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Preface 

As 5G technology is developing at a high speed nowadays, edge computing starts to get 

noticed again. Even though the origin of edge computing can be traced back to late 1990s, 

there are some barriers which make the implementation of edge computing difficult and 

costly in practice. With network function virtualization in 5G, the deployment of edge 

computing needs to get close enough to the network edge to reduce latency and bandwidth 

usage in order to meet the requirements derived from future use cases. Network function 

virtualization brings flexibilities to edge computing as well as more optimization possibilities, 

including reducing costs and investments of companies that provide edge computing 

services and enhancing user experience and service qualities of edge computing. With 

optimizations, edge computing can provide enhanced service quality (e.g. shorter service 

latency, higher reliability, higher robustness, etc.) to users with a reasonably small amount 

of investments. These improvements provided by optimizations are desired for both 

customers and operators, and edge computing will get more attention, will develop faster 

and will be more widely used.
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Abstract 

Multi-access Edge Computing (MEC) is a concept brought up by ETSI and it places computing, 

storage, processing and network resources into MEC hosts and places these MEC hosts as 

close as needed to the telecom network edge in order to reduce service latency and 

bandwidth usage. For self-driving vehicles, streaming video and real-time gaming, the devices 

involved (e.g. vehicles, cellphones, etc.) might not have enough capabilities to perform all the 

computations and might not have sufficient storage capacity; MEC can be used here for 

offloading data computations and content caching. To enhance service quality and user 

experience, MEC hosts and MEC applications should be located close(r) to the end-users, 

which increases the number of handovers between MEC hosts to maintain MEC service 

continuity for mobile end-users as well as the costs for the telecom operators. Therefore, a 

balance needs to be found. Consider the fact that mobile UEs need MEC service handovers 

to maintain service continuity and handovers may cause service interruptions which can 

cause severe degradation to MEC service qualities and user experience, hence the number 

of handovers between MEC hosts experienced by end-users should be minimized. To find a 

suitable deployment of MEC hosts and MEC applications in order to minimize the number of 

handovers, three greedy algorithms and two heuristic algorithms are introduced, 

implemented, tested, compared and analyzed in this thesis to see which identifies the 

deployment mechanism that has the smallest number of handovers. When it is time for a 

mobile UE to connect to a new MEC host and there are multiple potential choices of the new 

MEC host, the most suitable one for the UE needs to be determined dynamically according 

to the real-time condition of each possible MEC host. To achieve this, reinforcement learning 

is considered. Three different reinforcement learning algorithms based on SARSA learning 

and Deep Q Network are introduced, implemented, tested, compared and analyzed in this 

thesis. Furthermore, a decision-making mechanism is designed to cope with exceptional 

situations where the required service quality cannot be guaranteed.  

 

Key words: Multi-access Edge Computing (MEC), MEC host, MEC application, MEC application 

instance, 5G, optimization, ETSI, 3GPP, relocation, handover, Reinforcement Learning (RL), 

SARSA Learning, Deep Q Network (DQN), Markov Decision Process (MDP), Python. 
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Chapter 1 Introduction 

This chapter first introduces the architectures of 3G, 4G and 5G networks as well as basic 

concepts of Cloud Computing, Fog Computing, Edge Computing (EC) and Multi-access Edge 

Computing (MEC), followed by the problem statement, research questions, research scope, 

methodology and structure of this master thesis. 

1.1 Context  

In the context of this master thesis, only telecom networks are considered, including 3G, 4G 

and 5G network, and 5G network is the main concern. Details on 5G networks will be 

introduced later in Chapter 2. This section gives a brief introduction on the architecture of 

3GPP standardized 3G, 4G and 5G networks as well as explanations to some terminology 

which will be mentioned frequently in the remainder of this master thesis. 

A. 3G network architecture 

Figure 1.1 gives an illustration on the 3GPP-defined 3G network architecture. 

 

 
Figure 1.1: 3G network architecture [22]. 

 

A 3G network consists of three components: 

1. User Equipment (UE): A UE is assigned to a single user of the telecom network and it 

is used by the user to access the services provided by the network. A UE contains two 

parts: 

i. Mobile Equipment (ME): ME is a radio terminal and it connects the user to 

base stations (NodeB) via radio connections. 
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ii. UMTS Subscriber Identity Module (USIM): USIM is an application in the 

Universal Integrated Circuit Card (UICC), and USIM is used to identify and 

authenticate a subscriber on mobile telephony device (e.g. cellphone) and to 

store and provide information needed by the subscriber to access the mobile 

network. 

2. UMTS Terrestrial Radio Access Network (UTRAN): UTRAN handles cell-level mobility. 

It contains two parts: 

i. Base stations (NodeB): A NodeB facilitates wireless communications between 

UEs and networks. A NodeB is responsible for transmissions and receptions 

of signals, encrypting and decrypting communications, amplifying and 

combing signals, etc. 

ii. Radio Network Controllers (RNC): An RNC is a single point of UTRAN to access 

the core network and it is the aggregation point for a group of NodeBs. An 

RNC controls the NodeBs that are connected to it, and it is responsible for 

radio resource management, mobility management functions and user data 

encryption. 

3. Core network (CN): A Core network has gateways to external networks, and it is 

responsible for handovers/relocations and location management. There are several 

functional entities in a 3G core network and Figure 1.1 shows some of the most 

important ones. Home Location Register (HLR) stores subscriber data, subscriber 

state and location data of every subscriber of the relevant Public Land Mobile 

Network (PLMN). A Mobile Switching Center (MSC) holds subscriber data and state. 

A subscriber of the 3G network is connected to an MSC, and the MSC is responsible 

for setting up and releasing end to end connections between the subscriber and 

external networks. Besides this, the MSC handles mobility and call handovers. A 

Gateway MSC (GMSC) is responsible for terminating call handling and it does not hold 

subscriber data. A GMSC can determine which MSC a called subscriber is currently 

located at and route the terminating call towards that MSC. A Serving GPRS Support 

Node (SGSN) is responsible for the delivery of data packets from/towards the 

subscribers within its serving area including packet routing, transfer mobility 

management, authentication and charging. Gateway GPRS Supporting Node (GGSN) 

is the interface between the core network and external packet-switched data 

networks, and it provides connections to these external data networks. 

B. 4G network architecture 

Figure 1.2 shows the architecture of a 4G network. 
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Figure 1.2: 4G network architecture [23]. 

 

A 4G network has a flat architecture in which the Evolved UMTS Terrestrial Radio Access 

Network (E-UTRAN) does not contain RNCs. The eNodeBs (eNB) are base stations in a 4G 

network, which connect to UEs via a radio interface E-UTRAN Uu and connect the E-UTRAN 

to the Enhanced Packet Core (EPC, the core network in 4G network) via S1 interfaces.  

In the EPC the Mobility Management Entity (MME) keeps track of UEs which are 

registered on the LTE network. The MME is the main control element in the Enhanced Packet 

Core (EPC) and it is in charge of authentication, security, mobility management, etc. A Serving 

Gateway (S-Gw) serves a group of eNodeBs for user plane data and it is the local mobility 

anchor for mobile UEs. In addition, a S-Gw is also responsible for setting up and tearing down 

sessions for particular UEs under instructions from the MME. A Packet Data Network Gateway 

(P-Gw) provides access to external data networks (e.g. Internet) and collects and reports 

charging information. It is also the highest mobility anchor in the EPC. Policy and Charging 

Rules Function (PCRF) provides the P-Gw with relevant charging and traffic control/routing 

rules. Home Subscription Server (HSS) is the subscription data repository that storing 

information like subscriber data, subscriber current location information, etc. Unlike the HLR 

in the 3G network, the HSS is also responsible for subscriber authentication. 

C. 5G network architecture 

The architecture of a 5G network is conceptually illustrated in Figure 1.3. Furthermore, the 

NodeB in a 5G network, the next generation NodeB (gNodeB), is split into three functional 

entities – Antenna and Remote Radio Unit (RRU), Distributed Baseband Unit (DU) and 

Centralized Baseband Unit (CU). The core network architecture in a 5G network is service-

based, which supports flexible procedures to efficiently expose and consume services. For 

simple service or information requests, a request-response model can be used, while for 

long-living processes, a subscribe-notify model is supported [5]. Each network function has 

the authorization to access each other’s services without knowing the actual configuration 
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and processing procedures. The Access and Mobility management Function (AMF) handles 

mobility and the Session Management Function (SMF) handles the 

establishment/release/management of PDU Sessions. A PDU Session is a logical connection 

between the UE and data network and UE receives services through a PDU Session. User 

plane function (UPF) is the termination point for PDU Sessions and it interfaces with external 

data networks. Functionality of the UPF in 5G network is similar to the combination of the S-

Gw and the P-Gw in EPC. Unified Data Management (UDM) stores subscription data, and 

network functions like AMF, SMF, PCF, etc. can retrieve subscriber data and context from the 

UDM if authorized. A Policy Control Function (PCF) is responsible for governing the network 

behavior, it makes policy decisions based on subscription data in the UDM and maybe 

instructions from other network functions, and then provides policy rules to other network 

functions like the SMF to enforce these rules. 

 

 
Figure 1.3: 5G network architecture 

D. Functional entities in 3G, 4G and 5G networks 

In different generations of telecom network, similar network functionalities may be handled 

by different network functional entities. Table 1.1 is a comparison table of (part of) network 

entities in 3G, 4G and 5G radio access networks and core networks. A complete table can be 

found in Appendix F.  

 

Table 1.1: Comparison table of functional entities in 3G, 4G and 5G networks 

 3G 4G 5G 

Core 

Network 

Home 

Location 

Register (HLR) 

Home Subscriber Server 

(HSS) 
Unified Data Management 

(UDM) 

 Serving GPRS 

Support Node 

Mobility Management Entity 

(MME) Access and Mobility 
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(SGSN) Management Function 

(AMF) 

Session Management 

Function (SMF) 

Gateway GPRS 

Support Node 

(GGSN) 

Serving Gateway (S-Gw) 

User Plane Function (UPF) 

Packet Data Network 

Gateway (P-Gw) 
Session Management 

Function (SMF) 

Mobile Service 

Switching 

Center (MSC) 

*Related to 

circuit-switched 

networks only 

N/A N/A 

Gateway MSC 

(GMSC) 

*Related to 

circuit-switched 

networks only 

N/A N/A 

N/A 
Policy and Charging Rules 

Function (PCRF) 

Policy Control Function 

(PCF) 

Radio 

Access 

Network 

NodeB (NB) 

E-UTRAN NodeB (eNB) 

Next 

Generation 

NodeB 

(gNB) 

Distributed 

Unit 

(gNB-DU) 

Radio Network 

Controller 

(RNC) 

Centralized 

Unit 

(gNB-CU) 

 3G 4G 5G 

Core 

Network 

Home 

Location 

Register (HLR) 

Home Subscriber Server 

(HSS) 
Unified Data Management 

(UDM) 

 Serving GPRS 

Support Node 

(SGSN) 

Mobility Management Entity 

(MME) 

Access and Mobility 

Management Function 

(AMF) 
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Session Management 

Function (SMF) 

Gateway GPRS 

Support Node 

(GGSN) 

Serving Gateway (S-Gw) 

User Plane Function (UPF) 

Packet Data Network 

Gateway (P-Gw) 
Session Management 

Function (SMF) 

Mobile service 

Switching 

Center (MSC) 

*Related to 

circuit-switched 

networks only 

N/A N/A 

Gateway MSC 

(GMSC) 

*Related to 

circuit-switched 

networks only 

N/A N/A 

N/A 
Policy and Charging Rules 

Function (PCRF) 

Policy Control Function 

(PCF) 

Radio 

Access 

Network 

NodeB (NB) 

E-UTRAN NodeB (eNB) 

Next 

Generation 

NodeB 

(gNB) 

Distributed 

Unit 

(gNB-DU) 

Radio Network 

Controller 

(RNC) 

Centralized 

Unit 

(gNB-CU) 

 

E. Terminology 

Service latency: In the context of this project, the only latency considered is the service 

latency between a UE who is consuming this service and entity that is providing this service 

to this UE. The service latency mainly comes from the processing time of all the network 

functional elements between the UE and the serving entity as well as the processing time in 

the serving entity. Therefore, if a serving entity is closer to the base station, it can guarantee 

smaller service latency, since there are fewer network elements in between.  

Relocation: When a mobile UE is moving, its location changes at the same time. In some 
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cases, a UE may move out of the serving area of its current serving entity (e.g. host, server, 

base station, local cloud, etc.) which means that this entity can no longer provide services to 

this UE anymore. To maintain the service continuity, a new entity should take over the 

responsibility to serve this UE, and this process of switching from the current serving entity 

to a new serving entity is called a relocation.  

Logical location: The topology location where a host/server is placed is called the logical 

location of this host/server. Hosts/servers in different logical locations have different 

properties including service latency, since nowadays the processing time of functional 

entities between the UE and the host/server is one of the major sources of service latency. 

However, in the context of this thesis, a host/server is always located inside an external data 

network. Therefore, logical location of every host/server is on the network side of the UPF, 

and logical location is out of consideration in this master thesis.  

Physical location: The actual place where a host/server is deployed in the telecom 

network is called the physical location of this host/server. Today, the transmission time on 

optical fibers is usually millisecond level or even lower, depending on the actual length of the 

cable. Experiments and calculations show that transferring a packet from the very southern 

part of the Netherlands to the very northern part of the Netherlands via optical fibers takes 

only 2 milliseconds (See more in Appendix D). Despite the low transmission delay on optical 

fiber, physical location is still crucial because one of the major sources of latency is the data 

transformation time. If the host/server and gNodeB are located physically close to each other, 

the number of transmission nodes (e.g. IP routers) in between will be reduced and the total 

data transformation time will decrease at the same time. The physical location of a 

host/server is one of the main concerns of this master thesis. For simplicity reason, it is 

referred to as “location” in the reminder of this master thesis.  

1.2 Edge Computing, Cloud Computing, Fog Computing and 

Multi-access Edge Computing 

In the coming 5G era, requirements on latency between the UE and the computing/storage 

platform are getting more and more stringent. Since ultra-low latency has become one of the 

main characteristics of 5G technology, various applications relying on low latency will appear 

in the market. Traditional cloud computing may not be able to fulfill these new latency 

requirements, hence, a new concept – edge computing, is now getting more and more 

attention. 
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Figure 1.4: Edge computing 

 

Edge computing is a distributed computing framework in which data processing is 

executed close to the edge – where data is produced [44]. Edge computing places data 

storage, processing and computing capabilities closer to end devices that produce the data, 

as illustrated in Figure 1.4, mainly for reducing the latency between the UE and the serving 

application as well as the required bandwidth towards the core network/cloud and offloading 

end devices from compute-intensive applications. Edge computing originates from Content 

Delivery Networks (CDN) that provide video content to users from edge servers close to them 

[25]. These edge servers gradually developed and in early 2000s, edge servers started to host 

applications [26], which finally resulting in a new distributed framework which is now known 

as edge computing. Another promotive factor is the conflict between the increasing amount 

of data to be processed in a centralized data center and the limited amount of resources in 

the data center. As the number of devices at the network edge keeps growing, centralized 

data centers are no longer sufficient to guarantee the required latencies and transfer rates. 

With the help of edge computing, high requirements on service quality (e.g. ultra-low service 

latency) which cannot be fulfilled by using cloud computing, can be satisfied. 

Another concept that is similar to edge computing is fog computing. Fog computing, as 

defined by the Open Fog Consortium [17], is “a system-level horizontal architecture that 

distributes resources and services of computing, storage, control, and networking anywhere 

along the continuum from Cloud to Things” [12]. Fog computing describes a system-level 

architecture that distributes resources from the Cloud to Things, whereas edge computing 

typically concentrates on providing computing, processing and caching services to end-users 

at places that are physically close to them [13].  

Multi-access Edge Computing (MEC) is a concept defined by ETSI [1]. In general, MEC is a 

network architecture concept that enables cloud computing capabilities and an IT service 

environment at the edge of a telecom network [2]. Initially, the Mobile community has been 

the driver behind the ideation and standardization of edge computing. Currently, edge 

computing is no longer exclusively related to cellular networks, as the 3GPP functional 

architecture connects Fixed Access Networks (FAN) and Radio Access Networks (RAN). Similar 

to edge computing, MEC also reduce service latency and bandwidth usage by placing the 

MEC hosts, where the user data is processed, close to the end-users (UEs). MEC hosts can be 

collocated with base stations and other cellular nodes that are closer to the network edge, 
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like base stations and Radio Network Controllers (RNC), while MEC applications are properly 

installed in these MEC hosts. MEC plays an important role in 5G, because it can help to 

provide a service environment that is characterized by ultra-low latency as well as real-time 

access to radio network information, which are both main characteristics of 5G technology.  

Possible locations of MEC servers in a 3G/LTE network have been suggested by the ETSI 

Industrial Specification Group (ISG): A MEC server can be deployed either at 

- the LTE eNodeB site,  

- the 3G Radio Network Controller (RNC) site [3],  

- or co-located with Serving Gateway (S-Gw)/PDN Gateway (P-Gw) [24]. 

In a 5G network, however, with Network Function Virtualization (NFV), MEC services are 

provided by virtualized functions, or MEC application instances specifically in the context of 

MEC, and virtualizations can bring more flexibilities to MEC implementation and deployment. 

More details will be introduced in Chapter 2. 

There are basically two different classes of MEC. The first one is in-line processing, 

whereby MEC performs data processing on the path between UE and the remote end-point 

(e.g. an application in an external network); the other class of MEC is end-point processing, 

whereby the MEC application itself is the actual end-point that the UE wants to reach for a 

particular service. 

According to the experts in the interviews (for more information on the interviews, please 

see Appendix D), at the initial stage, considering the high cost of software maintenance for 

the operator, the number of MEC hosts is limited. Under this situation, the selection of target 

MEC host can be trivial. However, in the future, the software maintenance expense can be 

reduced by new technologies, therefore, the number of MEC hosts can be significantly 

increased to provide much better services. In the context of this master thesis, the number 

of MEC hosts is not limited because MEC is a promising technology, and the number of MEC 

hosts needed will experience a sharp increase in the near future. 

1.3 Problem statement 

To save investments and to enhance service quality (e.g. service latency, service continuity), 

MEC hosts should be properly located. Since NFV enriches the options of MEC host location, 

determining which location is the optimal location for a MEC host is not a trivial problem. For 

example, if a MEC host is located at a higher level in the hierarchy of a telecom network, then 

it can serve more UEs; but in the meantime, the latency might increase due to the larger 

number of transmission nodes and network functional entities between this MEC host and a 

UE. However, if a MEC host is located at a lower-hierarchical level to reduce service latency, 

its serving area will shrink at the same time, implying more frequent handovers/relocations. 

How to optimally locate a MEC node (e.g. MEC server, MEC host, MEC application instance) 

in a telecom network is an optimization-related problem that has not yet been explored, and 

this master thesis aims to find reasonable approaches to fill this gap. To solve this problem, 

the first step is to determine the aspects to be optimized, which is addressed in research 

question 2. After the first step is done, algorithms will be designed to find optimal locations 

for MEC hosts and MEC applications, which is addressed in research question 3. 

For mobile end-users, their mobilities may bring up MEC service continuity problems. For 
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example, if one self-driving vehicle is moving on the road, receiving MEC services from its 

current MEC host 𝐴 , and it may move out of the serving area of 𝐴  after some time. To 

maintain the MEC services of this vehicle, another MEC host 𝐵  should take over the 

responsibility for serving this vehicle. To achieve this, a relocation is needed to transfer user 

context from MEC host 𝐴 to MEC host 𝐵, and MEC host 𝐵 is called the target MEC host of 

this relocation. In a telecom network, there may exist multiple MEC hosts that can be the 

target MEC host of a relocation. Therefore, it is necessary to determine which MEC host is 

the most suitable one.  

How to find the optimal target MEC host of a relocation is an optimization problem that 

has not yet been explored, and it is another research gap that this master thesis focuses on. 

Algorithms will be designed to decide on the optimal target MEC host of a relocation, which 

is addressed in research question 4. 

1.4 Research questions 

There are 4 research questions in this master thesis project: 

1. What is Edge Computing and what is the relevance of different types of computing 

for telecom operators? 

2. What aspects of Edge Computing should be considered for optimization in the 

context of 5G? 

3. Devise an algorithm to find the optimal location of MEC hosts and the optimal 

location (MEC host) of a MEC application. 

To solve this, the following sub-questions are identified: 

a) Determine which aspects of MEC applications need to be considered in this 

master thesis. 

b) Transform the aspects chosen in sub-question a) into a set of parameters. 

c) Locate the MEC hosts as well as MEC applications properly based on these 

parameters. 

d) How to test the performance of the algorithm? 

4. Devise an algorithm to dynamically find the optimal location of a MEC application 

processing instance for a UE (can be all kinds of equipment mounted in vehicles, 

machines, cellphones, etc.). 

To solve this, the following sub-questions are identified: 

a) What parameters of the possible target MEC hosts should be taken into 

consideration? 

b) How to choose the target MEC host based on these parameters? 

c) What information can be provided as feedback after a relocation to estimate 

the quality of this relocation and the behavior of the target MEC host? How to 

process/utilize the feedback information? 

d) How to test the performance of the algorithm? 
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1.5 Research Scope  

In this master thesis, the considered MEC application users can be categorized into two 

categories which are described below: 

1. Vehicle-to-everything (V2X) communications for self-driving vehicles. This type of UEs 

have high requirements on the application instance/UE context mobility service and 

the relocation mechanism.  

Theoretically, a large vehicle might be able to run and hold a MEC host itself and 

possibly has the ability to do the relevant signaling and data processing for other 

vehicles in its vicinity. Although using these vehicles to serve other MEC service users 

might significantly reduce the service latency, the high mobility of the MEC host 

located inside this serving vehicle may result in other problems. For instance, for a 

vehicle that moves at a similar speed as the serving vehicle, connecting to this serving 

vehicle can be a good way to reduce the number of relocations, while for the other 

vehicles, connecting to this moving MEC host may result in more relocations. 

Therefore, considering these vehicles as potential MEC hosts to serve UEs will 

significantly increase the complexity of this master thesis, hence, in this thesis all the 

MEC hosts considered are stationary MEC hosts whose locations are fixed.  

2. Data caching and instant data processing for end-users on moving devices. One typical 

example is an end-user on a high-speed vehicle watching on-line videos or playing 

video games using a cellphone. For these kinds of applications/services, MEC is also 

important due to their requirements on instant interactions between the UEs, real-

time user data processing and the fluent, high quality data stream between the UE 

and the server that provides the video stream. Compared to self-driving vehicles, the 

MEC service continuity for end-users in this category is less crucial, therefore, their 

mobility requirements can be less stringent.  

Security and privacy aspects will not be considered in this master thesis. The 3GPP-defined 

5G architecture itself contains several security-related designs already. For example, if the 

MEC platform/MEC orchestrator, working as an Application Function (AF), is not trusted and 

authorized, it will not directly interact with the Policy Control Function (PCF) but 

communicate with the Network Exposure Function (NEF) instead. 

1.6 Methodology 

Literature review and paper study are used throughout the entire master thesis. Research 

questions 1 and 2 especially rely on literature review since reading standardizations and 

white papers can help understand the meaning of relevant terminology as well as the basic 

ideas and usages of edge computing and MEC. Apart from that, greedy algorithms, heuristic 

algorithms, Markov Decision Process (MDP) and Reinforcement Learning (RL) are used to 

solve research questions 3 and 4, which will be further introduced in chapters 3, 4 and 5.  
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1.7 Structure of the thesis 

Chapter 2 introduces some basic knowledge about 5G networks, MEC and MEC deployment 

in 5G networks. In Chapter 2 the research questions 1 and 2 are answered. Chapter 3 solves 

research question 3 and its sub-questions, introduces the details and technology background 

of all the designed algorithms, and shows, compares and analyzes the performance of these 

algorithms. Chapter 4 solves research question 4 and its sub-questions and introduces the 

details and technology background of all the designed algorithms. Chapter 5 gives the 

background introduction on the +31 Network in Ericsson, Rijen and shows the measurement 

results measured from the +31 Network. In Chapter 5, the performance of the algorithms 

designed in Chapter 4 are tested via simulations and the simulation tools and settings are 

introduced. Simulation outcomes are shown, compared and analyzed. Chapter 6 gives the 

overall conclusions of this master thesis and recommendations for potential future related 

work.



Optimizing Edge Computing in 5G Networks 

Multi-access Edge Computing in the context of 5G  13 

Chapter 2 Multi-access Edge Computing in 

the context of 5G 

In this chapter, background information on 5G network is provided, including 5G network 

architecture, network functional entities and reference points. Apart from that, MEC system 

architecture, MEC entities and reference points are introduced, followed by the knowledge 

of MEC deployment in a 5G network, MEC-related UE mobility management and MEC 

lifecycle management.  

2.1 5G network architecture 

A 5G system, according to 3GPP standardization, consists of a 5G network and 5G User 

Equipment (UE) [4], and a 5G network contains a 5G Access Network (5G AN) and a 5G Core 

Network (5GC). A 5G AN is an access network comprising a Next Generation Radio Access 

Network (NG-RAN) and/or a non-3GPP Access Network (AN) connecting to a 5GC [4]. A NG-

RAN consists of base stations, which are called Next Generation NodeB (gNodeB, or gNB) and 

Next Generation E-UTRAN NodeB (ng-eNB). 

Specified by 3GPP in [4], the 5G network architecture is shown in Figure 2.1, and Figure 

2.2 depicts the 3GPP [16] architecture of a 5G RAN. 

At the highest system level, the 3GPP architecture contains 10 different Network 

Functions (NF). A network function can be realized in: 

- a network element on dedicated hardware,  

- an application instance running on dedicated hardware or  

- a virtualized network function instantiated on an appropriate platform [4].  

5G network architecture is a Service-Based Architecture (SBA), where a network function can 

provide services to other network functions or consume services other network functions 

provide. In this way, network functions communicate with each other, and the inner workings 

of one network function is a black box to the others. All the available services are registered 

in the Network Repository Function (NRF); if an authorized function needs to use a certain 

service, it can directly interact with the service provider, another network function, or gain 

the access towards the service via the Network Exposure Function (NEF). 

However, untrusted entities, mainly located outside the 5G core network, cannot access 

the services by interacting with network functions directly. Instead, external, untrusted 

entities access services provided in 5GC via the NEF.   

AMF, or Access and Mobility management Function, is responsible for registration 

management, connection management, reachability management, mobility management, 

access management, authorization and security-related management [4]. Besides, AMF also 

allows subscriptions of notifications regarding mobility events [5]. 

SMF is the Session Management Function. As mentioned in its name, SMF is responsible 

for Protocol Data Unit (PDU) Session (PDU Session) establishment, modification and release.  

Unified Data Management Function (UDM) is for storing and managing subscription and 



Optimizing Edge Computing in 5G Networks 

Multi-access Edge Computing in the context of 5G  14 

user data. Authentication Server Function (AUSF) is used for authentication. 

Network Exposure Function (NEF) is a centralized service exposure point, and it is 

responsible for authorizing access requests from outside the network. 

Policy Control Function (PCF) handles policies and rules by interacting with subscription 

data and user context provided by the UDM as well as instructions from Network Exposure 

Function (NEF) and/or Application Functions (AF). 

Network Slice Selection Function (NSSF) helps the UE in the network with finding proper 

network slice instance, and according to the slides that the UE has access to, an AMF is 

selected to serve the UE, which may be different from the one that is previously selected by 

the access network to receive the registration request from the UE. If the newly selected AMF 

is different from the old one, the UE will be handed off to the new AMF. 

A User Plane Function (UPF) is the end-point of the PDU Session and forms the gateway 

to data networks. It plays an important role in MEC since it relies on UPFs to route the desired 

traffic towards the MEC applications. Both the MEC Orchestrator (MEO) at superior system 

level and the MEC platform on the host level can act as an Application Function (AF) and 

interfere the traffic steering rules configuration. If the AF is authorized, it will directly 

communicate with the PCF to manipulate traffic rules configuration; otherwise the AF will 

interact with the NEF, and the NEF will instruct the PCF to create rules based on the 

requirements from MEO. The PCF will then send the traffic rules to the relevant SMF and the 

SMF will instruct the UPF to do traffic steering accordingly. 

  
Figure 2.1: 3GPP 5G service-based architecture [4]. 
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Figure 2.2: Overall NG-RAN architecture [28]. 
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Figure 2.2 shows two types of NG-RAN nodes: Next Generation NodeB (gNB) and Next 

Generation E-UTRAN NodeB (ng-eNB). The gNB provides the New Radio (NR) user plane and 

control plane protocol terminations towards the UE, while the ng-eNB provides the Evolved 

UMTS Terrestrial Radio Access (E-UTRA) user plane and control plane protocol terminations 

towards the UE. The gNBs and ng-eNBs are responsible for radio resource management (e.g. 

radio bearer control, radio admission control, connection mobility control, dynamic 

allocation of resources to UEs in both uplink and downlink), routing User Plane (UP) data 

towards UPF(s) and Control Plane (CP) data towards AMF, connection setup and release, 

measurement and measurement reporting configuration for mobility and scheduling, QoS 

flow management, etc. 

 

Figure 2.3: Overall architecture of a gNB. 

 

The concept shown in Figure 2.3 is the separation of the control plane and the user plane 

inside a gNodeB. A Next Generation NodeB Centralized Unit Control Plane (gNB-CU-CP) can 

control one or more Next Generation NodeB Centralized Unit User Planes (gNB-CU-UP). A 

gNB-DU can be controlled by only one gNB-CU-CP but can connect to one or more gNB-CU-

UPs. With network virtualization, gNB-CU-UPs can be located anywhere with required 

hardware resources available, for example, a gNB-CU-CP can be located physically close to a 

gNB-DU or an UPF. 

Normally, which gNB-CU-CP controls which gNB-DUs is determined by the telecom 

operator. When a UE wants to establish a PDU Session, it will first send a request to the gNB-

DU which it is connected to, and this gNB-DU will send another request to its corresponding 

gNB-CU-CP, then the gNB-CU-CP will find a suitable gNB-CU-UP to set up the bearer context. 
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2.2 MEC system architecture 

Figure 2.4 illustrates the framework of MEC. Basically, one MEC system can be divided into 

three different levels [7]: MEC system level, MEC host level and MEC nework level. MEC host 

level consists of MEC hosts and a MEC host manager, which is mainly responsible for MEC 

application lifecycle management, MEC platform management, virtualization infrastructure 

management, etc. At superior MEC system level, the Multi-access Edge Orchestrator (MEO) 

has an overview of the entire MEC system. 

 

Figure 2.4: Multi-access edge computing framework [7] 

 

Figure 2.5 shows the reference architecture of MEC. There are three types of reference 

points in the MEC architecture: Mp reference points represent reference points that are 

relevant to the MEC platform functionalities, Mx reference points are the reference points 

that connect the external entities to MEC and Mm reference points are management 

reference points. 
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Figure 2.5: Multi-access edge computing reference architecture [7] 

A. Functional elements 

In this section, several important functional elements will be further introduced [7]: 

1. MEC host: A MEC host consists of a MEC platform, a virtualization infrastructure and 

several MEC applications. The virtualization infrastructure contains a data plane, 

which routes traffic based on traffic rules received from the MEC platform. 

2. MEC platform: A MEC platform enables MEC applications to discover, advertise, 

provide and consume MEC services. If supported, MEC services can be available 

across MEC platforms. A MEC platform receives traffic rules from the MEPM, from 

MEC applications and from MEC services, and it instructs the data plane to route 

traffic accordingly.  

3. MEC Platform Manager (MEPM): The MEPM manages MEC application lifecycles, 

rules and requirements. In addition, the MEPM is also responsible for managing the 

application rules and requirements including service authorizations, traffic rules, 

resolving conflicts, etc. 

4. Virtualization Infrastructure Manager (VIM): The VIM is responsible for allocating, 

managing and releasing virtualized resources (e.g. computing resources, storage 

resources and networking resources). The VIM also collects performance and fault 

information about the virtualized resources and reports to the MEPM for further 

processing.  

5. MEC Orchestrator (MEO): The MEO maintains an overall view of the entire MEC 

system, including available resources, current available MEC services, deployed MEC 

hosts, topology information, etc. The MEO is also responsible for adding new 

application packages to the system and recording all the on-boarded packages. 

Besides, the MEO triggers MEC application instantiation and termination, and it 

selects suitable MEC hosts for MEC application instantiations. When relocations are 
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supported, the MEO will trigger relocations if needed. 

6. Operations Support System (OSS): The OSS receives MEC application instantiation 

and termination requests from external parties and UE applications, and decides on 

the granting of these requests. The granted requests are forwarded to MEO for 

further processing. 

7. Customer Facing Service portal (CFS portal): A CFS portal is used by third-party 

customers of operators for selecting and ordering a set of MEC applications they 

need and for receiving further service-level information. 

B. Reference points 

Reference points define conceptual points of information exchange between non-

overlapping functional entities. A reference point becomes an interface when the connected 

functional entities are embodied in separate pieces of equipment [27]. In this section, the 

main reference points will be introduced in more details, information on reference points 

which are not mentioned below, so far as MEC is concerned, can be found in [7]: 

1. Mx2: This reference point connects the MEC system and external UEs. UEs can use 

this reference point to request the MEC system to run a MEC application, or to move 

MEC applications in/out of the MEC system. 

2. Mp1: This reference point connects a MEC application and the MEC platform. Mp1 

is used by a MEC application to provide or consume other MEC services.  

3. Mp2: This reference point connects the data plane and the MEC platform. MEC 

platform uses it to provide the data plane with traffic routing rules. 

4. Mp3: This reference point connects two different MEC platforms, and these two MEC 

platforms can belong to different MEC systems if supported. Connecting two MEC 

platforms in two different MEC systems via Mp3 can facilitate coordination between 

MEC systems. 

5. Mm1: This reference point connects the OSS and the MEO. Mm1 is mainly used for 

triggering the instantiation and termination of MEC applications.  

6. Mm3: This reference point connects the MEO and the MEPM. Mm3 is used to 

perform MEC application lifecycle management (LCM), MEC application rules & 

requirements management and MEC services tracking. 

7. Mm4: This reference point connects the MEO and the VIM. Mm4 is used to track 

available resources, manage application images and other virtualized resources 

related management. 

8. Mm6: This reference point connects the MEPM and the VIM. Mm6 is used to manage 

virtualized resources in the MEC system. 

9. Mm8: This reference point connects a User Application LCM Proxy (UALCMP) and the 

OSS. Mm8 is used to handle requests of running MEC applications in the MEC system 

from external UE applications (device applications). 

10. Mm9: This reference point connects a UALCMP and the MEO. Unlike reference point 

Mm8, Mm9 is used for managing MEC applications which are requested by UE 

applications (device applications). 
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2.3 MEC system deployed in 5G network 

A. Overall Introduction 

Figure 2.6 shows one possible integrated deployment of MEC in 5G network. In [5], MEC is 

deployed in an external data network, and this data network is connected to the relevant 

UPFs via reference point N6. For a UE to access a MEC host, a PDU Session is established 

between the UE and one of the UPFs that connect to the MEC host. MEC user data is 

transferred via this PDU Session which ends at the UPF, and then the user data is routed to 

the external network where the MEC host is located. 

 

Figure 2.6: One example of integrated MEC deployment in 5G [5]. 

B. Access to MEC hosts 

In this section, how to establish a PDU Session is introduced. Before going into details about 

the signaling for PDU Session establishment, a new concept – Local Area Data Network (LADN) 

needs to be introduced. 

A LADN is a data network that is accessible by the UEs only in specific locations, that has 

a specific Data Network Name (DNN), and which availability is provided to the UE [29]. In this 

master thesis, one MEC host is always located in a LADN, and the location of a MEC host is 

equivalent to the location of its corresponding LADN. It is reasonable to deploy a MEC host 

in a LADN, because when the physical distance between a UE and its serving MEC host is too 

long to guarantee the required latency, even though the UE can still access this MEC host, the 

UE will should not be served by this MEC host anymore, which matches the property of the 

LADN. 

If the data network is not a local area data network, the basic procedures of PDU Session 
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establishment are shown in Figure 2.7. 

 

 
Figure 2.7: PDU Session establishment. 

 

 To establish a PDU Session for a UE, the following steps are needed [29], [30], [39]: 

1. The UE first sends a Non-Access Stratum (NAS) message containing a PDU Session 

Establishment Request, UE requested DNN, a new PDU Session ID generated by the 

UE, etc. via the N1 reference point to the AMF to request a PDU Session 

establishment.  

2. After the AMF receives the message, it handles everything related to connections or 

mobility management and picks a suitable SMF with the help of the NRF. The AMF 

provides UE location information to the NRF and then the NRF provides NF profile(s) 

of SMF instance(s) as well as the serving area of the SMF instance(s) to the AMF. 

After receiving the list of SMF instance(s), the AMF picks a suitable SMF instance. 

3. The AMF sends a Nsmf_PDUSession_CreateSMContext Request, including UE 

requested DNN, PDU Session ID, AMF ID, PDU Session Establishment Request, user 

location information, etc. to the selected SMF via the N11 reference point. 

4. The SMF sends the AMF a Nsmf_PDUSession_CreateSMContext Response, and in 

this response message, the SMF indicates whether it accepts to establish the PDU 

Session or not. 

5. If the SMF accepts to establish the PDU Session, it will select a UPF according to 

parameters and information such as dynamic load,UPF capacity , statistics or 

predictions for UPF load, UE location information, DNN, PDU Session type and so on. 

6. The SMF sends a Session Establishment Request to the selected UPF via the N4 

reference point, together with packet detection, enforcement and reporting rules to 
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be installed on the UPF for this PDU Session. 

7. The selected UPF acknowledges the request by sending a Session Establishment 

Response to the SMF via the N4 reference point. 

8. The SMF reports to the AMF for the successful session establishment. 

If the data network is a local area data network, a few more steps are needed [29].  

1. The UE provides LADN Information (i.e. LADN Service Area Information and LADN 

DNN) to the AMF. 

2. When receiving a PDU Session establishment request with the UE requested DNN, 

the AMF determines whether the requested DNN is configured as a LADN DNN or 

not. If the requested DNN points to a LADN, the AMF determines the UE’s presence 

in the requested LADN service area and forwards the result to the SMF. 

3. When receiving the session management request corresponding to a LADN, the SMF 

determines whether the UE is inside the LADN service area based on the indication 

(i.e. UE Presence in LADN service area) received. If the SMF does not receive the 

indication, the SMF will consider the UE to be outside the LADN service area, and the 

SMF shall then reject the PDU Session establishment request. 

C. Possible Locations of MEC hosts 

At the current stage, implementing and maintaining MEC hosts are expensive. Therefore, the 

total number of MEC hosts is small, in order to limit the Operations and Management (O&M) 

expenses from the telecom operators’ side (See more in Appendix D Interview 2). In this case, 

optimizing MEC application and MEC host deployments as well as MEC host re-selections is 

trivial. However, in the near future, technological advances such as network virtualization  

are expected to contribute to reducing O&M cost for telecom operators. By then, locations 

of UPFs are not limited to the core network anymore. Instead, UPFs can be virtualized and be 

placed at more locations in the telecom network, for example, close to gNB-CUs or gNB-DUs. 

If a MEC host is located further away from the network edge, the service latency will increase, 

but the serving area of this MEC host will expand at the same time, implying a decrease in 

the number of relocations experienced by UEs. This trade-off between service latency and 

number of relocations makes optimizing the deployment of MEC hosts and MEC applications 

as well as optimizing MEC host re-selection procedure non-trivial and this topic is further 

discussed in this master thesis.  
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Figure 2.8: Possible physical deployments of MEC host [5]. 

 

Four possible deployment scenarios suggested by ETSI are shown in Figure 2.8: 

1. MEC host and a User Plane Function (UPF) collocated with the base station. 

2. MEC host collocated with a transmission node (e.g. an advanced router), possibly with 

a local UPF. 

3. MEC host and a UPF collocated with a network aggregation point (e.g. a Metro Core). 

4. MEC host collocated with the UPF inside the core network. 

In scenarios 1, 3 and 4, a MEC host is always collocated with a UPF. When a MEC host is 

located outside the core network, a local UPF is always needed to steer traffic towards this 

MEC host. This UPF is dedicated to this MEC host, it is established for MEC only and as a 

consequence, this combination cannot be used as access to internet services in general. A 

UPF can connect to multiple gNB-CU-UPs controlled by different gNB-CU-CPs. When a UE 

requests to establish a PDU Session towards a UPF which interfaces with a data network 

where the required MEC host is located, the serving gNB-CU-CP of the UE will find a suitable 

gNB-CU-UP under its control to establish a user plane connection towards the UPF. 

In scenario 2, however, ETSI purposed that a MEC host is not necessarily located with a 

UPF, and a MEC host is not necessarily located inside an external data network as shown in 

Figure 2.8. This type of deployment can further decrease service latency because the logical 

location of a MEC host is moved from the network side of a UPF to somewhere in the access 

network. However, to make this deployment come true still requires further researches and 

investigations, because the routine of user data should always under the control of the core 

network, and currently traffic rules in 5G networks are enforced by UPFs only. 

In this master thesis, three different MEC host locations are considered:  

i. collocated with gNB-CU-UPs that are physically close to gNB-DUs;  

ii. collocated with integrated gNB-CU;  

iii. collocated with a UPF inside the 5G Core Network (5GC). 
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D. Traffic Steering 

The 5G network allows external AFs to provide traffic steering rules via the PCF or the NEF. 

For example, MEC Functional Elements (FE) can be considered as AFs and can manipulate 

traffic steering in the following ways: 

1. If the MEC FE (e.g. MEP) is considered trusted by the 5G core network, this MEC FE 

can directly interact with the PCF for traffic steering. The MEC FE first sends a request 

to the PCF, identifying the traffic to be steered to the MEC system. Then the PCF 

transforms the request into policies and provides traffic routing rules to the SMF. 

Upon the arrival of the new traffic rules, the SMF will try to identify the target UPF 

and start traffic rules configuration. 

2. If the MEC FE is not trusted by the 5G Core Network (CN), then it needs to configure 

desired traffic rules via the NEF.  

E. Capabilities Exposure 

The NEF is the functional entity in the 5GC that exposes capability information and available 

services to external entities (e.g. MEC FEs) for monitoring, provisioning, policy and charging. 

On example where the NEF is used is the Radio Network Information Service (RNIS) which is 

a service that provides radio network related information to MEC applications and to MEC 

platforms [9]. Normally, radio information needs to be routed via the core network to reach 

the subscribers of RNIS (e.g. MEC platforms, MEC applications). With the NEF and capacity 

exposure, RAN capabilities can be directly exposed to the MEC platform and reach MEC 

applications that subscribes to RNIS for further computing and processing. In this way, 

transmission latency as well as bandwidth consumption are reduced. Figure 2.9 depicts the 

capability exposure of the 5G network to the MEC system. 

 

Figure 2.9: Capability exposure [5]. 
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2.4 MEC application instance and/or UE context mobility 

UEs installed in vehicles and cellphones are expected to be predominantly mobile. When a 

UE is moving around, its serving site (i.e. antenna & RRU) keeps changing for maintaining a 

continuous radio connection. When the serving site of a UE changes, its serving MEC host 

may remain the same, thus no relocation is needed. Only when the UE moves out of the 

serving area of its current serving MEC host or the change of site results in the change of UPF, 

will a relocation be required in order to continue the MEC services.  

According to [20], two different types of MEC applications need to be considered: 

1. Dedicated MEC application: A MEC application instance is dedicated to a specific UE. 

When a UE moves to a new MEC host which is different from its current serving MEC 

host, its corresponding MEC application instance should be relocated to the new 

MEC host from its current serving MEC host. 

2. Shared MEC application: A MEC application instance serves multiple UEs. When a UE 

moves to a new MEC host which is different from its current serving MEC host, if the 

required MEC application has already been instantiated, then no new MEC 

application instance will be instantiated.  

Shared MEC applications can be further divided into two different types: 

i. Stateless MEC application: A stateless application is an application that 

does not memorize the service state or recorded data about UE for use in 

the next service session. 

ii. Stateful MEC application: An application that can record and store the state 

information which can be used to facilitate service continuity during the 

session transition. 

Especially for stateful MEC applications and dedicated MEC applications, the 

synchronization between the source and target MEC application instance as well as the user 

context transfer are of great importance. After a relocation is triggered, the user context 

should be copied to the target MEC application instance, after which the target MEC host is 

ready to serve the UE. In order to provide seamless services, the target MEC host should be 

ready when the UE moves out of the serving area of its current MEC host. Otherwise, the 

target MEC host needs to act as a replay point and forward user data towards the source MEC 

host for processing. In this scenario, user data transfer between the two MEC hosts increases 

service latency significantly. Therefore, this scenario is not suitable for UEs with stringent 

service latency requirement.  

The research on MEC application mobility by ETSI MEC ISG is on-going. Up to now, several 

possible procedures have been defined, including application mobility enablement, detection 

of User Equipment (UE) movement, validation of application mobility, user context transfer 

and/or application instance relocation, and post-processing of application relocation [5]. 

Figure 2.10 shows the basic idea of MEC application mobility. Traffic sent by a UE is 

transferred to relevant MEC application instance via a UPF. Due to the mobility of this UE, at 

some point of time, relocation will be necessary for the consistence of MEC service. If the 

relevant MEC application instance is dedicated, then it will move with the UE together to the 

new MEC host. If the MEC application instance is stateful, then the user context will be sent 
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to the new MEC host during a relocation.  

 
Figure 2.10: The principle of MEC application mobility [5]. 

 

Figure 2.11 precisely shows the relocation procedures: ①A UE moves to the coverage of 

a new site (antenna & RRU) and this new site starts to serve this UE. ②The current MEC host 

(source MEC host) of this UE detects this change, probably via Radio Network Information 

Service (RNIS) [9]. ③The source MEC host saves the current state for the UE if necessary, 

and sends a relocation request to the MEO. ④The MEO selects a MEC host for this UE and 

instructs the selected MEC host to instantiate a new MEC application instance if necessary. 

⑤The source MEC host sends the user context to the target MEC host; the source gNodeB 

sends all access signaling, session management signaling and payload signaling to the target 

gNodeB; the source RRU or the target gNB-DU sends all access signaling, session 

management signaling and payload signaling to the target RRU. ⑥If the source RRU and the 

target RRU are not connected to the same gNB-DU, then there will be a change in gNB-DU. 

⑦If the source gNB-DU and the target gNB-DU are not connected to the same gNB-CU, then 

there will be a change in gNB-CU. ⑧The MEO instructs the source MEC host to terminate 

the relevant MEC application instance if necessary. 

 
Figure 2.11: The basic procedures of MEC relocation [5]. 

 

To detect the UE mobility, two possible ways are mentioned in [5]: 

1. MEC functional entities (e.g. MEC platform) can subscribe to relevant event 
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notifications provided by the Session Management Function (SMF) or the Network 

Exposure Function (NEF).  

2. MEC platform can subscribe to the Radio Network Information provided by Radio 

Network Information Service (RNIS). By doing this, the MEC platform can notice the 

mobility of the UE when its serving cell changes. 

2.5 MEC Application Instance Lifecycle Management 

A. MEC application instance instantiation 

To instantiate a MEC application instance in the MEC system, nine steps shown in Figure 2.12 

are needed: 

 
Figure 2.12: MEC application instantiation sequence diagram [34]. 

 

1. The OSS sends an instantiate MEC application request to the MEO. 

2. The MEO then authorizes the request, selects the MEC host and sends an instantiate 

MEC application request to the corresponding MEPM. 

3. The MEPM receives the request and sends a resource allocation request to the VIM, 

together with storage, computing and network resource requirements as well as the 

MEC application image information. 

4. The VIM then allocates resources according to the request received from the MEPM. 

It instantiates the Virtual Machine (VM) in the Virtualization Infrastructure (VI), 
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installs the MEC application on the VM and runs the VM as well as the application 

instance. 

5. The MEPM sends a configuration request to the MEC Platform (MEP). Then start the 

MEC application start-up procedure.  

6. In the start-up procedure, the MEC platform can verify the authenticity of the MEC 

application by using an AA entity that contains the registration related information 

about the MEC application [38]. Then the MEC application sends a “MEC App is 

running” message to the MEP to indicate the success of the instantiation. By then 

the start-up procedure is completed, and the MEC application instance will send a 

service query and/or send a service registration request to the MEP to consume the 

MEC applications it requests and/or register the services it provides.  

7. After all the configurations in step 6 are completed, the MEP sends a configuration 

response to the MEPM. 

8. After the MEPM receives the configuration response, it sends an instantiate MEC 

application response to the MEO, including the information of the allocated 

resources for the MEC application instance.  

9. The MEO sends an instantiate application response to the OSS, including the results 

of this instantiation operation. If the MEC application is instantiated successfully, the 

MEO will also return the corresponding application instance ID to the OSS.  

B. MEC application instance termination 

The procedure to terminate a MEC application instance is shown in Figure 2.13.  
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Figure 2.13: MEC application instance termination sequence diagram [34]. 

 

1. The OSS sends a terminate application instance request to the MEO, together with 

the MEC application instance ID of the application instance to be terminated. 

2. The MEO authorizes the request and verifies the existence of the identified 

application instance. The MEO then sends a terminate application instance request 

to the MEPM. 

3. The MEPM sends the terminate application instance request to the relevant MEP. 

4. The MEP receives the terminate application instance request from the MEPM. If a 

graceful termination is requested and is supported by the MEC application to be 

terminated, then the MEP starts the graceful stop procedure: The MEP first sends an 

instance terminate notification to the MEC application instance and indicates the 

application instance a time interval for termination actions. Then the MEC 

application instance can do some application level actions (e.g. deregister the MEC 

services it provides) related to termination within the time interval indicated by the 

MEP. If the application level actions are finished or the time is up, MEP will continue 

to terminate the MEC application instance.  

5. The MEP sends a forward terminate application instance response to the MEPM. 

6. The MEPM sends a resource deletion request to the VIM for terminating the VM as 

well as releasing the allocated resources. 

7. The VIM releases the allocated resources according to the request it receives from 

the MEPM. Then it sends a resource deletion response to the MEPM. 
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8. After the MEPM receives the response, it sends a terminate application instance 

response to the MEO. 

9. The MEO sends a terminate application instance response to the OSS.  

2.6 Radio Network Information Service 

The Radio Network Information Service (RNIS) provides radio network information to MEC 

applications and MEC platforms (MEPs). The radio network information can be required and 

provided on the scale of a cell, a UE and a time period, etc. Typical radio network information 

includes [9]: 

1. information reflecting the current radio network conditions, 

2. Measurement information of the User Plane (UP), 

3. Changes on information about UEs. 

Some of the MEC services require real-time radio conditions for optimizing, monitoring, 

computing and other purposes. For example, the MEC service provided by the throughput 

guidance radio analytics MEC application, requires radio network information to compute the 

current throughput of the radio downlink interface, estimate the throughput in the next time 

instance accordingly and provide an indication towards the backend radio server. Another 

example is when a UE needs to maintain its MEC service continuity, radio network 

information will be required by the MEP for relocation optimization. 

RNIS consumers can send messages to the RNIS for requesting various types of radio 

network information. The three types of  information requests from RNIS consumers are 

listed below [9]: 

1. Request for Radio Access Bearer (RAB) information. A RNIS consumer such as MEC 

application or MEP sends a request to the RNIS with the MEC application instance ID 

requiring a cell level RAB information from the cells that are associated with the 

requested MEC application instance, and will get a response with the identifiers of 

all the relevant cells, identifiers of UEs in the cells and information about their 

Enhanced Packet System Radio Access Bearer (E-RAB). 

2. Request for PLMN information. A RNIS consumer sends a request for cell level PLMN 

information to the RNIS together with MEC application instance ID(s) and will receive 

a response with information about cells that are associated with the requested MEC 

application instance(s). 

3. Request for S1 bearer information. A RNIS consumer sends a request to RNIS 

requiring S1 bearer information, which can be used for optimizing relocation process 

and managing traffic rules. 

2.7 Relationships between Cloud Computing, Fog Computing 

and Edge Computing 

The relationship between cloud computing, fog computing and edge computing is discussed 
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in this section. 

Compared to cloud computing, both fog computing and edge computing move the 

computing power away from the central cloud. One of the main differences between fog 

computing and edge computing is the “destinations” of the computing power: fog computing 

moves the computing power as well as other intelligence to the Local Access Network (LAN), 

more precisely, a fog node or a gateway [15], while edge computing places the computing 

power in or physically close to the (local) devices that produce data [14]. Another difference 

between fog computing and edge computing is the architecture. Fog computing is 

hierarchical, fog nodes are distributed in several levels, and fog nodes in different levels have 

different intelligence and process different data, and edge computing simply distributes 

computing power to the network edge. Figure 2.14 shows the differences between cloud 

computing, fog computing and edge computing. 

 
Figure 2.14: Cloud computing vs fog computing vs edge computing [15]. 

2.8 Aspects of Edge Computing to be optimized in the context 

of 5G 

Optimization in the context of edge computing may, for example, aim at achieving the 

following results regarding:  

1. Shorter service latency, 

2. Fewer MEC service interruptions, 

3. Fewer relocations, 

4. Fewer MEC hosts needed, 

5. Higher resource efficiency, 

In this master thesis, the optimization goal of research question 3 is to minimize the 

number of relocations, to meet the requirements of each MEC application and to provide 

sufficient but not redundant resources to each MEC application, hence it focuses on 

optimization aspects 2, 3, 4 and 5. Research question 4, on the other hand, has the 

optimization goal of finding the MEC host that provides a UE the best service quality (e.g. 
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service latency, service continuity) during and after a relocation, hence it focuses on 

optimization aspects 1, 2 and 3. 

2.9 Summary 

In this chapter, context information on a 5G network and MEC are introduced. In addition, 

research questions 1 and 2 are answered: 

1. What is Edge Computing and what is the relevance of different types of computing for 

telecom operators? 

Edge Computing is a distributed computing framework which places data computing in 

proximity to the end devices that produce the data. The main differences between fog 

computing, cloud computing and edge computing are their architectures and the place where 

the data is processed.  

Cloud computing processes data in a centralized data center, and the latency as well as 

bandwidth usage between end-users and the data center increases rapidly with the number 

of end-users and data volume.  

Fog computing processes data at fog nodes closer to the network edge, and unlike cloud 

computing, fog computing has a hierarchical architecture and fog nodes are distributed in 

different levels. Fog nodes in different levels have different levels of intelligence.  

Edge computing processes data at the network edge, which is physically closer to the 

end-users than cloud computing and fog computing. Different from cloud computing and fog 

computing, edge computing has a distributed architecture. 

2. What aspects of Edge Computing should be considered for optimization in the context of 

5G? 

MEC host location, MEC application location, MEC service latency, number of relocations, 

time consumption of a relocation as well as resources-related aspects are in the scope of this 

master thesis. Additionally, to control the costs, the number of MEC hosts is also considered 

as an aspect of optimization. 

The above-mentioned aspects cannot be optimized at the same time. Therefore, number 

of relocations, MEC service latency and time consumption of a relocation form the 

optimization goals in research questions 3 and 4, while the others form the constraints. 
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Chapter 3 Optimizing the Locations of MEC 

Hosts and MEC Application Instances  

In this chapter, research question 3 is formulated into an optimization problem and an 

assignment to devise and assess algorithms that find the optimal location of MEC hosts and 

the optimal location of a MEC application. This optimization problem is divided into two sub-

problems. By solving the two sub-problems separately, the whole optimization problem is 

solved. Three greedy algorithms and two heuristic algorithms are designed to solve the two 

sub-problems, and their performance us tested and analyzed.  

3.1 System Model & Assumptions 

In order to answer research question 3, in this section a geographic service area and a 

directed Graph (in which unit-hosts are nodes) which models the geographic service area are 

proposed. Additionally, 17 related assumptions are inventoried.  

The geographic service area is equipped with a 5G network capable of providing MEC 

services to both vehicles and passengers. The size and location of this geographic service area 

are ignored, and one and only one straight road is in this geographic service area. The road 

has multiple lanes and its trajectory is known. This thesis’ research takes the following two 

combined use cases into account:  

1. Vehicles of which some are Connected Autonomous Vehicles (CAVs) may enter this 

geographic service area via the entrance of the road. 

2. Each vehicle is assumed to transport passengers of which some can be playing mobile 

games or watching videos while the vehicle is driving autonomously. 

 Within this geographic service area, there exist 𝑁 fixed sites (antenna & RRU) which can 

transfer messages between UEs and MEC hosts, and their radio coverages are known in 

advance. To model the geographic service area, a directed graph 𝐺  is derived from the 

above information. In addition, 7 assumptions on the geographic service area are made: 

1. The width of the road in this geographic service area is ignored, since the width of 

the road is negligible compared to the coverage radius of a site. Every UE in the 

geographic service area is a MEC user who only requires one MEC application. 

2. The temporal aspect is ignored, and UEs that enter this geographic service area in 

different entrances have no difference in the context of this master thesis. For 

simplicity reason, it is assumed that the road has only one entrance and one exit, and 

all the mobile UEs enter the geographic service area from the entrance of the road 

and leave from the exit. 

3. There are three different types of possible locations for MEC hosts considered in this 

master thesis [5]:  

- close to the gNB-CU-UP (e.g. collocated with gNB-CU-UPs which are physically close 
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to gNB-DUs),  

- close to the integrated gNB-CU (combined gNB-CU-UPs and gNB-CU-CP) and  

- close to the core network (e.g. located inside an external data network that is close 

to the core network or co-located with a UPF that is inside a 5GC).  

For simplicity reason, these three types of MEC host locations will be referred to as 

the three MEC host locations in the remainder of this thesis. 

4. Each site in the geographic service area is able to send/receive payload to/from UEs 

and MEC hosts in the three locations mentioned in assumption 3. 

5. Each site has a corresponding “unit-host” in each of the three locations in 

assumption 3. A unit-host is not a MEC host but a part of a MEC host. Each unit-host 

contains part of the resources of a MEC host and processes data or requests from 

the site it corresponds to. In other words, each unit-host only provides MEC services 

to UEs that are within the coverage area of its corresponding site. For simplicity 

reason, this relationship will be called “a unit-host only serves its corresponding site” 

in the remainder of this thesis. A unit-host is not a real entity like MEC host, instead, 

it is an intermediate outcome and will be finally grouped into a MEC host (probably) 

with other unit-hosts. A MEC host contains several unit-hosts, and the meaning of 

“contain” here is that, a MEC host has all the resources of these unit-hosts and serve 

all the UEs that are served by these unit-hosts. The reason why this new concept has 

been brought up is explained in section 3.2.D. 

6. All the unit-hosts have the same amount of computing/storage/processing resources, 

and the amount of computing, storage and processing resources in each unit-host is 

equal (𝑐𝑟𝑢𝑛𝑖𝑡 = 𝑠𝑟𝑢𝑛𝑖𝑡 = 𝑝𝑟𝑢𝑛𝑖𝑡). 

7. In the directed graph 𝐺, each node is a unit-host and two nodes are connected if 

their corresponding sites have overlapping coverage area. 

To determine the serving area as well as the location of each MEC host and to determine 

the MEC hosts where each MEC application is installed, the following 10 assumptions on MEC 

hosts and MEC applications are made:  

8. The closer the MEC host is located towards the core network, the larger the service 

latency is between itself and UEs. The closer the MEC host is located towards the 

core network, the larger number of sites that can be served by this MEC host. Here 

“serve a site” means providing MEC services to all the UEs that are currently within 

the coverage of this site. 

9. A MEC host consists of several unit-hosts. These unit-hosts are connected and are in 

the same location. The MEC host inherits all the resources in these unit-hosts, and it 

is in the same location as these unit-hosts. 

10. The serving coverage of a MEC host is the integrated serving coverage of all the unit-

hosts it contains. As long as a UE is in the serving coverage of a MEC host and this 

MEC host is able to serve this UE (i.e. the MEC host has enough resources to serve 

the UE and has the required MEC application installed), the UE can always establish 

a PDU Session towards the LADN where this MEC host resides with the 

corresponding DNN. In this sense, although a UE is connected to only one site at a 

time, there could be multiple MEC hosts that are able to serve it. 

11. MEC hosts in different locations have different upper limits (𝑁𝑈) of the number of 
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unit-hosts they may contain, which means that MEC hosts in different locations have 

different amount of available resources. MEC hosts in the same location have the 

same upper limit (𝑁𝑈). 

12. Every MEC host is deployed in an external LADN with a DNN and is connected to one 

or more UPF(s) via the N6 reference point. 

13. Only a handover that occurs between two different MEC hosts is considered as a 

relocation. 

14. Every MEC application has a specific requirement on MEC service latency. It is 

assumed that the location of a MEC host is the only factor that affects the service 

latency. Hence, the latency requirement of each MEC application can be transformed 

into a set of acceptable MEC host locations. 

15. Every MEC application has a certain sensitivity to MEC service relocations. Here 

sensitivity consists of two aspects. One aspect is the service continuity during a 

relocation. If a relocation of a MEC application is more likely to cause service 

interruptions, then this MEC application is called more sensitive to relocations, hence 

its sensitivity to relocations is higher. Another aspect is the impact of service 

interruptions, if a service interruption of a MEC application may have fatal 

consequences (e.g. self-driving vehicles related MEC applications), then this MEC 

application is more sensitive to relocations and has a higher sensitivity. The 

sensitivity to relocations of each MEC application will be called priority (𝑝𝑟𝑖𝑜𝑟) in the 

remainder of this thesis. 

16. Every MEC application instance requires a certain amount of computing, storage and 

processing resources to serve one UE. 

17. There are enough resources in the geographic service area to serve all the UEs. 

Figure 3.1 gives an example of a geographic service area considered in this master thesis. 

 
Figure 3.1: An example of a geographic service area. 
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For each site (e.g. site 𝐹) in the geographic service area, its location information, which 

is given as 𝑥, 𝑦 coordinates (e.g. (𝑥𝐹 , 𝑦𝐹)), as well as coverage radius 𝑟 (e.g. 𝑟𝐹) are known 

in advance. A UE that enters the geographic service area will first be served by one of the 

sites that cover the road entrance (e.g. site 𝐴, 𝐸). If a UE is served by one of the sites that 

cover the road exit (e.g. site 𝐷), it will be served by this site until it leaves the geographic 

serving area. Sites like site 𝐹 are unable to serve UEs on the road because its coverage circle 

(the green circle with center point site 𝐹) does not intersect with the road (straight, blue 

line). 

The properties of MEC hosts introduced in assumption 8 lead to a dilemma regarding 

the deployment of MEC hosts. If a MEC host is located far from the edge of the network and 

close to the core network, the service latency between UEs and the MEC host will significantly 

increase; if a MEC host is close to the edge of the network, the number of UEs it can serve 

will significantly decrease, implying an increase in the number of relocations.  

With the envisaged increase of MEC usage and the development of MEC applications, 

there will be more MEC services required by users/applications/devices. In this situation, the 

main driver of MEC is not latency but the availability of (enough) resources to serve the 

increasing number of MEC users (see more in Appendix D). To make sure that the network 

has enough resources in the worst situation in which the number of MEC users in the 

geographic service area reaches the maximum number, enough resources and enough MEC 

hosts should be provided. However, having a large number of MEC hosts can result in a large 

number of relocations which may significantly degrade the user experience. Therefore, an 

optimal deployment of MEC hosts and MEC applications needs to be determined in order to 

minimize the number of relocations while still meeting the resource requirements. 

3.2 Problem Formulation 

A. Problem Description 

Based on the assumptions above, research question 3 can be formulated as: given priority, 

estimated UE flow, possible locations and required computing/storage/processing resources 

of every MEC application, computing/storage/processing capacity of each unit-host as well 

as the location and coverage of each site in the geographic service area, which unit-hosts 

should be integrated as MEC hosts in each location and in which MEC hosts should the MEC 

applications be installed, so as to minimize the total number of relocations and to provide 

sufficient but not redundant resources? 

In the above problem description, three key points can be extracted:  

1. Optimization goal: Minimizing the total number of relocations 

2. Guarantee continuous services for every UE 

3. Reserve enough but not redundant resources for UEs of every MEC application. To 

achieve this, an extreme situation is considered. The extreme situation is that UEs 

are entering the geographic service area continuously, and at each time maximum 

number of UEs enters together. This maximum number of UEs can be estimated based 

on historical records (which types of UEs entered this area before and how many of 
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each type). Assume that all the UEs have the same, constant moving speed. Therefore, 

in this extreme situation, the number of UEs at any location on the road at any time 

is equal to the maximum number. The goal of the algorithm is to minimize the total 

number of relocations in this extreme situation, while still meeting the requirements 

on resources and service latency of each UE. 

B. Problem Formulation 

To minimize the total number of relocations, two steps need to be done: 

Step 1: Find sites that can provide continuous MEC service for UEs. Set 𝐸1 records all the 

unit-hosts that serve the sites that cover the entrance of the road, and set 𝐸2 

records all the unit-hosts that serve the sites that cover the exit of the road. 

Therefore, a UE will always get served by a unit-host which corresponds to one of 

the sites in 𝐸1 as soon as it enters the geographic service area, and get served 

by one of the sites in 𝐸2 when it leaves the area. To ensure service continuity, 

shortest paths between one node in 𝐸1  and another node in 𝐸2  in graph 𝐺 

need to be found. All the unit-hosts that belong to the same path are in the same 

location, and this location is also the location of this path. 

Step 2: After step 1 is done for every MEC application, find the approach to integrate unit-

hosts into MEC hosts and to minimize the number of relocations between these 

MEC hosts. 

All the paths in 𝐺 that are selected for MEC application 𝑘 can be denoted by the set 

{𝑃𝑙𝑙
𝑘(𝑛)}, ∀ 𝑙𝑙 ∈ 𝐿𝐿, ∀ 𝑛 ∈ {1, … , 𝑃𝑁𝑙𝑙(𝑘)} , while 𝑙𝑙  is the location of a path, 𝐿𝐿  is the set 

that contains all possible locations of a unit-host and 𝑃𝑁𝑙𝑙(𝑘) is the total number of selected 

paths in location 𝑙𝑙. The total path length selected for MEC application 𝑘 is 

(4.1) 

𝑃𝐿(𝑘) = ∑ ∑ 𝟏T ∙ 𝑃𝑙𝑙
𝑘(𝑛) ∙ 𝟏 

𝑃𝑁𝑙𝑙(𝑘)

𝑛=1𝑙𝑙∈𝐿𝐿

 (3.1) 

where 𝟏  represents an all-one vector, and here all-one vectors are used to calculate the 

summation of all the elements in a matrix. Since the number of UEs of MEC application 𝑘 

served by each path is different, then the total number of relocations of UEs of MEC 

application 𝑘 experience is 

(4.2) 𝑅𝐸(𝑘) = ∑ ∑ 𝑈𝐸𝑃𝑙𝑙
𝑘(𝑛) ∙ [𝟏T ∙ 𝑃𝑙𝑙

𝑘(𝑛) ∙ 𝟏]

𝑃𝑁𝑙𝑙(𝑘)

𝑛=1𝑙𝑙∈𝐿𝐿

   (3.2) 

where 𝑈𝐸𝑃𝑙𝑙
𝑘(𝑛) represents the number of UEs served by path 𝑛 in location 𝑙𝑙. 

If a group of unit-hosts are integrated into one MEC host, then some relocations between 

different unit-hosts will become relocations within one MEC host, which means that these 

relocations are eliminated. Similarly, if several nodes in graph 𝐺 are merged as one node, 

then some links will disappear. Consider the shortest paths {𝑃𝑙𝑙
𝑘(𝑛)} mentioned above, the 

number of disappeared links which belong to the paths selected for MEC application 𝑘 in 

graph 𝐺 by merging nodes in the way that matrices {𝐻𝑙𝑙(𝑚)}(∀ 𝑙𝑙 ∈ 𝐿𝐿) imply is 
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(4.3) 

𝐷𝐿(𝑘) = ∑ ∑ ∑ ∑ 𝑒𝑖
T ∙ 𝑃𝑙𝑙

𝑘(𝑛) ∙ 𝐻𝑙𝑙(𝑚) ∙ 𝑒𝑖

𝑁

𝑖=1

𝐻𝑁𝑙𝑙

𝑚

𝑃𝑁𝑙𝑙(𝑘)

𝑛=1𝑙𝑙∈𝐿𝐿

 (3.3) 

where 𝐻𝑁𝑙𝑙 is the number of MEC hosts in location 𝑙𝑙 and matrix 𝐻𝑙𝑙(𝑚) indicates the 

unit-hosts a MEC host contains and the links between these unit-hosts. Similarly, the total 

number of eliminated relocations can be written as  

(4.4) 

𝐸𝑅(𝑘) = ∑ ∑ 𝑈𝐸𝑃𝑙𝑙
𝑘(𝑛) ∙

𝑃𝑁𝑙𝑙(𝑘)

𝑛=1𝑙𝑙∈𝐿𝐿

∑ ∑ 𝑒𝑖
T ∙ 𝑃𝑙𝑙

𝑘(𝑛) ∙ 𝐻𝑙𝑙(𝑚) ∙ 𝑒𝑖

𝑁

𝑖=1

𝐻𝑁𝑙𝑙

𝑚

 (3.4) 

Every MEC application has a priority which implies its importance. The MEC application 

with a higher priority is more important. To distinguish different MEC applications, their 

priorities also need to be considered. Therefore, the total weighted number of eliminated 

relocations can be written as 

(4.5) 𝐸𝑅𝑊(𝑘) = 𝑝𝑟𝑖𝑜𝑟𝑘 ∙ 𝐸𝑅(𝑘) (3.5) 

where 𝑝𝑟𝑖𝑜𝑟𝑘 is the priority of MEC application 𝑘. Similarly, the total weighted number of 

relocations before integrating unit-hosts into MEC hosts can be written as 

(4.6) 𝑅𝐸𝑊(𝑘) = 𝑝𝑟𝑖𝑜𝑟𝑘 ∙ 𝑅𝐸(𝑘) (3.6) 

The total weighted number of relocations of all MEC applications after integrating unit-

hosts into MEC hosts can be formulated as 

(4.7) 

𝑅𝑊 = ∑ 𝑅𝐸𝑊(𝑘) − 𝐸𝑅𝑊(𝑘)

𝑀

𝑘=1

 (3.7) 

where 𝑀 is the total number of MEC applications that need to be deployed. Therefore, the 

optimization goal, minimizing the total number of relocations can be transformed into 

minimizing 𝑅𝑊. 

C. Constraints  

To make sure that enough resources are allocated to UEs of every MEC application, Constraint 

1 is defined as: 

(3.8) 

∑ ∑ 𝑈𝐸𝑃𝑙𝑙
𝑘(𝑛)

𝑃𝑁𝑙𝑙(𝑘)

𝑛=1𝑙𝑙∈𝐿𝐿

≥ 𝑈𝐸𝑘   (∀ 𝑘 ∈ [1, … , 𝑀]) (3.8) 

To make sure that every MEC host can meet the total resource requirements, the first 

thing to do is to make sure that for each unit-host, its total amount of required resources 

does not exceed its total amount of available resources. Sites in {𝑃𝑙𝑙
𝑘(𝑛)} may have common 

coverage area, where each of them may only need to serve some of the UEs. However, in the 

context of this master thesis, each of these MEC hosts still needs to reserve enough resources 

for all the UEs that are in its serving area for resiliency purpose. According to this, Constraint 

2 is written as: 

(3.9) 

∑ ∑ 𝑈𝐸𝑃𝑙𝑙
𝑘(𝑛) ∙ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖

𝑃𝑁𝑙𝑙(𝑘)

𝑛=1

∙ 𝑐𝑟𝑘 ≤ 𝑐𝑟𝑢𝑛𝑖𝑡

𝑀

𝑘=1

 (3.9) 
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∑ ∑ 𝑈𝐸𝑃𝑙𝑙
𝑘(𝑛) ∙ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖

𝑃𝑁𝑙𝑙(𝑘)

𝑛=1

∙ 𝑠𝑟𝑘 ≤ 𝑠𝑟𝑢𝑛𝑖𝑡

𝑀

𝑘=1

 

∑ ∑ 𝑈𝐸𝑃𝑙𝑙
𝑘(𝑛) ∙ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖

𝑃𝑁𝑙𝑙(𝑘)

𝑛=1

∙ 𝑝𝑟𝑘 ≤ 𝑝𝑟𝑢𝑛𝑖𝑡

𝑀

𝑘=1

 

(∀ 𝑙𝑙 ∈ 𝐿𝐿, ∀ 𝑖 ∈ [1, … , 𝑁]) 

where 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖 is the length of the part of the road which is in the serving area of site 𝑖, 

𝑐𝑟𝑘 , 𝑠𝑟𝑘, 𝑝𝑟𝑘 are the amount of computing, storage, processing resources required to serve 

one UE of MEC application 𝑘. 

To make sure that each  𝑃𝑙𝑙
𝑘(𝑛)  represents a path that connects one node in 𝐸1  to 

another node in 𝐸2 in graph 𝐺, several additional constraints are set up: 

Constraint 3: For every 𝑃𝑙𝑙
𝑘(𝑛), every link it indicates is a link in graph 𝐺. This is equivalent 

to: 

(3.10) 
𝑒𝑖

T ∙ [(𝑃𝑙𝑙
𝑘(𝑛) + 𝐸𝑁𝑙𝑙

𝑘(𝑛)) ∙ 𝐴∗] ∙ 𝑒𝑖 = 𝟏T ∙ (𝑃𝑙𝑙
𝑘(𝑛) + 𝐸𝑁𝑙𝑙

𝑘(𝑛)) ∙ 𝑒𝑖  

(∀ 𝑙𝑙 ∈ 𝐿𝐿, ∀ 𝑘 ∈ [1, . . , 𝑀], ∀ 𝑖 = [1, … , 𝑁], ∀ 𝑛) 

(3.10) 

where 𝐸𝑁𝑙𝑙
𝑘(𝑛) is a 𝑁 × 𝑁 matrix that indicates the sites that cover either the entrance or 

the exit of the road and belong to path 𝑛 ∈ {1, … , 𝑃𝑁𝑙𝑙(𝑘)} in location 𝑙𝑙 ∈ 𝐿𝐿𝑘, and 𝐴∗ is 

a 𝑁 × 𝑁 matrix that indicates the neighbors of each node in graph 𝐺. 

Constraint 4: In each 𝑃𝑙𝑙
𝑘(𝑛) , nodes in set 𝐸1  or 𝐸2  have one or no neighbor while 

other nodes have two or no neighbors each, this can be written as: 

(3.11) 
𝟏T ∙ (𝑃𝑙𝑙

𝑘(𝑛) + 𝐸𝑁𝑙𝑙
𝑘(𝑛)) ∙ 𝑒𝑖 ∈ [0,2]  

(∀ 𝑙𝑙 ∈ 𝐿𝐿, ∀ 𝑘 ∈ [1, . . , 𝑀], ∀ 𝑖 = [1, … , 𝑁], ∀ 𝑛) 

(3.11) 

Constraint 5: In each 𝑃𝑙𝑙
𝑘(𝑛), for each node that has one neighbor, if this node is in set 𝐸1, 

then its neighbor should be a successor of this node in graph 𝐺; otherwise, this neighbor 

should be a predecessor of this node in graph 𝐺. For each node that has two neighbors, one 

of its neighbors is its predecessor in the directed graph 𝐺 and the other one is its successor: 

(3.12) 
(𝑃𝑙𝑙

𝑘(𝑛) + 𝐸𝑁𝑙𝑙
𝑘(𝑛)) ∙ 𝐴∗∗ = 𝑶 (∀ 𝑙𝑙 ∈ 𝐿𝐿, ∀ 𝑘 ∈ [1, . . , 𝑀]) (3.12) 

where 𝐴∗∗ is a 𝑁 × 𝑁 matrix that indicates the predecessors and successors of each node 

in graph 𝐺 and 𝑶 is an all-zero matrix. 

Constraint 6: Each path should start from a node in 𝐸1 and end at a node in 𝐸2: 

(3.13) ∑ 𝐸𝑁𝑙𝑙
𝑘(𝑛)𝑖𝑗 = 0 (∀ 𝑙𝑙 ∈ 𝐿𝐿, ∀ 𝑘 ∈ [1, . . , 𝑀])

𝑖≠𝑗

 (3.13) 

 

∑ 𝐸𝑁𝑙𝑙
𝑘(𝑛)𝑖𝑖 = 2 (∀ 𝑙𝑙 ∈ 𝐿𝐿, ∀ 𝑘 ∈ [1, . . , 𝑀])

𝑁

𝑖=1

 (3.14) 

 𝑒𝑣1 ∙ 𝐸𝑁𝑙𝑙
𝑘(𝑛) ∙ 𝟏 = 1 (∀ 𝑙𝑙 ∈ 𝐿𝐿, ∀ 𝑘 ∈ [1, . . , 𝑀]) (3.15) 

 𝑒𝑣2 ∙ 𝐸𝑁𝑙𝑙
𝑘(𝑛) ∙ 𝟏 = 1 (∀ 𝑙𝑙 ∈ 𝐿𝐿, ∀ 𝑘 ∈ [1, . . , 𝑀]) (3.16) 

where 𝑒𝑣1 is a 1 × 𝑁 vector that indicates the sites that cover the entrance of the road, 

and 𝑒𝑣2 is a 1 × 𝑁 vector that indicates the sites that cover the exit of the road. 

Finally, it is important to make sure that unit-hosts are integrated properly, and Constraint 
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7 is defined accordingly. 

Constraint 7-1: There shall be no unit-host that is included in two MEC hosts: 

(3.17) 

∑ 𝑒𝑖
T ∙ 𝐻𝑙𝑙(𝑚) ∙ 𝑒𝑖

𝐻𝑁𝑙

𝑚=1

≤ 1 (∀ 𝑙𝑙 ∈ 𝐿𝐿, ∀ 𝑖 ∈ [1, … , 𝑁]) (3.17) 

Constraint 7-2: Every MEC host can meet the total resources requirements. It is 

guaranteed by Equation 3.9 that the total amount of required resources of each unit-host 

does not exceed its total amount of available resources. Therefore, in this step, it only needs 

to be ensured that the number of unit-hosts that are integrated into one MEC host is smaller 

than or equal to the upper limit 𝑁𝑈. This can be represented by inequation 3.18: 

(3.18) 

∑ 𝑒𝑖
T ∙ 𝐻𝑙𝑙(𝑚) ∙ 𝑒𝑖  ≤ 𝑁𝑈𝑙𝑙  (∀ 𝑙𝑙 ∈ 𝐿𝐿, ∀ 𝑚 ∈ [1, … , 𝐻𝑁𝑙𝑙])

𝑁

𝑖= 1

 (3.18) 

D. Problem Decomposition 

In the remainder of this chapter, approximation algorithms to minimize 𝑅𝑊  under the 

seven constraints discussed in the previous section are designed, tested and compared. To 

start with, the optimization problem needs to be decomposed. 

In the original problem both MEC hosts and MEC applications need to be located. 

Locations of MEC hosts need to be determined, and MEC applications need to be installed in 

MEC hosts, which makes it impossible to determine the locations of MEC applications first 

since they run on MEC hosts. However, information on MEC applications can help determine 

the appropriate deployment of MEC hosts; without considering the MEC applications that 

need to be deployed, it is difficult to determine how good a deployment of MEC hosts is. To 

overcome this dilemma, the concept of “unit-host” has been brought up in this project. A 

unit-host can be seen as a fraction of a MEC host with resources, MEC applications and MEC 

application instances. These fractions can be combined into several complete MEC hosts. A 

MEC host inherits all the resources, MEC applications and MEC application instances from 

the unit-hosts it contains. Unit-hosts are not implemented and running in the telecom 

network like MEC hosts, they are intermediate outcomes and will be eventually transformed 

into MEC hosts. 

Having defined the concept of “unit-host”, the original problem can be further 

decomposed into two sub-problems, also called two phases in this thesis. 

Phase 1: Locate enough but not redundant resources for each MEC application in unit-

hosts in its acceptable locations, in a way that the total number of relocations between unit-

hosts is minimized. Two algorithms - Greedy algorithm and Simulation based algorithm are 

implemented and investigated in Phase 1. 

Phase 2: Combine unit-hosts into MEC hosts properly. This sub-problem can be 

transferred into a graph partitioning problem - minimum 𝑘-Cut problem, which can be either 

NP-Hard or NP-Complete. If the number 𝑘 is not given, the problem is an NP-Hard problem. 

The sub-problem to be solved in Phase 2 does not give the total number of MEC hosts in 

advance, instead it is a factor that needs to be determined under certain constraints, hence, 

this problem is NP-Hard. To solve such a problem, a purely greedy algorithm, two heuristic 
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algorithms (Variable Neighborhood Search and Multi-Kernighan Lin) have been implemented 

and investigated in Phase 2. 

3.3 Algorithms in Phase 1 

In this section, two algorithms are proposed – greedy algorithm and simulation-based 

algorithm. Both algorithms are used to solve the location problem of MEC applications in 

Phase 1. The final goal of each algorithm is locating each MEC application in proper unit-hosts, 

which can minimize the total number of relocations between unit-hosts in the geographic 

service area under the extreme situation and guarantee enough resources as well as satisfied 

service latency for each UE. 

 Based on the equations in section 3.2, four principles for deploying MEC applications in 

unit-hosts are made: 

1. Pick the shortest available path (with enough serving resources) between one node 

in set 𝐸1 and one node in set 𝐸2 in graph 𝐺. In Equation 3.2, when there are fewer 

1’s in matrix 𝑃𝑙𝑙
𝑘(𝑛), which means that its corresponding path in graph 𝐺 is shorter, 

𝑅𝐸(𝑘), ∃𝑘 ∈ {1,2, … , 𝑀} (the number of relocations between unit-hosts) tends to 

be smaller. Therefore, MEC applications should be located in the unit-hosts which are 

on the shortest available paths, which is also referred to as MEC applications should 

be located in shortest paths in the remainder of the thesis. 

2. Put more UEs on shorter paths. For each MEC application, enough resources should 

be provided by the MEC hosts, which brings out Constraint 1 (defined by Equation 

3.8). As discussed previously, a shortest available path, or an available path with 

shortest length, means that a UE will experience the fewest relocations between 

unit-hosts if it chooses this path. Therefore, to minimize 𝑅𝐸𝑊 , as many UEs as 

possible should follow the shortest available path. Since the total number of 

estimated UEs for each MEC application is fixed, if more UEs choose the shortest 

available path, the total number of relocations will be reduced. 

3. MEC applications with a higher priority should always be allocated resources to 

earlier than the ones with a lower priority. MEC applications with a higher priority 

are more sensitive to relocations. If a MEC application 1  is located in unit-hosts 

before another MEC application 2 with a higher priority is located, MEC application 

1 may fully occupy the resources in the unit-hosts that are on the shortest paths in 

graph 𝐺 , as a consequence, MEC application 2  may be located in some other 

longer paths. Since MEC application 2 is more sensitive to relocations, it does not 

make sense to locate it in longer paths, therefore, allocating resources for MEC 

applications with higher priority earlier than the ones with lower priority is the basic 

rule in Phase 1. 

4. Required service latency of each UE should be satisfied. The requirement on service 

latency of each MEC application is transformed into a set of acceptable MEC 

host/unit-host locations (assumption 14). To meet the required latency, each MEC 

application is located only in the unit-hosts that are in its acceptable locations. 

Considering the above four principles of MEC applications, greedy algorithm is a simple 
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but good enough approach and it will be introduced precisely in the following sections. 

A. Greedy Algorithm 

As described above, each MEC application has a set of acceptable locations, and 𝐿𝐿𝑘 is used 

to denote the set of acceptable locations of MEC application 𝑘. Locations in 𝐿𝐿𝑘 are sorted 

from the closest towards the network edge to the farthest from the network edge. Three 

steps are considered in order to find optimal unit-hosts for MEC application 𝑘: 

Step 1: Select the shortest path in the first location in 𝐿𝐿𝑘 between one node in 𝐸1 

and one node in 𝐸2 and then determine the amount of resources each unit-

host in this path can provide. 

Step 2: If each unit-host on the selected path can provide enough resources to serve all 

the UEs of MEC application 𝑘  within its serving area, then reserve the 

resources required and end the procedure. 

Step 3: If the current available resources in some unit-hosts on the selected path are 

not enough, determine the maximum number of UEs this path can serve, and 

reserve required resources for these UEs. Then determine the shortest path 

between one node in 𝐸1 and one node in 𝐸2 in the next location (the next 

element in 𝐿𝐿𝑘), and repeat Step 2 for MEC application 𝑘.  

Based on the above three steps, two algorithms are proposed. Table 3.1 and Table 3.2 

show them separately. 

 
Table 3.1: Algorithm 1 

Algorithm 1. Allocate resources for MEC application 𝑘  on MEC hosts in one 

location 𝑙𝑙 ∈ 𝐿𝐿𝑘  

Input: 

𝐺:  The graph that represents all the unit-hosts in the geographic service area. If 

the two corresponding sites of two nodes have an overlapping coverage area, 

these two nodes in graph 𝐺 are connected by a directed link that starts from 

the node which corresponding site is closer to the entrance of the road and 

that ends at the node which corresponding site is closer to the exit of the 

road. Hence, graph 𝐺 is a directed graph. 

𝐿𝑊𝑙𝑙:  A set of link weights of all links which both end nodes are in location 𝑙𝑙. 

𝐸1:  A set of unit-hosts which corresponding sites cover the entrance of the road 

in the geographic service area. 

𝐸2:  A set of unit-hosts which corresponding sites cover the exit of the road in the 

geographic service area. 

𝑅𝑙𝑙: A set of currently available resources in all unit-hosts in location 𝑙𝑙 ∈ 𝐿𝐿. 

𝑝𝑟𝑖𝑜𝑟𝑘: Priority of MEC application 𝑘. 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = {𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖} (∀ 𝑖 ∈ 𝑁):  

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖 is the coverage of site 𝑖 (𝑖 = 1, … , 𝑁). 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑘:  Required amount of resources per UE of MEC application 𝑘. 

𝑈𝐸𝑘:  Estimated maximum number of UEs of MEC application 𝑘 that enters the 
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geographic service area at the same time. 

𝑃𝑎𝑡ℎ𝑠𝑙𝑙(𝑘):  A set that saves all paths in location 𝑙𝑙 ∈ 𝐿𝐿𝑘 that are selected to reserve 

resources for MEC application 𝑘 as well as the estimated number of UEs 

each path serves. 

Output: 

Updated 𝑈𝐸𝑘  

Updated 𝑃𝑎𝑡ℎ𝑠𝑙𝑙(𝑘)  

Updated 𝑅𝑙𝑙 

Updated 𝐿𝑊𝑙𝑙 

While 𝑇𝑟𝑢𝑒 do 

 𝑠𝑝 = 𝒔𝒉𝒐𝒓𝒕𝒆𝒔𝒕𝒑𝒂𝒕𝒉(𝐺, 𝐸1, 𝐸2); 

   //Initialize set 𝑢𝑒𝑚𝑎𝑥, which saves the maximum number of UEs each unit-host in path 𝑠𝑝 

can serve per unit length 

 𝑢𝑒𝑚𝑎𝑥 = {};  

 for all 𝑛𝑜𝑑𝑒 ∈ 𝑠𝑝 do 

  𝑢𝑒𝑚𝑎𝑥 =  𝑢𝑒𝑚𝑎𝑥 ⋃  {𝑅𝑙𝑙(𝑛𝑜𝑑𝑒)/(𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑘 ∗ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑛𝑜𝑑𝑒)}; 

 end for 

 𝑢𝑒𝑚𝑖𝑛 = 𝑴𝒊𝒏(𝑢𝑒𝑚𝑎𝑥 ∪ {𝑈𝐸𝑘}); 

   𝑃𝑎𝑡ℎ𝑠𝑙𝑙(𝑘) = 𝑼𝒑𝒅𝒂𝒕𝒆𝟏(𝑃𝑎𝑡ℎ𝑠𝑙𝑙(𝑘), 𝑢𝑒𝑚𝑖𝑛, 𝑠𝑝); 

 for all 𝑖𝑛𝑑𝑒𝑥 ∈ {1, 2, … , 𝒍𝒆𝒏𝒈𝒕𝒉(𝑠𝑝)} do  

  𝑛𝑜𝑑𝑒 = 𝑠𝑝(𝑖𝑛𝑑𝑒𝑥); 

       //Update the current available resources of unit-hosts (𝑅𝑙𝑙) 

  𝑅𝑙𝑙(𝑛𝑜𝑑𝑒) = 𝑅𝑙𝑙(𝑛𝑜𝑑𝑒) − 𝑢𝑒𝑚𝑖𝑛 ∗ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑘 ∗ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑛𝑜𝑑𝑒;  

  if 𝑖𝑛𝑑𝑒𝑥 ∈ {1, 2, … , 𝒍𝒆𝒏𝒈𝒕𝒉(𝑠𝑝) − 1} do 

   𝑛𝑜𝑑𝑒𝑛𝑒𝑥𝑡 = 𝑠𝑝(𝑖𝑛𝑑𝑒𝑥 + 1); 

𝐿𝑊𝑙𝑙 = 𝑼𝒑𝒅𝒂𝒕𝒆𝟐(𝐿𝑊𝑙𝑙 , 𝑢𝑒𝑚𝑖𝑛, 𝑛𝑜𝑑𝑒, 𝑛𝑜𝑑𝑒𝑛𝑒𝑥𝑡, 𝑝𝑟𝑖𝑜𝑟𝑘); 

  end if 

 end for 

 𝑈𝐸𝑘 = 𝑈𝐸𝑘 − 𝑢𝑒𝑚𝑖𝑛; 

 if 𝑈𝐸𝑘 == 0 do 

  𝑩𝒓𝒆𝒂𝒌; 

 end if 

end While 

 

When it starts running, Algorithm 1 will first find one shortest path in graph 𝐺  that 

connects one node in 𝐸1 to one node in 𝐸2, which is achieved by function 𝒔𝒉𝒐𝒓𝒕𝒆𝒔𝒕𝒑𝒂𝒕𝒉. 

After the shortest path has been found, every unit-host in path 𝑠𝑝 will be checked. For each 

unit-host, calculate the maximum number of UEs per unit length it can currently serve and 

save the value in set 𝑢𝑒𝑚𝑎𝑥 . The smallest number 𝑢𝑒𝑚𝑖𝑛  in set 𝑢𝑒𝑚𝑎𝑥 ∪ {𝑈𝐸𝑘}  is the 

number of UEs per unit length that path 𝑠𝑝  will reserve resources for. Function 𝑴𝒊𝒏  is 

used to find the smallest value in a set. 

After the value of 𝑢𝑒𝑚𝑖𝑛 has been determined, four updates will take place: 

1. Update the value of 𝑈𝐸𝑘: The number of UEs need to be served per unit length will 

be reduced by 𝑢𝑒𝑚𝑖𝑛. 
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2. Update 𝑃𝑎𝑡ℎ𝑠𝑙𝑙(𝑘): This is done by function 𝑼𝒑𝒅𝒂𝒕𝒆𝟏. To be more precise, if path 

𝑠𝑝 has already been chosen by the same MEC application 𝑘, it should already exist 

in 𝑃𝑎𝑡ℎ𝑠𝑙𝑙(𝑘), then 𝑼𝒑𝒅𝒂𝒕𝒆𝟏 will update its recorded number of serving UEs per 

unit length by adding 𝑢𝑒𝑚𝑖𝑛  to the original value; if path 𝑠𝑝  does not exist in 

𝑃𝑎𝑡ℎ𝑠𝑙𝑙(𝑘), then add a new record. 

3. Update 𝑅𝑙𝑙 : Every unit-host on path 𝑠𝑝  will reserve new resources for MEC 

application 𝑘, and their amount of available resources will decrease in the meantime. 

For each unit-host, its corresponding record in 𝑅𝑙𝑙 needs to be updated. Function 

𝒍𝒆𝒏𝒈𝒕𝒉 returns the number of elements in a set. 

4. Update 𝐿𝑊𝑙𝑙 : This is done by function 𝑼𝒑𝒅𝒂𝒕𝒆𝟐 . Links in path 𝑠𝑝  represent 

relocations. The link weight of a link is the weighted (by the priority of the MEC 

application a UE uses) number of UEs per unit length on this link. Since new UEs are 

added to each link, 𝐿𝑊𝑙𝑙 needs to be updated. For each link, update link weight by 

adding 𝑝𝑟𝑖𝑜𝑟 ∗ 𝑢𝑒𝑚𝑖𝑛 to its current value. 

 

Table 3.2: Algorithm 2 

Algorithm 2: Allocate resources for MEC application 𝑘 in all its possible locations 

Input: 

𝐿𝐿𝑘:  A set of possible locations for MEC application 𝑘. 

𝑅 = {𝑅𝑙𝑙}, ∀ 𝑙𝑙 ∈ 𝐿𝐿:  

𝑅𝑙𝑙  is the set of currently available resources in all unit-hosts in location 𝑙𝑙 ∈

𝐿𝐿. 

𝐺:  The directed graph that represents all the sites. 

 𝐸1:  A set of unit-hosts which corresponding sites cover the entrance of the road 

in the geographic service area. 

𝐸2:  A set of unit-hosts which corresponding sites cover the exit of the road in the 

geographic service area. 

𝐿𝑊 = {𝐿𝑊𝑙𝑙}, ∀ 𝑙𝑙 ∈ 𝐿𝐿:  

𝐿𝑊𝑙𝑙 is the set of link weights of all links which both end nodes are in location 

𝑙𝑙. 

𝑃𝑎𝑡ℎ𝑠(𝑘) = {𝑃𝑎𝑡ℎ𝑠𝑙𝑙(𝑘)}, ∀ 𝑙𝑙 ∈ 𝐿𝐿𝑘:  

𝑃𝑎𝑡ℎ𝑠𝑙𝑙(𝑘)  is the set that saves all paths in location 𝑙𝑙 ∈ 𝐿𝐿𝑘  that are 

selected to reserve resources for MEC application 𝑘  as well as the 

estimated number of UEs each path serves. 

𝑝𝑟𝑖𝑜𝑟𝑘:  Priority of MEC application 𝑘. 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = {𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖} (∀ 𝑖 ∈ 𝑁):  

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖 is the coverage of site 𝑖 (𝑖 = 1, … , 𝑁). 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑘:  Required amount of resources per UE of MEC application 𝑘.𝑈𝐸𝑘: Estimated 

number of UEs of MEC application 𝑘 that enters the geographic service area 

at the same time. 

Output: 

Updated 𝑃𝑎𝑡ℎ𝑠(𝑘) 

Updated 𝑅 

Updated 𝐿𝑊 
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While True do 

 for all 𝑙𝑙 ∈ 𝐿𝐿𝑘 do 

𝑈𝐸𝑘 , 𝐿𝑊𝑙𝑙 , 𝑃𝑎𝑡ℎ𝑠𝑙𝑙(𝑘), 𝑅𝑙𝑙 =

               𝑨𝟏(𝑈𝐸𝑘 , 𝐺, 𝐿𝑊𝑙𝑙 , 𝐸1, 𝐸2, 𝑃𝑎𝑡ℎ𝑠𝑙𝑙(𝑘), 𝑅𝑙𝑙 , 𝑝𝑟𝑖𝑜𝑟𝑘 , 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑘); 

     if 𝑈𝐸𝑘 == 0 do //Enough resources have been allocated 

         𝑩𝒓𝒆𝒂𝒌; 

     end if 

 end for 

end While 

 

Algorithm 2 is designed to allocate resources for MEC application 𝑘 in all its acceptable 

locations if necessary. Function 𝑨𝟏 represents Algorithm 1 in Table 3.1. 

B. Simulation-Based Algorithm 

This algorithm is an improved greedy algorithm, and the improvement comes from the fact 

that there are three different types of resources and the required amount of different types 

of resources may be different. If well organized, one unit-host may be able to serve more UEs 

without increasing the total amount of resources it holds. Figure 3.2 demonstrates the 

difference between well-organized deployment and not well-organized deployment clearly.  

Define ratio of a unit-host as the ratio of the available amount of three different types of 

resources (computing, storage and processing) in the unit-host. The ratio before any 

resources has been allocated/reserved is called the original ratio, and according to 

assumption 6, original ratio = 1: 1: 1. For a group of MEC applications that have the same 

priority 𝐴𝑃𝑃 = {𝑎𝑝𝑝1, 𝑎𝑝𝑝2, … , 𝑎𝑝𝑝𝑘}, and each with a required amount of resources which 

is saved in vector 𝑅𝑅 = {𝑟11, 𝑟12, 𝑟13, … , 𝑟𝑘1, 𝑟𝑘2, 𝑟𝑘3}  , where 𝑟𝑖1, 𝑟𝑖2, 𝑟𝑖3  represent the 

required amount of computing, storage, processing resources of MEC application 𝑖 

separately. If there exists a vector 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑘} , with 0 ≤ 𝑣𝑖 ≤ 𝑈𝐸𝑖 , 𝑣𝑖 ∈ 𝑁, ∀𝑖 ∈

{1,2, … , 𝑘} , and this vector 𝑉  has at least two non-zero elements, which satisfies the 

following inequations: 

(3.19) 
max

𝑗∈{1,2,3}

∑ 𝑟𝑖𝑗𝑣𝑖
𝑘
𝑖=𝑖

∑ 𝑣𝑖
𝑘
𝑖=1

≤ min
𝑖∈{1,2,…,𝑘}

  𝑣𝑖>0

max
𝑗∈{1,2,3}

𝑟𝑖𝑗 

𝑟11𝑣1 + 𝑟21𝑣2 + ⋯ + 𝑟𝑘1𝑣𝑘 <  𝑐𝑟𝑢𝑛𝑖𝑡 

𝑟12𝑣1 + 𝑟22𝑣2 + ⋯ + 𝑟𝑘2𝑣𝑘 <  𝑠𝑟𝑢𝑛𝑖𝑡 

𝑟13𝑣1 + 𝑟23𝑣2 + ⋯ + 𝑟𝑘3𝑣𝑘 <  𝑝𝑟𝑢𝑛𝑖𝑡 

(3.19) 

then MEC applications {𝑎𝑝𝑝𝑖|𝑖 ∈ {1,2, … , 𝑘}, 𝑣𝑖 > 0} are called a group of complementary 

MEC applications.  

Since it is assumed that the amount of computing, storage and processing resources in a 

unit-host is equal (𝑐𝑟𝑢𝑛𝑖𝑡 = 𝑠𝑟𝑢𝑛𝑖𝑡 = 𝑝𝑟𝑢𝑛𝑖𝑡), then the type of resources which running a 

MEC application instance to serve a UE needs the most determines the maximum number of 

UEs one unit-host can serve. This type of resources is similar to the short slab of a bucket. 

Complementary MEC applications have the same priority and can be deployed together to 

even the usage of different types of resources and to make the short slab not short anymore.  
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However, even by deploying MEC applications together, a short slab may still exist, and it 

can be written as max
𝑗∈{1,2,3}

∑ 𝑟𝑖𝑗𝑣𝑖
𝑘
𝑖=𝑖

∑ 𝑣𝑖
𝑘
𝑖=1

. Therefore, for a group of MEC applications, only when the 

new short slab is longer than the old short slab of each MEC application, which can be written 

as max
𝑗∈{1,2,3}

𝑟𝑖𝑗  for MEC application 𝑖 , can these MEC applications be a group of 

complementary MEC applications. For instance, in Figure 3.2, MEC application 1  has a 

complementary MEC application 2. If using the greedy algorithm designed in the previous 

section, one unit-host can serve 3 or 4 UEs. For the two MEC applications in Figure 3.2, a 

vector 𝑉 = {1, 1} can be found to make Inequation 3.19 hold. This means that, one UE of 

MEC application 1 and one UE of MEC application 2 are put into the same unit-host each 

time until the available resources in the unit-host are not sufficient to serve a UE. 

 
Figure 3.2: One unit-host can serve more UEs if well organized 

 

To enhance resource efficiency, there is a simpler approach than finding the vector 𝑉 but 

can achieve the same improvement, and that is called the simulation-based algorithm. Table 

3.3 shows the pseudocode of this simulation-based algorithm. 

 

Table 3.3: Algorithm 3 

Algorithm 3. Simulation-based Algorithm 

Input: 

𝑀:  Total number of MEC applications needs to be located. 

𝑝𝑟𝑖𝑜𝑟𝑠:  A set of priorities, ranked in a descending order. 

𝑎𝑝𝑝_𝑝𝑟𝑖𝑜𝑟𝑠 = {𝑝1, 𝑝2, … , 𝑝𝑀}:  

 𝑝𝑘 is the priority of MEC application 𝑘 (𝑘 ∈ {1,2, … , 𝑀}  ). 

𝑎𝑝𝑝_𝑙𝑙 = {𝐿𝐿1, 𝐿𝐿2, … , 𝐿𝐿𝑀}:  

𝐿𝐿𝑘 is the set of possible locations for MEC application 𝑘. 

𝑅 = {𝑅𝑙𝑙}, ∀ 𝑙𝑙 ∈ 𝐿𝐿:  

𝑅𝑙𝑙  is the set of currently available resources in all unit-hosts in location 𝑙𝑙 ∈
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𝐿𝐿. 

𝐺:  The directed graph that represents all the sites. 

𝐸1:  A set of unit-hosts which corresponding sites cover the entrance of the road 

in the geographic service area. 

𝐸2:  A set of unit-hosts which corresponding sites cover the exit of the road in the 

geographic service area. 

𝐿𝑊 = {𝐿𝑊𝑙𝑙}, ∀ 𝑙𝑙 ∈ 𝐿𝐿:  

𝐿𝑊𝑙𝑙 is the set of link weights of all links which both end nodes are in location 

𝑙𝑙. 

𝑃𝑎𝑡ℎ𝑠 = {𝑃𝑎𝑡ℎ𝑠(𝑘)}, ∀ 𝑘 ∈ {1,2, … , 𝑀}:  

𝑃𝑎𝑡ℎ𝑠(𝑘) records all the paths selected for MEC application 𝑘 and the number 

of UEs each path serves. 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒:  The set of coverage of all the site. 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 = {𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠1, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠2, … , 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑀}:  

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑘 is the required amount of resources per UE of MEC application 

𝑘. 

𝑈𝐸 = {𝑈𝐸1, 𝑈𝐸2, … , 𝑈𝐸𝑀}:  

𝑈𝐸𝑘 is the estimated number of UEs of MEC application 𝑘 that enters the 

geographic service area at the same time. 

Output: 

Updated 𝑃𝑎𝑡ℎ𝑠  

Updated 𝑅 

Updated 𝐿𝑊 

for all 𝑝 ∈ 𝑝𝑟𝑖𝑜𝑟𝑠 do 

𝑅𝑡𝑒𝑚𝑝 = {}; 

𝑃𝑎𝑡ℎ𝑠𝑡𝑒𝑚𝑝 = {}; 

𝐿𝑊𝑡𝑒𝑚𝑝 = {}; 

𝐷𝑖𝑓𝑓 = 𝑖𝑛𝑓; 

𝑎𝑝𝑝𝑡𝑒𝑚𝑝 = 𝑁𝑜𝑛𝑒; 

While ∃ 𝑎𝑝𝑝 ∈ 𝑀, 𝑎𝑝𝑝_𝑝𝑟𝑖𝑜𝑟𝑠(𝑎𝑝𝑝)  == 𝑝 and 𝑈𝐸(𝑎𝑝𝑝) ≠ 0 do 

    for all 𝑎𝑝𝑝 ∈ 𝑀 do  

        if 𝑎𝑝𝑝_𝑝𝑟𝑖𝑜𝑟𝑠(𝑎𝑝𝑝) ! = 𝑝 or 𝑈𝐸(𝑎𝑝𝑝) == 0 do 

            𝑪𝒐𝒏𝒕𝒊𝒏𝒖𝒆; 

        end if 

        𝑃𝑎𝑡ℎ𝑠𝑡, 𝑅𝑡 , 𝐿𝑊𝑡 =

𝑨𝟐(𝑎𝑝𝑝_𝑙𝑙(𝑎𝑝𝑝), 𝑅, 𝐺, 𝐸1, 𝐸2, 𝐿𝑊, 𝑃𝑎𝑡ℎ𝑠(𝑎𝑝𝑝), 𝑝, 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(𝑎𝑝𝑝),1); 

        𝑑𝑖𝑓𝑓 = 𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆_𝒃𝒆𝒕𝒘𝒆𝒆𝒏_𝒓𝒂𝒕𝒊𝒐𝒔(𝑅𝑡); 

        if 𝑑𝑖𝑓𝑓 < 𝐷𝑖𝑓𝑓 do 

            𝑅𝑡𝑒𝑚𝑝 = 𝑅𝑡; 

          𝑃𝑎𝑡ℎ𝑠𝑡𝑒𝑚𝑝 = 𝑃𝑎𝑡ℎ𝑠𝑡; 

          𝐿𝑊𝑡𝑒𝑚𝑝 = 𝐿𝑊𝑡; 

          𝐷𝑖𝑓𝑓 = 𝑑𝑖𝑓𝑓; 

          𝑎𝑝𝑝𝑡𝑒𝑚𝑝 = 𝑎𝑝𝑝; 

        end if 
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    end for 

    𝑃𝑎𝑡ℎ𝑠 = 𝑃𝑎𝑡ℎ𝑠𝑡𝑒𝑚𝑝; 

    𝑅 = 𝑅𝑡𝑒𝑚𝑝; 

    𝐿𝑊 = 𝐿𝑊𝑡𝑒𝑚𝑝; 

    𝑈𝐸(𝑎𝑝𝑝𝑡𝑒𝑚𝑝) = 𝑈𝐸(𝑎𝑝𝑝𝑡𝑒𝑚𝑝) − 1;  

end While 

end for 

 

Define a simulation of MEC application 𝑎𝑝𝑝 as a process in which one UE using MEC 

application 𝑎𝑝𝑝  is assumed to enter the geographic service area, a suitable path will be 

selected for this UE, and resources will be reserved in the unit-hosts on the selected path. 

Any operation in a simulation of MEC application 𝑎𝑝𝑝  will not affect the real network 

conditions (e.g. the amount of available resources in a unit-host, the MEC applications 

installed in a unit-host).  

For every MEC application with the same priority, the algorithm will first do a simulation 

of this MEC application, and calculate for each unit-host on the chosen path, if it reserves 

resources for this UE, the difference between its ratio after resource reservation and the 

original ratio, and then add these differences up. Function 𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆_𝒃𝒆𝒕𝒘𝒆𝒆𝒏_𝒓𝒂𝒕𝒊𝒐𝒔 

is responsible for the calculations, and the final result is saved in variable 𝑑𝑖𝑓𝑓. After every 

MEC application has one simulation, pick the MEC application with the smallest 𝑑𝑖𝑓𝑓, and 

then allocate resources for one UE of this MEC application  in the unit-hosts on the path 

selected in the simulation. This time the variables that reflect the actual network conditions 

(e.g. 𝑅, 𝐿𝑊, 𝑃𝑎𝑡ℎ𝑠) need to be updated.  

3.4 Algorithms in Phase 2 

The goal of Phase 2 is to optimally integrate unit-hosts into MEC hosts in the three MEC host 

locations mentioned in assumption 3. Consider the similarity of the three locations, once the 

optimal locating mechanism of MEC hosts in one location is solved, then the integrations of 

unit-hosts in the other two locations can use the same locating mechanism. Therefore, the 

sub-problem needs to be solved in Phase 2 is to optimally location MEC hosts in one location, 

and here locating a MEC host is to determine which unit-hosts it contains.  

The above sub-problem can be transformed into a classical mathematical problem –

minimum 𝑘-cut problem: Given a graph 𝐺(𝑉, 𝐸), with node set 𝑉, link set 𝐸, and different 

link weights on the links in link set 𝐸. The goal of the problem is to partition 𝑉 into several 

disjoint subsets of limited sizes, in a way that minimizes the sum of the weights of the subset 

of links that cross from one subset to another subset, which is denoted by 𝑇. In the context 

of this specific sub-problem, graph 𝐺(𝑉, 𝐸) is the graph 𝐺 generated in Phase 1, node set 

𝑉 is the collection of unit-hosts, a link weight is the weighted number of UEs per unit length 

on the link. Each subset of nodes is a MEC host, which is considered as a collection of limited 

number of unit-hosts. The limitation on number of unit-hosts 𝑁𝑈𝑙𝑙 depends on the location 

𝑙𝑙 of one MEC host, and 𝑁𝑈𝑙𝑙  is larger if the location 𝑙𝑙 of the MEC host is closer to the 

core network.  

For minimum 𝑘 -cut problem, if the total number of subsets 𝑘  is given, then this 
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problem has been proved to be a NP-Complete problem [41]. However, the above-described 

problem does not treat 𝑘 as an input but as an uncertain value and needs to be determined, 

hence, this problem is NP-Hard. Three approximation algorithms are designed to solve the 

sub-problem in Phase 2, and they will be introduced separately in the following sections. 

A. Purely Greedy Algorithm 

This greedy algorithm basically consists of 3 steps and it solves the minimum 𝑘-cut problem 

in the location 𝑙𝑙: 

Step 1: First rank all the links in graph 𝐺 by the corresponding link weights from the 

highest to the lowest.  

Step 2: According to the sorted sequence in step 1, take out links one by one. If 𝑁𝑈𝑙𝑙 =

1, then these unit-hosts can be directly transformed into MEC hosts without 

integration. Otherwise, for each link, try to merge its two end nodes (unit-hosts) 

into one MEC host.  

Step 3: If both unit-hosts have been merged with other unit-hosts, then directly skip to 

the next link. If one of the unit-hosts has been merged into a MEC host and this 

MEC host can still accept an extra unit-host, then merge the other unit-host into 

this MEC host; if the MEC host cannot accept another unit-host, then skip to the 

next link. If both unit-hosts have not been merged yet, then merge the two unit-

hosts into a new MEC host. 

Algorithm 4 shown in Table 3.4 gives more precise introduction on this greedy algorithm. 

 
Table 3.4: Algorithm 4 

Algorithm 4: Integrate unit-hosts as MEC hosts in all locations and minimize the 

number of relocations 

Input: 

𝐿𝐿:  A set of all possible locations. Three possible locations are considered in this 

master thesis: collated with gNB-DU, collated with gNB-CU and located close 

to the core network 

𝐿𝑊 = {𝐿𝑊𝑙𝑙}, ∀ 𝑙𝑙 ∈ 𝐿𝐿:  

𝐿𝑊𝑙𝑙 is the set of link weights of all links which both end nodes are in location 

𝑙𝑙. 

𝐻𝑙𝑙:  𝐻𝑙𝑙 = {ℎ1, ℎ2, … , ℎ𝑚}, where ℎ𝑖 is a set of all unit-hosts that belong to an 

already existed MEC host 𝑖 in location 𝑙𝑙 ∈ 𝐿𝐿, 𝑚 is the current number 

of MEC hosts in location 𝑙𝑙 and it keeps changing. 

𝐻 = {𝐻𝑙𝑙}, ∀ 𝑙𝑙 ∈ 𝐿𝐿 

𝑁𝑈 = {𝑁𝑈𝑙𝑙}, ∀ 𝑙𝑙 ∈ 𝐿𝐿:  

𝑁𝑈𝑙𝑙 is the maximum number of unit-hosts one MEC host in location 𝑙𝑙 can 

contain. 

Output: 

Updated 𝐻 

While True do 
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 for all 𝑙𝑙 ∈ 𝐿𝐿 do 

  for 𝑒 ∈ 𝒔𝒐𝒓𝒕(𝐿𝑊𝑙𝑙) do 

   𝑛𝑜𝑑𝑒𝑖𝑛 = 𝑒(1); 

   𝑛𝑜𝑑𝑒𝑜𝑢𝑡 = 𝑒(2); 

   if 𝑛𝑜𝑑𝑒𝑖𝑛 ∉ 𝐻𝑙𝑙 and 𝑛𝑜𝑑𝑒𝑜𝑢𝑡 ∉ 𝐻𝑙𝑙 do 

    if 𝑁𝑈𝑙𝑙 ≥ 2 do 

     𝐻𝑙𝑙 = 𝐻𝑙𝑙 ∪ {{𝑛𝑜𝑑𝑒𝑖𝑛, 𝑛𝑜𝑑𝑒𝑜𝑢𝑡}}; 

    else do 

     𝐻𝑙𝑙 = 𝐻𝑙𝑙 ∪ {{𝑛𝑜𝑑𝑒𝑖𝑛}}; 

     𝐻𝑙𝑙 = 𝐻𝑙𝑙 ∪ {{𝑛𝑜𝑑𝑒𝑜𝑢𝑡}}; 

    end if 

   end if 

   if 𝑛𝑜𝑑𝑒𝑖𝑛 ∉ 𝐻𝑙𝑙 and 𝑛𝑜𝑑𝑒𝑜𝑢𝑡 ∈ 𝐻𝑙𝑙 do 

    ℎ𝑜𝑠𝑡 = 𝒇𝒊𝒏𝒅_𝒉𝒐𝒔𝒕(𝐻𝑙𝑙, 𝑛𝑜𝑑𝑒𝑜𝑢𝑡); 

    if 𝒍𝒆𝒏𝒈𝒕𝒉(ℎ𝑜𝑠𝑡) ≤ 𝑁𝑈𝑙𝑙 do 

     ℎ𝑜𝑠𝑡 = ℎ𝑜𝑠𝑡 ∪ {𝑛𝑜𝑑𝑒𝑖𝑛}; 

    else do 

     𝐻𝑙𝑙 = 𝐻𝑙𝑙 ∪ {{𝑛𝑜𝑑𝑒𝑖𝑛}}; 

    end if 

   end if 

   if 𝑛𝑜𝑑𝑒𝑜𝑢𝑡 ∉ 𝐻𝑙𝑙 and 𝑛𝑜𝑑𝑒𝑖𝑛 ∈ 𝐻𝑙𝑙 do 

    ℎ𝑜𝑠𝑡 = 𝒇𝒊𝒏𝒅_𝒉𝒐𝒔𝒕(𝐻𝑙𝑙, 𝑛𝑜𝑑𝑒𝑖𝑛); 

    if 𝒍𝒆𝒏𝒈𝒕𝒉(ℎ𝑜𝑠𝑡) ≤ 𝑁𝑈𝑙𝑙 do 

     ℎ𝑜𝑠𝑡 = ℎ𝑜𝑠𝑡 ∪ {𝑛𝑜𝑑𝑒𝑜𝑢𝑡}; 

    else do 

     𝐻𝑙𝑙 = 𝐻𝑙𝑙 ∪ {{𝑛𝑜𝑑𝑒𝑜𝑢𝑡}}; 

    end if 

   end if 

  end for 

 end for 

 𝑩𝒓𝒆𝒂𝒌; 

end While 

 

In Table 3.4, function 𝒔𝒐𝒓𝒕 is responsible for sorting all links in graph 𝐺 by their link 

weights in descending order. If a unit-host has already been merged into a MEC host, function 

𝒇𝒊𝒏𝒅_𝒉𝒐𝒔𝒕 is used to find which MEC host it belong to and the other unit-hosts this MEC 

host contains. 

B. Heuristic Algorithm – Variable Neighbor Search (VNS) 

Since a greedy algorithm may not be able to give satisfactory results, to find better solutions, 

a heuristic algorithm called Variable Neighbor Search (VNS) is used in Phase 2. 

The concept of a neighborhood of a point represents a set of points containing the original 

point where one can move some amount in any direction away from that point without 
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leaving the set. In neighbor search algorithms, an operation can be taken to transfer a point 

into one of its neighbors, and by repeatedly doing so, one neighborhood of this point can be 

generated. Obviously, there are usually multiple choices of possible operations, which results 

in multiple neighborhoods for one point. 

In Phase 2, a point is a solution, or a possible combination of unit-hosts, whose neighbor 

is another similar solution derived from itself by taking an operation. Neighbors generated 

by the same operation make a neighborhood. 

Variable Neighbor Search (VNS) is a heuristic algorithm which is used to approximate a 

solution for NP-Hard optimization problems. VNS algorithm is based on the local search 

algorithm, which outcome tends to fall into a local optimum and never gets out. VNS is an 

improved local search algorithm because it has mechanism that can force it to step out of the 

local optimum. 

VNS consists of two main steps: Variable Neighborhood Descent and Shaking Procedure. 

 Variable Neighborhood Descent (VND) 

 The pseudocode of VND is shown in Table 3.5. 

 

Table 3.5: Variable Neighbor Descent 

Procedure VND 

Input: 

𝑥:  The original solution. 

𝑛𝑒:  The number of neighborhoods provided. 

𝑁𝐸 = {𝑁𝐸𝑖}, 𝑖 = {1,2, … , 𝑛𝑒}:  

𝑁𝐸𝑖  is the 𝑖-th neighborhood. 

Output: 

Updated 𝑥 

𝑖 = 1; 

While 𝑇𝑟𝑢𝑒 do 

𝑥′ = 𝒍𝒐𝒄𝒂𝒍_𝒔𝒆𝒂𝒓𝒄𝒉(𝑁𝐸(𝑖), 𝑥); 

if 𝑥′ ≠ 𝑥 do 

  𝑖 = 1; 

  𝑥 = 𝑥′; 

else 

  𝑖 = 𝑖 + 1; 

end if 

if 𝑖 > 𝑛𝑒 do 

  𝑩𝒓𝒆𝒂𝒌; 

end if 

end While 

First of all, there should be an original solution 𝑥 as an input to VND. This solution can 

be a random solution, or a sub-optimal solution derived from simpler algorithms, for example, 

greedy algorithm. Besides, 𝑛𝑒 neighborhoods should be pre-determined. The algorithm has 

four steps listed below: 

1. Select the first neighborhood 𝑁1 and continue with step 2. 
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2. Do local search in the selected neighborhood. Local search is the procedure to search 

all the neighbors of solution 𝑥 in the neighborhood and find the optimal one among 

them. Function 𝒍𝒐𝒄𝒂𝒍_𝒔𝒆𝒂𝒓𝒄𝒉  is used to do the local search procedure, and the 

local optimal solution is saved in variable 𝑥′. If 𝑥′ ≠ 𝑥, which means that a solution 

better than the current solution 𝑥 has been found, assign this optimal solution 𝑥′ 

to variable 𝑥 and move back to step 1, otherwise continue with step 3. 

3. Select the next neighborhood 𝑁𝑖+1 and return to step 2 if 𝑖 < 𝑛𝑒. 

4. End when no better solution has been found in all neighborhoods (𝑖 = 𝑛𝑒 + 1). 

Figure 3.3 depicts the VND procedure more vividly. Basically speaking, when an improved 

solution/neighbor is discovered, the algorithm will restart from the first neighborhood 𝑁1, 

otherwise the algorithm will keep searching for better solutions in the following 

neighborhoods until no better solution is found in any neighborhood. 

 
Figure 3.3: VND procedures 

 

 Shaking procedure 

A shaking procedure is used to further extend the searching area by generating more 

neighborhoods. When the VND algorithm gets an optimal solution, the shaking procedure 

will force it to step out of the current neighborhoods and start to search for better solutions 

in new neighborhoods. A typical approach to do shaking is to generate a new neighbor of the 

current optimal solution by an operation and use the new neighbor as the input for next VDN 

procedure. 

All these two steps have the same core idea, that is to change the current solution into its 

neighbor solution in order to expand the searching area and get closer to the global optimum. 

This simple but powerful mechanism makes it possible for VNS to avoid falling into local 

minimum. 

The complete procedure of VNS is shown in Table 3.6. Function 𝑽𝑵𝑫  is described in 

Table 3.5 and function 𝒔𝒉𝒂𝒌𝒊𝒏𝒈 is used to do the shaking procedure. 

 
Table 3.6: VNS Algorithm 

Algorithm VNS 
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Input: 

𝑥:  The original solution. 

𝑛𝑒:  The number of neighborhoods provided. 

𝑁𝐸 = {𝑁𝐸𝑖}, 𝑖 = {1,2, … , 𝑛𝑒}:  

𝑁𝐸𝑖  is the 𝑖-th neighborhood. 

Output: 

Updated 𝑥 

While 𝑇𝑟𝑢𝑒 do 

𝑥′ = 𝑽𝑵𝑫(𝑥, 𝑛𝑒, 𝑁𝐸); 

𝑥′′ = 𝒔𝒉𝒂𝒌𝒊𝒏𝒈(𝑥′); 

𝑥 = 𝑥′′; 

if ending criterion is met do 

 𝑩𝒓𝒆𝒂𝒌; 

end if 

end While 

C. Classical Algorithm – Multi-Kernighan Lin Algorithm 

Multi-Kernighan Lin algorithm is a classical algorithm to solve minimum 𝑘 -cut problem. 

Multi-Kernighan Lin algorithm is based on Kernighan Lin algorithm.  

Kernighan Lin 

Kernighan Lin (KL) algorithm is a heuristic algorithm that partitions nodes of a graph into two 

subsets 𝐴 and 𝐵 with equal or nearly equal size and minimizes the sum of link weights of 

the links that connect the two subsets 𝐴 and 𝐵. The sum of links weights of links between 

different subsets is denoted by 𝑇. 

To describe the algorithm more clearly and precisely, two concepts – internal cost and 

external cost – will be introduced. Internal cost of a node is the sum of link weights between 

this node and other nodes in the same subset, while external cost of a node is the sum of link 

weights between this node and other nodes in the other subsets. For each 𝑎 ∈ 𝐴 𝑜𝑟 𝐵, let 

𝐼𝑎  denote the internal cost of 𝑎 , 𝐸𝑎  denote the external cost of 𝑎  and 𝐷𝑎 = 𝐸𝑎 − 𝐼𝑎 

denote the difference between the external cost and internal cost of 𝑎. If two nodes, 𝑎 and 

𝑏 are interchanged, then the new sum 𝑇𝑛𝑒𝑤 can be written as 𝑇𝑛𝑒𝑤 = 𝑇𝑜𝑙𝑑 − 𝐷𝑎 − 𝐷𝑏 +

2𝑐𝑎,𝑏  where 𝑐𝑎,𝑏  is the sum of weights of the links between nodes 𝑎  and 𝑏 . The 

Kernighan Lin algorithm will first divide all the nodes into two subsets 𝐴 and 𝐵 randomly 

and find an optimal set of interchange operations between nodes in subsets 𝐴  and 𝐵 

which minimizes 𝑇 , then the optimal operations will be executed and give the optimal 

partitions of the input graph. 

In this master thesis, a built-in function called “kernighan_lin” in Python “networkx” 

package is used, and this built-in function is based on Kernighan Lin algorithm introduced 

above. 

The basic steps of multi-Kernighan Lin (multi-KL) algorithm are as follows: 
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1. Partition the node set of the input graph into two disjoint subsets using Kernighan 

Lin algorithm; the two subsets shall have the same or almost the same number of 

nodes. 

2. Check each newly generated subset to see whether its size violates the limitation or 

not. If not, proceed with the next step; otherwise, further partition each of the 

subsets with sizes exceed limitation into two subsets and repeat this step. 

3. Check all the subsets, find and mark all the subsets with sizes smaller than the size 

limitation. Then choose one of the marked subsets with the largest size and find a 

node, which can minimize 𝑇  after being moved to the chosen subset, in another 

marked subset. Repeat this step until there is at most 1 subset with a size smaller than 

the limitation. 

By doing step 1 and step 2, local minimums have been achieved each time, however, a 

combination of local minimums cannot guarantee a global minimum, and sometimes, it is 

not even close to the global minimum. To further improve the solution derived from multi-

Kernighan Lin algorithm, a greedy algorithm is added, and its main idea is described as follows: 

1. Randomly pick two nodes from two different subsets, check whether the 𝑇 value 

is decreased after exchanging the positions of the two nodes. If yes, exchange these 

two nodes. 

2. Repeat step 1 until some criteria have been met. For example, no improvement on 

𝑇 in a certain number of continuous repetitions of step 1. 

Table 3.7 shows the basic steps of multi-Kernighan Lin algorithm. 

 

Table 3.7: Algorithm 5 

Algorithm 5. Multi - Kernighan Lin 

Input: 

𝐺:  The directed graph that represents all the sites. 

𝑠𝑖𝑧𝑒𝑚𝑎𝑥:  The maximum number of unit-hosts one MEC host can contain. 

Output: 

𝑡𝑜𝑡:  Total number of subsets. 

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑡𝑜𝑡}:  

Subsets of nodes. 

𝑟𝑒𝑝𝑒𝑎𝑡𝑚𝑎𝑥:  End loop threshold in the greedy algorithm. 

𝑆𝑙𝑎𝑟𝑔𝑒 = {𝒏𝒐𝒅𝒆𝒔(𝐺)}; 

𝑆𝑠𝑚𝑎𝑙𝑙 = {}; 

𝑆 = {}; 

// Part 1 

While 𝑇𝑟𝑢𝑒 do 

    for all 𝑠 ∈ 𝑆 do 

        𝑠𝑎 , 𝑠𝑏 = 𝑲𝑳(𝑠); 

        if 𝒔𝒊𝒛𝒆(𝑠𝑎) > 𝑠𝑖𝑧𝑒𝑚𝑎𝑥 do 

            𝑆𝑙𝑎𝑟𝑔𝑒. 𝒂𝒑𝒑𝒆𝒏𝒅(𝑠𝑎); 

        else if 𝒔𝒊𝒛𝒆(𝑠𝑎) == 𝑠𝑖𝑧𝑒𝑚𝑎𝑥 do 

            𝑆. 𝒂𝒑𝒑𝒆𝒏𝒅(𝑠𝑎); 
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        else 

            𝑆𝑠𝑚𝑎𝑙𝑙 . 𝒂𝒑𝒑𝒆𝒏𝒅(𝑠𝑎); 

        end if 

        if 𝒔𝒊𝒛𝒆(𝑠𝑏) > 𝑠𝑖𝑧𝑒𝑚𝑎𝑥 do 

            𝑆𝑙𝑎𝑟𝑔𝑒. 𝒂𝒑𝒑𝒆𝒏𝒅(𝑠𝑏); 

        else if 𝒔𝒊𝒛𝒆(𝑠𝑏) == 𝑠𝑖𝑧𝑒𝑚𝑎𝑥 do 

            𝑆. 𝒂𝒑𝒑𝒆𝒏𝒅(𝑠𝑏); 

        else 

            𝑆𝑠𝑚𝑎𝑙𝑙 . 𝒂𝒑𝒑𝒆𝒏𝒅(𝑠𝑏) 

        end if 

        𝑆. 𝒓𝒆𝒎𝒐𝒗𝒆(𝑠); 

        if 𝑆 == {} do 

            𝑩𝒓𝒆𝒂𝒌; 

        end if 

    end for 

end While 

// Part 2 

While 𝑇𝑟𝑢𝑒 do 

𝑠𝑚 = 𝒇𝒊𝒏𝒅_𝒍𝒂𝒓𝒈𝒆𝒔𝒕(𝑆𝑠𝑚𝑎𝑙𝑙); 

𝑠𝑚𝑎𝑥 = 𝑁𝑜𝑛𝑒; 

𝑛𝑜𝑑𝑒𝑚𝑎𝑥 = 𝑁𝑜𝑛𝑒; 

𝑑𝑚𝑎𝑥 = 0; 

for all 𝑠 ∈ 𝑆𝑠𝑚𝑎𝑙𝑙/{𝑠𝑚} do 

    for all 𝑛𝑜𝑑𝑒 ∈ 𝑠 do 

        𝑑 = 𝐸𝑛𝑜𝑑𝑒,𝑠𝑚
− 𝐼𝑛𝑜𝑑𝑒; 

        if 𝑑 > 𝑑𝑚𝑎𝑥 do 

            𝑠𝑚𝑎𝑥 = 𝑠; 

            𝑛𝑜𝑑𝑒𝑚𝑎𝑥 = 𝑛𝑜𝑑𝑒; 

            𝑑𝑚𝑎𝑥 = 𝑑; 

        end if 

    end for 

if 𝑑𝑚𝑎𝑥 > 0 do 

    𝑠𝑚. 𝒂𝒑𝒑𝒆𝒏𝒅(𝑛𝑜𝑑𝑒); 

    𝑠𝑚𝑎𝑥. 𝒓𝒆𝒎𝒐𝒗𝒆(𝑛𝑜𝑑𝑒); 

end if 

if 𝒔𝒊𝒛𝒆(𝑠𝑚) == 𝑠𝑖𝑧𝑒𝑚𝑎𝑥 or 𝑑𝑚𝑎𝑥 == 0 do 

    𝑆. 𝒂𝒑𝒑𝒆𝒏𝒅(𝑠𝑚); 

    𝑆𝑠𝑚𝑎𝑙𝑙 . 𝒓𝒆𝒎𝒐𝒗𝒆(𝑠𝑚);     

end if 

if 𝑆𝑠𝑚𝑎𝑙𝑙 == {} do 

    𝑩𝒓𝒆𝒂𝒌; 

end if 

end While 

// Part 3 



Optimizing Edge Computing in 5G Networks 

Optimizing the Locations of MEC Hosts and MEC Application Instances  56 

𝑟𝑒𝑝𝑒𝑎𝑡 = 0; 

While 𝑟𝑒𝑝𝑒𝑎𝑡 < 𝑟𝑒𝑝𝑒𝑎𝑡𝑚𝑎𝑥 do 

𝑠1 = 𝒓𝒂𝒏𝒅𝒐𝒎𝟐(𝑆); 

𝑠2 = 𝒓𝒂𝒏𝒅𝒐𝒎𝟐(𝑆\{𝑠1}); 

𝑎 = 𝒓𝒂𝒏𝒅𝒐𝒎𝟐(𝑠1); 

𝑏 = 𝒓𝒂𝒏𝒅𝒐𝒎𝟐(𝑠2); 

𝑑 = 𝐷𝑎 + 𝐷𝑏 − 2𝑐𝑎,𝑏; 

if 𝑑 > 0 do 

    𝑠1. 𝒂𝒑𝒑𝒆𝒏𝒅(𝑏); 

    𝑠2. 𝒂𝒑𝒑𝒆𝒏𝒅(𝑎); 

    𝑠1. 𝒓𝒆𝒎𝒐𝒗𝒆(𝑎); 

    𝑠2. 𝒓𝒆𝒎𝒐𝒗𝒆(𝑏); 

    𝑟𝑒𝑝𝑒𝑎𝑡 = 0; 

else 

    𝑟𝑒𝑝𝑒𝑎𝑡 = 𝑟𝑒𝑝𝑒𝑎𝑡 + 1; 

end While 

 

This multi-Kernighan Lin algorithm consists of three sequential sections. In pseudocode, 

each part is a “while loop”.  

Part 1 partitions the nodes of the input graph into several subsets whose sizes are no 

larger than the size limitation 𝑠𝑖𝑧𝑒𝑚𝑎𝑥. This is done by repeatedly partitioning the subsets 

with more than 𝑠𝑖𝑧𝑒𝑚𝑎𝑥  nodes into two subsets using Kernighan Lin algorithm until no 

subsets violates this limitation. In this part, several functions are involved: function 

𝒏𝒐𝒅𝒆𝒔(𝐺)  returns a set of all the nodes in graph 𝐺 ; function 𝑲𝑳  is the kernighan_lin 

function in networkx package in Python; function 𝒔𝒊𝒛𝒆(𝐴) returns the number of elements 

in set 𝐴 ; function 𝐴. 𝒓𝒆𝒎𝒐𝒗𝒆(𝑎)  removes element 𝑎  from set 𝐴  and function 

𝐴. 𝒂𝒑𝒑𝒆𝒏𝒅(𝑎) can add element 𝑎 to set 𝐴. 

To further optimize the original solution provided by part 1, parts 2 and 3 are added. 

Part 2 attempts to combine the subsets with less than 𝑠𝑖𝑧𝑒𝑚𝑎𝑥 number of nodes, and 

these subsets are saved in set 𝑆𝑠𝑚𝑎𝑙𝑙. Each time, one of the subsets  𝑠𝑚 ∈ 𝑆𝑠𝑚𝑎𝑙𝑙 with the 

largest number of nodes will be chosen by function 𝒇𝒊𝒏𝒅_𝒍𝒂𝒓𝒈𝒆𝒔𝒕 and a node 𝑛𝑜𝑑𝑒 from 

another subset in 𝑆𝑠𝑚𝑎𝑙𝑙  which maximizes 𝑑 = 𝐸𝑛𝑜𝑑𝑒,𝑠𝑚
− 𝐼𝑛𝑜𝑑𝑒 , where 𝐸𝑛𝑜𝑑𝑒,𝑠𝑚

  is the 

sum of weights of the links between node 𝑛𝑜𝑑𝑒 and nodes in subset 𝑠𝑚, will be moved to 

the chosen subset 𝑠𝑚 from its current subset. If the size of 𝑠𝑚 equals 𝑠𝑖𝑧𝑒𝑚𝑎𝑥 or no such 

𝑛𝑜𝑑𝑒  has been found, subset 𝑠𝑚  will be removed from set 𝑆𝑠𝑚𝑎𝑙𝑙 . Part 2 ends when 

𝑆𝑠𝑚𝑎𝑙𝑙 is empty. 

Part 3 is a greedy algorithm that helps to further improve the solution. Two nodes 𝑎, 𝑏  

belonging to two different subsets 𝑠1, 𝑠2  separately are chosen randomly by function 

𝒓𝒂𝒏𝒅𝒐𝒎𝟐. If the value of 𝑇 can be reduced, then interchange the two nodes 𝑎, 𝑏. Repeat 

this procedure until no improving interchanging has been found in the most recent 

𝑟𝑒𝑝𝑒𝑎𝑡𝑚𝑎𝑥 repetitions. 
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D. One Remark 

It is not mandatory for a UE to strictly follow the paths chosen by the algorithms designed in 

the previous sections, which can be seen in Chapter 4. However, when the network is busy, 

it is the best way to follow the chosen paths to decrease the total number of relocations 

experienced by all the UEs in the geographic service area. This can be further explained by 

Figure 3.4.  

 

Figure 3.4: Switching between two different paths (same MEC application). 

 

UE 𝐴 and UE 𝐵 in Figure 3.4 are using the same MEC application. If UE 𝐴 and UE 𝐵 

stick to their own original paths, depicted in the right part of Figure 3.4, the total number of 

relocations is 3 + 2 = 5. However, if UE 𝐴 leaves Host 𝐵 and switches to Host 𝐺 instead 

of Host 𝐶 , then UE 𝐵 , which is currently served by Host 𝐺 , needs to switch to Host 𝐶 

because the network is busy and Host 𝐺 is fully loaded. This is shown in the left part of 

Figure 3.4, and the total number of relocations is 2 + 4 = 6 > 5. To avoid resource shortage 

under the extreme situation, if one UE switches to another path, then other UEs may be 

forced to change their current paths as well, which may result in increasing the number of 

relocations, therefore, when the network is busy, each UE needs to stick to its original path 
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and avoid switching paths. 

However, if the network is not busy and UE 𝐵 can still be served by Host 𝐺, then the 

total number of relocations is 2 + 2 = 4 < 5. The scenario where the network is not busy is 

further discussed in chapters 4 and 5. 

3.5 Tests 

Using the algorithms introduced in section 3.3 and 3.4, six locating mechanisms to locate 

MEC hosts and MEC applications properly have been generated: greedy + greedy, greedy+ 

VNS, greedy + multi-KL, simulation-based + greedy, simulation-based + VNS, simulation-

based + multi-KL. In this section, these six locating mechanisms are tested and analyzed. 

A. Testing environment 

Simulated environments 

• Number of sites: 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100. The first 50 sites have the 

same coverage radius (e.g. 𝑟𝐹 in Figure 3.1) as well as the same distance towards the 

road (e.g. |𝑥𝐹| in Figure 3.1), and these sites are uniformly located along the road. 

Other sites with different locations and coverage radius are gradually added to the 

geographic service area, 5 sites at a time. 

• Road length: 126 unit lengths. 

• Three types of locations: close to or co-located with gNB-DU, close to or co-located 

with gNB-CU, collocated with a UPF which is inside the core network. 

• MEC hosts information is shown in Table 3.8. A location No. is used to represent a 

location in simulations in this chapter and Chapter 5 for simplicity reason. 

Table 3.8: MEC hosts information 

Location of MEC hosts Close to gNB-DU Close to gNB-CU Close to 5GC 

Location No. 1 2 3 

Maximum number of sites one MEC 

host can process data from 
1 3 5 

Maximum amount of available 

resources in one MEC host 

(computing/storage/processing) 

100/100/100 300/300/300 500/500/500 

 

Test the performance of all six locating mechanisms in the simulated geographic service 

area described above. Their performance includes the following aspects: 

• The total number of relocations (weighted) = number of relocations experienced by 

each UE × priority of the MEC application this UE uses. 

• The total number of MEC hosts/unit-hosts involved. 

• The total amount of resources reserved. 

MEC applications 

To fully investigate and compare the performance of the six locating mechanisms, three 
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groups of MEC applications with different settings are used to test the mechanisms. Tables 

3.9 - 3.11 show the three different groups separately. 

 

Table 3.9: MEC applications group 1 

MEC 

APP 

Required Resources per UE 

(computing/storage/processing) 
Priority 

Acceptable 

Locations 

Maximum 

number of UEs 

enter the 

geographic 

service area 

together 

1 2/2/6 2 1, 2 3 

2 3/3/3 1 1, 2, 3 2 

3 2/6/2 2 1, 2, 3 5 

4 10/4/3 3 1, 2 2 

5 2/8/5 3 1 3 

 

Table 3.10: MEC applications group 2 

MEC 

APP 

Required Resources per UE 

(computing/storage/processing) 
Priority 

Acceptable 

Locations 

Maximum 

number of UEs 

enter the 

geographic service 

area together 

1 2/2/3 2 1, 2 3 

2 3/3/3 1 1, 2, 3 2 

3 2/2/3 2 1, 2, 3 5 

4 10/4/3 3 1, 2 2 

5 2/8/5 3 1 3 

 

Table 3.11: MEC applications group 3 

MEC 

APP 

Required Resources per UE 

(computing/storage/processing) 
Priority 

Acceptable 

Locations 

Maximum number 

of UEs enter the 

geographic service 

area together 

1 2/2/3 2 1, 2 3 

2 3/3/3 1 1, 2, 3 2 

3 2/2/3 3 1, 2, 3 5 

4 10/4/3 4 1, 2 2 

5 2/8/5 5 1 3 

 

B. Test Results and analysis 

Test 1: Test results of MEC application group 1 are shown in Figures 3.5 - 3.8. In the legends 
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in these figures, “sim” represents simulation-based algorithm and “kl” represents Kernighan 

Lin algorithm. 

 
Figure 3.5: Number of relocations (weighted) between unit-hosts vs Number of sites in the 

geographic service area – test 1 

 

Figure 3.6: Number of relocations (weighted) between MEC hosts vs Number of sites in the 

geographic service area – test 1 



Optimizing Edge Computing in 5G Networks 

Optimizing the Locations of MEC Hosts and MEC Application Instances  61 

 
Figure 3.7: Number of involved MEC hosts vs Number of sites in the geographic service area – test 1 

 

Figure 3.8: The amount of reserved resources by greedy algorithm and simulation-based algorithm 

and the required amount of resources – test 1 

 

Figure 3.5 and Figure 3.6 both show a trend that as the number of sites in the geographic 

service area increases, the total number of relocations under extreme situation decreases at 

the same time. This trend also applies to the following two tests – Test 2 and Test 3. Generally, 

when there are more resources available, user experience will at least not degrade. In this 

specific case, if some of the added sites can decrease the number of relocations, their 

corresponding unit-hosts will be selected in Phase 1, otherwise algorithms will stick to the 

previous deployments of MEC hosts and MEC applications. Therefore, the total number of 

relocations will not be larger than before when some more sites are added to the geographic 

service area. 

Apart from that, in Figure 3.5, when there are only 50 sites in the geographic service area, 

the total number of relocations between unit-hosts of greedy algorithm and simulation-
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based algorithm is equal. This is because these 50 sites are uniformly distributed and no 

matter which path a UE takes from the entrance towards the exit, the number of sites (unit-

hosts) along that path is always the same. Therefore, although simulation-based algorithm 

involves fewer unit-hosts, as shown in Figure 3.7, its total number of relocations is still as 

large as that of the greedy algorithm. Similarly, the overlapping starting points in Figure 3.9 

and Figure 3.13 can be explained. 

In Table 3.9, based on the definitions, MEC app 1 and 3, 4 and 5 are two groups of 

complementary MEC applications. To be more precise, for MEC app 1 and 3, there exists a 

vector 𝑉 = {1,1}  which makes max
𝑗∈{1,2,3}

∑ 𝑟𝑖𝑗𝑣𝑖
𝑘
𝑖=𝑖

∑ 𝑣𝑖
𝑘
𝑖=1

= 4 < min
𝑣𝑖>0

max
𝑗∈{1,2,3}

𝑟𝑖𝑗 = 6  come into 

existence. Similarly, for MEC app 4 and 5, there also exists a vector 𝑉 = {1,1}  for which 

max
𝑗∈{1,2,3}

∑ 𝑟𝑖𝑗𝑣𝑖
𝑘
𝑖=𝑖

∑ 𝑣𝑖
𝑘
𝑖=1

= 6 < min
𝑣𝑖>0

max
𝑗∈{1,2,3}

𝑟𝑖𝑗 = 8  holds. Since there are two groups of 

complementary MEC applications, it is expected that simulation-based algorithm will 

outperform the purely greedy algorithm. Figure 3.5 shows that the number of relocations 

between unit-hosts given by simulation-based algorithm is much smaller than that of the 

purely greedy algorithm. Figure 3.7 shows that simulation-based algorithm uses fewer unit- 

hosts than greedy algorithm because the former can deal with uneven usage of different 

types of resources in unit-hosts and make it possible for one unit-host to serve more UEs. 

Since the maximum number of unit-hosts one MEC host in a certain location can contain is 

fixed, when the number of involved unit-hosts is smaller, the number of MEC hosts is usually 

smaller too. This can be discovered from Figure 3.7, all the mechanisms using simulation-

based algorithm have smaller number of MEC hosts than those using greedy algorithm 

instead. Besides, greedy algorithm in Phase 2 performs worse than the other two algorithms 

both in the number of relocations and in the number of MEC hosts involved, which further 

proves that the total number of relocations is positively related to the number of MEC hosts. 

It can be discovered from Figure 3.6 that the VNS algorithm performs the best – it gives 

an outcome that has the smallest number of relocations, and multi-Kernighan Lin algorithm 

is the second best. In fact, both algorithms include exploring procedure, and if the end criteria 

are stricter, both algorithms can get closer to the actual global optimal solution. 

Unfortunately, considering the processing and computing capabilities of the device are 

limited, it is impossible to use stringent criteria in the tests. It can also be noticed that, using 

similar end criteria, VNS algorithm outperforms multi-Kernighan Lin algorithm because the 

searching area of VNS algorithm is larger than the exploring area of multi-Kernighan Lin 

algorithm. In the part 3 of multi-Kernighan Lin algorithm, only two nodes are explored each 

iteration to see whether these two nodes can be interchanged. In comparison, in one 

iteration in VNS algorithm, the VND procedure can search in multiple neighborhoods of the 

current optimal solution, and the shaking procedure further expands the searching area. 

Therefore, after the same number of iterations, the VNS algorithm can give a solution that is 

closer to the global optimum than the solution given by multi-Kernighan Lin algorithm. It is 

not a surprise that the greedy algorithm performs the worst of the three algorithms in Phase 

2, because it simply tries to merge unit-hosts one by one in a greedy way which can easily 

reach a local optimum but then no operations are done to force itself to jump out of this local 

optimum, so it cannot perform as well as the other two algorithms which both are capable 
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to step out of the current local optimum and explore other possible combinations of unit-

hosts. 

For MEC application group 1, the simulation-based algorithm significantly outperforms 

the greedy algorithm, and the worst minimum 𝑘-cut solution given by the former is better 

than the best minimum 𝑘 -cut solution given by the latter. Therefore, the six locating 

mechanisms ranked by their performances in a descending order are: simulation-based + VNS, 

simulation-based + multi-KL, simulation-based + greedy, greedy + VNS, greedy + multi-KL, 

greedy + greedy. 

Figure 3.8 shows the amount of reserved resources by the greedy algorithm and the 

simulation-based algorithm in Phase 1 as well as the required amount of resources by MEC 

application group 1. Although the number of sites in the geographic service area is increasing, 

the road length, required amount of resources to serve one UE and estimated maximum 

number of the UEs that enter the geographic service area at the same time are not changing 

with it, hence the increase in the number of sites cannot affect the total amount of required 

resources. Both algorithms in Phase 1 reserve exactly the required amount of resources, 

which is desired because no redundant resources are reserved, and more resources are 

available for further usage.  

Test 2: Testing results of MEC application group 2 are shown in Figures 3.9 - 3.12.  

 

Figure 3.9: Number of relocations (weighted) between unit-hosts vs Number of sites in the 

geographic service area – test 2 
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Figure 3.10: Number of relocations (weighted) between MEC hosts vs Number of sites in the 

geographic service area – test 2 

 

Figure 3.11: Number of involved MEC hosts vs Number of sites in the geographic service area – test 2 
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Figure 3.12: The amount of reserved resources by greedy algorithm and simulation-based algorithm 

and the required amount of resources – test 2 

 

In Figure 3.9, simulation-based algorithm outperforms greedy algorithm, however, if 

compared to Figure 3.5, the difference between the outcome of the two algorithms is much 

smaller in Figure 3.9 The reason behind is that, in the settings of MEC application group 2, 

although MEC applications 1 and 3 are still complementary MEC applications based on the 

definition, MEC applications 4 and 5 can no longer complement each other’s resource usages. 

This is because both MEC applications 4 and 5 in Table 3.6 have larger required amount of 

computing resources than the two other types of resources, hence there does not exist a 

vector 𝑉 = {𝑣4, 𝑣5} (𝑣4 > 0, 𝑣5 > 0) , for which the Inequation 3.19 holds. Differences 

between the two curves that represent the number of involved unit-hosts in Figure 3.11 are 

much smaller than the differences in Figure 3.7 due to the same reason – there is only one 

group of complementary MEC applications in Table 3.10, and the advantage of simulation-

based algorithm on high resource efficiency decreases accordingly. Since the number of MEC 

hosts is related to the number of selected unit-hosts in Phase 1, differences between curves 

that represent the number of MEC hosts in Figure 3.11 are also smaller than the differences 

in Figure 3.7. Unsurprisingly, greedy algorithm in Phase 2 gives the highest number of 

relocations as well as MEC hosts, and the reason is explained in the analysis of Test 1.  

The changes in MEC application settings in Table 3.10 also affect the performances of the 

six locating mechanisms. Although the rank of performances of the three graph partitioning 

algorithms in Phase 2 remains the same, the difference between the performances of the 

two algorithms in Phase 1 is smaller, hence the rank of the six locating mechanisms becomes: 

simulation-based + VNS, greedy + VNS, simulation-based + multi-KL, greedy + multi-KL, 

simulation-based + greedy, greedy + greedy. 

Although the MEC application settings have been changed, both algorithms in Phase 1 

can still avoid allocating more resources than needed. The only difference between Figure 

3.12 and Figure 3.8 is in the y-axis, since MEC applications group 2 has different requirements 

on resources. 
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Test 3: Testing results of MEC application group 3 are shown in Figures 3.13 – 3.16. 

 

Figure 3.13: Number of relocations (weighted) between unit-hosts vs Number of sites in the 

geographic service area – test 3 

 

 
Figure 3.14: Number of relocations (weighted) between MEC hosts vs Number of sites in the 

geographic service area – test 3  
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Figure 3.15: Number of involved MEC hosts vs Number of sites in the geographic service area – test 3 

 

Figure 3.16: The amount of reserved resources by greedy algorithm and simulation-based algorithm 

and the required amount of resources – test 3 

 

Every MEC application in Table 3.11 has a unique priority, which means that no 

complementary MEC applications can be found. Therefore, the performances of the two 

algorithms in Phase 1 should be the same. In Figure 3.13, the two curves that represent 

number of relocations between unit-hosts using greedy algorithm and simulation-based 

algorithm overlap with each other. In Figure 3.15, the numbers of unit-hosts used by the two 

algorithms in Phase 1 – greedy and simulation-based algorithms – are equal, and that is the 

reason why the four other curves, which represent the numbers of MEC hosts required by 

the four different locating mechanisms – greedy + VNS, greedy + Multi-KL, simulation-based 

+ VNS and simulation-based + Multi-KL – separately, are closer to each other. Like what has 

been discovered in Tests 1 and 2, in Test 3, greedy algorithm in Phase 2 again gives the highest 
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number of MEC hosts as well as relocations, the reason behind this outcome is explained in 

the analysis of Test 1. 

The performances of the three algorithms in Phase 2 are still different and the ranking 

based on their performances remains unchanged: VNS algorithm ≥ Multi-KL algorithm > 

Purely greedy algorithm. The six locating mechanisms ranked by their performances in a 

descending order are: simulation-based + VNS and greedy + VNS, simulation-based + multi-

KL and greedy + multi-KL, simulation-based + greedy and greedy + greedy. 

The only difference between Table 3.10 and Table 3.11 is the priorities of MEC 

applications, which has nothing to do with the two factors – estimated number of UEs that 

enter the geographic service area at the same time and the required amount of resources to 

serve a UE – that can affect the total amount of required resources. Hence, Figure 3.16 is 

exactly the same as Figure 3.12. 

C. Conclusions 

1. The performance of the algorithms in Phase 1: simulation-based algorithm ≥ purely 

greedy algorithm. 

2. The performance of the algorithms in Phase 2: VNS algorithm ≥ Multi-KL algorithm > 

purely greedy algorithm. 

3. When new sites are added to the geographic service area, the number of relocations will 

never decrease. 

4. The larger the difference min
𝑣𝑖>0

max
𝑗∈{1,2,3}

𝑟𝑖𝑗 − max
𝑗∈{1,2,3}

∑ 𝑟𝑖𝑗𝑣𝑖
𝑘
𝑖=𝑖

∑ 𝑣𝑖
𝑘
𝑖=1

  is, the better the 

performance of the simulation-based algorithm is. 

5. If every MEC application has a unique priority, the two algorithms in Phase 1 give the 

same outcome. 

6. Even though minimizing the number of relocations and the number of MEC hosts 

together can be impossible sometimes, at least when the number of relocations has been 

minimized, the number of MEC hosts is also small. This means that when the service 

continuity is optimized, the O&M costs of MEC hosts also reach a low level. 

7. Minimizing the latency and minimizing the total number of relocations cannot be 

achieved simultaneously due to the dilemma introduced in section 3.1. In this project, 

considering the fact that relocations might cause service interruptions which can 

significantly degrade user experience, minimizing the total number of relocations is 

chosen as the optimization goal, and the latency requirements of MEC applications 

become a constraint. 

8. The performances of the six locating mechanisms changes with MEC application settings. 

However, no matter how the settings change, mechanism “simulation-based + VNS” 

always gives the best outcomes while mechanism “greedy + greedy” always gives the 

worst. 

9. In Phase 2, greedy algorithm the worst performances but it is the fastest algorithm 

among the three and requires the fewest running resources. Due to the fact that this 

algorithm is used to determine the deployment of MEC hosts and MEC applications 

before the MEC system comes into use, the running time of the algorithm is not an 
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essential factor. Therefore, heuristic algorithm is a better choice to solve the question in 

Phase 2.  

3.6. Summary 

Chapter 3 mainly answers the four sub-questions of research question 3: Devise an algorithm 

to find the optimal location of MEC hosts and the optimal location (MEC host) of a MEC 

application. 

1. Determine which aspects of MEC applications need to be considered in this master thesis. 

Required service latency, required amount of resources and sensitivity to service relocations 

are considered. Service latency is the latency between a UE and its serving MEC host. A 

certain amount of resources is required to serve a UE using this MEC application. Sensitivity 

to service relocations consists of two aspects. One aspect is the service continuity during a 

relocation. If a relocation of a MEC application is more likely to cause service interruptions, 

then this MEC application has a higher sensitivity to service relocations. Another aspect is, 

when service interruption occurs during a relocation, how severe can the consequence be. 

The more dangerous the consequence is, the higher the sensitivity of this MEC application to 

service interruptions is.  

2. How to transform the aspects chosen in sub-question a) into a set of parameters? 

The above three aspects are transformed into three parameters. Required service latency 

and amount of resources are directly used as two parameters. Sensitivity to service 

relocations is transformed into the priority of this MEC application. The higher the sensitivity 

is, the higher the priority is. 

3. How to locate the MEC hosts as well as MEC applications properly based on these 

parameters? 

To locate the MEC hosts and MEC applications properly, optimization is needed. The total 

number of relocations is selected as the optimization object because service interruptions 

during relocations can have bad impacts and, sometimes, threats to lives. Besides, the 

number of relocations is positively related to the total number of MEC hosts in the geographic 

service area. Therefore, minimizing the total number of relocations can not only limit the 

occurrence of unwanted consequences, but also decrease the investments on running and 

maintaining MEC hosts. Meanwhile, UEs’ requirements on service latency and resources are 

satisfied. 

The extreme situation where the number of UEs that in the geographic service area 

reaches its maximum value is considered to make sure that the network can handle the worst 

situation and always meet UEs’ requirements on resources and service latency. The total 

number of relocations is minimized under this extreme situation, using greedy algorithms 

and heuristic algorithms. 

4. How to test the performance of the algorithms? 

The test of algorithms is done by simulations in Python. The five algorithms used in sub-

question c) can form six different locating mechanisms to deploy MEC hosts and MEC 
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applications. Three tests are designed to test the performance of the six locating mechanisms 

under different settings of MEC applications. The outcomes show that, mechanism 

“simulation-based + VAS” always gives the smallest number of relocations, as well as a small 

number of MEC hosts to be deployed, while mechanism “greedy + greedy” always have the 

worst performance among the six locating mechanisms. 
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Chapter 4 Optimizing the Relocation Process 

using Reinforcement Learning 

Chapter 3 focuses on the extreme situation where the network is fully loaded. When the 

network is not busy, a UE can have many options of a target MEC host. These alternatives 

come from two aspects: 

1. One MEC host is located in a LADN. As mentioned in section 3.1 and section 3.4, any 

UE within the serving area of a MEC host can access this MEC host, and it is not necessary for 

a UE to follow the paths chosen by the algorithms in Chapter 3, especially when the network 

is not busy. Therefore, when a MEC application is assigned with multiple paths, a UE which 

uses this MEC application and requires a relocation can be handed over to a MEC host that 

has the required MEC application installed but does not belong to the current path of this UE, 

hence there might be more than one options of potential target MEC hosts for this UE. 

2. The site that one UE is connected to can access MEC hosts in different locations, 

some of which may be able to reduce the number of relocations this UE needs to experience. 

However, the MEC hosts that reduce the number of relocations may not have the required 

MEC application installed. If the UE chooses one of these MEC hosts, the number of 

relocations will decrease but one relocation may take longer time because of the extra MEC 

application installing procedure.  

To find the optimal target MEC host among all the alternatives, research question 4 is 

formed into an optimization problem. Traditional reinforcement learning algorithm, SARSA 

learning, Deep Q Network (DQN), as well as a newly designed algorithm – quick-start SARSA 

learning algorithm are used to solve research question 4.  

4.1 Markov Decision Process 

A Markov Decision Process (MDP) is a discrete time stochastic control process. It is an 

extension of a Markov Chain with multiple actions allowing for choice and rewards used to 

indicate the quality of decisions. MDPs are very important in optimizing decision problems, 

methodologies like dynamic programming and reinforcement learning need MDPs to solve 

optimization problems. 

The main components of an MDP are listed below [35]: 

1. A set of decision epochs. 

Decision epochs are the points in time where decisions are made. In this specific 

project, one decision epoch is when a UE needs a relocation. Since the number of 

relocations that a UE experiences is limited, the number of decision epochs for a UE 

is also limited. 

2. A set of system states. 

At each decision epoch, the system occupies a state. In this state, a decision needs 

to be made to decide which action to be taken. In a Markov Decision Process, there 

exist one or more end states. If the system reaches one of these end states, the 

current episode ends. 



Optimizing Edge Computing in 5G Networks 

Optimizing the Relocation Process using Reinforcement Learning  72 

3. A set of available actions. 

In an MDP model, all actions that can be taken to move from the current state in the 

model to a new state are saved in an action set. At each decision epoch, an action 

that belongs to this action set should be chosen. After taking the selected action, the 

system will reach a new state. If the new state is an end state, then no further actions 

will be chosen. 

4. A set of state and action dependent immediate rewards. 

After the chosen action has been taken, the system will receive an immediate reward. 

The reward should reflect the quality of the selected action, hence, in most of the 

cases, the reward is related to the action itself. In the context of this master thesis, 

the reward is also related to the MEC application type. 

5. A set of state and action dependent transition probabilities. 

After taking an action, the system will leave its current state and transit to a new 

state. Usually, there are multiple potential new states after taking one action, and 

the system will reach one of these states following a certain transition probability 

distribution. However, in the context of this project, there is only one possible next 

state after taking an action, hence the transition probability always equals 1. This 

will be further explained in section 4.4. 

4.2 Reinforcement Learning 

A. Overall Introduction 

Reinforcement Learning (RL) is an area of machine learning which is commonly used for 

optimizations, and it is one of three basic machine learning paradigms, alongside supervised 

learning and unsupervised learning. In reinforcement learning, the software agents should 

be able to decide on the actions to take and then attempt to maximize the rewards based on 

the feedback from the environment [36].  

Compared to supervised learning, reinforcement learning does not need labelled input-

output pairs for training [36]. Instead, the software agents will learn from the environment, 

which is usually formulated as an MDP model, by exploring and optimizing itself during the 

process. The focus of reinforcement learning is to find a balance between exploration (of 

uncharted territory) and exploitation (of current knowledge) [36]. 

In addition, there are three important terms that need explanations [35]: 

1. Decision rules: A decision rule prescribes a procedure for action selection in each 

state at a specified decision epoch. There are basically four types of decision rules: 

History dependent and Randomized (HR), History dependent and Deterministic (HD), 

Markovian and Randomized (MR) and Markovian and Deterministic (MD). The 

selection of a target MEC host for a UE is related to its current serving MEC host but 

not the MEC hosts previously served this UE. This proves that the system is 

Markovian (memoryless). In addition, because reinforcement learning has both 

exploration and exploitation aspects, at each decision epoch, either a random action 

(randomized) or the current optimal action (deterministic) is selected. Therefore, the 

most suitable decision rules for this master thesis are MR and MD.  
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2. Policy (𝜋): A policy consists of decision rules of all the decision epochs. It provides a 

prescription for action selection under any state at any decision epoch. In short, a 

policy is a sequence of decision rules. 

3. Episode: A sequence of states, actions and rewards, which ends with the end state. 

More precisely, in this master thesis, one episode is the entire procedure starts from 

a UE enters the geographic service area and ends when this UE leaves. 

B. Epsilon-greedy 

Epsilon-greedy is one of the strategies for solving a multi-armed bandits problem [37]. Here, 

epsilon is a value within interval [0,1] and it reflects the probability of choosing the current 

optimal action. The current optimal action is taken (exploitation) with probability 𝜀, and a 

random action is taken (exploration) with probability 1 − 𝜀.  

Although epsilon-greedy is one of the simplest and earliest strategies to solve multi-

armed bandit problems, it is powerful and is used in classical RLs, for example the two RL 

algorithms introduced in the following sections, Q learning and SARSA learning, to generate 

action choosing strategies. To be more precise, in each decision epoch, the algorithm will 

generate a random number within interval [0, 1], and then compare it with 𝜀. If the random 

number is smaller, the algorithm will choose the action that is currently estimated as the 

best option; otherwise, the algorithm will randomly pick one action from the actions set. 

C. Advantages of using Reinforcement Learning 

In the real world, the conditions of the entire network keep changing all the time. This 

indicates the requirement on immediate awareness of the changes as well as the ability to 

quickly react and make adjustment accordingly. Reinforcement learning is good at noticing 

the dynamic changes by exploring and learning the real-world situation all the time, so 

reinforcement learning is suitable for solving research question 4. In addition, it is suggested 

in [43] that: “…the estimated QoS performance of the available cells (e.g. based on the RNI 

service defined in [9] and the enhancements to RNIS) can help with optimal base station and 

MEC host selection so that the UE vehicle can always receive the maximum QoE along the 

trajectory.” However, a RNIS can only estimate the current conditions of the target MEC host 

but not the MEC hosts that may serve this UE afterwards. Reinforcement learning can give a 

reliable estimation of both the performance of the target MEC host, and the overall 

performance of all the MEC hosts that might be chosen in later steps. Therefore, 

reinforcement learning is used in this chapter for determining the most suitable target MEC 

host in each relocation. 

 

D. Q Learning 

Q learning can learn directly from raw experience without a model of the environment 
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dynamics [33], which brings it more flexibility and makes it more suitable for use cases in the 

real world, since it is sometimes impossible or difficult to get the environment dynamics in 

reality. 

Q learning uses a q table to save a q value for each state-action pair (𝑠, 𝑎), which means 

taking action 𝑎 in state 𝑠. The q value of state-action pair (𝑠, 𝑎) represents the current 

estimated summation of the reward of state-action pair (𝑠, 𝑎)  and the rewards of its 

subsequent state-action pairs. When Q learning receives new feedback from the 

environment, it will update relevant q values immediately. Equation 4.1 shows the basic idea 

of Q learning to update estimated q values: 

(4.1) 
𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾 max

𝑎
𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)] (4.1) 

where 𝑄(𝑆𝑡 , 𝐴𝑡) is the estimated q value of state-action pair (𝑆𝑡 , 𝐴𝑡), 𝑅𝑡+1 is the actual 

reward of taking action 𝐴𝑡 in state 𝑆𝑡, max
𝑎

𝑄(𝑆𝑡+1, 𝑎) is the maximum q value among all 

the q values of state-action pairs with state being 𝑆𝑡+1, 𝛾 is the future reward decay and 

𝛼 is the learning rate. Figure 4.1 specifies the procedures of Q learning. The action 𝑎∗ which 

maximizes 𝑄(𝑆𝑡+1, 𝑎) is not necessarily the actual action 𝐴𝑡+1 chosen in state 𝑆𝑡+1. 

 

Figure 4.1: Basic procedures of Q learning [33]. 

E. SARSA Learning 

The basic procedure of SARSA learning is very similar to that of Q learning, both approaches 

use epsilon-greedy for action selecting and q tables to record the currently learnt information 

from the environment. Figure 4.2 gives the detailed steps.  
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Figure 4.2: Basic procedures of SARSA learning [33]. 

 

The major difference between Q learning and SARSA learning is their method to update 

q values. The mechanism that SARSA learning uses for updating the q table is shown in 

Equation 4.2. 

(4.2) 𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡 , 𝐴𝑡)] (4.2) 

where 𝑄(𝑆𝑡 , 𝐴𝑡) is the estimated q value of state-action pair (𝑆𝑡 , 𝐴𝑡), 𝛾  is the future 

reward decay and 𝛼  is the learning rate. To accomplish an update in Equation 4.2, 

𝑆𝑡, 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1 are needed, and that is why this algorithm is called “SARSA” learning 

algorithm. 

A SARSA learning algorithm first selects the action 𝐴𝑡+1, which will be taken in state 

𝑆𝑡+1  and then updates 𝑄(𝑆𝑡, 𝐴𝑡) using the q value of state-action pair (𝑆𝑡+1, 𝐴𝑡+1). In 

comparison, a Q learning algorithm updates 𝑄(𝑆𝑡 , 𝐴𝑡) with the action 𝑎∗, and this action is 

not necessarily the actual action 𝐴𝑡+1 which will be taken in state 𝑆𝑡+1. A reinforcement 

algorithm like SARSA learning is called an on-policy reinforcement learning algorithm, and a 

reinforcement learning algorithm like Q learning is called an off-policy reinforcement 

learning algorithm. Off-policy algorithms can efficiently figure out the optimal policies but it 

does not update and evaluate other policies. Therefore off-policy algorithms are more 

suitable for agents that do not explore much and stick to the optimal action most of the time. 

On-policy algorithms, on the other hand, estimate and update all the policies that are 

followed by the agents, including the policies with MR decision rules followed by the agents 

that explore. Therefore, compared to off-policy algorithms, on-policy algorithms have a more 

comprehensive estimation on the policies and are more suitable for agents that explore. In 

this master thesis, agents are UEs, and since the network conditions keep changing, the UEs 

need to explore the environment to update the current knowledge of the network at a 

reasonable frequency, which makes SARSA learning a better option than Q learning.  

4.3 Target MEC host selecting mechanisms 

At present, installing MEC applications and instantiating MEC application instances in MEC 

hosts is a time-consuming procedure and costs resources in MEC hosts. Therefore, the 

deployment of MEC applications needs to be done beforehand following the locating 
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mechanisms in Chapter 3, in order to save time and resources. The selection of the target 

MEC host for a UE is limited to the MEC hosts with the required MEC application installed in 

advance and with enough available resources. This target MEC host selecting mechanism is 

called a “fixed target MEC host-selecting mechanism”. 

However, as relevant technologies are developing, it is possible that in the future, 

installing MEC applications in MEC hosts can be much faster and consume fewer resources. 

Therefore, the selection of the target MEC host for a UE is not necessarily limited to MEC 

hosts where the required MEC application has been installed. Instead, any available MEC host 

can be selected as the target MEC host, as long as the service continuity can be maintained. 

This means that the selection has more flexibilities, and especially when the network is not 

busy, MEC applications with lower priorities can get served by the MEC hosts that are 

assigned to MEC applications with higher priorities, which can further decrease the total 

number of relocations. However, when the network gets busy, UEs of MEC applications with 

higher priorities may experience a large number of relocations by sharing MEC hosts with 

other MEC applications with lower priorities, and the increased number of relocations may 

cause more service interruptions and other negative consequences.  

To avoid the above situation, two new target MEC host-selecting mechanisms are 

proposed in this section. The differences between the three different target MEC host 

selecting mechanisms mainly reside in the number of possible MEC hosts. Here two 

assumptions are applied: 

1. MEC applications are installed properly in the MEC hosts to minimize the total 

number of relocations and avoid resource shortage under extreme situation. The 

MEC hosts with a MEC application installed are addressed as the MEC hosts that are 

assigned to this MEC application. 

2. The reinforcement learning has fully and correctly learnt the network conditions 

which always stay stable, so that q values in the q table can correctly reflect the 

rewards of all state-action pairs, and target MEC hosts are selected based on 

corresponding q values. 

In the first selecting mechanism, each MEC application which is sensitive to relocations 

can have a maximum number of relocations it can accept, and this maximum number is 

derived from its own requirements. If the relocation number exceeds this threshold, UEs of 

other MEC applications are not allowed to use the resources reserved for this application. 

This target MEC host-selecting mechanism is called a “share-and-block” target MEC host-

selecting mechanism, then the network is not busy, MEC applications share resources that 

have been allocated to them in advance, and when the average relocation number cannot 

satisfy a MEC application’s requirement, this MEC application will stop sharing resources and 

will block others from using the resources that have been assigned to it. Figure 4.3 and Figure 

4.4 give the results of this “share-and-block” selecting mechanism.  
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Figure 4.3: Average number of relocations versus number of UEs per unit length per MEC application 

(fixed selecting mechansim & “share-and-block” selecting mechanism) 

 

Figure 4.4: Average number of relocations versus number of all UEs per unit length (fixed selecting 

mechansim & “share-and-block” selecting mechanism) 

 

In Figure 4.3, MEC application 3 and 1 have higher priorities than MEC application 2 

because they are more senstitive to relocations. For MEC application 1, its threshold is 6, 

which means that when the average number of relocations one UE of MEC application 1 

experienced exceed 6, the selection of target MEC hosts for UEs of MEC application 1 will 

only be limited to the MEC hosts assigned to application 1, and other MEC applications 

couldn’t occupy resources reserved for it. For MEC application 3, this threshold is 4, because 

it is more sensitive to relocations and thus has a higher priority.  
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From Figure 4.3, it can be seen that at the very beginning, the average relocation number 

of the three MEC application is the same, because they are all using MEC hosts that can 

minimize the number of relocations. However, as the number of UEs at the same location of 

the road increases, the average number of relocations increase too because the MEC hosts 

which have larger coverage are gradually loaded, therefore some of the UEs need to get 

served by MEC hosts with smaller coverage and experience more relocations. The average 

number of relocations of MEC application 3 is larger than when using the fixed selecting 

mechanism, because currently MEC application 3 is sharing its good resources with the other 

two MEC applications, whose average numbers of relocations have been lowered. After the 

average number of relocation reaches 4, UEs of MEC application 3 will only get served by the 

MEC hosts designated to them under extreme situation in Chapter 3. Therefore, the average 

number of relocations experienced by UEs of MEC application 3 given by the “share-and-

block” mechanism is first higher than that given by the fixed selecting mechanism, and after 

the former reaches 4, these two values become equal. At the same time, the average number 

of relocations of MEC applications 1 and 2 increases because some of the resources in MEC 

hosts with larger coverage and can provide longer service are reserved for MEC application 3 

and cannot be used by others. This time the average number of relocations of MEC 

application 1 gets larger than using fixed selecting mechanism because it cannot share better 

MEC hosts with MEC application 3 anymore and in the meantime, it has to share its own 

assigned MEC hosts with MEC application 2. When the average number of relocations 

reaches 6, the same happens to MEC application 1 thus its average number of relocations 

decreases and the average number of relocations of MEC application 2 increases rapidly again 

and reaches the value given by the fixed selecting mechanism.  

The goal of the “share-and-block” mechanism is to mimimize the number of relocations 

of all UEs when the network is not busy, under the assumption that installation and 

instantiation of a new MEC application (instance) are easy and fast enough. From Figure 4.4 

it can be seen that when there are fewer than 120 UEs per unit length, the new mechanism 

can reduce the average number of relocations of all the UEs in the geographic service area. 

The other new selecting mechanism of target MEC host is called a preemptive target MEC 

host-selecting mechanism. When there are multiple UEs requiring a relocation, this selecting 

mechanism always starts from selecting MEC hosts for the UEs with the highest priority to 

selecting MEC hosts for the UEs with the lowest priority. Therefore, UEs of MEC applications 

which are more sensitive to relocations can always get served by the better target MEC hosts. 

Figure 4.5 and Figure 4.6 shows the results of preemptive target MEC host-selecting 

mechanism. 
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Figure 4.5: Average number of relocations versus number of UEs per unit length per MEC application 

(fixed selecting mechansim & preemptive selecting mechanism) 

 

Figure 4.6: Average number of relocations versus number of all UEs per unit length (fixed selecting 

mechansim & preemptive selecting mechanism) 

 

In Figure 4.5, the average number of relocations of UEs of MEC application 3 given by 

fixed selecting mechanism and preemptive selecting mechanism are the same, because MEC 

application 3 has the highest priority among the three applications, its corresponding UEs 

can always be served by the best target MEC hosts, and other UEs can only select their own 

target MEC hosts later. That is why fixed selecting mechanism and preemptive selecting 

mechanism give the same average number of relocations of UEs of MEC application 3, and 

the average number of relocations of UEs of a MEC application with higher priority never 
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exceeds that of a MEC application with lower priority. The main difference between these 

two mechanisms resides in the average relocation numbers of UEs of MEC application 1 and 

2. UEs of these two MEC applications can get served by better MEC hosts as long as these 

MEC hosts are still available after the selections performed by the central controller for the 

UEs of MEC application 3, and this is not possible in fixed selecting mechanism. Therefore, in 

Figure 4.6, the average number of relocations of all UEs using preemptive selecting 

mechanism is lower than the average relocation number using fixed selecting mechanism, 

only except for the extreme situation - 150 UEs per unit length, where the average number 

of relocations of the preemptive selecting mechanism and the fixed selecting mechanism are 

the same. 

In this section as well as in Chapter 3, only the number of relocations is minimized. In fact, 

user experience can be affected by many other factors, such as service latency, service 

interruptions and so on. To guarantee an overall satisfied user experience, while selecting 

target MEC hosts using the above three mechanisms, these factors can also be taken into 

account, like what is done in section 4.4. 

4.4 System MDP Model & Assumptions 

Relocations (defined in sections 1.1 and 3.1) help with the continuity of MEC services, 

however, relocations may also cause problems. For example, if the target MEC host is not 

capable to handle the required MEC application instance due to some reasons like no enough 

resources, required MEC application not installed, etc., then after relocating the MEC 

application to this target MEC host, it is possible that the UE cannot receive required services. 

Other possible problems include the latency between the UE and the target MEC host is too 

large, the number of relocations afterwards is too large, the relocation takes too much time, 

the service failed during the relocation, etc. To achieve the best of each relocation, it is 

significant to find a suitable target MEC host, which is addressed in research question 4.  

Considering all the aspects mentioned above, four relocation performance indicators are 

selected to evaluate the performance of each relocation: 

1. The duration time of the relocation 

2. Whether there is a service interruption during the relocation 

3. The service latency at the target MEC host of the relocation 

4. The current available resources in the target MEC host of the relocation 

The duration time of relocation is related to the type of MEC application (e.g. dedicated,  

stateful, stateless), the transmission delay between the target MEC host and the current 

MEC host, the time to install a MEC application, the time to instantiate a MEC application 

instance, and the time to set up a PDU Session; service interruption probability is related to 

the type of the MEC application and the duration time of a relocation; the service latency 

between a UE and the target MEC host is related to the location of this MEC host and the 

relevant MEC application type; the current available resources in a MEC host must be 

enough to serve the UE, otherwise this MEC host cannot be a potential target MEC host for 

this UE. After each relocation, information related to these four performance indicators will 

be collected, calculated and sent to the MEC system as the feedback of this relocation. 
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The entire relocation process can be modelled as a Markov Decision Process (MDP). In 

this MDP model, 𝑆 is the set of states, each state 𝑠 ∈ 𝑆 represents a MEC host. The end 

states in this MDP model are the MEC hosts whose serving areas cover the exit of the road in 

the geographic service area. 𝐴𝑠
𝑎𝑝𝑝

 is the set of all possible actions that can be taken for a 

UE, which is now receiving services provided by MEC application 𝑎𝑝𝑝 in MEC host 𝑠 and 

needs a relocation. Each action 𝑎 ∈ 𝐴𝑠
𝑎𝑝𝑝

  is selecting a target MEC host for the UE and 

handing the UE over to the selected MEC host. After an action is executed, the UE will move 

to a new state/MEC host, with probability 𝑝 = 1. The reward of each action 𝑟𝑒𝑤𝑎𝑟𝑑𝑎 is 

derived from the first three performance indicators mentioned above. The reward of each 

action is calculated from Equation 4.3: 

(4.3) 𝑟𝑒𝑤𝑎𝑟𝑑𝑎 = − 5 × duration time of relocation − 1  (if there is a service 

interruption) or 0 (if there is no service interruption) × priority of the MEC 

application  − 10 ×  the service latency at the target MEC host selected in 

action 𝑎 

(4.3) 

Assumptions in section 3.1 are still applied in this chapter. Besides, some extra 

assumptions are made: 

1. All relocation processes are controlled by the central controller, which can be the 

MEO or some other system-level functional element in MEC. 

2. Installation of MEC applications are costly, both time-wise and resource-wise. 

Therefore, it saves time and resources to choose a MEC host which has enough 

resources and has required MEC application installed. This target MEC host-selecting 

mechanism, which is introduced as “fixed target MEC host-selecting mechanism” in 

section 4.3, is the focus in the following sections.  

3. In section 1.5, it has been discussed whether to include mobile MEC hosts in this 

master thesis or not, and considering the potential increase in the complexity of the 

project, mobile MEC hosts are left out and only stationary/fixed MEC hosts are 

considered. Relocations can only take place between stationary/fixed MEC hosts. 

As explained in section 4.2, SARSA learning algorithm is more suitable for optimizing the 

relocation process. 

However, considering the fact that the size of the geographic service area has no 

limitation, it is possible that the number of MEC hosts in this area is very large, which will 

result in a large state space in the system MDP model. Under this circumstance, classical 

SARSA learning needs a tremendous big table to save all the q values, and it may take too 

much time for searching a required q value in this big q table. Furthermore, when the state 

space becomes larger, it takes longer time for the q table to converge. To solve this problem, 

a combination of deep learning and SARSA learning, which is called “Deep SARSA” in this 

article, is used. The basic idea of “Deep SARSA” comes from Deep Q Network (DQN) 

developed by Google DeepMind team [42]. The only difference between these two 

algorithms is the same as the difference between SARSA learning and Q learning. The most 

outstanding contribution of DQN is that, it uses a neural network to predict the q values, 

instead of using a table to save them. By doing this, the size of the state space is not a critical 

factor anymore, no matter how big the state space is, the only parameters that need to be 

saved and updated are simply the parameters in the deep neural network and the 

convergence time will not grow rapidly with the size of the state space.  
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Although introducing a deep neural network into a traditional reinforcement learning 

algorithm can help solving the state space explosion problem, it also brings up other 

problems. For example, the structure as well as the parameters (e.g. learning rate) of the 

deep neural network are crucial to the neural network training and the accuracy of its 

prediction. Compared to the straightforward way to save q values in a q table separately, 

using a neural network to predict the q values has the impact that different state-action pair 

may affect each other, since they share the same deep neural network to do the prediction. 

Therefore, the key to increase the accuracy of predictions given by the deep neural network 

is that it can find the internal relations between the rewards and the corresponding state-

action pairs and modify the parameters accordingly, which is not easy to achieve since 

determining suitable structure of the neural network, activation functions and optimization 

function requires experience and lots of experiments.  For different environments, their 

suitable deep neural networks for prediction can be different.  

Since the two algorithms have their own upsides and downsides, in this master thesis, 

both are implemented, tested, compared and analyzed. Furthermore, a quick-start SARSA 

learning algorithm is designed to combine the advantages of both algorithms. The 

performance indicators used to evaluate the algorithms in this chapter include the speed of 

convergence and the convergence value. The faster the algorithm converges, the better the 

algorithm performs; the higher the convergence value is, the better the algorithm performs. 

The choice of algorithm should be based on not only the performance of the algorithm, but 

also other factors including the actual scale of the problem, financial requirements, etc.  

4.5 Algorithms using Deep SARSA learning 

In this section, algorithms for choosing target MEC hosts, updating parameters in deep neural 

network, performing reinforcement learning and handling exceptional case are introduced, 

each of them is a sub-algorithm of the entire algorithm. 

A. Choose target host 

To select a suitable target host for each UE, algorithm 6 is designed, and the details are 

included in Table 4.1. 

Table 4.1: Algorithm 6 

Algorithm 6. Choose target host for a UE of application 𝑎𝑝𝑝 in state 𝑠 

Input: 

𝑀𝐷𝑃:  System MDP model 

𝑠:  The current state this UE is in, that is, the current serving MEC host of this UE 

𝑎𝑝𝑝:  The application whose instance needs to be moved  

𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡:  The deep neural network used to update q values for MEC hosts. 

𝜀:  The parameter used in 𝜀-greedy algorithm. 

𝑃𝑎𝑡ℎ𝑠:  𝑃𝑎𝑡ℎ𝑠(𝑘)  records all the paths selected for MEC application 𝑘  and the 

number of UEs each path serves. 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑎𝑝𝑝:  The required amount of resources per UE of MEC application 𝑎𝑝𝑝. 
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Output: 

𝑎𝑠
𝑎𝑝𝑝

:  The action taken in state 𝑠 for MEC application 𝑎𝑝𝑝. 

𝑠′:  Next state/target MEC host 

𝑞𝑎𝑝𝑝(𝑠, 𝑎𝑠
𝑎𝑝𝑝

):  The estimated q value of state-action pair (𝑠, 𝑎𝑠
𝑎𝑝𝑝

). 

Updated 𝑃𝑎𝑡ℎ𝑠 

𝑒 = 𝒓𝒂𝒏𝒅𝒐𝒎𝟏(0,1); 

𝑞𝑣𝑎𝑙𝑢𝑒𝑠 = {}; 

𝐴𝑠
𝑎𝑝𝑝

= 𝒈𝒆𝒕_𝒂𝒄𝒕𝒊𝒐𝒏𝒔(𝑀𝐷𝑃, 𝑠, 𝑎𝑝𝑝, 𝑃𝑎𝑡ℎ𝑠); 

if 𝑒 ≤ 𝜀 do 

 for all 𝑎 ∈ 𝐴𝑠
𝑎𝑝𝑝

 do 

  𝑞 = 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑠, 𝑎, 𝑎𝑝𝑝); 

  𝑞𝑣𝑎𝑙𝑢𝑒𝑠 = 𝑞𝑣𝑎𝑙𝑢𝑒𝑠 ∪ {𝑞}; 

    end for 

  𝑞𝑎𝑝𝑝(𝑠, 𝑎𝑠
𝑎𝑝𝑝

), 𝑖𝑛𝑑𝑒𝑥 = 𝑴𝒂𝒙(𝑞𝑣𝑎𝑙𝑢𝑒𝑠); 

    𝑎𝑠
𝑎𝑝𝑝

= 𝐴𝑠
𝑎𝑝𝑝

(𝑖𝑛𝑑𝑒𝑥) 

else  

 𝑎𝑠
𝑎𝑝𝑝

= 𝒓𝒂𝒏𝒅𝒐𝒎𝟐(𝐴𝑠
𝑎𝑝𝑝

); 

 𝑞𝑎𝑝𝑝(𝑠, 𝑎𝑠
𝑎𝑝𝑝

) = 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑠, 𝑎, 𝑎𝑝𝑝); 

end if 

𝑠′ = 𝑀𝐷𝑃(𝑠, 𝑎𝑠
𝑎𝑝𝑝

); 

𝑃𝑎𝑡ℎ𝑠 = 𝒓𝒆𝒔𝒆𝒓𝒗𝒆_𝒓𝒆𝒔𝒐𝒖𝒓𝒄𝒆𝒔(𝑃𝑎𝑡ℎ𝑠, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑎𝑝𝑝, 𝑠′, 𝑎𝑝𝑝); 

 

To select an action, the first step is to generate a random number between 0 and 1, 

function 𝒓𝒂𝒏𝒅𝒐𝒎𝟏(0,1) is used for this purpose. Then, find all possible target MEC hosts 

that can be selected, these MEC hosts should have the required MEC application installed, 

should have enough resources to serve the UE and should have overlapping serving area with 

the current serving MEC host of the UE. Function 𝒈𝒆𝒕_𝒂𝒄𝒕𝒊𝒐𝒏𝒔 is designed to find all the 

actions/target MEC hosts that satisfy all the above requirements and return a set 𝐴𝑠
𝑎𝑝𝑝

 

including all the possible options. Its inputs 𝑀𝐷𝑃, 𝑠 and 𝑎𝑝𝑝 are used to find all the MEC 

hosts which have overlapping serving area with the current MEC host and have required 

application installed, input 𝑃𝑎𝑡ℎ𝑠 is used to check the amount of available resources in each 

target MEC host. After getting the possible actions set, compare the generated number e with 

epsilon value (𝜀). Based on the result of comparison, different actions will be taken: 

 If the generated number e is larger than ε, then algorithm will exploit the current 

learned q values this time and pick the action 𝑎𝑠
𝑎𝑝𝑝

∈ 𝐴𝑠
𝑎𝑝𝑝

 with the highest q value. 

Function 𝑴𝒂𝒙 is used to find the largest value in a set. 

 If the generated number e is smaller than ε, then algorithm will explore the real 

world by randomly selecting a possible action. Function 𝒓𝒂𝒏𝒅𝒐𝒎𝟐 will randomly 

pick one element from the input set. 

In Deep SARSA learning, q values can be derived from a deep neural network 

(𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡  ). The current state 𝑠 , the selected action 𝑎  and application type 𝑎𝑝𝑝  and 

𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑠, 𝑎, 𝑎𝑝𝑝) are used to get the predicted q value for state-action pair (𝑠, 𝑎). 

After both action 𝑎𝑠
𝑎𝑝𝑝

 and its corresponding q value 𝑞𝑎𝑝𝑝(𝑠, 𝑎𝑠
𝑎𝑝𝑝

) are determined, 
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Algorithm 6 determines the next state/MEC host 𝑠′  in the system MDP model 𝑀𝐷𝑃 

according to the selected action 𝑎𝑠
𝑎𝑝𝑝

  and reserves resources for this UE in the selected 

target MEC host 𝑠′ with function 𝑟𝒆𝒔𝒆𝒓𝒗𝒆_𝒓𝒆𝒔𝒐𝒖𝒓𝒄𝒆𝒔. 

B. Update parameters of deep neural network 

Table 4.2 introduces the approach to update deep neural networks in Deep SARSA Network.  

 

Table 4.2: Algorithm 7 

Algorithm 7. Update deep neural networks 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 and 𝐷𝑁𝑁𝑢𝑝𝑑𝑎𝑡𝑒 

Input: 

𝑠:  The current state this UE is in, that is, the current serving MEC host of this 

UE. 

𝑟𝑒𝑤𝑎𝑟𝑑𝑎𝑠
𝑎𝑝𝑝:  The reward of taking action 𝑎𝑠

𝑎𝑝𝑝
. 

𝑎𝑝𝑝:  The application whose one instance needs to be moved with the UE.  

𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡:  The deep neural network used to update q values for MEC hosts. 

𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡:  The deep neural network used to provide q values when selecting MEC 

hosts. 

𝑠′:  The next state, or, the selected target MEC host of this UE. 

𝑎𝑠
𝑎𝑝𝑝

:  The action which is selected to be taken at current state. 

𝑎𝑠′
𝑎𝑝𝑝

:  The action which is selected to be taken at next state. 

𝛾:  Future reward decay. 

𝑚𝑒𝑚𝑜𝑟𝑦:  A table that saves historical records. 

𝑚𝑒𝑚𝑜𝑟𝑦_𝑠𝑖𝑧𝑒:  The maximal number of historical records can be saved in table 𝑚𝑒𝑚𝑜𝑟𝑦 

for future training. 

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒:  The number of samples utilized in one iteration of training. 

𝑝𝑒𝑟𝑖𝑜𝑑:  Update period of 𝐷𝑁𝑁𝑢𝑝𝑑𝑎𝑡𝑒. 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟:  The number of training iterations of 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 after the latest update of 

𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡, its initial value is 0. 

Output: 

Updated 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 

Updated 𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡 

𝑛𝑒𝑤_𝑟𝑒𝑐𝑜𝑟𝑑 = {𝑠, 𝑎𝑠
𝑎𝑝𝑝

, 𝑟𝑒𝑤𝑎𝑟𝑑𝑎𝑠
𝑎𝑝𝑝 , 𝑠′, 𝑎𝑠′

𝑎𝑝𝑝
}; 

𝑚𝑒𝑚𝑜𝑟𝑦 = 𝒂𝒅𝒅_𝒓𝒆𝒄𝒐𝒓𝒅(𝑚𝑒𝑚𝑜𝑟𝑦, 𝑛𝑒𝑤_𝑟𝑒𝑐𝑜𝑟𝑑, 𝑚𝑒𝑚𝑜𝑟𝑦_𝑠𝑖𝑧𝑒); 

𝑏𝑎𝑡𝑐ℎ = 𝒓𝒂𝒏𝒅𝒐𝒎𝟑(𝑚𝑒𝑚𝑜𝑟𝑦, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒); 

for all 𝑟𝑒𝑐𝑜𝑟𝑑 ∈ 𝑏𝑎𝑡𝑐ℎ do 

    𝑠𝑡𝑎𝑡𝑒 = 𝑟𝑒𝑐𝑜𝑟𝑑(1); 

    𝑎 = 𝑟𝑒𝑐𝑜𝑟𝑑(2); 

    𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑟𝑒𝑐𝑜𝑟𝑑(3); 

    𝑠𝑡𝑎𝑡𝑒′ = 𝑟𝑒𝑐𝑜𝑟𝑑(4); 

    𝑎′ = 𝑟𝑒𝑐𝑜𝑟𝑑(5); 
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𝑞𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑠𝑡𝑎𝑡𝑒, 𝑎, 𝑎𝑝𝑝); 

𝑞𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑟𝑒𝑤𝑎𝑟𝑑 + 𝛾 ∙ 𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑡𝑎𝑡𝑒′, 𝑎′, 𝑎𝑝𝑝); 

𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑼𝒑𝒅𝒂𝒕𝒆𝟑(𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑞𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑞𝑡𝑎𝑟𝑔𝑒𝑡); 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1; 

if 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 == 𝑝𝑒𝑟𝑖𝑜𝑑 do 

    𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0 

    𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 

end if  

end for 

 

To reduce the correlation between two sequential states and their q values, deep SARSA 

learning applies two deep neural networks with the same structure but different parameters. 

One neural network, or evaluate network (𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡), is used for learning and providing q 

values during action selection, while the other neural network, or target network  

(𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡), is used only for estimating the real-world q values. Evaluate network updates 

its parameters according to the q values (𝑞𝑡𝑎𝑟𝑔𝑒𝑡) given by the target network, and target 

network also updates its parameters to the parameters of evaluate network periodically. 

Every time a new record (𝑛𝑒𝑤_𝑟𝑒𝑐𝑜𝑟𝑑) is generated, it will be added to a table (𝑚𝑒𝑚𝑜𝑟𝑦), 

if the table is full (the number of records in table 𝑚𝑒𝑚𝑜𝑟𝑦  reaches its maximum size 

𝑚𝑒𝑚𝑜𝑟𝑦_𝑠𝑖𝑧𝑒 ), then the oldest record in the table will be removed. Then, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 

number of historical records are randomly picked from 𝑚𝑒𝑚𝑜𝑟𝑦 by function 𝒓𝒂𝒏𝒅𝒐𝒎𝟑. 

These records are used to update 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡, and function 𝑼𝒑𝒅𝒂𝒕𝒆𝟑 is responsible for 

the updates. RMSProp algorithm [40] is the core method to update parameters 

in 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡  based on the squared difference between 𝑞𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑞𝑝𝑟𝑒𝑑𝑖𝑐𝑡 . 

C. Dealing with exception – No MEC hosts currently available 

When no MEC host with required MEC application installed has enough resources to serve a 

UE, a MEC host that has enough resources should be selected to serve the UE temporarily. 

For load-balancing purpose, the MEC host with the largest amount of available resources will 

be selected as the temporary MEC host. 

Even though this situation is considered, it is not a desired situation of the entire system. 

However, due to the uncertainties in the reality, exceptions may occur at any time. To 

guarantee service continuity for every UE, Algorithm 8 is introduced, which basic procedure 

is shown in Table 4.3. 

 
Table 4.3: Algorithm 8 

Algorithm 8. Choose a temporary target MEC host for a UE of MEC application 𝑎𝑝𝑝 

Input: 

𝑀𝐷𝑃:  System MDP model. 

𝐿𝐿:  A set of all possible locations. 

𝑠:  The current state this UE is in, that is, the current serving MEC host of this 

UE. 
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𝑎𝑝𝑝:  The application whose one instance needs to be moved with the UE.  

𝑅 = {𝑅𝑙𝑙}, ∀ 𝑙𝑙 ∈ 𝐿𝐿:  

𝑅𝑙𝑙 is the set of currently available resources in all unit-hosts in location 

𝑙𝑙 ∈ 𝐿𝐿. 

𝐺:  The directed graph that represents all the sites. 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑎𝑝𝑝:  The required amount of resources per UE of MEC application 𝑎𝑝𝑝. 

Output: 

Updated 𝑅 

𝑠′:  The next state of this UE. 

𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 = 𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒐𝒓𝒔(𝐺, 𝑠); 

𝑚𝑎𝑥_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 = 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑎𝑝𝑝; 

𝑚𝑎𝑥_ℎ𝑜𝑠𝑡 = 𝑁𝑜𝑛𝑒; 

for all 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 ∈ 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 do 

 for all 𝑙𝑙 ∈ 𝐿𝐿 do 

  if  𝑅𝑙𝑙(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟) ≥ 𝑚𝑎𝑥_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 do 

      𝑚𝑎𝑥_ℎ𝑜𝑠𝑡 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟; 

   𝑚𝑎𝑥_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑙𝑙 

        end if  

 end for 

end for 

𝑠′ = 𝑀𝐷𝑃(𝑚𝑎𝑥ℎ𝑜𝑠𝑡, 𝑚𝑎𝑥𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛); 

𝑅𝑚𝑎𝑥_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑚𝑎𝑥_ℎ𝑜𝑠𝑡) = 𝑅𝑚𝑎𝑥_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑚𝑎𝑥_ℎ𝑜𝑠𝑡) − 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑎𝑝𝑝; 

 

The basic idea of Algorithm 8 is straightforward: Find all the MEC hosts that have 

overlapping serving area with the current serving MEC host of the UE, and this is done by 

function 𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒐𝒓𝒔. Then check current available resources in each MEC host found and 

pick the one with the largest amount of available resources as the temporary target MEC host, 

install the required MEC application 𝑎𝑝𝑝 on the MEC host and reserve enough resources in 

this MEC host. Finally, determine the corresponding state 𝑠′ of this temporary MEC host in 

system MDP model 𝑀𝐷𝑃, and state 𝑠′ is UE’s next state in 𝑀𝐷𝑃.  

Since this MEC host is temporarily providing MEC application 𝑎𝑝𝑝, after the UE has left 

this MEC host, uninstall the MEC application and release all the related resources. Besides, 

the rewards/feedback of this MEC host will not be recorded for further training, in case it 

affects the performance of 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡. 

If this exceptional case does not occur frequently, it can be ignored. However, if within a 

certain period of time, the number of UEs of MEC application 𝑎𝑝𝑝 that run into this problem 

exceeds a certain threshold, which means that the actual number of UEs using 𝑎𝑝𝑝 in the 

geographic service area is larger than the estimated number, then scaling up MEC application 

𝑎𝑝𝑝 becomes urgent and necessary. In this project, more precisely, if the number of UEs that 

need to be served by a temporary MEC host exceeds 10% of the estimated maximum number 

of UEs, allocate 30% extra resources for 𝑎𝑝𝑝 in the network. 
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E. Deep SARSA Learning 

Algorithm 9 showed in Table 4.4 gives an overall structure of the Deep SARSA learning.  

 
Table 4.4: Algorithm 9 

Algorithm 9. Reinforcement learning algorithm related to one UE of MEC 

application 𝑎𝑝𝑝 

Input: 

𝑀𝐷𝑃:  System MDP model. 

𝑠𝑠𝑡𝑎𝑟𝑡:  The starting state of this UE, that is, the first MEC host that serves the UE in 

the geographic service area. 

𝑎𝑝𝑝:  The application whose one instance needs to be moved with the UE.  

𝜀:  The parameter used in 𝜀-greedy algorithm. 

𝑃𝑎𝑡ℎ𝑠:  𝑃𝑎𝑡ℎ𝑠(𝑘)  records all the paths selected for MEC application 𝑘  and the 

number of UEs each path serves. 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑎𝑝𝑝:  The required amount of resources per UE of MEC application 𝑎𝑝𝑝. 

𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡:  The deep neural network used to update q values for MEC hosts. 

𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡:  The deep neural network used to provide q values when selecting MEC 

hosts. 

𝑠′:  The next state of this UE. 

𝛼:  Learning rate. 

𝛾:  Future reward decay. 

𝑚𝑒𝑚𝑜𝑟𝑦:  A table that saves historical records. 

𝑚𝑒𝑚𝑜𝑟𝑦_𝑠𝑖𝑧𝑒:  The maximal number of historical records can be saved in table 𝑚𝑒𝑚𝑜𝑟𝑦 

for future training. 

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒:  The number of samples utilized in one iteration of training. 

𝑝𝑒𝑟𝑖𝑜𝑑:  Update period of 𝐷𝑁𝑁𝑢𝑝𝑑𝑎𝑡𝑒. 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟:  The number of training iterations of 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 after the latest update of 

𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡, its initial value is 0. 

Output 

Updated 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 

Updated 𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡 

𝑠 = 𝑠𝑠𝑡𝑎𝑟𝑡; 

𝑎, 𝑠′, 𝑞, 𝑃𝑎𝑡ℎ𝑠 = 𝑨𝟔(𝑀𝐷𝑃, 𝑠, 𝑎𝑝𝑝, 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 , 𝜀, 𝑃𝑎𝑡ℎ𝑠, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑎𝑝𝑝); 

While 𝑇𝑟𝑢𝑒 do 

 𝑂𝑏𝑒𝑟𝑠𝑒𝑟𝑣𝑒 𝑡ℎ𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑜𝑓 𝑡𝑎𝑘𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠 ∶  𝒓𝒆𝒘𝒂𝒓𝒅𝒂; 

 𝑎′, 𝑠′′, 𝑞′, 𝑃𝑎𝑡ℎ𝑠 = 𝑨𝟔(𝑀𝐷𝑃, 𝑠′, 𝑎𝑝𝑝, 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝜀, 𝑃𝑎𝑡ℎ𝑠, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠); 

 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑨𝟕(𝑠, 𝑟𝑒𝑤𝑎𝑟𝑑𝑎 , 𝑎𝑝𝑝, 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑠′, 𝑎, 𝑎′, 

𝛾, 𝑚𝑒𝑚𝑜𝑟𝑦, 𝑚𝑒𝑚𝑜𝑟𝑦_𝑠𝑖𝑧𝑒, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟)

; 

 𝐼𝑓 𝑡ℎ𝑒 𝑈𝐸 𝑚𝑜𝑣𝑒𝑠 𝑜𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎, 𝑒𝑛𝑑 𝑊ℎ𝑖𝑙𝑒 𝑙𝑜𝑜𝑝 

    𝑠 = 𝑠′; 

    𝑎 = 𝑎′; 
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    𝑠′ = 𝑠′′; 

end While 

 

From the procedures of Algorithm 9 it can be seen that, after a UE enters the geographic 

service area, the central controller will continuously help the UE to find new MEC hosts for 

maintaining the UE’s MEC service continuity. When the UE finally reaches one MEC host that 

can cover the exit of the road, it will be served by this MEC host till it moves out of the 

geographic service area, and no relocation is needed. 

4.6 Algorithm using Traditional SARSA learning 

The classical SARSA learning algorithm is similar to the deep SARSA learning algorithm 

introduced in section 4.5, therefore, only the different parts are introduced in this section. 

A. Update q values in the q table 

Traditional SARSA learning uses a q table to save all the q values. To update q values that are 

saved in a q table, algorithm 10 is designed, and detailed information is in Table 4.5. 

 

Table 4.5: Algorithm 10 

Algorithm 10. Update q table for MEC hosts 

Input: 

𝑠:  The current state this UE is in, that is, the current serving MEC host of this 

UE. 

𝑟𝑒𝑤𝑎𝑟𝑑𝑎𝑠
𝑎𝑝𝑝:  The actual reward of taking action 𝑎𝑠

𝑎𝑝𝑝
. 

𝑎𝑝𝑝:  The application whose one instance needs to be moved with the UE.  

𝑄𝑇𝑎𝑏𝑙𝑒:  The table used to save all estimated q values in traditional SARSA learning 

algorithm. 

𝑞𝑎𝑝𝑝(𝑠′, 𝑎𝑠′
𝑎𝑝𝑝

):  Estimated q value of state-action pair (𝑠′, 𝑎𝑠′
𝑎𝑝𝑝

) of MEC application 𝑎𝑝𝑝. 

𝛼:  Learning rate. 

𝛾:  Future reward decay. 

Output: 

Updated 𝑄𝑇𝑎𝑏𝑙𝑒 

𝑞𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑄𝑇𝑎𝑏𝑙𝑒(𝑠, 𝑎𝑠
𝑎𝑝𝑝

, 𝑎𝑝𝑝); 

𝑞𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑟𝑒𝑤𝑎𝑟𝑑𝑎𝑠
𝑎𝑝𝑝 + 𝛾 ∙ 𝑞𝑎𝑝𝑝(𝑠′, 𝑎𝑠′

𝑎𝑝𝑝
); 

𝑞𝑛𝑒𝑤 = 𝑞𝑝𝑟𝑒𝑑𝑖𝑐𝑡 + 𝛼(𝑞𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑞𝑝𝑟𝑒𝑑𝑖𝑐𝑡); 

𝑄𝑇𝑎𝑏𝑙𝑒(𝑠, 𝑎, 𝑎𝑝𝑝) = 𝑞𝑛𝑒𝑤; 

 

Since the q values of MEC hosts are saved directly in 𝑄𝑇𝑎𝑏𝑙𝑒, they can be reached and 

updated directly. The updating mechanism is the same as what is shown in Equation 4.2. 
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B. Traditional SARSA Learning 

Table 4.6 shows the overall structure of the traditional SARSA learning algorithm. Function 

𝑨𝟔 is Algorithm 6, and function 𝑨𝟏𝟎 is Algorithm 10. 

 
Table 4.6: SARSA learning algorithm 

Algorithm 11. SARSA learning algorithm related to one UE of MEC application 𝑎𝑝𝑝 

Input: 

𝑀𝐷𝑃:  System MDP model. 

𝑠𝑠𝑡𝑎𝑟𝑡:  The starting state of this UE, that is, the first MEC host that serves the UE in 

the geographic service area. 

𝑎𝑝𝑝:  The application whose one instance needs to be moved with the UE.  

𝑄𝑇𝑎𝑏𝑙𝑒:  The table used to save all estimated q values in traditional SARSA learning 

algorithm. 

𝜀:  The parameter in 𝜀-greedy algorithm. 

𝑃𝑎𝑡ℎ𝑠:  𝑃𝑎𝑡ℎ𝑠(𝑘)  records all the paths selected for MEC application 𝑘  and the 

number of UEs each path serves. 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑎𝑝𝑝:  The required amount of resources per UE of MEC application 𝑎𝑝𝑝. 

𝑠′:  The next state of this UE. 

𝛼:  Learning rate. 

𝛾:  Future reward decay. 

Output  

Updated 𝑄𝑇𝑎𝑏𝑙𝑒 

𝑠 = 𝑠𝑠𝑡𝑎𝑟𝑡; 

𝑎, 𝑠′, 𝑞, 𝑃𝑎𝑡ℎ𝑠 = 𝑨𝟔(𝑀𝐷𝑃, 𝑠, 𝑎𝑝𝑝, 𝑄𝑇𝑎𝑏𝑙𝑒, 𝜀, 𝑃𝑎𝑡ℎ𝑠, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠); 

While 𝑇𝑟𝑢𝑒 do 

 𝑂𝑏𝑒𝑟𝑠𝑒𝑟𝑣𝑒 𝑡ℎ𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑜𝑓 𝑡𝑎𝑘𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠 ∶  𝒓𝒆𝒘𝒂𝒓𝒅𝒂; 

 𝑎′, 𝑠′′, 𝑞′, 𝑃𝑎𝑡ℎ𝑠 = 𝑨𝟔(𝑀𝐷𝑃, 𝑠′, 𝑎𝑝𝑝, 𝑄𝑇𝑎𝑏𝑙𝑒, 𝜀, 𝑃𝑎𝑡ℎ𝑠, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑎𝑝𝑝); 

 𝑄𝑇𝑎𝑏𝑙𝑒 = 𝑨𝟏𝟎(𝑠, 𝑟𝑒𝑤𝑎𝑟𝑑𝑎 , 𝑎𝑝𝑝, 𝑄𝑇𝑎𝑏𝑙𝑒, 𝑞′, 𝛼, 𝛾); 

 𝐼𝑓 𝑡ℎ𝑒 𝑈𝐸 𝑚𝑜𝑣𝑒𝑠 𝑜𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎, 𝑒𝑛𝑑 𝑊ℎ𝑖𝑙𝑒 𝑙𝑜𝑜𝑝 

    𝑠 = 𝑠′; 

    𝑎 = 𝑎′; 

    𝑠′ = 𝑠′′; 

end While 

4.7 Quick-start SARSA learning algorithm 

It has been discussed in section 4.4 that both the deep SARSA algorithm and the traditional 

SARSA algorithm have advantages and disadvantages. This can be discovered from Figure 4.7. 

The deep neural networks used in the deep SARSA learning algorithm are two identical deep 

neural networks with three densely-connected layers each. 
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Figure 4.7: Rewards given by the deep SARSA learning (left) and the traditional SARSA learning (right) 

versus episodes 

 

Figure 4.7 is derived from a simulation where the geographic service area contains 1000 

sites. One episode starts when a UE enters the geographic service area and ends when it 

leaves the area. The reward at each episode is ∑ 𝑟𝑒𝑤𝑎𝑟𝑑𝑎𝑎∈𝐴 , where 𝐴 is a collection of 

all the actions taken in this episode, and 𝑟𝑒𝑤𝑎𝑟𝑑𝑎  is calculated from Equation 4.3. The 

better the user experience in this episode is, the higher the corresponding reward is. 

It can be observed from Figure 4.7 that deep SARSA learning algorithm converges after 

about 2500 episodes, and that is much faster than the traditional SARSA learning algorithm, 

which converges after 12500 episodes. However, deep SARSA learning algorithm converges 

at a lower value than traditional SARSA learning algorithm. The reason behind is explained in 

section 4.4. 

What is desired is to combine all the advantages of both algorithms and get rid of their 

disadvantages. More precisely, the desired algorithm can converge fast and converge at a 

high reward. In this section, a quick-start SARSA learning algorithm which is capable to do 

both is introduced, and the pseudocode is shown in Table 4.7. Function 𝑨𝟕 is Algorithm 7. 

 
Table 4.7: The quick-start SARSA learning algorithm 

Algorithm 12. The quick-start SARSA learning algorithm 

Input: 

𝑀𝐷𝑃:  System MDP model. 

𝑠𝑠𝑡𝑎𝑟𝑡:  The starting state of this UE, that is, the first MEC host that serves the UE in 

the geographic service area. 

𝑎𝑝𝑝:  The application whose one instance needs to be moved with the UE.  

𝑄𝑇𝑎𝑏𝑙𝑒:  The table used to save all estimated q values in traditional SARSA 

learning algorithm. 

𝜀:  The parameter in 𝜀-greedy algorithm. 

𝑃𝑎𝑡ℎ𝑠:  𝑃𝑎𝑡ℎ𝑠(𝑘)  records all the paths selected for MEC application 𝑘  and the 

number of UEs each path serves. 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑎𝑝𝑝:  The required amount of resources per UE of MEC application 𝑎𝑝𝑝. 

𝑠′:  The next state of this UE. 

𝛼:  Learning rate. 
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𝛾:  Future reward decay. 

𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡:  The deep neural network used to update q values for MEC hosts. 

𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡:  The deep neural network used to provide q values when selecting MEC 

hosts. 

𝑚𝑒𝑚𝑜𝑟𝑦:  A table that saves historical records. 

𝑚𝑒𝑚𝑜𝑟𝑦_𝑠𝑖𝑧𝑒:  The maximal number of historical records can be saved in table 𝑚𝑒𝑚𝑜𝑟𝑦 

for future training. 

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒:  The number of samples utilized in one iteration of training. 

𝑝𝑒𝑟𝑖𝑜𝑑:  Update period of 𝐷𝑁𝑁𝑢𝑝𝑑𝑎𝑡𝑒. 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟:  The number of training iterations of 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 after the latest update of 

𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡, its initial value is 0. 

Output  

Updated 𝑄𝑇𝑎𝑏𝑙𝑒 

Updated 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 

Updated 𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡 

𝑠 = 𝑠𝑠𝑡𝑎𝑟𝑡; 

𝑎, 𝑠′, 𝑞, 𝑃𝑎𝑡ℎ𝑠 = 𝑨𝟔(𝑀𝐷𝑃, 𝑠, 𝑎𝑝𝑝, 𝑄𝑇𝑎𝑏𝑙𝑒, 𝜀, 𝑃𝑎𝑡ℎ𝑠, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑎𝑝𝑝); 

While 𝑇𝑟𝑢𝑒 do 

  𝑂𝑏𝑒𝑟𝑠𝑒𝑟𝑣𝑒 𝑡ℎ𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑜𝑓 𝑡𝑎𝑘𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠 ∶  𝒓𝒆𝒘𝒂𝒓𝒅𝒂; 

  𝑒 = 𝒓𝒂𝒏𝒅𝒐𝒎𝟏(0,1); 

𝑞𝑣𝑎𝑙𝑢𝑒𝑠 = {}; 

𝐴𝑠
𝑎𝑝𝑝

= 𝒈𝒆𝒕_𝒂𝒄𝒕𝒊𝒐𝒏𝒔(𝑀𝐷𝑃, 𝑠, 𝑎𝑝𝑝, 𝑃𝑎𝑡ℎ𝑠);  

if 𝑒 ≤ 𝜀 do 

  for all 𝑎 ∈ 𝐴𝑠
𝑎𝑝𝑝

 do 

   𝑞 = 𝑄𝑇𝑎𝑏𝑙𝑒(𝑠, 𝑎, 𝑎𝑝𝑝); 

   if 𝑞 == 0 do 

    𝑞 = 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑠, 𝑎, 𝑎𝑝𝑝);  

           end if 

   𝑞𝑣𝑎𝑙𝑢𝑒𝑠 = 𝑞𝑣𝑎𝑙𝑢𝑒𝑠 ∪ {𝑞}; 

       end for 

  𝑞𝑎𝑝𝑝(𝑠, 𝑎𝑠
𝑎𝑝𝑝

), 𝑖𝑛𝑑𝑒𝑥 = 𝑴𝒂𝒙(𝑞𝑣𝑎𝑙𝑢𝑒𝑠); 

     𝑎𝑠
𝑎𝑝𝑝

= 𝐴𝑠
𝑎𝑝𝑝

(𝑖𝑛𝑑𝑒𝑥) 

else  

  𝑎𝑠
𝑎𝑝𝑝

= 𝒓𝒂𝒏𝒅𝒐𝒎𝟐(𝐴𝑠
𝑎𝑝𝑝

);  

  𝑞𝑎𝑝𝑝(𝑠, 𝑎𝑠
𝑎𝑝𝑝

) = 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑠, 𝑎, 𝑎𝑝𝑝); 

end if 

𝑠′ = 𝑀𝐷𝑃(𝑠, 𝑎𝑠
𝑎𝑝𝑝

, 𝑎𝑝𝑝); 

𝑃𝑎𝑡ℎ𝑠 = 𝒓𝒆𝒔𝒆𝒓𝒗𝒆_𝒓𝒆𝒔𝒐𝒖𝒓𝒄𝒆𝒔(𝑃𝑎𝑡ℎ𝑠, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑎𝑝𝑝, 𝑠′, 𝑎𝑝𝑝); 

  𝑄𝑇𝑎𝑏𝑙𝑒 = 𝑨𝟏𝟎(𝑠, 𝑟𝑒𝑤𝑎𝑟𝑑𝑎 , 𝑎𝑝𝑝, 𝑄𝑇𝑎𝑏𝑙𝑒, 𝑞′, 𝛼, 𝛾);  

  𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 , 𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑨𝟕(𝑠, 𝑟𝑒𝑤𝑎𝑟𝑑𝑎 , 𝑎𝑝𝑝, 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡, 𝑠′, 𝑎, 𝑎′, 

𝛾, 𝑚𝑒𝑚𝑜𝑟𝑦, 𝑚𝑒𝑚𝑜𝑟𝑦_𝑠𝑖𝑧𝑒, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟);

;  𝐼𝑓 𝑡ℎ𝑒 𝑈𝐸 𝑚𝑜𝑣𝑒𝑠 𝑜𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑎𝑟𝑒𝑎, 𝑒𝑛𝑑 𝑊ℎ𝑖𝑙𝑒 𝑙𝑜𝑜𝑝 

    𝑠 = 𝑠′; 

    𝑎 = 𝑎′; 
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    𝑠′ = 𝑠′′; 

end While 

 

The main difference between the quick-start SARSA learning algorithm and the 

deep/traditional SARSA learning algorithms lies in the action selection part. if the state-action 

pair has not been visited, hence, its corresponding q value in the q table 𝑄𝑇𝑎𝑏𝑙𝑒 still has 

the initial value 0, then deep neural network 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 will be used to predict the q value 

of this state-action pair. If the state-action pair has been visited before, its corresponding q 

value will be provided by the q table 𝑄𝑇𝑎𝑏𝑙𝑒. To make this work, both deep neural networks 

𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 , 𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡 and the q table 𝑄𝑇𝑎𝑏𝑙𝑒 need to be updated. 

Figure 4.8 shows the results given by the quick-start SARSA learning algorithm. The 

geographic service area considered here is the same as the geographic service area used in 

Figure 4.7. 

 
Figure 4.8: Rewards given by the quick-start SARSA learning algorithm versus episodes 

 

The quick-start SARSA learning algorithm converges after about 2500 episodes, which is 

as quick as the deep SARSA learning, and converges at a reward value around -30 which is as 

high as the traditional SARSA learning. The reason why this quick-start SARSA learning 

algorithm can give a satisfying performance is that it combines prediction in deep SARSA 

learning and the q table in traditional SARSA learning. By predicting the reward (q value) of 

an unvisited state-action pair using the deep neural network, the convergence of the quick-

start SARSA learning algorithm is faster than the traditional SARSA learning algorithm; and by 

saving the updated q value of each visited state-action pair in the q table separately, the 

convergence value of the quick-start SARSA learning algorithm is higher than the deep SARSA 

learning algorithm.  

Although the quick-start SARSA learning algorithm performs well, it is not always 

necessary to choose it to solve research problem 4. As mentioned in section 4.4, the choice 

of algorithms depends on the actual situation: 

1. If the geographic service area is small enough, or, the convergence time of the 



Optimizing Edge Computing in 5G Networks 

Optimizing the Relocation Process using Reinforcement Learning  93 

traditional SARSA learning algorithm is acceptable, then it is redundant to maintain 

a deep neural network at the same time, simply using traditional SARSA learning is 

the most economical way. 

2. If the geographic service area contains (too) many sites and thus requires a huge q 

table which is infeasible/costly, or, the convergence value of the deep SARSA learning 

algorithm is acceptable, then the deep SARSA learning becomes the best choice since 

it can save storage resources and it converges fast. 

3. If the geographic service area has a lot of unit-hosts, and the required convergence 

speed and convergence value are high, then the quick-start SARSA learning algorithm 

is definitely the one to choose. 

4.8 Decision-making mechanism 

To decide on the group of possible target MEC hosts when an exception takes place, a 

decision-making mechanism is proposed in this section. Figure 4.9 illustrates the basic 

procedure to determine the possible target MEC hosts following the proposed decision-

making mechanism.  

For a MEC application, if the current available MEC hosts with this MEC application 

installed are unable to support all the UEs that use this MEC application, but there are still 

resources available in other MEC hosts (Exception 1), Algorithm 8 will determine temporary 

MEC hosts to serve UEs among these MEC hosts. The required MEC application will be 

temporarily installed in the MEC hosts selected by Algorithm 8. If the number of resource 

shortage problems of the same MEC application exceeds a certain threshold defined in 

section 4.5 (Exception 2), then the “simulation-based + VNS” locating mechanism in Chapter 

3 is invoked to allocate more resources for this MEC application. 

When the current available MEC hosts in the geographic service area are unable to 

support all the UEs (Exception 3), the “simulation-based + VNS” locating mechanism is used 

again to properly add more MEC hosts to the network. 
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Figure 4.9: A decision-making mechanism. 

4.9 Summary 

Chapter 4 mainly answers the first three sub-questions of research question 4: Devise an 

algorithm to dynamically find the optimal location of a MEC application processing instance 

for a UE (can be all kinds of equipment mounted in vehicles, machines, cellphones, etc.). 

a) What parameters of the possible target MEC hosts should be taken into consideration? 

Four aspects are considered to estimate the behavior of a possible target MEC host in a 

relocation: 1. The duration time of the relocation; 2. Whether there is a service interruption 

during the relocation; 3. The latency between the UE and the MEC host; 4. The current 

amount of available resources in the MEC host.  

The duration time of the relocation and the service latency between the UE and the MEC 

host can be directly transformed into two parameters. There is another parameter that 

indicates the occurrence of a service interruption during a relocation. If there is no service 

interruption, the value of this parameter will be 0 ; otherwise, the value will be 𝑝𝑟𝑖𝑜𝑟𝑘 , 

where 𝑘  is the MEC application required by the UE. The current amount of available 

resources inside the MEC host is not transformed into a parameter. Instead, it is used to filter 

the MEC hosts that do not have enough resources to serve the UE. 

b) How to choose the target MEC host based on these parameters? 

The three parameters determined in sub-question a) are weighted and added to each other 
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to evaluate the overall performance of a possible target MEC host in a relocation (as shown 

in Equation 4.3). For a UE, not only the performance of its next serving MEC host, but also 

the performances of MEC hosts that may serve it afterwards are important. Therefore, an 

MDP and reinforcement learning are considered in this sub-question. An MDP is used to 

model the network topology and the MEC hosts inside the network. Reinforcement learning 

can estimate the overall performances of each possible target MEC host and its subsequential 

MEC hosts. Based on the estimations, reinforcement learning algorithms will choose the most 

suitable target MEC host for a UE. 

c) What information can be provided as feedback after a relocation to estimate the quality 

of this relocation and the behavior of the target MEC host? How to process/utilize the 

feedback information? 

In sub-question b), the most suitable MEC host for a UE is chosen based on the overall 

performance of each MEC host estimated by a reinforcement learning algorithm. To estimate 

the overall performance, feedback is needed. When a relocation is finished and the UE is 

handed over to the target MEC host, the duration of this relocation, the service latency 

between the UE and its new MEC host as well as the number of service interruptions in this 

relocation will be recorded, calculated and reported to the central controller in which the 

reinforcement learning algorithm is implemented. Questions like which entities are 

responsible to collect, calculate and transfer the feedback and how the feedback is collected 

and calculated are out of the scope of this master thesis.  

Every time after receiving the feedback, the reinforcement learning algorithm will first 

use the feedback to update its estimations on the overall performance of the relevant MEC 

hosts, and then it will decide on the most suitable MEC host for UEs based on the new 

estimations. 
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Chapter 5 Simulations and Tests 

In this chapter, descriptions and measurements on the +31 Network at Ericsson Rijen are 

included, as well as various simulations that are set up to test the performance of the 

algorithms designed in Chapter 4. The simulation outcomes are shown, compared and 

analyzed in this chapter.  

5.1 Measurements of MEC in real 5G environment 

A. 5G Network Setup at Ericsson Rijen 

One of Ericsson’s 5G network is in Rijen, the Netherlands, and it is also known as the +31 

Network. +31 Network uses a None Stand-Alone (NSA) architecture. In the NSA architecture, 

the core network is an EPC instead of an independent 5G core, and there exist eNodeBs and 

gNodeBs, both of which a UE can connect to via different interfaces. If a UE is connected to 

an eNB, user signaling and data will be transferred via E-UTRAN interface; if it is connected 

to a gNB, all the signals and data will be transferred via NR-Uu interce. MME is the main 

controller in the EPC, to be able to support 5G NR, MME together with other core network 

entities such as PCRF, S-Gw, P-Gw and HSS need to be updated accordingly. Control and User 

Plane Separation (CUPS) is applied in the core of the +31 Network, so the S-Gw and P-Gw are 

split up into S-Gw-C/P-Gw-C and S-Gw-U/P-Gw-U. In the +31 Network, there is one S-Gw and 

one P-Gw and they are combined into one common gateway.  

 

Figure 5.1: Control plane architecture of the +31 Network. 
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Figure 5.2: User plane architecture of the +31 Network. 

 

A PDN connection is established between the UE and the common gateway to transfer 

user data, and user data can reach external networks and services via the common gateway 

under the control of core network entities (e.g. MME. PCRF, etc). When a UE wants to access 

to an external network, cloud or virtual machines, signaling will be transferred in control 

plane towards the EPC via eNB as shown in Figure 5.1, while the payloads will be transferred 

in user plane towards the EPC via gNB and finally reach the external data network (e.g. IMS, 

virtualized machines) via the common gateway, as shown in Figure 5.2. External data 

networks might be located far away from the common gateway in Rijen, for example, IMS 

network connected to the +31 Network is in Sweden. Even though transmission via optical 

fibers can reach a speed of approximately 200,000,000 m/s, the large number of transmission 

nodes in between can cause big delays. With edge computing, this problem will be solved, 

because the data computing, storage and processing capacities are located physically close 

to the common gateways.  

 

Figure 5.3: Access to the VM. 

 

In the +31 Network, one VM is used for measurements, and its connection towards the 

common gateway in EPC is shown in Figure 5.3. Data sent from the laptop first goes through 

the access network and enters the EPC, then the data leaves the EPC via common gateway 

and reaches a router, which forwards the data towards a firewall. Though the firewall, the 

data reaches iac_development network and is then forwarded towards the VM. The VM (IP: 

192.168.254.70/28) is running on VMware on a HP server, and it is connected to the 

iac_development network (IP: 192.168.254.64/27). Upon the VM, there is a host called 

dm41.nl (IP: 94.231.253.147). The Round-Trip Time (RTT) is measured between the laptop 
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and dm41.nl, and RTT can represent the service latency. Measurement results are used in 

simulations in section 5.3 to generate a mechanism for simulating a test environment that is 

close to reality. 

B. Measurements 

The measured RTT between the laptop and host dm41.nl is shown in Figure 5.4. Figure 5.4 

contains multiple pings, and the “time” in each record is a RRT, the maximum RRT in Figure 

5.4 is 253ms. This dm41.nl host is located close to the core network, and the service latency 

can be reduced if the MEC host is located closer to the network edge. 
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Figure 5.4: The measured RTTs between the laptop and host dm41.nl 

5.2 Simulations 

A. Assumptions 

Before describing the settings of the various simulations in this chapter, the following set of 

assumptions is proposed which is applicable to all the simulations in this chapter. 

1. All the MEC applications that are provided to the UEs in the geographic service area 

are installed in the MEC hosts properly to meet the latency and resource 

requirement of every UE under the extreme situation, as what is done in Chapter 3. 

This means that, for each MEC application, all the MEC hosts that have it installed 

can meet this MEC application’s latency requirement. Therefore, the latency 

requirement can be guaranteed by only selecting MEC hosts that have the required 

MEC application installed. 

2. The only trigger for relocations analyzed in this master thesis is MEC service 

discontinuity. When a UE moves out of the coverage of its current serving MEC 

host, a new MEC host must be able to serve the UE immediately. 

B. Use case 

In [20], several end-to-end mobility use cases of MEC have been introduced. Among these 

use cases, the use case “prediction of relocation timing” is the most relevant to this thesis 

project and will be discussed in this section.  
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Figure 5.5: Pre-relocation of application state information 

 

There are basically two types of relocations in MEC. The first type is application state 

relocation, serving for stateful applications. The application instance in the target MEC host 

will be instantiated and subsequently the two MEC hosts (current and target) will start to 

interact with each other to enable the transfer of the application states and user context from 

the current MEC host to the target MEC host. The second relocation type is application 

instance relocation, where the application instance will be copied from the current MEC host 

to the target MEC host. This second type of relocation is commonly used in relocations of 

application instance dedicated to a UE. Transferring user context/application states takes 

time and adds delay to the relocation, and the extra delay might increase the probably of 

having a service interruption and degrade user experience. 

Pre-relocation is the transfer of the user data/application state from the current serving 

MEC host to the target MEC host and preparing the target MEC host to serve the UE earlier 

than needed. If a relocation is triggered in advance (that is, relocation triggered when the 

current serving host can still provide the UE with required service level), then this relocation 

is a pre-relocation. Figure 5.5 shows more details about pre-relocations. If a pre-relocation is 

done, the UE can directly be served by the target host when the QoE of the current host 

decreases. However, the timing of triggering a pre-relocation is important, since triggering a 

relocation too early or too late can cause relocation failure or waste of resources. To make 

sure the pre-relocation takes place appropriately, predictions are needed to determine a 

proper timing for pre-relocation. 

On the road in the geographic service area defined in section 3.1, the direction of a 

moving UE is unchangeable since it is forbidden for a running vehicle on the road to drastically 

change its direction (for safety reasons). Therefore, the moving UE will keep moving in the 

same direction which makes it possible to precisely predict its future locations. Apart from 

the direction, the speed of a mobile UE is also an important factor to predict its locations and 

the speed of a UE can be provided by the UE itself, for instance, via an in-car navigation system. 

Having both the speed and the direction of a UE, the central controller is then able to 

estimate the transit time of this UE in the serving area of its current MEC host [43]. 
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C. Prediction 

The approach used in this master thesis to predict the timing for pre-relocation is described 

as follows: 

1. Relocations of different MEC applications have different durations. Considering the 

volume of data transferred during relocation, the duration can (usually) be ranked 

as stateless < stateful < dedicated. When a UE starts to get served by a new host, its 

estimated relocation duration will be determined firstly.  

2. The UE will keep reporting its current speed to the central controller and the central 

controller will keep tracking its location information by the Location Service (LS) 

defined in [32] (for more details, please see Appendix E). More precisely, the central 

controller can request the current location of a UE periodically by sending a UE 

location Lookup request to the LS or by subscribing to the UE Tracking Subscribe 

service. 

3. The central controller has the overview of the entire geographic service area, so it 

should know the serving area of each MEC host. Otherwise, if supported, the Radio 

Node Location Lookup service can be used to retrieve the set of radio nodes that 

are currently associated with a MEC host (see more in Appendix E). 

4. Every time the central controller receives the location and the speed information of 

a UE, it starts to calculate how much time this UE remains in the serving area of its 

current MEC host. If the remaining time is short enough, the pre-relocation is 

triggered. If supported, another alternative is to make use of the UE Distance 

Lookup service in LS by sending a request that includes the UE identity and the 

coordinates of the farthest boundary of the serving area of the UE’s current MEC 

host to get the distance between UE and the serving area boundary of its current 

MEC host.  

5. After the pre-relocation is done, the central controller will instruct the UE to 

connect to the new MEC host which is timely prepared for its arrival. 

To make sure the above approach works properly, the speed of vehicles shouldn’t change 

significantly in a very short time, and the reporting and location tracking period should be 

short enough. Otherwise, the accuracy of predictions cannot be guaranteed, and may finally 

result in fatal consequences. 

In [6], another relocation mechanism is introduced. The relocation is triggered by the 

serving MEC platform (S-MEP) which is subscribed to RNIS. When a UE crosses a cell boundary 

in the underlying network, the RNIS of the serving MEC host (S-RNIS) will notify the cell 

change to the S-MEP, and the S-MEP further checks whether the UE has moved out of the 

serving area of its serving MEC host. If yes, a relocation will be triggered. When the UE moves 

out of the serving area of its source MEC host and the target MEC host is not ready, its user 

data will be sent to its source MEC host for processing via the target MEC host. The data 

transfer between two MEC hosts takes extra time, and user experience will be degraded 

accordingly. This mechanism is not further researched in this master thesis. 
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5.3 Scenarios & Settings 

In this section, three scenarios are designed to test the algorithms in Chapter 4. In addition, 

settings of simulations are also introduced. 

A. Scenarios 

Different scenarios may occur in real world. In this master thesis, three scenarios are 

considered: 

1. Stable network conditions. The conditions of the network stay stable and the actual 

number of UEs is no larger than the estimated number (i.e. no resource shortage 

problem). In this scenario, deep SARSA learning algorithm, traditional SARSA 

learning algorithm and the quick-start SARSA learning algorithm gradually learn 

from the feedback that reflects the network conditions and update their 

estimations on the current network conditions. 

2. MEC hosts go down. In this scenario, 5% or 25% of the MEC hosts in which MEC 

applications are installed go down suddenly. More precisely, this scenario can be 

further divided into two sub-scenarios: 

a. The sudden defects of MEC hosts are noticed immediately by the network 

and the MEC applications installed in these defected MEC hosts are 

relocated in other MEC hosts which are still available, possibly instructed 

by the MEO. 

b. The sudden defects of MEC hosts fail to get noticed by the network, so no 

other MEC hosts take the work of the defected MEC hosts, and some of 

the UEs might not be able to find suitable MEC hosts. To maintain the 

service continuity for every UE, Algorithm 8 should be able to find 

temporary MEC hosts when needed, and the central controller will 

instruct the chosen temporary MEC hosts to install the required MEC 

applications and to instantiate MEC application processing instances. If 

the defected MEC hosts are not repaired after some time, locating 

mechanism “simulation-based + VNS” should be automatically invoked to 

allocate more resources for the MEC applications that face resource 

shortage problem in the current available MEC hosts, and to deploy new 

MEC hosts in the geographic service area if necessary (as illustrated in 

Figure 4.9). 

3. Too many UEs. If the geographic service area gets busier than expected, some UEs 

may run into problems that no MEC hosts with the required MEC application 

installed can serve them anymore. Although there are MEC hosts available to serve 

UEs, these MEC hosts have not installed the required MEC application(s) (yet). 

According to the decision-making mechanism, a temporary MEC host should be 

selected carefully by Algorithm 8 for each UE that couldn’t find an available MEC 

host with the required MEC application installed. 
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B. Settings 

Simulated environments 

• Number of sites: 800 sites with their axes and coverage radius known in advance, 

• Road length: 500 unit lengths 

• Locations: co-located with gNB-DU, co-located with gNB-CU, located close to/inside 

the core network, 

• MEC hosts information is shown in Table 5.1. 

Table 5.1: MEC hosts information 

Location of MEC hosts Close to gNB-DU Close to gNB-CU Close to 5GC 

Location No. 1 2 3 

Total number of MEC hosts 168 150 131 

Maximum amount of available 

resources in one MEC host 

(computing/storage/processing) 

100/100/100 300/300/300 500/500/500 

 The approach to simulate the four KPIs to estimate the condition and behavior of a 

MEC host is shown below. Because the conditions of network as well as MEC hosts 

are dynamic, an indicator may have a range instead of an exact value, and its exact 

value will be uniformly and randomly generated from this range. 

➢ The duration time of the relocation = time to transfer user context and state 

between two MEC hosts (between 0.05-2s) + time to install an MEC application 

(between 0-2s) + time to instantiate a MEC application instance (0.005-0.01s) + 

time to set up a new PDU Session towards the new MEC host (between 0.01-

0.1s, according to the measurements) 

 Time to transfer user context and state: The average time to transfer user 

context and state of UE of a particular MEC application between a certain 

pair of current and target MEC hosts is fixed and the range of the exact time 

is 10% of the average. 

 Time to install an MEC application: This value will be 0 unless a UE has to 

choose a MEC host without the required MEC application installed (e.g. 

when experiencing resource shortage). In this case, for installing the same 

MEC application in different MEC hosts, average installation time is fixed, 

and it depends on the MEC application, and the range of the installation 

time is 10% of the average; for installing the same MEC application in the 

same MEC host, time will not change.  

 Time to instantiate a MEC application instance: This value is fixed for each 

MEC application.  

 Time to set up a new PDU Session towards the new MEC host: For each 

MEC host, the average setup time is fixed and the range of the exact setup 

time is 10% of the average. 

➢ Whether there is a service interruption during the relocation: During a 

relocation of a UE in a simulation, the probably 𝑝 of having one and only one 
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service interruption during a relocation is positively related to the duration time 

of this relocation. In each relocation, to determine whether there is a service 

interruption or not, a random number between 0 and 1 will be generated. If this 

random number is smaller than the corresponding 𝑝, then there is a service 

interruption in this relocation; otherwise, there is no service interruption. 

➢ The latency at the target MEC host of the relocation: This can be generated 

according to measurement results, in simulations in the following sections, the 

actual service latency of a MEC host is between 0.01-0.3s, and the exact value 

depends on the MEC application and the MEC host itself. That is to say, for the 

same MEC application in the same MEC host, the average service latency is fixed 

and the range of service latency is 10% of the average service latency. 

➢ The current available resources in the target MEC host of the relocation: This 

can be derived directly from the maximum available amount of resources in the 

MEC host and the amount of resources that are currently occupied to serve UEs. 

MEC applications 

Three MEC applications are used in the following tests. Table 5.2 gives more detailed 

information. 

 

Table 5.2: MEC applications information 

MEC 

APP 

Required Resources per UE 

(computing/storage/processing) 
Priority 

Acceptable 

Locations 

Maximum 

number of 

UEs per 

unit length 

MEC 

application 

type 

1 1/0.5/1 2 1, 2 7 stateful 

2 3/3/3 1 1, 2, 3 10 stateless 

3 1/5/5 3  1, 2 3 dedicated 

 

Deep Neural Network 

Structure of the deep neural network used in Deep SARSA learning is described in Table 5.3. 

This deep neural network consists of three different densely-connected layer. The input 

dimensionality of a layer is the number of elements in one input of the layer, and similarly, 

the output dimensionality of a layer is the number of elements in one output of the layer. 

 

Table 5.3: Deep neural network structure 

Layer Type Input Dimensionality Output Dimensionality 

1 Densely-connected layer 1 20 

2 Densely-connected layer 20 10 

3 Densely-connected layer 10 1 
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5.4 Outcomes & Analysis 

A. Stable network conditions 

 
Figure 5.6: Rewards given by the Deep SARSA algorithm versus episodes (stable scenario) 

 

Figure 5.7: Rewards given by the traditional SARSA algorithm versus episodes (stable 

scenario) 
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Figure 5.8: Rewards given by the quick-start SARSA learning algorithm versus episodes (stable 

scenario) 

 

When the network conditions are stable, traditional SARSA learning algorithm, deep SARSA 

learning algorithm and the quick-start SARSA learning algorithm will gradually learn from the 

feedback received from the environment, and this feedback reflects part of the current 

network conditions. Figures 5.6 – 5.8 show the learning procedure of Deep SARSA learning, 

of traditional SARSA learning and of the quick-start SARSA learning separately. Compared to 

Figures 4.7 and 4.8, Figures 5.6 – 5.8 show more smooth curves because these curves show 

the average results of more than 100 iterations, in order to make the learning procedure of 

these reinforcement learning algorithms clearer. In reality, the curves will be more similar to 

what is shown in Figures 4.7 and 4.8 because the reinforcement algorithms do not always 

take the current optimal option but explore other possible options with a certain probability.  

Deep SARSA learning converges before episode 4000, which is much faster than 

traditional SARSA learning which converges after 15000 episodes. However, traditional SARSA 

learning converges at a higher result value (around -32) than deep SARSA learning (around  

-55), implying that traditional SARSA can give more accurate estimations on network 

conditions. The performance of deep SARSA learning algorithm shown in Figure 5.6 is not 

satisfying and the reason behind is that the three-layer densely-connected neural network is 

not the most suitable structure to predict the conditions of this network. In comparison, 

while using the same updating mechanism (shown in Equation 4.2 in section 4.2), the 

traditional SARSA learning algorithm converges at a higher reward because the up to date q 

values are saved separately in a q table and will not affect each other. However, the traditional 

SARSA learning algorithm converges much slower than deep SARSA learning algorithm. To 

compensate this shortcoming while maintaining the advantage of traditional SARSA learning, 

the quick-start SARSA learning algorithm is proposed, and Figure 5.8 indicates that the 

rewards given by the quick-start SARSA learning algorithm increase rapidly in the first 2000 

episodes and then reach a reward of -35 around episode 2000. After that the rewards 

gradually increase and finally converge at -32 around episode 10000.  
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B. MEC hosts go down 

Simulations in this section as well as the next section are designed to test the robustness the 

decision-making mechanism illustrated in Figure 4.9. The robustness of the decision-making 

mechanism is not related to the reinforcement learning algorithm, and in the following 

simulations, traditional SARSA learning algorithm is selected to decide on the most suitable 

target MEC host in a relocation. In each of the following simulations, the first learning 

procedure of the traditional algorithm is not shown because it is not relevant to the goal of 

the simulation. 

Figure 5.9 and Figure 5.10 show the performances of the decision-making mechanism in 

sub-scenarios a and b which are introduced in section 5.3. 

 
Figure 5.9: Rewards given by decision-making mechanism versus episodes (sub scenario a, 25% of 

the MEC hosts go down) 

 

Figure 5.10: Rewards given by decision-making mechanism versus episodes (sub-scenario a, 5% of 
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the MEC hosts go down) 

 

In the simulation for sub-scenario a, 25% of the MEC hosts go down at episode 2500, thus 

a sudden decrease in rewards occurs in Figure 5.9. The central controller immediately notices 

the defections and uses the locating mechanism “simulation-based + VNS” to relocate MEC 

applications installed in the failing MEC hosts in other available MEC hosts. If resources in the 

current available MEC hosts are not sufficient, new MEC hosts will be added to the network. 

After all the MEC applications are re-located successfully, the rewards start to increase 

because SARSA learning keeps learning from the new environment, and the rewards converge 

around episode 6500. The new convergence value is lower than before, because the previous 

deployment is optimized, and the new deployment without defected MEC hosts is no better 

than the previous one. At episode 7500, all the defected MEC hosts have been repaired and 

the MEC applications which have been relocated are moved back to their original places, so 

the rewards increase sharply. Here it is assumed that those repaired MEC hosts have the 

same conditions as before, hence the rewards directly jump to the original reward level.  

Figure 5.10 shows the performance of the decision-making algorithm when 5% of the 

MEC hosts go down at episode 2500. Compared with Figure 5.9, the rewards between 

episode 2500 and episode 7500 in Figure 5.10 is higher, because fewer MEC hosts have gone 

down so the impact to user experience (rewards) is smaller too. 

 

Figure 5.11: Rewards given by decision-making mechanism versus episodes (sub-scenario b, 5% MEC 

hosts go down) 

 

In the simulation for sub-scenario b, the defects of 5% of the MEC hosts which takes place 

at episode 2500 are not discovered, which has the consequence that the reserved resources 

in the geographic service area might be insufficient. The performance of the traditional 

SARSA learning algorithm in this scenario is shown in Figure 5.11. 

When the reserved resources are not enough to serve a UE, Algorithm 8 is used to find a 

currently available MEC host which can maintain the service continuity for the UE, and this 

MEC host is called a temporary MEC host. The selection of a temporary MEC host is 



Optimizing Edge Computing in 5G Networks 

Simulations and Tests  111 

introduced in Table 4.3. According to the decision-making mechanism, more resources will 

be allocated for a MEC application when the number of resource-insufficient cases of this 

MEC application reaches a certain threshold (detailed information can be found in section 

4.5). This is the reason why the rewards increase three times after the degradation – different 

MEC applications have different thresholds, once extra resources have been allocated for a 

MEC application, the rewards will increase because these new resources are carefully 

allocated to enhance the rewards. After about 8500 episodes, enough resources have been 

allocated to all the three MEC applications, but the rewards are lower than the original level 

because of the defected MEC hosts. 

C. Too many UEs 

In the simulation for this scenario, the network stays stable and every MEC host works 

properly. However, the number of UEs in the geographic service area is more than expected 

so resources allocated by the locating mechanism designed in Chapter 3 are not enough 

anymore. Under this situation, the decision-making mechanism should be able to assign UEs 

to temporary MEC hosts, and allocate more resources if needed. Figure 5.12 shows the 

performances of the decision-making mechanism in case too many UEs are present in the 

geographic service area. 

 

Figure 5.12: Rewards given by decision-making mechanism versus episodes (Too many UEs) 

 

The total number of UEs within in the geographic service area gradually increases after 

episode 900 and then stays stable after another 800 episodes, hence in Figure 5.12, the 

rewards gradually decrease between episode 900 and episode 1700. When all of the reserved 

resources have been used, temporary MEC hosts are selected, which further decrease the 

rewards. Fortunately, around episode 2800, the number of resource-insufficient cases 

reaches the threshold to trigger the locating mechanism “simulation-based + VNS” algorithm 

to start to allocate extra resources, after which the rewards increase again. After extra 

resources are allocated, the rewards converge at a lower level than before because there are 
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more UEs in the geographic service area so the overall user experience degrades. 

D. Average number of relocations versus the number of UEs in the 

geographic service area 

Generally, if there are more UEs in the geographic service area, the average user experience 

will degrade, or at least remain unchanged. This is further proved in this section. Figure 5.13 

shows the average number of relocations one UE experiences when there are different 

numbers of UEs per unit length in the geographic service area. Figure 5.13 shows a clear trend: 

when the number of UEs per unit length increases, the average number of relocations that 

one UE experiences increases at the same time. The reason behind this trend is that, when 

the network is busy, MEC hosts with larger serving area can be fully loaded. Therefore, some 

of the UEs are served by MEC hosts with smaller serving area instead, which increases the 

number of relocations.  

It is also shown in Figure 5.13 that no matter how many UEs are in the geographic service 

area, as long as the reserved resources are enough, the average number of relocations of one 

UE of a MEC application with a higher priority (e.g. MEC application 3) can hardly exceed that 

of a MEC application with a lower priority (e.g. MEC application 2). This is partially because 

of the basic rule in section 3.3, and another reason is that, relocations related to MEC 

applications with higher priorities have more effects on the weighted number of relocations 

( 𝑅𝑊 ), therefore, to minimize 𝑅𝑊 , eliminating the relocations (between unit-hosts) 

experienced by the UEs that are using MEC applications with higher priorities is more 

effective. 

 

Figure 5.13: Average number of relocations experienced by a UE versus the number of UEs per unit 

length within the geographic service area 
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5.5 Summary 

In this chapter, the Non-Stand Alone (NSA) architecture of the Ericsson +31 Network is 

introduced, and the RRT between a UE and a VM which is attached to the common gateway 

of the +31 Network is measured and shown. The measured RRTs are used as service latencies 

between a UE and MEC hosts in the simulations that are used for testing the three 

reinforcement algorithms designed in Chapter 4. In the simulations, a relocation is triggered 

by the MEO before it is actually needed. This type of relocation is called pre-relocation and 

relies on UE location prediction to determine an appropriate starting time. Simulation 

outcomes are displayed, compared and analyzed in this chapter. According to the outcomes, 

compared to the two other algorithms, the quick-start SARSA learning algorithm gives the 

satisfied result in the shortest time. However, the selection of the most suitable algorithm is 

based on multiple factors, so different telecom networks and different telecom operators’ 

requirements may result in selecting different reinforcement learning algorithms. 

To enhance the robustness of MEC, a decision-making mechanism is designed in section 

4.8 to make sure that each UE can still receive required MEC services when there is an 

exception. To test the resiliency of this decision-making mechanism, two scenarios where 

several MEC hosts suddenly break down and too many UEs suddenly enter the geographic 

service area, are added. Simulation outcomes show that, in these two scenarios, the decision-

making mechanism can quickly react and effectively deal with the exceptions.  
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Chapter 6 Conclusions and Future work 

This chapter presents this thesis’ conclusions and recommendations for future research. 

Section 6.1 summarizes the answers to the research questions and sub-questions given in 

the chapters 2, 3 and 4, as well as the performance of all the algorithms and mechanisms 

designed in chapters 3 and 4. Section 6.2 proposes recommendations for future research as 

many aspects deserve a more in-depth analysis at the current initial stage of 5G 

implementation. 

This thesis’ central theme is optimizing Multi-access Edge Computing in a  5G network 

context and is analyzed from the user experience and service quality aspects, mainly 

including service latency, service continuity, resource efficiency, resource sufficiency and 

exception handling. 

6.1 Conclusions 

This section gives an overview of this thesis’ research output and summarizes the conclusions.  

Regarding Research Question 1: What is Edge Computing and what is the relevance of 

different types of computing for telecom operators, the following is inferred. 

Cloud computing processes data in a centralized data center, and the latency as well as 

bandwidth usage between end-users and the data center increases rapidly with the number 

of end-users and data volume. Fog computing processes data at fog nodes closer to the 

network edge, and unlike cloud computing, fog computing has a hierarchical architecture and 

fog nodes with different intelligence levels are distributed in different levels. Edge computing 

processes data at the network edge, which is physically closer to the end-users than cloud 

computing and fog computing. Different from cloud computing and fog computing, edge 

computing has a distributed architecture. Compared to cloud computing, edge computing 

can decrease the service latency and the required bandwidth by moving computing, storage 

and network resources to the very edge of the telecom network. Multi-access Edge 

Computing (MEC) is defined by ETSI. When realized, this concept will provide edge computing 

services to UEs via 3GPP defined access and non-3GPP defined access (e.g. Wi-Fi). A MEC 

host can be located in an external data network with connections towards one or several 

User Plane Functions (UPF), while the main controller of the MEC system – the MEC 

Orchestrator (MEO) – interferes traffic routing by interacting with the Policy Control Function 

(PCF) or the Network Exposure Function (NEF) in the 5G Core Network (5GC) as an Application 

Function (AF). 

Regarding Research Question 2: What aspects of Edge Computing should be considered 

for optimization in the context of 5G, the following is inferred.  

The optimization goal of research question 3 is to minimize the number of relocations, to 

meet the requirements of each MEC application and to provide sufficient but not redundant 

resources to each MEC application, hence it is related to the number of MEC service 

interruptions, the number of relocations, the number of MEC hosts involved and resource 

efficiency. Research question 4, on the other hand, has the optimization goal of finding the 

MEC host that provides a UE the best service quality (e.g. service latency, service continuity) 
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during and after a relocation, hence it is related to service latency, the number of MEC service 

interruptions and the number of relocations. 

Regarding Research Question 3: Devise an algorithm to find the optimal location of MEC 

hosts and the optimal location (MEC host) of a MEC application, the following is inferred. 

With technology like Network Function Virtualization (NFV), locating a MEC host will 

become more flexible and less costly. According to the current architecture of 5G networks, 

the logical location of a MEC host in a telecom network is always on the network side of the 

UPF(s), but possible physical locations for a MEC host can include locations physically close 

to the core network, locations physically close to gNB, locations physically close to 

aggregation nodes, etc. Different physical locations imply different levels of service latency, 

but it does not mean that the closer a MEC host is to the UE, the better the user experience 

is. When a MEC host is located closer to the UE, its serving area tends to be smaller, thus 

resulting in a larger number of relocations experienced by a UE. In other words, there is a 

trade-off between service latency and the number of relocations and these two aspects 

cannot be optimized at the same time. 

When the network is extremely busy, MEC hosts should be optimally located to provide 

enhanced service quality. Since the number of relocations and service latency conflict with 

each other, only one of these two can be minimized. In this master thesis, minimizing the 

total number of relocations is chosen as the optimization goal. On one hand, a smaller 

number of relocations can decrease the probability of the occurrence of service interruptions, 

which can be fatal to (users of) UEs like self-driving vehicles; on the other hand, a smaller 

number of relocations implies a smaller number of MEC hosts to be deployed, as well as 

lower O&M cost. Meanwhile, the required service latency and required 

computing/storage/processing resources of every UE become the constraints of this 

optimization problem. To sum up, the optimization goal of research question 3 is to minimize 

the number of relocations, to meet the requirements of each MEC application and to provide 

sufficient but not redundant resources to each MEC application. 

To achieve the optimization goal as well as not violating the constraints, the optimization 

problem is divided into Phase 1 and Phase 2. Algorithms designed in Phase 1 determine 

where to install MEC applications, and algorithms designed in Phase 2 determine the location 

and serving area of each MEC host. By combining the algorithms in Phases 1 and 2, six 

different locating mechanisms are configured. According to the simulation outcomes, the 

mechanism “simulation-based + VNS”, which applies simulation-based algorithm in Phase 1 

and heuristic algorithm VNS in Phase 2, is considered to be the best locating mechanism, 

while the “greedy + greedy” mechanism, which uses two different greedy algorithms in Phase 

1 and Phase 2 separately, is the worst locating mechanism. 

Regarding Research Question 4: Devise an algorithm to dynamically find the optimal 

location of a MEC application processing instance for a UE, the following is inferred. 

When the network is less busy, there may be multiple MEC hosts that are capable to serve 

a UE. In this case, when a relocation is required, the most suitable MEC host that can provide 

the requested user experience needs to be determined for each UE. To achieve this, the first 

step is to determine which MEC hosts can be the possible target MEC hosts of this relocation. 

If installation of MEC applications can largely increase the duration of the relocation, then 

only the MEC host that has the required MEC application installed, has a serving area which 
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overlaps with the current MEC host of the UE and has enough resources to serve this UE can 

be a possible target MEC host. If the installation of MEC application is quick enough, then 

every MEC host that has enough resources to serve the UE and has a serving area which 

overlaps with the current MEC host of the UE can be a possible target MEC host. At present, 

installing a MEC application is time-consuming, therefore, in this master thesis, only the MEC 

host with the required MEC application installed has the possibility to be a possible target 

MEC host. 

After the possible target MEC hosts are determined, the target MEC host needs to be 

selected. Considering that the conditions of a telecom network are dynamic, reinforcement 

learning is suitable to decide on the target MEC host. The reinforcement learning algorithm 

is implemented in the central controller (e.g. the MEO) of the MEC system. This algorithm 

estimates the overall performance of each MEC host based on the service latency between 

the UE and this MEC host as well as the MEC hosts that might serve the UE afterwards, 

number of relocations one UE may experience afterwards and the current load of this MEC 

host. Based on the estimations it makes, the reinforcement learning algorithm decides on the 

target MEC host. Three different reinforcement learning algorithms are designed in this 

master thesis: traditional SARSA learning algorithm, deep SARSA learning algorithm as well 

as the quick-start SARSA learning algorithm that combines the advantages of both the 

previous two algorithms. Traditional SARSA learning algorithm can make better decisions 

than deep SARSA learning algorithm, and deep SARSA learning algorithm learns faster from 

the environment than traditional SARSA learning algorithm. The quick-start SARSA learning 

algorithm learns (almost) as fast as the deep SARSA learning algorithm and makes satisfying 

decisions. The selection of the most suitable algorithm among the three reinforcement 

learning algorithms depends on the scale of the problem and telecom operator’s 

requirements. If the number of MEC hosts involved is small enough, using traditional SARSA 

learning is the best option; if the number of MEC hosts is (too) large and the requirement on 

user experience is not stringent, deep SARSA learning is the most suitable algorithm; if there 

are a large number of MEC hosts and the requirement on user experience is stringent, then 

the quick-start SARSA learning algorithm should be chosen to make decisions. 

For resiliency purpose, a decision-making mechanism is designed to find a temporary 

MEC host for a UE when there is no MEC host with the required MEC application installed 

available. This decision-making mechanism can allocate more resources for one MEC 

application when the resources currently reserved for this MEC application are not enough 

to serve all its UEs. Additionally, when the current MEC hosts are not sufficient to provide 

satisfying services to all the UEs, this mechanism can properly deploy new MEC hosts to serve 

UEs. 

Regarding the interviews, the following is inferred. 

Transmission speed on optical fiber is around 200,000,000 m/s, which significantly 

suppresses the transmission time of data packets to the millisecond level. However, the 

transformation time and processing time in the routers can still affect the transmission delay. 

Therefore, MEC hosts, which process data physically close the network edge, can decrease 

the service latency. At present, network operators prefer to place MEC hosts near the core 

network or metro cores, to reduce Operations and Management (O&M) costs. In the future, 

when MEC is widely used and has more consumers (e.g. self-driving vehicles), more MEC 
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hosts are needed to satisfy the requirements of these MEC service consumers. The growing 

number of MEC hosts brings up the problem of locating these MEC hosts properly as well as 

selecting a suitable MEC host for every consumer, which is discussed in this master thesis.  

6.2 Future Work 

In future research the following aspects can be investigated: 

More realistic geographic service area. In this master thesis, the geographic service area 

is simplified into a straight road with one entrance and one exit. However, in reality, it is likely 

that a road has several entrances and exits as well as crossroads and bends. Furthermore, 

there might be buildings or trees along the roadside which may block radio signals between 

UEs and sites and force the UEs to change their serving MEC hosts. 

More use cases of MEC. In this master thesis, only the use cases that are sensitive to 

service continuity are considered. However, MEC has more use cases, and for some use cases, 

service continuity is not a crucial factor and thus other factors that really matter need to be 

figured out and optimized for different use cases. 

Better approximation algorithms. To solve the minimum 𝑘 -cut problem addressed in 

Chapter 3, greedy algorithms and heuristic algorithms are used and analyzed. However, there 

may exist other approximation algorithms which can further decrease the number of 

relocations. 

More aspects of user experience. In this master thesis, only a few aspects of user 

experience are considered: service latency, service continuity and serving resources. User 

experience may contain many more aspects, such as data transmission rate, number of 

transmissions and retransmissions, that can be investigated and optimized. Besides, security 

and privacy aspects are left out in this master thesis, which are worth researching in the near 

future as well. 

Combination of MEC and regular cellular network services (e.g. telephony, IMS). In this 

master thesis, only the performance of MEC is considered and optimized. In real situation, 

since MEC is deployed in a telecom network, it is entangled with other services provided by 

the cellular network. Therefore, it is always better to optimize MEC together with other 

network services, find trade-offs and conflicts between each other and try to figure out a 

best way to optimize the overall performance of the cellular network. 



Optimizing Edge Computing in 5G Networks 

Definitions and Abbreviations I 

Appendix A. Definitions and Abbreviations 

Definitions  

Application function: The AF is a logical element of the 3GPP Policy and Charging Control (PCC) 

framework which provides session related information to the Policy and Charging Rules 

Function (PCRF) in support of PCC rule generation [21]. In the 5G architecture, the AF will 

interact with the Network Exposure Function (NEF) or other network functions (e.g. Policy 

Control Function). 

Application instance relocation: The procedure of moving an application instance running on 

a MEC host to another MEC host, to support service continuity over underlying network 

[20]. 

Application instance state transfer: The procedure of transferring the operational state of 

application instance from the source MEC host to the instance of the same application in 

the target MEC host [20]. 

Application mobility: Part of mobility procedure for MEC system, it may contain application 

instance relocation and/or application instance state transfer [20]. 

Application processing: A procedure to provide certain services to consumer(s)/users based 

on the logic of the application. 

Application processing instance: A realized software program executed in MEC host, which 

can provide service to serve consumer(s) [20]. 

MEC application: MEC applications run on VMs on top of the virtualization infrastructure 

provided by the MEC host, and can they interact with the MEC platform to consume and 

provide MEC services. In certain cases, MEC applications can also interact with the MEC 

platform to perform certain support procedures related to the lifecycle of the application, 

such as indicating availability, preparing relocation of user state, etc. MEC applications can 

have a certain number of rules and requirements associated to them, such as required 

resources, maximum latency, required or useful services, etc. These requirements are 

validated by MEC system level management, and can be assigned to default if missing [19].  

MEC host: An entity that contains the MEC platform and a virtualization which provides 

compute, storage and network resources for the MEC applications [19]. 

MEC host level management: It consists of a MEC platform manager and a virtualization 

infrastructure manager [19]. 

MEC orchestrator: The core functionality in MEC system level management. It is responsible 

for maintaining an overall view of the MEC system based on deployed MEC hosts, available 

resources, available MEC services and topology; onboarding of application packages, 

including checking the integrity and authenticity of the packages, validating application 

rules and requirements and if necessary adjusting them to comply with operator policies, 

keeping a record of on-boarded packages, and preparing the virtualization infrastructure 

manager(s) to handle the applications; selecting appropriate MEC host(s) for application 

instantiation based on constraints, such as latency, available resources and available 

services; triggering application instantiation and termination; triggering application 

relocation as needed when supported [19]. 
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MEC platform: It is responsible for offering an environment where the MEC applications can 

discover, advertise, consume and offer MEC services, including, when supported, MEC 

services available via other platforms; receiving traffic rules from the MEC platform 

manager, applications or services, and instructing the data plane accordingly; hosting MEC 

services; providing access to persistent storage and time of day information [19]. 

MEC platform manager: It is responsible for managing the life cycle of applications including 

informing the MEC orchestrator of relevant application related events; providing element 

management functions to the MEC platform; managing the application rules and 

requirements including service authorizations, traffic rules, DNS configuration and resolving 

conflicts. It also receives virtualized resources fault reports and performance 

measurements from the virtualization infrastructure manager for further processing [19]. 

MEC system level management: Consists of a MEC orchestrator, an operations support system 

(OSS) and user application lifecycle management proxy [19].  

Operation support system (OSS): It receives requests via the CFS portal and from UE 

applications for instantiation or termination of applications, and decides on the granting of 

these requests. Granted requests are forwarded to the MEC orchestrator for further 

processing. When supported, the OSS also receives request from UE applications for 

relocating applications between external clouds and the MEC system [19]. 

PDU Session: “In telecommunications, a Protocol Data Unit (PDU) is a single unit of 

information transmitted among peer entities of a computer network. A PDU consists of 

protocol specific control information and user data” [18]. In 5G networks, a PDU session is 

similar to a PDN connection in 4G networks, it is a logical connection set up between UE 

and UPF for data transfer. 

Relocation: When a UE is moving around, sometimes, a relevant MEC application processing 

instance and/or MEC application instance state and/or MEC application instance need to 

be relocated in order to maintain its MEC services. 

Relocation mechanism: Mainly includes finding the optimal target MEC host, determining 

how/what to transfer during a relocation, etc. 

User application: A MEC application that is instantiated in the MEC system in response to a 

request of a user via an application running in the UE [19]. 

User application lifecycle management proxy: It allows UE applications to request on-

boarding, instantiation, termination of user applications and when supported, relocation of 

user applications in and out of the MEC system. It also allows informing the UE applications 

about the state of the user applications. It authorizes requests from UE applications in the 

UE and interacts with the OSS and MEC orchestrator for further processing of these 

requests. It is only accessible from within the mobile network, and it is only available when 

supported by MEC system [19]. 

Virtualization infrastructure manager: It is responsible for allocating, managing and releasing 

virtualized resources of the virtualization infrastructure; preparing the virtualization 

infrastructure to run a software image. The preparation includes configuring the 

infrastructure and can include receiving and storing the software image; collecting and 

reporting performance and fault information about the virtualized resources; when 

supported, performing application relocation. For application relocation from/to external 

cloud environments, the virtualization infrastructure manager interacts with external cloud 
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manager to perform the application relocation, possibly though a proxy [19]. 

 

Abbreviations 

AF  Application Function 

AMF  Access and Mobility management Function 

AN  Access Network 

AuC Authentication Center 

AUSF  Authentication Server Function 

CAV  Connected Autonomous Vehicle 

CFS Customer Facing Service 

CN Core Network 

CP Control Plane 

D2D Destination to Destination 

DN Data Network 

DNN Data Network Name (Chapter 2) 

DNN Deep Neural Network (Chapter 4, 5) 

DQN Dee Q Network 

EC Edge Computing 

eCPRI enhanced Common Public Radio Interface 

eNB E-UTRAN NodeB, or, eNodeB 

EPC Enhanced Packet Core 

E-RAB Enhanced Packet System Radio Access Bearer 

ETSI  European Telecommunications Standards Institute 

E-UTRA  Evolved UMTS Terrestrial Radio Access 

E-UTRAN  Evolved UMTS Terrestrial Radio Access Network 

FE Functional Elements 

GGSN Gateway GPRS Support Node 

GMSC Gateway Mobile service Switching Center 

gNB Next Generation NodeB, or, gNodeB 

gNB-DU  gNodeB Distributed Unit 

gNB-CU  gNodeB Central Unit 

gNB-CU-CP gNodeB Central Unit Control Plane 

gNB-CU-UP gNodeB Central Unit User Plane 

GPRS  General Packet Radio Service 

HLR Home Location Register 

HSS Home Subscriber Server 

ISG Industrial Specification Group 

ISDN Integrated Services Digital Network 

LADN Local Area Data Network 

LAN Local Area Network 

LCM Lifecycle Management 

LS Location Service 

LTE  Long Term Evolution 
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MD Markovian and Deterministic decision rule 

MDP  Markov Decision Process 

ME  Mobile Equipment 

MEC  Multi-access Edge Computing 

MEO MEC orchestrator 

MEP MEC Platform 

MEPM MEC platform manager 

MME Mobility Management Entity 

MR Markovian and Randomized decision rule 

MSC Mobile service Switching Center 

NAS Non-Access Stratum 

NB NodeB 

NEF  Network Exposure Function 

NF  Network Function 

NFV  Network Function Virtualization 

NG New Generation 

ng-eNB Next Generation E-UTRAN NodeB 

NG-RAN Next Generation Radio Access Network 

NN Neural Network 

NR New Radio 

NSA Non-Stand Alone 

NRF  Network Repository Function 

NSSF  Network Slicing Selection Function 

NWDAF  NetWork Data Analytics Function 

PCC Policy and Charging Control 

PCF  Policy Control Function 

PCRF Policy and Charging Rules Function 

PDU  Protocol Data Unit 

P-Gw  Packet data network Gateway 

PLMN Public Land Mobile Network 

PSTN Public Switched Telephone Network 

O&M Operations and Maintenance 

OSS Operations Support System  

QoS Quality of Service 

RAB Radio Access Bearer 

RAN  Radio Access Network 

RL  Reinforcement Learning 

RNC  Radio Network Controller 

RNI Radio Network Information 

RNIS  Radio Network Information Service 

RRU Remote Radio Unit 

RTT Round-Trip Time 

SA Stand Alone 

SBA  Service-Based Architecture 
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SGSN Serving GPRS Support Node 

S-Gw  Serving Gateways 

S-MEP  Serving MEC Platform  

SMF  Session Management Function 

TCP Transmission Control Protocol 

T-MEH  Target MEC Host 

T-MEP  Target MEC Platform 

UALCMP User Application LCM Proxy 

UDM  Unified Data Management function 

UE  User Equipment 

UMTS Universal Mobile Telecommunications System 

UP User Plane 

UPF  User Plane Function 

USIM  UMTS Subscriber Identity Module 

UTRAN  UMTS Terrestrial Radio Access Network 

VI Virtualization Infrastructure 

VIM Virtualization Infrastructure Manager 

VM Virtual Machine 

V2X  Vehicle-to-everything 

5GC  5G Core network 
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Appendix C. Mathematical Symbols 

𝑀 Number of MEC applications 

𝑁 Number of sites in the geographic service area 

𝐺 The graph that represents all the unit-hosts in the geographic service area. If 

the two corresponding sites of two nodes have overlapping coverage area, 

these two nodes in graph 𝐺 is connected by a directed link starts from the 

node whose corresponding site is closer to the entrance of the road and 

ends at the other node. Hence, graph 𝐺 is a directed graph 

𝑒𝑣1 1 × 𝑁 vector that indicates the sites that cover the entrance of the road,  

𝑒𝑣1𝑖 = {
1          𝑖𝑓 𝑠𝑖𝑡𝑒 𝑖 𝑐𝑜𝑣𝑒𝑟𝑠 𝑡ℎ𝑒 𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑎𝑑
0                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑒𝑣2 1 × 𝑁 vector that indicates the sites that cover the exist of the road,      

𝑒𝑣2𝑖 = {
1          𝑖𝑓 𝑠𝑖𝑡𝑒 𝑖 𝑐𝑜𝑣𝑒𝑟𝑠 𝑡ℎ𝑒 𝑒𝑥𝑖𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑎𝑑
0                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐴∗ 𝑁 × 𝑁 matrix that indicates the neighbors of each node in graph 𝐺,  

𝐴𝑖𝑗
∗ = {

1  𝑖𝑓 𝑠𝑖𝑡𝑒 𝑗 𝑖𝑠 𝑖′𝑠 𝑠𝑢𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑟 𝑖 = 𝑗 𝑎𝑛𝑑 𝑖 𝑖𝑛 𝐸2

1   𝑖𝑓 𝑠𝑖𝑡𝑒 𝑖 𝑖𝑠 𝑗′𝑠 𝑠𝑢𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑟 𝑖 = 𝑗 𝑎𝑛𝑑 𝑖 𝑖𝑛 𝐸1

0                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐴∗∗ 𝑁 × 𝑁 matrix that indicates the predecessors and successors of each node 

in graph 𝐺, 𝐴∗∗
𝑖𝑗 = {

1     𝑖𝑓 𝑠𝑖𝑡𝑒 𝑗 𝑖𝑠 𝑖′𝑠 𝑠𝑢𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑟 𝑖 = 𝑗 𝑎𝑛𝑑 𝑖 𝑖𝑛 𝐸2

−1  𝑖𝑓 𝑠𝑖𝑡𝑒 𝑖 𝑖𝑠 𝑗′𝑠 𝑠𝑢𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑟 𝑖 = 𝑗 𝑎𝑛𝑑 𝑖 𝑖𝑛 𝐸1

0                                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑈𝐸𝑘   Estimated maximum number of UEs of MEC application 𝑘 ∈ {1, … , 𝑀} that 

enters the geographic service area per unit length 

𝑝𝑟𝑖𝑜𝑟𝑘 Priority of MEC application 𝑘 ∈ {1, … , 𝑀} 

𝑐𝑟𝑘 Required computing resources per UE of MEC application 𝑘 ∈ {1, … , 𝑀} 

𝑠𝑟𝑘 Required storage resources per UE of MEC application 𝑘 ∈ {1, … , 𝑀} 

𝑝𝑟𝑘 Required processing resources per UE of MEC application 𝑘 ∈ {1, … , 𝑀} 

𝑐𝑟𝑢𝑛𝑖𝑡 The maximum computing resources one unit-host can provide 

𝑠𝑟𝑢𝑛𝑖𝑡 The maximum storage resources one unit-host can provide 

𝑝𝑟𝑢𝑛𝑖𝑡 The maximum processing resources one unit-host can provide 

𝐿𝐿 A set of all possible MEC host locations. Three types of MEC host locations 

are considered in this master thesis: collated with gNB-DU, collated with 

gNB-CU and located close to the core network 

𝐿𝐿𝑘 A set of possible locations for MEC application 𝑘 ∈ {1, … , 𝑀} 

𝑁𝑈𝑙𝑙  Maximum number of unit-hosts one MEC host in location 𝑙𝑙 ∈ 𝐿𝐿 can 

contain 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖 The coverage of site 𝑖 ∈ {1, … , 𝑁} 

𝑃𝑁𝑙𝑙(𝑘) Number of paths selected for application 𝑘 ∈ {1, … , 𝑀} in location 𝑙𝑙 ∈

𝐿𝐿𝑘 

𝑃𝑙𝑙
𝑘(𝑛) 𝑁 × 𝑁 matrix that indicates links belong to a path selected for MEC 

application 𝑘 ∈ {1, … , 𝑀} in location 𝑙𝑙 ∈ 𝐿𝐿𝑘,  
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𝑃𝑙𝑙
𝑘(𝑛)𝑖𝑗 = {

1   𝑖𝑓 𝑠𝑖𝑡𝑒 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑝𝑎𝑡ℎ 𝑛 
0                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

(𝑛 =  1, … , 𝑃𝑁𝑙𝑙(𝑘)) 

𝐸𝑁𝑙𝑙
𝑘(𝑛) 𝑁 × 𝑁 matrix that indicates the sites that cover either the entrance or the 

exit of the road and belong to path 𝑛 ∈ {1, … , 𝑃𝑁𝑙𝑙(𝑘)} in location 𝑙𝑙 ∈

𝐿𝐿𝑘, 

𝑃𝑙𝑙
𝑘(𝑛)𝑖𝑗 = {

1     𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 𝑠𝑖𝑡𝑒 𝑖  𝑖𝑛 𝑝𝑎𝑡ℎ 𝑛 𝑎𝑛𝑑 𝑖 𝑖𝑛 𝐸1 𝑜𝑟 𝐸2

0                                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

𝑈𝐸𝑃𝑙𝑙
𝑘(𝑛) Estimated number of UEs per unit length of MEC application 𝑘 ∈ {1, … , 𝑀} 

of path 𝑛 ∈ {1, … , 𝑃𝑁𝑙𝑙(𝑘)} in location 𝑙𝑙 ∈ 𝐿𝐿𝑘 

𝐻𝑁𝑙𝑙 Number of MEC hosts in location 𝑙𝑙 ∈ 𝐿𝐿 

𝐻𝑙𝑙(𝑚) 𝑁 × 𝑁 matrix that indicates the links inside MEC host 𝑚,  

 𝐻𝑙(𝑚)𝑖𝑗 = {
1 𝑖𝑓 𝑠𝑖𝑡𝑒 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑎𝑛𝑑 𝑏𝑜𝑡ℎ 𝑖𝑛 ℎ𝑜𝑠𝑡 𝑚
1                                           𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 𝑠𝑖𝑡𝑒 𝑖 𝑖𝑛 ℎ𝑜𝑠𝑡 𝑚
0                                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

  (𝑚 = 1, … , 𝐻𝑁𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿) 

𝑃𝐿(𝑘) The total length of paths selected for MEC application 𝑘 ∈ {1, … , 𝑀} 

𝑅𝐸(𝑘) The total number of relocations UEs of MEC application 𝑘 ∈ {1, … , 𝑀} 

experience 

𝐷𝐿(𝑘) The number of disappeared links which belong to the paths selected for MEC 

application 𝑘 ∈ {1, … , 𝑀} in graph 𝐺 by merging nodes in the way that 

matrices {𝐻𝑙𝑙(𝑚)}(∀ 𝑙𝑙 ∈ 𝐿𝐿) imply 

𝐸𝑅(𝑘) The total number of eliminated relocations of MEC application 𝑘 ∈

{1, … , 𝑀} by merging nodes in graph 𝐺 in the way that matrices 

{𝐻𝑙𝑙(𝑚)}(∀ 𝑙𝑙 ∈ 𝐿𝐿) imply 

𝐸𝑅𝑊(𝑘) The total weighted number of eliminated relocations of MEC application 𝑘 ∈

{1, … , 𝑀} by merging nodes in graph 𝐺 in the way that matrices 

{𝐻𝑙𝑙(𝑚)}(∀ 𝑙𝑙 ∈ 𝐿𝐿) imply 

𝑅𝐸𝑊(𝑘) The total weighted number of relocations UEs of MEC application 𝑘 ∈

{1, … , 𝑀} experience before integrating unit-hosts into MEC hosts 

𝑅𝑊 The total weighted number of relocations of all MEC applications after 

integrating unit-hosts into MEC hosts 

𝐿𝑊𝑙𝑙  A set of link weights of all links which both end nodes are in location 𝑙𝑙 ∈ 𝐿𝐿 

𝐸1 A set of unit-hosts which corresponding sites cover the entrance of the road 

in the geographic service area  

𝐸2 A set of unit-hosts which corresponding sites cover the exit of the road in the 

geographic service area  

𝑅𝑙𝑙 A set of currently available resources in all unit-hosts in location 𝑙𝑙 ∈ 𝐿𝐿 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑘 Required amount of resources per UE of MEC application 𝑘 ∈ {1, … , 𝑀} 

𝑃𝑎𝑡ℎ𝑠𝑙𝑙(𝑘) A set that saves all paths in location 𝑙𝑙 ∈ 𝐿𝐿𝑘  that are selected to reserve 

resources for MEC application 𝑘 ∈ {1, … , 𝑀} as well as the number of UEs 

each path serves 

𝐻𝑙𝑙 𝐻𝑙𝑙 = {ℎ1, ℎ2, … , ℎ𝑚}, where ℎ𝑖 is a set of all unit-hosts that belong to an 

already existed MEC host 𝑖 in location 𝑙𝑙 ∈ 𝐿𝐿, 𝑚 is the current number of 
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MEC hosts in location 𝑙𝑙 

𝑛𝑒 The number of neighborhoods  

𝑁𝐸𝑖  The 𝑖-th neighborhood used in the Variable Neighbor Descent (VND) 

procedure, 𝑖 ∈ {1, … , 𝑛𝑒} 

𝑇 The sum of links weights of links between different subsets 

𝐼𝑎 The internal cost of node 𝑎 

𝐸𝑎 The external cost of node 𝑎 

𝐷𝑎 The difference between the external cost and internal cost of node 𝑎 

𝑐𝑎,𝑏  The sum of link weights of the links between nodes 𝑎 and 𝑏 

𝑀𝐷𝑃 A Markov Decision Process model that models the geographic service area. 

The states in this model are MEC hosts 

𝑆 State space in the system MDP model 𝑀𝐷𝑃 

𝑠 ∈ 𝑆 A state in the MDP model 𝑀𝐷𝑃, each state is corresponded to one unit-host 

in one location 

𝐴𝑠
𝑎𝑝𝑝

 A set of possible actions for UEs which are using application 𝑎𝑝𝑝 and are in 

state 𝑠 ∈ 𝑆 

𝑎𝑠
𝑎𝑝𝑝

∈ 𝐴𝑠
𝑎𝑝𝑝

 The selected action for a UE which is using application 𝑎𝑝𝑝 and is in state 

𝑠 ∈ 𝑆 

𝑟𝑒𝑤𝑎𝑟𝑑𝑎𝑠
𝑎𝑝𝑝 The reward of taking action 𝑎 for UEs which are using application 𝑎𝑝𝑝 and 

are in state 𝑠 ∈ 𝑆 

𝑝𝑠,𝑠′(𝑎) Transition probability from state 𝑠 ∈ 𝑆 to state 𝑠′ ∈ 𝑆 by taking action 𝑎, 

here 𝑝𝑠,𝑠′(𝑎) = 1, ∀ 𝑠, 𝑠′ ∈ 𝑆, ∀ 𝑎 

𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 The deep neural network used to update q values for MEC hosts  

𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡 The deep neural network used to provide q values when selecting MEC hosts  

𝑄𝑇𝑎𝑏𝑙𝑒 The table used to save all estimated q values in traditional SARSA learning 

algorithm 

𝑞𝑎𝑝𝑝(𝑠, 𝑎) The estimated q value for the state-action pair (𝑠, 𝑎) related to MEC 

application 𝑎𝑝𝑝 

𝜀 The … parameter used in the 𝜀-greedy algorithm 

𝛼 Learning rate 

𝛾 Future reward decay 

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 The number of samples utilized in one iteration of training 

𝑚𝑒𝑚𝑜𝑟𝑦 A table that saves historical records 

𝑚𝑒𝑚𝑜𝑟𝑦_𝑠𝑖𝑧𝑒 The maximum number of historical records can be saved in table 𝑚𝑒𝑚𝑜𝑟𝑦 

for future training  

𝑝𝑒𝑟𝑖𝑜𝑑 Update period of 𝐷𝑁𝑁𝑢𝑝𝑑𝑎𝑡𝑒 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 The number of training iterations of 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 after the latest update of 

𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡, its initial value is 0. When 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑝𝑒𝑟𝑖𝑜𝑑, parameters in 

𝐷𝑁𝑁𝑡𝑎𝑟𝑔𝑒𝑡 are updated to the parameters in 𝐷𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 
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Appendix D. Expert Interviews 

Interview Questions and Answers 

1. How many MEC hosts do you estimate (order of magnitude) in the Netherlands in the 

initial stage of Multi-access Edge Computing deployment and 5 years later? 

At the very early stage, the number of MEC hosts will be limited. But when the O&M 

cost can be reduced significantly and the number of end-users of MEC services are 

substantial enough, the number of MEC hosts will increase. However, the number of 

MEC hosts in 5 years’ time is currently hard to predict. (Question answered in interviews 

1, 2 and 3) 

2. At which levels in the telecom hierarchy of the network of a Dutch Telco and at which 

locations of a telecom network would you position MEC hosts initially and after 5 years 

of deployment? 

KPN will position MEC hosts at its Metro Cores and superior Cores, as well as locations 

near to the end-users of MEC services. Because for KPN, optimizing fiber routes can bring 

more benefits than locating the MEC hosts closer to the end-users. For use cases like 

V2X offloading and on-premise industrial deployments, however, MEC hosts need to be 

placed closer to the vehicles; for example, along the roadside or physically close to the 

factory etc. (Question answered in interviews 2 and 3) 

3. How do you estimate the normal coverage of a MEC host (with/without virtualization) in 

the initial stage and 5 years later?  

Right now, KPN locates MEC hosts at its 4 superior Core location within the Netherlands. 

Later on MEC hosts may be moved to the 164 Metro Core locations to further reduce 

the latency. However, as the cost will increase by doing so, therefore further research is 

required. When a MEC host is co-located with a core/metro core, it will provide MEC 

services to the UEs that are served by the corresponding core/metro core serving area. 

In the future, it is hard to predict the serving coverage of a MEC host, which may depend 

on the usage, development and benefits of MEC as well as the maintenance and other 

costs of running a MEC host close to the network edge. (Question answered in interviews 

2 and 3) 

4. Would you think it is necessary for MEC hosts to always connect to (a) (virtualized) UPF(s)? 

At least foreseen up to now, it is necessary. A MEC host needs to receive the user data it 

requires while still under the control of the core network, and UPF is the element that 

can steer the required data towards a MEC host and get controlled by the core network 

via control plane signaling. (Question answered in interviews 1, 2 and 3) 

5. How do you estimate the complexity and costs (both time and resource/money-wise) of 

installing MEC applications and instantiating MEC application instances in MEC hosts?  

Instantiating a MEC application instance on demand can be done within several 

milliseconds. However, installing a MEC application in a MEC host can take several 

seconds. Besides, the transfer of user context data between the old and new MEC hosts 

for a stateful/dedicated MEC application is the major source of delay during a relocation. 

(Question answered in interview 2) 
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6. Do you think it is possible that one UPF can be connected to CU-UPs from different CUs? 

Do you think it is possible that one CU-UP can connect to multiple UPFs? 

The answer to both questions is yes. The number of CUs in a network is much larger than 

the number of UPFs in a network, so a UPF has to be able to connect to multiple CUs. A 

UE may have multiple requests to access to different data networks via different UPFs, 

however, user data may go through the same CU-UP, so it is possible for a CU-UP to 

connect to several UPFs. (Question answered in interview 3) 

7. Do you agree that service latency between a UE and a MEC host is largely dependent on 

the locations (physical and/or logical) of MEC hosts in the network? 

Yes, service latency largely depends on both logical and physical locations of MEC hosts. 

The logical location of a MEC host determines how many functional entities between 

the UE and the MEC host are involved in delivering MEC services. Since the optical fiber 

related transmission time is negligible (especially in small-sized countries such as The 

Netherlands), the processing and queueing time at each functional entity in between 

mainly determines the service latency. Besides, the physical location of a MEC host also 

matters because the transmission nodes in between need time to do coding and 

decoding as well as transformation of the received data. The closer the physical location 

of a MEC host is to the UE, the fewer transmission nodes in between and thus the shorter 

service latency between the UE and the MEC host. (Question answered in interview 1) 

Interview 1 

Expert: Jan Backman 

Position: Expert Packet Core Mobility Architecture 

Enterprise: Ericsson 

Date: Monday, September 21st, 2020 

Time slot: 15:00 – 16:00 

Form: Microsoft Teams 

Summary: 

1. Transmission time on optical fibers is negligible. Sending a packet between the southern 

part of the Netherlands and the northern part of the Netherlands on optical fibers only 

takes 1.5 milliseconds back-and-forth. Likewise, sending a packet between the northern 

part of Sweden and the southern part of Sweden on optical fibers only takes around 2 

milliseconds back-and-forth. 

2. Transmission time via a 5G New Radio (NR) air interface between a UE and a gNB is 

around 8 milliseconds back-and-forth. Compared to optical fiber, this delay is much 

higher, but it is inevitable. 

3. Since the transmission time on optical fibers is negligible, one of the major sources of 

latencies is the processing time and queueing time of functional entities between the 

UE and the MEC host. 

4. Service latency may not be the main driver of MEC deployment, to reduce half of the 

latency, only 4 times as many MEC hosts are needed. Instead, the population density/UE 

density of an area may require more MEC hosts in order to fulfill the requirements of all 

UEs in this area. In large cities, there will be more demands on MEC, hence more MEC 

hosts needed and maybe some extra MEC hosts used for resiliency. In rural areas, 
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although the number of UEs is limited, MEC hosts need to be deployed in these locations 

as well to serve the UEs there, which is costly but there is no better approach. 

5. For telecom operators, investments and benefits are one of their main concerns. At the 

initial stage, telecom operators may want to reuse their existing data centers. 

6. With network function virtualization, functional entities in a 5G network can be placed 

anywhere where hardware is available. Theoretically, the service latency can be reduced 

significantly by placing the MEC hosts very close to the UEs. However, from the 

operators’ point of view, although the deployment of MEC hosts is easier and cheaper 

with the help of virtualization, the operational and maintenance (O&M) costs of 

software is still high. Therefore, telecom operators do not want too many MEC hosts at 

the initial stage. As the technology develops, the O&M costs may be reduced in the near 

future and as more applications/devices require MEC services, by then telecom 

operators will consider to build more MEC hosts.  

7. In Atlantic City in the U.S., in order to save costs, there are only seven integrated base 

stations in place, located in a circle around the city. Operators use Virtual RAN (V-RAN) 

technology, a large number of small sites that cover the entire city will send user data 

towards these seven base stations for aggregated processing, load-balancing 

management, etc. In this way, the operating cost is significantly decreased. 

8. To sum up, at the initial stage of MEC, the number of MEC hosts will be limited, mainly 

due to the financial consequences for telecom operators. However, in the future, with 

MEC and other related technology developing, MEC can be needed more widely and the 

number of MEC hosts will increase at the same time. 

Interview 2 

Expert: Ir. Geerd Kakes  

Position: Advisor 

Enterprise: KPN 

Date: Friday, October 2nd, 2020 & Monday, October 5th, 2020 

Time slot: 13:00 – 14:00 & 11:30 – 12:30 

Form: Microsoft Teams 

Summary: 

1. Distances in the Netherlands are small between radio sites and core location. For 

instance, when moving a compute node from a Metro Core node (KPN has around 160 

MC locations in NL) to the superior level of 4 core locations the latency gains around 1 

to 2 milliseconds. 

2. KPN will gain more performance from optimizing fiber routes than by bringing the 

computing resources closer to the user. Some routes with an actual distance of a few 

kilometers have a fiber length of more than 40 kilometers. This is because service 

latency was not a main concern in the past and KPN implemented fiber rings which 

result in a shorter path and a longer path between a UE and computing resources. After 

the fiber routes are optimized, it can be foreseen that in some local areas the service 

latency still cannot be satisfied, therefore more MEC hosts closer to the edge will be 

needed. 

3. Four use cases of edge computing are listed below: 
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a) Increasing the network performance by bringing content closer to the end-user (e.g. 

with Netflix content servers) or by processing data closer to the end-user (e.g. video 

processing of surveillance cameras) 

b) Decreasing latency for non-mobile users (e.g. gaming), currently the domain of fixed 

access 

c) Decreasing latency and resilience for V2X use cases (relevant after 2025) 

d) Enabling factory automation with on premise 5G infrastructure 

4. Edge computing locations at the initial stage will be limited to the following situations: 

a) KPN’s 4 superior core locations for mobility use cases 

b) Metro Core location to increase network performance 

c) Customer locations to enable factory or logistic use cases 

5. On premise deployment of MEC can guarantee a real constant service latency to the 

customers and end-users, and the MEC hosts will be located closer to the edge than at 

the metro core locations. Besides, on premise deployment allows the customers to 

control their own data security. 

6. For V2X scenario, the communications between self-driving vehicles can be done by 

short range communications like Destination-to-Destination (D2D) communication. In 

this approach, no MEC hosts are needed. A vehicle can communicate with its peers 

nearby by broadcasting its location and direction information. However, this type of 

communication cannot be verified. A vehicle which receives the broadcasted 

information will not send a response to the vehicle that broadcasts the information, 

therefore the vehicle which broadcasts the information will never know whether the 

messages are correctly received by all the vehicles within its vicinity or not. To enhance 

the success rate of message transfers between vehicles, each vehicle will keep 

broadcasting the same information (maybe with few updates) repeatedly (e.g. 10 times 

per second).  

7. Some information which has a large data volume and is not updated frequently can be 

transferred via long range communication methods, for example via TCP. TCP 

guarantees that the data will be received correctly by the receivers and will send a 

verification to the sender. Although this approach might take longer time, it is suitable 

for information like map information of the road which contains the overview of the 

entire road. This type of information will not change frequently and contains a large 

amount of data, so it is not necessary to broadcast it periodically and create a large 

volume of redundancy. Therefore, long range communication is the better choice here. 

8. For transferring critical information, D2D communication requires the vehicle itself to 

sign the message and verify the source of the received message, which involves 

decoding and analyzing procedure that is time-consuming. Some first measurements 

using a generic processor show an extra latency of around 13ms. In long range 

communication, however, the network itself will do the verification for the vehicles, 

consider the much larger amount of computing and processing resources in the network 

than in a vehicle. Thus, long range communication can be faster than short range 

communication under this situation. 

9. There are debates on where the received information from vehicles nearby should be 

computed and processed. Some hold the opinion that considering the low cost of 
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hardware, it is possible to do the computing and processing inside a vehicle, while others 

think this approach is not reliable. With the help of MEC, the computation of a vehicle 

can be offloaded to the MEC host physically close to the vehicle, which can speed up 

computation and possibly enhance reliability. In this case, the MEC hosts should be 

deployed very close to the vehicles and the MEC service continuity should be 

guaranteed. 

10. If the trajectory of a vehicle is fully predictable, the MEC application instance in the 

target MEC host can be instantiated in advance, so the vehicle can connect to the new 

MEC host before it loses the connection towards the current MEC host. However, in real 

situations, accurate predications cannot be guaranteed sometimes, if a vehicle connects 

to a new MEC host before the required MEC application instance in the new MEC host 

is ready, it can still connect to the previous MEC host via the new one. In this case, the 

service latency mainly comes from the latency between two MEC hosts instead of the 

latency between the UE and the new MEC host. 

11. Launching a MEC application (instantiating a MEC application instance) on demand can 

be done easily and quickly with current technology within several milliseconds. However, 

installing a MEC application in a MEC host can take several seconds. Although the MEC 

application image can be easily pre-loaded in a MEC host with almost no cost at all, 

loading a container is rather time-consuming. 

Interview 3 

Expert: Dr. ing. Frank Mertz  

Position: Designer 

Enterprise: KPN 

Date: Monday, October 5th, 2020 

Time slot: 13:00 – 13:30 

Form: Microsoft Teams 

Summary: 

1. The current possible locations for MEC at KPN is at the four superior core locations in 

the Netherlands. Later, MEC hosts may be moved to the Metro Core locations that KPN 

has in place in the Netherlands, 161 in total, if the benefits have been proved. Besides, 

the on-premise deployments will put the MEC host physically close to the place where 

MEC services are required by the customer, for example, a factory. In the future, it is 

hard to say where possible locations of MEC hosts can be, but it is always the case that 

telecom operators want to maximize their benefits and currently, running and 

maintaining a MEC host is costly, hence the number of MEC hosts needs to be limited, 

unless the maintenance cost decreases and the profits provided by MEC increases in the 

future. 

2. Up to now, a MEC host is always collocated with at least one (local) UPF, because the 

user data required by a MEC hosts needs to be steered by UPFs. Besides, traffic steering 

should always under the control of the core network, using UPF can make sure MEC 

applications do not fiddle with the traffic rules, because traffic rules followed by a UPF 

is controlled by PCF via SMF instead of the MEC application itself. 
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3. A UPF can connect to multiple CU-UPs that are controlled by different CU-CPs at the 

same time. In this sense, a 5G network is similar to a 4G network. In the Netherlands, 

KPN has only 4 P-Gws but around 5000 base stations in the current 4G network. This 

means that one P-Gw should be able to serve multiple base stations. Even though in 4G 

technology, an eNodeB is not split into multiple DUs, one CU-CP and multiple CU-UPs, 

the basic concept is the same; one P-Gw can serve multiple base stations which means 

that it can be connected to multiple user planes that are controlled by multiple control 

planes in different base stations.  

4. A CU-UP can be connected to multiple UPFs at the same time. Nowadays, one single UE 

may have multiple requirements to different data networks. Take mobile phone as an 

example, a user may require for Internet connection and IMS connection at the same 

time. To connect to multiple data networks, the UE may be connected to multiple UPFs, 

but on the radio side of the network, all the user data may be transferred via the same 

CU-UP, therefore, one single CU-UP should be able but not necessarily to connect to 

multiple UPFs. Theoretically, it is possible to build one CU-UP for each UPF, but consider 

the high cost of implementing and maintaining one functional element even with the 

help of network virtualization, connecting one CU-UP to multiple CU-UPs seems to be 

the better option at present. 
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Appendix E. Location Service 

Location Service provides services including UE Location Lookup, UE Information Lookup, UE 

Location Subscribe, UE Information Subscribe, Subscribe Cancellation, Radio Node Location 

Lookup, UE Tracking Subscribe, UE Distance Lookup, UE Distance Subscribe and UE Area 

Subscribe. Only a few relevant services are further introduced. 

UE Location Lookup 

The UE Location Lookup can provide the current location information of a single UE or a group 

of UEs. The Location Service will report the lookup result once on each request. Figure E.1 

illustrates the procedure of UE Location Lookup. 

 
Figure E.1: Flow of UE Location Lookup [32]. 

 

1. The MEC application/MEC platform which wants to look up one or more UE locations 

sends a request with the identifier for each UE (e.g. UE IP address). The request includes 

one or more query parameters to specify the interested UE(s). 

2. The Location Service returns a response with the location information of the requested 

UE(s). 

Radio Node Location Lookup 

The Radio Node Location Lookup is to retrieve the radio nodes that are currently associated 

with a MEC host. Figure E.2 illustrates the procedure of Radio Node Location Lookup. 

 

Figure E.2: Flow of Radio Node Location Lookup [32]. 
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1. The MEC application/MEC platform makes an enquiry about the radio nodes currently 

associated with the MEC host which the MEC application/MEC platform located in. 

2. The Location Service returns a response with the list of radio lists currently associated 

with the MEC host as well as the location information of each radio node. 

UE Distance Lookup 

The UE Distance Lookup is the procedure for MEC applications/MEC platforms to acquire the 

current distance between a specific UE and a geographical location, or another UE. Figure E.3 

illustrates the procedure of UE Distance Lookup. 

 

Figure E.3: Flow of UE Distance Lookup [32]. 

 

1. The MEC application/MEC platform looks up the distance between the UE and another 

UE or a geographical location by sending a request including the two UE identities (e.g. 

UE IP address), or a single UE identifier and the coordinates of the geographical location. 

2. The Location Service returns a response including the distance information. 
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Appendix F. Functional Entities in 3G, 4G and 

5G Networks 

Table F.1 is an informative comparison table and it gives a global reflection of how functional 

entities have evolved from 3G to 5G. Further information about mobile communications 

network architecture can be found in [29] and [45]. 

 

Table F.1: Functional entities in 3G, 4G and 5G 

 3G 4G 5G 

Core 

Network 

Home 

Location 

Register (HLR) 

Home Subscriber Server 

(HSS) 

* HSS may utilize the AuC 

that is functionally 

connected to the HLR, 

instead of using an HSS-

internal AuC 

Authentication Server Function (AUSF) 

Authentication 

Center (AuC) Unified Data Management (UDM) 

Serving GPRS 

Support Node 

(SGSN) 

Mobility Management 

Entity (MME) 

Access and Mobility Management 

Function (AMF) 

Session Management Function (SMF) 

Gateway GPRS 

Support Node 

(GGSN) 

Serving 

Gateway 

(S-Gw) 

Control 

Plane 

(S-Gw-C) 

User Plane 

(S-Gw-U) 

User Plane Function (UPF) 
Packet 

Data 

Network 

Gateway 

(P-Gw) 

User Plane 

(P-Gw-U) 

Control 

Plane 

(P-Gw-C) 

Session Management Function (SMF) 

Mobile service 

Switching 

Center (MSC) 

*Related to 

circuit-switched 

networks only 

N/A N/A 

Gateway MSC 

(GMSC) 

*Related to 

N/A N/A 
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circuit-switched 

networks only 

N/A 
Policy and Charging Rules 

Function (PCRF) 
Policy Control Function (PCF) 

Radio 

Access 

Network 

NodeB (NB) 

E-UTRAN NodeB (eNB) 

Next 

Generation 

NodeB (gNB) 

Distributed Unit 

(gNB-DU) 

Radio Network 

Controller 

(RNC) 

Centralized 

Unit 

(gNB-CU) 

Control 

Plane 

(gNB-CU-

CP) 

User Plane 

(gNB-CU-

UP) 

 


