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Abstract

This research evaluates the effect of rock typing on CO2 storage capacity and plume migration in the Upper
Kharaib carbonate reservoir, located in the Rub Al Khali Basin. The open source COSTA model was used
to apply two rock typing methods, the Winland R35 classification and the Flow Zone Indicator, and were
compared to the general relationship of the base method to characterize the relationship between porosity and
permeability. Rock typing methods demonstrated results that had high amount of CO2 stored, high vertical
upward plume migration towards the structural trap, and good pressure distribution due to its high permeability
compared to the base method. The results showed that the Winland R35 classification method had the highest
storage capacity of 136.7 MtCO2 followed by the Flow Zone Indicator at 109.1 MtCO2, and the base method
at a maximum of only 54.9 MtCO2. Furthermore, an uncertainty analysis on the porosity model generated
multiple realizations. It showed low variability in the base method simulation results for the amount of CO2

stored and higher variability in the results for rock-typing that introduces higher uncertainty. Rock-typing
methods show a higher CO2 storage potential but could be associated with higher uncertainty that requires
careful consideration. This research provides findings on rock-typing methods CO2 storage potential and the
uncertainities associated for future carbon capture and storage (CCS) projects in carbonate reservoirs.
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1 Introduction

The world is currently facing a major challenge, climate change, as greenhouse gases (GHG) in the atmosphere
are the main contributors to this, with carbon dioxide (CO2) among them (Lindsey, 2024). Since the industrial
revolution, CO2 emissions have increased significantly, reaching 418 parts per million (ppm). This increase has
occurred rapidly over the last 100 years, largely due to human activities related to the burning of fossil fuels
(Lindsey, 2024). For years, the fossil fuel industry’s had their own climate projections models that only recently
received attention. An analysis of ExxonMobil internal company records between 1977 and 2003 showed that
the company’s scientists developed a range of global warming projections. Most of these projections match the
observed warming trends, and are closely accurate to the independent academic and government models. These
projections predicted the detection of human-induced warming, and provided estimates of the carbon budget
increases to 2°. But these studies were downplayed in companies’ public statements on climate science (Supran
et al., 2023). Recent research has quantified the human costs associated with these environmental impacts,
ranging from public statements that often downplayed these early warnings, the convergence of independent
academic models and internal projections underscores the critical need to address climate change proactively
(cite Supran et al., 2023).
As part of mitigation and efforts to reduce emissions, in 2015, the United Nations Framework Convention on
Climate Change (UNFCC) established the Paris Agreement. This agreement urges participating countries to
reduce their emissions in order to meet the 43% reduction goal of GHG in 2030 and the zero-emission goal
of 2050. The purpose of the agreement is to limit the temperature increase to 1.5 °C instead of the currently
expected increase of 2°C compared to the pre-industrial temperature level (unfccc.int, nd). One strategy to
achieve these goals is carbon capture and storage (CCS).

1.1 Carbon capture and storage

Carbon capture and storage is a method that captures CO2 from large sources such as power plants and in-
dustrial facilities before it is released into the atmosphere. After CO2 is captured, it is transported through
pipelines and then injected into a deep geological formation or depleted hydrocarbon fields. This approach helps
to store large amounts of CO2 securely for extended periods of time (National Grid Group, nd).
Today, this strategy is being considered in many countries as part of their efforts to reduce emissions and meet
their commitments to the agreement. A great example for an implemented project is the Sleipner project in
Norway, which has been storing CO2 in a deep saline aquifer located in the North Sea since 1996. The project
has stored around 15.5 million tons of CO2 in 2015 since it began, demonstrating the effectiveness of CCS in
reducing emissions (Furre et al., 2024). The Sleipner project targets the Utsira Sand Formation, but carbonates
also hold great potential for CCS, as almost half of the current producing hydrocarbon fields are carbonates
(Ahr, 2011). These fields are well studied and provide a lot of geological, petrophysical and production data
that can be leveraged in assessing the potential of carbonate aquifers for CCS.
These data can help in the prediction of stored CO2 volumes and its migration behavior in CCS. Specifically,
petrophysical data, such as porosity and permeability, can influence CO2 flow and storage. Therefore, under-
standing the relationship between them is crucial when assessing CCS potential reservoir. By applying different
rock typing methods that give a variety of relationships between porosity and permeability, it improves under-
standing of quantifying predictive CO2 stored and behavior, as well as quantifying and reducing the uncertainties
in these predictions.

1.2 Reservoir rock typing

In general, a reservoir has differences in geological properties with variations in porosity and permeability that
affect the flow behavior and storage capacity of the reservoir. To find the relationship between these properties,
rock typing comes into place, as it is a method to characterize the reservoir by classifying rocks into different
classes with similar behavior properties. It helps in identifying a relationship between porosity and permeability
by analyzing the well log and core data to find trends in layers and samples that display the same porosity and
permeability ranges (Tavakoli, 2018). There are many methods of rock typing, such as the Winland Classification
and the Flow Zone Indicator, which will be discussed further in the next chapter (Skalinski and Kenter, 2015).
Rock typing has been widely used in oil and gas reservoirs in order to link the petrophysics to sedimentology
for reservoir characterization and management. As generally when rock typing is connected to facies, it helps
in reducing the uncertainty in the static model. Therefore, it optimizes well placement and production plan as
well as the enhanced recovery volumes.
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1.3 Geological background

The Hajar supergroup is located in the United Arab Emirates and Oman. It is dominated by shallow marine
to intertidal carbonate platform succession. During the Triassic, the Hajar supergroup was formed due to the
opening of the southern Neotethys Ocean with distribution of rocks resulting from processes associated with
the closure of the Neotethys ocean. It was developed during the Permian to lower Cretaceous on the Arabian
continental passive margin. Part of this supergroup is the Thamama group where Upper Kharaib Member is
deposited(Phillips et al., 2013). The Upper Kharaib is exposed in northern part of the United Arab Emirates
as a series of anticline structures shown in Figure 1 that are part of the Thamama B group (Taher, 1997). It is
late Barremian to early Aptian in age, where it was buried along the Oman margin during the Late Cretaceous
and was deformed and exposed due to the uplift that occurred during the Miocene(van Buchem et al., 2002).

Figure 1: Structural cross-section SW-E of Upper Kharaib Member in the UAE in Thamama layer B (Taher,
1997).

The Upper Kharaib Member is mainly limestone with different textures and depositional features. Figure 2
shows the different depositional settings in the Upper Kharaib formation. Starting from the west, it has a flat
ramp setting within the intrashelf basin and is characterized as shallow- water carbonates, with wackstone and
packstone deposits in the inner ramp. In the inner to mid ramp, grainstone deposits can be found. And in the
outer ramp it is mostly dominated by mudstone (van Buchem et al., 2002).

Figure 2: Schematic cross section of the regional stratigraphic between Oman and Abu Dhabi, in the lower and
mid cretaceous (van Buchem et al., 2002).
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1.4 Purpose of research

The aim of the research is to evaluate the effect of rock typing for carbonate reservoirs on CO2 storage and
plume migration. The research focuses on applying petrophysical characterization approaches and evaluating
their impact on CO2 storage and plume migration. The research highlights the uncertainties associated with
the use of rock typing methods in heterogeneous reservoirs such as the Upper Kharaib member, as the choice
of rock typing method can introduce uncertainty in predicting CO2 storage and plume migration.

1.4.1 Research questions

The research focuses on the following questions:

• What is the effect of rock typing on CO2 storage capacity?

• How does the CO2 plume behavior differ in the rock typing methods?

• What are the uncertainties in rock typing methods in the static model and how is it related to uncertainty
in predicting CO2 storage?

1.4.2 Research workflow

The research starts by utilizing an open source model for the Upper Kharaib carbonate reservoir and retrieving
the data into Petrel software developed by Schlumberger. In Chapter 2: Data and methodology presents the
data set and data cleaning process, as it is the main input for the research. This is followed by a petrophysical
analysis on the relationship between porosity and permeability, where three methods are applied, the general
relationship method, and two rock typing methods. Subsequently, the static modeling workflow for porosity,
rock type, and permeability is presented, showing that different rock types lead to different permeability values
and distributions. Next, resampling is performed based on different well combinations to cross-validate. Chap-
ter 2 continues to the dynamic modeling and simulation, where the reservoir grid is imported into a commercial
reservoir simulator GEMS by CMG Ltd. The reservoir standard condition parameters, initial conditions, injec-
tion well placement, and boundary conditions are set for the simulator.
In Chapter 3, the results for the static modeling and uncertainties related to rock typing are discussed, along
with the cross-validation results. In addition, showing the results for the simulation of the different models to
evaluate the effect of rock types on CO2 storage and plume migration to further assess the uncertainties asso-
ciated with the rock typing methods. The chapter continues to address the study limitations and implications
on the research. Finally, Chapter 4 concludes the findings and provides recommendations for future work.
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2 Data and Methodology

This chapter focuses on existing data set, defining the porosity-permeability relationship and associated rock
types. It also covers property modeling for porosity, rock types, and permeability. The chapter later continues
with the methods used to set reservoir grid properties, relative permeability curves, initialization condition, well
placement, and boundary condition.

2.1 Data set

The data set was retrieved from the COSTA model, an open source model developed by Jorge Costa Gomes.
It has a synthetic reservoir based on real data that has been anonymised, scaled, and repositioned to represent
the geometries and properties of carbonate reservoirs in the Middle East. The model is an analogue of the
carbonate formation of the Upper Kharaib Member located in the Rub Al Khali region. The Upper Kharaib
crosses many countries of the Arabian Gulf and is currently operating offshore and onshore for hydrocarbons
(Figure 3). The model is 36,000 km2 in area with 43 wells focusing on Layer B of the Upper Kharaib forma-
tion in the United Arab Emirates (U.A.E) and is heterogeneous in both upper and lower sections (Gomes, 2022).

The Winland classification, driven by capillary pressure, was used to generate different pore throat size distri-
butions and identify rock types. The model also accounts for uncertainties related to the petrophysical and
geomodeling approaches. The results of the model did show that the petrophysical characterization through
rock typing did indeed have an impact on the reservoir volume and performance. It is considered a data source
for carbonate reservoirs to explore the effect of rock typing on CO2 storage and plume migration, which has
not yet been studied (Gomes, 2022).

Figure 3: Left figure shows the geographic region of the middle east with the area of interest highlighted in red
(Alsharhan, 2014). Right figure shows the major producing oil fields in the northeastern part of Rub Al Khali,
in U.A.E (Ehrenberg et al., 2020). The center of the right figure highlighted in black illustrates the COSTA
model theoretical structure in attempt to capture the carbonate formation from shelf-to-basin (Gomes, 2022).
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2.1.1 Existing data

The retrieved data includes 43 wells that are scattered over an area of interest of 1.9 x 107 km2 shown in
Figure 4 with no faults or fractures. The available wells included 17 wells highlighted in red with open hole
logs, core data, and well tops of the top and base of the reservoir. The open hole log data include gamma rays,
neutron porosity, density, deep resistivity, and effective porosity along the reservoir depth interval. The same
wells have core porosity and permeability from conventional core analysis with 0.5 ft over the entire reservoir
interval; therefore, the core captures the reservoir permeability behavior against porosity.

Figure 4: 3D view of the structure of the reservoir, displaying all available 43 wells, and highlighting 17 wells
with logs in red.

10



2.1.2 Data cleaning and readiness

The project does not include any permeability logs. Therefore, the main input for finding a porosity-permeability
relationship is the core data. The core data have data points above and below the reservoir; these points are
removed as shown in the log presented in Figure 5. The first track is the core porosity followed by the core
permeability bounded by the top reservoir and bottom of the reservoir; it can be seen that the data outside of
the reservoir are very low and could negatively affect the relationship and underestimate the permeability to be
modeled. Therefore, in the third track, the cleaned core porosity is followed by the cleaned core permeability
where any points beyond the reservoir were removed to maintain the integrity of the reservoir. Also, in the last
two panels there is a white circle that represents each core point taken every 0.5 ft, confirming that it covers
the entire reservoir and ready to use for the petrophysical analysis.

Figure 5: Well log for well HW-31, displaying in tracks core porosity, core permeability, clean core porosity,
clean core permeability consecutively. And are bounded by the red line (top of reservoir) and blue line (bottom
of reservoir) The first two tracks show data outside these boundaries hence, removed and cleaned to maintain
reservoir integrity as they could underestimate the permeability model.
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2.2 Petrophysical Analysis

2.2.1 Porosity and permeability relationship

As mentioned earlier there are no available permeability logs, therefore core data points were used to establish a
relationship between porosity and permeability. The permeability values ranged from 0.01 millidarcies (mD) to
3080 mD showing high variability in the data set. When plotting permeability against porosity on a standard
scale, there is no apparent linear relationship between them, as shown in Figure 6. Therefore, a logarithmic scale
was applied to permeability values, as this method is useful for data with varying orders of magnitude, where it is
compressed to identify trends. The logarithmic scale showed a better apparent log-linear relationship in Figure 7,
which serves as the basis for this research and will be referred to as the base method in upcoming chapters.
It is a reference for studying how the application of rock typing methods will have a porosity-permeability
relationship per rock type that will influence reservoir properties, compared to the general relationship.

Figure 6: Cross plot of raw data for permeability and porosity measured in core plugs.

Figure 7: Cross plot of raw data for permeability and porosity measured in core plugs in logarithmic scale.

The linear trend in Figure 7 is represented in Equation 1.

log(k) = 0.087 ∗ φ− 1.431 (1)

Where k is permeability and φ is porosity

12



2.2.2 Rock Typing

Winland R35 classification and Flow zone indicator rock typing methods were selected to be preformed in
petrophysical analysis. As in carbonates, the effect of diagenetic processes is not captured by a simple correlation.
Therefore, parameters for pore geometry and pore types are the most appropriate for static rock typing as the
pore system conducts fluids by controlling the size and connectivity of the pore throats (Aliakbardoust and
Rahimpour-Bonab, 2013).
Winland R35 Classification
The Winland R35 (Winland35) rock typing method is an empirical method named after the geologist Dale
Winland (Rebelle and Lalanne, 2014). His method was further developed by (Kolodzie, 1980) and later by
(Pittman, 1992), and has since been widely used in reservoir characterization(Rebelle and Lalanne, 2014). The
method determines the pore-throat radius at 35% mercury saturation from the mercury injection capillary
pressure (MICP) test indicating the naming of R35 (Ahmed, 2019). The capillary pressure is the pressure
difference at the interface between two immiscible fluids; mercury and water, and has an inversre relationship
with the pore throat size (Kadkhodaie and Kadkhodaie, 2022). Values of R gives an indication of pore throat
size and their connectivity, as high values of R are related to better reservoir quality, where low values indicate
poor quality or tighter parts of the reservoir. The Winland35 is expressed in Equation 2 (Rebelle and Lalanne,
2014).

logR35 = 0.732 + 0.588 ∗ log k − 0.864 ∗ log φ (2)

where R35 is the radius of the pores throat, k is the permeability and φ is the porosity.

After applying the equation, different ranges of the rock pore throat radius have been identified, with a minimum
value of 0 and a maximum value of 120. These values were grouped into 4 types accroding to (Martin et al.,
1997) in Figure 8 with different colors, the first type is the megaport flow unit that show the best reservoir
quality, with values between 120 and 10 highlighted in beige, while the second type is the macroport that has
less quality with values between 10 and 2 highlighted in brown, the third type is the mesoport that has values
between 2 and 0.5 highlighted in gray, and the last type is the microport had a poor quality reservoir with
values less than 0.5 highlighted in blue.

Figure 8: Cross plot of core porosity vs core permeability with Winland35 rock-types.

Flow Zone Indicator
The Flow Zone Indicator (FZI) is a method that, similar to Winland 35, correlates porosity and permeability to
identify rock types based on flow units (Rebelle and Lalanne, 2014). It has two main parameters, the Reservoir
Quality Index (RQI) and the effective porosity, the RQI is the ratio between permeability and effective porosity
to measures the flow potential in the reservoir calculated using 3 (Rebelle and Lalanne, 2014):

RQI = 0.0314∗
√

k

φe
(3)

The FZI is calculated using 4 that is based on the ratio between RQI and the effective porosity. The method
classifies the reservoir into different hydraulic units based on connectivity and pore type. An FZI with high
values indicates a better quality rock in terms of connectivity and flow potential, and an FZI with low values
indicate less quality and more limited flow potential.

FZI = RQI∗1 − φe

φe
(4)
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After applying these equations to the core data, a range of results for FZI values are obtained with a minimum
value of 0.09 and a maximum value of 750. The rock types were classified according to these values into 5 types
shown in Figure 9 to compare with Winland35. Starting from the top of the cross-plot, the first type is the
better quality reservoir type with better flow potential that ranges between 750 and 10 highlighted in beige, the
second type is between 10 and 2 highlighted in brown, the third type is between 2 and 1.5 highlighted in gray,
the fourth type is between 1.5 and 0.5 highlighted in blue, and the fifth type is less than 0.5 which is poor in
quality and limited in reservoir connectivity highlighted in yellow.

Figure 9: Cross plot of core porosity vs core permeability with FZI rock-types.

2.3 Static Modeling

The well tops and porosity well logs are used as input for the static model with the integration of the different
methods applied for petrophysical rock characterization; base and rock typing methods.

2.3.1 Structural model

In order to build the static model, a structural framework is used to define the grid to be populated by the
reservoir properties. The grid geometry is defined by top and bottom boundaries, cell size, vertical thickness of
the cell, and layers going into the model based on the reservoir thickness. The well tops of the top and bottom
reservoirs are used to create a surface map. The surface maps serve as input for the grid top and bottom
boundaries in order to provide a conformable grid and capture any structural variations. Given the large area
of the project, the grid cell increments in the x and y directions are set to 250 m, Due to the size of the area
larger are chosen to account for the computational time for simulations. The reservoir has a maximum thickness
of 197 m; therefore, 197 layers are created with a minimum vertical cell thickness of 1 m. The grid resolution
parameters can be found in Table 1.

Area 13300 0m x 148250 m
Grid cells (nI x nJ x nK) 532 x 593 x 197

Grid nodes (nI x nJ x nK) 533 x 594 x 198
Total number of grid cells 62148772

Total number of grid nodes 62687196

Table 1: Grid resolution parameters.
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As part of the grid quality check, geometrical modeling with three methods are used to test the quality on all
the cells in the grid; Cell inside-out, cell apparent angle, and cell maximum internal angle.
Cell inside-out is a method to highlight any distorted cells in the 3D grid. It is significant for the accuracy of
simulation to have good cell geometry instead of cells corners being inside out, which will result in negative
cell values or errors in simulation. Figure 10(a) shows that there were zero cells with inside out corners, which
means the cells are good. Cell angle calculates the deviation of the cell angle from 90°, with the apparent cell
angle as the compass orientation of the cell shown in Figure 10(b) having a zero value, indicating that there
is no deviation. The cell maximum internal angle is the angle between two edges within the cell with worst
quality. There were more than 90% of cells with no deviation, while the rest showed a maximum deviation of
0.05°as shown in Figure 10(c). These methods validate the structural model showing no signs of distortion or
major deviation in the cells, making it fit for the property population.

((a)) Cell inside-out histogram. ((b)) Apparent cell histogram. ((c)) Maximum internal cell angle histogram.

Figure 10: Geometrical Modeling Distributions.

2.3.2 Well log up-scaling

The main objective of upscaling the well log is to capture the well log data in the grid cells. This process
is important in preserving the heterogeneity and fine layers in the large-scale model, as it is the main input
for petrophysical property modeling that is used in simulation. Therefore, a number of methods are tested to
honor the log data. For the porosity log, a series of methods are used and evaluated, arithmetic, midpoint, and
median. The median showed the best match to capture the log data in Figure 11(a) . For the rock-type logs
belonging to Winland35 and FZI, the most-of the method had the best match shown in Figure 11(b) and 11(c).
These methods were evaluated based on the histogram match of the well log with the upscaled logs.

((a)) Histogram of upscaled log against
the well log for porosity.

((b)) Histogram of upscaled log against
the well log for Winland35 rock types.

((c)) Histogram of upscaled log against
the well log for FZI rock types.

Figure 11: Histograms of the upscaled log in red against the well log in green.
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2.3.3 Porosity Modeling

Sequential Gaussian simulation (SGS) method is used to create the porosity models, as it provides multiple real-
izations that allow to cover a range of uncertainties. The method forces the data into a normal distribution using
a normal score transformation and assigns the transformed data point to the simulation grid (Ghojeh Beyglou,
2021). Then, it uses random paths from the grid nodes and uses simple kriging to estimate the random value
for porosity extracted from the Gaussian probability distribution assigned to the grid cell (Ghojeh Beyglou,
2021). This process is repeated sequentially, and the randomness of this process allows to generate multiple
realizations that can be utilized in performing uncertainty analysis. The semivariogram is a data analysis tool
that shows data points with respect to distance and provides a spatial correlation that will define the spatial
boundaries of the correlation in the model. This is performed on the upscaled logs to determine the lateral
(horizontal range) and vertical continuity (vertical range) of the reservoir. It is used to set the semivariogram
ranges that go into the property model. To obtain the best ranges, the direction of the available well log data
is important to determine the horizontal range continuity of the data; it is set to 45° as seen by the direction of
the cluster of wells in Figure 41(b). The number of lags represents the number of points to be correlated, and
the lag distance is the distance between two points (Ringrose and Bentley, 2016). The bandwidth is used for the
sampling configuration, as it limits the number of unreasonable pairs association and maximizes the reasonable
pairs (Deutsch, 2015).
Table 2 shows the values of the semi-variograms for the vertical range, major horizontal range, and minor
horizontal range for the porosity model. Figures of these correlation can be found in Appendix A.

Vertical range Major horizontal direction Minor horizontal direction
75 22000 18500

Table 2: Variogram ranges for porosity model

The model showed a distribution similar to that for the well logs and upscaled logs in Figure 12.

((a)) Histogram showing the upscaled log, well
log and model for porosity. ((b)) Base case porosity model.

Figure 12: Porosity model and histogram.
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2.3.4 Rock Type Modeling

For the rock type modeling, a similar approach to facies modeling is implemented using Sequential Indicator
Simulation (SIS). This method is widely used for discrete properties such as facies and rock type. and follows
the same process as SGS. But instead of extracting from a Gaussian distribution, it assigns random indicators
(rock types) while still adhering to the proportions of these rock types in the data. Semivariogram analysis is
also performed for rock-type models and ranges can be found in Table 3. Similarly to the porosity model, the
rock-type models in Figure 13 and 14 showed a distribution similar to the well logs and the upscaled logs.

Rock-type model Vertical range Major horizontal direction Minor horizontal direction
Winland35 27 18600 12000

FZI 40 20000 14000

Table 3: Variogram ranges for rock-type models

((a)) Histogram showing the upscaled log, well
log and model for Winland35 rock types. ((b)) Winland35 rock type model

Figure 13: Winland35 rock type histogram and model

((a)) Histogram showing the upscaled log, well
log and model for FZI rock types. ((b)) FZI rock type model

Figure 14: FZI rock type histogram and model
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2.3.5 Permeability Modeling

The main method to model permeability is to transform the porosity models using the general relationship or
the rock types relationships within the method. The data of each rock type is imported into excel to find the
relationship between porosity and permeability by finding the best fit for correlation and using the different
equations as input in Petrel. Initially, the permeability model is set to equal the rock type model, and then
each rock type was transformed by using the porosity model and equation extracted per rock type, where it
was bounded by the permeability range in the rock type to eliminate any over- or under-estimations.

For the Winland35, four equations were extracted as seen in Equations 5, 6, 7 and 8. Consecutively with
the crossplots in Figures 15(a), 15(b), 32(b) and 15(d).

Rock Type 1 : k = 1889.7 ∗ φ0.98 (5)

Rock Type 2 : k = 577.7 ∗ φ1.39 (6)

Rock Type 3 : k = 55.8 ∗ φ1.64 (7)

Rock Type 4 : k = 25.2 ∗ φ2.20 (8)

((a)) ((b))

((c)) ((d))

Figure 15: Winland35 porosity-permeability crossplot per rock type.

For FZI, five equations are extracted as seen in Equations 9, 10, 11,12 and 13. Consecutively with the crossplots
in Figures 16(a), 16(b), 16(c), 16(d) and 16(e).

Rock Type 1 : k = 66477 ∗ φ2.41 (9)

Rock Type 2 : k = 21839 ∗ φ2.96 (10)

Rock Type 3 : k = 9119.5 ∗ φ 3.24 (11)

Rock Type 4 : k = 1333.4 ∗ φ3.12 (12)

Rock Type 5 : k = 500.3 ∗ φ3.68 (13)
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((a)) ((b))

((c)) ((d))

((e))

Figure 16: FZI porosity-permeability crossplot per rock type.

2.3.6 Cross Validation

Resampling is applied to the data set, with the use of 80% of available wells for training and remaining 20%
wells for testing. This approach is repeated to produce 5 distinct cases of resampling based on different well
combinations used for validation. Each case has a porosity model transformed to 3 permeability models used
for cross-validation in static modeling and simulation illustrated in Figure 17 . Consequently, a total of 15
permeability models are used for cross-validation.

Figure 17: Diagram showing the transformed permeability models for all 5 case, resulting in a total of 15 models
(5x3).
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2.3.7 Uncertainty Analysis

As mentioned in the porosity modeling section, SGS provides multiple realizations. This can be utilized in
performing an uncertainty analysis for the models. For this research, the analysis is performed on the porosity
model only. Five realizations are created by changing the global seed while keeping the same parameters for
modeling.
Figure 18 shows the porosity distributions for the different realizations. The distribution does not show great
differences when it comes to porosity values. But the differences are found in the statistics for these realizations
in Table 4, as it has different values for mean and standard deviation. Although only global seed was changed
for the same model, this caused changes in the distribution of porosity as can be seen in the different ranges of
mean and standard deviation.

((a)) Realization 1 ((b)) Realization 2 ((c)) Realization 3

((d)) Realization 4 ((e)) Realization 5

Figure 18: Porosity histograms for the realizations

Realization Global seed Mean Standard deviation
1 2272 0.2232 0.07406
2 1705 0.2199 0.0712
3 3333 0.2227 0.0725
4 222225 0.2220 0.0709
5 369 0.2092 0.0767

Table 4: Realizations statistics
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2.4 Dynamic Modeling and Simulation

2.4.1 Reservoir grid and parameter

The property models are exported from Petrel as a rescue file. It is important to note that the area is large and
due to time limitations the area was reduced to 53x103 km2 focusing on the anticline with the thickest layers
present in the reservoir that is surrounded by wells with well logs as shown in Figure 19 with grid resolution
parameters in Table 5.

Figure 19: Structure map of top reservoir showing the selected area for simulation in black polygon.

Area 7250 m x 7250 m
Grid cells (nI x nJ x nK) 29 x 29 x 197

Grid nodes (nI x nJ x nK) 30 x 30 x 198
Total number of Grid cells 165677
Total number of grid nodes 178200

Table 5: Grid resolution parameters for cropped model.

Later, the rescue files are imported to CMG Builder software as an input for the reservoir grid. The properties
of the grid are used to set the porosity and permeability grids. For the permeability grid, the i,j,k directions
are set with the same grid for simplicity, making the permeability isotropic. This means that the reservoir grid
assumes a flow equal in all directions and does not give an accurate representation of flow variability related to
heterogeneity in the vertical and horizontal directions, leading to uncertainties in flow behavior and reservoir
capacity. The reservoir standard condition parameters are summarized in Table 6 for rock compressibility,
reference pressure, and temperature. There is no literature related to rock compressibility in the Upper Kharaib
member; therefore, a rock compressibility is based on a nearby carbonate oil field in Iran that was established
at 1x10−6 1/KPa (Hashemi et al., 2012). It is an important parameter to calculate the compaction that the
rock undergoes as a result of pressure changes, which will help in pressure management to avoid leakages and
ensure the containment of CO2 (Fanchi, 2005). To account for the properties of the fluid and the rock under
standard conditions, it is necessary to assume atmospheric conditions for the temperature pressure, which was
the default value in Builder as 25°and 101.3 KPa (Pettersen, 2006).
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Rock compressibility 1x10−6 1/KPa
Reference temperature 25 C°

Reference pressure 101.3 KPa

Table 6: Reservoir standard condition parameters

2.4.2 Relative permeability

The model regards the reservoir as a saline aquifer with relative permeability curves sourced from CMG defaults
due to the lack of literature review providing relative permeability curves for carbonate aquifers. In Figure 20(a),
the relative permeability curve of the water saturation assumes no residual water saturation and can be seen for
the gas permeability curve in Figure 20(b). These curves are not realistic, as water is typically retained in small
pores, but for simplicity, it is assumed that CO2 will fully saturate the reservoir. The capillary pressure, which
is the difference in pressure at the interface between gas and water, has been excluded, further simplifying the
model.

((a)) Krg vs. Sw relative permeability curve. ((b)) krg vs. sg relative permeability curve.

Figure 20: Relative permeability curves.

2.4.3 Initialization conditions

It is important to mention that the measurement units were converted to metric once imported to CMG. The
top of the reservoir is at 7888 ft in Petrel and is converted to 2337 m in CMG. Initially, it is assumed that the
reservoir is in hydrostatic equilibrium where the water table is set at 2000 m, placing it above the top layer of
the reservoir, making it full of brine. Since it is in hydrostatic equilibrium, the initial pressure of the reservoir
was set to hydrostatic pressure calculated in equation 14.

P = g∗ ρf ∗ d = 9.8 m/s2 ∗ 1025 kg/m3 ∗ 2337 m = 23499119.25 kg/s2m ≈ 23500 KPa (14)

Where g is gravity, ρf is the fluid density which is brine at 1025 kg/m3 and d is the reference
depth of the reservoir at 2337 m.

Another condition is the reservoir temperature to account for the phase change that CO2 undergoes as the
density changes with temperature and pressure, and it was calculated in equation 16 (Tiab and Donaldson,
2012).

T = Ts + G ∗ D = 25 C° + (11 C°/304.8 m) ∗ 2460 m = 113.8 C° (15)

Ts is the surface temperature at 25 C°, D is the depth of the reservoir at 2460 m, G is the geothermal
gradient for the Upper Kharaib reservoir at 11C/ 304.8m (Ehrenberg et al., 2020).
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2.4.4 CO2 injection well

The injection well was set at the same location for all scenarios, at the top of the anticline structure shown in
Figure 21(a) . The well perforates through all of the 197 layers in the reservoir shown in Figure 21(b). The
injection period was established for 50 years with the target injection of 1 million ton of CO2 (MtCO2) per year,
and the monitoring period was established for 50 years to observe the behavior of the plume and the pressure
of the reservoir after the well was shut.

((a)) Grid top structure showing the well location for CO2

injection well on top of the structure.
((b)) cross section of permeability grid showing the perfora-
tion points for CO2 injection well.

Figure 21: Well location and perforation points for CO2 injection well in Base method model case(all wells).

After placing the well and perforation points, the injection pressure for a target 1 MtCO2 per year was found
as following:

Injecton =
Targeted mass

CO2 density
∗ 1

Number of days
=

1 ∗ 109 kg

1.98 kg/m−3
∗ 1

365 days
= 1383700 m3/day (16)

Where CO2 density is 1.98 kg/m−3 at surface condition since the injection pressure
is the surface gas rate m3/day.

It is important that the injection pressure does not reach the overburden pressure, therefore, the lithostatic
pressure along with the fracture pressure gradient are used as the bottom hole pressure (BHP) in Equation 17
to avoid any fractures or leaks that can cause CO2 leakage (Crumpton, 2018). In order to find the lithostatic
pressure maximum depth at 2460 m and sand density is needed. The density log showed that the sand density
ranges from 2080 kg/m−3 to 2790 kg/m−3, with 2265 kg/m−3 being the highest in the distribution value,
therefore, it was used as the sand density.

BHP = 0.7 ∗ g∗ ρ litho ∗ depth = 0.7 ∗ 9.8 m/s2 ∗ 2265 kg/m−3 ∗ 2460 m = 38223 KPa (17)
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2.4.5 Boundary condition

CMG assumes a closed boundary for reservoir models, therefore, a volume modifier is placed at the vertical
boundary of the models to simulate an infinite aquifer. The volume modifier is set at 10,000 pore volume
multiplier, as it is the common factor for aquifers at basin level (Ghomian et al., 2024). Placing the multiplier
only at the far edge will cause an aggregation of the pore volume. To avoid this, (Ghomian et al., 2024)
suggests gradationally distributing the multipliers at the edges of the reservoir to mimic the behavior of the
reservoir. In this project the multipliers are placed in a gradual increase in the six cells, only three are seen
in Figure 22(a) due to the coloring scale, since the first three cells are below 667. However, with the use of
this large number of multipliers, the reservoir capacity is overestimated (Ghomian et al., 2024). Therefore, a
transmissibility reduction multiplier is applied to obtain a more reasonable capacity. To avoid transmissibility
to the top and bottom of the reservoir (I-direction), the transmissibility multipliers in Figure 22(b) are also
applied in a gradual increase, but due to the color scale in CMG only those with 0.0001 are shown. Similarly, the
transmissibility multipliers are applied to the horizontal edges of the reservoir (J-direction) in Figure 22(c). In
addition, transmissibility multipliers is applied to the vertical flow between the layers at the edges (K-direction)
in Figure 22(d). By combining volume modifiers and transmissibility reductions, a more reasonable reservoir
behavior is achieved.

((a)) Volume modifier grid. ((b)) Transmissibility grid in the I-direction.

((c)) Transmissibility grid in the J-direction. ((d)) Transmissibility grid in the K-direction.

Figure 22: Boundary condition grids.
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3 Results and Discussion

3.1 Static modeling

In static modeling, cross-validation cases were created based on different well combinations in Figure 23. The
wells highlighted in red have porosity logs, therefore, the analysis will focus on their distribution in each case
and their corresponding porosity distribution.

((a)) Case with all wells. ((b)) Case 1 ((c)) Case 2

((d)) Case 3 ((e)) Case 4 ((f)) Case 5

Figure 23: Different cases of well combinations used for cross-validation

The porosity distribution for these cases is shown in Figure 24. The case with all wells in Figure 23(a) pro-
vides the best available representation of the porosity distribution in the reservoir, as it includes all available
data (Figure24(a)). For cases 1 and 5, there is an even distribution for the red wells with log cluster (Fig-
ure 23(b) and 23(f)), but it excludes further wells like HW-5 and HW-17. The porosity distribution in both
cases (Figure 24(b) and 24(f)) shows that porosity is somewhat evenly distributed, but when looking at the
statistics in Table 7, it can be seen that the mean in both cases is high and the standard deviation is low
compared to the case with all wells. The lower standard deviation is an indication of a bias toward higher
values and an overestimate of areas away from the red well cluster due to poor well control resulting in a higher
mean. Case 2 shows better well control as it includes the wells away from the cluster (Figure 23(c)) and a
similar porosity distribution (Figure 24(c)) to case 1 and 5. Although it is similar in distribution, it has a
lower mean and a higher standard deviation than cases 1 and 5, reducing the bias to high porosity values that
results in a lower mean. For cases 3 and 4, both show similar well control (Figure 23(d) and 23(e)) and similar
porosity distribution (Figure 24(d) and 24(e)) that is slightly overestimating the lower porosity values. This is
reflected in their mean, as they have the lowest mean values of all five cases (Table 7). Case 4 has a higher
mean than case 3 as it has a higher distribution for high porosity values and lower standard deviation. All cases
have the same approach for upscaling and modeling, but the difference, is in the input well data because each
case has different combination of wells resulting in differences in the porosity distributions, mean and standard
deviation.
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((a)) Case with all wells ((b)) Case 1 ((c)) Case 2

((d)) Case 3 ((e)) Case 4 ((f)) Case 5

Figure 24: Porosity histograms used for cross-validation

Porosity model Mean Standard deviation

All wells 0.2015 0.0796
Case 1 0.2220 0.0696
Case 2 0.2183 0.0765
Case 3 0.2035 0.0765
Case 4 0.2084 0.0755
Case 5 0.2275 0.0708

Table 7: Porosity models statistics

The differences in porosity distributions have direct implications for the permeability transformations applied in
the three methods. Figure 25 shows the resulting permeability histograms for the base method in the different
cases. Similarly to the porosity distribution, cases 1 and 5 have higher distributions for high porosity values
and lower distributions for low porosity values as shown in Figure 25(b) and 25(f) with high mean in Table 8.
Cases 3 and 4 show a higher distribution for low permeability values under 1 mD seen in Figure 25(d) and 25(e),
and this is reflected in their mean as they are in the lower range mean of all cases in Table 8. The standard
deviation for the permeability differs from that for the porosity. For example, cases 1 and 5 have lower standard
deviations of all cases in the porosity distribution, but higher standard deviation than all in the permeability
distribution, indicating that the poro-perm applied relationship also influenced the permeability distribution
and statistics.
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((a)) Case with all wells ((b)) Case 1 ((c)) Case 2

((d)) Case 3 ((e)) Case 4 ((f)) Case 5

Figure 25: Core permeability and 5 cases cross-validation for the transformed permeability using base method

Permeability model Mean Standard deviation

All wells 5.0414 5.8903
Case 1 6.1828 6.3447
Case 2 6.1616 6.0416
Case 3 5.0273 5.7925
Case 4 5.1639 5.2967
Case 5 6.8426 6.5840

Table 8: Base method transformed permeability models statistics

The base method and Winland35 show a similar order for the permeability in the different cases. Cases 1 and
5 have higher distributions for permeability values higher than 10 mD in Figure 26(b) and 26(f).Cases 3 and
4 show higher distributions for permeability values lower than 1 mD in Figure 26(d) and 26(e). Although the
order of the permeability cases in Winland35 and the base method is significantly higher, the permeability
values for Winland35 are significantly higher and are reflected in the mean and standard deviation values for
the permeability cases of Winland35 in Table 9.
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((a)) Case with all wells ((b)) Case 1 ((c)) Case 2

((d)) Case 3 ((e)) Case 4 ((f)) Case 5

Figure 26: Core permeability and 5 cases cross-validation for the transformed permeability using Winland35

Permeability model Mean Standard deviation

All wells 20.5114 68.7591
Case 1 27.6837 82.5079
Case 2 22.8980 73.1280
Case 3 20.8867 68.1783
Case 4 23.8112 72.959
Case 5 27.4947 78.1771

Table 9: Winland35 method transformed permeability models statistics

The transformed permeability models for the FZI cases show the highest permeability ranges compared to
Winland35 and the base method shown in Figure 27. It also presents differences in the permeability distributions
for the cases. Case 5 shows a lower distribution for permeability values higher than 10 mD (Figure 27(f)), while
case 4 shows a higher distribution for permissibilities greater than 10 mD (Figure 27(e)). These distributions
reflect in the mean value shown in Table 10 as case 4 has a higher mean than case 2 unlike in the previous
methods. Similarly, case 5 has a lower mean than other cases. This shows that using different methods for
petrophysical characterization, even within rock-typing itself between Winland35 and FZI, not only permeability
ranges differ, but the statistics for the permeability models as seen in the mean and standard deviation also
differ between the cases.
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((a)) Case with all wells ((b)) Case 1 ((c)) Case 2

((d)) Case 3 ((e)) Case 4 ((f)) Case 5

Figure 27: Core permeability and 5 cases cross-validation for the transformed permeability using FZI

Permeability model Mean Standard deviation

All wells 28.4906 98.1675
Case 1 39.9123 123.0466
Case 2 34.9762 111.4203
Case 3 32.4133 108.4294
Case 4 36.2808 114.7507
Case 5 33.4398 118.8116

Table 10: FZI method transformed permeability models statistics

The cross-validation for the permeability models cases are used to find the generalizability of the different rock
typing methods. The core permeability for the wells not included in the case are plotted against the synthetic
permeability values for these wells in the cases that excluded these wells. Table 11 shows the different correlation
coefficients for the different rock typing methods. The average for these coefficients is 0.01 for the base method,
0.29 for Winland35, and 0.29 for FZI. In general, FZI showed a generally higher correlation than other methods,
except for case 4, and the base method showed a lower correlation than the other methods.

Case Base method Winland35 FZI
1 0.61 0.46 0.47
2 -0.2 0.28 0.41
3 -0.04 0.32 0.40
4 -0.38 0.06 -0.19
5 0.06 0.34 0.34

Table 11: Generalizability of the different rock typing methods
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3.2 Simulation

The case with all wells and the cross-validation cases are run to evaluate the differences in the reservoir behavior,
focusing on how the permeability models influence parameters such as bottom hole pressure, injection pressure,
storage capacity, and plume migration. Furthermore, insights from the results are used to evaluate associated
uncertainties in the rock typing method and permeability models, highlighting their effect on CO2 storage.

The simulation was initially run on the 18 imported models including 6 porosity models and 3 different per-
meability models per porosity model. The runs were based on CO2 injection rate (m3 /day) and bottom hole
pressure (KPa) as operation parameters. The operating time was set at 50 years of injection and 50 years of
monitoring. The following are the results for the three cases with different permeability models with all wells.

((a)) Base method

((b)) Winland35 method

((c)) FZI method

Figure 28: Simulation results for surface gas rate for cases with all wells

As shown in Figure 28, the results included bottom hole pressure (blue), gas mass rate (red), and cumulative
gas mass (gray). In the base method, the bottom hole pressure reaches the maximum pressure at the beginning
of injection, as shown in Figure 28(a). While in the Winland35 and FZI, the bottom hole pressure never reaches
the maximum pressure as seen in Figures 28(b) and 28(c). In order to understand the behavior of the bottom
hole pressure, Darcys Law is used :

Q =
KA

η
∗ ∆P

L
(18)

Where Q is injection rate, K is permeability, A is the cross sectional area, η is fluid viscosity and ∆P/L is the
pressure gradient over the distance.
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In this analysis, the area is considered constant. The pressure difference is the difference between the hydrostatic
pressure, which is the initial reservoir pressure, and the fracture gradient, which is the maximum bottom hole
pressure before fractures are induced (Burke, 2011).

From equation 18, the injection rate (Q) and the bottom hole pressure have a direct relationship. When the
injection pressure is high in a reservoir with insufficient permeability, pressure starts to build-up around the
well-bore and causes a higher bottom hole pressure (Birkholzer et al., 2011). This is seen in the base method
that is low in permeability, as the injection rate is high, causing a pressure build-up and reaching the maximum
bottom hole pressure. The Winland35 and FZI are considered more permeable than the base method, so the
permeability allows the pressure to propagate away from the wellbore, never reaching the maximum bottom
hole pressure. This implies that there is a potential to inject CO2 at a higher rate.

Similarly to the injection rate, the fluid viscosity (η) has a direct relationship to the bottom hole pressure.
When injecting CO2 to the aquifer, the pressure around the well is higher and the viscosity of the brine
increases as a result of this pressure. In addition, as the reservoir pressure increases due to injection, some
of the CO2 becomes soluble and increases in viscosity. These changes in viscosity create a flow resistance,
ultimately creating a pressure build-up and increasing the bottom hole pressure. Although the change in brine
viscosity is seen in Figure 29(b), it is negligible as the change is only 0.56%. Also, after the monitoring period
in Figure 29(c), the viscosity decreases to the initial value as the reservoir stabilizes in pressure.

((a)) Brine viscosity before injection.

((b)) Brine viscosity after injection.

((c)) Brine viscosity after 50 years of monitoring.

Figure 29: Brine viscosity initially, after injecting, and after monitoring.
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Another input that influences the bottom hole pressure is the perforation points and their location. A study
by (Sun et al., 2024) shows how the perforation points and their location can affect the bottom hole pressure.
He compared his approach of using multiple perforation points with (Chadwick et al., 2009) who used a single
perforation point at the top of the reservoir and (Cinar et al., 2008) who also used a single perforation at the
middle of the reservoir. His results show that placing the perforation point at the top resulted in the highest
pressure build-up, followed by placing it in the middle of the reservoir, and finally having multiple perforation
points showed the lowest build-up (Sun et al., 2024). In this research, the perforation points were placed in
each layer of the 197 layers, allowing a better pressure distribution.

After the shut in of the well, the bottom hole pressure drops as CO2 migrates away from the wellbore, therefore
reducing the pressure build-up around the wellbore. Also, toward the end of the monitoring period the bottom
hole pressure drops and stabilizes at the initial reservoir pressure, indicating that it reached the static pressure
where the pressure has been distributed in the reservoir.

The winland35 and the FZI show similar storage of 47.23 MtCO2 for case with all wells, while the base method
stored 46.7 MtCO2. The main driver of these changes is the permeability of the different models. The FZI has
the highest values of permeability between 0.01 and 975 mD, followed by the winland35 with values between
0.01 and 675 mD, and finally the base method with values between 0.01 and 38 mD. These ranges definitely
affect the CO2 flow in the reservoir as higher permeability allows higher injection and less pressure build-up. It
can be seen in Figure 28(a) where the base method showed a pressure build-up at the start of the injection as
it reached the maximum bottom hole pressure due to the low permeability range.

Although the cumulative amount injected was 50 MtCO2, a maximum of 47.23 MtCO2 was stored. This mainly
due for CMG reporting the cumulative gas mass as CO2 stored in the supercritical phase. Figure 30 shows
CO2 supercritical moles and CO2 soluble moles. The cumulative stored CO2 (dotted line) is based on the
supercritical CO2 as it overlays it. Showing that the cumulative stored CO2 is accounting only supercritical
CO2 and not the stored dissolved CO2.
Another mass loss is the material balance error , these are errors related to convergence issues and time-step
cuts (Avansi et al., 2019). Usually, GEMS provides an operation report that includes the material balance error
during the simulation. The report states a 7.4170E-02% error for the case in Figure 30, which means that 37
tCO2 is lost.

Figure 30: Winland35 simulation results displaying CO2 in aqueous and supercritical phase.
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Three additional simulations for the case with all wells for the different methods were run based on maximum
bottom pressure injection to evaluate the maximum storage it can reach during 50 years. This is not an
indication of their maximum storage capacity, but rather of the maximum possible injected CO2 shown in
Figure 31.

((a)) Base method

((b)) Winland35 method

((c)) FZI method

Figure 31: Simulation results for maximum bottom hole pressure injection for cases with all wells

The Winland35 (Figure 31(b)) has the maximum storage of 136.7 MtCO2, the FZI stored (Figure 31(c)) 109.1
MtCO2, and the base method (Figure 31(a)) has the lowest amount stored 54.9 MtCO2. These results displayed
similar behavior to the previous simulation results after monitoring, as the bottom hole pressure drops after
well shutin and eventually reaches the reservoirs initial pressure.

Although the FZI method has higher values of permeability, it stored less than the Winland35. Figure 32 shows
the distribution of the permeability values, with the FZI method having more weight towards low permeability
data. In general, it showed a higher distribution for the lower permeability range between 0.01 and 0.1 mD.
Lower permeability values affect the flow of CO2 by not allowing more intake.
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((a)) Permeability histogram for Winland35 trans-
formed permeability model

((b)) Permeability histogram for FZI transformed per-
meability model.

Figure 32: Permeability models histogram.

After analyzing the pressure behavior in the previous results, the focus continues to plume migration for these
cases. Figure 33 shows the plume migration patterns after injection and monitoring period for the three different
methods. Permeability plays a role in plume migration in the vertical and lateral pathways (Mackay, 2013). It
is important to note that the same permeability is assumed in the I, J and K directions, making it isotropic.
The affect of isotropy can be clearly seen in the symmetry of the plume shapes for all methods. The vertical
movement of the plume in all methods shows an upward migration toward the structural trap after injection and
a further migration after the monitoring period due to the buoyancy effect. The base method showed minimal
upward movement after the monitoring period (Figure 33(b)), as it is lower in permeability, restricting flow.
The Winland35 has a higher upward and lateral movement, as it was more permeable (Figure 33(d)). The FZI
method has higher permeability than the other method and showed a higher upward movement of the plume
in Figure 33(f), showing that plume migration is influenced by permeability.

((a)) Plume migration after injection for the base
method.

((b)) Plume migration after monitoring for the base
method.

((c)) Plume migration after injection for the Win-
land35 method.

((d)) Plume migration after monitoring for the Win-
land35 method.

((e)) Plume migration after injection for the FZI
method.

((f)) Plume migration after monitoring for the FZI
method.

Figure 33: Plume migration after injection and monitoring for all methods.
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After discussing the cases with all wells simulation results, the analysis now focuses on the results for the
cross-validation cases. The previous results show differences in behavior for bottom hole pressure, injection
pressure, storage capacity, and plume migration, and showed variability in the different models. Therefore, the
resampling for the different cross-validation cases is evaluated to gain a better understanding of how porosity
models and the rock typing method influence the permeability models and CO2 storage.

As mentioned earlier in Data and methodology, cross-validation cases were created based on different com-
binations of 80% of the available wells were used to produce five cases for each rock typing method, making
them 15 cases. Figure 34, displays the behavior for the bottom hole pressure in all of these cases. Each case is
represented by a color, with a solid line for the base method, a dashed line for the Winland35, and a dotted line
for the FZI. Differences in the bottom hole pressure behavior are observed within the same method, as the base
method showed high variability in the maximum and minimum pressure. Followed by the Winland35 method
that showed less, and the FZI with the least variability. For the gas mass rate, all the cases showed a constant
rate, except for the base case 3 as shown in Figure 35. This is due to this case reaching maximum bottom hole
pressure, therefore, restricting the amount of the injected CO2. All cases are attached in Appendix B with gas
injection rate and cumulative gas mass.

Figure 34: Bottom hole pressure for cross-validation cases.

Figure 35: Gas mass rate for cross-validation cases.

To quantify the variability in the models, Table 12 shows the maximum and minimum behavior bottom hole
pressure for all cases within the same rock typing methods. Based on observations, the case with the maximum
bottom hole pressure has the least CO2 storage, and the case with the minimum bottom hole pressure has the
maximum CO2 storage, but in cases with high permeability the differences in bottom hole pressure did not
affect the CO2 storage. The Base method models showed the highest range of variability (12.36%), followed by
Winland35 with (8.9%), and finally FZI with the lowest range of variability (5.2%). These observations relate to
the permeability models discussed in Section 3. The base method has the lowest range of values; this is reflected
in the bottom hole pressure high values as a result of pressure build-up and poor permeability. However, the
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FZI has lower values for bottom hole pressure because it is more permeable and was able to store the same
amount of CO2 for all cases. The high permeability reservoir resulted in low variability as it is able to distribute
the pressure more effectively than lower permeability reservoirs. The high variability in the reservoir with low
permeability indicates that the wells included can have a significant impact on the pressure distribution. This
is reflected in the amount of CO2 stored shown in Figure 36, where the variability of the base method to the
pressure of the bottom hole resulted in a significant difference of 12 MtCO2, unlike the Winland35 and FZI
method, which has a similar storage for all cases as it has a better pressure distribution.

Method Maximum
Bottom Hole

pressure (KPa)

Minimum
Bottom Hole

Pressure (KPa)

Model
Variability

Minimum
MtCO2 stored

Maximum
MtCO2 stored

Base 38223 33500 12.36% 35.12 47.16
Winland35 31000 28250 8.9% 47.23 47.23

FZI 29000 27500 5.2% 47.23 47.23

Table 12: Resampling results for cross-validation with surface gas rate injection

Figure 36: Cumulative gas mass rate for cross-validation with surface gas rate injection

The resampling highlights how the bottom hole pressure and stored CO2 respond differently to the cross-
validation cases. With implications on how specific input, primarily, well location control can lead to different
porosity and rock-types models. Therefore, propagating these differences to the transformed permeability
models. Understanding the uncertainties in these models is crucial to evaluate the possible ranges of outcomes.
Although all permeability models were affected by the well configurations and the porosity distribution, the
amount of stored CO2 remained the same for the winland35 and the FZI. However, the base method has a
significant difference in the amount stored. This could be due to the base method narrow range of permeability,
making it more sensitive to well location control and porosity distributions than the other methods that has a
wider range of permeability. While the Winland35 and the FZI showed the same amount of stored CO2, it is
insufficient to evaluate the uncertainties of the permeability models, as the cases were based on a fixed surface
gas injection rate rather than the maximum bottom hole pressure injection, which can provide more insights
on how the storage capacity differs in these methods.
Therefore, similarly to the case with all wells, simulations using maximum bottom hole pressure for injection
were run on the cross-validation cases shown in Figure 37. The results show the high variability of stored CO2

of 58% for FZI cases, and lowest variability of 32.32% for base method cases. (Table 13). These results indicate
that models with broader permeability distributions (FZI and Winland35) have high variability, resulting in
greater uncertainty in predicting CO storage. While models with narrower permeability distribution (Base
method) have lower variability, meaning a smaller range for the amount of CO2 stored.

36



Figure 37: Cumulative gas mass rate for cross-validation with maximum bottom hole pressure injection.

Method Stored mass
Variability

Minimum MtCO2 stored Maximum MtCO2 stored

Base 54.07% 33.8 73.59
Winland35 32.32% 133.94 197.91

FZI 58.28% 182.65 437.77

Table 13: Resampling results for cross-validation with surface gas rate injection

An uncertainty analysis was performed on the porosity model with all wells for CO2 storage predictions. Five
realizations of the porosity model were created by using different global seed. These realizations were simulated
using maximum bottom hole pressure injection, and the results are summarized in Figure 38 and Table 4.The
results show that the base method had the lowest variability of 24.57% and Winland35 had the highest variability
of 26.37%. Even though the realizations were extracted from one porosity model, the same variability trend is
observed in the cross-validation cases (using maximum bottom hole pressure injection) with different porosity
models. This implies that rock-type methods show higher amounts of stored CO2, but in return they present
higher uncertainty in their results.

Figure 38: Cumulative gas mass rate for realizations with maximum bottom hole pressure injection.

Method Stored mass
Variability

Minimum MtCO2 stored Maximum MtCO2 stored

Base 24.57% 42.85 56.81
Winland35 31.51% 127.72 186.48

FZI 26.37% 95.02 129.05

Table 14: Uncertainty results for different realizations with maximum bottom hole pressure injection
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3.3 Study limitations

The study faced several limitations. In the petrophysical analysis, the Winland35 was based on an empirical
equation between porosity and permeability This is different from Winland35 classification driven by capillary
pressure direct measurement for pore throat sizes and captures fluid retention and displacement. Furthermore,
the model did not account for faults or fractures, which could significantly influence the flow and connectivity in
the reservoir. Also, the study included only five cases of cross-validation well combinations, whereas including 17
cases of well combination for the 17 wells with logs can provide a more comprehensive validation. Uncertainty
analysis for different realizations was applied only to the porosity model, without considering variations in
rock type or permeability, which could further refine the reliability of the model predictions. The permeability
was assumed to be isotropic, ignoring the potential anisotropic behavior that could affect fluid movement in
the reservoir. Furthermore, the relative permeability curves assumed no residual water saturation and lacked
capillary pressure effects, applying a uniform relative permeability across all types of rock. Having a more
detailed rock-type-specific relative permeability approach can improve the accuracy of the simulation results.
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4 Conclusion

This research evaluated the effect of rock typing on CO2 storage capacity and plume migration in Upper Kharaib
carbonate reservoir. By utilizing the open source COSTA model, two rock typing methods were applied; Win-
land R35 classification and Flow Zone Indicator, along with general relationship (Base method). These methods
were applied to characterize the porosity-permeability relationship within the reservoir and evaluate their effect
on CO2 storage and plume migration. The research found that the Winland R35 classification and Flow Zone
Indicator methods had higher amounts of stored CO2 and higher vertical upward movement plume migration
than the base method. Both methods had higher storage capacities as they showed less pressure build-up around
the wellbore and better pressure distribution in the reservoir.
Winland R35 classification method had a maximum storage capacity of 136.7 MtCO2 over the 50 years of in-
jection, followed by the Flow Zone Indicator with 109.1 MtCO2. However, the base method stored a maximum
of 54.9 MtCO2 due to its poor permeability model. Differences in plume migration were also observed for the
rock typing method compared to the base method, as they showed a better vertical upward movement toward
the structural trap.
A resampling simulation using surface gas rate injection showed how different cross-validation cases and their
porosity distributions affect the bottom hole pressure response and the stored CO2. The base method showed
the highest ranges for the bottom hole pressure and variability for these ranges, resulting in a difference of 12
MtCO2 between the lowest bottom hole pressure and the maximum bottom hole pressure reached within the
method. The Winland R35 classification and Flow Zone Indicator methods had less variability in the bottom
hole pressure and were able to store the same amount of 47.23 MtCO2 in all cases, as they were able to distribute
pressure more effectively due to their higher permeability models.
Furthermore, an uncertainty analysis on the porosity model generated five realizations by using different global
seeds, and they were simulated under maximum bottom hole pressure injection. The Base method had low
variability in its results, while Winland35 and FZI had higher variabilities. This demonstrates that rock-typing
methods resulted in greater CO2 storage but had higher uncertainty. Despite these variations, the same uncer-
tainty trend was observed in the cross-validation cases when using maximum bottom hole pressure for injection,
reinforcing that rock-typing methods lead to higher storage potential but with higher uncertainty.
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5 Recommendations

Based on the results of this research, the following recommendations are proposed to increase the accuracy of
the CO2 simulations and to further explore the uncertainties:

• Apply maximum bottom hole pressure for all 15 cases, to provide insights for the winland classifica-
tion and fluid zone indicator method storage capacity response to the uncertainties in the different well
configurations and porosity distributions.

• Apply relative permeability curves for carbonate aquifers to improve the prediction of CO2 flow, capacity
and migration.

• Include chemical reactions between CO2 and the rock to account for CO2 mineralization. This will give
an understanding on the long term CO2 trapping mechanisms.

• Include the anisotropy in the permeability reservoir grids to account for the permeability in the J and K
directions, as the Upper Kharaib is a carbonate reservoir, changes in permeability directions is expected.

• Increase the number of rock types within the method to evaluate the response to CO2 flow and storage.

• Include a facies model for the depositional environment to better characterize the trends of the porosity
and permeability models.

• Use different ranges of variograms to evaluate the uncertainties in the vertical and lateral continuity and
their effect on the heterogeneity.
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A Appendix: Static modeling supplements

((a)) Vertical range semi-variogram.

((b)) Major range semi-variogram.

((c)) Minor range semi-variogram.

Figure 39: Data Analysis semi-variogram ranges for the porosity model.
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((a)) Vertical range semi-variogram.

((b)) Major range semi-variogram.

((c)) Minor range semi-variogram.

Figure 40: Data Analysis semi-variogram ranges for the Winland35 rock type model.

((a)) Vertical range semi-variogram.

((b)) Major range semi-variogram.

((c)) Minor range semi-variogram.

Figure 41: Data Analysis semi-variogram ranges for the FZI rock type model.
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B Appendix: Simulations results

((a)) Base method case 1.

((b)) Base method case 2.

((c)) Base method case 3.

((d)) Base method case 4.

((e)) Base method case 5.

Figure 42: Base method simulation results.
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((a)) Winland35 method case 1.

((b)) Winland35 method case 2.

((c)) Winland35 method case 3.

((d)) Winland35 method case 4.

((e)) Winland35 method case 5.

Figure 43: Winland35 method simulation results.
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((a)) FZI method case 1.

((b)) FZI method case 2.

((c)) FZI method case 3.

((d)) FZI method case 4.

((e)) FZI method case 5.

Figure 44: FZI method simulation results.
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(Alsharhan, 2014). Right figure shows the major producing oil fields in the northeastern part of Rub Al Khali,
in U.A.E (Ehrenberg et al., 2020). The center of the right figure highlighted in black illustrates the COSTA
model theoretical structure in attempt to capture the carbonate formation from shelf-to-basin (Gomes, 2022).
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