇xz∥ / ∥z∥)︸           ︷︷           ︸
normalized

Jacobian norm

×∥z∥ (9.1)

The Jacobian’s norm and the normalized norm1 as defined above are both shown in Figure 9.2. As can be

seen here, the contractive penalty succeeds in penalizing the norm of the Jacobian (Figure 9.2b), and it is

indeed lower for the contractive auto-encoder. However since the normalized norm (Figure 9.2a) is in

fact marginally higher, it can be concluded that the reduction in the penalty term is brought about by

the reduction in the norm of the latent state variable z (Figure 9.1b) rather than any meaningful changes

to the latent manifold. The reason this is important is that the latent states are standardized once again

before being fed into the RNNs, and hence any reductions brought about by changes in ∥z∥ will get

cancelled out by said re-scaling.
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(a) Normalized norm of the Jacobian.
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(b) Norm of the Jacobian.

Figure 9.2: Normalized and original values of the mean Jacobian norm, for the auto-encoders with and without contractive loss.

Owing to the above observations, and the fact that the reconstruction error is not bettered by the

addition of the contractive penalty, the regular non-contractive auto-encoder is used for all further

studies for this system.

9.1.2. AE and POD Comparison
In this section, the dimensionality reduction achieved by means of the auto-encoder is compared against

that achieved by the POD method. The reconstruction errors are plotted and compared in Figure 9.3

and Table 9.1. Figure 9.4 and Table 9.2 show the difference in the captured statistical information by the

1Note the term norm here refers to the Frobenius norm.
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auto-encoder and the POD model, via the cumulative variances:

𝜂 =

∑
𝑖

(
𝜎reconstructed

𝑖

)
2

∑
𝑖

(
𝜎true

𝑖

)
2

(9.2)

The auto-encoder, by virtue of being a non-linear method, can capture slightly more of the cumulative

variance as compared to the linear POD method. The reconstruction error, on the other hand, is almost

an order of magnitude lower. This can also be observed in Figure 9.6c, where the AE can be seen to be

accurately reconstructing the eigenvalues of the covariance matrix, but the POD method by definition

only models the first two. This re-inforces earlier comments on how even statistically insignificant

modes are important when modelling chaotic systems.
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Figure 9.3: Reconstruction error (NRMSE).

Latent
AE PODSpace

Dimension
2 2.86 × 10

−2
1.55 × 10

−1

Table 9.1: Reconstruction error (NRMSE).
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Figure 9.4: Total variance captured by the reconstructed data,

w.r.t. the original data.

Latent
AE PODSpace

Dimension
2 99.66% 96.11%

Table 9.2: Total variance captured by the reconstructed data,

w.r.t. the original data.

Mode comparison
The analysis detailed in subsection 8.2.6 is carried out here, and the decoded principal directions of the

latent space compared with the principal directions of the original data. Figure 9.5 shows the respective

modes, and Figure 9.6a shows a heat map of the correlation matrix representing the relationships

between the two cases.

As can be observed, the first decoded vector is simply the flipped version of the first POD mode,

implying that it is simply the same vector but in the opposite direction. This can also be observed in the

deeply negative correlation coefficient between the two, and the almost zero correlation coefficients

it possesses with the other principal directions. The second decoded mode is harder to analyse, and

would appear to be a mixture of the remaining POD modes, and as much can be gleaned from its

correlation coefficients.

Lastly, note that the first principal direction in the latent space is the dominant one, and accounts for

about 76% of the total variance of the latent states (Figure 9.6b).
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Figure 9.5: Decoded latent space principal directions, and POD principal directions
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Figure 9.6: Different metrics representing the comparisons between the auto-encoder and the POD method.

9.1.3. Multi-regime AE
As detailed in subsection 8.2.1, a multi-regime auto-encoder is also constructed, by supplying the

regime parameters 𝜎, 𝛽, 𝜌 to the auto-encoder. The latent space of the auto-encoder with the parameters

supplied and that without can be seen in Figure 9.7. Clearly, the different regimes are well separated in

the case of the supplied parameters, and this physical separation in the latent space also lends itself
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to generally lower errors (Figure 9.7c). Further, this physical separation in the latent space can be an

implicit signal to the time-series modelling scheme, should one choose to pursue it. Note also, that

the individual reconstruction errors here are slightly higher than that of the single parameter-set case

(Table 9.1), while being of the same order and lower than the POD reconstruction error. This indicates

that this multi-regime sharing of the latent space is not a free-lunch, and a marginal performance penalty

has to be paid.

(a) Latent space of the auto-encoder that operates on only the

system state.

(b) Latent space of the auto-encoder that operates on data with the

parameters appended to the system state.

Case
1

Case
2

Case
3

Case
4

Case
5

Case
6

Case
7

Case
8

10−3

10−2

10−1

E
rr

or

NRMSE

AE (data without params)

AE (data with params)

(c) Reconstruction errors for the two tested multi-regime schemes.

Figure 9.7: Multi-regime auto-encoders.

9.2. The Charney-DeVore System
The CDV system is a step up from the Lorenz ’63 system in terms of complexity, but is still an ODE system.

Its KY dimension and MLE are given in subsection A.1.2. The maximum KY dimension (out of the two

parameter-sets), which happens to be that of the single-parameter case, is 𝐷𝐾𝑌 = 2.32. Thus, based on

the earlier presented reasoning, the latent space’s dimensionality is picked to be 𝑛 𝑙𝑠 = ⌈2𝐷𝐾𝑌⌉ = 5.

The Bayesian optimization of the hyper-parameters 𝑓noise and 𝜆reg yields the values 1.93 × 10
−3

and

3.73 × 10
−7

(respectively). The iteration-wise evolution of the MSE is plotted in Figure B.2a. Much

like the Lorenz ’63 case, the optimal value is found in a point from the initial point-set, and while the

algorithm explores the search domain, it is unable to find any better values.

9.2.1. Contractive Loss
The search for the optimal value of 𝜆contractive yields 1.68 × 10

−6
, and the iteration-wise evolution of the

MSE is plotted in Figure B.2b. The reconstruction error (NRMSE), mean RMS values and cumulative

variance of the latent states are plotted in Figure 9.8. The normalized norm and regular norm of the

Jacobian ∇xz too are observable in Figure 9.9a. The trends are the same as in the Lorenz ’63 system’s
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case, and the same analysis and observations from subsection 9.1.1 apply here too.

Note that since the optimal value of 𝜆contractive is quite small in magnitude, smaller even than the

Lorenz ’63 case, the effect this penalty has on the network is also more negligible. Where, in the previous

case, there was a difference of just over a factor of two between the mean RMS values and the cumulative

variances, here that difference is only marginal. The same can be said of all the plotted metrics. For

all these reasons, here too the proceeding analyses are conducted with a regular non-contractive

auto-encoder.

5

Number of Latent States

10−3

10−2

E
rr

or

NRMSE

Contractive AE (testing data)

Regular AE (testing data)

(a) Reconstruction error, NRMSE.

5

Number of Latent States

10−1

2× 10−1

3× 10−1

M
ea

n
R

M
S

Mean RMS

Contractive AE (testing data)

Regular AE (testing data)

(b) Mean RMS values of the latent states.
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(c) Cumulative variance of the latent states.

Figure 9.8: Various computed metrics for the auto-encoders with and without contractive loss.
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5

Number of Latent States

10−1

100

‖∇
x
z‖

Jacobian Norm

Contractive AE (testing data)

Regular AE (testing data)

(b) Norm of the Jacobian.

Figure 9.9: Normalized and original values of the mean Jacobian norm, for the auto-encoders with and without contractive loss.

9.2.2. AE and POD
As done previously, the data compression achieved by the auto-encoder is compared with that achieved

through POD. Since the CDV system is of higher dimensionality than the Lorenz ’63 system, latent

spaces with dimensionality from ⌊𝐷𝐾𝑌⌋ to ⌈2𝐷𝐾𝑌⌉ are tested. The reconstruction errors can be observed

in Figure 9.10 and Table 9.3, while the captured total variance in Figure 9.11 and Figure 9.11.

The reconstruction errors clearly decrease with increasing latent space dimensionality, as expected,

and are roughly an order of magnitude smaller than their POD counterparts. All the latent spaces

are able to capture over 99% of the total variance of the original data-set, while for the POD cases this

number fast decreases with decreasing principal modes. Worth noting here is the fact that even though

the captured total variance might not vary much, the relative change in reconstruction error is not

marginal.
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Figure 9.10: Reconstruction error (NRMSE).

Latent
AE PODSpace

Dimension
2 5.30 × 10

−2
2.67 × 10

−1

3 1.92 × 10
−2

1.66 × 10
−1

4 1.36 × 10
−2

1.05 × 10
−1

5 9.82 × 10
−3

7.24 × 10
−2

Table 9.3: Reconstruction error (NRMSE).
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Figure 9.11: Total variance captured by the reconstructed

data, w.r.t. the original data.

Latent
AE PODSpace

Dimension
2 99.25% 93.35%

3 99.95% 97.60%

4 99.93% 98.85%

5 99.85% 99.56%

Table 9.4: Total variance captured by the reconstructed data,

w.r.t. the original data.

Mode comparison
The decoded latent space principal directions and the POD principal directions are plotted in Figure 9.13.

Note the prominent matching of the first modes. This can be explained by noting the primacy of the

first POD principal mode (Figure 9.14c), which contains around 68% of the total variance of the original

data. Hence, it stands to reason that this mode would be well represented in the latent space too; as

much is observed.

The second POD principal mode accounts for roughly 25% of the total variance, and it too has

reasonable overlap with the second decoded latent space principal direction. They resemble roughly

flipped versions of each other, which can be seen in the significantly negative correlation coefficient that

they share (Figure 9.14a). Lastly, the remaining decoded modes appear to be non-linear combinations of

the POD principal modes, which is also reflected in their correlation coefficients.

9.2.3. Multi-regime AE
The multi-regime auto-encoder is constructed, by supplying the regime parameters (𝑥∗

1
, 𝑥∗

4
, 𝐶, 𝛽, 𝛾, 𝑏) to

the auto-encoder. Since the parameter-supplied auto-encoder from subsection 9.1.3 worked better than

the one without, this approach has been utilised for the present and all proceeding chaotic systems.

The projection of the latent states of the auto-encoder on to the 𝑧2 − 𝑧4 plane is shown in Figure 9.12,

where the separation of the two regimes is clearly visible. The same observations as subsection 9.1.3

apply here too. Note the minimal increase in the reconstruction errors compared to the single-regime

case, indicating the cost of sharing the latent space. Also on display here are the periodic and chaotic

nature of the two regimes, where latent states corresponding to the periodic case appear to form a closed

limit cycle while the ones corresponding to the chaotic case display more erratic structures. Despite the

compression, the structures displayed here resemble those observed in the 𝑥1 − 𝑥4 plane of the original

data (Figure 8.2), suggesting that the attractors get modelled accurately.
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(a) Latent space of the auto-encoder that operates on data with the
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Figure 9.12: Multi-regime auto-encoder.
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Figure 9.13: Decoded latent space principal directions, and POD principal directions
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Figure 9.14: Different metrics representing the comparisons between the auto-encoder and the POD method.

9.3. The Kuramoto-Sivashinsky System
The KS system is the first PDE system to be analyzed, and as such has more intricate relationships

to model. Its KY dimension and MLE are given in subsection A.1.3. The maximum KY dimension

(out of the four parameter-sets), is 𝐷𝐾𝑌 = 7.86. Thus, the latent space’s dimensionality is picked to be

𝑛 𝑙𝑠 = ⌈2𝐷𝐾𝑌⌉ = 16.

The Bayesian optimization of hyperparameters 𝑓noise and 𝜆reg results in the values 2.68 × 10
−4

and

1.00 × 10
−7

(respectively). The plot in Figure B.3a illustrates the iterative evolution of Mean Squared

Error (MSE). Similar to the Lorenz ’63 and CDV cases, the optimal value is located within the initial

point-set., and despite exploring the search domain, the algorithm fails to find any superior values.

9.3.1. Contractive Loss
The optimal value of 𝜆contractive is found to be 1.69 × 10

−4
, and the iteration-wise evolution of the MSE is

plotted in Figure B.3b. The reconstruction error (NRMSE), mean RMS values and cumulative variance of

the latent states are plotted in Figure 9.15. The normalized norm and regular norm of the Jacobian ∇xz
too are observable in Figure 9.16a. The trends are the same as in the Lorenz ’63 and CDV systems’ cases.

Worth noting here is the fact that even though the value of 𝜆contractive is of the same order as that of

the Lorenz ’63 system, the much higher dimensionality of the KS system leads to it having a magnified

effect on the Jacobian. The value of the Jacobian’s norm is roughly 6 times smaller in the contractive

auto-encoder’s case, while the mean RMS of z is around 5 times smaller. The normalized norms of the

Jacobian are quite similar in magnitude, implying that here too the reduction is owed to the reduction
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in ∥z∥ and the same analyses from from subsection 9.1.1 are applicable. The reconstruction errors on

the other hand match up quite well, with the contractive auto-encoder’s being ever so slightly larger.

For these reasons, once again the proceeding analyses are done using the regular non-contractive

auto-encoder.
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(b) Mean RMS values of the latent states.
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Figure 9.15: Various computed metrics for the auto-encoders with and without contractive loss.
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Figure 9.16: Normalized and original values of the mean Jacobian norm, for the auto-encoders with and without contractive loss.

9.3.2. AE and POD
Latent spaces with dimensionality ranging from 7 (= ⌊𝐷𝐾𝑌⌋) to 18 are tested, and compared against

their POD method counterparts. The reconstruction errors are shown in Figure 9.17 and Table 9.5, while

the captured total variance in Figure 9.18 and Table 9.6.

Observably, the reconstruction errors decrease for higher latent space dimensionality but then

plateau out after 𝑛 𝑙𝑠 = 14. The error is anywhere from 3 to 10 times lower (depending on 𝑛 𝑙𝑠), and is

almost eight times smaller for the chosen 𝑛 𝑙𝑠 = 16, for the auto-encoders compared to those of the POD

reconstructions. The auto-encoders capture at least 98% of the total variance at all value of 𝑛 𝑙𝑠 , whereas

this sharply decreases for the POD cases with decreasing principal directions to account for. This is also

observable in Figure 9.21c, wherein the auto-encoder’s reconstruction is able to accurately reconstruct

many more eigenvalues of the covariance matrix as opposed to the POD method. These observations

showcase the auto-encoder’s superior non-linear data-compression abilities in contrast to the linear

POD method.
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Figure 9.17: Reconstruction error (NRMSE).

Latent
AE PODSpace

Dimension
7 1.32 × 10

−1
4.53 × 10

−1

8 1.09 × 10
−1

4.02 × 10
−1

9 7.31 × 10
−2

3.73 × 10
−1

10 5.37 × 10
−2

3.39 × 10
−1

11 4.04 × 10
−2

3.04 × 10
−1

12 1.86 × 10
−2

2.65 × 10
−1

13 1.90 × 10
−2

2.23 × 10
−1

14 1.30 × 10
−2

1.65 × 10
−1

15 1.34 × 10
−2

1.35 × 10
−1

16 1.26 × 10
−2

9.90 × 10
−2

17 1.17 × 10
−2

8.06 × 10
−2

18 1.22 × 10
−2

5.76 × 10
−2

Table 9.5: Reconstruction error (NRMSE).
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Figure 9.18: Amount of total variance captured by the

reconstructed data, w.r.t. the original data.

Latent
AE PODSpace

Dimension
7 98.04% 78.18%

8 98.97% 82.63%

9 99.10% 84.82%

10 98.82% 87.24%

11 99.09% 89.45%

12 99.24% 91.64%

13 99.18% 93.76%

14 99.25% 96.23%

15 99.21% 97.18%

16 99.17% 98.16%

17 99.17% 98.51%

18 99.21% 98.86%

Table 9.6: Amount of total variance captured by the

reconstructed data, w.r.t. the original data.

Mode comparison
The first eight principal modes of the original data, and the decoded principal modes of the latent

space are plotted in Figure 9.20. Observe that the POD modes of the original data appear to be regular

sinusoids, each row representing a particular frequency and each column entry being a phase-shifted

version of its neighbour. Counting the periods by simple visual inspection, the first row appears to

have 4 periods, the second 3 periods, the third 5 periods and the fourth 6 periods. This pairing is also

observable in Figure 9.21c, where the eigenvalues occur in pairs, indicating the equal importance that is

attached to these mode pairs.

A heat map for the correlation matrix of all the decoded principal directions with the first twenty

principal directions of the original data is shown in Figure 9.21a. Based on similar visual inspection,

the decoded principal modes appear to possess roughly the same number of periods as their respective

counterparts. This can be observed by the strong diagonal in the correlation matrix. Further, note

that they are also clearly a combination of a set of different modes, with minor contributions from the

modes that came before them, as depicted by the more intensely coloured triangle under the diagonal

in Figure 9.21a.
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9.3.3. Multi-regime AE
The multi-regime auto-encoder is constructed in a manner consistent with previous approaches, by

incorporating the regime parameters (𝜈1 , 𝜈2 , 𝜈3) into the auto-encoder design. The projection of the

latent states onto the 𝑧1 − 𝑧5 − 𝑧10 space is visualized in Figure 9.19, clearly demonstrating the distinct

separation of the four regimes. Essential to note here is that as observed previously, sharing the latent

space comes at a cost, with the reconstruction errors increasing compared to the single-regime case (for

the chaotic regimes). The reconstruction error for the (𝜈1 , 𝜈2 , 𝜈3) = (1, 1, 1) case is almost twice that of

the single regime auto-encoder.

As discussed in subsection 9.2.3, the latent states vividly exhibit the periodic and chaotic nature of

the different regimes. For the periodic case, the latent states appear to form a closed limit cycle, while

the chaotic case displays more irregular formations. Despite this, the chaotic regimes appear to be

confined to their respective regions and orbiting a central trajectory.

(a) Latent space of the auto-encoder that operates on data with the

parameters appended to the system state.
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3
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4

10−2
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AE (data with params)

(b) Reconstruction errors for the two tested multi-regime schemes.

Figure 9.19: Multi-regime auto-encoder.
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(c) Eigenvalues of the covariance matrix of the reconstructed data.

Figure 9.21: Different metrics representing the comparisons between the auto-encoder and the POD method.

9.4. Kolmogorov Flow
The 2D incompressible Navier-Stokes equations, or the Kolmogorov flow is the final system to be tested.

Its KY dimension and MLE are given in subsection A.1.4, with the largest KY dimension being 12.19

(that of the 𝑅𝑒 = 40 case). Thus, 𝑛 𝑙𝑠 = ⌈2𝐷𝐾𝑌⌉ = 25 is the dimensionality of the ideal auto-encoder.

However, owing to the convolutional auto-encoder construction (subsection A.2.1), the latent space is of

dimensions {𝑐 𝑙𝑠 , 3, 3}, 𝑐 𝑙𝑠 being the number of channels of the final encoder output. Thus, 𝑐 𝑙𝑠 = 3 is

chosen for a total of 27 latent states, in order to have the next closest 𝑛 𝑙𝑠 value to 25.

The Bayesian optimization of the noise and regularization hyper-parameters yields the values

𝑓noise = 1.72 × 10
−2

and 𝜆reg = 2.57 × 10
−7

. The iteration-wise MSE evolution can be found in Figure B.4.

9.4.1. Contractive Loss
The contractive auto-encoders have failed to produce any meaningful improvements of the latent space

in any of the past three chaotic systems, ODE and PDE. Based on this observation, it was chosen not to

test contractive auto-encoders on this system since they were deemed unlikely to produce any significant

findings.

9.4.2. AE and POD
The auto-encoders are constructed using individual kernels of different filter sizes - 3 × 3, 5 × 5 and

7 × 7 - and finally a multi-scale one using all three kernel filter sizes. Additionally, variants of each with

and without attention are constructed, and all of their performances compared against each other and
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against the POD method. The reconstruction errors are shown in Figure 9.22a and Table B.1, while the

captured total variance in Figure 9.22b and Table B.2. Note the captured variances are capped at the

bottom at 𝜂 = 0.9 to better see the differences.

Clearly, auto-encoders have lower reconstruction errors and higher captured total variance than the

POD method, albeit not by a huge margin. The attention-incorporated auto-encoder has largely the

same reconstruction errors as the regular one, but captures modestly greater amounts of total variance.

In fact, the kernel size has a greater impact on these performance metrics than the use of self-attention.

This can be attributed to two facts. Firstly, the problem being analysed is relatively simple in its nature.

Attention-incorporation excels at modelling large scale spatial relationships that are otherwise neglected,

such as the flow past cylinder and/or bluff bodies example used in [78]. In the present scenario there

are no such devices/mechanisms in the flow that could induce such large-scale spatial contrasts and

hence attention-incorporation is only marginally beneficial. Second, the receptive field of a neuron in

the encoder network’s output is by itself quite large when compared to the input spatial dimensions.

The receptive field of a neuron is the size of the field of neurons in the input layer that influence its

value. The receptive fields for kernel filter sizes 3 × 3, 5 × 5 and 7 × 7 are 31 × 31, 61 × 61 and 91 × 912

(respectively). As can be seen, the output neurons of the encoder network are already accounting for

global information in this case by means of their receptive fields, and hence attention-incorporation

does not offer in significant improvements.

Further note that the reconstruction errors in the present case are around the value 10
−1

, whereas in

all previously tested cases, the errors have been found to be closer to 10
−2

. This could be pointing to the

fact that the chosen layer configuration might not be optimal, and there might be a better layer and/or

channel configuration than the one tested here. This relatively poorer reconstruction error will have an

impact on the time-series prediction capabilities of the AE-RNNs as well.
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(a) Reconstruction error (NRMSE).
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(b) Amount of total variance captured by the reconstructed data, w.r.t.
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Figure 9.22: Performance metrics for the reconstructed data for a fixed latent space size and varying kernel filter size

(Kolmogorov flow system, 𝑅𝑒 = 40).

Further tested (using the multi-scale attention-incorporated auto-encoder) are the effects of increasing

latent space dimensions. The reconstruction errors are shown in Figure 9.23a and Table B.3 while the

captured total variance in Figure 9.23b and Table B.4. Once again, the auto-encoders out-perform the

POD method and have lower reconstruction errors (by a factor of 1/2), though those of the POD too

seem to be fast decreasing with greater numbers of principal directions. In fact for the case with 45

latent states the POD method manages to capture slightly more of the total variance of the system (while

still having a higher reconstruction error). This behaviour is similar to what has been observed earlier

in subsection 9.3.2 wherein the auto-encoder’s performance metrics plateau out but those of the POD

method keep improving with added principal directions.

2These receptive fields are larger than the input’s spatial dimensions, but that is only because periodic padding has been

utilized.
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Figure 9.23: Performance metrics for the reconstructed data for a fixed kernel size (multi-scale) and varying latent space size

(Kolmogorov flow system, 𝑅𝑒 = 40).

Mode comparison
Here too the decoded principal modes of the latent space are compared with the principal modes of the

original data. Note from Figure 9.25c the large vales of the first four modes; collectively they account for

roughly 89% of the total variance of the original data. Hence, these four modes are well represented in

the latent space as well. Note the first four prominent modes of the latent states in Figure 9.25b, which

account for roughly 91% of the latent states’ total variance. Naturally, there is decent agreement between

their decoded counterparts and the first four POD modes of the original data. This can be observed in

Figure 9.26 where the first 6 modes are shown. The 𝑢 and 𝑣 components appear to be the exact opposites

for the first three modes, whereas the fourth decoded mode seems to align with the principal direction.

Their collective correlations can be observed in the heat map of the correlation matrix and note the

strong first four components on the diagonal. However, of interest amongst all these decoded modes is

the fact that they possess additional vortical structures that are missing from the principal directions.

This indicates some amount mixing and is indicative of the auto-encoder’s non-linear compression.

9.4.3. Multi-regime AE
The convolutional multi-regime auto-encoder is constructed as described in subsection 8.2.1, by passing

in an additional channel made up solely of the Reynolds number. The projection of the latent states onto

the 𝑧3 − 𝑧5 − 𝑧7 space is visualized in Figure 9.24a, displaying the distinct separation of the two flow

regimes. As observed previously, sharing the latent space comes at a cost, with the reconstruction errors

increasing compared to the single-regime case (for the 𝑅𝑒 = 40 regime). The reconstruction error for the

𝑅𝑒 = 40 case is slightly higher than that of the single regime auto-encoder. As discussed in in previous

sections, the chaotic and quasi-periodic nature of the regimes is visible in the latent space as well.
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(a) Latent space of the auto-encoder that operates on data with the

parameters appended to the system state.
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(b) Reconstruction errors for the two tested multi-regime schemes.

Figure 9.24: Multi-regime auto-encoder.
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(c) Eigenvalues of the covariance matrix of the reconstructed data.

Figure 9.25: Different metrics representing the comparisons between the auto-encoder and the POD method.
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(a) Decoded latent space principal directions
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Figure 9.26: Principal directions

9.5. Summary
This chapter compares dimensionality reduction using auto-encoders with the traditional POD method.

AEs prove to be more than capable of dimensionality reduction and accurately representing chaotic

system behaviour, with consistent trends across the tested systems. The POD method is regularly

outperformed in terms of the reconstruction error, and the captured total variance (an analogue for

energy). Further, multi-regime AEs having been tested, prove to be effective in modelling multiple

regimes with well-separated latent spaces, albeit at a small performance penalty. This answers all the

posited research questions for this section of the project (as outlined in the introduction):

• The contractive loss by itself proves to be insufficient in modelling ‘smoother’ latent spaces, and

achieves its reduction by reducing the norm of the latent states instead (as shown in subsection 9.1.1,
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subsection 9.2.1 and subsection 9.3.1). This shows that straightforward adaptation of ideas from

the ML world to the realm of ROM does not always work, and tweaking the penalty term to instead

account for the normalized norm of the Jacobian might be a valid direction for future research.

• Multi-regime auto-encoders work quite well and are able to represent multiple dynamical regimes

in a single latent space, albeit at a small performance penalty (subsection 9.1.3, subsection 9.2.3,

subsection 9.3.3, subsection 9.4.3). This is not trivial, and has implications beyond the scope of

the present study. It remains to be explored how well this works as a generative space, meaning

how well do the decoders ‘reconstruct’ regimes whose parameters they have not been trained on.

Further meriting exploration is the question whether single RNNs can be trained to operate on

these multi-regime latent spaces, with the separation acting as an implicit signal about the nature

of the modelled regime, thus leading to truly multi-regime model-free methods for predicting

chaotic systems.

• Lastly, attention-incorporation is observed to be marginally beneficially to CNN based AEs in

the tested case (subsection 9.4.2), with kernel sizes playing more impactful roles. This once again

shows how straightforward application of ML concepts is not always helpful, since a deeper

analysis reveals the receptive fields of the encoder’s outputs to be growing with increasing kernel

filter sizes, eventually becoming large enough to cover the entire input space. Thus, the kind of

global information the self-attention skip layer was designed to provide is already being accounted

for in the AE.



10
Time Series Predictions using RNNs

Once the auto-encoders are trained, the latent states are computed and their time-series modelled.

This chapter details the outcomes of said time-series modelling, and the performance of the combined

AE-RNN systems. The research questions dealt with here are those pertaining to the ‘model-free

prediction’ aspect of this thesis project, namely:

1. Which series-to-series ML models are better suited to the combined AE-RNN ROM paradigm,
according to a suitably defined prediction horizon (as the accuracy metric)?

(a) How is the BPTT-trained RNN’s performance accuracy affected when they are trained auto-regressively
vs. when they are trained using teacher-forcing?

(b) How does an additional BPTT-based auto-regressive training campaign affect an already (non-BPTT)
trained ESN’s accuracy?

(c) How do these ML-based ROMs compare against a traditional POD-Galerkin approach? Are there

improvements in

i. prediction horizons?

ii. long-term statistical behaviour of predicted data?

2. How does RK-inspired layering affect accuracy in BPTT-trained RNNs, specifically GRUs?

Note that all the POD-Galerkin models have been solved using the time-step used in the original

data generation (for the respective systems), and the RK4 time-integration method.

10.1. The Lorenz ’63 System
The Lorenz ’63 system for the single regime case (𝜎 = 10, 𝜌 = 28, 𝛽 = 2.67) has a Lyapunov time of

𝑡𝐿 = 1.10. The original data was generated using a time-step Δ𝑡 = 0.01, which ends up assigning a

110 time-steps to each Lyapunov time interval. Considering the system’s relative simplicity, and to

have a more manageable time-step count per 𝑡𝐿, the RNNs were trained on snapshots separated by

Δ𝑡𝑅𝑁𝑁 = 0.1 instead.

The values yielded by the Bayesian optimization of the hyper-parameters for the ESN (with 𝑛𝑟 = 200)

are shown in Table 10.1. The iteration-wise evolution of the prediction horizon is shown in Figure C.1a.

Similarly for the BPTT-trained RNNs, the optimization yields 𝑓noise = 5.18 × 10
−3

and 𝜆reg = 3.73 × 10
−7

,

and its iteration-wise evolution is given in Figure C.1b.

Hyper-parameter Optimized value
input scaling, 𝜔𝑖𝑛 1.91 × 10

0

reservoir spectral radius, 𝜌𝑟𝑒𝑠 4.57 × 10
−1

leaking rate, 𝛼 7.54 × 10
−1

noise, 𝑓noise 2.73 × 10
−2

regularization, 𝜆reg 1.00 × 10
−9

Table 10.1: Optimized ESN hyper-parameters.

82
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It can be observed that even though Bayesian optimization was unable to find better optimal points

than those in its initial point-set when applied to the auto-encoders’ hyper-parameter search, here it is

quite beneficial and succeeds in finding better and better values (especially for the ESNs).

10.1.1. Comparison of teacher-forced and AR-trained networks
This section examines the impact of auto-regressive training on the combined AE-RNN model, as

detailed in Section 8.4. The results of this investigation are presented here in terms of the distribution

of the prediction horizons, computed over 100 different initializations from the testing data-set. The

prediction horizons pertaining to the ESN and GRU based AE-RNNs are shown in Figure 10.1 and

Table 10.2. Only the GRU network is presented here since the effect on other BPTT-trained networks

is similar, and can be seen in subsection C.1.2. The valid prediction time (𝑉𝑃𝑇) is defined as the 50
𝑡ℎ

percentile of this prediction horizon data-set.

Interestingly, the application of auto-regressive training yields disparate outcomes for the ESN and

GRU networks. When considering the ESNs, the results demonstrate that auto-regressive training

does not significantly enhance prediction performance. The prediction horizon distribution remains

consistent across different training rounds, as showcased in Figure 10.1a. This suggests that the combined

AE-ESN model is already functioning optimally, and introducing additional auto-regressive training

does not lead to appreciable improvements. This phenomenon might arise from the fact that most of the

parameters associated with the ESN, such as the reservoirs and input matrices, are pre-determined and

fixed. Consequently, there is limited room for training to effectively enhance the system’s performance

in this context.

Conversely, the impact of auto-regressive training on the GRU network is strikingly evident

(Figure 10.1b). The 𝑉𝑃𝑇 experiences a substantial increase, rising from 1.18 LT to 2.00 LT — a boost of

nearly 70%. Additionally, even the minimum and maximum values of the prediction horizons appear

to improve. This enhancement can be attributed to the fundamental difference between the GRU and

ESN architectures, where unlike the ESN, all of the GRU’s parameters are trainable, allowing them

to be fine-tuned during the auto-regressive training process. This malleability leads to a significant

improvement in prediction performance, underlining the pivotal role that auto-regressive training plays

in optimizing the predictive capabilities of the GRU-based AE-RNN model1.
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(a) Single layer ESN networks (𝑛𝑟 = 200).
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(b) Single layer GRU networks (𝑛𝑟 = 20).

Figure 10.1: Prediction horizons for the teacher-forced and AR-trained networks (combined AE-RNN, AR Training Steps’ refer to

the number of output time-steps the network is auto-regressively trained on).

1The same arguments apply to the LSTM and Simple RNN case as well
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AR Training Steps ESN GRU
teacher-forced 2.35 1.18

5 2.40 1.35

10 2.27 1.85

15 2.42 1.90

20 2.28 2.00

Table 10.2: 𝑉𝑃𝑇 [LT] at different stages, for the ESN

(𝑛𝑟 = 200) and GRU (𝑛𝑟 = 20) based AE-RNN.

𝒏𝒓 ESN GRU
200/20 2.42 2.00

500/50 2.48 2.01

800/80 2.32 2.72

Table 10.3: 𝑉𝑃𝑇 [LT] at different layer sizes, for the ESN and

GRU based AE-RNN.

10.1.2. Increasing layer sizes
The impact of increasing layer sizes is studied w.r.t. both the ESN and GRU based AE-RNN models.

The distributions of prediction horizons are shown in Figure 10.2 and Table 10.3.

In the case of the ESN model, augmenting the layer sizes results in marginal to harmful effects on its

prediction performance. This is evident from the observed decrease in 𝑉𝑃𝑇 as the layer sizes increase,

contrary to initial expectations. The ESN’s predictive capacity appears to plateau and then decline as

the layer-size grows (Figure 10.2a). This phenomenon could be attributed to the inherent architecture of

ESNs, where excessively large layers might introduce noise or irrelevant information into the learning

process, in a system that is quite simple to begin with (remember, 𝑛 𝑙𝑠 = 2), leading to suboptimal

performance. Note that the larger layer sizes have even larger fractions of their total parameters that

are decided apriori and held fixed (Section C.5), thus possibly necessitating more ensemble members

to account for the random variances. Lastly, recall that the ESN hyper-parameters are optimized for

𝑛𝑟 = 200 and then re-used for the larger reservoir sizes. The results here appear to point to the fact

that this heuristic might not be entirely valid over a large range of reservoir sizes, and individually

optimized hyper-parameters might possibly lead to better performances.

On the other hand, the GRU-based AE-RNN model showcases an opposite pattern in response to

increasing layer sizes. Here, augmenting the layers exhibits a somewhat positive effect on prediction

performance. The model’s predictive capabilities plateau and then improves as the layers expand, as

evident in Figure 10.2b.
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(a) Single layer ESN networks.
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(b) Single layer GRU networks.

Figure 10.2: Prediction horizons for the best performing RNN networks with changing layer sizes (combined AE-RNN).

10.1.3. Comparison of single-layer networks
This section makes a comparative analysis between different AE-RNN models, each based on distinct

recurrent architectures, as well as the traditional POD-Galerkin method (as described in Section 5.1).

Considered RNNs are all single-layered, and include the GRU, LSTM, ESN and Simple RNN variants,

all operating at their respective highest chosen layer sizes. The POD-Galerkin method employs two
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POD components, to match 𝑛 𝑙𝑠 = 2. The prediction horizon distributions are provided in Figure 10.3

and Table 10.4.

Upon inspection, the ESN, GRU, and LSTM based AE-RNN models exhibit relatively comparable

performance levels, with the GRU taking the lead. In contrast, the Simple RNN based model lags behind

in terms of prediction accuracy, implying its relatively limited capacity to grasp complex temporal

dependencies. This is to be expected, since both the GRU and LSTM architectures account for additional

‘information channels’ between time-steps (via the forget/reset gates), and the ESN too possesses an

analogue for this in the form of the leaking rate 𝛼.

Furthermore, the performance of the POD-Galerkin method paints a rather unfavourable picture.

Despite employing two POD components, the method falls short, failing to surpass even a single

Lyapunov time unit in terms of its𝑉𝑃𝑇. This lacklustre performance underscores the challenges inherent

in traditional techniques like POD-Galerkin when dealing with chaotic systems. The comparison brings

to light the comparative advantages of the AE-RNN models over the traditional POD-Galerkin approach,

particularly in their ability to capture complex behaviours and provide reasonable predictions even for

chaotic dynamics.
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Figure 10.3: Prediction horizons for the best performing

RNN networks (highest layer size, combined AE-RNN).

RNN Type 𝑽𝑷𝑻 [LT]

GRU 2.72

LSTM 2.49

Simple RNN 1.63

ESN 2.32

POD-Galerkin 0.35

Table 10.4: 𝑉𝑃𝑇 for the best performing RNN networks

(highest layer size, combined AE-RNN).

Long-term Predictions and Statistical Behaviour
The long-term statistical behaviour of these methods is evaluated using the𝑊1 Wasserstein distance

on their respective PDFs, which is a measure of ‘closeness’ of two distributions. These are evaluated

on a time interval spanning 50 Lyapunov time units and across 50 different initializations from the

testing data-set. Clearly, the GRU based AE-RNN model performs the best, both in terms of short-term

prediction (symbolized by the 𝑉𝑃𝑇) and matching long-term statistical properties (symbolized by

the𝑊1 distances). The LSTM based network, while having good short-term performance appears to

have poor long-term statistical behaviour. Surprisingly, the simple RNN and the ESN, despite having

differeing short-term performances appear to possess similar statistical behavior. The POD-Galerkin,

unsurprisingly, is the worst performer in all scenarios.

The evolution of a sample trajectory is shown in Figure 10.5, for the AE-GRU model and the

POD-Galerkin method. As observable, the AE-GRU model diverges from the true data after a point,

owing to the chaotic nature of the system, yet maintains behaviour consistent with the evolving system.

The POD-Galerkin method too diverges from the true data, but appears to peter out to a constant

value. This explains the extremely high𝑊1 metrics that are observed for this method. Plots of sample

trajectories for other AE-RNN models are given in Figure C.3. It is clear from the AE-LSTM evolution

that despite good short-term predictions, the model eventually diverges from the behaviour of the true

data (around the 25 LT mark), which explains its high𝑊1 metrics too.
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Figure 10.4: 𝑊1 Wasserstein distances computed for the different 𝑥 𝑗 PDFs, with predictions taken over a time-interval of 50 𝑡𝐿.
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(a) Sample trajectory evolution for the AE-GRU model.
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(b) Sample trajectory evolution for the POD-Galerkin method.

Figure 10.5: Long-term evolution of sample trajectories for the Lorenz ’63 system.

10.1.4. Effect of RK-inspired layering in the GRUs
The distributions of prediction horizons for the various tested RK-inspired layering configurations

(subsection 8.3.3) are shown in Figure 10.6. These configurations are tested on GRU based AE-RNN

models. From Figure 10.6 it is apparent that the introduction of additional layers yields only marginal

benefits to the prediction performance. The 𝑉𝑃𝑇 actually decreases for the RK1 and RK2 layering

methods, before eventually increasing. The variations in prediction horizons across different layering

strategies are generally subtle (roughly ±7% compared to the single-layered case).
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Figure 10.6: Prediction horizons for the best performing GRU

networks with different layering architectures (highest layer

size, combined AE-RNN).

Layering Type 𝑽𝑷𝑻 [LT]

Single layer 2.72

Euler layer (RK1 / skip layer) 2.54

RK2 2.54

RK4 2.91

Table 10.5: 𝑉𝑃𝑇 for the best performing GRU networks with

different layering architectures (highest layer size, combined

AE-RNN).

10.2. The Charney-DeVore System
The Lyapunov time for the single regime case (𝑥∗

1
= 0.95, 𝑥∗

4
= 0.76095) of the Charney-DeVore system

is 𝑡𝐿 = 37.09. The original data was generated using a time step of Δ𝑡 = 0.1, leading to 371 time-steps

within each Lyapunov time interval. As done previously, to ensure a more manageable number of time

steps per 𝑡𝐿 and noting the system’s ODE nature, the RNNs were trained using snapshots separated by

Δ𝑡𝑅𝑁𝑁 = 0.5.

The outcomes of the Bayesian optimization process for hyper-parameters of the Echo State Network

(ESN) with 𝑛𝑟 = 200 are presented in Table 10.6. The progression of the prediction horizon throughout

the iterations is illustrated in Figure C.4a. Likewise, for the BPTT-trained RNNs, the optimization results

in 𝑓noise = 1.93 × 10
−3

and 𝜆reg = 1.39 × 10
−6

. The iterative evolution of the prediction horizon in this

case is provided in Figure C.4b. Note that the optimized 𝜌𝑟𝑒𝑠 value is greater than one, and yet the

echo-state property is not violated.

Hyper-parameter Optimized value
input scaling, 𝜔𝑖𝑛 5.00 × 10

−1

reservoir spectral radius, 𝜌𝑟𝑒𝑠 1.03 × 10
0

leaking rate, 𝛼 5.00 × 10
−1

noise, 𝑓noise 4.98 × 10
−2

regularization, 𝜆reg 1.87 × 10
−5

Table 10.6: Optimized ESN hyper-parameters.

10.2.1. Comparison of teacher-forced and AR-trained networks
The effect of auto-regressive training on GRU and ESN based AE-RNN models is examined, focusing on

the distribution of prediction horizons as provided in Figure 10.7 and Table 10.7. Again, for brevity, only

the GRU based network’s outcomes are showcased in this section, as the impact on other BPTT-trained

RNNs follows a similar trend and can be observed in subsection C.2.2.

Much like subsection 10.1.1, auto-regressive training yields distinct outcomes for the ESN and

GRU networks, and the same arguments and observations apply here too. In the context of ESNs,

auto-regressive training’s contribution to prediction performance enhancement is found to be limited.

The prediction horizons display a consistency across training rounds (Figure 10.7a), suggesting that the

combined AE-ESN model is already performing optimally. Again, this can be attributed to the majority

of the parameters linked to the ESN — its reservoirs and input matrices — being predetermined and

fixed, consequently limiting the scope for training to significantly enhance system performance.
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In contrast, the impact of auto-regressive training on the GRU network is more pronounced

(Figure 10.7b). The 𝑉𝑃𝑇 undergoes a substantial augmentation, escalating from 1.09 LT to 1.92 LT — an

enhancement of roughly 75%. Further note, the maximum values of the 𝑉𝑃𝑇 appear to improve while

the minimum values show marginal improvement. As noted in subsection 10.1.1, this improvement

can be attributed to the fundamental dissimilarity between the GRU and ESN architectures, where

unlike the ESN, the GRU’s parameters are freely trainable and get fine-tuned during the auto-regressive

training process.
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(a) Single layer ESN networks.
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(b) Single layer GRU networks.

Figure 10.7: Prediction horizons for the teacher-forced and AR-trained networks (combined AE-RNN).

AR Training Steps ESN GRU
teacher-forced 2.74 1.09

10 – 1.53

20 3.07 1.65

40 3.12 1.92

60 3.31 1.95

80 3.22 –

Table 10.7: 𝑉𝑃𝑇 [LT] at different stages, for the ESN

(𝑛𝑟 = 200) and GRU (𝑛𝑟 = 20) based AE-RNN.

𝒏𝒓 ESN GRU
200/20 3.30 1.93

500/50 2.86 2.20

800/80 2.95 2.19

Table 10.8: 𝑉𝑃𝑇 [LT] at different layer sizes, for the ESN and

GRU based AE-RNN.

10.2.2. Increasing layer sizes
The impact of increasing layer sizes is investigated on both the ESN and GRU based AE-RNN models,

and the distributions of prediction horizons are shown in Figure 10.8 and Table 10.8.

The trends followed here are the same as those in subsection 10.1.2, and the same observations and

analysis apply. For the ESN based model, increasing layer sizes have marginal to detrimental effects on

performance and the AE-ESN’s 𝑉𝑃𝑇 actually dips a little (Figure 10.8a). Once again, this phenomenon

could be attributed to the inherent structure of AE-ESNs where excessively large layers introduce

irrelevant information into the learning process of a system already characterized by simplicity (𝑛 𝑙𝑠 = 5),

ultimately leading to sub-optimal performance. Also, larger layer sizes contain an even more substantial

proportion of fixed parameters (Section C.5), potentially necessitating a greater number of ensemble

members to account for inherent random variances. Also possibly at fault is the heuristic used to decide

the hyper-parameters for the different layer sizes, where optimized hyper-parameters 𝑛𝑟 = 200 are

simply reused. Hyper-parameter optimization for individual layer sizes could potentially yield superior

outcomes. Juxtaposed on this, the GRU-based AE-RNN model showcases a marginally positive impact

(+14%) on prediction performance with increasing layer sizes (Figure 10.8b).



10.2. The Charney-DeVore System 89

200 500 800

nr
(reservoir size=nr×nls)

0

1

2

3

4

5

6

7

8

9
P

re
d

ic
ti

on
H

or
iz

on
[L

T
]

ESN

(a) Single layer ESN networks.
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(b) Single layer GRU networks.

Figure 10.8: Prediction horizons for the best performing RNN networks with changing layer sizes (combined AE-RNN).

10.2.3. Comparison of single-layer networks
This section presents a comparative analysis involving various AE-RNN models, alongside the conven-

tional POD-Galerkin method. All the RNN models here are single-layered networks at their respective

highest layer sizes. The POD-Galerkin approach employs five POD components, aligning with 𝑛 𝑙𝑠 = 5.

The distribution of prediction horizons is shown in Figure 10.9 and Table 10.9.

The AE-RNN models based on ESN, GRU, and LSTM architectures once again demonstrate relatively

comparable levels of performance. However here the ESNs slightly outperforming the other two. In

contrast, the Simple RNN model falls short in terms of prediction accuracy, showcasing its relatively

constrained internal dynamics and limited ability to comprehend intricate temporal dependencies. As

mentioned in subsection 10.1.3, this is not surprising considering the additional cross-time information

channels in both the GRU and LSTM architectures (via the forget and reset gates). Similarly, the ESN

integrates an anlogous mechanism in the form of the leaking rate 𝛼.

Furthermore, the performance of the POD-Galerkin method is once again lacking. Despite employing

five POD components (just one short of the true dimensionality of the system), this method does not

surpass one Lyapunov time unit in terms of its𝑉𝑃𝑇. This underwhelming performance again highlights

the challenges posed by conventional techniques like POD-Galerkin when tackling chaotic systems.
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Figure 10.9: Prediction horizons for the best performing

RNN networks (highest layer size, combined AE-RNN).

RNN Type 𝑽𝑷𝑻 [LT]

GRU 2.18

LSTM 2.31

Simple RNN 1.14

ESN 2.96

POD-Galerkin 0.60

Table 10.9: 𝑉𝑃𝑇 for the best performing RNN networks

(highest layer size, combined AE-RNN).
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Long-term Predictions and Statistical Behaviour
As done previously, the long-term statistical behaviour of these AE-RNN models is tested using the

𝑊1 distance. Clearly, the GRUs perform superbly here too, with comparable values for the ESN and

LSTM based networks. The simple RNN based network suffers from poorer matching, whilst the

POD-Galerkin method is by far the worst performing. The evolution of a sample trajectory is shown

in Figure 10.11, for the AE-GRU model and the POD-Galerkin method. As observable, both methods

eventually diverge from the true trajectory, owing to the chaotic nature of the system. Yet only the

AE-GRU model maintains behaviour consistent with the evolving system. The POD-Galerkin method,

again, appears to peter out to constant values, thus explaining its high 𝑊1 metrics. Plots of sample

trajectories for other AE-RNN models are given in subsection C.2.3.

From these AE-RNN trajectories, it can be observed how all the models (excepting the Simple RNN

based one) show both flow regimes - blocked flow and zonal flow - thus leading to similar𝑊1 metrics.

The Simple RNN based model however only learns to predict the zonal flow regime, and not once does

it switch to the blocked flow mode. This explains its relatively higher𝑊1 metrics.
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Figure 10.10: 𝑊1 Wasserstein distances computed for the different 𝑥 𝑗 PDFs, with predictions taken over a time-interval of 50 𝑡𝐿.

10.2.4. Effect of RK-inspired layering in the GRUs
The prediction horizon distributions corresponding to the various RK-inspired layering configurations

tested on GRU-based AE-RNN models are shown in Figure 10.12 and Table 10.10. This exploration was

detailed in subsection 8.3.3.

From Figure 10.12, it becomes evident that as observed previously, the incorporation of additional

layers yields modest enhancements in prediction performance. A distinct enhancement is noticeable in

the Euler layering configuration, resulting in an 𝑉𝑃𝑇 increase from 2.19 LT to 2.78 LT (around 25%).

Beyond this point, however, the addition of further layers fails to provide substantial performance

improvements. This could be owing to more difficult training. With more loops in the RK connections,

the gradients too would be getting multiplied multiple times leading to a scenario similar to the

vanishing/exploding gradient problem [32]. Thus, RK-inspired layers augment performance only to a

certain extent, and their impact eventually levels off.
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(a) Sample trajectory evolution for the AE-GRU model.
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(b) Sample trajectory evolution for the POD-Galerkin method.

Figure 10.11: Long-term evolution of sample trajectories for the Charney-DeVore system.
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Figure 10.12: Prediction horizons for the best performing

GRU networks with different layering architectures (highest

layer size, combined AE-RNN).

Layering Type 𝑽𝑷𝑻 [LT]

Single layer 2.19

Euler layer (RK1 / skip layer) 2.71

RK2 2.61

RK4 2.78

Table 10.10: 𝑉𝑃𝑇 for the best performing GRU networks

with different layering architectures (highest layer size,

combined AE-RNN).

10.3. The Kuramoto-Sivashinsky System
The Lyapunov time linked to the single regime case (𝜈1 = 𝜈2 = 𝜈3 = 1) of the Kuramoto-Sivashinsky

system is 𝑡𝐿 = 13.95. The generation of the original data employed a time step of Δ𝑡 = 0.1, corresponding

to 140 discrete time steps within each Lyapunov time interval. As done previously, to achieve a more

suitable count of time steps per 𝑡𝐿, the RNNs are trained on snapshots spaced apart by Δ𝑡𝑅𝑁𝑁 = 0.2.

Note that this system represents a PDE, as opposed to the low-dimensional ODEs of the previous

systems and hence its dynamics are inherently more complex and tougher to model.

The outcomes resulting from the Bayesian optimization procedure applied to the hyper-parameters

of the ESN with a reservoir size of 𝑛𝑟 = 200 are shown in Table 10.11. The evolution of the prediction

horizon across various iterations is depicted in Figure C.9a. Similarly, in the context of BPTT-trained

RNNs, the optimization yields values of 𝑓noise = 9.84 × 10
−2

and 𝜆reg = 5.75 × 10
−7

. The stepwise

advancement of the prediction horizon for this case is plotted in Figure C.9b.

Hyper-parameter Optimized value
input scaling, 𝜔𝑖𝑛 1.43 × 10

−1

reservoir spectral radius, 𝜌𝑟𝑒𝑠 8.53 × 10
−1

leaking rate, 𝛼 5.00 × 10
−1

noise, 𝑓noise 6.05 × 10
−2

regularization, 𝜆reg 1.00 × 10
−7

Table 10.11: Optimized ESN hyper-parameters.

10.3.1. Comparison of teacher-forced and AR-trained networks
The effect of auto-regressive training on GRU and ESN based AE-RNN models are examined in this

section, focusing on the distribution of prediction horizons. Figure 10.13 and Table 10.12 display the

results. For brevity, only the GRU based network’s outcomes are showcased in this section, the impact

on other BPTT-trained RNNs can be observed in subsection C.3.2.

Similar to the chaotic systems discussed previously, the application of auto-regressive training leads

to distinct outcomes for the ESN and GRU based models. The same arguments and observations that

were presented previously hold true in this context as well. When considering ESNs, the impact of

auto-regressive training on enhancing prediction performance is found to be restrained. The prediction

horizons across various training rounds look almost exactly alike (Figure 10.13a), indicating the already

optimal functioning of the combined AE-ESN model. This outcome can again be attributed to the

substantial proportion of the ESN’s parameters, encompassing its reservoirs and input matrices, that are
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predetermined and fixed, effectively curtailing the extent to which training can substantially enhance

the system’s overall performance.

In contrast, the impact of auto-regressive training on the GRU based model is more pronounced

(Figure 10.13b). The 𝑉𝑃𝑇 undergoes a substantial augmentation, escalating from 0.81 LT to 1.23 LT

— an enhancement of roughly 50%. Here too the minimum and maximum values of the prediction

horizons improve. As noted in previous sections, this improvement can be attributed to the fundamental

dissimilarity between the GRU and ESN architectures, where unlike the ESN, the GRU’s parameters are

freely trainable and get fine-tuned during the auto-regressive training process. Also note the sudden

dip and subsequent rise of the 𝑉𝑃𝑇𝑠. This occurs because the 5-output-step training round essentially

causes the model to overfit to the extreme short-term, leading to degradation of predictive performance.

Note that while the LSTM-based model trains equivalently, the SimpleRNN-based model sees its

performance degrade massively, despite all the measures taken to ensure adequate training. The

additional information channels in GRUs and LSTMs are the only source of difference between these

networks. Their importance in both improving prediction accuracy and stabilizing training is on clear

display here, in a system with more complex dynamics.
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(b) Single layer GRU networks.

Figure 10.13: Prediction horizons for the teacher-forced and AR-trained networks (combined AE-RNN).

AR Training Steps ESN GRU
teacher-forced 1.38 0.81

5 – 0.64

10 – 1.04

20 1.28 1.25

30 – 1.23

40 1.33 –

60 1.31 –

Table 10.12: 𝑉𝑃𝑇 [LT] at different stages, for the ESN

(𝑛𝑟 = 200) and GRU (𝑛𝑟 = 20) based AE-RNN.

𝒏𝒓 ESN GRU
200/20 1.38 1.25

500/50 1.49 1.29

800/80 1.53 1.33

Table 10.13: 𝑉𝑃𝑇 [LT] at different layer sizes, for the ESN and

GRU based AE-RNN.

10.3.2. Increasing layer sizes
The influence of varying layer sizes on both the ESN and GRU based AE-RNN models on their

corresponding prediction horizon distributions is presented in Figure 10.14 and Table 10.13.

The trends observed here closely mirror those observed in the preceding cases, and the same set

of insights and analyses are applicable. For the ESN-based model, the increase in layer sizes yields

marginal effects on performance. The predictive capabilities of the AE-ESN plateau as layer sizes expand

(Figure 10.14a). This recurrence of the phenomenon can be ascribed to the inherent architecture of AE-

ESNs, where larger layers consist of an even higher proportion of fixed parameters (Section C.5), which
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might require a larger ensemble to address the resulting random variances. Additionally, the method of

employing the same optimized hyper-parameters (those of the 𝑛𝑟 = 200 network) across various layer

sizes could potentially lead to sub-optimal performance. Tailored hyper-parameter optimization for

each layer size might lead to better outcomes. In contrast, the GRU-based AE-RNN model presents a

slightly positive impact on prediction performance with increasing layer sizes (Figure 10.14b).
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(a) Single layer ESN networks.
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(b) Single layer GRU networks.

Figure 10.14: Prediction horizons for the best performing RNN networks with changing layer sizes (combined AE-RNN).

10.3.3. Comparison of single-layer networks
A comparative analysis as done previously is presented, involving the same range of AE-RNN models

and the conventional POD-Galerkin method outlined in Section 5.1. The POD-Galerkin technique

employs sixteen POD components, corresponding with 𝑛 𝑙𝑠 = 16. The distribution of prediction horizons

is provided in Figure 10.15.

The AE-RNN models based on ESN, GRU, and LSTM RNNs once again exhibit relatively similar

performance levels, with ESNs slightly outperforming the other two. In contrast, the Simple RNN

model shows much poorer prediction performance, pointing to its inability to accurately model time-

dependencies as the complexity of the system increases. The discussion on additional information

channels is applicable here too.

Furthermore, the performance of the POD-Galerkin method once again reveals its limitations.

This method again fails to surpass even one Lyapunov time unit in terms of its valid prediction

time (𝑉𝑃𝑇). Not just this, with a 𝑉𝑃𝑇 of just 0.13, this is the worst outcome of the POD-Galerkin

application to all systems up until now. This highlights the challenges that conventional techniques like

POD-Galerkin encounter when dealing with chaotic systems, especially when complexity increases, like

in the present case (a PDE). The POD model reduction already has a reconstruction error that is an order

of magnitude higher than the auto-encoder’s (subsection 9.3.2). Further added are the errors introduced

in time-propagation by the flat Galerkin approximation (subsection 5.1.3), thereby resulting in the poor

performance observed here. The comparison further emphasizes AE-RNN models’ relative advantages

over traditional approaches, shedding light on their capability to accommodate the complexities of

chaotic systems more effectively.
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Figure 10.15: Prediction horizons for the best performing

RNN networks (highest layer size, combined AE-RNN).

RNN Type 𝑽𝑷𝑻 [LT]

GRU 1.33

LSTM 1.43

Simple RNN 0.32

ESN 1.52

POD-Galerkin 0.13

Table 10.14: 𝑉𝑃𝑇 for the best performing RNN networks

(highest layer size, combined AE-RNN).

GRU LSTM Simple RNN ESN POD-Galerkin

Network Type

10−2

10−1

W
as

se
rs

te
in

M
et

ri
c

(W
1
)

Single Layer Networks

TKE

D

Figure 10.16: 𝑊1 Wasserstein distances computed for the 𝑇𝐾𝐸 and 𝐷 PDFs, with predictions taken over a time-interval of 50 𝑡𝐿.

Long-term Predictions and Statistical Behaviour
Once again, the long-term statistical performance is investigated, by means of the 𝑊1 Wasserstein

distance. Here however, the attractors are represented by the 𝑇𝐾𝐸 (the turbulent kinetic energy) and

𝐷 (the mean dissipation rate). Clearly, the ESN, GRU and LSTM based AE-RNNs perform similarly,

whereas the simple RNN based model and the POD-Galerkin method both possess terrible long-term

behaviour in addition to poor short-term performance.

The progression of a sample trajectory is depicted in Figure 10.17, illustrating the trajectories of

both the AE-GRU model and the POD-Galerkin method. Both approaches eventually deviate from

the true trajectory due to the inherently chaotic nature of the system. However, only the AE-GRU

model maintains behaviour consistent with the evolving dynamics of the system. Conversely, the

POD-Galerkin method tends to converge to near-constant values, accounting for its elevated𝑊1 metrics.

Additional trajectory plots for different AE-RNN models are provided in subsection C.3.3. Across these

AE-RNN trajectories, a typical pattern emerges among the AE-RNN models (excluding the Simple

RNN-based model), leading to similar𝑊1 metrics. Notably, the Simple RNN-based model experiences

intervals of nearly constant behavior before transitioning back to expected patterns. This unexpected

switching is also reflected in its comparatively higher𝑊1 metrics, highlighting its distinct long-term

behaviour.



10.3. The Kuramoto-Sivashinsky System 96

0
7

14
21
28
35

x

True Data

0
7

14
21
28
35

x

Predicted Data

0
7

14
21
28
35

x

NRSE

0.5

1.0

T
K
E

0 5 10 15 20 25 30 35 40 45 50

Time+

0.50

0.75

1.00

D

−3

−2

−1

0

1

2

3

2

4

True Data

Predicted Data

(a) Sample trajectory evolution for the AE-GRU model.
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(b) Sample trajectory evolution for the POD-Galerkin method.

Figure 10.17: Long-term evolution of sample trajectories for the Kuramoto-Sivashinsky system.

10.3.4. Effect of RK-inspired layering in the GRUs
The prediction horizon distributions, stemming from the experimentation with various RK-inspired

layering configurations applied to GRU-based AE-RNN models, is given in Figure 10.18 and Table 10.15.

Analyzing Figure 10.12, it becomes evident that here too the results follow a similar trend as

seen in previous systems. A noticeable advancement is particularly visible in the Euler layering

configuration, leading to an increase in valid prediction time (𝑉𝑃𝑇) from 1.28 LT to 1.59 LT, marking an

approximate enhancement of 24%. However, subsequent layers cease to make substantial enhancements

in performance. As observed previously, additional RK-layering configurations provide detrimental to

diminishing returns. This could possibly be owing to difficult training on account of the many looped

connections introduced by the higher-order RK methods.
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Figure 10.18: Prediction horizons for the best performing

GRU networks with different layering architectures (highest

layer size, combined AE-RNN).

Layering Type 𝑽𝑷𝑻 [LT]

Single layer 1.33

Euler layer (RK1 / skip layer) 1.60

RK2 1.50

RK4 1.55

Table 10.15: 𝑉𝑃𝑇 for the best performing GRU networks

with different layering architectures (highest layer size,

combined AE-RNN).

10.4. Kolmogorov Flow
The Lyapunov time associated with the single regime scenario (𝑅𝑒 = 40) of the Kolmogorov flow system

is 𝑡𝐿 = 13.06. The generation of the original data-set involved using a time step of Δ𝑡 = 0.01, with

snapshots stored every Δ𝑡store = 0.25. This translates to 53 discrete time steps within each Lyapunov

time interval. This time-step value is also adopted for training the RNNs.

The outcomes of the Bayesian optimization of the hyper-parameters of the ESN, with a reservoir

size corresponding to 𝑛𝑟 = 200, are presented in Table 10.16. The evolution of the prediction horizon

across different iterations is illustrated in Figure C.12a. Similarly, in the context of BPTT-trained RNNs,

the optimization results in values of 𝑓noise = 9.84 × 10
−2

and 𝜆reg = 5.75 × 10
−7

. The incremental

advancement of the prediction horizon for this scenario is plotted in Figure C.12b.

Hyper-parameter Optimized value
input scaling, 𝜔𝑖𝑛 1.37 × 10

0

reservoir spectral radius, 𝜌𝑟𝑒𝑠 7.92 × 10
−1

leaking rate, 𝛼 8.26 × 10
−1

noise, 𝑓noise 1.00 × 10
−1

regularization, 𝜆reg 1.00 × 10
−3

Table 10.16: Optimized ESN hyper-parameters.

10.4.1. Comparison of teacher-forced and AR-trained networks
The effect of auto-regressive training on GRU based AE-RNN models is examined in this section,

focusing on the distribution of prediction horizons. Since auto-regressive training has been found to

be in-effectual for the ESNs in all the previously tested systems (ODE and PDE), it is skipped for this

system. Figure 10.19 and Table 10.17 display the prediction horizon distributions. For brevity, only

the GRU based network’s outcomes are showcased in this section, as the impact on other BPTT-trained

RNNs follows a similar trend and can be observed in subsection C.4.2.

Similarly to the chaotic systems discussed earlier, auto-regressive training leads the 𝑉𝑃𝑇 to undergo

a general improvement, escalating from 0.72 LT to 1.07 LT — an enhancement of roughly 49%. The

maximum values of the prediction horizons are also seen to be improving with increasing output steps.

Lastly, note that the minimum values of the prediction horizons are quite low, almost zero, indicating the

presence of such initializations where the errors diverge at the first few predicted time-steps themselves.
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Figure 10.19: Prediction horizons for the teacher-forced and

AR-trained single layer GRU based models (combined

AE-RNN, 𝑛𝑟 = 20).

AR Training Steps GRU
teacher-forced 0.72

5 0.73

15 0.99

30 1.07

45 1.07

Table 10.17: 𝑉𝑃𝑇 [LT] at different stages, for the GRU

(𝑛𝑟 = 20) based AE-RNN.

10.4.2. Increasing layer sizes
The investigation into the influence of varying layer sizes on both the ESN and GRU based AE-RNN

models, with the corresponding distribution of prediction horizons is presented in Figure 10.20 and

Table 10.18.

The trends observed here closely mirror those observed in the preceding cases, and the same

set of insights and analyses are applicable. For the ESN-based model, the layer size increase yields

marginal performance gains (Figure 10.20a). This recurrence of the phenomenon can be ascribed to

the inherent architecture of AE-ESNs, where larger layers consist of an even higher proportion of fixed

parameters (Section C.5), which might require a larger ensemble to address the resulting random

variances. Additionally, the method of employing the same optimized hyper-parameters (those of

the 𝑛𝑟 = 200 network) across various layer sizes could potentially lead to sub-optimal performance.

Tailored hyper-parameter optimization for each layer size might lead to better outcomes. The GRU-based

AE-RNN model presents a similar marginal effect on prediction performance with increasing layer sizes

(Figure 10.20b).
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(a) Single layer ESN networks.
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Figure 10.20: Prediction horizons for the best performing RNN networks with changing layer sizes (combined AE-RNN).
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𝒏𝒓 ESN GRU
200/20 0.86 1.07

500/50 1.04 1.06

800/80 1.13 1.14

Table 10.18: 𝑉𝑃𝑇 [LT] at different layer sizes, for the ESN and GRU based AE-RNN.

10.4.3. Comparison of single-layer networks
This section presents a comparative analysis, covering the same array of AE-RNN models and the tradi-

tional POD-Galerkin method. The POD-Galerkin technique employs twenty-seven POD components, to

match 𝑛 𝑙𝑠 = 27. The distribution of prediction horizons is presented in Figure 10.21 and Table 10.19.

The AE-RNN models based on ESN, GRU, and LSTM RNNs showcase similar prediction perfor-

mances. As observed in the previous PDE case (the KS equation), the Simple RNN model fails miserably

in prediction accuracy, highlighting its inadequate internal dynamics and limited ability to capture

complex temporal dependencies. Further, the performance of the POD-Galerkin method once again

exposes its limitations. Despite employing twenty-seven POD components, it showcases a𝑉𝑃𝑇 of merely

0.07. This represents the poorest outcome of the POD-Galerkin approach across all the investigated

systems. The abysmal performance of this method in the PDE cases spotlights this method’s pitfalls

when grappling with chaotic systems, particularly as complexity escalates. This comparison too, points

out the relative advantages that AE-RNN models offer over traditional approaches, elucidating their

capacity to effectively navigate the intricacies of chaotic systems.
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Figure 10.21: Prediction horizons for the best performing

RNN networks (highest layer size, combined AE-RNN).

RNN Type 𝑽𝑷𝑻 [LT]

GRU 1.14

LSTM 1.19

Simple RNN 0.04

ESN 1.14

POD-Galerkin 0.07

Table 10.19: 𝑉𝑃𝑇 for the best performing RNN networks

(highest layer size, combined AE-RNN).

Long-term Predictions and Statistical Behaviour
Also compared are the long-term statistical performances of these models, in terms of the𝑊1 Wasserstein

distances between the predicted and actual PDFs of the 𝑇𝐾𝐸 and the mean dissipation 𝐷 (Figure 10.22).

Clearly, the AE-ESN possesses the lowest 𝑊1 metrics, indicating the closest matching in long-term

statistics, with the AE-LSTM and AE-GRU close behind. The simple RNN based model and the

POD-Galerkin method are much worse off, as is to be expected.

The trajectory evaluations are displayed in Figure 10.23, showcasing those generated by both the

AE-GRU model and the POD-Galerkin method. Over time, both methodologies exhibit deviations

from the actual trajectory due to the inherently chaotic nature of the system. However, as observed

previously, only the AE-GRU model maintains behaviour consistent with the evolving dynamics of the

system. In contrast, the POD-Galerkin method not only tends to over-predict values by nearly a factor of

two, but its variations are also considerably stronger than those observed in the true trajectories. These

factors contribute to the noticeably elevated𝑊1 metrics associated with the method.

Additional trajectory plots for distinct AE-RNN models can be found in subsection C.4.3. Analyzing

these AE-RNN trajectories reveals similarly evolving patterns among the AE-RNN models (excluding

the Simple RNN-based model), leading to similar 𝑊1 metrics. Interestingly, the Simple RNN-based
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model exhibits values orbiting around the mean of the depicted quantities, displaying minor variations.

This tendency of a regression-twowards-the-mean is also evident in its relatively higher 𝑊1 metrics,

highlighting its poor long-term behaviour. Further plots of snapshots of the 𝑥-velocity 𝑢, the 𝑦-velocity

𝑣 and the vorticity 𝜔 for the predictions from different models are provided in subsection C.4.4,

subsection C.4.5, subsection C.4.6, subsection C.4.7 and subsection C.4.8. Note the deeply coloured

(i.e. strongly high valued) nature of the predictions of the POD-Galerkin method in subsection C.4.8,

alluding to its high-valued 𝑇𝐾𝐸 and𝐷. Also of note is the small errors in 𝜔 for the AE-ESN’s predictions.

Since the mean dissipation rate 𝐷 is related to the magnitude of 𝜔 (Equation 6.15), this agrees with the

low𝑊1 metric of 𝐷 observed for the AE-ESN model.
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Figure 10.22: 𝑊1 Wasserstein distances computed for the different 𝑥 𝑗 PDFs, with predictions taken over a time-interval of 50 𝑡𝐿.
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Figure 10.23: Long-term evolution of sample trajectories for the Kolmogorov flow system.

10.4.4. Effect of RK-inspired layering in the GRUs
The distributions of prediction horizons for the various tested RK-inspired layering configurations are

shown in Figure 10.24. From Figure 10.24 it is apparent that the introduction of additional layers yields

only marginal benefits to the prediction performance. The 𝑉𝑃𝑇 stays relatively constant, and actually

decreases mildly for the RK4 layering methods. The variations in prediction horizons across different

layering strategies are generally subtle (roughly ±8% compared to the single-layered case). This could

be owing to the added complexity of training a complete multi-scale convolutional auto-encoder in

tandem, which overshadows any effect the layering could have had.
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GRU networks with different layering architectures (highest
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Layering Type 𝑽𝑷𝑻 [LT]

Single layer 1.14

Euler layer (RK1 / skip layer) 1.14

RK2 1.16

RK4 1.04

Table 10.20: 𝑉𝑃𝑇 for the best performing GRU networks

with different layering architectures (highest layer size,

combined AE-RNN).

10.5. Summary
This chapter compares the combined AE-RNN models with each other and with the traditional POD-

Galerkin approach. The AE-RNNs prove to be superior in all aspects, be it short-term prediction

accuracy or long-term statistical behaviour. These gaps become even more pronounced as the system’s

complexity increases. In fact, with the switch from ODEs to PDEs, not only does the POD-Galerkin

method’s performance deteriorate, so does that of the simple RNN based AE-RNN model’s. This is

attributed to the fact that it carries no additional cross-time-step information channels, as done by the

GRUs and LSTMs (and even the ESNs by means of 𝛼), which limits its time-comprehension abilities.

Further tested is the effect of RK-inspired layering, and increasing layer sizes. These answer all the

highlighted research questions from the introduction:

• The ESNs, GRUs and LSTMs based models all have quite similar performances across the systems,

especially as complexity increases, and:

– an auto-regressive training campaign is crucial for improving the prediction performances of

a BPTT trained model such as the LSTM or GRU, with 𝑉𝑃𝑇𝑠 increasing by factors of 25% to

75% to the base teacher-forced model.

– auto-regressive training has little to no effect on the performance of the AE-ESNs, possibly

because they are already performing optimally. Additionally, important to note is that accurate

hyper-parameter selection would appear to be a greater benefactor since the performance

across increasing layer sizes does not improve (as would be expected).

• The effect of RK-inspired layering displays inconsistent behaviour across the systems. For the

Lorenz ‘63 and the Kolmogorov flow systems, additional layering has little to no impact on the

predictive performances. While for the Charney-DeVore and Kuramoto-Sivashinsky systems it

offers limited benefits, with prediction performances generally increasing (20 − 24%) with an

initial Euler-method like connection (also known as a skip-layer), before eventually plateauing out.

Thus it is harder to draw any cross-system conclusions about these layering methods.

• Compared to the POD-Galerkin method, these AE-RNN models (with the exception of the simple

RNN based models) possess superior predictive capabilities, especially in the more complex

PDE systems. Not only do they outperform the POD-Galerkin method in short-term predictions,

but they also possess better long-term statistical behaviours. All the discussed pitfalls of the

POD-Galerkin approach - its inability to model statistically smaller but dynamically important

modes, poor generalisation properties - are all seen first-hand.



PART V
Conclusions and Recommendations



11
Conclusion

In this concluding chapter, reflections upon the key findings and outcomes from the extensive explo-

ration of different aspects of ML-based ROMs are presented. This thesis aimed to explore certain novel

ideas, such as the contractive and multi-regime auto-encoders, as well as to perform a standardized

comparative study on the networks involved in time-series modelling, across four chaotic systems of

increasing complexity. This investigation has shed light on various aspects of this ROM process, revealing

both successes and limitations. These insights contribute to a deeper understanding of deep learning

methodologies’ capabilities and reveal potential new directions for future exploration/investigation.

Chapter 9 presented the results of the various investigations into dimensionality reduction using

auto-encoders. It was observed that technically the contractive losses ‘worked as expected’ and were

effective in minimizing the norm of the Jacobian matrix of the latent states w.r.t. the inputs. However, a

deeper analysis revealed that this was achieved not through any meaningful transformations of the

latent space, but rather through an unintended minimization of the mean norm of the latent states.

This minimization was reasoned to be ineffective, since the latent states act as inputs to the RNNs

and are normalized once more before being fed into said networks. Thus, any changes to the norm

would get negated, underscoring the need for careful consideration of model architectures and objectives.

Further discussed in Chapter 9 were the multi-regime auto-encoders, constructed by passing the

regime parameters in with the system state as the input to the auto-encoders. This strategy was found to

work quite well across the different tested systems and their disparate dynamical regimes (from periodic

to fully chaotic). The latent spaces were observed to be well separated, with a minor performance

penalty in the form of mildly higher reconstruction errors. This opens up the door to potential

multi-regime model-free ROMs, and other possibilities discussed in Chapter 12. While for the first three

systems straighforward fully-connected networks were used for the encoder-decoder architecture, in

the Kolmogorov flow’s case, owing to its spatial structure a multi-scale convolutional auto-encoder

was employed. The effect of the kernel size and attention-incorporation on its reconstruction error and

captured total variance was studied. It was found the kernel size had a greater impact in the relatively

spatial domain considered here, since the receptive fields of the different kernel sizes eventually grew

to encompass the entire input thereby accounting for global information. Thus, this marginalised the

benefits of the self-attention layer, whose express purpose is to introduce global correlations. All the

auto-encoders were also compared against a traditional POD approach, and found to outperform it

by comfortable margins. This was attributed to its non-linear compression, the effects of which were

picked up in the decoded latent space principal directions as well.

Chapter 10 presented the prediction performance results of the combined AE-RNN models, and

undertook a comprehensive comparison between these combined AE-RNN models and the traditional

POD-Galerkin approach, highlighting their respective strengths and weaknesses. The AE-RNNs

consistently emerged as superior performers across various performance metrics, excelling in both

short-term prediction accuracy and long-term statistical behaviour. These disparities became even more

pronounced as the system’s complexity increased. Notably, the transition from ODEs to PDEs had
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a substantial impact: both the POD-Galerkin method and the simple RNN-based AE-RNN model’s

performance deteriorated rapidly. This decline was attributed to the latter’s lack of presence of additional

information channels like those in GRUs and LSTMs (forget/reset gates), and ESNs (through 𝛼), thus

limiting its ability to comprehend temporal nuances effectively. Further analysis delved into the effects

of RK-inspired layering and increasing layer sizes. These investigations successfully addressed the

research questions posed for this section:

• The models based on ESNs, GRUs, and LSTMs exhibit remarkably consistent performance across

different systems, especially as system complexity increases. Key observations include:

– Auto-regressive training significantly enhances the prediction capabilities of BPTT-trained

models such as GRUs and LSTMs. This technique leads to remarkable improvements, with

𝑉𝑃𝑇𝑠 increasing by factors ranging from 25% to 75% compared to the base teacher-forced

models.

– Auto-regressive training has minimal impact on AE-ESNs’ performance, potentially due to

their optimal operational state. Additionally, precise hyper-parameter selection might instead

be the critical factor, as performance improvements across varying layer sizes remain limited.

– Naturally, this leads to the observation that with their performances being so similar, instead

of going through the rigmarole of auto-regressively training a BPTT RNN, it might be easier

to construct an ensemble of ESNs with properly chosen hyper-parameters.

• The application of RK-inspired RNN layering yields inconsistent results across the tested systems.

In the CDV and KS systems, it yields modest benefits, generally resulting in prediction performance

gains ranging from 20% to 24% with an initial Euler-method-like connection (skip-layer) before

reaching a plateau. However, this pattern doesn’t hold for the Lorenz ‘63 and the final Kolmogorov

flow system, possibly due to the simultaneous training of a large multi-scale convolutional

auto-encoder. Hence, it is harder to draw generalized conclusions.

• Compared to the POD-Galerkin method, all AE-RNN models (except for the simple RNN-based

models) demonstrate remarkable superiority, especially in complex PDE systems. These AE-

RNNs excel in short-term predictions and exhibit superior long-term statistical performance

(measured via the𝑊1 Wasserstein distance metric between the true and predicted attractor PDFs).

The limitations of the POD-Galerkin approach - its inability to capture statistically smaller yet

dynamically significant modes and its poor generalization properties - are vividly demonstrated

by contrasting them with these AE-RNN models.

In summation, this project comprehensively addresses the research questions posited in Chapter 2

and validates the efficacy of the proposed AE-RNN models, emphasizing their ability to outperform

traditional methods, especially in complex chaotic systems with evolving dynamics. Further, the

systematic framework followed here, with the selection of latent space dimensions and RNN layer

sizes should serve as standardising launch-board for future investigations. Lastly, the potential of the

multi-regime auto-encoders remains to be explored, and whether or not a truly multi-regime model-free

prediction method can be effected using it merits investigation.
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Recommendations

While this project covered a lot of ground, there is always room for improvement. The justification

provided for choosing the dimensionality of the latent space of the auto-encoder in subsection 8.2.1,

while ‘sounding correct’ is clearly not mathematically rigorous, and an investigation in this direction

might help provide a solid theoretical footing for contructing ideal auto-encoders.

The contractive auto-encoder did not work as expected in this project case because it would go

about minimizing its objective by minimizing the norm of the latent space variables. So, an alternative

strategy worth exploring could be to provide the normalized Jacobian norm as the penalty term,

and see how the network trains. Another possibility would be to keep the same contractive penalty

as before, but introduce noise in the inputs to the decoder as well. This would effectively place a

limit on how small in magnitude the latent space variables could be squeezed, since they would have

to have large enough magnitudes for the decoder to meaningfully differentiate them from the added noise.

For the multi-regime auto-encoders, the performance penalty (in terms of the increased recon-

struction error) might be owed to the fact that the input parameters stay constant even as the system

states vary. This effectively has the network ‘focusing too much’ on the accurate reconstruction of the

parameters versus that of the system states. This could be investigated by splitting the MSE - as done in

the convolutional auto-encoder’s case - into a system-state-MSE and parameter-vector-MSE - and then

using their weighted sum as the loss function. The weight assigned to the parameter-vector-MSE could

be optimized using something like Bayesian optimization to arrive at the lowest system-state-MSE while

still maintaining latent space separation. Additionally, the structure of a coherently shared latent space

also merits investigation. There are so many questions to be investigated - how does the variation of the

parameter-vector play out in the latent space? Can the decoder act as a generative network? How well

does the auto-encoder generalize to parameter sets and regimes it has not been trained on, and how

are its interpolation and extrapolation capabilities vis-à-vis these regimes? Can a multi-regime RNN

be effectively trained on such a latent space, with the position in the latent space acting as an implicit

signal about the dynamics of the system? If possible, how well does this AE-RNN model generalize to

parameter sets and regimes it hasn’t been trained on?

Moving on to the AE-RNN modelling aspects. The general AE-RNN model used in this project

(Figure 8.16) involves passing the output of the RNN through the decoder and then back through the

encoder and into the RNN again. This unnecessary passing through the decoder-encoder networks

introduces additional errors that accumulate over time. It would be worth exploring how these models

perform if instead of this arrangement the output of the RNN is directly fed into the next time-instance,

without passing it through the decoder-encoder chain.

The RK-inspired layering did not produce any meaningful variations in the results of this project,

and the reason was hinted at earlier (subsection 10.3.4). In this project, the entire AE-RNN network is

constructed, with the RK-inspired connections already set, and then trained. This likely leads to the

gradient looping around through the RK-layers a couple of times, leading to a problem similar to the
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vanishing/exploding gradient when auto-regressively training RNNs. This could be mitigated, by

training only a network with a single skip layer, and once trained, putting the RNN cell of this skip layer

into the RK-inspired connections after the fact. This could possibly alleviate the training problem and

lead to better results.



References

[1] Nikolas O. Aksamit, Themistoklis P. Sapsis, and George Haller. Machine-Learning Ocean Dynamics
from Lagrangian Drifter Trajectories. 2019. arXiv: 1909.12895 [math.DS].

[2] John David Anderson and John Wendt. Computational fluid dynamics. Vol. 206. Springer, 1995.

[3] KE ArunKumar et al. “Comparative analysis of Gated Recurrent Units (GRU), long Short-

Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal

autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends”. In:

Alexandria Engineering Journal 61.10 (2022), pp. 7585–7603.

[4] Gennaro Auricchio et al. “Computing Kantorovich-Wasserstein Distances on 𝑑-dimensional

histograms using (𝑑 + 1)-partite graphs”. In: Advances in Neural Information Processing Systems 31

(2018).

[5] Gregory L Baker and Jerry P Gollub. Chaotic dynamics: an introduction. Cambridge university press,

1996.

[6] Dor Bank, Noam Koenigstein, and Raja Giryes. “Autoencoders”. In: arXiv preprint arXiv:2003.05991
(2020).

[7] Federico Bassetti, Stefano Gualandi, and Marco Veneroni. “On the Computation of Kantorovich–

Wasserstein Distances Between Two-Dimensional Histograms by Uncapacitated Minimum Cost

Flows”. In: SIAM Journal on Optimization 30.3 (2020), pp. 2441–2469.

[8] Peter Benner, Serkan Gugercin, and Karen Willcox. “A survey of projection-based model reduction

methods for parametric dynamical systems”. In: SIAM review 57.4 (2015), pp. 483–531.

[9] Peter Benner et al. Model reduction of parametrized systems. Springer, 2017.

[10] John Charles Butcher. “A history of Runge-Kutta methods”. In: Applied numerical mathematics 20.3

(1996), pp. 247–260.

[11] Shengze Cai et al. “Physics-informed neural networks (PINNs) for fluid mechanics: A review”. In:

Acta Mechanica Sinica (2022), pp. 1–12.

[12] Jule G Charney and John G DeVore. “Multiple flow equilibria in the atmosphere and blocking”.

In: Journal of Atmospheric Sciences 36.7 (1979), pp. 1205–1216.

[13] Ashesh Chattopadhyay, Pedram Hassanzadeh, and Devika Subramanian. “Data-driven predictions

of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing,

artificial neural network, and long short-term memory network”. In: Nonlinear Processes in
Geophysics 27.3 (2020), pp. 373–389.

[14] Kyunghyun Cho et al. “On the properties of neural machine translation: Encoder-decoder

approaches”. In: arXiv preprint arXiv:1409.1259 (2014).

[15] Junyoung Chung et al. “Empirical evaluation of gated recurrent neural networks on sequence

modeling”. In: arXiv preprint arXiv:1412.3555 (2014).

[16] Peter Constantin and Ciprian Foias. Navier-stokes equations. University of Chicago Press, 2020.

[17] Steven M Cox and Paul C Matthews. “Exponential time differencing for stiff systems”. In: Journal
of Computational Physics 176.2 (2002), pp. 430–455.

[18] Daan T Crommelin, JD Opsteegh, and F Verhulst. “A mechanism for atmospheric regime behavior”.

In: Journal of the atmospheric sciences 61.12 (2004), pp. 1406–1419.

[19] Nguyen Anh Khoa Doan, Wolfgang Polifke, and Luca Magri. “Auto-encoded reservoir computing

for turbulence learning”. In: International Conference on Computational Science. Springer. 2021,

pp. 344–351.

[20] Nguyen Anh Khoa Doan, Wolfgang Polifke, and Luca Magri. “Physics-informed echo state

networks”. In: Journal of Computational Science 47 (2020), p. 101237.

107

https://arxiv.org/abs/1909.12895


References 108

[21] Xiaofeng Du et al. “Single image super-resolution based on multi-scale competitive convolutional

neural network”. In: Sensors 18.3 (2018), p. 789.

[22] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning. 2018.

arXiv: 1603.07285 [stat.ML].

[23] Gerald A Edgar and Gerald A Edgar. Measure, topology, and fractal geometry. Vol. 2. Springer, 2008.

[24] Russell A Edson et al. “Lyapunov exponents of the Kuramoto–Sivashinsky PDE”. In: The ANZIAM
Journal 61.3 (2019), pp. 270–285.

[25] Mohammad Farazmand. “An adjoint-based approach for finding invariant solutions of Navier–

Stokes equations”. In: Journal of Fluid Mechanics 795 (2016), pp. 278–312.

[26] Mohammad Farazmand and Themistoklis P Sapsis. “A variational approach to probing extreme

events in turbulent dynamical systems”. In: Science advances 3.9 (2017), e1701533.

[27] Bengt Fornberg. A practical guide to pseudospectral methods. 1. Cambridge university press, 1998.

[28] Douglas G Fox and Steven A Orszag. “Pseudospectral approximation to two-dimensional turbu-

lence”. In: Journal of Computational Physics 11.4 (1973), pp. 612–619.

[29] Peter I. Frazier. A Tutorial on Bayesian Optimization. 2018. arXiv: 1807.02811 [stat.ML].

[30] Paul Frederickson et al. “The Liapunov dimension of strange attractors”. In: Journal of differential
equations 49.2 (1983), pp. 185–207.

[31] Tilmann Gneiting and Adrian E. Raftery. “Weather Forecasting with Ensemble Methods”. In:

Science 310.5746 (2005), pp. 248–249. doi: 10.1126/science.1115255. eprint: https://www.
science.org/doi/pdf/10.1126/science.1115255. url: https://www.science.org/doi/abs/
10.1126/science.1115255.

[32] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearning
book.org. MIT Press, 2016.

[33] Ian Goodfellow et al. “Generative adversarial networks”. In: Communications of the ACM 63.11

(2020), pp. 139–144.

[34] Stefano Gualandi. An Informal and Biased Tutorial on Kantorovich-Wasserstein Distances. http:
//stegua.github.io/blog/2018/12/31/wasserstein-distances-an-operations-research-
perspective/. [Online; accessed 28-Dec-2022]. 2018.

[35] Michael D Hartl. “Lyapunov exponents in constrained and unconstrained ordinary differential

equations”. In: arXiv preprint physics/0303077 (2003).

[36] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 770–778.

[37] Jan S Hesthaven, Gianluigi Rozza, Benjamin Stamm, et al. Certified reduced basis methods for
parametrized partial differential equations. Vol. 590. Springer, 2016.

[38] Saddam Hĳazi et al. “Data-driven POD-Galerkin reduced order model for turbulent flows”. In:

Journal of Computational Physics 416 (2020), p. 109513.

[39] Sepp Hochreiter and Jürgen Schmidhuber. “LSTM can solve hard long time lag problems”. In:

Advances in neural information processing systems 9 (1996).

[40] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are

universal approximators”. In: Neural networks 2.5 (1989), pp. 359–366.

[41] Herbert Jaeger. “The “echo state” approach to analysing and training recurrent neural networks-

with an erratum note”. In: Bonn, Germany: German National Research Center for Information Technology
GMD Technical Report 148.34 (2001), p. 13.

[42] Leonid V Kantorovich. “On the translocation of masses”. In: Journal of mathematical sciences 133.4

(2006), pp. 1381–1382.

[43] Aly-Khan Kassam and Lloyd N Trefethen. “Fourth-order time-stepping for stiff PDEs”. In: SIAM
Journal on Scientific Computing 26.4 (2005), pp. 1214–1233.

[44] Diederik P Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In: arXiv
e-prints (2014), arXiv–1412.

https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1807.02811
https://doi.org/10.1126/science.1115255
https://www.science.org/doi/pdf/10.1126/science.1115255
https://www.science.org/doi/pdf/10.1126/science.1115255
https://www.science.org/doi/abs/10.1126/science.1115255
https://www.science.org/doi/abs/10.1126/science.1115255
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://stegua.github.io/blog/2018/12/31/wasserstein-distances-an-operations-research-perspective/
http://stegua.github.io/blog/2018/12/31/wasserstein-distances-an-operations-research-perspective/
http://stegua.github.io/blog/2018/12/31/wasserstein-distances-an-operations-research-perspective/


References 109

[45] Yoshiki Kuramoto. “Diffusion-induced chaos in reaction systems”. In: Progress of Theoretical Physics
Supplement 64 (1978), pp. 346–367.

[46] Sangseung Lee and Donghyun You. “Data-driven prediction of unsteady flow over a circular

cylinder using deep learning”. In: Journal of Fluid Mechanics 879 (2019), pp. 217–254.

[47] Moshe Leshno et al. “Multilayer feedforward networks with a nonpolynomial activation function

can approximate any function”. In: Neural networks 6.6 (1993), pp. 861–867.

[48] Jichao Li, Xiaosong Du, and Joaquim RRA Martins. “Machine learning in aerodynamic shape

optimization”. In: Progress in Aerospace Sciences 134 (2022), p. 100849.

[49] Edward N Lorenz. “Deterministic nonperiodic flow”. In: Journal of atmospheric sciences 20.2 (1963),

pp. 130–141.

[50] Mantas Lukoševičius. “A practical guide to applying echo state networks”. In: Neural networks:
Tricks of the trade. Springer, 2012, pp. 659–686.

[51] John L Lumley. “Coherent structures in turbulence”. In: Transition and turbulence. Elsevier, 1981,

pp. 215–242.

[52] John Leask Lumley. “The structure of inhomogeneous turbulent flows”. In: Atmospheric turbulence
and radio wave propagation (1967), pp. 166–178.

[53] Ingo Lütkebohle. Bayesian Optimization. https://www.youtube.com/watch?v=C5nqEHpdyoE.
[Online; Conference on Uncertainty in AI 2018 Tutorial]. 2018.

[54] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software

available from tensorflow.org. 2015. url: https://www.tensorflow.org/.

[55] Arvind Mohan et al. “Compressed convolutional LSTM: An efficient deep learning framework to

model high fidelity 3D turbulence”. In: arXiv preprint arXiv:1903.00033 (2019).

[56] Ali H Nayfeh and Balakumar Balachandran. Applied nonlinear dynamics: analytical, computational,
and experimental methods. John Wiley & Sons, 2008.

[57] Jaideep Pathak et al. “Model-free prediction of large spatiotemporally chaotic systems from data:

A reservoir computing approach”. In: Physical review letters 120.2 (2018), p. 024102.

[58] Jaideep Pathak et al. “Using machine learning to replicate chaotic attractors and calculate

Lyapunov exponents from data”. In: Chaos: An Interdisciplinary Journal of Nonlinear Science 27.12

(2017), p. 121102.

[59] Suraj Pawar et al. “A deep learning enabler for nonintrusive reduced order modeling of fluid

flows”. In: Physics of Fluids 31.8 (2019), p. 085101.

[60] Nathan Platt, L Sirovich, and N Fitzmaurice. “An investigation of chaotic Kolmogorov flows”. In:

Physics of Fluids A: Fluid Dynamics 3.4 (1991), pp. 681–696.

[61] Stefan Posch et al. “Development of a tool for the preliminary design of large engine prechambers

using machine learning approaches”. In: Applied Thermal Engineering 191 (2021), p. 116774.

[62] Alfio Quarteroni, Andrea Manzoni, and Federico Negri. Reduced basis methods for partial differential
equations: an introduction. Vol. 92. Springer, 2015.

[63] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. “Multistep neural networks for

data-driven discovery of nonlinear dynamical systems”. In: arXiv preprint arXiv:1801.01236 (2018).

[64] Michael T Rosenstein, James J Collins, and Carlo J De Luca. “A practical method for calculating

largest Lyapunov exponents from small data sets”. In: Physica D: Nonlinear Phenomena 65.1-2

(1993), pp. 117–134.

[65] Themistoklis P Sapsis and Andrew J Majda. “Blended reduced subspace algorithms for uncertainty

quantification of quadratic systems with a stable mean state”. In: Physica D: Nonlinear Phenomena
258 (2013), pp. 61–76.

[66] Gregory I Sivashinsky. “Nonlinear analysis of hydrodynamic instability in laminar flames—I.

Derivation of basic equations”. In: Acta astronautica 4.11 (1977), pp. 1177–1206.

[67] A. Skopenkov. Embedding and knotting of manifolds in Euclidean spaces. 2006. arXiv: math/0604045
[math.GT].

https://www.youtube.com/watch?v=C5nqEHpdyoE
https://www.tensorflow.org/
https://arxiv.org/abs/math/0604045
https://arxiv.org/abs/math/0604045


References 110

[68] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical Bayesian Optimization of Machine

Learning Algorithms”. In: Advances in Neural Information Processing Systems. Ed. by F. Pereira et al.

Vol. 25. Curran Associates, Inc., 2012. url: https://proceedings.neurips.cc/paper_files/
paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf.

[69] Tangent Plane of a Sphere. https://math.stackexchange.com/questions/1686437/what-is-
the-union-of-all-the-tangent-plane-at-every-point-of-a-sphere. [Online; accessed

16-May-2022]. 2016.

[70] H. Tennekes and J.L. Lumley. A First Course in Turbulence. MIT Press, 2018. isbn: 9780262536301.

url: https://books.google.nl/books?id=4L34DwAAQBAJ.

[71] Marco Tezzele, Francesco Ballarin, and Gianluigi Rozza. “Combined parameter and model

reduction of cardiovascular problems by means of active subspaces and POD-Galerkin methods”.

In: Mathematical and numerical modeling of the cardiovascular system and applications (2018), pp. 185–

207.

[72] Cédric Villani. Topics in optimal transportation. Vol. 56. American Mathematical Soc., 2003.

[73] Pantelis R Vlachas et al. “Data-driven forecasting of high-dimensional chaotic systems with long

short-term memory networks”. In: Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 474.2213 (2018), p. 20170844.

[74] Pantelis R Vlachas et al. “Forecasting of spatio-temporal chaotic dynamics with recurrent neural

networks: A comparative study of reservoir computing and backpropagation algorithms”. In:

arXiv preprint arXiv:1910.05266 (2019).

[75] Zhong Yi Wan et al. “Data-assisted reduced-order modeling of extreme events in complex

dynamical systems”. In: PloS one 13.5 (2018), e0197704.

[76] Jonathan A. Weyn, Dale R. Durran, and Rich Caruana. “Can Machines Learn to Predict Weather?

Using Deep Learning to Predict Gridded 500-hPa Geopotential Height From Historical Weather

Data”. In: Journal of Advances in Modeling Earth Systems 11.8 (2019), pp. 2680–2693. doi: https:
//doi.org/10.1029/2019MS001705. eprint: https://agupubs.onlinelibrary.wiley.com/
doi/pdf/10.1029/2019MS001705. url: https://agupubs.onlinelibrary.wiley.com/doi/
abs/10.1029/2019MS001705.

[77] Jin-Long Wu et al. “Enforcing statistical constraints in generative adversarial networks for modeling

chaotic dynamical systems”. In: Journal of Computational Physics 406 (2020), p. 109209.

[78] Pin Wu et al. “Reduced order model using convolutional auto-encoder with self-attention”. In:

Physics of Fluids 33.7 (2021), p. 077107.

[79] Zhe Wu et al. “Machine learning modeling and predictive control of nonlinear processes using

noisy data”. In: AIChE Journal 67.4 (2021), e17164.

[80] Jin Xu et al. “Reluplex made more practical: Leaky ReLU”. In: 2020 IEEE Symposium on Computers
and Communications (ISCC). 2020, pp. 1–7. doi: 10.1109/ISCC50000.2020.9219587.

[81] Xinghui Yan et al. “Aerodynamic shape optimization using a novel optimizer based on machine

learning techniques”. In: Aerospace Science and Technology 86 (2019), pp. 826–835.

[82] Han Zhang et al. “Self-attention generative adversarial networks”. In: International conference on
machine learning. PMLR. 2019, pp. 7354–7363.

[83] Qinyu Zhuang et al. “Model order reduction based on Runge–Kutta neural networks”. In:

Data-Centric Engineering 2 (2021).

https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://math.stackexchange.com/questions/1686437/what-is-the-union-of-all-the-tangent-plane-at-every-point-of-a-sphere
https://math.stackexchange.com/questions/1686437/what-is-the-union-of-all-the-tangent-plane-at-every-point-of-a-sphere
https://books.google.nl/books?id=4L34DwAAQBAJ
https://doi.org/https://doi.org/10.1029/2019MS001705
https://doi.org/https://doi.org/10.1029/2019MS001705
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019MS001705
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019MS001705
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001705
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001705
https://doi.org/10.1109/ISCC50000.2020.9219587


PART VI
Appendices



A
General Workflow

A.1. Simulation and Data Generation
A.1.1. The Lorenz ’63 System
The 𝑀𝐿𝐸, the KY dimension and the Lyapunov time of the different cases are given in Table A.1. Note

the (𝜎, 𝜌, 𝛽) = (10, 35, 1.33) case, while definitely chaotic (since it does not settle down at any attractor

position), has a high Lyapunov time implying that it has relatively stable orbital trajectories around the

attractor positions. This can also be seen in Figure 8.1e.

(𝜎, 𝜌, 𝛽) 𝜆𝑀𝐿𝐸 KY dim 𝑡𝐿

(10, 28, 2.67) 9.06 × 10
−1

2.06 1.10

(10, 35, 1.33) 7.36 × 10
−1

2.06 1.36

(10, 35, 2.67) 1.04 × 10
0

2.07 0.96

(10, 45, 1.33) 9.30 × 10
−1

2.07 1.08

(10, 45, 2.67) 1.21 × 10
0

2.08 0.82

(10, 35, 1.33) 1.51 × 10
−3

1.14 659.20

(10, 35, 2.67) 1.04 × 10
0

2.04 0.96

(10, 45, 1.33) 6.06 × 10
−1

2.02 1.65

(10, 45, 2.67) 1.17 × 10
0

2.05 0.85

Table A.1: MLE, KY dimension and Lyapunov times for different parameter sets of the Lorenz system

A.1.2. The Charney-DeVore System
The 𝑀𝐿𝐸, the KY dimension and the Lyapunov time of the different cases are given in Table A.2.

(𝑥∗
1
, 𝑥∗

4
) 𝜆𝑀𝐿𝐸 KY dim 𝑡𝐿

(0.95,−0.76095) 2.70 × 10
−2

2.32 37.09

(0.99,−0.79299) 3.05 × 10
−4

1.20 3275.35

Table A.2: MLE, KY dimension and Lyapunov times for different parameter sets of the CDV system

The high Lyapunov time, and periodic-looking behaviour in Figure 8.3 prompted a deeper look into

the case (𝑥∗
1
, 𝑥∗

4
) = (0.99,−0.79299). The normalized auto-covariance function, as defined Equation A.1,

is plotted in Figure A.1. Clearly, the regular spikes in intervals of 140 time-units confirms the strong

periodicity of this case. Note that not only are there spikes present in the 𝐴𝐶𝐹, but they also peak at

exactly 1.0, indicating perfect matching with the original un-shifted data at these intervals.

𝐴𝐶𝐹(𝜏) = E𝑡
[

1

|Ω|

∫
Ω

〈(
𝒖(𝑡) − 𝒖
std(𝒖)

)
,

(
𝒖(𝑡 + 𝜏) − 𝒖

std(𝒖)

)〉
dΩ

]
(A.1)
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Figure A.1: 𝐴𝐶𝐹(𝜏) for the CDV system with (𝑥∗
1
, 𝑥∗

4
) = (0.99,−0.79299)

A.1.3. The Kuramoto-Sivashinsky System
The mean kinetic energy, mean turbulent kinetic energy and mean dissipation rate are defined below

and plotted in Figure A.2, Figure A.3 and Figure A.4 (respectively).

𝐾𝐸(𝒖) = 1

|Ω|

∫
Ω

1

2

|𝒖 |2dΩ (A.2)

𝑇𝐾𝐸(𝒖) = 1

|Ω|

∫
Ω

1

2

|𝒖 − 𝒖 |2dΩ (A.3)

𝐷(𝒖) = 1

|Ω|

∫
Ω

|∇𝒖 |2dΩ (A.4)

From these, it can clearly be observed that only the first two cases are truly chaotic, with messy 𝐾𝐸,

𝑇𝐾𝐸 and 𝐷 time-evolution. The last two cases appear to have a constant 𝐾𝐸, with periodic variations

in the 𝑇𝐾𝐸 and 𝐷. Also, note that the 𝐾𝐸 and 𝑇𝐾𝐸 are much larger in magnitude for the case

(𝜈1 , 𝜈2 , 𝜈3) = (1, 2, 1). This can be attributed to the fact that 𝜈2 is directly responsible for adding energy

into the system (Section 6.3), and a higher value of 𝜈2 leads to a more energetic system.

The 𝑀𝐿𝐸, the KY dimension and the Lyapunov time of the different cases are given in Table A.3.

(𝜈1 , 𝜈2 , 𝜈3) 𝜆𝑀𝐿𝐸 KY dim 𝑡𝐿

(1, 1, 1) 7.17 × 10
−2

7.83 13.95

(2, 1, 1) 7.55 × 10
−2

7.86 13.25

(1, 2, 1) 3.12 × 10
−3

1.67 320.76

(1, 1, 2) 2.28 × 10
−3

1.63 438.57

Table A.3: MLE, KY dimension and Lyapunov times for different parameter sets of the KS system

The similarly high Lyapunov times and periodic-looking behaviour prompted further analysis using

the 𝐴𝐶𝐹 as defined above. The resulting plots for the last two parameter sets are shown in Figure A.5.

Once again, the clear spikes peaking at exactly 1.0 confirm periodicity in these cases (at 44.8 time-units

and 91.6 time-units, respectively).
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Figure A.2: Time evolution of the mean kinetic energy (𝐾𝐸) of the KS system with different parameter sets.
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Figure A.3: Time evolution of the mean turbulent kinetic energy (𝑇𝐾𝐸) of the KS system with different parameter sets.
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Figure A.4: Time evolution of the mean dissipation rate (𝐷) of the KS system with different parameter sets.
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Figure A.5: 𝐴𝐶𝐹(𝜏) for the KS system with (𝜈1 , 𝜈2 , 𝜈3) = (1, 2, 1)a, (1, 1, 2)b

A.1.4. The Kolmogorov Flow System
The time-evolution of the mean kinetic energy, mean turbulent kinetic energy and mean dissipation rate

(as defined in Equation A.2, Equation A.3 and Equation A.4) is plotted in Figure A.6 and Figure A.7.

Note the characteristic spikes in 𝐾𝐸 and 𝐷 in Figure A.7 for the 𝑅𝑒 = 40 case, and the quasi-periodic

variation in the 𝑅𝑒 = 30 case.
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The 𝑀𝐿𝐸, the KY dimension and the Lyapunov time of the different cases are given in Table A.4. The

high Lyapunov time of the 𝑅𝑒 = 30 case is unsurprising since this system is known to be quasi-periodic

[60]1.

𝑅𝑒 𝜆𝑀𝐿𝐸 KY dim 𝑡𝐿

30 3.64 × 10
−3

3.90 274.78

40 7.65 × 10
−2

12.19 13.06

Table A.4: MLE, KY dimension and Lyapunov times for different Reynolds numbers (Kolmogorov flow)
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Figure A.6: Snippets of the time-evolution of the 𝐾𝐸, 𝑇𝐾𝐸 and 𝐷, for the Kolmogorov flow system (𝑅𝑒 = 30).
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Figure A.7: Snippets of the time-evolution of the 𝐾𝐸, 𝑇𝐾𝐸 and 𝐷, for the Kolmogorov flow system (𝑅𝑒 = 40).

A.2. Auto-encoders
A.2.1. Layering and Network Architecture
The auto-encoder layer sizes for the different chaotic systems are given below. Note that for the 2D

incompressible Navier Stokes system, the layering scheme for only the kernel filter size 7× 7 is presented.

The layering schemes for the other filter sizes are the same, with only the padding and cropping layers

being affected.

1Check the discussion on the 4.72 ≤ Ω/Ω𝑐 < 5.9 regime. The case of 𝑅𝑒 = 30 translates to Ω/Ω𝑐 = 5.3. Platt, Sirovich, and

Fitzmaurice note the dominance of one single frequency in this regime and call it ‘meta-stable’.
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layer type layer size
input 3 / 6

Encoder

intermediate 16

intermediate 8

intermediate 4

final 2

Decoder

intermediate 4

intermediate 8

intermediate 16

final 3 / 6

Table A.5: Auto-encoder layer sizes for the Lorenz ’63 system.

layer type layer size
input 6 / 12

Encoder

intermediate 16

intermediate 8

intermediate 8

final 5

Decoder

intermediate 8

intermediate 8

intermediate 16

final 6 / 12

Table A.6: Auto-encoder layer sizes for the CDV system.

layer type layer size
input 64 / 67

Encoder

intermediate 128

intermediate 96

intermediate 64

intermediate 48

intermediate 32

intermediate 24

final 16

Decoder

intermediate 24

intermediate 32

intermediate 48

intermediate 64

intermediate 96

intermediate 128

final 64 / 67

Table A.7: Auto-encoder layer sizes for the KS system.
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layer type output size
input {2, 50, 50} / {3, 50, 50}

Encoder

periodic padding {2, 54, 54} / {3, 54, 54}
convolution (stride 2) {8, 24, 24}
batch normalization {8, 24, 24}

activation (ELU) {8, 24, 24}
periodic padding {8, 30, 30}

convolution (stride 2) {16, 12, 12}
batch normalization {16, 12, 12}

activation (ELU) {16, 12, 12}
attention module {16, 12, 12}
periodic padding {16, 18, 18}

convolution (stride 2) {32, 6, 6}
batch normalization {32, 6, 6}

activation (ELU) {32, 6, 6}
attention module {32, 6, 6}
periodic padding {32, 10, 10}

convolution (stride 2) {3, 3, 3}
batch normalization {3, 3, 3}

activation (tanh) {3, 3, 3}

Decoder

periodic padding {3, 9, 9}
transposed convolution (stride 2) {32, 23, 23}

cropping {32, 6, 6}
batch normalization {32, 6, 6}

activation (elu) {32, 6, 6}
periodic padding {32, 12, 12}

transposed convolution (stride 2) {16, 29, 29}
cropping {16, 12, 12}

batch normalization {16, 12, 12}
activation (elu) {16, 12, 12}

attention module {16, 12, 12}
periodic padding {16, 18, 18}

transposed convolution (stride 2) {8, 41, 41}
cropping {8, 24, 24}

batch normalization {8, 24, 24}
activation (elu) {8, 24, 24}

attention module {8, 24, 24}
periodic padding {8, 30, 30}

transposed convolution (stride 2) {2, 65, 65} / {3, 65, 65}
cropping {2, 50, 50} / {3, 50, 50}

batch normalization {2, 50, 50} / {3, 50, 50}
activation (elu) {2, 50, 50} / {3, 50, 50}

Table A.8: Auto-encoder layer sizes for the Kolmogorov flow system, with the kernel filter size set to 7 × 7. Other filter sizes

follow the same layer structures, with different values for the periodic padding and cropping layers.



B
Dimensionality Reduction Using

Auto-encoders

B.1. The Lorenz ’63 System
B.1.1. Bayesian Optimization
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(a) Search for 𝑓noise and 𝜆reg.
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(b) Search for 𝜆contractive.

Figure B.1: Iteration-wise evolution of the MSE for the Bayesian optimization.
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B.2. The Charney-DeVore System
B.2.1. Bayesian Optimization
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Figure B.2: Iteration-wise evolution of the MSE for the Bayesian optimization.

B.3. The Kuramoto-Sivashinsky System
B.3.1. Bayesian Optimization
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Figure B.3: Iteration-wise evolution of the MSE for the Bayesian optimization.
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B.4. The Kolmogorov Flow System
B.4.1. Bayesian Optimization
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Figure B.4: Search for 𝑓noise and 𝜆reg, and the iteration-wise evolution of the MSE.

B.4.2. AE and POD

Kernel
AE PODFilter Attention

Size Layer
3 × 3

No

1.22 × 10
−1

1.76 × 10
−1

5 × 5 1.01 × 10
−1

7 × 7 9.36 × 10
−2

3 × 3,

8.72 × 10
−2

5 × 5,

7 × 7

3 × 3

Yes

1.19 × 10
−1

5 × 5 1.03 × 10
−1

7 × 7 9.31 × 10
−2

3 × 3,

8.65 × 10
−2

5 × 5,

7 × 7

Table B.1: Reconstruction error (NRMSE) for the

auto-encoders with changing kernel filter sizes.

Kernel
AE PODFilter Attention

Size Layer
3 × 3

No

97.56%

96.67%

5 × 5 98.15%

7 × 7 98.26%

3 × 3,

98.51%5 × 5,

7 × 7

3 × 3

Yes

97.97%

5 × 5 98.26%

7 × 7 98.39%

3 × 3,

98.58%5 × 5,

7 × 7

Table B.2: Captured total variance for the auto-encoders with

changing kernel filter sizes.

Latent
AE PODSpace

Dimension
{2, 3, 3} 1.07 × 10

−1
2.19 × 10

−1

{3, 3, 3} 8.65 × 10
−2

1.76 × 10
−1

{4, 3, 3} 7.44 × 10
−2

1.33 × 10
−1

{5, 3, 3} 6.86 × 10
−2

9.72 × 10
−2

Table B.3: Reconstruction error (NRMSE) for the multi-scale

auto-encoder with changing latent space dimensionality.

Latent
AE PODSpace

Dimension
{2, 3, 3} 94.47% 91.26%

{3, 3, 3} 94.89% 93.07%

{4, 3, 3} 95.29% 94.48%

{5, 3, 3} 95.30% 95.35%

Table B.4: Captured total variance for the multi-scale

auto-encoder with changing latent space dimensionality.
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Time Series Predictions using RNNs

C.1. The Lorenz ’63 System
Additional plots for Section 10.1.

C.1.1. Bayesian Optimization
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(a) Search for 𝜔𝑖𝑛 , 𝜌𝑟𝑒𝑠 , 𝛼, 𝑓noise and 𝜆reg for the ESN.
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(b) Search for 𝑓noise and 𝜆reg for the GRU.

Figure C.1: Iteration-wise evolution of the MSE for the Bayesian optimization.
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C.1.2. Auto-regressively Trained BPTT RNNs
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(a) Auto-regressive training of the LSTM (𝑛𝑟 = 80).
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(b) Auto-regressive training of the Simple RNN (𝑛𝑟 = 80).

Figure C.2: Evolution of the prediction horizon distribution as auto-regressive training progresses.
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C.1.3. Long-term Evolution of Sample Trajectories
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(a) Sample trajectory evolution for the AE-LSTM model.
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(b) Sample trajectory evolution for the AE-ESN model.
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(c) Sample trajectory evolution for the AE-SimpleRNN model.

Figure C.3: Long-term evolution of sample trajectories for the Lorenz ’63 system.
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C.2. The Charney-DeVore System
Additional plots for Section 10.2.

C.2.1. Bayesian Optimization
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(a) Search for 𝜔𝑖𝑛 , 𝜌𝑟𝑒𝑠 , 𝛼, 𝑓noise and 𝜆reg for the ESN.
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(b) Search for 𝑓noise and 𝜆reg for the GRU.

Figure C.4: Iteration-wise evolution of the MSE for the Bayesian optimization.

C.2.2. Auto-regressively Trained BPTT RNNs

Teacher
forced

10 20 40 60

AR Training Steps

0

1

2

3

4

5

6

7

P
re

d
ic

ti
on

H
or

iz
on

[L
T

]

LSTM Auto-regressive Training

(a) Auto-regressive training of the LSTM (𝑛𝑟 = 80).
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(b) Auto-regressive training of the Simple RNN (𝑛𝑟 = 80).

Figure C.5: Evolution of the prediction horizon distribution as auto-regressive training progresses.
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C.2.3. Long-term Evolution of Sample Trajectories
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Figure C.6: Sample trajectory evolution for the AE-LSTM model.
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Figure C.7: Sample trajectory evolution for the AE-ESN model.
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Figure C.8: Sample trajectory evolution for the AE-SimpleRNN model.
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C.3. The Kuramoto-Sivashinsky System
Additional plots for Section 10.3.

C.3.1. Bayesian Optimization
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(a) Search for 𝜔𝑖𝑛 , 𝜌𝑟𝑒𝑠 , 𝛼, 𝑓noise and 𝜆reg for the ESN.
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(b) Search for 𝑓noise and 𝜆reg for the GRU.

Figure C.9: Iteration-wise evolution of the MSE for the Bayesian optimization.
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(a) Auto-regressive training of the LSTM (𝑛𝑟 = 80).
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(b) Auto-regressive training of the Simple RNN (𝑛𝑟 = 80).

Figure C.10: Evolution of the prediction horizon distribution as auto-regressive training progresses.
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C.3.3. Long-term Evolution of Sample Trajectories
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(a) Sample trajectory evolution for the AE-LSTM model.
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(b) Sample trajectory evolution for the AE-ESN model.
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(c) Sample trajectory evolution for the AE-SimpleRNN model.

Figure C.11: Long-term evolution of sample trajectories for the Kuramoto-Sivashinsky system.
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C.4. The Kolmogorov Flow System
Additional plots for Section 10.4.

C.4.1. Bayesian Optimization
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(a) Search for 𝜔𝑖𝑛 , 𝜌𝑟𝑒𝑠 , 𝛼, 𝑓noise and 𝜆reg for the ESN.
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(b) Search for 𝑓noise and 𝜆reg for the GRU.

Figure C.12: Iteration-wise evolution of the MSE for the Bayesian optimization.
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(a) Auto-regressive training of the LSTM (𝑛𝑟 = 80).
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(b) Auto-regressive training of the Simple RNN (𝑛𝑟 = 80).

Figure C.13: Evolution of the prediction horizon distribution as auto-regressive training progresses.



C.4. The Kolmogorov Flow System 130

C.4.3. Long-term Evolution of Sample Trajectories
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(a) Sample trajectory evolution for the AE-LSTM model.
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(b) Sample trajectory evolution for the AE-ESN model.
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(c) Sample trajectory evolution for the AE-SimpleRNN model.

Figure C.14: Long-term evolution of sample trajectories for the Kolmogorov flow system.
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C.4.4. Typical Evolution of 𝑢, 𝑣 and 𝜔 for a Sample Trajectory - AE-GRU Model
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Figure C.15: Evolution of 𝑢 at different time-steps of a sample trajectory, for the AE-GRU model.
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Figure C.16: Evolution of 𝑣 at different time-steps of a sample trajectory, for the AE-GRU model.
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Figure C.17: Evolution of 𝜔 at different time-steps of a sample trajectory, for the AE-GRU model.
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C.4.5. Typical Evolution of 𝑢, 𝑣 and 𝜔 for a Sample Trajectory - AE-LSTM Model
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Figure C.18: Evolution of 𝑢 at different time-steps of a sample trajectory, for the AE-LSTM model.
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Figure C.19: Evolution of 𝑣 at different time-steps of a sample trajectory, for the AE-LSTM model.
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Figure C.20: Evolution of 𝜔 at different time-steps of a sample trajectory, for the AE-LSTM model.
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C.4.6. Typical Evolution of 𝑢, 𝑣 and 𝜔 for a Sample Trajectory - AE-ESN Model
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Figure C.21: Evolution of 𝑢 at different time-steps of a sample trajectory, for the AE-ESN model.
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Figure C.22: Evolution of 𝑣 at different time-steps of a sample trajectory, for the AE-ESN model.
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Figure C.23: Evolution of 𝜔 at different time-steps of a sample trajectory, for the AE-ESN model.
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C.4.7. Typical Evolution of 𝑢, 𝑣 and 𝜔 for a Sample Trajectory - AE-SimpleRNN
Model
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Figure C.24: Evolution of 𝑢 at different time-steps of a sample trajectory, for the AE-SimpleRNN model.
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Figure C.25: Evolution of 𝑣 at different time-steps of a sample trajectory, for the AE-SimpleRNN model.
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Figure C.26: Evolution of 𝜔 at different time-steps of a sample trajectory, for the AE-SimpleRNN model.
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C.4.8. Typical Evolution of 𝑢, 𝑣 and 𝜔 for a Sample Trajectory - POD-Galerkin
Method
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Figure C.27: Evolution of 𝑢 at different time-steps of a sample trajectory, for the POD-Galerkin method.
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Figure C.28: Evolution of 𝑣 at different time-steps of a sample trajectory, for the POD-Galerkin method.
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Figure C.29: Evolution of 𝜔 at different time-steps of a sample trajectory, for the POD-Galerkin method.
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C.5. Fraction of Non-trainable parameters in an ESN
The input matrix lies in the space R𝑛

𝑟𝑛 𝑙𝑠×𝑛 𝑙𝑠
and has a bias vector belonging to the space R𝑛

𝑟𝑛 𝑙𝑠
. The

reservoir matrix lies in the space R𝑛
𝑟𝑛 𝑙𝑠×𝑛𝑟𝑛 𝑙𝑠

. The output matrix lies in the space R𝑛
𝑙𝑠×𝑛𝑟𝑛 𝑙𝑠

with a bias

vector belonging to R𝑛
𝑙𝑠
. Since the input and reservoir matrices are fixed, the fraction of parameters that

are non-trainable is:

𝑓 (𝑛𝑟 , 𝑛 𝑙𝑠) = 𝑛𝑟(𝑛 𝑙𝑠)2 + 𝑛𝑟𝑛 𝑙𝑠 + (𝑛𝑟𝑛 𝑙𝑠)2
𝑛𝑟(𝑛 𝑙𝑠)2 + 𝑛𝑟𝑛 𝑙𝑠 + (𝑛𝑟𝑛 𝑙𝑠)2 + 𝑛𝑟(𝑛 𝑙𝑠)2 + 𝑛 𝑙𝑠

= 1 −
(

𝑛 𝑙𝑠

2(𝑛 𝑙𝑠)2 +
(
𝑛𝑟𝑛 𝑙𝑠 + 1/𝑛𝑟

)
+ 1

)
︸                                  ︷︷                                  ︸

𝐴

−
(

1

𝑛𝑟
(
2𝑛 𝑙𝑠 + 𝑛𝑟𝑛 𝑙𝑠 + 1

)
+ 1

)
︸                             ︷︷                             ︸

𝐵

Clearly, both 𝐴 and 𝐵 decrease in value as 𝑛𝑟 increases, thus implying −(𝐴+ 𝐵) becomes less negative as

𝑛𝑟 increases. This implies that 𝑓 (𝑛𝑟 , 𝑛 𝑙𝑠), the fraction of non-trainable parameters w.r.t. the total number

of ESN parameters, grows as 𝑛𝑟 grows.
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