

Delft University of Technology

Graph filter designs and implementations

Liu, J.

DOI
10.4233/uuid:09ce864a-18d8-496e-8ff9-e0144e26bba5
Publication date
2021
Document Version
Final published version
Citation (APA)
Liu, J. (2021). Graph filter designs and implementations. [Dissertation (TU Delft), Delft University of
Technology]. https://doi.org/10.4233/uuid:09ce864a-18d8-496e-8ff9-e0144e26bba5

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:09ce864a-18d8-496e-8ff9-e0144e26bba5
https://doi.org/10.4233/uuid:09ce864a-18d8-496e-8ff9-e0144e26bba5

GRAPH FILTER DESIGNS AND IMPLEMENTATIONS

GRAPH FILTER DESIGNS AND IMPLEMENTATIONS

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof.dr.ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on
Friday 25 June 2021 at 15:00 o’clock

by

Jiani LIU

Master of Engineering in Underwater Acoustics Engineering,
Northwestern Polytechnical University, China

born in Xi’an, China.

This dissertation has been approved by the promotor.

promotor: Prof.dr.ir. G.J.T. Leus

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof.dr.ir. G.J.T. Leus, Delft University of Technology, promotor

Independent members:
Prof. dr. ir. A. J. van der Veen Delft University of Technology
Prof. dr. P. Borgnat École Normale Supérieure de Lyon, France
Prof. dr. G. Mateos Buckstein University of Rochester, USA
Prof. dr. A. G. Marques King Juan Carlos University, Spain
Prof. dr. A. Hanjalic, Technische Universiteit Delft (reserve member)

Keywords: Graph signal processing, graph filters, adjacency, Laplacian, FIR,
ARMA, linear system on graphs, graph filter implementation.

Copyright © 2021 by J. Liu

ISBN 978-94-6423-321-6

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

To my family

CONTENTS

I Preliminaries 1

1 Introduction 3
1.1 Graph Signal Processing: a Brief Survey 4
1.2 Motivation . 7
1.3 Outline and Contributions of the Thesis 10
References . 14

2 Graph Signal Processing 21
2.1 Introduction . 23
2.2 Graph Model . 24

2.2.1 Graph shift operator . 24
2.2.2 Graph signal. 25

2.3 Graph Spectral Analysis . 27
2.3.1 The graph Fourier transform. 27
2.3.2 Graph frequency analysis with GFT 29
2.3.3 Illustration of GFT . 34

2.4 Graph Filtering . 36
2.4.1 Definition of graph filters . 36
2.4.2 Design of graph filters . 37

2.5 Conclusion . 39
References . 40

3 Graph Filters 45
3.1 Introduction . 46
3.2 Universal Design . 47
3.3 Finite Impulse Response Graph Filter 50

3.3.1 Implementation and cost . 50
3.3.2 Filter design . 51
3.3.3 Related FIR graph filters . 54
3.3.4 Discussion . 59

vii

viii CONTENTS

3.4 Infinite Impulse Response Graph Filter. 59
3.4.1 Implementation of IIR graph filter 60
3.4.2 Autoregressive moving average graph filter. 61
3.4.3 Implementation of ARMA graph filter. 63
3.4.4 Discussions . 64

3.5 Conclusion . 64
References . 65

appendix-a 71

II Filter Design 73

4 Filter Design for Autoregressive Moving Average Graph Filters 75
4.1 Introduction . 77
4.2 ARMA Graph Filter Design. 78

4.2.1 ARMA design problem . 78
4.2.2 Methods inspired by Prony 79
4.2.3 Iterative approach . 82

4.3 Numerical Data. 85
4.3.1 Synthetic simulation results 85
4.3.2 Data compression with graph filters 91
4.3.3 Linear prediction with ARMA filters 93

4.4 Conclusions. 95
References . 96

appendix-b 99

5 ARMA-Forsythe Graph Filter Design with Orthogonal Polynomials 101
5.1 Introduction . 103
5.2 Orthogonal Polynomial Basis . 105

5.2.1 FIR-Forsythe graph filter . 105
5.2.2 FIR-Forsythe implementation. 109
5.2.3 General orthogonal polynomial basis 110

5.3 ARMA-Forsythe. 111
5.3.1 ARMA model with Forsythe polynomials 111
5.3.2 Solution for the ARMA-Forsythe. 115

5.4 Numerical Data. 116
5.4.1 Universal design . 116
5.4.2 Design with known graph frequencies 119

CONTENTS ix

5.4.3 Comparison . 122

5.5 Conclusion . 126

References . 126

appendix-c 129

6 Rational Graph Filter Design Using Iterative Vector Fitting 133
6.1 Introduction . 135

6.2 Rational Graph Filter . 135

6.3 Rational Filter Design . 137

6.3.1 Vector fitting . 137

6.3.2 Iterative approach . 139

6.3.3 Pole relocation . 141

6.3.4 Filter coefficients . 142

6.4 Experimental Results. 143

6.5 Conclusion . 145

References . 145

7 Implementation of ARMA Graph Filters 149
7.1 Introduction . 151

7.2 Centralized Implementation . 152

7.2.1 Conjugate gradient . 152

7.2.2 BiConjugate gradient . 154

7.2.3 Numerical results . 156

7.2.4 Graph signal interpolation. 159

7.3 Distributed Implementation . 161

7.3.1 Richardson iteration . 161

7.3.2 Weighted Jacobi iteration . 162

7.3.3 Numerical results . 164

7.3.4 Graph signal denoising. 167

7.4 Conclusion . 169

References . 169

III Epilogue 173

8 Conclusions and Future Research Directions 175
8.1 Summary of Results . 175

8.2 Future Research . 177

x CONTENTS

Summary 179

Samenvatting 181

Acknowledgements 183

Curriculum Viæ 185

I
PRELIMINARIES

1

1
INTRODUCTION

W ITH the development of new technologies, big data, and data processing
are reflected in all aspects of our lives. Human life in the real world is be-

ing recorded all the time resulting in all kinds of different data: from personal
data through our mobile devices, like messages and call histories, banking and
financial activities, social networks, location information, to data from traffic
networks, satellite communication, meteorological observation, and so on. The
interactions of such high-dimensional data make data representation and pro-
cessing become more and more irregular and complex.

Under these circumstances, the emergence of graph signal processing (GSP)
has offered a brand new framework for analyzing such data and the connections
among them. As shown in Fig. 1.1, the users from social media, e.g., Twitter,
Facebook and so on, can be treated as vertices and their connections, e.g., the
following and friending between each other, can automatically be seen as the
edges connecting them. With the vertex-edge model, signals living on top of ver-
tices can represent high-dimensional information and data, such as the times of
cooperation in an academic network containing different types of authors from
varying research fields, the average salary distribution in a network consisting of
people who graduated from the same university, the gossip propagation among

3

1

4 1. INTRODUCTION

Figure 1.1: Users and their connections in a social network, e.g., Twitter, Facebook, and so on
(image courtesy: Google image).

different connected girls in a social network, etc. Graph signal processing pro-
vides a meaningful representation which results in a potential improvement for
some classical signal processing applications, e.g., estimation, prediction etc.,
which can not be fully exploited by traditional signal processing methods.

In this thesis, we contribute to the GSP field and develop fundamental signal
processing techniques and algorithms. This chapter starts with a brief overview
of the field of graph signal processing and in particular the related areas and ap-
plications. We investigate the background in this open field and introduce the
motivation behind the current work and research. In the end, we point out the
outline and contributions of this thesis.

1.1. GRAPH SIGNAL PROCESSING: A BRIEF SURVEY

A graph is a fundamental mathematical structure used in various fields. Particu-
larly in signal processing and related research areas, a graph is a data represen-
tation form that contains the structure of the signal and the topology informa-
tion of the graph structure [1, 2]. Such complex graph structures can be brain
networks [3], transportation networks [4], social and economic networks [5],
and so on. Depending on the specific graph applications, the signal residing on
the graph can be temperatures, electroencephalogram (EEG) signals, and so on.
Common graphs that are utilized to describe real world data are the Erdős Rényi

1.1. GRAPH SIGNAL PROCESSING: A BRIEF SURVEY

1

5

(ER) graph which is interconnected with random relationships, the small-world
graph normally used by brain neurons, and so on. A useful example that illus-
trates the concept of signals on top of nodes is depicted in Figure 1.2. It shows
the extracting process of the Minnesota traffic graph and the corresponding sig-
nal living on the graph is the transportation information on every node.

(a) Minnesota map. (b) Highway system.

(c) Traffic graph.

Figure 1.2: Example of graph and graph signal extracting process: (a) The official Minnesota State
Highway map (image courtesy: Google image). (b) The highway system of Minnesota State (image
courtesy: Google image). (c) The highway Network represented by the traffic graph and the corre-
sponding graph signals are the transportation information on every node. The image is plotted by
GSPBox [6]. Note that the graph signals are computed by heat kernel filter [6].

Based on the concepts of a graph and graph signal, graph signal processing
(GSP) extends some tools and definitions of classical signal processing, such as
Fourier transform, filtering, and so on [1, 2], and applies them to graph data.

1

6 1. INTRODUCTION

The main advantage of GSP is that it brings additional information of the graph
structure and topology into the signal processing field. These extensions also
offer us a new perspective to deal with some complex tasks in traditional signal
processing.

Graph signal processing has been introduced into a number of research ar-
eas to address challenges and difficulties, such as image processing [7, 8], and
network science [9, 10]. We now discuss a set of applications to show the inter-
actions between GSP and other fields.

• i) Sensor Networks. A graph naturally represents the relationships and po-
sitions of sensors in a network [11, 12]. Similar data observations at neigh-
boring nodes (sensors) lead to a smooth signal. With the smoothness infor-
mation, we can build signal reconstruction methods with significant sav-
ings in cost and energy [13, 14]. Besides building sensor relationships, GSP
can also be utilized for other applications in sensor networks, such as com-
pression, data analysis, etc. Sensor networks offer a lot of opportunities for
the development of GSP algorithms.

• ii) Biological Analysis. The biological analysis is a popular application for
graph signal processing since the data observations often have a known
network structure, such as the human brain. As an example, we can map
the brain signals on a graph where each node (sensor) corresponds to a
brain region, and the graph can provide the structural connectivity or the
functional coherence between brain regions [15, 16]. Other potential GSP
applications in this field can be the classification of biological signals [17],
diseases analysis based on magnetic resonance imaging (MRI) [18], and so
on.

• iii) Signal Sampling. The classical signal sampling theory shows that a ban-
dlimited function can be perfectly recovered from its sampled sequence
with high rate sampling [19]. With the graph model, some novel approaches
are studied for sampling a graph by preserving the first-order difference of
the original graph signal. Results show that random sampling leads to per-
fect recovery with a high probability for the same graph [20]. The main
difference between sampling in classical signal processing and that in the
graph domain is the irregular structure in the latter. The irregular topol-
ogy provides us with multiple approaches to define the problem and the
possibilities to make improvements in the field [21].

1.2. MOTIVATION

1

7

• iv) Machine Learning and Deep Learning. Since the graph model presents
the natural structure and topology of a data set, graph methods play im-
portant roles in the machine learning and deep learning field. Graphs and
GSP are usually the building blocks of neural network architectures that
are able to deal with signals living on irregular structures. As an example,
it has been studied that a multi-node version of aggregation graph neural
network (GNNs) [22] can be seen as several regular convolutional neural
networks (CNN) running at several designated nodes. With the property of
the graph, the results are encouraging and show that the multi-node ap-
proach consistently outperforms the other architectures [22].

We only briefly discussed here some applications and examples to highlight
the wide use of graphs and graph signal processing. For details and more infor-
mation about GSP theory and applications, we recommend [1, 2, 21] as future
reading. In this thesis, we mainly focus on one basic tool of GSP, i.e., the graph
filter (GF). We propose a series of graph filter design methods and corresponding
implementations. The upcoming sections quickly exploit the concepts of graph
filtering and provide the thesis framework.

1.2. MOTIVATION

As the filters in classical signal processing, graph filters only aim at the useful
spectral components of a graph signal. As such, it is important in graph signal
processing to define a spectral domain. Once that is clear, the fundamental mo-
tivation for designing graph filters is to modify or extract spectral parts in terms
of different objectives, e.g., using a low-pass graph filter to construct graph sig-
nals without noise.

As an example, Fig.1.3 shows that a low-pass filter recovers useful signals
from noisy data. In this case, the interactions and connections of the nodes
(cities) are determined by their locations and can hence be described by a spa-
tial correlation matrix. Based on that matrix, spatial denoising based on correla-
tion information can be used but might be complex. However, we can describe
this correlation matrix as a graph, as in Fig.1.3, and that can save computations
because of the sparsity of the related graph. Moreover, for some more abstract
cases, the nodes have no spatial location, or their spatial location is not related
to their interaction. This situation normally occurs in social networks, brain net-
works, transportation networks, communication networks, and so on. In those
cases, a graph is generally available to describe the interactions and relations be-

1

8 1. INTRODUCTION

tween the nodes. Then, only a graph filter is useful and suitable for the related
processing.

7

7.5

8

8.5

9

9.5

10

10.5

11

(a) Original Molene temperature data.

7

7.5

8

8.5

9

9.5

10

10.5

11

(b) Noisy Molene temperature data.

7

7.5

8

8.5

9

9.5

10

10.5

11

(c) Cleaned temperature data.

Figure 1.3: Illustration of the Molene temperature graph which includes different data realizations.
The color on the vertex indicates the graph signal values (temperatures). The images are generated
by GSPBox [6].

Some relevant applications of graph filters include graph signal reconstruc-
tion [23], denoising [24–26], smoothing [27], classification [28], recovery [29],
graph clustering [30], and so on. Furthermore, a graph filter can also be seen
as a basic building block for trilateral graph filters [26], graph filter banks [23, 31]
and graph wavelets [32–35]. To further explain graph filter design and the imple-
mentation process, we introduce the graph Fourier transform (GFT) which is a
direct analogue of the Fourier transform in classical signal processing. The GFT
allows us to define graph filters in the graph frequency domain. It also shows us
how a graph filter can be implemented in the vertex domain, which boils down

1.2. MOTIVATION

1

9

to exchanging messages between neighboring nodes. In Chapter 2, we will show
details about the GFT and the mathematical relationship between the graph ver-
tex and frequency domain. We will also give details for illustrating the filtering
process in Fig.1.3. The description and importance of the graph frequency con-
cept and graph filters are presented in [1, 2, 36, 37]. The challenges of defining
frequencies and implementing filters are briefly discussed in [21]. Note that, in
this thesis, we mainly design graph filters in the frequency domain and imple-
ment them in the graph vertex domain. Details are provided in the following
chapters.

Similar to classical signal processing, we distinguish between two types of
graph filters: finite impulse response (FIR) and infinite impulse response (IIR)
graph filters. FIR graph filters, whose output can be computed in finite time, are
common and well-studied in recent research. IIR graph filters need infinite time
to compute their exact output (but approximations can be computed in finite
time). They have several advantages, e.g., they can achieve better performance
with smaller filter orders due to their rational structure. In Chapters 2 and 3, we
will introduce details about FIR and IIR graph filters. With this background infor-
mation, we show that the graph topology influences the set of graph frequencies
and the resulting frequency responses, which are both important for designing
graph filters.

Accordingly, the fundamental problem statement and the main motivation
behind this thesis can be addressed step by step as follows:

• Research Question 1. How to efficiently design graph filters without know-
ing the graph topology?

Some research has already been carried out on how to design graph fil-
ters when the graph topology, i.e., how the nodes are connected, is not
known. This is often labeled as a universal graph filter design. However,
some aspects still need to be investigated, e.g., how to perform universal
graph filter design for directed graphs. This latter question is answered in
Chapter 3. We classify graphs and graph filters into different categories and
elaborate on the answers to the above question.

• Research Question 2. How to efficiently exploit the potential of different
graph filter structures? Also, how to obtain the best approximation accuracy
through a filter with a given order?

Since IIR graph filters have some benefits as we mentioned, we will focus
on autoregressive moving average (ARMA) graph filter design in this thesis

1

10 1. INTRODUCTION

which is one type of IIR filters. Although distributed ARMA graph filters
have been already investigated [38], there is still a research gap for the de-
sign of centralized ARMA graph filters. The detailed design methods to
answer this question are provided in Chapters 4, 5, and 6. In Chapter 4,
we propose the centralized ARMA filter design. In Chapter 5 and Chapter
6, we improve the filter design approaches from both a mathematical and
practical perspective. Note that all the proposed design approaches can be
computed without any knowledge of the graph topology. But if the graph
is known, this information can also be exploited.

• Research Question 3. With the designed ARMA graph filters, how to imple-
ment the filter in the vertex domain?

The proposed graph filter designs in this thesis mainly focus on approxi-
mating a desired response in the graph frequency domain. Using the filter
coefficients, we implement filters in the vertex domain with different cen-
tralized and distributed approaches in Chapter 7. In addition, we will give a
comparison of the different implementations to illustrate the performance
of the proposed algorithms.

Starting from the next chapter, we will give more structural and comprehen-
sible answers to the above-mentioned research questions. We mainly provide the
answers from a graph signal processing and linear algebra perspective. The body
of research and results presented in this thesis are funded by the China Scholar-
ship Council and supported by the Circuits and Systems group, Delft University
of Technology.

1.3. OUTLINE AND CONTRIBUTIONS OF THE THESIS

This thesis is divided into three main categories containing seven chapters. In
this section, we show the details of each chapter.

Chapter 2.
This chapter introduces the fundamental concepts of graphs and graph sig-

nal processing. We review the mathematical descriptions and representations of
the graph model and graph signal. From a linear algebra perspective, we develop
the graph model called shift operator which is a matrix containing the graph con-
nections. With these definitions and notations, we quickly interpret and formu-
late the vertex domain and frequency domain of a graph model, in particular, the

1.3. OUTLINE AND CONTRIBUTIONS OF THE THESIS

1

11

transformation between them, i.e., the Graph Fourier transform. The definition
of the GFT can be utilized to introduce the graph filter. Then, we finalize this
chapter by reviewing some characteristics of a graph filter.

Chapter 3.
In this chapter, we start with the definition of a graph filter based on the no-

tation and graph model developed in Chapter 2. We group the graph filters into
different types, i.e., finite impulse response (FIR) and infinite impulse response
(IIR) graph filters, and discuss their advantages and disadvantages.

With the formulation of the directed and undirected graph models in Chap-
ter 2, we extend the universal linear least squares (LLS) strategy of designing
FIR graph filters from undirected to directed graphs. For either the normalized
Laplacian (undirected graph) or normalized adjacency (directed graph) matrix,
we sample the respective expected graph frequency area resulting in a number
of frequency grid points. After the grid points have been determined, LLS is used
to fit the response on these grid points.

Furthermore, we overview and summarize the state of the art of graph filters
and filter design in both centralized and distributed settings. Then, we discuss
the centralized autoregressive moving average (ARMA) model used in graph filter
design and bring up the main design questions that will be tackled in the follow-
ing chapters.

Chapter 4.
In this chapter, we focus on centralized ARMA filter design using a polyno-

mial basis which is briefly introduced at the end of chapter 3. Based on this cen-
tralized setting, we propose two ARMA graph filter design methods, which can
be adopted when the graph is known or in a universal fashion (unknown graph)
by gridding the frequency domain (as done for the LLS FIR filter design). The
proposed ARMA design methods work for undirected as well as directed graphs.
The two methods developed in this chapter can be described as follows:

• i) The first design approach is inspired by Prony’s method [39], where a mod-
ified error between the modeled and the desired frequency response is mini-
mized. As for Prony’s method [39], not the true error but a modified error
that is linear in the unknown filter coefficients is minimized.

• ii) The second approach minimizes the true error iteratively following the
Steigliz-McBride idea [39]. As an initial condition, we can utilize the solu-

1

12 1. INTRODUCTION

tion from the first method, thereby potentially improving the approxima-
tion accuracy of that solution.

The contributions of this chapter are published as

• J.Liu, E.Isufi and G.Leus, "Filter Design for Autoregressive Moving Average
Graph Filters," in IEEE Transactions on Signal and Information Processing
over Networks, vol.5, no.1, 2019, pp. 47-60.

• J.Liu; E. Isufi; G.Leus, "Autoregressive moving average graph filter design,"
In IEEE Global Conference on Signal and Information Processing (Global-
SIP), 2017, pp. 593-597.

• J.Liu; E.Isufi; G.Leus, "Autoregressive Moving Average Graph Filter Design,"
in 6th Joint WIC/IEEE Symposium on Information Theory and Signal Pro-
cessing in the Benelux, IEEE, 2016.

Chapter 5.
The proposed centralized ARMA methods in Chapter 4 suffer from the same

numerical problems as the LLS method for FIR graph filters since they rely on the
same polynomial basis functions. In this chapter, we mainly focus on improving
the proposed design using orthogonal polynomials. Similar to the concept of
orthogonal Chebyshev polynomials, this chapter aims to introduce the discrete
orthogonal polynomial basis into graph filters. For both directed and undirected
graphs, we will design FIR and ARMA graph filters based on orthogonal polyno-
mial functions. As in Chapter 4, the design can be adopted when the graph is
known or in a universal fashion (unknown graph) by gridding the frequency do-
main.

The proposed methods consider the discrete orthogonal polynomial basis
and the contributions of this chapter are twofold:

• i) We introduce the discrete orthogonal polynomial basis for the design of
FIR graph filters for both undirected and directed graphs. Since the contin-
uous orthogonal polynomial basis (using Chebyshev polynomials) for FIR
graph filters in undirected graphs is well studied, for either the normal-
ized Laplacian (undirected graph) or the normalized adjacency (directed
graph) matrix, we respectively formulate the discrete orthogonal polyno-
mial basis for the FIR filter design.

1.3. OUTLINE AND CONTRIBUTIONS OF THE THESIS

1

13

• ii) We introduce an efficient ARMA filter design method with the discrete
orthogonal polynomial basis in both directed and undirected graphs. For
the ARMA model with a discrete orthogonal polynomial basis, we compute
the orthogonal basis separately for the numerator and denominator parts.
The solutions for undirected and directed graphs are formulated.

Chapter 6.
In this chapter, we propose a new filter design framework for both undirected

and directed graphs. Instead of a polynomial basis (methods in Chapter 4 and
Chapter 5), we focus on a partial fraction belonging to a rational polynomial ba-
sis.

Compared with polynomial basis functions, rational basis functions have a
lot of numerical advantages [40–42], i.e., better interpolatory and extrapolatory
performances [43]. Our approach is based on formulating the filter design as a
least-squares problem and solving the error between the desired frequency re-
sponse and the filter response recursively with the vector fitting method [44].
Throughout this chapter, we use FIR and ARMA filters as benchmarks to assess
the performance of the proposed graph filters. Experimental results show that
our algorithm can improve the performance of well-known graph filter designs.

Chapter 7.
In this chapter, we focus on the centralized and distributed implementations

of the proposed ARMA graph filters. For the centralized design, the ARMA output
can be simply found by solving a linear system of equations, which can be car-
ried out efficiently with first-order methods [45] or conjugate gradient (CG) [46].
Moreover, to allow for easy distribution, we illustrate two iterative methods for
solving the system which are easy to distribute and implement.

The proposed implementations can be characterized as:

• i) We present an efficient centralized ARMA graph filter implementation for
both directed and undirected graphs. ARMA filtering of graph signals is
written as a linear system of equations, which can be solved by efficient off-
the-shelf algorithms, such as CG [46] for undirected graphs and BiCG[47]
for directed graphs. We propose the details of these implementation algo-
rithms and present some simulation results.

• ii) We introduce two distributed implementations for ARMA graph filters,
named the Richardson iteration and weighted Jacobi iteration. Instead of

1

14 REFERENCES

centralized implementations, we also propose distributed approaches [48–
50] to solve the linear system. With the step size parameter, we can deter-
mine the convergence settings for both iterations.

The contribution of this chapter is submitted as

• J. Liu and G. Leus, "Implementations of the ARMA Graph Filters for a Di-
rected Graph."(In preparation)

Chapter 8.
In this chapter, we draw some conclusions of our current work and summa-

rize the key contributions of this thesis. Finally, we highlight some future re-
search directions based on this thesis and graph signal processing theory.

The general notations used throughout this thesis are described as follows.
We indicate by normal letters a or A a scalar variable; a bold lowercase letter a
will represent a vector variable and a bold uppercase letter A a matrix variable.
Furthermore, we indicate the absolute value of a by |a| and the 2-norm of the
vector a and matrix A by ‖a‖2 and ‖A‖2, respectively. ai or [a]i represents the
i -th entry of a, and similarly Ai , j or [A]i , j represents the (i , j)-th entry of A. a(i)

will indicate the value of a after the i -th iteration. Also, A† represents the pseudo-
inverse of matrix A. We indicate the transpose and Hermitian of the matrix A by
AT and AH, respectively. The complex conjugate of a, a, and A are represented
as a∗, a∗, and A∗, respectively. Meanwhile, A ◦B represents the element-wise
Hadamard product. diag(A) represents the elements on the diagonal position of
matrix A and span{a1, a2, . . . , an} represents the span of a set of vectors.

REFERENCES

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The
emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains, IEEE Signal Process-
ing Magazine 30, 83 (2013).

[2] A. Sandryhaila and J. M. Moura, Big data analysis with signal processing on
graphs: Representation and processing of massive data sets with irregular
structure, IEEE Signal Processing Magazine 31, 80 (2014).

REFERENCES

1

15

[3] E. Bullmore and O. Sporns, Complex brain networks: graph theoretical anal-
ysis of structural and functional systems, Nature Reviews Neuroscience 10,
186 (2009).

[4] R. Guimera, S. Mossa, A. Turtschi, and L. N. Amaral, The worldwide air
transportation network: Anomalous centrality, community structure, and
cities’ global roles, Proceedings of the National Academy of Sciences 102,
7794 (2005).

[5] M. O. Jackson, Social and economic networks (Princeton university press,
2010).

[6] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Van-
dergheynst, and D. K. Hammond, Gspbox: A toolbox for signal processing
on graphs, arXiv preprint arXiv:1408.5781 (2014).

[7] Z. Wu and R. Leahy, An optimal graph theoretic approach to data cluster-
ing: Theory and its application to image segmentation, IEEE Transactions
on Pattern Analysis & Machine Intelligence , 1101 (1993).

[8] J. Shi and J. Malik, Normalized cuts and image segmentation, Departmental
Papers (CIS) , 107 (2000).

[9] N. R. Council et al., Network science (National Academies Press, 2006).

[10] K. Börner, S. Sanyal, and A. Vespignani, Network science, Annual review of
information science and technology 41, 537 (2007).

[11] R. Wagner, H. Choi, R. Baraniuk, and V. Delouille, Distributed wavelet trans-
form for irregular sensor network grids, in IEEE/SP 13th Workshop on Statis-
tical Signal Processing, 2005 (IEEE, 2005) pp. 1196–1201.

[12] R. S. Wagner, R. G. Baraniuk, S. Du, D. B. Johnson, and A. Cohen, An archi-
tecture for distributed wavelet analysis and processing in sensor networks, in
Proceedings of the 5th international conference on Information processing in
sensor networks (ACM, 2006) pp. 243–250.

[13] M. Kaneko, G. Cheung, W.-t. Su, and C.-W. Lin, Graph-based joint sig-
nal/power restoration for energy harvesting wireless sensor networks, in
GLOBECOM 2017-2017 IEEE Global Communications Conference (IEEE,
2017) pp. 1–6.

1

16 REFERENCES

[14] A. Sakiyama, Y. Tanaka, T. Tanaka, and A. Ortega, Efficient sensor position se-
lection using graph signal sampling theory, in 2016 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2016) pp.
6225–6229.

[15] E. Bullmore and O. Sporns, The economy of brain network organization, Na-
ture Reviews Neuroscience 13, 336 (2012).

[16] O. Sporns, Networks of the Brain (MIT press, 2010).

[17] M. Ménoret, N. Farrugia, B. Pasdeloup, and V. Gripon, Evaluating graph
signal processing for neuroimaging through classification and dimension-
ality reduction, in 2017 IEEE Global Conference on Signal and Information
Processing (GlobalSIP) (IEEE, 2017) pp. 618–622.

[18] C. Hu, X. Hua, J. Ying, P. M. Thompson, G. E. Fakhri, and Q. Li, Localiz-
ing sources of brain disease progression with network diffusion model, IEEE
journal of selected topics in signal processing 10, 1214 (2016).

[19] M. Unser, Sampling-50 years after shannon, Proceedings of the IEEE 88, 569
(2000).

[20] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, Discrete signal process-
ing on graphs: Sampling theory, IEEE Transactions on Signal Processing 63,
6510 (2015).

[21] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst,
Graph signal processing: Overview, challenges, and applications, Proceed-
ings of the IEEE 106, 808 (2018).

[22] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, Convolutional neural net-
work architectures for signals supported on graphs, IEEE Transactions on
Signal Processing 67, 1034 (2019).

[23] S. K. Narang and A. Ortega, Perfect reconstruction two-channel wavelet filter
banks for graph structured data, IEEE Transactions on Signal Processing 60,
2786 (2012).

[24] S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovacevic, Signal denoising on
graphs via graph filtering, in Signal and Information Processing (GlobalSIP),
2014 IEEE Global Conference on (IEEE, 2014) pp. 872–876.

REFERENCES

1

17

[25] S. Deutsch, A. Ortega, and G. Medioni, Manifold denoising based on spectral
graph wavelets, in Acoustics, Speech and Signal Processing (ICASSP), 2016
IEEE International Conference on (IEEE, 2016) pp. 4673–4677.

[26] M. Onuki, S. Ono, M. Yamagishi, and Y. Tanaka, Graph signal denoising via
trilateral filter on graph spectral domain, IEEE Transactions on Signal and
Information Processing over Networks 2, 137 (2016).

[27] F. Zhang and E. R. Hancock, Graph spectral image smoothing using the heat
kernel, Pattern Recognition 41, 3328 (2008).

[28] A. Sandryhaila and J. M. Moura, Classification via regularization on graphs.
in GlobalSIP (2013) pp. 495–498.

[29] S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovačević, Signal recovery on
graphs: Variation minimization, IEEE Transactions on Signal Processing 63,
4609 (2015).

[30] N. Tremblay, G. Puy, R. Gribonval, and P. Vandergheynst, Compressive spec-
tral clustering, in Machine Learning, Proceedings of the Thirty-third Interna-
tional Conference (ICML 2016), June (2016) pp. 20–22.

[31] D. B. Tay and Z. Lin, Design of near orthogonal graph filter banks, IEEE Signal
Processing Letters 22, 701 (2015).

[32] S. K. Narang and A. Ortega, Compact support biorthogonal wavelet filter-
banks for arbitrary undirected graphs, IEEE transactions on signal process-
ing 61, 4673 (2013).

[33] D. K. Hammond, P. Vandergheynst, and R. Gribonval, Wavelets on graphs
via spectral graph theory, Applied and Computational Harmonic Analysis
30, 129 (2011).

[34] A. Sakiyama, K. Watanabe, and Y. Tanaka, Spectral graph wavelets and filter
banks with low approximation error, IEEE Transactions on Signal and Infor-
mation Processing over Networks 2, 230 (2016).

[35] D. I. Shuman, C. Wiesmeyr, N. Holighaus, and P. Vandergheynst, Spectrum-
adapted tight graph wavelet and vertex-frequency frames, IEEE Transactions
on Signal Processing 63, 4223 (2015).

1

18 REFERENCES

[36] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs, IEEE
transactions on signal processing 61, 1644 (2013).

[37] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs: Fre-
quency analysis. IEEE Trans. Signal Processing 62, 3042 (2014).

[38] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, Autoregressive moving average
graph filtering, IEEE Transactions on Signal Processing 65, 274 (2017).

[39] M. H. Hayes, Statistical digital signal processing and modeling (John Wiley
& Sons, 2009).

[40] D. Deschrijver, B. Haegeman, and T. Dhaene, Orthonormal vector fitting: A
robust macromodeling tool for rational approximation of frequency domain
responses, IEEE Transactions on advanced packaging 30, 216 (2007).

[41] D. Deschrijver, B. Gustavsen, and T. Dhaene, Advancements in iterative
methods for rational approximation in the frequency domain, IEEE Trans-
actions on Power Delivery 22, 1633 (2007).

[42] S. Grivet-Talocia and B. Gustavsen, Passive macromodeling: Theory and ap-
plications, Vol. 239 (John Wiley & Sons, 2015).

[43] L. N. Trefethen, Approximation theory and approximation practice (Siam,
2013).

[44] B. Gustavsen and A. Semlyen, Rational approximation of frequency domain
responses by vector fitting, IEEE Transactions on power delivery 14, 1052
(1999).

[45] D. P. Bertsekas, Convex optimization theory (Athena Scientific Belmont,
2009).

[46] J. R. Shewchuk et al., An introduction to the conjugate gradient method with-
out the agonizing pain, (1994).

[47] V. Faber and T. Manteuffel, Necessary and sufficient conditions for the exis-
tence of a conjugate gradient method, SIAM Journal on Numerical Analysis
21, 352 (1984).

[48] G. Opfer and G. Schober, Richardson’s iteration for nonsymmetric matrices,
Linear algebra and its applications 58, 343 (1984).

REFERENCES

1

19

[49] L. Lei, Convergence of asynchronous iteration with arbitrary splitting form,
Linear Algebra and its Applications 113, 119 (1989).

[50] J. M. Bull and T. Freeman, Numerical performance of an asynchronous jacobi
iteration, in Parallel Processing: CONPAR 92—VAPP V (Springer, 1992) pp.
361–366.

2
GRAPH SIGNAL PROCESSING

A S we have already discussed in Chapter 1, graphs are mathematical struc-
tures that encode a relationship between different nodes. In this chapter,

we will provide the necessary background information about graph signal pro-
cessing (GSP). These fundamental theories will be called throughout the thesis.
Thus, the main goal of this chapter is twofold:

• Use mathematical tools to formulate the graph model mentioned in Chap-
ter 1 and provide structural details about GSP.

• Formulate the basic principles of GSP as prior knowledge for the succeed-
ing chapters.

This chapter is organized as follows. Section 2.1 briefly introduces different
types of graphs and graph signal processing approaches. Then, Section 2.2 con-
siders the graph model as a mathematical representation to organize the data
(graph signal) that resides on top of networks. Section 2.3 introduces the spectral
analysis of graph signals where the graph Fourier transform (GFT) is expressed as
a useful tool for different graph operators, i.e., an adjacency-based operator for

21

2

22 2. GRAPH SIGNAL PROCESSING

a directed graph and a Laplacian-based matrix for an undirected graph. In Sec-
tion 2.4, we introduce graph filters and briefly discuss filter design. In the end,
Section 2.5 concludes the chapter.

2.1. INTRODUCTION

2

23

2.1. INTRODUCTION

As data representation form, graphs can be classified into directed and undi-
rected graphs depending on whether the edges have directions. Also, according
to the types of connections between nodes, graphs can be sorted as ring graphs,
random geometric graphs, small-world graphs, etc. We illustrate some examples
in Fig.2.1.

(a) Undirected graph with N = 15 nodes. (b) Directed graph with N = 15 nodes.

(c) Ring graph with N = 64 nodes. (d) Swiss roll graph with N = 100 nodes.

Figure 2.1: Illustration of some different types of graphs. The images are generated by GSPBox [1].

Graph signal processing, which is introduced in recent years, can be mainly
separated into two categories:

• Laplacian-based Approach. Following spectral graph theory [2], this ap-
proach emphasizes the Laplacian matrix as a shift operator on the graph.
This Laplacian also defines frequency spectra and other expansion bases
for a graph model [3–5].

2

24 2. GRAPH SIGNAL PROCESSING

• Adjacency-based Approach. Following the linear discrete signal processing
(DSP) framework, this approach depends on the adjacency matrix as a shift
operator and builds up DSP on graphs (DSPG) [6] tools including filtering,
convolution, frequency transformation, and so on [7–9].

Both approaches enjoy an analogy for analyzing graphs through the graph
Fourier transform (GFT). The GFT is utilized as a projection operator of a graph
signal into the spectral (frequency) domain of the selected graph shift operator.
Although the interpretations in the graph vertex domain are different, the GFTs
for the two approaches are consistent as a decomposition of a graph signal into
different frequency components which are related to the topology and the con-
sidered shift operator matrix.

Since the fundamental objectives of the two approaches are close to each
other, in this thesis, we will develop our filter algorithms following both philoso-
phies and intend to design the methods with generality. The next section recalls
some background information that will be used throughout this thesis.

2.2. GRAPH MODEL

Consider a dataset with N elements and the connections between data elements
are known. This model can be represented by a graph G = (V ,E) with V the set
of N nodes (vertices) and E the set of E edges.

2.2.1. GRAPH SHIFT OPERATOR

The local structure of G is captured by the adjacency matrix A ∈ RN×N , where
[A] j ,i 6= 0 if there exists an edge between the nodes vi and v j which reflects the
relation between the nodes vi and v j . Otherwise, [A] j ,i = 0 indicates that there is
no connection between nodes vi and v j . Since the relationship between nodes
(data elements) can be different, in general, the non-zero edge weights [A] j ,i can
also be different. Note that for an undirected graph G , every edge between vi

and v j leads to a similar edge between v j and vi , and thus A is symmetric, i.e.,
[A]i , j = [A] j ,i . For directed graphs G , such properties do not hold. Remark that
a graph without weights on the edges is a graph for which all non-zero weights
are selected as 1. In general, we will assume the weights on the edges are positive
throughout this thesis.

The node degrees are characterized by the diagonal degree matrix D with

2.2. GRAPH MODEL

2

25

diagonal entries defined as

[D]i ,i =
N∑

j=1
[A]i , j , or [D]i ,i =

N∑
j=1

[A] j ,i (2.1)

which are the in-degree or out-degree matrices, and [D]i ,i represents the sum of
all edge weights related to node vi . Then, the discrete graph Laplacian, following
spectral graph theory [2], is defined as

L = D − A. (2.2)

For directed graphs, some recent works introduce the use of the graph Lapla-
cian matrix through the in-degree and out-degree matrices [10–12]. Throughout
this thesis, we will use the adjacency matrix A as a representative for directed
graphs, while for undirected graphs we use as an alternative the discrete graph
Laplacian. In this context, the discrete graph Laplacian L for undirected graphs,
which has edges without orientations, is also symmetric. We further indicate
their normalized counterparts, i.e., the normalized adjacency matrix for directed
graphs

An = A/‖A‖2 (2.3)

and the normalized Laplacian matrix for undirected graphs

Ln=D−1/2LD−1/2. (2.4)

Note that other alternatives can also be used for representing a graph.

As a short conclusion, every one of these graph representations can be re-
ferred to as a so-called graph shift operator S, an operator that forms the basis
for processing graph signals. Throughout this thesis, we generally consider two
kinds of graph representations as graph shift operator S, i.e., the adjacency ma-
trix A, and the graph Laplacian L. However, sometimes other modifications are
used [13, 14].

2.2.2. GRAPH SIGNAL

We will indicate with the vector x = [x1, x2, · · · , xN]T ∈ RN×1 the graph signal, i.e.,
a signal living on the nodes of the graph G = (V ,E), where each value xi is asso-
ciated to the corresponding node vi .

2

26 2. GRAPH SIGNAL PROCESSING

In GSP, with the graph shift operator S, the shifting of a graph signal xn over
the graph at the node vn is defined as

yn =
N∑

m=1
[S]n,m xm , (2.5)

which is a linear combination of the signal samples at its neighbors. Graph sig-
nal shifting is considered as a local communication between direct neighbors
(nodes) and the signal yn can be computed without any global information of
the signal or graph.

(a) Directed graph with the orig-
inal signal.

(b) The same graph with shifted
signal.

Figure 2.2: A directed graph and the corresponding signal shifting. (a) The directed graph with the
original signal. (b) The same graph with the shifted signal.

The complete shift of x by S can be written in a matrix-vector form as

y = Sx . (2.6)

As an example, Fig. 2.2(a) shows a weighted directed graph with a graph signal.
The corresponding weights are plotted on the edges. The graph signal is x =
[1 1 2 −1 −1 1]T and the shift operator is S = A. The shifted signal can

2.3. GRAPH SPECTRAL ANALYSIS

2

27

be written as

y =



2
3
2
4
7
−3

=



0 0 0 0 0 2
3 0 0 0 0 0
0 1 0 0 0 1
0 0 2 0 0 0
2 0 3 1 0 0
0 0 0 0 3 0





1
1
2
−1
−1
1

= Ax .

Then, Fig. 2.2(b) shows the shifted version of the signal on the graph, which only
needs the information from the direct neighbors.

The selection of the graph shift operator depends on the type of graph and
the characteristics of the shift matrices. Different shift operators present differ-
ent trade-offs. For instance, if S is the graph adjacency matrix A, the shift op-
erator can work on both directed and undirected graphs. The A matrix can also
specialize the shifting process to the classical temporal DSP [15]. Meanwhile, the
symmetric graph Laplacian L is normally restricted to undirected graphs. Since
the matrix L is positive semi-definite and diagonalizable, the shift operator can
avoid some analytical and numerical problems raised by the matrix A.

For some applications, the choice of the operator should depend on the spe-
cific situation and the best trade-offs for the problem should be considered. In
general, the most important factor for the selection is the difference between the
graph spectra related to the different operators. Starting from the next section,
we will introduce graph spectra and graph frequencies.

2.3. GRAPH SPECTRAL ANALYSIS

For both the graph Laplacian and adjacency approaches,the graph Fourier trans-
form (GFT) can be defined as moving from the graph vertex domain to the graph
frequency domain. The notion of graph frequency that extends from conven-
tional signal processing presents a mathematical description for the frequency
components of a graph signal. In this section, we mainly discuss the graph model
in the frequency domain and try to understand these elementary frequencies
from a theoretical perspective.

2.3.1. THE GRAPH FOURIER TRANSFORM

A graph Fourier transform is defined through the selection of a graph operator
admitting a spectral decomposition.

2

28 2. GRAPH SIGNAL PROCESSING

Consider a graph G = (V ,E), and assume the selected operator enjoys an
eigenvalue decomposition as

S =UΛU−1, (2.7)

where U is the eigenvector matrix with as columns the so-called graph modes
u1 up to uN (we assume the graph modes are always normalized to have a unit
norm). Meanwhile, Λ is the diagonal eigenvalue matrix containing as diagonal
entries the so-called graph frequencies Λ = diag(λ1, · · · ,λN) (note that in this
context we have ‖S‖2 = maxn |λn | = |λmax|).

In this thesis, we restrict ourselves to graphs for which S is real-valued and
diagonalizable, meaning it enjoys an eigenvalue decomposition. If S is not di-
agonalizable, the eigenvalue decomposition needs to be reduced to a Jordan de-
composition. We refer the reader to [6, 7] for details of dealing with this case. In
practice, some inherent noise may appear in the measured graphs, e.g., social
and sensor networks, leading to a non-diagonalizable matrix. For this instance,
the shift operator could be modified to a diagonalizable matrix by a small pertur-
bation within the considerable noise level [16].

To obtain the graph frequency representation of the graph signal x , the eigen-
vector matrix U is used to transform the signal into the graph Fourier domain.
Specifically, the GFT x̂ of x is defined as

x̂ =U−1x (2.8)

and the corresponding inverse is

x =U x̂ . (2.9)

Note that, in general, when the graph operator S is real-valued but asym-
metric, e.g., considering S as the adjacency matrix A for directed graphs, the
corresponding graph modes un contain complex values and are not necessar-
ily orthogonal to each other. Moreover, for a real-valued symmetric operator S,
U and Λ can always be selected as real-valued matrices. In this case, we have
U−1 =U T and U is orthonormal. Since we will deal with both directed and undi-
rected graphs, in this thesis, we follow the general case (2.8).

In the following, we separate the graph into two categories, i.e., directed and
undirected graphs, and list the possible choices of operators S. According to the
different types of shift matrices, we provide the details for the GFT and graph
frequencies inside Λ.

2.3. GRAPH SPECTRAL ANALYSIS

2

29

2.3.2. GRAPH FREQUENCY ANALYSIS WITH GFT

To fully understand the spectrum of the graph, some analysis of the graph fre-
quencies and modes are introduced in this section. We first interpret the details
for undirected graphs, and then move to the directed case.

Undirected graphs. For undirected graphs, the connections between differ-
ent nodes are characterized by a symmetric adjacency matrix. Thus, candidates
for S are A, L, and other modifications of them which are all symmetric matrices.
Since the graph Laplacian is positive-semidefinite, we mainly prefer the Lapla-
cian approach for undirected graphs.

With the decomposition (2.7), we can now rewrite the shift S for the undi-
rected case as

S =UΛU T, (2.10)

where all the eigenvalues λn are real-valued and non-negative. Then, the GFT x̂
of x is simplified as

x̂ =U Tx . (2.11)

Since S = L is real-valued, the graph modes un are assumed to be real-valued
as well. Note that in some cases, they can be chosen to be complex-valued, e.g.,
for undirected circulant graphs, but that special case is not assumed in this the-
sis. The graph frequencies can be automatically ordered from small to large in
the range of [0,λmax], where a smaller value indicates a lower frequency [3]. For
an undirected graph with S = Ln, the graph frequencies are in the real interval
from zero to two.

From the Courant-Fischer Theorem [17], the pairs of eigenvalues and eigen-
vectors for the symmetric Laplacian approach can also be demonstrated to be
the iterative solution of the Rayleigh quotient [3, 15]

λ1 = min
x ∈RN

‖x‖2 = 1

xTLx , (2.12)

and
λn = min

x ∈RN

‖x‖2 = 1

xTLx , n = 2,3, · · · , N ,

s.t . x⊥span{u1,u2, · · · ,un−1}

(2.13)

2

30 2. GRAPH SIGNAL PROCESSING

where the eigenvector un is the minimizer of the nth problem. This quadratic
form xTLx can be used as a measure of the signal smoothness, which is

xTLx = 1

2

∑
vi∈V

∑
v j∈Ni

Ai , j (xi −x j)2 = ∑
(vi ,v j)∈E

Ai , j (xi −x j)2. (2.14)

From the Laplacian quadratic problem (2.12) (2.13), as well as (2.14) we can no-
tice that the GFT provides an orthogonal basis with an increased variation. Every
additional orthogonal eigenvector minimizes the increase of variation.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(a) λ1 = 0.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(b) λ2 = 0.0186.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(c) λ50 = 1.1369.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(d) λ100 = 1.4494.

Figure 2.3: Example of elementary frequencies obtained from the normalized Laplacian Ln of an
undirected graph with N = 100 nodes. In this case, four different frequencies are shown, corre-
sponding to different eigenvalues, ranging from the lowest frequency to the highest frequency.
The entries of the related eigenvector ui are shown on the nodes. The images are generated by
GSPBox [1].

As illustrated by Fig. 2.3, the example shows that the eigenvectors (graph
modes) un vibrate over the vertex set of the graph. We consider the normalized

2.3. GRAPH SPECTRAL ANALYSIS

2

31

Laplacian Ln as the shift operator S and the index n of the eigenvalues increases
with an increasing variation. In this specific case, the lowest frequency is λ1 = 0
in Fig. 2.3(a), representing a constant value throughout the graph, and the high-
est frequency is λ100 = 1.45 in Fig. 2.3(d), where we can notice a large number of
signal changes over the graph edges.

A number of previous researches have shown the relationship between the
GFT and the classical Fourier transform in the signal processing field. To illus-
trate that, we first formulate the Fourier transform as

x̂(ξ) :=
〈

x,e2πiξt
〉
=

∫
R

x(t)e−2πiξt d t , (2.15)

which is the expansion of a function (temporal signal) x(t) based on complex
exponentials. All these complex exponentials can be seen as the eigenfunctions
of the one-dimensional Laplace operator [3, 15, 18]:

−∆(e2πiξt) =− ∂2

∂t 2 e2πiξt = (2πξ)2e2πiξt . (2.16)

Similar to the classical Fourier transform, we can also formulate the graph
Fourier transform x̂ in (2.11) as the expansion of a graph signal x depending on
the eigenvectors of the graph Laplacian:

x̂n := 〈x ,un〉 =
N∑

i=1
xi u∗

n,i . (2.17)

From this perspective, we can notice that the graph eigenvaluesλn and eigen-
vectors un automatically provide a similar notion to the classical Fourier analy-
sis. In (2.16), for a low frequency ξ, i.e., close to zero, the corresponding expo-
nential is a slowly oscillating function. Analogously, the graph Laplacian eigen-
vectors associated with small values (low frequencies) λn change slowly over the
graph.

Directed graphs. For directed graphs, the adjacency matrix A is no longer
symmetric, i.e., [A]i , j is not necessarily equal to [A] j ,i , and the corresponding
candidates for the graph shift operator S are not symmetric. Since the degree
of node i is automatically separated into in-degree and out-degree, the graph
Laplacian also contains two different realizations. In this thesis, we directly con-
sider the adjacency matrix A (or a modification of A) as the graph shift operator
for this case.

2

32 2. GRAPH SIGNAL PROCESSING

With the decomposition (2.7), the graph frequencies λn are automatically
complex-valued. To be specific, since S is real-valued, frequencies either appear
in complex conjugate pairs or are purely real-valued. Moreover, the related graph
modes also appear in complex conjugate pairs or are purely real-valued. As an
example, for the shift operator S = An, the graph frequencies are in the complex
unit disc. See Fig. 2.4 for an example of a directed graph and its complex-valued
graph frequencies.

Figure 2.4: Directed graph of N = 100 nodes with E = 752 edges having different weights in the
interval [0,3]. Complex-valued frequencies are generated by the eigenvalue decomposition of the
normalized adjacency matrix An. The “largest” frequency has magnitude one. Some frequencies
live on the real axis while the remaining frequencies appear as conjugate pairs in the complex
plane.

Since the frequencies are directly related to the degree of variation of the
spectral components, we can order them by relating frequencies to the complex-
ity of the components [7]. This can be measured by the graph total variation of
the related graph modes un , which for a graph signal x is defined as

TVG (x) = ‖x − Anx‖2
2. (2.18)

The graph total variation can be viewed as the distance between a graph signal
and its shifted version. Here we highlight the use of An in (2.18). When the spe-
cific graph signal is a corresponding eigenvector un of the adjacency matrix An,
the graph total variation TVG (un) depends on the related eigenvalue λn as

TVG (un) =
∥∥∥∥un − λn

|λmax|
un

∥∥∥∥2

2
=

∣∣∣∣1− λn

|λmax|
∣∣∣∣, (2.19)

2.3. GRAPH SPECTRAL ANALYSIS

2

33

where λmax is the eigenvalue with the largest absolute value. With the definition
of TVG (u), we can notice that all the eigenvectors, relating to the same eigen-
value, have the same graph total variation.

For a directed graph, the frequencies are ordered according to the similarity
between the nth graph mode and its graph shifted version. In other words, the
frequencies of a directed graph are ordered by their distance from |λmax|. Note
that the order from the lowest to the highest frequency is not unique, due to the
fact that the same distance can yield the same total variation for the correspond-
ing components, e.g., the conjugate frequencies share the same graph total vari-
ation TVG (u). For example, in Fig. 2.4, graph frequencies closer to the point (1,0)
in the complex plane will represent lower frequencies in this context [7] (λmax = 1
in that case). Also, for an undirected graph, the signal total variation is related
to (2.12) and (2.13).

The adjacency-based approach can also represent classical linear discrete
signal processing (DSP). Finite (or periodic) time can be represented by the di-
rected cycle graph, see Fig. 2.5 [7, 8, 19].

Figure 2.5: Using a graph representation for a finite discrete periodic time of length N .

The direction of the edges between nodes provides the time flow from the
past to the future, and the last node with index N has the direction to the first
node representing the periodic signal extension xN+1 = x1. The corresponding
adjacency matrix of this graph is the cyclic shift matrix given by

A =


1

1
. . .

1

 .

Using the eigenvalue decomposition, we can notice that the graph Fourier trans-
form matrix is similar to the discrete Fourier transform, and the corresponding
frequencies are

λn = e− j 2π
N (n−1).

2

34 2. GRAPH SIGNAL PROCESSING

For either the directed or undirected graphs, computing the GFT (eigenvalue
decomposition) requires O(N 3) operations in general. The memory for storing
the matrix U is O(N 2) and applying U−1 to compute x̂ of the graph signal x costs
O(N 2) operations. These costs are expensive for a large graph, e.g., N = 103. One
way to reduce the implementation cost is by tolerating an approximation of x̂
[20, 21]. Recent works show that the approximation of the GFT can be obtained
with a small cost by a product method. Alternative ways to efficiently and ac-
curately approximate the desired x̂ is by using filtering operations which we will
introduce in the next section.

2.3.3. ILLUSTRATION OF GFT

To conclude the relationship between the graph frequency coefficients and eigen-
vectors, the following property can now be stated:

Property 1. For either an undirected or directed graph G , let us denote x̂n as the
nth frequency coefficient of the graph signal x . Then, the frequency coefficient x̂n

related to the real-valued graph frequency (mode) λn (un) is real-valued as well.
Meanwhile, the frequency coefficients x̂n and x̂n′ related to the complex conjugate
pair of graph frequencies (modes) λn and λn′ (un and un′) form a complex conju-
gate pair as well.

This property is built on the fact that for a real-valued matrix S for both di-
rected and undirected graphs, eigenvalues, and eigenvectors appear in complex
conjugate pairs [22, 23]. This also means that if the columns un and un′ in the
matrix U form a complex conjugate pair, the related rows in the matrix U−1 form
a complex conjugate pair. Thus, with U−1x , the frequency coefficients x̂n and x̂n′

appear as a complex conjugate pair.
To illustrate the effect of the GFT on a graph signal, in Fig. 2.6(a) and (b), we

take the GFT of two different graph signals on the same undirected graph. We
also show the corresponding frequency coefficients in Fig. 2.6(c). Note that, in
Fig. 2.6(a), the energy of the graph and graph signal concentrate on the frequen-
cies related to the slowly varying components. On the other hand, the energy
of the graph signal in Fig. 2.6(b) is associated with both high and low frequen-
cies. Since we consider as shift operator S = Ln , the frequencies and frequency
coefficients are real-valued in this case.

Since the GFT process depends on the matrix U , it is also sensitive to the un-
derlying graph structure which is related to the shift operator. Let us for instance
consider two different graphs G1 = (V ,E1) and G2 = (V ,E2) with V the same set of

2.3. GRAPH SPECTRAL ANALYSIS

2

35

-0.6

-0.4

-0.2

0

0.2

0.4

(a) Low-frequency graph signal on the
graph with N = 30.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(b) High-frequency graph signal on the
graph with N = 30.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Frequency

0

0.2

0.4

0.6

0.8

1

Fr
eq

ue
nc

y
co

ef
fi

ci
en

t

low-frequency signal
high-frequency signal

(c) Corresponding GFTs (frequency coefficients) computed for the operator S = Ln .

Figure 2.6: The graph (N = 30) with two different types of graph signals and their corresponding
GFTs. (a) and (b) represent, respectively, low- and high-frequency graph signals on the same graph.
(c) Their corresponding frequency coefficients with graph shift operator S = Ln . The GFTs are
normalized.

N nodes (vertices) and different edge sets E1 and E2. The different connections
build up two different shift operators as S1 = U 1Λ1U 1

−1 and S2 = U 2Λ2U 2
−1.

Then, with the same graph signal x , we have the GFTs for G1 and G2 as x̂1 =U 1
−1x

and x̂2 =U 2
−1x . Note that the signal x is expanded into two different frequency

bases U 1 and U 2. In general, changing the edges, including the directions and
the weights, generates an alternative GFT even if the graph signal x stays un-
changed.

2

36 2. GRAPH SIGNAL PROCESSING

2.4. GRAPH FILTERING

Together with the GFT, graph filters are a key tool to process the graph signal
spectrum, i.e., to amplify or attenuate different graph frequencies. Graph filters
find applications in graph signal denoising [24–26], smoothing [27], classification
[28], sampling [29], recovery [30], and graph clustering [31]. Further, they serve
as a basic building block for trilateral graph filters [26], graph filter banks [5, 32]
and graph wavelets [4, 33–35]. In this section, we briefly introduce the graph filter
concept based on the selected operator S.

2.4.1. DEFINITION OF GRAPH FILTERS

We first assume that the selected graph operator S, on which graph filter design
is based, can be diagonalizable as mentioned in the previous section. This allows
us to define a graph filter as follows.

Definition 1. A graph filter G is a function g (·) applied to the graph shift operator
S, i.e., G = g (S), that allows for an eigen-decomposition of G in the form

G =U g (Λ)U−1, (2.20)

where g (Λ) is a diagonal matrix that highlights the filter impact on the graph fre-
quencies Λ.

Note that the decomposition of the filter on every eigenmode un of operator
S with the corresponding frequency λn is related to the filter coefficient g (λn).
Hence, g (Λ) has on the diagonal the frequency response of the graph filter, which
at frequency λn we denote as

[g (Λ)]n,n = g (λn) = ĝn .

In the graph vertex domain, the filter output y for a filter input x can be writ-
ten as

y =G x , (2.21)

which in the graph frequency domain can be translated into

ŷ = g (Λ)x̂ , (2.22)

where x̂ and ŷ represent the input and output signals of the GFT in the frequency
domain, respectively.

2.4. GRAPH FILTERING

2

37

The graph filter G = g (S) is the operator that weights the information of the
graph signal [6]. We now give some simple examples of different graph filters. For
simplicity, we assume the graph frequencies are real-valued in these examples.

• Constant filter. The filter response of a constant filter can be formed as

G = g (Λ) = c I , (2.23)

where c represents the constant value. For this kind of filter, all frequen-
cies are allowed to pass with the weight c, and no frequency component is
filtered out.

• Ideal low-pass filter. The ideal low-pass graph filter is given by

g (λn) = 1, λn <λc and 0, otherwise (2.24)

where λc is the cut-off frequency. For this situation, only the frequencies
up to cut-off frequency λc are allowed to pass.

• The heat kernel. The heat kernel is widely used and given by

g (λn) = e−cλn , (2.25)

where c is the weight. The function is exponentially decreasing with the
frequency λn .

In Fig. 2.7, we use a graph (N = 30) with a graph signal to illustrate the effect
of an ideal low-pass graph filter. The filtering operation in the graph Fourier do-
main is shown in Fig. 2.7(c) and the resulting signal is shown in Fig. 2.7(b). We
can notice that the high-frequency content is removed with the ideal low-pass fil-
ter. Using the IGFT to go back to the vertex domain, the graph signal in Fig. 2.7(b)
is less noisy and more smooth.

2.4.2. DESIGN OF GRAPH FILTERS

In this thesis, we mainly contribute to the graph filter design area. Thus, we now
briefly introduce and discuss the filter design philosophy. Details can be found
in the next chapters.

Throughout this thesis, we will consider different parametrizations of the
graph filter function g (·), and thus we will often explicitly write this function as

2

38 2. GRAPH SIGNAL PROCESSING

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) Noisy graph signal on the graph with
N = 30.

-0.6

-0.4

-0.2

0

0.2

0.4

(b) Denoised graph signal on the same
graph.

0 0.5 1 1.5
Frequency

0

0.2

0.4

0.6

0.8

1

Fr
eq

ue
nc

y
co

ef
fi

ci
en

t

0 0.5 1 1.5
Frequency

0

0.2

0.4

0.6

0.8

1

Fr
eq

ue
nc

y
co

ef
fi

ci
en

t

(c) Corresponding GFTs and the low-pass filtering operation in the graph Fourier
domain. Red points represent the low-pass filter response. Blue points are the fre-
quency response of the graph signals.

Figure 2.7: The graph (N = 30) and graph signal to illustrate the effect of a low-pass graph filter. (a)
and (b) represent, respectively, the noisy graph signals and the denoised signal on the same graph.
(c) Their corresponding frequency coefficients with the graph shift operator S = Ln . We also show
here the filtering operation in the graph Fourier domain.

g (·;θ), where θ is a vector that contains the graph filter parameters, i.e., filter co-
efficients, zeros and poles, or any other set of filter parameters. Correspondingly,
we can also write ĝn explicitly as ĝn(θ).

Assuming now that the desired frequency response at frequency λn is given
by ĥn , the filter parameters θ can be found by solving

min
θ

N∑
n=1

|ĥn − ĝn(θ)|2. (2.26)

2.5. CONCLUSION

2

39

We restrict the desired frequency response ĥ to ĥn = ĥn′ , if the corresponding
eigenvalues (frequencies) satisfy λn =λn′ . The desired response ĥn can originate
from different scenarios according to different demands:

• First of all, when we focus on graph filter design, i.e., when we want to de-
sign a low pass filter to smoothen or denoise a graph signal, the desired
frequency response ĥn basically indicates how much we want to attenuate
a specific graph mode and thus it will generally be real-valued and sym-
metric w.r.t. the real axis (for both undirected and directed graphs).

• Also, when we want to do graph signal prediction, as done in [6], we want
to design an all-pass filter and set ĥn to be one (and thus real-valued) ev-
erywhere. In this case, the cost function (2.26) will also be weighted, but
the filter design methods can easily be adapted to this desired weighting
function [36].

• For some GSP applications, such as compression, the desired frequency
response ĥn will directly be the GFT of the signal, for which Property 1
holds.

In any case, whatever the scenario (filter design, prediction, smoothing, de-
noising, or compression) or type of graph (undirected or directed), the following
property holds.

Property 2. As mentioned above, ĥn is selected either as real-valued and symmet-
ric w.r.t. the real frequency axis, or as the GFT of a signal. The latter means that ĥn

is real-valued if λn is real-valued while ĥn and ĥn′ form a complex conjugate pair
if λn and λn′ form a complex conjugate pair (this is due to Property 1). Put differ-
ently, either way we select ĥn , if λn is real-valued, then ĥn is real-valued whereas
if λn and λn′ form a complex conjugate pair, then ĥn and ĥn′ form a complex
conjugate pair as well.

2.5. CONCLUSION

In this chapter, we first briefly introduced some important types of graphs and
GSP approaches. Then, we formulated the graph model as a mathematical rep-
resentation to express the data (graph signal). After discussing the fundamental
concepts of GSP, we introduced the spectral analysis of a graph signal where the
GFT is utilized as a useful tool for different graph operators, e.g., the Laplacian

2

40 REFERENCES

matrix for undirected graphs, and the adjacency matrix for directed graphs. This
will be the basic approach throughout the following chapters. Finally, we showed
the definition and properties of a graph filter and shortly discussed the filter de-
sign. This allows us to give more insights into the design methods in the next
chapter.

REFERENCES

[1] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Van-
dergheynst, and D. K. Hammond, Gspbox: A toolbox for signal processing
on graphs, arXiv preprint arXiv:1408.5781 (2014).

[2] F. R. Chung and F. C. Graham, Spectral graph theory, 92 (American Mathe-
matical Soc., 1997).

[3] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The
emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains, IEEE Signal Process-
ing Magazine 30, 83 (2013).

[4] D. K. Hammond, P. Vandergheynst, and R. Gribonval, Wavelets on graphs
via spectral graph theory, Applied and Computational Harmonic Analysis
30, 129 (2011).

[5] S. K. Narang and A. Ortega, Perfect reconstruction two-channel wavelet filter
banks for graph structured data, IEEE Transactions on Signal Processing 60,
2786 (2012).

[6] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs, IEEE
transactions on signal processing 61, 1644 (2013).

[7] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs: Fre-
quency analysis. IEEE Trans. Signal Processing 62, 3042 (2014).

[8] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs: Graph
filters. in ICASSP (2013) pp. 6163–6166.

[9] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, Discrete signal process-
ing on graphs: Sampling theory, IEEE Transactions on Signal Processing 63,
6510 (2015).

REFERENCES

2

41

[10] F. Chung, Laplacians and the cheeger inequality for directed graphs, Annals
of Combinatorics 9, 1 (2005).

[11] R. Singh, A. Chakraborty, and B. Manoj, Graph fourier transform based on
directed laplacian, in 2016 International Conference on Signal Processing
and Communications (SPCOM) (IEEE, 2016) pp. 1–5.

[12] F. Chung, The diameter and laplacian eigenvalues of directed graphs, the
electronic journal of combinatorics 13, 4 (2006).

[13] B. Girault, P. Gonçalves, and É. Fleury, Translation on graphs: An isometric
shift operator, IEEE Signal Processing Letters 22, 2416 (2015).

[14] A. Gavili and X.-P. Zhang, On the shift operator, graph frequency, and optimal
filtering in graph signal processing, IEEE Transactions on Signal Processing
65, 6303 (2017).

[15] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst,
Graph signal processing: Overview, challenges, and applications, Proceed-
ings of the IEEE 106, 808 (2018).

[16] N. Tremblay, P. Gonçalves, and P. Borgnat, Design of graph filters and filter-
banks, in Cooperative and Graph Signal Processing (Elsevier, 2018) pp. 299–
324.

[17] R. A. Horn and C. R. Johnson, Matrix analysis (Cambridge university press,
1990).

[18] D. I. Shuman, B. Ricaud, and P. Vandergheynst, Vertex-frequency analysis on
graphs, Applied and Computational Harmonic Analysis 40, 260 (2016).

[19] M. Puschel and J. M. Moura, Algebraic signal processing theory: Foundation
and 1-d time, IEEE Transactions on Signal Processing 56, 3572 (2008).

[20] L. Le Magoarou, R. Gribonval, and N. Tremblay, Approximate fast graph
fourier transforms via multilayer sparse approximations, IEEE transactions
on Signal and Information Processing over Networks 4, 407 (2018).

[21] L. Le Magoarou, N. Tremblay, and R. Gribonval, Analyzing the approxima-
tion error of the fast graph fourier transform, in 2017 51st Asilomar Confer-
ence on Signals, Systems, and Computers (IEEE, 2017) pp. 45–49.

2

42 REFERENCES

[22] C. H. Edwards, D. E. Penney, and D. T. Calvis, Differential equations and
boundary value problems (Tsinghua University Press, 2004).

[23] V. Sinswat and F. Fallside, Eigenvalue/eigenvector assignment by state-
feedback, International Journal of Control 26, 389 (1977).

[24] S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovacevic, Signal denoising on
graphs via graph filtering, in Signal and Information Processing (GlobalSIP),
2014 IEEE Global Conference on (IEEE, 2014) pp. 872–876.

[25] S. Deutsch, A. Ortega, and G. Medioni, Manifold denoising based on spectral
graph wavelets, in Acoustics, Speech and Signal Processing (ICASSP), 2016
IEEE International Conference on (IEEE, 2016) pp. 4673–4677.

[26] M. Onuki, S. Ono, M. Yamagishi, and Y. Tanaka, Graph signal denoising via
trilateral filter on graph spectral domain, IEEE Transactions on Signal and
Information Processing over Networks 2, 137 (2016).

[27] F. Zhang and E. R. Hancock, Graph spectral image smoothing using the heat
kernel, Pattern Recognition 41, 3328 (2008).

[28] A. Sandryhaila and J. M. Moura, Classification via regularization on graphs.
in GlobalSIP (2013) pp. 495–498.

[29] A. Anis, A. Gadde, and A. Ortega, Efficient sampling set selection for ban-
dlimited graph signals using graph spectral proxies, IEEE Transactions on
Signal Processing 64, 3775 (2016).

[30] S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovačević, Signal recovery on
graphs: Variation minimization, IEEE Transactions on Signal Processing 63,
4609 (2015).

[31] N. Tremblay, G. Puy, R. Gribonval, and P. Vandergheynst, Compressive spec-
tral clustering, in Machine Learning, Proceedings of the Thirty-third Interna-
tional Conference (ICML 2016), June (2016) pp. 20–22.

[32] D. B. Tay and Z. Lin, Design of near orthogonal graph filter banks, IEEE Signal
Processing Letters 22, 701 (2015).

[33] S. K. Narang and A. Ortega, Compact support biorthogonal wavelet filter-
banks for arbitrary undirected graphs, IEEE transactions on signal process-
ing 61, 4673 (2013).

REFERENCES

2

43

[34] A. Sakiyama, K. Watanabe, and Y. Tanaka, Spectral graph wavelets and filter
banks with low approximation error, IEEE Transactions on Signal and Infor-
mation Processing over Networks 2, 230 (2016).

[35] D. I. Shuman, C. Wiesmeyr, N. Holighaus, and P. Vandergheynst, Spectrum-
adapted tight graph wavelet and vertex-frequency frames, IEEE Transactions
on Signal Processing 63, 4223 (2015).

[36] J. Liu, E. Isufi, and G. Leus, Filter design for autoregressive moving average
graph filters, IEEE Transactions on Signal and Information Processing over
Networks 5, 47 (2019).

3
GRAPH FILTERS

T HIS chapter introduces some particular types of graph filters, e.g., finite im-
pulse response (FIR) and infinite impulse response (IIR) graph filters. These

different classes of graph filters (GFs) are utilized as basic tools for graph signal
processing and related applications. Similar to temporal filters, these classes of
GFs parameterize the graph signal spectra in different ways. In this chapter, we
will show efficient implementations of these filter classes and well-studied de-
sign methods for GFs. These two aspects can be provided, respectively, in the
vertex and frequency domains. Next to the standard form of these graph filters,
we will also summarize some alternative forms, such as the distributed Cheby-
shev graph filter [2].

This chapter is organized as follows. Section 3.1 briefly introduces the design
of GFs and covers some GF applications. Then, Section 3.2 considers the uni-
versal design concept which can avoid the computational cost of an eigenvalue
decomposition during the filter design. Sections 3.3 and 3.4 then discuss in de-
tail the FIR and IIR classes of graph filters. In the end, Section 3.5 concludes the
chapter.

Part of this chapter has been published in the IEEE Transactions on Signal and Information Pro-
cessing over Network [1] (2019).

45

3

46 3. GRAPH FILTERS

3.1. INTRODUCTION

As we mentioned in Chapter 2, a graph filter (GF) can be represented as G = g (S)
in the vertex domain, while the corresponding form is [g (Λ)]n,n = ĝn in the fre-
quency domain. The design of a graph filter is often completed in the frequency
domain, while the processing of graph signals is generally done in the vertex
domain. Furthermore, the universal design approach can reduce the computa-
tional cost by avoiding an eigenvalue decomposition. Also, considering the local
structure of the shift operator, the GF implementation can be carried out in the
vertex domain without requiring any eigenvalue decomposition.

In this chapter, we will first introduce the universal filter design concept, and
then use the basic classes of GFs to illustrate GF design methods and imple-
mentations. But before that, we highlight some applications of graph filters to
demonstrate that GFs are useful tools.

• i) Data Classification. Data classification is an important task in traditional
signal processing. This problem has also been studied in machine learn-
ing [3]. Using a graph representation of data, some novel approaches to
this problem are proposed [4–6]. One of them utilizes the graph filter as a
classification tool by designing the GF as an adaptive classifier [7]. This ap-
proach is based on some known labels and adaptively constructs the filter
using those labels. The whole process trains the classifier and modifies the
filter coefficients. Then, the constructed graph filter is utilized to classify
all nodes by analyzing the filter output. This GF-based classifier approach
can also perform well in the multiple classes problem.

• ii) Image Processing. Recently, some graph signal processing tools are uti-
lized for classical image processing tasks [8–13]. As an example, in [14], the
image interpolation problem can be formulated as a low-pass graph filter-
ing problem to remove high-frequency noise. The numerical performance
shows that the approach is not limited to 2D image interpolation and can
be useful for improving other kinds of images [14].

• iii) Filterbanks and Wavelets. Filterbanks and wavelets are very important
techniques for signal processing. There are several recent works to extend
wavelets and filter banks to the GSP field [15–19]. Most of them are related
to the two-channel critically sampled perfect reconstruction filter bank
which is based on the design of a graph filter. Also, in [17, 20], the design

3.2. UNIVERSAL DESIGN

3

47

methods are nearly orthogonal and have the advantage of energy preserva-
tion and symmetry between the low-pass and high-pass response. Several
numerical results are shown to illustrate these techniques. As applications,
the filterbanks can be used as a useful tool for image-analysis [20] and an-
alyzing/compressing arbitrarily linked irregular graphs [17].

• iv) Signal Denoising and Recovery. As a traditional problem in the sig-
nal processing area, the denoising and recovery of graph signals extend
the problems from signals with a regular structure to a complex, irregu-
lar structure. These methods are often based on signal smoothing with
filtering [21, 22], multiresolution analysis [23], and so on. For instance, a
novel method to recover the true graph signal from a noisy measurement
is based on total variation regularization [24]. The approach leads to a
closed-form solution that can be represented by a graph filter [24]. With
measurements from temperature sensors, the approach works well.

We only shortly discussed some applications and examples to highlight the
wide use of graph filters. For details and more information about graph filter ap-
plications, we recommend [8, 25, 26] for further reading. The main contributions
of this chapter are:

• i) We extend the concept of universal filter design from an undirected graph
to a directed graph. Since universal filter design is studied for the undi-
rected case S = Ln, we present it for the directed case S = An. Since the
frequencies of a directed graph are shown as real-values and complex con-
jugate pairs, we consider grid points lying in the complex unit disc.

• ii) We analyze the numerical results for FIR graph filters designed using
the universal design concept. We prove that the FIR coefficients resulting
from the universal design are real-valued for both directed and undirected
graphs.

The next section will introduce the universal GF design concept that will be
used throughout this thesis.

3.2. UNIVERSAL DESIGN

Since estimating the graph frequencies entails some additional complexity, where
the computational cost of an eigendecomposition is O(N 3), graph filters are of-
ten designed with no explicit knowledge of the graph or the graph frequencies.

3

48 3. GRAPH FILTERS

The desired frequency response is assumed to be a function over a continuous
range of frequencies (the real line for undirected graphs or the complex plane for
directed graphs). Solving the filter design problem for such a scenario is referred
to as universal filter design.

The concept of GF design without explicit knowledge of the graph frequen-
cies is first introduced, in [2, 12], based on a parameterization using Chebyshev
polynomials. These approaches complete the design in a specific continuous
range but they are limited to undirected graphs. In this thesis, we extend this
concept to emphasize universal design for both directed and undirected graphs.

To illustrate the discrete universal design, we first repeat the design problem
(2.26) mentioned in the previous chapter:

min
θ

N∑
n=1

|ĥn − ĝn(θ)|2.

Following (2.26), the universal filter design problem can be tackled by dis-
cretizing the related continuous frequency range into a finite set of N potential
graph frequencies. Then the design problem can be solved for this finite set of
potential graph frequencies instead of for the true graph frequencies. In that
case, the desired filter response ĥ is a function of some potential graph frequen-
cies that are spread out over the whole frequency range, and the set of filter co-
efficients θ is useful for all graphs. This is referred to as the discrete universal
design.

Now, we will introduce some examples of a discrete universal grid for both
directed and undirected graphs as required background for the GF design in this
thesis.

• Undirected Case. For undirected graphs, we take S = Ln as the graph shift
operator as we mentioned in the previous chapter. Thus, we can consider
for instance N different grid points in the interval [0,2]. Note that depend-
ing on the graph, we obtain a different eigenvalue spread, e.g., the eigen-
values of an Erdős Rényi graph [27] are in general closely spread around 0
and more widely spread around p, the link probability of the graph. How-
ever, since we want to be independent of the graph topology, we consider
a uniformly-spaced grid in our design. As an example, we show the graph
spectrum for an ideal low pass graph filter with cutoff frequency λc = 1 in
Fig. 3.1(a) left. With another shift operator, e.g., S = L, the discrete univer-
sal design aims at gridding the whole interval [λmin,λmax], where estimat-
ing λmin and λmax costs much less than an eigenvalue decomposition.

3.2. UNIVERSAL DESIGN

3

49

Frequency
0 0.5 1 1.5 2

Fr
eq

ue
nc

y
R

es
po

ns
e

0

0.2

0.4

0.6

0.8

1
Ideal low pass filter

Real
-1 -0.5 0 0.5 1

Im
ag

in
ar

y

-1

-0.5

0

0.5

1
Complex frequency

(a) Low pass filter for undirected graph and universal grid for directed graph based
on the normalized adjacency matrix.

1
0.5

Real
0

-0.5
-1-1

-0.5Imaginary
0

0.5

0.5

1

0
1

Fr
eq

ue
nc

y
R

es
po

ns
e

(b) Ideal low pass filter response of universal design for directed graph based on the
normalized adjacency matrix.

Figure 3.1: (a) (left) Ideal low pass filter response of universal design for undirected graph (N =
100). (a) (right) Universal grid for directed graph based on the normalized adjacency matrix An
(N = 100). (b) Ideal low pass filter response of universal design for a directed graph with N =
100. The complex frequencies lying inside the circle with radius 1 centered at (1,0) are ”small”
frequencies.

• Directed Case. Alternatively, for directed graphs with S = An, the graph
frequencies lie in the complex unit disc. Again trying to avoid any depen-
dence on the graph, we suggest gridding this disc by N complex conjugate
pairs of points, as shown in Fig. 3.1(a) right. Fig. 3.1(b) again shows an ex-
ample of an ideal low pass filter in this context. The cutoff frequency λc for
the corresponding ideal low pass filter is here defined as the distance from
the point (1,0) in the complex plane, and it is set as λc = 1 in Fig. 3.1(b).
All graph frequencies with a distance to (1,0) that is smaller than λc will

3

50 3. GRAPH FILTERS

be part of the passband since they yield the “smaller” frequencies. For an-
other shift operator of a directed graph, e.g., S = A, the complex disc will
change to a radius |λmax|.

The universal design can be beneficial in a situation where the structure of
the graph is unknown. Then, the filter coefficients are independent of the spe-
cific graph. Note that the graph filter design based on Chebyshev polynomi-
als [2, 12] is an alternative approach to the discrete universal design.

Also, using random matrix theory [28–30], the information and distribution
of the eigenvalues (frequencies) of a large matrix can be obtained through their
asymptotic behavior [31]. Thus, besides the universal design we discussed, ap-
proximating the graph empirical spectral statistics is another way for designing
the GF without explicit knowledge of the frequencies.

In the upcoming sections, we will focus on some specific graph filter classes
and discuss the technical details.

3.3. FINITE IMPULSE RESPONSE GRAPH FILTER

From [32], an FIR graph filter G of order K can be expressed as a K -th order poly-
nomial in the graph shift operator

G = g (S;θ) =
K∑

k=0
gk Sk , (3.1)

with θ = [g0, . . . , gK]T collecting the FIR filter coefficients. If we use the vector x
as the input of graph filter G , then the output y can be formulated as

y =G x =
K∑

k=0
gk Sk x . (3.2)

3.3.1. IMPLEMENTATION AND COST

In order to illustrate the implementation process of (3.2) with the shift operator
S in the vertex domain, we first expand (3.2) as

y =G x = g0S0x + g1S1x +·· ·+ gK SK x . (3.3)

As we mentioned in the previous chapter, the output signal yi of every node vi

can be computed locally by exchanging previously shifted versions of the input

3.3. FINITE IMPULSE RESPONSE GRAPH FILTER

3

51

signal with its direct neighbors. Thus, the multiplications with the shift operator
S can be computed as

Sk x = S(Sk−1x)

leading to an overall complexity of O(K E) for the whole FIR filtering process,
where E is the number of edges.

Since the graph shift operator is usually a sparse matrix, the implementation
cost significantly reduces compared to the regular cost O(N 2) of a matrix-vector
multiplication since E << N , where N is the number of nodes. The distributed
computing over the network also suggests that the FIR graph filter is a localized
linear operation in the graph vertex domain.

3.3.2. FILTER DESIGN

We now focus on finding the filter coefficients gk which are useful for approxi-
mating a desired (user-provided) frequency response.

We use H to represent the desired filtering operation in the vertex domain
and ĥ as the desired frequency response in the frequency domain. Then, we can
formulate the design problem as

min
g0,...,gK

∥∥∥∥∥H −
K∑

k=0
gk Sk

∥∥∥∥∥
2

2

. (3.4)

Since this is a linear least squares (LLS) problem, we can solve it efficiently
with off-the-shelf algorithms [33]. In this thesis, we mainly focus on the design
in the frequency domain and discuss the universal design for this case.

We first move the problem from the vertex domain to the graph frequency
domain. Since the GFT and IGFT are linear processes, for problem (3.2), we then
have

y =
(

K∑
k=0

gkUΛkU−1

)
x =U

(
K∑

k=0
gkΛ

k

)
U−1x , (3.5)

and the output of the FIR filter in the graph frequency domain is

ŷ =
K∑

k=0
gkΛ

k x̂ . (3.6)

Under this circumstance, the filter frequency response has the polynomial form

g (Λ) =
K∑

k=0
gkΛ

k . (3.7)

3

52 3. GRAPH FILTERS

Also, the element ĝn of g (Λ) at a specific λn in the spectral domain can be ex-
pressed as

ĝn =
K∑

k=0
gkλ

k
n , (3.8)

where λn can be the true graph frequencies or the potential graph frequencies
represented by grid points for the universal design. When we take λn as grid
points in the frequency range [λmin,λmax], the number N is not necessarily the
same as the number of nodes.

The filter coefficients in time and frequency are thus related as
ĝ1

ĝ2
...

ĝN

=


1 λ1 · · · λK

1
1 λ2 · · · λK

2
...

...
. . .

...
1 λN · · · λK

N




g0

g1
...

gK

 . (3.9)

By stacking the filter frequency response in ĝ = [ĝ1, · · · , ĝN]T, we obtain the
relation

ĝ =ΨK+1g , (3.10)

whereΨK+1 is the N ×(K +1) Vandermonde matrix representing the system with
entries [ΨK+1]n,k =λk−1

n .
Assuming the desired frequency response is given by the vector ĥ = [ĥ1, · · · , ĥN]T,

design (2.26) can now be rewritten as the following LLS problem

min
g

∥∥ĥ −ΨK+1g
∥∥2

. (3.11)

The solution to this LLS problem is given by

g =Ψ†
K+1ĥ, (3.12)

whereΨ†
K+1 is the pseudo-inverse ofΨK+1.

For (3.8) to make sense as a graph filter that will be applied to a real-valued
graph signal x , we want the FIR filter coefficients g to be real-valued. The next
proposition shows that this is the case.

Proposition 1. Under Property 2 [cf. Chapter 2], the FIR filter coefficients g ob-
tained by solving (3.11) are real-valued.

Proof. The proof can be found in Appendix A.

3.3. FINITE IMPULSE RESPONSE GRAPH FILTER

3

53

Figure 3.2: Universal design fashion N = 100 with ideal low pass FIR graph filter for both directed
and undirected graphs. For the undirected graph, we take filter order K = 30, while for the directed
case, the filter order is utilized as K = 60.

For example, in Fig. 3.2, we use N = 100 grid points (discrete universal de-
sign) to evaluate the design solutions of FIR graph filters for both directed and
undirected graphs. We observe that, with the LLS discrete universal design, the
approximation accuracy is worse on the points around the cut-off frequency for
both cases.

We summarize the following statements for the FIR graph filter and the cor-
responding universal design:

• For the FIR graph filter, as shown in [34], [35], ΨK+1 needs to be well-
conditioned for this approach to work well. This will only be the case for
small graph sizes N and/or small filter orders K , i.e., the FIR graph filter
order K is much smaller than the number of frequencies N .

• Note that to improve the conditioning of the matrix ΨK+1, close/equal
eigenvalues, e.g.,λi =λ j , could be grouped together under the assumption
that the desired filter response on those eigenvalues is equal, e.g., ĥi = ĥ j .
In any case, the FIR filter order K needs to be small and because of the na-
ture of the polynomial fitting problem, this will lead to the limited accuracy
of the FIR filter.

• Using the graph frequencies to design the filter, we can minimize the ap-
proximation error (3.11) for the specific graph. However, the computa-
tional cost of an eigenvalue decomposition is O(N 3) which is quite high

3

54 3. GRAPH FILTERS

for a large N , e.g., N > 1000. Using grid points, the universal design can
avoid this high cost. However, since the coefficients are calculated for the
grid points, the approximation error for the specific set of frequencies may
be higher than we expect. Thus, the universal design makes a trade-off
between the decomposition cost and the approximation accuracy.

• Normally, in the LLS universal design, the number of grid points N can
influence the approximation performance of the design. For a dense grid
with points close to each other, the LLS may be complex and ill-conditioned.
Meanwhile, with a sparse grid with a small N , the resulting filter coeffi-
cients may cause a bad approximation accuracy on some frequencies be-
tween two grid points.

We have considered the implementation and design of the well-studied FIR
graph filter. In the next section, we will introduce some modifications to the FIR
graph filter and their implementations.

3.3.3. RELATED FIR GRAPH FILTERS

In this section, we discuss three kinds of related FIR graph filters:

• i) Chebyshev FIR Graph Filter where the polynomials in (3.1) can be re-
placed by Chebyshev polynomials of the second kind ;

• ii) Node-variant FIR Graph Filter which allows for the simultaneous imple-
mentation of multiple graph filters in different nodes of the graph;

• iii) Edge-variant FIR Graph Filter where every node weights the signals
from its neighbors with different values.

As we will see next, all these graph filters improve the FIR graph filter from
different perspectives.

Chebyshev FIR Graph Filter.
In [2], the authors provide some distributed signal processing applications of

graph multiplier operators and introduce an efficient approximation method via
shifted Chebyshev polynomials which can be viewed as FIR-Chebyshev graph
filters [12],[2]. Note that this method is limited to undirected graphs with real-
valued graph frequencies.

3.3. FINITE IMPULSE RESPONSE GRAPH FILTER

3

55

Using Chebyshev polynomials to approximate the frequency response, the
main idea is truncating a shifted Chebyshev series expansion of the frequency
response on the interval [0,λmax]. We first consider the specific frequency range
x ∈ [−1,1], where the initial Chebyshev polynomials are formulated as

T0(x) = 1 , T1(x) = x. (3.13)

For k ≥ 2, the Chebyshev polynomials enjoy the generating procedure

Tk (x) = 2xTk−1(x)−Tk−2(x). (3.14)

These Chebyshev polynomials form an orthogonal basis considering an appro-
priate weighting function w(x) = (1−x2)−1/2. By shifting the frequency range
from x ∈ [−1,1] to λ ∈ [0,λmax], the Chebyshev graph filter design only requires
the maximum frequency and not the full eigenvalue decomposition of the graph
shift operator S.

In the frequency domain, the filter frequency response can be expressed as

h(x) =
∞∑

k=0
ck Tk (x), (3.15)

where ck represents the coefficients of the Chebyshev polynomials and h(x) is
the desired frequency response. For the frequency range x ∈ [−1,1], the coeffi-
cients of the Chebyshev graph filter can easily be computed in closed form [36].
Then, we have

h(x) = 1

2
c0 +

∞∑
k=1

ck Tk (x) , x ∈ [−1,1]. (3.16)

By shifting the domain of the Chebyshev polynomials to the range [0,λmax]
via λ=λmax/2(x +1), we then have

h(λ) = 1

2
c0 +

∞∑
k=1

ck T k (λ) , λ ∈ [0,λmax], (3.17)

where, for k ≥ 2, the shifted Chebyshev polynomials T k (λ) = Tk (x−α
α) satisfy

T k (λ) = 1

2
(λ−α)T k−1(λ)−T k−2(λ). (3.18)

with α = λmax/2. In the vertex domain, the corresponding polynomial with the
shift operator S is given by

T k (S) = 1

2
(S −αI)T k−1(S)−T k−2(S). (3.19)

3

56 3. GRAPH FILTERS

Then, the FIR-Chebyshev graph filter up to order K can be expressed as

G = 1

2
c0I +

K∑
k=1

ck T k (S), (3.20)

and the output of the filter in the vertex domain is

y =G x = 1

2
c0I x +

K∑
k=1

ck T k (S)x . (3.21)

Consider now the implementation of the FIR-Chebyshev graph filter. For any
input vector x , we have

T k (S)x = 1

2
(S −αI)(T k−1(S)x)− (T k−2(S)x). (3.22)

From (3.22), the benefit from a computational perspective of the Chebyshev poly-
nomial is that the term T k (S)x can be computed recursively from T k−1(S)x and
T k−2(S)x . Then, the total computational cost of implementing the filter G is
O(EK), where E is the number of edges. Since the coefficients of the FIR - Cheby-
shev graph filter are computed independently without the knowledge of the graph
frequencies, the design can also be called a universal design since an eigenvalue
decomposition is avoided.

For the Chebyshev polynomial definition and its benefits, see [36], and for
technical design approaches of the FIR-Chebyshev graph filter see [2, 12]. In
addition to the well-studied FIR-Chebyshev graph filter, the filter design with
Chebyshev polynomials can also be completed by using the estimated distribu-
tion of eigenvalues. Details for the design and estimation of the spectral distri-
bution can be found in [31]

Node-variant FIR Graph Filter.
The node-variant FIR graph filter allows for the simultaneous implementa-

tion of multiple (regular) GFs in different nodes of the graph [35]. This kind of
graph filter extends the FIR (3.1) and can be formulated as

Gnv =
K∑

k=0
diag(c k)Sk . (3.23)

The N ×1 vector c k are constant and contain the filter coefficients that are ap-
plied at each node and its neighbors at the kth shift. For the case c k = ck 1N ,

3.3. FINITE IMPULSE RESPONSE GRAPH FILTER

3

57

the node-variant FIR graph filter reduces to the FIR (3.1). Generally, when Gnv

is applied to a graph signal, every node applies different weights to the shifted
signals [35].

In [35], the authors mention that an alternative definition for the node-variant
FIR graph filter is given by

G ′
nv =

K∑
k=0

Sk diag(c k). (3.24)

For every term in (3.24), the filter first modulates the input signal x with the vec-
tors c k and then applies the graph shift operator Sk . The output of the filter in
the vertex domain is

y =Gnvx or y =G ′
nvx . (3.25)

For more details related to implementations, frequency interpretations, opti-
mal designs, as well as other technical applications of node-variant FIRs such
as (3.23) and (3.24), please see [35].

The most important benefit of the node-variant FIR graph filters, related to
(3.23) and (3.24), is the additional flexibility generated by a large number of filter
coefficients. Without undermining the local implementation, the node-variant
FIR can be suitable for more general operators on graphs in the filter design
phase.

We now briefly mention one of the node-variant FIR applications. Since the
output of a GF can be seen as the outcome of a diffusion process, the corre-
sponding filter coefficients are viewed as the rate of diffusion. With a connectiv-
ity graph, the node-variant FIR can apply to network processes to approximate
the dynamics. The initial network state is the input of the GF, and the output is
the final network state. With the shift operator, the objective can be to design the
filter coefficients to approximate the desired linear transformation.

Edge-variant FIR Graph Filter.

Although the filter Gnv applies different weighting coefficients for each node
after carrying out the filter shift, the weights to the neighboring signals for each
filter shift are the same. However, they can also be different leading to an edge-
variant FIR graph filter [37]. This improvement of the degrees of freedom allows
for a potential reduction of the filter order, and the corresponding implementa-
tion cost.

3

58 3. GRAPH FILTERS

The most general edge-variant FIR graph filter is defined in the vertex do-
main as

Gev =Φ0 +Φ1 ◦S + (Φ2 ◦S)(Φ1 ◦S)+·· ·
+(ΦK ◦S)(ΦK−1 ◦S) · · · (Φ1 ◦S)

=
K∑

k=1

K∏
j=1

(Φ j ◦S)+Φ0

(3.26)

whereΦ j ∈RN×N are edge-weighting matrices that apply different weights to the
elements of the shift operator S using the Hadamard product ◦. The support
of Φ j is always reduced to the support of S. For this filter design, there is no
symmetry assumption on the matrices Φ j and Φ0 is considered to be a diagonal
matrix [37].

Similar to the previous section, we use H to represent the desired filtering
operation in the vertex domain and the design problem is now to solve the fol-
lowing optimization problem

min
{Φ j }

∥∥∥∥∥H −
K∑

k=1

K∏
j=1

(Φ j ◦S)+Φ0

∥∥∥∥∥
2

2

. (3.27)

Note that the spectral norm ‖·‖2 can also be replaced by other appropriate dis-
tance measures, i.e., the Frobenius norm ‖·‖F .

We can notice that the problem (3.27) is a high-dimensional non-convex prob-
lem which might lead to a suboptimal result. With a two-step approach to design
the coefficients, this problem can be addressed. For the technical details of the
design process, we recommend [37].

In [37], the authors also introduce an alternative description for a ready-to-
distribute constrained edge-variant FIR graph filter as

Gc - ev =
K∑

k=1
(Φk ◦S)Sk−1 +Φ0. (3.28)

where, as for the previous case, the support of Φ j is reduced to that of S and Φ0

is assumed to be a diagonal matrix.
Note that the filter Gc - ev has a distributed implementation with the interme-

diate result x (k) = Sk−1x (k−1), where x (0) = x . Then, combining those intermedi-
ate results at each node, we have the output

y =
K∑

k=0
y (k), (3.29)

3.4. INFINITE IMPULSE RESPONSE GRAPH FILTER

3

59

with y (k) = (Φk ◦S)x (k) and y (0) =Φ0x (0). For details of the distributed implemen-
tation of Gc - ev, the reader is referred to the original works [37] and [38].

3.3.4. DISCUSSION

In this section, we carefully introduced the first type of graph filter, the finite im-
pulse response graph filter, and its modifications. We discussed the design and
implementation of the FIR graph filter and summarized improved versions of
the FIR filter. The architecture of the FIR filter enjoys a distributed implementa-
tion in the vertex domain. Also, with the perspectives of node-variant and edge-
variant FIRs, more freedom is allowed in the design process.

In the next section, we will introduce an alternative type of graph filter, an
infinite impulse response graph filter. To be specific, we will start with the well-
known IIR graph filters, and then introduce the ARMA graph filters. We will intro-
duce different filter forms and implementations, and finally dress out the prob-
lems discussed in this thesis.

3.4. INFINITE IMPULSE RESPONSE GRAPH FILTER

Although the FIR graph filter has some implementation advantages, the poly-
nomial fitting solution has some inherent inaccuracies. Hence, other parame-
terizations have been studied. The infinite impulse response (IIR) graph filter
is usually characterized by rational frequency response. Compared with the FIR
graph filter, IIR filters have the potential to achieve lower approximation errors
for the same number of filter coefficients due to the specific parameterization.

In [39], an IIR graph filter is introduced with S = L for undirected graphs as

G IIR = g (L)-1 f (L), (3.30)

where g (·) and f (·) are both polynomials. With input x and output y , the IIR
graph filter operation in the vertex domain can be written as

y =G IIRx = g (L)-1 f (L)x . (3.31)

Then, in the graph frequency domain, the IIR filter spectral response is a rational
function in λ expressed as

h(λ) = g (λ)-1 f (λ). (3.32)

IIR graph filters are linear and commutative [39]. The direct form of an IIR
graph filter is shown in Fig. 3.3 which is a combination of two parts, i.e., the FIR
model f (L) and the inverse FIR model g (L)-1.

3

60 3. GRAPH FILTERS

Figure 3.3: The direct form of an IIR graph filter with input x and output y .

By factorizing g (·) and f (·) into p and q factors, the rational function of an
IIR graph filter can also be represented using alternative structures, i.e., the cas-
cade and parallel forms. The three types of rational functions are theoretically
equivalent, but the corresponding results may differ due to numerical errors. For
details, we recommend [39].

3.4.1. IMPLEMENTATION OF IIR GRAPH FILTER

Since the direct form of an IIR graph filter is built with an FIR model and an in-
verse FIR model as G IIR = g (L)-1 f (L), the implementation of an IIR graph filter
considers respectively two steps.

First, for the FIR model with filter order K , the implementation process is
the same as in the previous section, and the output on each node is obtained by
combining the input data in the neighborhood with different weights. Using the
distributed implementation of Section 3.3.1, we can write the FIR module as

xK = f (L)x . (3.33)

Then, we consider the inverse FIR model as y = g (L)-1xK. By defining the
matrix B = g (L), the output y of the IIR graph filter can be obtained by solving
the following optimization problem

min
y

∥∥B y −xK
∥∥2 . (3.34)

In [39], using the gradient descent method, the proposed solution of this
problem can be formulated by the iteration

y (t+1) = y (t) −γDB (B y (t) −xK), (3.35)

where t is the iteration index, D is a positive-definite matrix and γ is the step size.
By setting D = I and D = B−1, two different algorithms are introduced, i.e., IDIIR
and FastIDIIR [39].

The coefficients of the IIR graph filter can be computed using any rational
approximation technique according to the specific form of function h(λ). Then,

3.4. INFINITE IMPULSE RESPONSE GRAPH FILTER

3

61

results from [39] show that the IIR graph filter has a better performance than FIR
and FIR-Chebyshev graph filters. More technical details and results can be found
in [39].

3.4.2. AUTOREGRESSIVE MOVING AVERAGE GRAPH FILTER

In this section, we briefly introduce the autoregressive moving average (ARMA)
graph filter which is a special class of IIR graph filters. We first illustrate the
widely used form of the ARMA graph filter proposed in [40]. Then, some modifi-
cations are introduced.

An ARMA graph filter is represented with a rational polynomial in the graph
frequency λ [40], i.e.,

g (λ) =

Q∑
q=0

bqλ
q

P∑
p=0

apλp

, (3.36)

with denominator coefficients ap and numerator coefficients bq , leading to the
following graph filter in the shift operator S:

G =
(

P∑
p=0

ap Sp

)−1 Q∑
q=0

bq Sq , (3.37)

where a = [a0, . . . , aP]T and b = [b0, . . . ,bQ]T collect the ARMA filter coefficients.
This type of graph filter is labelled as an ARMA graph filter of denominator order
P and numerator order Q, expressed as ARMA(P,Q) in short.

We shortly summarize two characteristics of the ARMA graph filter intro-
duced in this thesis:

• Stable ARMA filters are obtained when
∑P

p=0 ap Sp is invertible, or equiv-

alently, when
∑P

p=0 apλ
p
n is different from zero for all n = 1,2, . . . , N . This

stability condition is less critical as in the time domain, which is mainly
because a graph signal is by default finite-length whereas a temporal sig-
nal is infinite-length. Hence, there is no big risk of the filter output signal
growing unbounded.

• Note that for simplicity reasons we define the ARMA filter coefficients a
and b in an ambiguous way since multiplying both a and b with the same

3

62 3. GRAPH FILTERS

constant will not change the ARMA graph filter. Hence, whenever we de-
sign a and b in the following chapters, we will remove this ambiguity by
constraining the first AR coefficient to be one, i.e., a0 = 1, which is rather
standard.

Pole-zero form. Besides (3.36) , we can also represent ARMA graph filters in
other forms. We can for instance consider the pole-zero form, i.e.,

g (λ) = c

Q∏
q=1

(λ+αq)

P∏
p=1

(λ+ϕp)

, (3.38)

where c is a constant number, −αq are the zeros, and −ϕp yields a set of poles
of the filter response. In the vertex domain, with the graph shift operator S, we
obtain

G = c
P∏

p=1
(S +ϕp I)−1

Q∏
q=1

(S +αq S). (3.39)

Partial fraction form. Another option is to decompose the rational polyno-
mial using partial fraction expansion which results in

g (λ) =
Q−P∑
l=0

rlλ
l +

P∑
p=1

ω̃p

λ+ϕp
, (3.40)

with filter coefficients rl and ω̃k . The related graph filter matrix can then be writ-
ten as

G =
Q−P∑
l=0

rl S l +
P∑

p=1
ω̃p (S +ϕp I)−1. (3.41)

Note that the pole-zero form and partial fraction expansion can be easily re-
lated to each other. These structures also have different implementation forms
and graph filter matrix forms in the vertex domain. We will come back to the
mentioned forms and give details when we propose the corresponding design
methods in later chapters.

3.4. INFINITE IMPULSE RESPONSE GRAPH FILTER

3

63

3.4.3. IMPLEMENTATION OF ARMA GRAPH FILTER

For the implementation, it is clear that the relation between the output y and the
input x of an ARMA graph filter is given by y =G x which can be written as(

P∑
p=0

ap Sp

)
y =

(
Q∑

q=0
bq Sq

)
x . (3.42)

Hence, by defining the matrices

P =
P∑

p=0
ap Sp , Q =

Q∑
q=0

bq Sq , (3.43)

we can express (3.42) in the compact form

P y =Qx . (3.44)

Following the IIR implementation in Section 3.4.1, the procedure of solv-
ing (3.44) can be separated into two steps. To compute the filter output y in
(3.44), we first calculate the right-hand side denoted as z = Qx (which corre-
sponds to pre-filtering x with an FIR module), and then y is found by simply
solving the linear system

P y = z . (3.45)

Then, similar to the previous section, the output y can be solved by the optimiza-
tion problem

min
y

∥∥P y − z
∥∥2 . (3.46)

One way to solve this problem is using the iteration (3.35) to formulate the
solution of y , where xK = z and B = P . Also, there are several other methods to
solve the linear system efficiently, like first order methods [33], conjugate gra-
dient (CG) [1], and some distributed iterative methods [41–46]. We will present
details of solving the linear system when we introduce several centralized and
distributed implementation methods in Chapter 7.

Considering the pole-zero form (3.38) or partial fraction form (3.40) of the
ARMA graph filter, we can obtain different implementations of the ARMA filter.
We can summarize the differences of these implementations as follow:

• The pole-zero form (3.38) leads to a serial implementation of Q FIR(1) fil-
ters and P ARMA(1,0) filters. The partial fraction form (3.40), on the other

3

64 3. GRAPH FILTERS

hand, leads to a parallel implementation of one FIR(Q − P) filter and P
ARMA(1,0) filters. Note that the design method, related to these ARMA
forms, is proposed in chapter 6, and we will formulate the implementation
more clearly in Section 6.2.

• In both cases, the ARMA(1,0) graph filters can potentially be implemented
in a distributed manner following (3.35). For more details, we refer to [38].
Also, the centralized and distributed implementation methods in Chapter
7 can be utilized as alternative choices to (3.35).

3.4.4. DISCUSSIONS

In this section, we analyzed the second type of graph filter, the infinite impulse
response graph filter, and its ARMA form. We have discussed distributed imple-
mentations and summarized the different forms of IIR graph filters. In the next
section, we will conclude the whole chapter and introduce the main problems
that will be discussed in this thesis which are related to the ARMA graph filter
design and its corresponding implementations.

3.5. CONCLUSION

In this chapter, we first briefly introduced the universal design for graph filters.
Then, we discussed some particular types of graph filters, e.g., finite impulse re-
sponse (FIR), infinite impulse response (IIR) graph filters, and their modifica-
tions. We mainly introduced graph filters from the design and implementation
perspectives.

In this thesis, we will focus on the centralized design of graph filters with the
ARMA model which are a special class of IIR graph filters. In Chapter 4, we will
solve the design problem of the ARMA graph filter of the form (3.36) in a uni-
versal way. In Chapter 5, to improve the design in Chapter 4, we introduce an
orthogonal polynomial basis into the graph filter design for both directed and
undirected graphs. In Chapter 6, we propose a new filter design framework that
corresponds to the special cases of the pole-zero form (3.38) and the partial frac-
tion form (3.40) of ARMA filters. In Chapter 7, we demonstrate several centralized
and distributed implementation methods for the ARMA graph filter in the vertex
domain.

REFERENCES

3

65

REFERENCES

[1] J. Liu, E. Isufi, and G. Leus, Filter design for autoregressive moving average
graph filters, IEEE Transactions on Signal and Information Processing over
Networks 5, 47 (2019).

[2] D. I. Shuman, P. Vandergheynst, D. Kressner, and P. Frossard, Distributed
signal processing via chebyshev polynomial approximation, arXiv preprint
arXiv:1111.5239 (2011).

[3] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification (John Wiley &
Sons, 2012).

[4] A. Blum and S. Chawla, Learning from labeled and unlabeled data using
graph mincuts, (2001).

[5] X. Zhu, J. Lafferty, and Z. Ghahramani, Combining active learning and semi-
supervised learning using gaussian fields and harmonic functions, in ICML
2003 workshop on the continuum from labeled to unlabeled data in machine
learning and data mining, Vol. 3 (2003).

[6] F. Wang and C. Zhang, Label propagation through linear neighborhoods,
IEEE Transactions on Knowledge and Data Engineering 20, 55 (2008).

[7] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs: Graph
filters. in ICASSP (2013) pp. 6163–6166.

[8] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The
emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains, IEEE Signal Process-
ing Magazine 30, 83 (2013).

[9] S. K. Narang, A. Gadde, E. Sanou, and A. Ortega, Localized iterative methods
for interpolation in graph structured data, in 2013 IEEE Global Conference
on Signal and Information Processing (IEEE, 2013) pp. 491–494.

[10] Y. Wang, A. Ortega, D. Tian, and A. Vetro, A graph-based joint bilateral ap-
proach for depth enhancement, in 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2014) pp. 885–889.

[11] F. Zhang and E. R. Hancock, Graph spectral image smoothing using the heat
kernel, Pattern Recognition 41, 3328 (2008).

3

66 REFERENCES

[12] D. K. Hammond, P. Vandergheynst, and R. Gribonval, Wavelets on graphs
via spectral graph theory, Applied and Computational Harmonic Analysis
30, 129 (2011).

[13] A. Gadde, S. K. Narang, and A. Ortega, Bilateral filter: Graph spectral inter-
pretation and extensions, in 2013 IEEE International Conference on Image
Processing (IEEE, 2013) pp. 1222–1226.

[14] D. Tian, H. Mansour, A. Knyazev, and A. Vetro, Chebyshev and conjugate
gradient filters for graph image denoising, in 2014 IEEE International Con-
ference on Multimedia and Expo Workshops (ICMEW) (IEEE, 2014) pp. 1–6.

[15] A. Sakiyama, K. Watanabe, and Y. Tanaka, Spectral graph wavelets and filter
banks with low approximation error, IEEE Transactions on Signal and Infor-
mation Processing over Networks 2, 230 (2016).

[16] G. Shen and A. Ortega, Optimized distributed 2d transforms for irregularly
sampled sensor network grids using wavelet lifting, in 2008 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (IEEE, 2008)
pp. 2513–2516.

[17] S. K. Narang and A. Ortega, Perfect reconstruction two-channel wavelet filter
banks for graph structured data, IEEE Transactions on Signal Processing 60,
2786 (2012).

[18] Y. Tanaka and A. Sakiyama, m-channel oversampled graph filter banks, IEEE
Transactions on Signal Processing 62, 3578 (2014).

[19] D. B. Tay and Z. Lin, Design of near orthogonal graph filter banks, IEEE Signal
Processing Letters 22, 701 (2015).

[20] S. K. Narang and A. Ortega, Compact support biorthogonal wavelet filter-
banks for arbitrary undirected graphs, IEEE transactions on signal process-
ing 61, 4673 (2013).

[21] S. Mallat, A wavelet tour of signal processing (Elsevier, 1999).

[22] S. Chen, R. Varma, A. Singh, and J. Kovačević, Signal recovery on graphs:
Fundamental limits of sampling strategies, IEEE Transactions on Signal and
Information Processing over Networks 2, 539 (2016).

REFERENCES

3

67

[23] A. K. Fletcher, V. K. Goyal, and K. Ramchandran, Iterative projective wavelet
methods for denoising, in Wavelets: Applications in Signal and Image Pro-
cessing X, Vol. 5207 (International Society for Optics and Photonics, 2003)
pp. 9–16.

[24] S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovacevic, Signal denoising on
graphs via graph filtering, in Signal and Information Processing (GlobalSIP),
2014 IEEE Global Conference on (IEEE, 2014) pp. 872–876.

[25] A. Sandryhaila and J. M. Moura, Big data analysis with signal processing on
graphs: Representation and processing of massive data sets with irregular
structure, IEEE Signal Processing Magazine 31, 80 (2014).

[26] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst,
Graph signal processing: Overview, challenges, and applications, Proceed-
ings of the IEEE 106, 808 (2018).

[27] P. Erdos and A. Rényi, On the evolution of random graphs, Publ. Math. Inst.
Hung. Acad. Sci 5, 17 (1960).

[28] E. P. Wigner, On the distribution of the roots of certain symmetric matrices,
Ann. Math 67, 325 (1958).

[29] R. Couillet and M. Debbah, Random matrix methods for wireless communi-
cations (Cambridge University Press, 2011).

[30] A. M. Tulino, S. Verdú, et al., Foundations and trends® in communications
and information theory, Foundations and Trends® in Communications and
Information Theory 1, 1 (2004).

[31] S. Kruzick and J. M. Moura, Graph signal processing: Filter design and spec-
tral statistics, in 2017 IEEE 7th International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP) (IEEE, 2017) pp. 1–
5.

[32] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs, IEEE
transactions on signal processing 61, 1644 (2013).

[33] D. P. Bertsekas, Convex optimization theory (Athena Scientific Belmont,
2009).

3

68 REFERENCES

[34] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs: Fre-
quency analysis. IEEE Trans. Signal Processing 62, 3042 (2014).

[35] S. Segarra, A. G. Marques, and A. Ribeiro, Optimal graph-filter design and
applications to distributed linear network operators, IEEE Transactions on
Signal Processing 65, 4117 (2017).

[36] J. C. Mason and D. C. Handscomb, Chebyshev polynomials (CRC Press,
2002).

[37] M. Contino, E. Isufi, and G. Leus, Distributed edge-variant graph filters,
in 2017 IEEE 7th International Workshop on Computational Advances in
Multi-Sensor Adaptive Processing (CAMSAP) (IEEE, 2017) pp. 1–5.

[38] E. Isufi, Graph-time signal processing: Filtering and sampling strategies,
Ph.D Thesis, Delft University of Technology (2019).

[39] X. Shi, H. Feng, M. Zhai, T. Yang, and B. Hu, Infinite impulse response graph
filters in wireless sensor networks, IEEE Signal Processing Letters 22, 1113
(2015).

[40] A. Loukas, A. Simonetto, and G. Leus, Distributed autoregressive moving av-
erage graph filters, IEEE Signal Processing Letters 22, 1931 (2015).

[41] L. F. Richardson, Ix. the approximate arithmetical solution by finite differ-
ences of physical problems involving differential equations, with an appli-
cation to the stresses in a masonry dam, Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers of a Mathematical or
Physical Character 210, 307 (1911).

[42] G. Opfer and G. Schober, Richardson’s iteration for nonsymmetric matrices,
Linear algebra and its applications 58, 343 (1984).

[43] Y. Saad, Iterative methods for sparse linear systems, Vol. 82 (siam, 2003).

[44] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: nu-
merical methods, Vol. 23 (Prentice hall Englewood Cliffs, NJ, 1989).

[45] L. Lei, Convergence of asynchronous iteration with arbitrary splitting form,
Linear Algebra and its Applications 113, 119 (1989).

REFERENCES

3

69

[46] J. M. Bull and T. Freeman, Numerical performance of an asynchronous jacobi
iteration, in Parallel Processing: CONPAR 92—VAPP V (Springer, 1992) pp.
361–366.

APPENDIX-A

Since we assume that the shift operator S is real-valued and diagonalizable, the
graph frequencies λn (eigenvalues) can be grouped into three sets: 1 ≤ n ≤ M ,
M +1 ≤ n ≤ 2M and 2M +1 ≤ n ≤ N .

The first and second groups are complex conjugate pairs while the last group
consists of the real-valued frequencies. Note that this classification only changes
the order of the frequencies, and has no influence on the results of the filter co-
efficients gk .

Thus, we can split the Vandermonde matrixΨK+1 and write (3.11) as

min
g

‖ĥ−ΨK+1g‖2

= min
g

‖[ĥH
1 , ĥH

2 , ĥT
3]T − [ΨH

1 ,ΨH
2 ,ΨT

3]T g‖2

where the three blocks of matrices and vectors belong to the three different groups.
With 1 ≤ n ≤ M , we use the nth and (M +n)th frequencies to represent a

conjugate pair for the first and second groups of frequencies. Since λn = λ∗
M+n ,

the corresponding elements inside the Vandermonde matrix satisfy [Ψ1]n,k =
[Ψ2]∗M+n,k , and thus we haveΨ1 =Ψ∗

2 .
According to Property 2, for the frequency pairλn =λ∗

M+n , the corresponding

desired frequency response satisfies ĥn = ĥ∗
M+n and thus, we also have ĥ1 = ĥ∗

2 .

Meanwhile, for 2M +1 ≤ n ≤ N , we have a real-valued Ψ3 and a real-valued ĥ3

since the corresponding frequencies λn inside this range are real-valued.
Now, we can rewrite the solution of (3.11) as

ĝ =Ψ†
K+1ĥ

= (ΨH
1 Ψ1 +ΨH

2 Ψ2 +ΨT
3 Ψ3)−1(ΨH

1 ĥ1

+ΨH
2 ĥ2 +ΨT

3 ĥ3)
= (ΨH

1 Ψ1 +ΨT
1 Ψ

∗
1 +ΨT

3 Ψ3)−1(ΨH
1 ĥ1

+ΨT
1 ĥ∗

1 +ΨT
3 ĥ3).

It is obvious thatΨH
1 Ψ1 +ΨT

1 Ψ
∗
1 andΨH

1 ĥ1 +ΨT
1 ĥ∗

1 are real-valued. Hence, solv-
ing (3.11) leads to a real-valued solution.

71

II
FILTER DESIGN

73

4
FILTER DESIGN FOR

AUTOREGRESSIVE MOVING

AVERAGE GRAPH FILTERS

T HIS chapter proposes two different strategies for designing autoregressive
moving average (ARMA) graph filters on both directed and undirected graphs.

The first approach is inspired by Prony’s method, which considers a modified er-
ror between the modeled and the desired frequency response. The second tech-
nique is based on an iterative approach, which finds the filter coefficients by it-
eratively minimizing the true error (instead of the modified error) between the
modeled and the desired frequency response. The performance of the proposed
algorithms is evaluated and compared with finite impulse response (FIR) and in-
finite impulse response (IIR) graph filters, on both synthetic and real data. The
obtained results show that ARMA filters outperform FIR filters in terms of ap-
proximation accuracy and they are suitable for graph signal compression, and
prediction.

The remainder of this chapter is organized as follows. Section 4.1 briefly in-
troduces the proposed design methods of ARMA graph filters and the main con-

75

4

76 4. FILTER DESIGN FOR AUTOREGRESSIVE MOVING AVERAGE GRAPH FILTERS

tributions of this chapter. Then, Section 4.2 contains the filter design problem
and the proposed design strategies. A few examples and the simulation results to
illustrate the proposed framework are shown in Section 4.3. In the end, Section
4.4 concludes the chapter.

Part of this chapter has been published in the IEEE Transactions on Signal and Information Pro-
cessing over Network [1] (2019).

4.1. INTRODUCTION

4

77

4.1. INTRODUCTION

In the field of signal processing on graphs, graph filters play a crucial role in pro-
cessing the spectrum of graph signals. We mainly separate graph filters into two
classes, i.e., FIR and IIR graph filters. As we mentioned in the previous chapter,
the FIR filter design is already a well-established theory. One of the most popu-
lar approaches to fit the graph frequency response of the FIR filter to the desired
spectrum is through solving a linear least squares (LLS) fitting problem [2], which
can be carried out for undirected as well as directed graphs. An alternative to
FIR graph filters are IIR graph filters, such as the autoregressive moving average
(ARMA) graph filters [3], or the gradient descent IIR graph filters [4]. These filters
are characterized by a rational graph frequency response, which brings more de-
grees of freedom to the design.

To fully exploit the benefits of the rational frequency response, in this chap-
ter, we focus on a centralized ARMA filter design. In a centralized fashion, we
propose new ARMA graph filter design methods, which can be adopted when
the graph is known or in a universal fashion by gridding the frequency domain
(as done for the LLS FIR filter design with an unknown graph). The proposed
ARMA design methods work for undirected as well as directed graphs.

Throughout this chapter, we will mainly use FIR filters and the IIR filters from
[4] as benchmarks to assess the performance of the proposed ARMA filters, be-
ing their direct competitors, and propose ARMA filters as a useful alternative for
potential applications.

The chapter’s contribution is threefold:

• i) We extend the universal design strategy from FIR graph filters to ARMA
graph filters for both undirected and directed graphs. For either the nor-
malized Laplacian (undirected graph) or normalized adjacency (directed
graph) matrix, we follow the design concept of Chapter 2 and respectively
sample the real interval from zero to two or the complex unit disc. After the
grid points have been determined, the main aim of the ARMA graph filter
design is to fit the response on these grid points.

• ii) We propose two ARMA graph filter design strategies, which can be applied
to both directed and undirected graphs. The first one is inspired by Prony’s
method [5], where a modified error between the modeled and the desired
frequency response is minimized. Meanwhile, the second approach min-
imizes the true error iteratively following the Steigliz-McBride idea [5]. As

4

78 4. FILTER DESIGN FOR AUTOREGRESSIVE MOVING AVERAGE GRAPH FILTERS

an initial condition, we can use the solution from the first method, thereby
potentially improving the approximation accuracy of that solution. The
two proposed methods can also be extended to a universal design by grid-
ding the graph frequency domain as mentioned earlier.

• iii) We use several numerical tests to validate our findings with both syn-
thetic and real data. We show that the ARMA filters outperform FIR filters
and the IIR filters from [4] filters in terms of approximation accuracy, even
with fewer filter coefficients. In our tests with the real Molene tempera-
ture dataset, ARMA graph filters are used for data compression (on a di-
rected graph) and prediction (on both a directed and undirected graph) of
the graph signal. The results show that the error resulting from our ARMA
filter design is lower than that resulting from an FIR filter with the same
number of filter coefficients.

4.2. ARMA GRAPH FILTER DESIGN

This section contains the proposed ARMA filter design methods. We start with a
discussion of the ARMA design problem, followed by two approaches inspired by
Prony’s method, and finally an iterative approach.

4.2.1. ARMA DESIGN PROBLEM

Here, we first recall the definition of an ARMA graph filter, mentioned in Chapter
3. An autoregressive moving average graph filter is represented with a rational
polynomial in the graph frequency λ [6], i.e.,

g (λ) =

Q∑
q=0

bqλ
q

P∑
p=0

apλp

,

with denominator coefficients ap and numerator coefficients bq , leading to the
graph filter in the shift operator S given by

G =
(

P∑
p=0

ap Sp

)−1 Q∑
q=0

bq Sq ,

4.2. ARMA GRAPH FILTER DESIGN

4

79

where a = [a0, . . . , aP]T and b = [b0, . . . ,bQ]T collect the ARMA filter coefficients.
This type of graph filter is labeled as an ARMA graph filter of denominator order
P and numerator order Q, expressed as ARMA(P,Q) in short.

As discussed in Chapter 3, we would like to find the ARMA filter coefficients
a and b such that a desired frequency response ĥn is matched, where the latter
can be a desired filter shape (for filter design, smoothing, or denoising) or the
GFT of a graph signal (for compression or prediction). In this context, note that
many desired responses ĥn already have the shape of an ARMA filter, e.g., for
Tikhonov denoising or interpolation, which means no explicit fitting is required
in that case.

More specifically, adapting (2.26) to our ARMA filter design problem, we want
to minimize the following error

en = ĥn − ĝn = ĥn −
∑Q

q=0 bqλ
q
n∑P

p=0 apλ
p
n

. (4.1)

Since (4.1) is nonlinear in a and b, classical approaches like Prony’s method [5]
consider minimizing the following modified error

e ′n = ĥn

(
P∑

p=0
apλ

p
n

)
−

Q∑
q=0

bqλ
q
n . (4.2)

The latter is clearly not equivalent to (4.1) but it is linear in a and b.
In the sequel, our goal will be to find a and b that minimize (4.1) or (4.2) in

the mean square sense, subject to a0 = 1 as mentioned in Chapter 3. Similar to
the FIR filter, if we want the ARMA filter to make sense as a graph filter that will
be applied to a real-valued graph signal x , we want the ARMA filter coefficients
a and b to be real-valued. We will show that this is the case for the different
proposed approaches.

Finally, note that, similar to Prony’s method [5], the non-convex stability con-
straint

∑P
p=0 apλ

p
n 6= 0 will be ignored in the rest of the chapter, but it can easily

be checked after the design.

4.2.2. METHODS INSPIRED BY PRONY

In this section, we propose the Prony inspired design methods, i.e., Prony’s LS
and Prony’s projection.

4

80 4. FILTER DESIGN FOR AUTOREGRESSIVE MOVING AVERAGE GRAPH FILTERS

Prony’s LS.
To start, let us first stack en from (4.1) in the vector e = [e1, . . . ,eN]T, which

can be expressed as
e = ĥ −diag(ΨP+1a)−1ΨQ+1b. (4.3)

As we mentioned before, this nonlinear function is hard to handle and thus we
focus on the modified error. Stacking e ′n from (4.2) in the vector e ′ = [e ′1, . . . ,e ′N]T,
we obtain the simpler linear expression

e ′ = ĥ ◦ (ΨP+1a)−ΨQ+1b (4.4)

= [ΨP+1 ◦ (ĥ1T
P+1)]a −ΨQ+1b, (4.5)

where “◦” represents the element-wise Hadamard product and 1P+1 is the (P +
1)×1 all-one vector.

Minimizing ‖e ′‖2 over a and b leads to the following LLS problem

min
a,b

∥∥∥∥[ΨP+1 ◦ (ĥ1T
P+1),−ΨQ+1]

[
a
b

]∥∥∥∥2

, s.t. a0 = 1, (4.6)

which can be solved efficiently. The next proposition shows that the obtained a
and b vectors are real-valued.

Proposition 2. Under Property 2, the ARMA filter coefficients a and b obtained by
solving (4.6) are real-valued.

Proof. The proof is similar to the proof of Proposition 1.

Since Prony’s LS approach addresses the modified error (4.2) and not the de-
sired error (4.1), we here consider a way to partly overcome this limitation, and
potentially improve the approximation accuracy of (4.6).

Prony’s projection.
We use the orthogonal subspace projection approach [7] to rephrase (4.4)

as a function of only the denominator coefficients a. Then, with the obtained
solution for a, the original error (4.1) can be minimized to find the numerator
coefficients b. This approach can be interpreted as Shanks’ method similar to
that used in [3].

Let us start by considering the orthogonal projection matrix onto the orthog-
onal complement of the range ofΨQ+1

P⊥
ΨQ+1

= I N −ΨQ+1Ψ
†
Q+1, (4.7)

4.2. ARMA GRAPH FILTER DESIGN

4

81

where ΨQ+1 is better conditioned than ΨK+1 used to design an FIR graph filter,
because Q < K and removing columns from a tall matrix improves its condition
number.

Then, the modified error (4.4) can be reshaped as

e ′′ = P⊥
ΨQ+1

[ΨP+1 ◦ (ĥ1T
P+1)]a −P⊥

ΨQ+1
ΨQ+1b, (4.8)

where the second term on the right-hand side of (4.8) is zero.
As shown in [8], [7], this projection operator preserves the solution for a

when minimizing (4.8) instead of (4.4). Hence, after the projection, the LLS prob-
lem for solving a becomes

min
a

‖P⊥
ΨQ+1

[ΨP+1 ◦ (ĥ1T
P+1)]a‖2, s.t. a0 = 1. (4.9)

The reason why we prefer solving (4.9) over (4.6) for finding a solution for a is the
computational complexity.

Finally, vector b can be obtained using (4.1) after plugging in the solution for
a obtained from (4.9). In other words, b is found by solving

min
b

‖ĥ −diag(ΨP+1a)−1ΨQ+1b‖2. (4.10)

As before, we can again show that this solution for a and b is real-valued.

Proposition 3. Under Property 2, the ARMA filter coefficients a and b obtained by
solving (4.9) and (4.10) are real-valued.

Proof. The proof is similar to the proof of Proposition 1.

We would like to remark that this version of Prony’s projection approach has a
conceptual difference from the method presented in [3]. While in [3] the desired
frequency response is first fitted with an FIR filter and then the denominator co-
efficients are found to match that response, we here aim at approaching directly
the desired response rather than its FIR approximation.

In parallel to the classical literature [5], our approach can be considered as
a reshaping of the Padé approximation which first is solved for the denomina-
tor coefficients a and then for the numerator coefficients b. As we show in the
numerical experiments, Prony’s projection approach improves, in general, the
approximation accuracy of (4.6).

4

82 4. FILTER DESIGN FOR AUTOREGRESSIVE MOVING AVERAGE GRAPH FILTERS

4.2.3. ITERATIVE APPROACH

In this section, we present the iterative approach to design the ARMA coeffi-
cients. The idea consists of updating recursively the filter coefficients while mini-
mizing the original error (4.1). We first reformulate the problem to make it amenable
to our iterative approach and then use a variant of the Steigliz-McBride method [5]
to implement an iterative algorithm that can be utilized for finding the ARMA
graph filter coefficients.

Problem reformulation.
The focus in the previous section was on solving (4.2). This of course comes

with a lack of optimality, since we aim to solve (4.1). In the iterative approach,
instead, we focus directly on minimizing (4.1).

To ease the notation, let us define

βn =
Q∑

q=0
bqλ

q
n and αn =

P∑
p=0

apλ
p
n ,

and rewrite the original error (4.1) as

en = ĥn − βn

αn
. (4.11)

Then, by defining γn = 1
/
αn , we have

en = ĥn −βnγn , (4.12)

which can be equivalently expressed as

en = (ĥnαn −βn)γn . (4.13)

Note that the expression (4.13) is linear in αn , βn , and γn , if each of them is
treated as a separate variable. To avoid inversion issues when αn = 0, we can
consider γn = 1/(αn +ρ) for some ρ ≈ 0. Note that if γn is fixed, en becomes
linear in the variables αn and βn . This will be our starting point to minimize en

recursively. In each iteration, having found a new set of solutions for αn , βn we
can then find ap and bq as well as update γn .

To follow the convention of the previous sections, we write (4.13) in a more
convenient vector form, by defining the vectorsα= [α1, . . . ,αN]T,β= [β1, . . . ,βN]T,

4.2. ARMA GRAPH FILTER DESIGN

4

83

and γ= [γ1, . . . ,γN]T. Then, the error vector e = [e1, . . . ,eN]T containing the orig-
inal error for all graph frequencies can be written as

e = [ĥ ◦α−β]◦γ. (4.14)

Iterative algorithm.
Let α(i) and β(i) respectively denote the estimates of the vectors α and β, at

the i -th iteration. We can then find the value of γ as an element-wise inversion
ofα(i), which we label as γ(i),

γ(i) =
[

1
α(i)

1 +ρ
1

α(i)
n +ρ · · · 1

α(i)
N +ρ

]T
. (4.15)

Using this value for γ, we obtain the updated error

e(i+1) = (ĥ ◦α)◦γ(i) −β◦γ(i), (4.16)

which is linear in the unknown variables α and β. Minimizing this error leads
to the updated values α(i+1) and β(i+1). This procedure is then repeated till a
desirable solution is obtained.

To formalize this iteration, and express it as a direct function of the true filter
coefficients a and b, we can reformulate (4.16) as

e(i+1) = H (i)a −B (i)b, (4.17)

where H (i) = (γ(i)1T
P+1)◦ΨP+1 ◦ (ĥ1T

P+1) and B (i) = (γ(i)1T
Q+1)◦ΨQ+1. The spe-

cific derivations that lead to (4.17) can be found in Appendix B.
With this in place, the filter coefficients at the (i +1)-th iteration are found by

solving

min
a,b

∥∥∥∥[
H (i),−B (i)

][
a
b

]∥∥∥∥2

s.t. a0 = 1. (4.18)

The solutions a(i+1) and b(i+1) are again real-valued as shown in the following
Proposition.

Proposition 4. Under Property 2, the ARMA filter coefficients a and b obtained by
solving (4.18) are real-valued.

Proof. The proof is similar to the proof of Proposition 1.

4

84 4. FILTER DESIGN FOR AUTOREGRESSIVE MOVING AVERAGE GRAPH FILTERS

Algorithm 4.1: Iterative approach

1 Input: a(0), ĥ, number of iterations τ, threshold δc

2 Initialization: γ(0), H (0),B (0), ĝ (0), e(0)

3 Iteration : while i < τ and δ< δc

4 solve min
a,b

∥∥∥∥∥[
H (i),−B (i)

][
a

b

]∥∥∥∥∥
2

s.t. a0 = 1.

5 return a(i+1), b(i+1)

6 compute ĝ (i+1), e(i+1), δ= ‖e(i+1) −e(i)‖
7 update γ(i+1)

8 i = i +1

9 Output: a(i+1), b(i+1)

For the above two design methods, the design cost of Prony’s method is re-
lated to the LLS solution which requires O((P +Q + 1)2N) operations, while for
the iterative approach, the total design cost is τ times larger leading to a cost of
O(τ(P+Q+1)2N). Since the number of nodes N is much smaller than the number
of edges E , the design cost is smaller than the implementation cost. Algorithm
4.1 summarizes the iterative approach for ARMA graph filter design.

Remark 1. We stop the iterations when δ, representing the error difference
between two successive iterations, is smaller than a given threshold δc . However,
depending on the specific combination of P and Q, the method does not always
converge fast enough or it does not converge at all. For those cases, we consider a
maximum number of iterations τ and search for the minimum error over all iter-
ations. We then assume that this iteration provides the solution to the problem.
As we will see in the numerical section, for a fixed order K , the best performance
for P +Q = K always leads to a significant improvement in approximation accu-
racy over the former methods. However, for a fixed order K , some combinations
of P,Q yield instabilities around the cut-off frequency. The latter is especially
present in Prony’s method. Therefore, a search over different combinations of
P,Q is recommended.

Remark 2. For γ(0) = 1, the LLS procedure (4.6) can be seen as a special case
of the iterative approach. Withγ(0) = 1, the formulation of the iterative approach
degenerates into the LLS solution, and the approximation error changes from the
original error (4.1) to the modified error (4.2). However, since Prony’s projection

4.3. NUMERICAL DATA

4

85

approach leads to better results than Prony’s LS approach, we prefer the latter to
initialize the iterative approach.

4.3. NUMERICAL DATA

In this section, we present our numerical evaluation of the proposed methods
and compare them with the FIR graph filters. The performance is tested with
both synthetic and real data. Our tests with the Molene dataset show that ARMA
filters are more suitable than FIR filters for lossy data compression, where we
can save up to 50% of memory with very little error. Further, we apply ARMA
filters in the context of prediction (as in [9]) and we show that ARMA graph filters
outperform FIR graph filters, where with only 4 bits we achieve a reconstruction
error of 10−3. Throughout our simulations, we make use of the GSPBox [10].

4.3.1. SYNTHETIC SIMULATION RESULTS

In this section, we evaluate the performance of the proposed design algorithms
in approximating the desired frequency response. The performance is assessed
for two different settings, namely a universal filter design and a filter design for
an Erdős Rényi (ER) graph. For both cases we consider N = 100 grid points/nodes.
We remark that more grid points/nodes, i.e., N = 300,1000, result in similar er-
rors and trends as for N = 100. In both settings, the goal is to approximate the
ideal low-pass frequency response introduced in Chapter 3 and illustrated in
Fig. 3.1.

Universal design: For the universal design, we follow the approach discussed
in Chapters 2 and 3. For an undirected graph, we consider S = Ln and sample the
interval [0,2] uniformly. For a directed graph, we consider S = An and sample the
complex unit disc uniformly in amplitude and phase. We assume N = 100 grid
points for both types of graphs.

Design for Erdős Rényi graph: For the undirected ER graph [11], we assume
that a pair of nodes is connected with a probability p = 0.1 and the shift operator
is again S = Ln. Due to the graph randomness, we always average the results over
100 different realizations.

In the sequel, we analyze the design methods proposed in Section 4.2 and
compare them to the related FIR filter design. If not mentioned otherwise, we de-

Access to the raw data is through the link: https://donneespubliques.meteofrance.fr/
donnees_libres/Hackathon/RADOMEH.tar.gz

https://donneespubliques.meteofrance.fr/donnees_libres/Hackathon/RADOMEH.tar.gz
https://donneespubliques.meteofrance.fr/donnees_libres/Hackathon/RADOMEH.tar.gz

4

86 4. FILTER DESIGN FOR AUTOREGRESSIVE MOVING AVERAGE GRAPH FILTERS

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

K

10
-6

10
-4

10
-2

10
0

R
N

M
S

E

1
1 1

3 4 5 6 5 8 6 8
8 10

8 11
10 13

10
15

12 15
12

19 14 15 16
17 17 18

1

1

1

3 4 5 6 5 8 7 8 7 10 9 12
9 14

11 14
11

16
13 14

16
16 16 17 17 17

1
1 1

3 4
4 5

5 7

6 8

7
9

8
10

9
11

10
9

12
12

14
9 15 9 15 13 10

10

Prony's projection

Prony's LS

ARMA
K

FIR-LLS

Iterative approach

FIR-Cheby

IIR

(a) Universal design by gridding the spectrum in N = 100 (S = Ln) points for an
undirected graph.

K
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

R
N

M
S

E

10-1

100

1 2 3
3

4 5 2
3 6 7 8 9 10 11 8

9
10 11 12 13 12 13 10 10 14

15 16 17 18

1 2 3
2

4 5 6
5

6 7 8 9 10 11 12 9
10

10 11 10
12 13 14 15 16

15 18
17

18

1 2 3 3 3 4
2 3 6 7 8 9

8 9

2 3
10 11

11 12
12

15 14
15 16

17
20 21 22

Uniform grid (Directed graph)

Prony's projection
Prony's LS
FIR-LLS
Iterative approach

(b) Universal design by gridding the spectrum in N = 100 (S = An) points for a
directed graph.

Figure 4.1: RNMSE of the proposed design methods for different orders K (such that P +Q = K) in
approximating an ideal low-pass frequency response. For the ARMA filters, the order Q is shown
in the plot.

sign the FIR filter using the LLS approach of (3.12) (FIR-LLS, or simply FIR). The
universal FIR design for undirected graphs sometimes also follows the Cheby-
shev design of [12] (FIR-Cheby). We compare the ARMA(P,Q) filter to a FIR(K)
graph filter where P +Q = K is satisfied. We look for all combinations of P and Q
that satisfy P +Q = K and pick the combination leading to the best result. Since
we want the overall order of the designed ARMA graph filter to be small, we only
investigate the range 2 ≤ K ≤ 30. We measure the approximation accuracy with
the root normalized mean square error (RNMSE) of the frequency response of

4.3. NUMERICAL DATA

4

87

the filter:

RNMSE = ‖ĥ − ĝ‖
‖ĥ‖ . (4.19)

Note that, for a directed graph with complex frequencies, since the filter response
can be complex-valued, we only compute the approximation error for the ampli-
tude (absolute value) of the filter response under the assumption that the desired
frequency response is real.

Frequency
0 0.5 1 1.5 2

F
re

qu
en

cy
 R

es
po

ns
e

-0.5

0

0.5

1

Desired frequency response
FIR(16)-LLS
FIR(16)-Cheby

Frequency
0 0.5 1 1.5 2

F
re

qu
en

cy
 R

es
po

ns
e

-0.5

0

0.5

1

Desired frequency response
ARMA(6,10)(Iterative approach)
ARMA(4,12)(Prony's LS)

(a) Low-pass filter for undirected graph.

(b) Low-pass filter for directed graph

Figure 4.2: Comparison of FIR and ARMA graph filters with order K = 16. (a) Comparison of FIR
and ARMA with same order K = 16 for an undirected graph. The graph filters correspond to Fig.
4.1(a). (b) Comparison of FIR and ARMA with same order K = 16 for a directed graph. The FIR
graph filter (left) and ARMA graph filter (right) correspond to the green and pink lines in Fig. 4.1(b).
The desired frequency response is shown in the plot as red points.

Performance analysis. In Fig. 4.1 we show the RNMSE for the Prony inspired
methods and the iterative approach. Specifically, the depicted RNMSE in Fig. 4.1

4

88 4. FILTER DESIGN FOR AUTOREGRESSIVE MOVING AVERAGE GRAPH FILTERS

(a) (b) are related to the best combination (P,Q) for each particular K such that
P +Q = K . The iterative approach is initialized with the solution of Prony’s pro-
jection method (4.9) and (4.10), to show its potential in improving the RNMSE.
Additionally, the FIR, ARMAK [3] and IIR [4] performances are plotted as a bench-
mark.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

K

10
-4

10
-2

10
0

R
N

M
S

E

Prony's projection

Prony's LS

IIR

FIR-LLS

Iterative approach

ARMA
K

(a) Results for the average of 100 Erdős Rényi graphs with N = 100 nodes and p = 0.1.

Frequency
0 0.5 1 1.5

E
ig

en
va

lu
e

oc
cu

rr
en

ce

0

0.5

1

1.5

2

2.5

(b) Eigenvalue occurrence of 100 Erdős Rényi graph realizations.

Figure 4.3: Design methods of ARMA graph filters applied to the ER graph.

Based on these results we can make the following observations:

• i) We can notice that the FIR (FIR-LLS or FIR-Cheby) approximation errors
for both universal designs (Fig. 4.1(a), (b)) and the design for the ER graph
(Fig. 4.3(a)) is the highest, except when K ≤ 5. Further, the FIR approxima-
tion accuracy, even when designed for the specific set of ER graph frequen-
cies, does not improve with the order K . We believe that this effect is due

4.3. NUMERICAL DATA

4

89

to the eigenvalue spread of the ER graph, since some of its eigenvalues are
more closely spaced than in a uniform grid (see e.g., Fig. 4.3(b)).

• ii) Compared to Prony’s method, the iterative approach has a larger design
cost but improves the approximation for higher-order K . Prony’s method
gives a comparable performance to the iterative approach only up to K =
8. We see that Prony’s LS approach is not suitable for the ER graph when
K ≤ 5, while for a universal design approach its performance is close to that
of Prony’s projection method. This highlights that the LS approach should
be avoided in graphs that have closely spaced eigenvalues. On the other
hand, this issue is overcome by Prony’s projection method which gives a
small RNMSE also for values K ≤ 5.

• iii) As an example, we take the order K = 16 to show the difference in per-
formance between FIR graph filters and ARMA graph filters in Fig. 4.2(a),
(b). It is remarkable to highlight that the iterative approach outperforms
the FIR by several orders, where the latter has a comparable performance
only for K ≤ 3. Such a finding shows that ARMA graph filters are more suit-
able for applications demanding higher approximation accuracies.

• iv) We observe a smaller RNMSE for undirected graphs compared to di-
rected graphs. This is because we can do a fitting on the real line instead
of in the complex plane. In contrast to undirected graphs, notice that for
directed graphs, as shown in Fig. 4.1 (b), all ARMA graph filter design ap-
proaches yield similar performance.

• v) As highlighted in Fig. 4.1 (a), an important role is played by the MA order
Q (which is generally larger than P). We observe that a higher Q improves
the stability of the ARMA filters, specifically for Prony’s projection method
and the iterative approach where the numerator coefficients are found by
minimizing the true error.

• vi) If the frequencies are different, the Vandermonde matrix Ψ is theoreti-
cally full rank (invertible) but generally ill-conditioned. Although this issue
is encountered for both FIR and ARMA graph filters, ARMA filters improve
the conditioning of the matrix because the filter orders P and Q can be se-
lected much lower than the FIR filter order K . Hence, the solution of our
design methods has uniqueness, but there might be a conditioning prob-
lem when the orders are increased.

4

90 4. FILTER DESIGN FOR AUTOREGRESSIVE MOVING AVERAGE GRAPH FILTERS

• vii) For the universal design (Fig. 4.1(a)) and ER graph (Fig. 4.3(a)), we also
compare our approach with the methods in [3, 4]. The ARMAK graph fil-
ter [3] has the same order for the nominator and denominator, therefore,
we adopt the same value K as the order for both the nominator and de-
nominator. Note that this leads to a total order that is twice the order of
our ARMA(P,Q) (recall that K = P +Q). For the universal design, we fur-
ther compare our approach with the universal Butterworth filter [4]. The
IIR graph filter [4] is then tested on the ER graph. We follow the scenario
of [4] and use a denominator of degree 4, leading to a nominator of degree
(K −4). The results show that for low orders (K < 12), the IIR graph filter [4]
has a similar performance to our iterative approach. However, with an in-
creasing order K > 12, our design method offers a better approximation
accuracy.

Iteration index
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
N

M
SE

10-4

10-2

100

Uniform grid

ARMA(4,9)
ARMA(9,11)
ARMA(9,10)
ARMA(14,9)

Figure 4.4: RNMSE of the iterative approach on the universal design with N = 100 points. Perfor-
mance evaluation for different ARMA filters which are a few particular cases illustrating monotonic
convergence, non-monotonic convergence, and no convergence.

Iterative approach. We now analyze in more detail the iterative approach, to
highlight its benefits in improving the ARMA filter accuracy compared to Prony’s
projection approach.

We consider two cases with monotonic convergence, namely, an ARMA(9,10)
(characterized by an RNMSE of order 10−2 in Prony’s projection method, Fig.
4.1 (a)) and an ARMA(4,9) (characterized by an RNMSE of order 10−1 in Prony’s
projection method, Fig. 4.1 (a)) which are considered due to their low orders.
For both cases we initialize the iterations with the solution of Prony’s projection

4.3. NUMERICAL DATA

4

91

method. Note that ARMA(9,10) is the best combination P,Q of order K = 19,
while ARMA(4,9) is not the best combination for order K = 13. We also con-
sider two filters, the ARMA(9,11) and ARMA(14,9) to illustrate that even without
monotonic convergence, the approximation accuracies can be improved with
our iterative approach.

In Fig. 4.4 we show the approximation error as a function of the iteration
index and we can immediately notice that for those filters with monotonic con-
vergence, the approximation errors reduce in a few iterations. More specifically,
for the ARMA(9,10) the iterative approach reduces the error from 10−2 to 10−4.
It is also worth noticing that using the iterative approach, the ARMA(9,10) out-
performs also the ARMA(11,17), which is the best filter that can be designed
with Prony’s projection method (within the considered range). Similarly, the it-
erative approach improves the approximation accuracy for the low order filter
ARMA(4,9). Indeed, its performance is now comparable with all other ARMAs
and FIRs with much greater orders. As we mentioned in the previous section,
for the non-converging filters, we pick the best approximation result during the
iterative procedure, e.g., the performance in the 6-th iteration of the ARMA(14,9)
filter, which is better than the performance of the ARMA(9,10) filter.

4.3.2. DATA COMPRESSION WITH GRAPH FILTERS

Our goal, in this subsection, is to show that ARMA filters of low orders can be used
to represent the data and perform compression. We use the Molene weather data
set which contains hourly observations of temperature measurements collected
in January 2014 in the 32 cities (nodes) of the region Brest (France).

Experimental set up. We consider fitting a small order ARMA graph filter to
each data realization and then store the filter coefficients instead of the actual
data. We now create the graph as a directed 6-nearest neighbor connection. In
the directed graph, each vertex is connected to its six closest nodes by means of
directed edges [2]. The weight of the edge between vm and vn is given as

[A]n,m = e−d 2
n,m√∑

k∈Nn
e−d 2

n,k
∑

l∈Nm
e−d 2

m,l

(4.20)

where dn,m represents the geometric distance between nodes vn and vm and Nn ,
Nm represent the sets of neighbors of node vn and vm . Note that the resulting
matrix A is normal, i.e., ‖A‖ = 1. For every data realization x , we take the GFT
to compute x̂ and fit it to an ARMA(P,Q) graph filter. The filter coefficients are

4

92 4. FILTER DESIGN FOR AUTOREGRESSIVE MOVING AVERAGE GRAPH FILTERS

derived using the iterative approach with the initial condition given by Prony’s
projection method. We measure the compression performance as the RNMSE
between the compressed signal and the real one x . As a benchmark, we again
consider the FIR(K) with K = P +Q.

K
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

R
N

M
SE

10-1

100

1 1
1 2 3

1
3

4 5 6 7
5 10 2 9 2 13 16 17

11

12 4

ARMA (50th observation)
FIR (50th observation)

(a) RNMSE of graph filters for one realization.

K
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

R
N

M
SE

10-1

100

ARMA (one month average)
FIR (one month average)

(b) Average RNMSE over all 744 temperature realizations.

Figure 4.5: RNMSE between the data spectrum and the filter frequency response as a function of
filter order K . (a) Illustration of the RNMSE of the ARMA graph filter and the same order FIR filter
for the 50th observation. The order Q is shown in the plot and P +Q = K . (b) Average RNMSE over
all 744 temperature realizations (one month) for different filter orders. For the ARMA filter, each
error bar shows the standard deviation of the approximation error for order K .

Results. In Fig. 4.5(a), we show the RNMSE as a function of K for the 50-th
observation. We observe that the ARMA filter achieves a smaller RNMSE than the
FIR filter even for small orders K . As expected, when K approaches N , we have
a smaller error but we also see that the gap in performance between the ARMA
and FIR filters increases. This result goes in line with what we obtained in the

4.3. NUMERICAL DATA

4

93

previous section for synthetic data.
To further quantify the above observations, Fig. 4.5(b) depicts the average

performance over all observations. We still notice that the ARMA graph filters
achieve a smaller RNMSE than FIR graph filters and that the RNMSE decreases
for higher values of K . With the above approach, a compression ratio of 25%
(K = 23) is achieved when an RNMSE of 10−1 can be tolerated. Note that next to
signal compression, the ARMA model can also be used to reconstruct the graph
power spectrum of stationary graph signals from a subset of the nodes [13].

Remark 3. To achieve further compression one can exploit also the station-
arity of the signal over time. Thus, instead of fitting a graph filter to each individ-
ual observation, one approach may consider fitting a joint graph-temporal filter
[14], [15] to the time-varying data.

4.3.3. LINEAR PREDICTION WITH ARMA FILTERS

Inspired by [9], we also test linear prediction (LP) on graphs using ARMA graph
filters. We consider the Molene data set and again compare the ARMA graph
filters with the FIR graph filters [9]. The considered problem contains two parts,
namely the forward (prediction) part and the backward (synthesis) part.

In forward filtering, the residual between the graph signal and the filter fre-
quency response is calculated and quantized. Next, the backward filter considers
building an approximation of the graph signal from the quantized residual. For
the ARMA filters, we use a variant of the iterative approach to find the filter co-
efficients, while for the FIR filter we follow [9]. For the graph shift operator S,
we consider both the directed graph created by (4.20) and the undirected graph
[16].

Experimental set up. For the ARMA filter, given the graph signal x , the resid-
ual r related to signal prediction is given by

r = x − g (S)x = x − (
P∑

p=0
ap Sp)−1(

Q∑
q=0

bq Sq)x . (4.21)

Notice that next to the constraint a0 = 1 we had before, it is important to set
b0 = 0 in order to avoid the trivial solution. Similar to Prony’s method, we can
derive also a modified residual as

r ′ = (
P∑

p=0
ap Sp)x − (

Q∑
q=0

bq Sq)x . (4.22)

4

94 4. FILTER DESIGN FOR AUTOREGRESSIVE MOVING AVERAGE GRAPH FILTERS

Bits
3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
N

M
SE

10-6

10-4

10-2

100

102

ARMA (Undirected)
ARMA (Directed)
FIR (Undirected)
FIR (Directed)

(a) Average RNMSE of the approximated signal as a function of the number of bits (B)
for filter order K = 3.

K
2 3 4 5 6 7 8 9 10

R
N

M
SE

10-2

10-1

100

101
ARMA (Undirected) B=3
ARMA (Directed) B=3
ARMA (Undirected) B=5
ARMA (Directed) B=5
ARMA (Undirected) B=7
ARMA (Directed) B=7

(b) Average RNMSE of the estimated signal for different order ARMA filters evaluated
for B = 3,5,7.

Figure 4.6: Average RNMSE of linear prediction on the Molene temperature data set.

To relate this prediction problem to filter design, we can look at the residual and
modified residual in the frequency domain, leading to

r̂ = x̂ ◦ (1N −diag(ΨP+1a)−1ΨQ+1b), (4.23)

and

r̂ ′ = x̂ ◦ [1N ◦ (ΨP+1a)−ΨQ+1b]. (4.24)

Hence, up to the element-wise multiplication with x̂ , this residual r̂ and mod-
ified residual r̂ ′ look like the error e in (4.3) and modified error in e ′ in (4.4),
respectively, with ĥ replaced by the all-one vector 1N . As a result, all previous de-

4.4. CONCLUSIONS

4

95

sign methods can still be used. They only need to be adapted with an appropriate
weighting (coming from x̂) and with the constraint b0 = 0.

Once the filter coefficients that (approximately) minimize the residual r are
found, this residual is quantized with B bits (resulting in r q) and forwarded.
Then, by applying the backward filter H = (I − g (S))−1 to the residual, the ap-
proximated signal x̃ = Hrq is constructed at the receiving side.

We consider ARMA graph filters for K ≤ 10 (K = P +Q) and for every order K ,
the residual r is quantized with different numbers of bits. From the B bits, we
spend one bit on the sign, b = ⌈

log2(max([r]i))
⌉

bits on the integer part, and the
rest of the (B −b −1) bits on the decimal fraction.

Results. We quantify the performance in terms of RNMSE between the pre-
dicted signal x̃ and the original one x .

The average approximation error over all 744 realizations is shown in Fig.
4.6(a) as a function of the number of bits (B) used in the quantization for K = 3.
We can notice that in a direct comparison with the FIR filters the approximation
error of the ARMA graph filters is more than one order of magnitude lower. For
both filters, as expected, more quantization bits B lead to a better approximation
accuracy. Such findings suggest once again that ARMA filters are more suitable
than FIR filters for applications demanding higher approximation accuracies.

To better highlight the performance of the ARMA filters, in Fig.4.6(b) we show
the RNMSE as a function of the filter order K for different values of B . These re-
sults show that the approximation error for K > 4 remains constant, similar to
what was observed for FIR filters in [9]. This observation suggests that small or-
der filters are preferred for this application. Note that the performance for di-
rected and undirected graphs is almost the same. The directed graph gives the
best performance with K = 3 while for K > 3 the undirected graph gives a lower
error. To conclude, we can say that using an ARMA graph filter with K = 4 and
B = 7 (instead of 16 bits) we can reconstruct the data with an error of order 10−2

and save 62.5% in transmission costs.

4.4. CONCLUSIONS

In this chapter, we have presented ARMA graph filters as well as different meth-
ods to perform the filter design on both directed and undirected graphs. The
first two filter design approaches,which focus on minimizing the modified error,
are inspired by Prony’s method. The third one iteratively minimizes the origi-
nal error of the design problem. The iterative approach can be initialized with

4

96 REFERENCES

the solution from one of the previous methods, which suggests that its perfor-
mance can be improved by the iterative approach. Our theoretical findings are
surrogated by numerical results on both synthetic and real data. In a direct com-
parison with the FIR graph filters, ARMA filters have shown to be more suitable
for filter approximation, data compression and linear prediction on graphs.

REFERENCES

[1] J. Liu, E. Isufi, and G. Leus, Filter design for autoregressive moving average
graph filters, IEEE Transactions on Signal and Information Processing over
Networks 5, 47 (2019).

[2] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs: Fre-
quency analysis. IEEE Trans. Signal Processing 62, 3042 (2014).

[3] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, Autoregressive moving average
graph filtering, IEEE Transactions on Signal Processing 65, 274 (2017).

[4] X. Shi, H. Feng, M. Zhai, T. Yang, and B. Hu, Infinite impulse response graph
filters in wireless sensor networks, IEEE Signal Processing Letters 22, 1113
(2015).

[5] M. H. Hayes, Statistical digital signal processing and modeling (John Wiley
& Sons, 2009).

[6] A. Loukas, A. Simonetto, and G. Leus, Distributed autoregressive moving av-
erage graph filters, IEEE Signal Processing Letters 22, 1931 (2015).

[7] C.-I. Chang, Orthogonal subspace projection (osp) revisited: A comprehen-
sive study and analysis, IEEE transactions on geoscience and remote sens-
ing 43, 502 (2005).

[8] Y. Hu and G. Leus, On a unified framework for linear nuisance parameters,
EURASIP Journal on Advances in Signal Processing 2017, 4 (2017).

[9] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs, IEEE
transactions on signal processing 61, 1644 (2013).

[10] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Van-
dergheynst, and D. K. Hammond, Gspbox: A toolbox for signal processing
on graphs, arXiv preprint arXiv:1408.5781 (2014).

REFERENCES

4

97

[11] P. Erdos and A. Rényi, On the evolution of random graphs, Publ. Math. Inst.
Hung. Acad. Sci 5, 17 (1960).

[12] D. I. Shuman, P. Vandergheynst, D. Kressner, and P. Frossard, Distributed
signal processing via chebyshev polynomial approximation, arXiv preprint
arXiv:1111.5239 (2011).

[13] S. P. Chepuri and G. Leus, Graph sampling for covariance estimation, IEEE
Transactions on Signal and Information Processing over Networks 3, 451
(2017).

[14] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, Separable autoregressive mov-
ing average graph-temporal filters, in 2016 24th European Signal Processing
Conference (EUSIPCO) (IEEE, 2016) pp. 200–204.

[15] E. Isufi, G. Leus, and P. Banelli, 2-dimensional finite impulse response graph-
temporal filters, in 2016 IEEE Global Conference on Signal and Information
Processing (GlobalSIP) (IEEE, 2016) pp. 405–409.

[16] S. P. Chepuri, S. Liu, G. Leus, and A. O. Hero III, Learning sparse graphs
under smoothness prior, arXiv preprint arXiv:1609.03448 (2016).

APPENDIX-B

The error of the iterative approach onα and β is given by

e(i+1) =γ(i) ◦ (ĥ ◦α)−β◦γ(i) (4.25)

By extendingα and β, we can rewrite (4.25) as

e(i+1) =γ(i) ◦ ĥ ◦ (ΨP+1a)− (ΨQ+1b)◦γ(i) (4.26)

The first term in the right hand side of (4.26) can be expressed as

γ(i) ◦ ĥ ◦ (ΨP+1a) =γ(i) ◦ [ĥ ◦ (ΨP+1a)]
=γ(i) ◦{

[ΨP+1 ◦ (ĥ1T
P+1)]a

}
= [(γ(i)1T

P+1)◦ΨP+1 ◦ (ĥ1T
P+1)]a.

(4.27)

Similarly, the second term in the right hand side of (4.26) is rewritten as

(ΨQ+1b)◦γ(i)=[(γ(i)1T
Q+1)◦ΨQ+1]b. (4.28)

Finally, we define (4.27) and (4.28) as H (i)a and B (i)b, respectively. This trivially
leads to (4.17).

99

5
ARMA-FORSYTHE GRAPH FILTER

DESIGN WITH ORTHOGONAL

POLYNOMIALS

G RAPH filters play an important role in the field of signal processing on graphs,
especially for processing the spectrum of graph signals. In this chapter, the

focus is on designing finite impulse response (FIR) and autoregressive moving
average (ARMA) graph filters using an orthogonal basis. The main result of this
chapter is that by generating orthogonal polynomials, we can improve the nu-
merical condition of FIR and ARMA graph filters on both undirected and directed
graphs. To be specific, we first introduce discrete orthogonal polynomials and
use them to design FIR graph filters. Then, we demonstrate an efficient method
for designing ARMA graph filters with discrete orthogonal polynomials for both
directed and undirected graphs. The proposed method computes the orthogo-
nal polynomial basis using Forsythe polynomials separately on the numerator
and denominator parts of the ARMA model. The performance of the proposed
algorithms is evaluated and compared with well-studied FIR and ARMA graph
filters.

101

5

102 5. ARMA-FORSYTHE GRAPH FILTER DESIGN WITH ORTHOGONAL POLYNOMIALS

The remainder of this chapter is organized as follows. The discrete orthog-
onal polynomial basis and the FIR-Forsythe graph filter are presented in Sec-
tion 5.2. In Section 5.3, we first introduce the ARMA model with the proposed
discrete orthogonal basis and formulate the orthogonal polynomials separately
for the numerator and denominator parts. Then, we express the solution to the
ARMA-Forsythe filter design problem for both directed and undirected graphs.
Simulation results on a few examples illustrating the proposed framework are
shown in Section 5.4. Finally, the conclusions are drawn in Section 5.5.

5.1. INTRODUCTION

5

103

5.1. INTRODUCTION

Finite impulse response (FIR) graph filters [1–3], direct analogs of temporal FIR
filters, are implemented as a polynomial in the graph shift operator, e.g., the
graph Laplacian matrix [4], the adjacency matrix [5], or any modification of them.
With more degrees of freedom for filter design, the infinite impulse response (IIR)
graph filter can be seen as an alternative to the FIR filter, such as the autoregres-
sive moving average (ARMA) graph filters [6, 7], or the gradient descent IIR graph
filters [8]. These filters are characterized by a rational frequency response which
improves the approximation accuracy. In a centralized fashion, as mentioned in
Chapters 3 and 4, the ARMA graph filter output can be simply found by solving
a linear system of equations, which can be carried out efficiently with first-order
methods [9] or conjugate gradient (CG) [10]. However, as for the FIR graph filter,
the aforementioned ARMA also uses monomials in the graph frequency as basis
functions (monomial basis) for the filter response in both numerator and de-
nominator parts. Thus, those ARMA filters enjoy the same numerical problems
as FIR graph filters.

Since estimating the graph frequencies entails some additional complexity,
graph filters are often designed without any explicit knowledge of the graph or
the graph frequencies, which is called universal design [7]. Following the meth-
ods in Chapter 4, FIR and ARMA graph filters can be designed in a universal fash-
ion [7]. The Chebyshev polynomial technique is another popular method for
designing graph filters in a universal way and it adopts some orthogonal polyno-
mial basis [1]. The orthogonal Chebyshev approximation gives a slightly lower er-
ror than the monomial approximation in some applications such as wavelets [11].
However, Chebyshev polynomials are only suitable to design FIR - Chebyshev
graph filters for undirected graphs. It is not easy to extend them for directed
graphs that have real and complex conjugate frequencies. Also, the Chebyshev
design is used to approximate the desired frequency response over a continuous
frequency range, and for a limited filter order, it minimizes some weighted fitting
errors. However, when we know the graph and hence the graph frequencies, this
approach might not be optimal since the fitting error might not be minimal on
the particular graph frequencies.

Similar to the concept of orthogonal Chebyshev polynomials, this chapter
aims to introduce a discrete orthogonal polynomial basis (the Forsythe polyno-
mial basis) into the graph filter design for both directed and undirected graphs.
We mainly focus on the orthogonal basis for designing finite impulse response

5

104 5. ARMA-FORSYTHE GRAPH FILTER DESIGN WITH ORTHOGONAL POLYNOMIALS

(FIR) and autoregressive moving average (ARMA) graph filters.
The motivation of this chapter is exploiting the advantages of an orthogonal

polynomial basis to improve FIR filter design as well as the filter design meth-
ods of Chapter 4, and this for a particular set of known graph frequencies. The
main advantage of using a discrete polynomial orthogonal basis is the highly im-
proved numerical condition of the design problem in computing the filter coeffi-
cients [7]. Moreover, for the FIR graph filters, another advantage of this approach
is the simplicity of computing the coefficients. The orthogonal basis makes it
easy to gradually increase the FIR filter order without having to compute the full
set of coefficients from scratch. Furthermore, the presented discrete orthogonal
polynomial basis is not only applicable to undirected graphs but also directed
graphs.

The proposed methods and the contributions of this chapter are:

• i) We bring discrete orthogonal polynomials into the design of FIR graph fil-
ters for both undirected and directed graphs. Since the continuous orthog-
onal polynomial basis (Chebyshev polynomials) for FIR graph filters on
undirected graphs is well studied, we adopt the discrete orthogonal poly-
nomial basis for FIR filter design and this for either the normalized Lapla-
cian (undirected graph) or the normalized adjacency (directed graph) ma-
trix. We also show the relationship between the discrete orthogonal poly-
nomial basis and the continuous orthogonal polynomial basis, and we dis-
cuss the filter design problem based on these orthogonal polynomials.

• ii) We introduce an efficient filter design method using the discrete orthog-
onal polynomial basis in the ARMA model for both directed and undirected
graphs. Inspired by Prony’s method [12], a modified error between the
modeled and the desired frequency response is minimized for the ARMA
model. We compute the orthogonal basis separately for the numerator and
denominator parts. The solutions for undirected and directed graphs are
formulated.

In the next section, we will first introduce the discrete orthogonal polynomial
basis. Then, we give details about the filter design using an orthogonal basis for
FIR graph filters. In Section 5.3, we will formulate the orthogonal polynomial
basis for ARMA graph filters. The proposed method computes the orthogonal
basis using Forsythe polynomials separately on the numerator and denominator
parts.

5.2. ORTHOGONAL POLYNOMIAL BASIS

5

105

5.2. ORTHOGONAL POLYNOMIAL BASIS

In this section, we introduce the idea of an orthogonal polynomial basis into the
graph filter design. We first present the discrete orthogonal polynomial basis and
formulate the FIR-Forsythe graph filter. Then, we extend the discrete orthogonal
polynomial basis into a general orthogonal polynomial basis and discuss the re-
lated graph filter design problem.

5.2.1. FIR-FORSYTHE GRAPH FILTER

Similar to the structure of the FIR model, suppose we have a set of functions
(polynomials) fk (λ) to represent the frequency response of the graph filter as

g (λn) =
K∑

k=0
gk fk (λn), (5.1)

where gk represents the filter coefficient corresponding to the basis function
fk (λ). Note that using this representation form, the FIR graph filter in the fre-
quency domain g (λn) = ∑K

k=0 gkλ
k
n has as basis functions fk (λ) = λk

n which is a
set of monomials.

Let us first focus on undirected graphs with real-valued graph frequencies.
Following (5.1), we can then write the error of the filter design problem for all
graph frequencies as

e =
N∑

n=1

{
h(λn)− g (λn)

}2 =
N∑

n=1

{
h(λn)−

K∑
k=0

gk fk (λn)

}2

, (5.2)

where h(λn) is the desired frequency response. The error is a quadratic function
of the filter coefficients gk . Thus, to minimize the error (5.2), we have to solve the
following problem

∂e

∂gl
= 2

N∑
n=1

{
h(λn)−

K∑
k=0

gk fk (λn)

}(− fl (λn)
)= 0. (5.3)

Therefore, we observe that at any minimal point, the solution can be rewritten as

K∑
k=0

gk

{
N∑

n=1
fk (λn) fl (λn)

}
=

N∑
n=1

fl (λn)h(λn). (5.4)

5

106 5. ARMA-FORSYTHE GRAPH FILTER DESIGN WITH ORTHOGONAL POLYNOMIALS

Let
〈

fk (λn), fl (λn)
〉

denote the discrete inner product summed over the whole
frequency range, i.e.,

〈
fk (λn), fl (λn)

〉= N∑
n=1

fk (λn) fl (λn). (5.5)

With this definition, an orthogonal polynomial basis satisfies

〈
fk (λn), fl (λn)

〉= N∑
n=1

fk (λn) fl (λn) = 0,k 6= l . (5.6)

Now, we introduce the three-term recurrence relationship of the Forsythe
polynomials [13] to generate a discrete orthogonal polynomial basis for the graph
filter design problem over the frequency range λn ∈ [λmin,λmax] as

fk (λn) =λn fk−1(λn)−ωk fk−1(λn)−ϕk fk−2(λn), k > 1, (5.7)

with initial polynomials

f0(λn) = 1, f1(λn) =λn −ω1,

and where the parameters ωk and ϕk for generating the Forsythe polynomials
are expressed as

ωk =
〈
λn fk−1(λn), fk−1(λn)

〉〈
fk−1(λn), fk−1(λn)

〉 ,ϕk =
〈
λn fk−1(λn), fk−2(λn)

〉〈
fk−2(λn), fk−2(λn)

〉 . (5.8)

Note that ω1 = 1
N

∑N
n=1λn . In the vertex domain, with the graph shift operator S,

the polynomial generating procedure is formulated as

f0(S) = I , f1(S) = S −ω1I ,
fk (S) = S fk−1(S)−ωk fk−1(S)−ϕk fk−2(S), k > 1,

(5.9)

where the matrix fk (S) can be computed recursively through the previous poly-
nomials with order k −1 and k −2.

With the Forsythe orthogonal polynomials, the filter coefficients in (5.4) can
be solved as

gk =
〈

fk (λn),h(λn)
〉〈

fk (λn), fk (λn)
〉 . (5.10)

5.2. ORTHOGONAL POLYNOMIAL BASIS

5

107

Similar to the FIR graph filter, after generating the Forsythe polynomials for
the particular set of graph frequencies and computing the filter coefficients, the
filter response (5.1) can be written in a matrix-vector form as

ĝ =ΨK+1g , (5.11)

where the entries of the system matrixΨK+1 are given by the basis functions, i.e.,
[Ψ]n,k+1 = fk (λn). Note that the filter coefficients of the FIR-Forsythe can also
be computed by minimizing the error between the desired frequency response
and the FIR-Forsythe filter response and solving the problem as a least-square
solution.

Remark. For the well-studied FIR graph filter, the monomials have the ben-
efit that

∫ a
−a xk x l d x = 0, for k + l = odd . When we consider as shift operator S a

modification of L (undirected graph) with eigenvalues inside the range [−a, a],
e.g.,S = Ln − I with frequency range [−1,1], the FIR graph filters theoretically
show a better orthogonality than using other shift operators with eigenvalues in-
side the range [0, a], e.g.,S = Ln with frequency range [0,2]. Meanwhile, it has
been studied that Forsythe polynomials may remain of approximately uniform
size by computing the orthogonal basis over the interval [−2,2] [13]. Thus, the
basic frequency range [−2,2] can be utilized with the modified graph shift oper-
ator S = 2× (Ln − I) for undirected graphs.

For directed graphs with complex-valued frequencies, discrete orthogonal
polynomials satisfy

〈
fk (λn), f ∗

l (λn)
〉= N∑

n=1
fk (λn) f ∗

l (λn) = 0,k 6= l , (5.12)

where f ∗
l (λn) is the conjugate value of fl (λn).

Now, the parameters ωk , ϕk for the generating procedure with complex fre-
quencies are expressed as

ωk =
〈
λn fk−1(λn), f ∗

k−1(λn)
〉〈

fk−1(λn), f ∗
k−1(λn)

〉 ,ϕk =
〈
λn fk−1(λn), f ∗

k−2(λn)
〉〈

fk−2(λn), f ∗
k−2(λn)

〉 , (5.13)

and thus the filter coefficients gk can be written as

gk =
〈

h(λn), f ∗
k (λn)

〉〈
fk (λn), f ∗

k (λn)
〉 . (5.14)

5

108 5. ARMA-FORSYTHE GRAPH FILTER DESIGN WITH ORTHOGONAL POLYNOMIALS

Algorithm 5.1: FIR-Forsythe.

1 Input: ĥ, frequency range λn ∈ [λmin,λmax],

2 filter order K , number of nodes N

3 Initialization: λn , f0(λn)

4 Compute : while k < K

5 solve (5.8) (undirected) or (5.13) (directed)

6 return ωk , ϕk and compute fk (λn)

7 solve (5.10) (undirected) or (5.14) (directed)

8 compute and return gk

9 Output: ωk , ϕk and gk

The three-term generating procedure ensures that the first term of the order k
orthogonal polynomial fk (λn) is λk

n . Algorithm 5.1 summarizes the FIR-Forsythe
graph filter.

Proposition 5. Under Property 2 [cf. Chapter 2], the parameters ωk and ϕk for
the generating procedure as well as the FIR-Forsythe filter coefficients gk are real-
valued for directed graphs with conjugate frequencies.

Proof. For a directed graph with conjugate frequencies λn =λ∗
n′ , the initial poly-

nomial of the three-term Forsythe recursion is f0(λn) = 1. The next polyno-
mial has the form f1(λn) = λn −ω1, where ω1 is real-valued and ω1 = 1

N

∑N
n=1λn .

In general, the form of the three-term Forsythe recursion has the property that
fk (λn) = f ∗

k (λn′) for λn =λ∗
n′ .

Since fk (λn) f ∗
k (λn) is real, we have

fk (λn) f ∗
k (λn) = fk (λn′) f ∗

k (λn′),
λn fk (λn) f ∗

k (λn)+λn′ fk (λn′) f ∗
k (λn′)

= 2Re(λn fk (λn) f ∗
k (λn)),

λn fk (λn) f ∗
k−1(λn)+λn′ fk (λn′) f ∗

k−1(λn′)
= 2Re(λn fk (λn) f ∗

k−1(λn)).

Thus, the inner products
〈
λn fk (λn), f ∗

k (λn)
〉

and
〈
λn fk (λn), f ∗

k−1(λn)
〉

are real-
valued. Then, the parameters ωk and ϕk for the generating procedure are real-
valued.

5.2. ORTHOGONAL POLYNOMIAL BASIS

5

109

Also, for the conjugate frequencies λn = λ∗
n′ , we have conjugate responses

ĥn = ĥ∗
n′ . The inner product

〈
h(λn), f ∗

k (λn)
〉

has the property

h(λn) f ∗
k (λn)+h(λn′) f ∗

k (λn′)
= 2Re(h(λn) f ∗

k (λn)),

and
〈

h(λn), f ∗
k (λn)

〉
is real-valued. Thus, the FIR-Forsythe filter coefficients gk

are real-valued for directed graphs.

Remark. We can notice that the first term of the discrete orthogonal polyno-
mial (5.7) is a monomial and the rest of the terms are depending on the generated
parameters. Using some specific frequency set (or grid points for the universal
design), the generating parameters ωk and ϕk can be zero. For this instance,
the orthogonal Forsythe polynomials become monomials and the FIR-Forsythe
is equal to the FIR-LLS, e.g., the universal design with N = 100 complex conju-
gate pairs of points lying in the complex unit disc in Fig. 3.1 (b) [7]. The specific
derivations can be found in Appendix C.

5.2.2. FIR-FORSYTHE IMPLEMENTATION.

The Forsythe polynomial generating process can be applied to the shift operator
S and the output of the FIR orthogonal graph filter is

y =G x =
K∑

k=0
gk fk (S)x . (5.15)

The term fk (S)x inside G x is computed recursively as

fk (S)x = S fk−1(S)x −ωk fk−1(S)x −ϕk fk−2(S)x , k > 1, (5.16)

where the vector fk (S)x can be computed recursively from the previous two terms
fk−1(S)x , fk−2(S)x .

In conclusion, the computational cost of G x is related to S fk−1(S)x leading
to an overall complexity of O(K E) [14], which scales linearly with the number of
edges E . Meanwhile, those parameters ωk and ϕk only correspond to the pre-
vious orthogonal polynomials fk−1(λn) and fk−2(λn) which will be computed in
an iterative way.

5

110 5. ARMA-FORSYTHE GRAPH FILTER DESIGN WITH ORTHOGONAL POLYNOMIALS

5.2.3. GENERAL ORTHOGONAL POLYNOMIAL BASIS

We now extend the discrete orthogonal polynomial basis into a more general
setup and discuss the related filter design problem.

Orthogonal basis. For the discrete orthogonal polynomial basis, we now add
an appropriate weighting function w(λn) into the orthogonal polynomial (5.5)
and make it more general as

〈
fk (λn), fl (λn)

〉= N∑
n=1

w(λn) fk (λn) fl (λn) = 0,k 6= l . (5.17)

As an alternative to the general discrete orthogonal polynomial basis, we can
also extend it to the general continuous orthogonal basis. Then, the inner prod-
uct becomes 〈

fk (λ), fl (λ)
〉= ∫ λmax

λmin

w(λ) fk (λ) fl (λ)dλ= 0,k 6= l , (5.18)

where w(λ) is a continuous weighting function over the whole frequency range.

Related filter design. In the previous section, we have used the Forsythe
polynomial, as an example of a general discrete orthogonal basis (5.17) with the
weighting function w(λn) = 1, to design the graph filter based on an FIR filter
model.

For the continuous orthogonal basis, when we only consider those undi-
rected graphs with real-valued frequencies, e.g., S = L (or other modifications
of L), after we transform the range of frequencies into λ ∈ [−1,1], a special case is
the FIR-Chebyshev graph filter. This is well studied in [11],[1]. It considers an ap-
propriate weighting function w(λ) = (1−λ2)−1/2 for the continuous orthogonal
basis (5.18).

Remark. When we have infinite grid points (or graph frequencies), the dis-
crete orthogonal case automatically becomes the continuous form. With the
three-term recurrence of generating polynomials, the filter design problem is
mainly related to the weighting function w(·) in (5.17) and (5.18). Thus, by giv-
ing an appropriate weighting function, the filter design problem has more free-
dom according to different requirements, i.e., the function w(·) can amplify the
weighting of specific frequencies (or frequency range).

In the next section, we will show that with an appropriate weighting function
w(λ), the discrete orthogonal polynomials can be utilized for the ARMA model

5.3. ARMA-FORSYTHE

5

111

and we can generate the orthogonal polynomial basis for the denominator and
numerator parts separately. Since a directed graph has conjugate frequencies,
the continuous orthogonal polynomial basis (such as the Chebyshev polynomial
basis) is not easy to extend to the complex domain. Thus, we only choose the
discrete orthogonal polynomial basis for the ARMA model for both directed and
undirected graphs.

5.3. ARMA-FORSYTHE

To improve the approximation accuracy and reduce the number of required fil-
ter coefficients w.r.t. the FIR filter, we now consider applying an autoregressive
moving average (ARMA) model to the graph filter design using orthogonal poly-
nomials. In this section, we first introduce the ARMA model with the discrete
orthogonal polynomial basis for both undirected and directed graphs. Then, we
formulate the solution for the filter design problem.

5.3.1. ARMA MODEL WITH FORSYTHE POLYNOMIALS

For the rational graph filter in the frequency domain, let us indicate the filter
response for every graph frequency λn with an ARMA model as

g (λn) = βn

αn
=

Q∑
q=0

bq fq (λn)

P∑
p=0

apφp (λn)

, (5.19)

where the filter coefficients are ap , bq , and fq (λn), φp (λn) represent the two dif-
ferent sets of basis polynomial functions for the numerator and denominator
parts. Note that, for the ARMA graph filter of Chapter 4, the basis functions are
monomials, i.e., fq (λn) =λq

n and φp (λn) =λp
n .

The main idea for the ARMA model with orthogonal polynomials is that we
compute the orthogonal polynomials for the numerator and denominator parts
separately with different weighting functions.

ARMA-Forsythe. Similar to the FIR model, we first formulate the design
problem as minimizing the error between the desired frequency response and
the filter response for frequency λn as

5

112 5. ARMA-FORSYTHE GRAPH FILTER DESIGN WITH ORTHOGONAL POLYNOMIALS

en = h(λn)− βn

αn
. (5.20)

Let us again start with an undirected graph characterized with real-valued fre-
quencies. Since (5.20) is nonlinear in the filter coefficients ap and bq , we con-
sider minimizing the following related (modified) error for all graph frequencies

e ′ =∑N
n=1

{
h(λn)αn −βn

}2. (5.21)

Similar as before, the derivatives towards the filter coefficients are given sepa-
rately by

∂e ′

∂ar
= 2

N∑
n=1

{
h(λn)αn −βn

}(
h(λn)φr (λn)

)
∂e ′

∂bs
= 2

N∑
n=1

{
h(λn)αn −βn

}(− fs(λn)
)
.

(5.22)

To minimize the error, we have to solve

∂e ′

∂ar
= 0,

∂e ′

∂bs
= 0

which leads to
P∑

p=0
ap

{
N∑

n=1
φp (λn)h2(λn)φr (λn)

}
=

Q∑
q=0

bq

{
N∑

n=1
fq (λn)h(λn)φr (λn)

}
;

Q∑
q=0

bq

{
N∑

n=1
fq (λn) fs(λn)

}
=

P∑
p=0

ap

{
N∑

n=1
φp (λn)h(λn) fs(λn)

}
.

(5.23)

Comparing (5.23) with (5.4), the two different orthogonal bases of the numerator
and denominator parts should satisfy

N∑
n=1

φp (λn)h2(λn)φr (λn) = 0, p 6= r,

N∑
n=1

fq (λn) fs(λn) = 0, q 6= s.
(5.24)

We can notice that for the numerator-related part associated with coefficients bq ,
the three-term recurrence to generate the orthogonal polynomials fq (λ) uses (5.7)

5.3. ARMA-FORSYTHE

5

113

with coefficients given by (5.8). That is because we are using the same weighting
function w(λn) = 1.

Meanwhile, for the denominator-related part corresponding to the coeffi-
cients ap , we have to set the weighted inner product to zero with w(λn) = h(λn)2

for all frequencies λn . Thus, the three-term recurrence for the denominator-
related part uses the modified parameters

ωp =
〈
λnh(λn)φp−1(λn),h(λn)φp−1(λn)

〉〈
h(λn)φp−1(λn),h(λn)φp−1(λn)

〉 ,

ϕp =
〈
λnh(λn)φp−1(λn),h(λn)φp−2(λn)

〉〈
h(λn)φp−2(λn),h(λn)φp−2(λn)

〉 .

(5.25)

Taking (5.25) into account, the function φp (λn) can be calculated using the fol-
lowing generating procedure:

φp (λn) =λnφp−1(λn)−ωpφp−1(λn)−ϕpφp−2(λn), (5.26)

with initial polynomials

φ0(λn) = 1, φ1(λn) =λn −ω1.

In the vertex domain, we can use the obtained parameters to formulate the gen-
erating procedure of the orthogonal basis functions in the graph shift operator
S.

Similar to the previous section, for directed graphs with complex frequencies,
the polynomial functions inside the orthogonal basis (5.24) should be replaced
by the corresponding conjugate value, i.e.,

N∑
n=1

φp (λn)h(λn)
(
h(λn)φr (λn)

)∗ = 0, p 6= r,

N∑
n=1

fq (λn) f ∗
s (λn) = 0, q 6= s.

(5.27)

Notice that, for the three-term generating processes of the denominator and nu-
merator parts, the related parameters ω and ϕ also need to be changed with the
corresponding conjugate values in the same way.

Thus, for the numerator-related part, the parameters have the same compu-
tational structure as (5.13) for the FIR model, while the parameters ωp and ϕp of

5

114 5. ARMA-FORSYTHE GRAPH FILTER DESIGN WITH ORTHOGONAL POLYNOMIALS

the denominator-related part (5.25) become

ωp =
〈
λnh(λn)φp−1(λn),

(
h(λn)φp−1(λn)

)∗〉〈
h(λn)φp−1(λn),

(
h(λn)φp−1(λn)

)∗〉 ,

ϕp =
〈
λnh(λn)φp−1(λn),

(
h(λn)φp−2(λn)

)∗〉〈
h(λn)φp−2(λn),

(
h(λn)φp−2(λn)

)∗〉 .

(5.28)

With the generated parameters, the orthogonal polynomials for the filter design
problem on a directed graph can also be calculated by (5.26).

Proposition 6. Under Property 2, for the ARMA-Forsythe graph filter, the param-
eters ω and ϕ resulting from the generating procedure of the denominator and
numerator parts are real-valued for a directed graph.

Proof. Similar to the FIR-Forsythe, the conjugate frequencies λn = λ∗
n′ for a di-

rected graph have the property that ĥn = ĥ∗
n′ . For the numerator-related part of

the ARMA filter, which has the same structure as the FIR model, the parameters
ωq and ϕq are real-valued. See Proposition 5.

Meanwhile, for the denominator-related part, the initial orthogonal polyno-
mial is φ0(λn) = 1 and the next one has the form φ1(λn) = λn −ω1, where ω1 is
also real-valued and given by

ω1 =

N∑
n=1

λnh(λn)h∗(λn)

N∑
n=1

h(λn)h∗(λn)

.

In general, we have the property φp (λn) =φ∗
p (λn′) and

λnh(λn)φp (λn)(h(λn)φp (λn))∗

+λn′h(λn′)φp (λn′)(h(λn′)φp (λn′))∗

= 2Re(λnh(λn)φp (λn)(h(λn)φp (λn))∗),
λnh(λn)φp (λn)(h(λn)φp−1(λn))∗

+λn′h(λn′)φp (λn′)(h(λn′)φp−1(λn′))∗

= 2Re(λnh(λn)φp (λn)(h(λn)φp−1(λn))∗).

Thus, the parameters ωp and ϕp are real-valued for a directed graph and the
three-term generating procedure of the ARMA-Forsythe is suitable for both di-
rected and undirected graphs in the vertex domain.

5.3. ARMA-FORSYTHE

5

115

Algorithm 5.2: ARMA-Forsythe.

1 Input: ĥ, frequency range [λmin,λmax],

2 filter orders P,Q, number of nodes N

3 Initialization: λn , f0(λn), φ0(λn)

4 Compute : while p < P , q <Q

Numerator-related part:

5 solve (5.8) (undirected) or (5.13) (directed)

6 return ωq , ϕq and compute fq (λn)

Denominator-related part:

7 solve (5.25) (undirected) or (5.28) (directed)

8 return ωp , ϕp and compute φp (λn)

9 Return: fq (λn) and φp (λn)

10 solve (5.30)

11 Output: coefficients a and b

5.3.2. SOLUTION FOR THE ARMA-FORSYTHE

Since we compute the basis functions of the numerator and denominator parts
separately, the design problem of (5.21) is now linear in the filter coefficients ap

and bq with known orthogonal polynomials. We write (5.21) into a more conve-
nient matrix-vector form over all frequencies with the vectors α = [α1, . . . ,αN]T,
and β= [β1, . . . ,βN]T. The error vector e ′ = [e ′1, . . . ,e ′N]T containing the modified
error for all graph frequencies can be written as

e = ĥ ◦α−β. (5.29)

Expressing (5.29) as a direct function of the filter coefficients a and b, the
coefficients can be calculated by the following LLS problem [7],

min
a,b

∥∥∥∥[ΨP+1 ◦ (ĥ1
T
P+1),−ΨQ+1]

[
a
b

]∥∥∥∥2

, s.t. a0 = 1, (5.30)

where a = [a0, . . . , aP]T and b = [b0, . . . ,bQ]T collect the ARMA filter coefficients.
The entries inside the system matrices ΨP+1 and ΨQ+1 are the basis functions

5

116 5. ARMA-FORSYTHE GRAPH FILTER DESIGN WITH ORTHOGONAL POLYNOMIALS

(orthogonal polynomials),i.e., [ΨP+1]n,p+1 = φp (λn), [ΨQ+1]n,q+1 = fq (λn). Note
that for a directed graph, the matricesΨP+1 andΨQ+1 have conjugated rows ac-
cording to the corresponding conjugate frequencies. Thus, the ARMA-Forsythe
filter coefficients are again real-valued as shown in the following Proposition.

Proposition 7. Under Property 2, the ARMA-Forsythe filter coefficients a and b
obtained by solving (5.30) are real-valued.

Proof. The proof is similar to the proof of Proposition 1.

For the proposed design method, the design cost mainly relates to the LLS
problem (5.30) which requires O(N (P +Q +1)2) operations, where N is the num-
ber of grid points for universal design or the number of nodes. Similar to the
ARMA graph filter design of [7], the specific combination of orders P and Q can
offer more freedom to the design method. However, some combinations of P
and Q yield instabilities and unstable performances. Thus, searching over differ-
ent combinations of P and Q is recommended. Algorithm 5.2 summarizes the
ARMA-Forsythe graph filter for both undirected and directed graphs.

5.4. NUMERICAL DATA

In this section, we present our numerical evaluation for the proposed meth-
ods and compare them with other graph filters, i.e., FIR-LLS graph filter, FIR-
Chebyshev graph filter, and the ARMA filters from Chapter 4. The performance
is evaluated with design methods for both directed and undirected graphs.

To be specific, we evaluate the proposed design methods for two scenarios:
i) universal design which is the same setup as in Chapter 4, ii) design with knowl-
edge of the graph frequencies. Our tests show that the proposed methods have a
better numerical condition than the earlier considered FIR and ARMA filter de-
signs. Meanwhile, when we design our filter for a set of known graph frequencies,
our method outperforms the FIR-Chebyshev filter in terms of approximation ac-
curacy. Throughout our simulations, we make use of the GSPBox [15].

5.4.1. UNIVERSAL DESIGN

We first evaluate the performance of the proposed design algorithms [cf. Sec-
tion 5.2 and 5.3] by approximating a desired frequency response in the frequency
domain.

5.4. NUMERICAL DATA

5

117

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
K

10-4

10-2

100

R
N

M
S

E

1

2

4 6 8 10 10 12 14 14 16 16 18 18
20

21
18

21
24 27

ARMA-Forsythe
ARMA-Prony's LS
FIR-LLS
FIR-Chebyshev
FIR-Forsythe

(a) Universal design for undirected graph using N = 100 grid points.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
K

10-1

100

R
N

M
S

E

1 2
4 1

1 1
3

2
4

6
2

3
4

5

7 8
10

9 11
13

ARMA-Forsythe
ARMA-Prony's LS
FIR-LLS
FIR-Forsythe

(b) Universal design for directed graph using N = 100 grid points.

Figure 5.1: RNMSE of the proposed design methods for different orders K (such that P +Q = K)
in approximating an ideal low-pass frequency response following the universal approach. (a) Uni-
versal design for undirected graph by gridding the spectrum with N = 100 points. (b) Universal
design for directed graph with N = 100 grid points in the unit disc. For the ARMA-Forsythe graph
filters, the order Q is shown in the plot. For the ARMA-Prony’s LS graph filter, the design method
is related to chapter 4.

Following the universal design [7], we evaluate the orthogonal design meth-
ods for both undirected and directed graphs (N = 100) for a low pass filter char-
acteristic.

Experimental set up. We consider S = Ln for an undirected graph and sam-
ple the interval [0,2] uniformly with N = 100 points. Meanwhile, for the directed
case, S = An is considered as graph shift operator and we sample the unit com-
plex unit disc uniformly in amplitude and phase with the same number of points,

5

118 5. ARMA-FORSYTHE GRAPH FILTER DESIGN WITH ORTHOGONAL POLYNOMIALS

i.e., N = 100. Note that, for a directed graph with complex frequencies, since
the filter response can be complex-valued, we only compute the approximation
error for the amplitude (absolute value) of the filter response. We measure the
approximation accuracy with the root normalized mean square error (RNMSE =
‖ĝ − ĥ‖/‖ĥ‖) of the frequency response and analyze the design methods using
discrete orthogonal polynomials for undirected and directed graphs.

The discrete orthogonal basis is computed for the considered grid points and
the filter coefficients are also influenced by those grid points. We compare the
set of ARMA-Forsythe(P,Q) filters to the FIR(K) (FIR-Forsythe(K)) graph filters
where P +Q = K is satisfied. We look for all combinations of P and Q that satisfy
P +Q = K and pick the combination leading to the best results. Since we want
the overall order of the designed orthogonal graph filter to be small, we only in-
vestigate the range of 2 ≤ K ≤ 40 for our comparison.

Figure 5.2: The performance of ARMA-Forsythe(23,7) for directed case with N = 100 grid points,
which is related to the black line in Fig. 5.1(b).

Performance analysis. In Fig. 5.1 we show the RNMSE of the design methods
for both the undirected and directed universal case. Specifically, the depicted
RNMSE in Fig. 5.1 (a) and (b) are related to the best combination (P,Q) for the
ARMA-Forsythe (ARMA-Prony’s LS [7]) graph filters. Additionally, the FIR filter
performances are plotted as benchmarks. From these results, we can make the
following observations:

• i) For the FIR model with discrete orthogonal polynomials (FIR-Forsythe),
the approximation accuracy is close to the FIR-LLS for both undirected and

5.4. NUMERICAL DATA

5

119

directed graphs. As the filter order increases, the approximation accuracy
does not really improve. With discrete orthogonal polynomials, we observe
a smaller RNMSE for undirected graphs compared to directed graphs for
the same number of grid points N . This is the same situation as in Chapter
4. Details can be found in Section 4.3.1.

• ii) For small filter orders, i.e., K ≤ 5, in the undirected case, the FIR model
shows better performances than ARMA-Forsyth. However, for a larger filter
order K , ARMA-Forsyth is more suitable for filter design and it improves
the approximation accuracy for both directed and undirected graphs. As
an example, Fig. 5.2 shows the performance of ARMA-Forsythe(23,7) for
the directed case with N = 100 grid points, which is the best combination
of P+Q = 30 and related to the black line in Fig. 5.1(b). Compared to ARMA
graph filter design [7], the ARMA-Forsyth generally improves the approxi-
mation accuracy for undirected and directed graphs when the filter order
K > 24.

As we mentioned in the previous section, when we have some knowledge
of graphs, such as graph frequencies, the Chebyshev polynomial may lose some
freedom of design since the filter coefficients are generated only using the value
of cutoff frequency. In the next section, we will evaluate the design method with
a known graph (design with graph frequency) and give more comparisons with
other graph filters.

5.4.2. DESIGN WITH KNOWN GRAPH FREQUENCIES

In this section, we evaluate the performance of the proposed design algorithms
in approximating a low pass filter for an Erdős Rényi (ER) graph and a directed
network graph. To compare this with the earlier universal design, we consider
graphs with N = 100 nodes.

Experimental set up. For the undirected graph, we consider S = L for an
Erdős Rényi graph (N = 100) with link probability p = 0.1 and frequencies in the
interval [0,11.91]. For the directed graph, we consider S = A with N = 100 and
maximum frequency λmax = 89.03. The other details of the set up are the same
as in the previous section and we measure the approximation accuracy using the
RNMSE.

5

120 5. ARMA-FORSYTHE GRAPH FILTER DESIGN WITH ORTHOGONAL POLYNOMIALS

10 20 30 40
K

10-2

100

R
N

M
S

E

1

2

3

3

45
676910

910
9121112111417

1417
1417

16
1819

18
17

21
23

19
2021

25
24

23
2

3

ARMA-Forsythe
ARMA-Prony's LS

10 20 30 40
K

0.2

0.4

0.6

0.8
1

R
N

M
S

E

FIR-LLS
FIR-Chebyshev
FIR-Forsythe

(a) RNMSE of the proposed design methods for the Erdős Rényi (ER) graph, N = 100.

0 2 4 6 8 10 12
Frequency

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

F
re

qu
en

cy
 R

es
po

ns
e

Desired FR
FIR(25)-LLS
FIR-Cheby (25)
FIR-Forsythe (25)

0 2 4 6 8 10 12
Frequency

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

F
re

qu
en

cy
 R

es
po

ns
e

Desired FR
ARMA (20, 5)-Prony's LS
ARMA-Forsythe (8, 17)

(b) The performance of the filters with order K = 25. For ARMA and ARMA-Forsythe
graph filters, we have P +Q = K .

Figure 5.3: RNMSE of the proposed design methods for different orders K (such that P +Q = K) in
approximating a low-pass frequency response with an Erdős Rényi (ER) graph of N = 100 nodes.
(a) Results for the proposed graph filter of an Erdős Rényi (ER) graph with S = L. For the ARMA-
Forsythe graph filters, the order Q is shown in the plot. (b) The performance of the filters with
order K = 25 for the Erdős Rényi (ER) graph, which are related to Fig. 5.3(a).

Performance analysis. We apply the proposed design methods to the two
scenarios and compare them to the related FIR (FIR-Chebyshev) and ARMA graph
filters. Based on these results we can make the following observations:

• i) For the Erdős Rényi (ER) graph, we notice from Fig. 5.3 that the FIR-
Forsythe graph filter has a better performance than the FIR-Chebyshev
graph filter. Although FIR-Chebyshev minimizes some weighted approx-
imation error over a continuous frequency range, the FIR-Forsythe mini-

5.4. NUMERICAL DATA

5

121

(a) Directed network graph of N = 100 nodes.

0 10 20 30 40
K

0.2

0.4

0.6

0.8

R
N

M
S

E

11
3
3

113

5
3

7
8

7

8

8

5
9
789

10

11
1113131214

131415
1516171717

181818
2222

ARMA-Forsythe
ARMA-Prony's LS

0 10 20 30 40
K

0.5

0.6

0.7

0.8

0.9
R

N
M

S
E

FIR-LLS
FIR-Forsythe

(b) RNMSE of the proposed design methods.

Figure 5.4: RNMSE of the proposed design methods for different orders K (such that P +Q = K) in
approximating an ideal low-pass frequency response with a directed network graph. (a) Directed
network graph of N = 100 nodes with E = 2018 edges having different weights in the interval [0,8].
The shift operator is considered as S = A and the maximum frequency is λmax = 89.03. (b) Results
for the proposed graph filter of the directed network graph. For the ARMA-Forsythe graph filters,
the order Q is shown in the plot.

mizes the true error and this over the discrete set of frequencies for that
particular graph. Thus, FIR-Forsythe with discrete orthogonal polynomi-
als is more suitable when the graph frequencies are known.

• ii) Since the FIR-Forsythe and FIR-LLS graph filters are the same for the
directed universal design, we also test our proposed methods for the di-
rected network graph (Fig. 5.4(a)) with shift operator S = A, λmax = 89.03
and N = 100. Fig. 5.4(b) shows that for the design with known graph fre-

5

122 5. ARMA-FORSYTHE GRAPH FILTER DESIGN WITH ORTHOGONAL POLYNOMIALS

quencies, the performance of FIR-Forsythe is better than FIR-LLS. How-
ever, both FIR-Forsythe and FIR-LLS are suggested with smaller filter or-
ders (K < 10).

• iii) For the ARMA-Prony’s LS and ARMA-Forsythe graph filters, we observe
a smaller RNMSE for undirected graphs compared to directed graphs. With
smaller orders (K < 4 for ER graph and K < 8 for directed network graph),
the ARMA-Prony’s LS graph filter performs better than the ARMA-Forsythe.
Meanwhile, with higher orders (K > 15 for both ER graph and directed net-
work graph), the ARMA-Forsythe gives a better approximation accuracy.

• iv) For the Erdős Rényi (ER) graph, shown in Fig. 5.3, we want to highlight
that the performance of designing a graph filter with known graph frequen-
cies is influenced by the topology of the graph. In other words, even for
graphs of the same size, the approximation errors error can differ.

In the next section, we will compare the performance and computational
conditions (condition number of the system matrix) of the two scenarios, includ-
ing the universal design and the design for known graph frequencies.

5.4.3. COMPARISON

As mentioned in Chapters 3 and 4, the Vandermonde matrices for computing the
filter coefficients are generally ill-conditioned for the FIR and ARMA graph filter
designs. With orthogonal polynomials, the numerical conditions of the system
matrices are improved for both the FIR and ARMA model.

Experimental set up. In Table 5.1, we show the condition numbers of the
system matrices for FIR and ARMA models with different orders. For the ARMA-
Prony’s LS and ARMA-Forsythe, we fix the order P +Q = K and average the re-
sults over all the combinations P,Q. The other details of the experiment setup
for Table 5.1 are the same as in Fig. 5.1(a) and Fig. 5.3. Meanwhile, since the
FIR-Forsythe and FIR-LLS graph filters are the same for the directed universal
design, the two methods have the same rank and condition number for the sys-
tem matrices in Table 5.2, which focuses on directed graphs and corresponds to
Fig. 5.1 (b). Table 5.2 also shows the computational costs for the design using the
directed network graph corresponding to Fig. 5.4.

5.4. NUMERICAL DATA

5

123

Performance analysis. We compare the universal design with the design us-
ing known graph frequencies. The results are as follows.

• i) Comparing the filter design for a known undirected Erdős Rényi graph
(in Fig. 5.3) with the universal design (in Fig. 5.1(a)), the orthogonal poly-
nomial basis (ARMA-Forsythe, FIR-Chebyshve, and FIR-Forsythe) leads to
similar trends. However, with higher graph orders, the ARMA and FIR graph
filters show some limitations in approximation performance.

• ii) For the directed cases with N = 100, shown in Fig. 5.1(b) and Fig. 5.4, all
design methods show worse approximation results with higher graph filter
orders. Thus, for FIR-LLS and FIR-Forsythe, the filter order can be selected
as K < 10, while for ARMA-Prony’s LS and ARMA-Forsythe, a good choice
of filter order is 8 < K < 18.

• iii) In general, the universal way offers a better computational condition
for filter design. Also, the undirected cases (Table 5.1) generally have better
condition numbers than the directed cases (Table 5.2). In Table 5.1 and Ta-
ble 5.2, we notice that FIR-Forsythe filters have smaller condition numbers
than FIR-LLS graph filters and ARMA-Forsythe filters have smaller condi-
tion numbers than ARMA-Prony’s LS graph filters. Thus, the orthogonal
polynomial basis offers improvements in numerical computation effects.

• iv) Although the FIR-Chebyshve for undirected graphs has the best numer-
ical condition in all design methods, we want to highlight that the Cheby-
shev polynomial always moves the frequencies (grid points) into the range
[−1,1]. For other design methods, we compute the condition numbers and
ranks in the range [0,λmax]. Thus, to have further improvement of FIR-
Forsythe (and ARMA-Forsythe) for undirected graphs, we could move the
frequency range to [−2,2] with the shift operator S = 2× (An − I) which is
recommended for Forsythe polynomials (mentioned in Section 5.2.1).

We remark that the above results concern the approximation accuracy of
the proposed filter without considering the implementation cost and the graph
topology. In the following chapters, we will propose another design method (in
Chapter 6) and the implementation aspects (in Chapter 7) for these filters.

5

124 5. ARMA-FORSYTHE GRAPH FILTER DESIGN WITH ORTHOGONAL POLYNOMIALS

Tab
le

5.1:R
an

k/C
o

n
d

itio
n

n
u

m
b

er
fo

r
u

n
d

irected
case

(N
=

100).

U
n

ifo
rm

grid
S=

L
n

K
=

5
K
=

10
K
=

15
K
=

20
K
=

30
F

IR
-LLS

6/3.69×
10

3
11/4.90×

10
7

16/8.34×
10

11
18/1.62×

10
16

18/7.63×
10

20

F
IR

-C
h

eb
ysh

ev
[1]

6/3.03
11/5.14

16/9.75
21/23.04

31/297.21
F

IR
-Fo

rsyth
6/26.19

11/842.94
16/2.81×

10
4

21/9.73×
10

5
31/1.40×

10
9

A
R

M
A

-P
ro

n
y’s

LS
[7]

7/1.22×
10

3
12/2.36×

10
6

17/1.71×
10

10
22/1.73×

10
14

26/2.73×
10

19

A
R

M
A

-Fo
rsyth

7/206.75
12/5.95×

10
4

17/4.19×
10

7
22/4.15×

10
10

31/1.12×
10

17

E
rd

ő
s

R
én

yi(E
R

)
grap

h
S=

L
K
=

5
K
=

10
K
=

15
K
=

20
K
=

30
F

IR
-LLS

6/7.18×
10

5
11/1.53×

10
12

8/1.01×
10

19
7/8.36×

10
25

6/1.82×
10

35

F
IR

-C
h

eb
ysh

ev
[1]

6/4.19
11/4.40

16/12.83
21/81.60

31/8.93×
10

3

F
IR

-Fo
rsyth

6/263.73
11/6.28×

10
4

16/9.96×
10

6
21/1.22×

10
9

31/1.65×
10

13

A
R

M
A

-P
ro

n
y’s

LS
[7]

7/6.59×
10

4
12/1.88×

10
10

16/3.50×
10

16
16/1.92×

10
23

12/4.88×
10

34

A
R

M
A

-Fo
rsyth

7/619.82
12/5.04×

10
5

17/3.69×
10

8
22/2.64×

10
11

31/2.34×
10

17

5.4. NUMERICAL DATA

5

125

Ta
b

le
5.

2:
R

an
k/

C
o

n
d

it
io

n
n

u
m

b
er

fo
r

d
ir

ec
te

d
ca

se
(N

=
10

0)
.

U
n

if
o

rm
gr

id
S
=

A
n

K
=

5
K
=

10
K
=

15
K
=

20
K
=

30
F

IR
-L

LS
6/

3.
64

11
/6

.3
9

16
/1

0.
86

21
/2

0.
61

31
/6

62
.1

4
F

IR
-F

o
rs

yt
h

6/
3.

64
11

/6
.3

9
16

/1
0.

86
21

/2
0.

61
31

/6
62

.1
4

A
R

M
A

-P
ro

n
y’

s
LS

[7
]

7/
32

.1
4

12
/1

.9
1
×1

03
17

/2
.5

4
×1

05
22

/9
.4

9
×1

07
31

/1
.7

2
×1

014

A
R

M
A

-F
o

rs
yt

h
7/

16
.8

7
12

/1
58

.4
3

17
/2

.9
4
×1

03
22

/2
.1

8
×1

05
32

/3
.6

4
×1

010

D
ir

ec
te

d
n

et
w

o
rk

gr
ap

h
S
=

A
K
=

5
K
=

10
K
=

15
K
=

20
K
=

30
F

IR
-L

LS
6/

5.
67

×1
08

7/
7.

23
×1

018
4/

2.
12

×1
028

2/
5.

21
×1

038
1/

2.
01

×1
058

F
IR

-F
o

rs
yt

h
6/

2.
07

×1
07

9/
2.

68
×1

017
8/

9.
61

×1
024

9/
2.

57
×1

035
8/

1.
20

×1
052

A
R

M
A

-P
ro

n
y’

s
LS

[7
]

7/
1.

08
×1

07
10

/6
.4

5
×1

016
7/

2.
01

×1
027

5/
2.

39
×1

037
2/

9.
01

×1
056

A
R

M
A

-F
o

rs
yt

h
7/

8.
12

×1
05

12
/9

.7
3
×1

014
12

/2
.2

2
×1

022
11

/9
.6

7
×1

031
9/

8.
84

×1
047

5

126 REFERENCES

5.5. CONCLUSION

Graph signal processing extends classical digital signal processing to signals that
live on the vertices of irregular graphs. Graph filters play a key tool in graph sig-
nal processing and shaping the graph signal spectrum. In this chapter, the fo-
cus is on designing graph filters using a discrete orthogonal polynomial basis for
FIR and ARMA graph filters. The main result of this chapter is that by generat-
ing orthogonal polynomials, we can improve the approximation accuracies and
numerical conditions of graph filters. The first method adopts orthogonal poly-
nomials for designing FIR graph filters for both undirected and directed graphs.
We further introduce an efficient filter design method using an orthogonal basis
for the ARMA model for both directed and undirected graphs. Our theoretical
findings are supported by numerical results.

REFERENCES

[1] D. I. Shuman, P. Vandergheynst, D. Kressner, and P. Frossard, Distributed
signal processing via chebyshev polynomial approximation, arXiv preprint
arXiv:1111.5239 (2011).

[2] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs: Fre-
quency analysis. IEEE Trans. Signal Processing 62, 3042 (2014).

[3] S. Segarra, A. G. Marques, and A. Ribeiro, Optimal graph-filter design and
applications to distributed linear network operators, IEEE Transactions on
Signal Processing 65, 4117 (2017).

[4] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The
emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains, IEEE Signal Process-
ing Magazine 30, 83 (2013).

[5] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs, IEEE
transactions on signal processing 61, 1644 (2013).

[6] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, Autoregressive moving average
graph filtering, IEEE Transactions on Signal Processing 65, 274 (2017).

[7] J. Liu, E. Isufi, and G. Leus, Filter design for autoregressive moving average

REFERENCES

5

127

graph filters, IEEE Transactions on Signal and Information Processing over
Networks 5, 47 (2019).

[8] X. Shi, H. Feng, M. Zhai, T. Yang, and B. Hu, Infinite impulse response graph
filters in wireless sensor networks, IEEE Signal Processing Letters 22, 1113
(2015).

[9] D. P. Bertsekas, Convex optimization theory (Athena Scientific Belmont,
2009).

[10] J. R. Shewchuk et al., An introduction to the conjugate gradient method with-
out the agonizing pain, (1994).

[11] D. K. Hammond, P. Vandergheynst, and R. Gribonval, Wavelets on graphs
via spectral graph theory, Applied and Computational Harmonic Analysis
30, 129 (2011).

[12] M. H. Hayes, Statistical digital signal processing and modeling (John Wiley
& Sons, 2009).

[13] G. E. Forsythe, Generation and use of orthogonal polynomials for data-fitting
with a digital computer, Journal of the Society for Industrial and Applied
Mathematics 5, 74 (1957).

[14] D. I. Shuman, P. Vandergheynst, and P. Frossard, Chebyshev polynomial ap-
proximation for distributed signal processing, in Distributed Computing in
Sensor Systems and Workshops (DCOSS), 2011 International Conference on
(IEEE, 2011) pp. 1–8.

[15] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Van-
dergheynst, and D. K. Hammond, Gspbox: A toolbox for signal processing
on graphs, arXiv preprint arXiv:1408.5781 (2014).

APPENDIX-C

In the vertex domain, with the graph shift operator S, the polynomial generating
procedure of Forsythe polynomials is formulated as

f0(S) = I , f1(S) = S −ω1I ,
fk (S) = S fk−1(S)−ωk fk−1(S)−ϕk fk−2(S), k > 1.

When we consider the directed graph with the normalized adjacency matrix,
we have the generating procedure in the frequency domain asc

fk (λn) =λn fk−1(λn)−ωk fk−1(λn)−ϕk fk−2(λn), k > 1
f0(λn) = 1, f1(λn) =λn −ω1,

where the parameters ωk , ϕk with complex frequencies are expressed as

ωk =
〈
λn fk−1(λn), f ∗

k−1(λn)
〉〈

fk−1(λn), f ∗
k−1(λn)

〉 ,ϕk =
〈
λn fk−1(λn), f ∗

k−2(λn)
〉〈

fk−2(λn), f ∗
k−2(λn)

〉 .

Note that, for complex-valued frequencies, discrete orthogonal polynomials sat-
isfy 〈

fk (λn), f ∗
l (λn)

〉= N∑
n=1

fk (λn) f ∗
l (λn) = 0,k 6= l ,

where f ∗
l (λn) is the conjugate value of fl (λn).

For the discrete points N = 100 in Fig. 5.5, we grid the unit disc with even
phase. On another word, we have conjugate pairs as a +b j , a −b j , −a +b j and
−a −b j . Thus, we have

N∑
n=1

λn = 0.

Note that the results of sum of grid points depends on different grid methods.
For our special case in Fig.1, the f0(λn) = 1 and f1(λn) =λn −ω1 =λn , since

ω1 =
〈
λn f0(λn), f ∗

0 (λn)
〉〈

f0(λn), f ∗
0 (λn)

〉 = 1

N

∑N
n=1λn = 0.

129

5

130 REFERENCES

Figure 5.5: Universal grid for directed graph based on the normalized adjacency matrix.

Thus,
f2(λn) =λn f1(λn)−ω2 f1(λn)−ϕ2 f0(λn),

where

ω2 =
〈
λn f1(λn), f ∗

1 (λn)
〉〈

f1(λn), f ∗
1 (λn)

〉 ,ϕ2 =
〈
λn f1(λn), f ∗

0 (λn)
〉〈

f0(λn), f ∗
0 (λn)

〉 .

For the inner product
〈
λn f1(λn), f ∗

1 (λn)
〉

, we have

〈
λn f1(λn), f ∗

1 (λn)
〉= N∑

n=1
λn f1(λn) f ∗

1 (λn) =
N∑

n=1
λnλnλn′ = 0.

Then, for
〈
λn f1(λn), f ∗

0 (λn)
〉

, we also have

〈
λn f1(λn), f ∗

0 (λn)
〉= N∑

n=1
λn f1(λn) f ∗

0 (λn) =
N∑

n=1
λnλn = 0,

since we have (a+b j)2+(−b−a j)2 = 0 which is related to the red and green ones
inside Fig.1. Thus, the parameters ω2 and ϕ2 are zeros.

In general, as in proposition 5 (in chapter 5), we have

λn fk−1(λn) f ∗
k−1(λn)+λn′ fk−1(λn′) f ∗

k−1(λn′) = 2Re(λn fk−1(λn) f ∗
k−1(λn)),

λn fk−1(λn) f ∗
k−2(λn)+λn′ fk−1(λn′) f ∗

k−2(λn′) = 2Re(λn fk−1(λn) f ∗
k−2(λn)).

REFERENCES

5

131

Considerλn = a+b j ,λm =−a−b j , the conjugate pairsλn ,λn′ ,λm andλm′ always
lead to 〈

λn fk−1(λn), f ∗
k−1(λn)

〉= 0〈
λn fk−1(λn), f ∗

k−2(λn)
〉= 0

Thus, the ωk and ϕk are zeros.

With the graph shift operator S, the generating procedure of Forsythe poly-
nomials is rewritten as

f0(S) = I , f1(S) = S, fk (S) = S fk−1(S), k > 1,

which is the same as FIR graph filter.

6
RATIONAL GRAPH FILTER DESIGN

USING ITERATIVE VECTOR FITTING

I N this chapter a new graph filter design method is presented. Previous works
(Chapters 4 and 5) on designing graph filters mainly focus on the (orthogo-

nal) polynomial basis with FIR graph filters and ARMA graph filters. This chapter
proposes an iterative framework for designing a special type of ARMA graph fil-
ter for both undirected and directed graphs. Our approach formulates the design
as a least-squares problem and recursively solves the error between the desired
frequency response and the filter response represented by a partial fraction be-
longing to a rational basis. We demonstrate our proposed method through ex-
perimental results and give a comparison with the well-known FIR graph filters.
The result shows that the new design is more suitable for applications demand-
ing higher approximation accuracies.

The remainder of this chapter is organized as follows. We first briefly give
some background in Section 6.1. Then, we present the choice of the rational ba-
sis function and propose the rational graph filter (a specific formulation of the
ARMA filter) in Section 6.2. We introduce our iterative approach and formulate

133

6

134 6. RATIONAL GRAPH FILTER DESIGN USING ITERATIVE VECTOR FITTING

the solution for the rational graph filter in Section 6.3. Finally, experimental re-
sults and conclusions are shown in Section 6.4 and Section 6.5.

6.1. INTRODUCTION

6

135

6.1. INTRODUCTION

FIR graph filters [1, 2], direct analogs of temporal FIR filters, are implemented as
polynomials in the graph shift operator, e.g., the Laplacian [3] or adjacency ma-
trix [4]. To accurately match some given specifications, FIR filters require a high
filter order leading to a high implementation cost. An alternative to the FIR graph
filters are the IIR (ARMA) graph filters [5], [6]. These filters are characterized by
a rational polynomial frequency response, which brings more degrees of free-
dom to the design. However, as the FIR graph filter, the aforementioned ARMA
graph filters mentioned in Chapters 4 and 5 still rely on polynomials as the ba-
sis functions for the filter response in both the numerator and denominator. In
this chapter, we propose a new filter design framework for both undirected and
directed graphs. Instead of a polynomial basis, we focus on a partial fraction be-
longing to a rational basis. Note that the proposed graph filter corresponds to
the pole-zero form (3.38) and partial fraction form (3.40) ARMA filters discussed
in Chapter 3.

Compared with polynomial basis functions, rational basis functions have a
lot of numerical advantages [7–9], i.e., better interpolatory and extrapolatory per-
formances [10]. Our approach is based on formulating the design of this spe-
cific ARMA filter formulation as a least-squares problem and solving the error
between the desired frequency response and the filter response recursively with
the vector fitting method [10–14].

6.2. RATIONAL GRAPH FILTER

In this section, we start with the well-studied FIR graph filter and introduce the
selected rational basis. Then, we formulate the rational graph filter and briefly
discuss the implementation problem.

As we discussed in previous chapters, an FIR graph filter G of order K can
be expressed as a K -th order polynomial in the graph shift operator, i.e., G =
g (S) = g0I + g1S +·· ·+ gK SK , where K is the filter order. The linear operator G is
diagonalizable by U since G =U g (Λ)U−1 and as such it is a valid graph filter. As
a result, the relation between the graph frequency response ĝn = [g (Λ)]n,n and
the filter coefficients gk is given by

ĝn =
K∑

k=0
gkφk (λn) =

K∑
k=0

gkλ
k
n , (6.1)

where φk (λ) is a monomial basis function in the graph frequency λ.

6

136 6. RATIONAL GRAPH FILTER DESIGN USING ITERATIVE VECTOR FITTING

In this chapter, we focus on a rational graph filter, which contains another
basis function φk (λ) namely a partial fraction belonging to a rational basis. We
first formulate the related rational graph filter in the frequency domain and then
illustrate the related parallel of the implementation procedure in the graph ver-
tex domain.

Rational basis. Rational basis functions have a lot of numerical advantages
[7], e.g., the condition number of a system matrix generated by a rational func-
tion basis is smaller than for a polynomial basis. Using a partial fraction asφk (λ),
i.e.,

φk (λn) = 1

λ+ϕk
, (6.2)

the graph frequency response can be formulated as

ĝn =
K∑

k=1

ωk

λn +ϕk
, (6.3)

which is a special case of the partial fraction form ARMA filter introduced in (3.40).
The error between the desired frequency response and the filter response be-
comes

en = ĥn − ĝn = ĥn −
K∑

k=1

ωk

λn +ϕk
, (6.4)

where ωk are the filter coefficients (residues), and −ϕk yields a set of prescribed
poles for filter response ĝn .

Note that (6.4) constitutes a nonlinear problem in terms of the unknown
poles −ϕk . For this nonlinear problem, we will adapt the vector fitting method
[13] to graph filter design and solve (6.4) as a linear problem in the next section.
But first, we will focus on the implementation of the proposed filter form.

Parallel filter implementation. As we mentioned in Chapter 3, the partial
fraction form of an ARMA graph filter leads to a parallel implementation of sub-
filters. Based on the filter coefficients ωk and poles −ϕk , we can express the ra-
tional graph filter G in the vertex domain using the graph shift operator S as

G =
K∑

k=1
ωk (S +ϕk I)−1. (6.5)

6.3. RATIONAL FILTER DESIGN

6

137

It is clear that in the vertex domain, the relation between the output y and the
input x of a rational graph filter is given by

y =
K∑

k=1
y k =

K∑
k=1

ωk (S +ϕk I)−1x . (6.6)

Note that the partial fraction decomposition of the filter G yields a set of par-
allel rational graph filters with output y k . By summing all K parallel sub-filters,
the filter output can be written as

y =
K∑

k=1
y k , where y k =ωk (S +ϕk I)−1x . (6.7)

The filter output y k can be computed as a linear system and every sub-filter can
be expressed in the compact form

(S +ϕk I)y k =ωk x . (6.8)

Note that there are several methods to solve the parallel linear system efficiently
and reduce the computational cost of computing the matrix inverse, like the first-
order methods [15], conjugate gradient (CG) [16], and some distributed iterative
methods [17–23].

6.3. RATIONAL FILTER DESIGN

In this section, we focus on the design of the rational graph filter. We introduce
the vector fitting method [13] to compute the coefficients and poles of the in-
volved rational filters.

6.3.1. VECTOR FITTING

In order to explain the vector fitting method, we first rewrite the original error
(6.4) of the design problem as

en = ĥn − ĝn = ĥn −

K−1∏
k=1

(λn +ak)

K∏
k=1

(λn +ϕk)

, (6.9)

where −ak are the zeros of ĝn . Note that the rewritten form (6.9) of ĝn is also a
special case of the pole-zero form (3.38) of an ARMA graph filter. In general, the

6

138 6. RATIONAL GRAPH FILTER DESIGN USING ITERATIVE VECTOR FITTING

pole-zero form and partial fraction expansion of ARMA graph filters can be easily
related to each other.

The main idea of vector fitting is that we start from a set of prescribed poles
−ϕk , and multiply the desired frequency response ĥn with a function

αn = 1+
K∑

k=1

ω̃k

λn +ϕk
=

K∏
k=1

(λn + ãk)

K∏
k=1

(λn +ϕk)

, (6.10)

where−ãk are the zeros ofαn and ω̃k are the additional filter coefficients (residues).
We can notice that the function αn contains the same poles as ĝn . Then, we try
to fit αn ĥn to ĝn with the new error

e ′n =αn ĥn − ĝn . (6.11)

Taking ĝn of (6.4) (or (6.9)) and αn of (6.10) into e ′n , the new error can be
expressed as

e ′n =
(

1+
K∑

k=1

ω̃k

λn +ϕk

)
ĥn −

K∑
k=1

ωk

λn +ϕk
. (6.12)

Note that with the known set of poles −ϕk , (6.12) is linear in the filter coefficients
ωk and ω̃k .

Minimizing the error e ′n will bring the desired frequency response ĥn close
to ĝn

/
αn . Hence, coming back to the expression of the original error, we can

modify e ′n as

e ′′n = ĥn − ĝn

αn
= ĥn −

K−1∏
k=1

(λn +ak)

K∏
k=1

(λn + ãk)

. (6.13)

Note from (6.13) that the poles of the desired frequency response ĥn are the
zeros of αn (i.e., −ãk). Thus, using those zeros −ãk as the new set of appropriate
poles, we can solve the original problem (6.4) (or (6.9)) by solving e ′′n . And with
the new poles, the design problem (6.4) becomes linear in the coefficients ωk .

We summarize the vector fitting method for the rational graph filter design
problem by the following steps:

1. Given an initial set of prescribed poles, we first modify the error en to e ′n
and e ′′n .

6.3. RATIONAL FILTER DESIGN

6

139

2. Start with the modified error e ′′n and solve it for the filter coefficients ωk

and ω̃k . This algorithm is explained in more detail in Section 6.3.2

3. With the filter coefficients ω̃k , the next step of the vector fitting consists
of relocating the set of poles (zeros of αn in e ′n or e ′′n). The details will be
demonstrated in Section 6.3.3

4. After updating the new set of poles, we solve the original problem (6.4)
in Section 6.3.4 to get more appropriate coefficients for the rational graph
filter.

6.3.2. ITERATIVE APPROACH

In this section, we first reformulate the design problem to make it suitable for the
iterative approach and then use a variant of the Sanathanan−Koerner method
[9, 24] to implement an iterative algorithm.

Problem formulation. We start with (6.13) as the error to minimize for every
graph frequency λn , i.e.,

e ′′n = ĥn − ĝn

αn
=

K∑
k=1

ωk
λn+ϕk

1+
K∑

k=1

ω̃k
λn+ϕk

. (6.14)

Then, by defining γn = 1
/
αn , we have e ′′n = ĥn −γn ĝn , which can be equivalently

expressed as
e ′′n = γn(ĥnαn − ĝn). (6.15)

Iterative algorithm. Let α(i)
n and ĝ (i)

n , respectively, denote the estimates of
αn and ĝn at the i -th iteration. We can then find the value of γ(i)

n , as γ(i)
n = 1/α(i)

n .
Next, the updated estimates α(i+1)

n and ĝ (i+1)
n are found by minimizing the up-

dated error
e ′′(i+1)

n = γ(i)
n (ĥnαn − ĝn), (6.16)

which is linear in the unknown variables αn and ĝn or equivalently linear in the
filter coefficients ωk and ω̃k . With the obtained estimates of α(i+1)

n and ĝ (i+1)
n

6

140 6. RATIONAL GRAPH FILTER DESIGN USING ITERATIVE VECTOR FITTING

from (6.16), the new filter coefficients ω(i+1)
k and ω̃(i+1)

k are obtained as well as

γ(i+1)
n and the procedure is then repeated for some iterations.

To explain this iterative algorithm in detail, we bring the rational basis for-
mulation of αn and ĝn into (4.16), and express the error as

e ′′(i+1)
n =

K∏
k=1

(λn +ϕk)

K∏
k=1

(λn + ã(i)
k)

ĥn

K∏
k=1

(λn + ãk)

K∏
k=1

(λn +ϕk)

−

K−1∏
k=1

(λn +ak)

K∏
k=1

(λn +ϕk)

 (6.17)

where −ϕk are the set of prescribed poles and −ã(i)
k are the set of zeros of α(i)

n (or

poles of γ(i)
n).

Since the prescribed poles −ϕk remain unchanged during the procedure,
(6.17) can be simplified as

e ′′(i+1)
n = ĥn

K∏
k=1

(λn + ãk)

K∏
k=1

(λn + ã(i)
k)

−

K−1∏
k=1

(λn +ak)

K∏
k=1

(λn + ã(i)
k)

. (6.18)

Again, this reduces to solving the following LS problem

e ′′(i+1)
n =

(
1+

K∑
k=1

ω̃k

λn + ã(i)
k

)
ĥn −

K∑
k=1

ωk

λn + ã(i)
k

. (6.19)

Comparing (6.19) with (6.12), the main idea of the iterative approach is to replace
the prescribed poles −ϕk with the new poles −ã(i)

k (zeros of α(i)
n) and to calculate

the filter coefficients ω̃k and ωk during the iterative procedure.

Iterative solution. We express the error of the iterative approach as a direct
function of ω̃ = [1,ω̃1, · · · ,ω̃k]T and ω = [ω1, · · · ,ωk]T which are vectors stacking
the filter coefficients, and write (6.19) as

e ′′(i+1) = ĥ ◦ (Φ(i)
K+1ω̃)− (Φ(i)

K ω) (6.20)

where Φ(i)
K+1 = [1Φ(i)

K], with Φ(i)
K the N ×K Cauchy matrix with entries [Φ(i)

K]n,k =
1/(λn + ã(i)

k). The vector e ′′(i+1) = [e ′′(i+1)
1 , · · · ,e ′′(i+1)

N]T contains the errors for all
graph frequencies and “◦” represents the element-wise Hadamard product.

6.3. RATIONAL FILTER DESIGN

6

141

Minimizing ‖e ′′(i+1)‖2 over ω̃ andω leads to the following LLS problem

minω̃,ω

∥∥∥∥[Φ(i)
K+1 ◦ (ĥ1T

K+1),−Φ(i)
K]

[
ω̃

ω

]∥∥∥∥2

, s.t. [ω̃]1 = 1, (6.21)

where 1K+1 is the (K +1)×1 all-one vector.
Note that for Φ(0)

K+1, with the set of prescribed poles −ϕk , the iterative ap-
proach leads to the LS problem based on (6.12) and can be considered as an ini-
tialization of the iterative method. The design cost of the iterative approach is
related to the least-square problem (6.21) which requires O((2K)2N) operations
per iteration.

6.3.3. POLE RELOCATION

In this section, we introduce the pole relocation which is the third step of the
iterative vector fitting method. We first describe the choice of prescribed poles
for initializing the iterative approach and then formulate the procedure of pole
relocation.

Prescribed poles. We consider conjugate pairs −ϕk =−ϕ∗
k ′ as the prescribed

poles [25] for an even filter order K , while for an odd filter order K , we consider an
additional constant real pole close to zero. For −ϕk =−ϕ∗

k ′ , when the desired fre-
quency response is real, the structure of the rational basis function 1

/
(λn +ϕk)

automatically generates a conjugate pair of coefficients ωk =ω∗
k ′ or ω̃k = ω̃∗

k ′ for
both real-valued (undirected graphs) and complex (directed graphs) frequencies
λn . As we mentioned in Section 6.3.1, we use the zeros of the denominator part
as the new set of poles. Hence, for the iterative algorithm, the new set of poles
for ĥn in (6.19) now are the zeros of γ(i)

n αn .

Pole relocation. For calculating the poles in the (i + 1)th iteration, we first
rewrite γ(i)

n αn in (6.19) in a matrix-vector form

1+
K∑

k=1

ω̃k

λn + ã(i)
k

= 1+ ω̃T(λn I −ϕ(i))−1b, (6.22)

where ϕ(i) is a diagonal matrix containing the set of poles {−ã(i)
k } as the corre-

sponding diagonal elements, b is a column vector with constant values 1 and ω̃
contains the filter coefficients calculated by (6.21).

6

142 6. RATIONAL GRAPH FILTER DESIGN USING ITERATIVE VECTOR FITTING

With the poles ã(i)
k and coefficients ω̃, the zeros of (6.22) can be solved by

calculating the eigenvalues of the matrixϕ(i) −bω̃T [26, 27]. Thus, the set of new
poles {−ãk } for the (i +1)-th iteration are

{−ã(i+1)
k } = ei g (ϕ(i) −bω̃T), (6.23)

where the design cost for the eigenvalue decomposition is O(N 3) operations.
For the case of conjugate poles, in order to force every element inside (6.23)

to be real-valued, the corresponding diagonal entries (k and k ′) in the matrixϕ(i)

can be expressed asϕ(i)
k which has the modified form

ϕ(i)
k =

[
Re(−ã(i)

k) Im(−ã(i)
k)

−Im(−ã(i)
k) Re(−ã(i)

k)

]
.

Meanwhile, the corresponding elements in the vectors b and ω̃T are

bk = [2, 0]T, ω̃T
k = [Re(ω̃k), Im(ω̃k)].

This modification for (6.23) has the advantage that matrix ϕ(i) becomes a real
matrix and thus its complex eigenvalues are automatically complex conjugate
pairs [7, 27] for the next iteration of the vector fitting approach. The eigenvalue
decomposition offers suitable poles for completing the iterative approach.

Remark. Since every element in the matrix ϕ(i) is real-valued, the eigenval-
ues (new poles) can appear as real and complex conjugate values −ã(i+1)

k . For
undirected graphs with real frequencies, the corresponding filter coefficients are
automatically real and complex conjugate values. Meanwhile, since some fre-
quencies for directed graphs appear as conjugate pairs (λn = λ∗

n′), with the real
poles, we have

1

λn + ã(i+1)
k

=
(

1

λn′ + ã(i+1)
k

)∗
.

For λn and λn′ , the desired frequency response is the same and the correspond-
ing coefficients ωk and ω̃k are thus real-valued.

6.3.4. FILTER COEFFICIENTS

After relocating the poles, calculating the residues becomes a linear problem
with those identified poles [13]. For instance, the error can be simplified and
reduced to the original error (6.4).

6.4. EXPERIMENTAL RESULTS

6

143

Note that, if the iterative approach converges, the filter coefficients ω are di-
rectly solved by (6.21) during the iteration. Without convergence, the filter coef-
ficients are computed after pole relocation as

e(i+1)
n = ĥn − ĝn = ĥn −

K∑
k=1

ω̄k

λn + ã(i+1)
k

, (6.24)

where ω̄k are the new filter coefficients corresponding to the new poles. In matrix-
vector form, (6.24) becomes

e(i+1) = ĥ −Φ(i+1)
K ω̄, (6.25)

where ω̄= [ω̄1, · · · ,ω̄k]T. The coefficients of the graph filter can then be found as

ω̄=Φ(i+1)†
K ĥ, (6.26)

where the additional design cost is O(K 2N).
Note that the convergence of the iterative approach is sensitive to the initial

poles and the specific order K [9], and the pole relocation performance is influ-
enced by the initialization (prescribed poles). We define the breaking point of the
algorithm using δ, representing the difference between the error in two succes-
sive iterations. For those filter orders without convergence, we use a maximum
number of iterations and we always use the iteration leading to the minimal error
as the final solution.

6.4. EXPERIMENTAL RESULTS

In this section, we will illustrate the performance of our proposed rational graph
filter design method.

Universal design example.
For our simulation, we follow the universal design [16] for both directed and

undirected graphs and the goal is to approximate an ideal low-pass frequency
response. We measure the approximation accuracy with the root of the normal-
ized mean squared error (RNMSE) as used in previous chapters. Note that for
directed graphs with complex frequencies, we only compute the approximation
error for the amplitude (absolute value) of the filter response. We use the FIR fil-
ter design as well as the iterative ARMA approach [16] (design method presented
in Chapter 4) as benchmarks for the proposed method.

6

144 6. RATIONAL GRAPH FILTER DESIGN USING ITERATIVE VECTOR FITTING

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
K

10-10

10-5

100

R
N

M
SE

FIR-LLS
Rational GF (ini1)
Rational GF (ini2)
Rational GF (average)
ARMA-Iterative approach

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
K

10-4

10-3

10-2

10-1

100

R
N

M
SE

FIR-LLS
Rational GF (ini1)
Rational GF (ini2)
Rational GF (average)
ARMA-Iterative approach

Figure 6.1: RNMSE of the proposed design method and the FIR filter design for different filter
orders K in approximating an ideal low-pass frequency response. Universal design using N = 100
grid points for (a) an undirected graph and (b) a directed graph.

In Fig. 6.1, we show the RNMSE of the iterative design method for two dif-
ferent sets of initial poles, and the FIR performance is plotted as a benchmark.
Specifically, for the rational basis, the depicted RNMSE is related to (6.26) for
each particular filter order K . The two sets of initial poles are given as −ϕk =
c +di , −ϕk ′ = c −di , where for one set we use d = c/10, and for the other d = 0,
and where the parameter c is always uniformly distributed over the range (0,1).
Since the best performance depends on the initial values of the poles [9], we
also give the average RNMSE for 100 realizations using different initializations
(c ∈ [0,1],d = c/10).

Although the convergence and performance depend on the initial poles, our
design method still shows robustness. The RNMSE of the FIR and ARMA graph

6.5. CONCLUSION

6

145

filters are higher for the undirected graph. For the directed case, the ARMA-
iterative approach [16] shows a better performance for smaller orders (K < 20),
while the vector fitting method gives lower errors for high filter order (K > 20).
It is important to highlight that the iterative design for graph filters is more suit-
able for applications demanding higher approximation accuracies. Moreover,
comparing the universal design for undirected graphs in Fig. 6.1 (a) with the
method for directed graphs in Fig. 6.1 (b), the former shows better performance
and higher approximation accuracy.

6.5. CONCLUSION

This chapter proposes an iterative framework for rational graph filter design for
both undirected and directed graphs. Our iterative approach recursively solves
the error between the desired frequency response and the filter response repre-
sented by a rational transfer function. Experimental results show that our algo-
rithm can improve the performance of well-known graph filters.

REFERENCES

[1] A. Sandryhaila, S. Kar, and J. M. Moura, Finite-time distributed consensus
through graph filters, in Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on (IEEE, 2014) pp. 1080–1084.

[2] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs: Graph
filters. in ICASSP (2013) pp. 6163–6166.

[3] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The
emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains, IEEE Signal Process-
ing Magazine 30, 83 (2013).

[4] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs, IEEE
transactions on signal processing 61, 1644 (2013).

[5] X. Shi, H. Feng, M. Zhai, T. Yang, and B. Hu, Infinite impulse response graph
filters in wireless sensor networks, IEEE Signal Processing Letters 22, 1113
(2015).

[6] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, Autoregressive moving average
graph filtering, IEEE Transactions on Signal Processing 65, 274 (2017).

6

146 REFERENCES

[7] D. Deschrijver, B. Haegeman, and T. Dhaene, Orthonormal vector fitting: A
robust macromodeling tool for rational approximation of frequency domain
responses, IEEE Transactions on advanced packaging 30, 216 (2007).

[8] D. Deschrijver, B. Gustavsen, and T. Dhaene, Advancements in iterative
methods for rational approximation in the frequency domain, IEEE Trans-
actions on Power Delivery 22, 1633 (2007).

[9] S. Grivet-Talocia and B. Gustavsen, Passive macromodeling: Theory and ap-
plications, Vol. 239 (John Wiley & Sons, 2015).

[10] L. N. Trefethen, Approximation theory and approximation practice (Siam,
2013).

[11] T. Dhaene and D. Deschrijver, Stable parametric macromodeling using a re-
cursive implementation of the vector fitting algorithm, IEEE Microwave and
Wireless Components Letters 19, 59 (2009).

[12] A. Chinea and S. Grivet-Talocia, A parallel vector fitting implementation for
fast macromodeling of highly complex interconnects, in 19th Topical Meeting
on Electrical Performance of Electronic Packaging and Systems (IEEE, 2010)
pp. 101–104.

[13] B. Gustavsen and A. Semlyen, Rational approximation of frequency domain
responses by vector fitting, IEEE Transactions on power delivery 14, 1052
(1999).

[14] B. Gustavsen, Improving the pole relocating properties of vector fitting, IEEE
Transactions on Power Delivery 21, 1587 (2006).

[15] D. P. Bertsekas, Convex optimization theory (Athena Scientific Belmont,
2009).

[16] J. Liu, E. Isufi, and G. Leus, Filter design for autoregressive moving average
graph filters, IEEE Transactions on Signal and Information Processing over
Networks 5, 47 (2019).

[17] L. F. Richardson, Ix. the approximate arithmetical solution by finite differ-
ences of physical problems involving differential equations, with an appli-
cation to the stresses in a masonry dam, Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers of a Mathematical or
Physical Character 210, 307 (1911).

REFERENCES

6

147

[18] G. Opfer and G. Schober, Richardson’s iteration for nonsymmetric matrices,
Linear algebra and its applications 58, 343 (1984).

[19] Y. Saad, Iterative methods for sparse linear systems, Vol. 82 (siam, 2003).

[20] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: nu-
merical methods, Vol. 23 (Prentice hall Englewood Cliffs, NJ, 1989).

[21] L. Lei, Convergence of asynchronous iteration with arbitrary splitting form,
Linear Algebra and its Applications 113, 119 (1989).

[22] J. M. Bull and T. Freeman, Numerical performance of an asynchronous jacobi
iteration, in Parallel Processing: CONPAR 92—VAPP V (Springer, 1992) pp.
361–366.

[23] G. M. Baudet, Asynchronous iterative methods for multiprocessors, Journal
of the ACM (JACM) 25, 226 (1978).

[24] M. H. Hayes, Statistical digital signal processing and modeling (John Wiley
& Sons, 2009).

[25] W. Hendrickx, D. Deschrijver, and T. Dhaene, Some remarks on the vector
fitting iteration, Mathematics in Industry 8, 134 (2006).

[26] A. J. Laub and B. Moore, Calculation of transmission zeros using qz tech-
niques, Automatica 14, 557 (1978).

[27] L. Zhang, Q. Li, W. Wang, and W. H. Siew, A new algorithm to identify transfer
functions of antennas used in emc measurement, in 2009 Asia-Pacific Power
and Energy Engineering Conference (IEEE, 2009) pp. 1–4.

7
IMPLEMENTATION OF ARMA

GRAPH FILTERS

S INCE the design methods proposed in this thesis mainly focus on the fre-
quency domain, this chapter introduces some particular implementations

for our graph filters in the vertex domain. We first formulate the filters as a lin-
ear system, and then separate the methods into two categories, e.g. centralized
[1–5] and distributed [6–11] implementations. For the centralized implementa-
tion, we use conjugate gradient and biconjugate gradient methods for respec-
tively undirected and directed graph filters. Although these centralized iterative
methods are efficient, they do not allow for easy distribution. Thus, we also pro-
pose the Richardson and weighted Jacobi iterations as distributed implementa-
tions for both undirected and directed graph filters. Besides, we formulate the
convergence conditions for these methods. The simulation results compare the
different implementation methods and show the performance for a specific ap-
plication, namely graph signal denoising.

Part of this chapter has been published in the IEEE Transactions on Signal and Information Pro-
cessing over Network [1] (2019).

149

7

150 7. IMPLEMENTATION OF ARMA GRAPH FILTERS

The remainder of this chapter is organized as follows. Section 7.1 briefly in-
troduces the whole chapter and reviews the linear system related to ARMA graph
filters. Then, Section 7.2 considers the concept of a centralized implementation
for both directed and undirected graph filters. Section 7.3 proposes some dis-
tributed iterative methods. In the end, Section 7.4 concludes the chapter.

7.1. INTRODUCTION

7

151

7.1. INTRODUCTION

As we mentioned in Chapter 2, the graph filter (GF) can be represented as the
operator G = g (S) in the vertex domain. For the implementation problem, it is
clear that the relation between the output y and the input x of a graph filter with
an ARMA model is given by

y =G x (7.1)

which can be written as(
P∑

p=0
apφp (S)

)
y =

(
Q∑

q=0
bq fq (S)

)
x . (7.2)

where φp (•) and fq (•) are the basis functions.
Note that for the ARMA filter in Chapter 4, the basis functions are monomial

polynomials as φp (S) = Sp , fq (S) = Sq . For the ARMA-Forsythe graph filter de-
signed in Chapter 5, the basis functions are Forsythe polynomials. Meanwhile,
with the partial fraction ARMA filter proposed in Chapter 6, (7.2) is related to
the sub-filter expressed in the compact form (6.8) with Q = 0, P = 1, φp (S) = Sp ,
fq (S) = Sq .

Hence, by defining the matrices

P =
P∑

p=0
apφp (S), Q =

Q∑
q=0

bq fq (S), (7.3)

we can write (7.2) in the matrix-vector form

P y =Qx . (7.4)

To compute the filter output y in (7.4), we can first calculate the right-hand side
denoted as z =Qx (which corresponds to pre-filtering x with an FIR style filter),
and then y is found by simply solving the linear system

P y = z . (7.5)

In this chapter, we will propose centralized and distributed iterative meth-
ods to implement the linear system (7.5). We start with the conjugate gradient
method for undirected graph filters in the next section. Then, we formulate the
centralized implementation for directed graph filters.

7

152 7. IMPLEMENTATION OF ARMA GRAPH FILTERS

7.2. CENTRALIZED IMPLEMENTATION

In this section, we mainly focus on the centralized implementation of ARMA
graph filters. For an undirected graph, we use the conjugate gradient method
[3] to implement the linear system (7.5), while we also propose the biconjugate
gradient [4, 5] method for a directed graph.

7.2.1. CONJUGATE GRADIENT

For undirected graphs, we take L or its modifications, e.g., Ln , as shift operator S,
which is a symmetric and positive-definite matrix. We further consider using the
conjugate gradient (CG) method [3] to implement ARMA graph filters in the ver-
tex domain. The CG method is an algorithm to compute the numerical solution
of particular systems of linear equations. Also, it has two properties: 1) orthogo-
nality of the residuals and 2) conjugacy of the search directions. Note that there
are other efficient methods to solve the linear system (7.5) for undirected graphs,
like first-order methods [2], and the power method [12]. The computational cost
of the implementation reduces significantly for sparse matrices S, i.e., for sparse
graphs [13].

We now summarize the conjugate gradient method. As shown in Algorithm
7.1, the CG approach has a computational complexity that scales linearly with
the number of edges E .

• For the ARMA graph filter in Chapter 4, we first need to compute z = Qx ,
which by following the efficient implementation [14] requires Q multipli-
cations with the shift operator S, since the terms can be computed as Sk x =
S(Sk−1x). This part leads to an overall complexity of O(QE).

Then, in each iteration i of the CG, it is required to compute the term P d (i),
which is computed in the same way as z and requires a computational ef-
fort of order O(PE).

• For the ARMA-Forsythe graph filter related to an undirected graph in Chap-
ter 5, we can compute the term z =Qx efficiently as

Qx = b0 f0(S)x +b1 f1(S)x +·· ·+bQ fQ (S)x , (7.6)

where fq (•) is the Forsythe polynomial and the term bq fq (S)x inside Qx is
computed recursively as

bq fq (S)x = bq (S fq−1(S)x −ωq fq−1(S)x −ϕq fq−2(S)x). (7.7)

7.2. CENTRALIZED IMPLEMENTATION

7

153

Algorithm 7.1 : Conjugate gradient

1 Input: y (0), x , coefficients ap , bq

2 accuracy ε, number of iterations T

3 Initialization: z , P y (0)

4 d (0) = r (0) = z −P y (0),

5 δ(0) = δnew = r (0)T r (0)

6 Iteration: while i < T and δnew > ε2δ(0)

7 ω(i) = δnew

d (i)T P d (i)

8 y (i+1) = y (i) +ω(i)d (i),

9 r (i+1) = r (i) −ω(i)P d (i)

10 δol d = δnew , δnew = r (i+1)T r (i+1)

11 ϕ(i+1) = δnew

δol d , d (i+1) = r (i+1) +ϕ(i+1)d (i)

12 i = i +1

13 Output: y (i+1)

Thus, the computational cost of Qx is related to S fq−1(S)x leading to an
overall complexity of O(QE) [14]. Then, for every iteration i , the term P d (i)

(P y (0)) can be computed using the same recursive form and it requires a
computational effort of order O(PE).

• If considering that the conjugate gradient is arrested after T iterations, the
overall implementation costs of the ARMA and ARMA-Forsythe graph fil-
ters are of order O((PT +Q)E). Since the partial fraction form (6.8) is a
parallel form of an ARMA graph filter, the total cost for implementing the
graph filter in Chapter 6 is O(K T E), where K is the number of sub-filters.

• We would like to highlight that the ARMA filter output with CG is computed
without explicitly building the matrices P and Q , and only considers their
operation on a specific vector.

7

154 7. IMPLEMENTATION OF ARMA GRAPH FILTERS

Algorithm 7.2 : Biconjugate gradient

1 Input: y (0), x , filter coefficients and parameters

2 accuracy ε, number of iterations T

3 Initialization: z , P y (0)

4 d (0) = r (0) = z −P y (0),

5 choose r̃ (0) such that r (0)T
r̃ (0) 6= 0,

6 δ(0) = δnew = r (0)T r̃ (0), d̃
(0) = r̃ (0)

7 Iteration: while i < T and δnew > ε2δ(0)

8 ρ(i) = δnew

d̃
(i)H

P d (i)

9 y (i+1) = y (i) +ρ(i)d (i),

10 r (i+1) = r (i) −ρ(i)P d (i)

11 r̃ (i+1) = r̃ (i) −ρ(i)P T d̃
(i)

12 δol d = δnew , δnew = r (i+1)T r̃ (i+1)

13 θ(i+1) = δnew

δol d ,

14 d (i+1) = r (i+1) +θ(i+1)d (i),

15 d̃
(i+1) = r̃ (i+1) +θ(i+1)d̃

(i)
,

16 i = i +1

17 Output: y (i+1)

7.2.2. BICONJUGATE GRADIENT

For undirected graphs, the conjugate gradient method [1] is proposed to solve
the ARMA graph filter implementation. In this section, we introduce the bicon-
jugate gradient (BiCG) method to implement the designed graph filters for a di-
rected graph.

As we mentioned in the previous chapters, for directed graphs, we take ma-
trix A or modifications thereof as shift operator. The conjugate gradient method
is not suitable for a directed graph, because i) the adjacency matrix A is usu-
ally not symmetric and positive-definite for a directed graph, ii) the residual vec-
tors in the method cannot be made orthogonal with short iterations. Thus, we
present an alternative biconjugate gradient [4, 5] method to complete the cen-

7.2. CENTRALIZED IMPLEMENTATION

7

155

tralized implementation. We can summarize it as follows:

• Similar to the CG approach, the BiCG [15] also has a computational com-
plexity that scales linearly with the number of edges E . As shown in Algo-
rithm 7.2, we also need to compute the terms P d (i) and Qx which are the
same as for the CG approach in the previous section. The computational
cost of the two terms is in total O((PT +Q)E), where T is the number of
iterations.

• Note that for computing the term P T d̃
(i)

in BiCG, we can also reduce the
cost by computing it using a recurrence form. For the ARMA graph filter,
we have

P T d̃
(i) = (a0S0 +a1S1 +·· ·+aP SP)T d̃

(i)

= a0(S0)T d̃
(i) +a1(S1)T d̃

(i) +·· ·+aP (SP)T d̃
(i) . (7.8)

Every term ap (Sp)T d̃
(i)

can be computed recursively as

(Sp)T d̃(i) = (S(p−1)S)T d̃(i) = ST (S(p−1))T d̃(i), (7.9)

which has a complexity O(PE) for every iteration.

• For the ARMA-Forsythe graph filter in Chapter 5, we first rewrite the gen-
erating process of the orthogonal polynomial as

φp (S) =φp−1(S)S −ωpφp−1(S)−ϕpφp−2(S).

Since every term of the orthogonal polynomial is a multiplication with the
shift operator S, rewriting the generating process will not change the poly-
nomial structure.

After that, P T d̃
(i)

can be formulated as

P T d̃
(i) = a0φ

T
0 (S)d̃

(i) +·· ·+aPφ
T
P (S)d̃

(i)
, (7.10)

and the term apφ
T
p (S)d̃

(i)
is computed as

apφ
T
p (S)d̃

(i)

= ap (φp−1(S)S −ωpφp−1(S)−ϕpφp−2(S))T d̃
(i)

= ap (STφT
p−1(S)d̃

(i) −ωpφ
T
p−1(S)d̃

(i) −ϕpφ
T
p−2(S)d̃

(i)
),

(7.11)

7

156 7. IMPLEMENTATION OF ARMA GRAPH FILTERS

which is recursively solved by the previous two terms, such as φT
p−1(S)d̃

(i)

and φT
p−2(S)d̃

(i)
. The computational cost of the term apφ

T
p (S)d̃

(i)
is thus

related to STφT
p−1(S)d̃

(i)
with a complexity O(PE) for every iteration in

BiCG.

• Considering the BiCG algorithm with maximum T iterations, the overall
implementation cost for an ARMA graph filter of the form in Chapters 4
and 5 is of order O((2PT +Q)E). With the partial fraction form (6.8) in
Chapter 6, the total cost is O(2K T E) corresponding to the number of sub-
filters K .

7.2.3. NUMERICAL RESULTS

In this section, we evaluate the centralized implementation for both undirected
and directed graph filters. To compare filters with the same implementation
costs, we mainly consider the ARMA graph filters of the form in Chapters 4 and
5. In the simulation, we use the well-studied FIR and IIR [16] graph filters as
comparisons.

CG implementation performance. We now aim at analyzing the ARMA im-
plementation performance using the CG approach w.r.t. its implementation cost.
We implement the universally designed ARMA and ARMA-Forsythe filters using
CG on the Erdős Rényi graph [17] with a link probability of p = 0.1, and consider
the graph size: N = 500. We use the universally designed FIR and IIR [16] graph
filters as benchmarks.

The ARMA filter coefficients (in Chapter 4) and the parameters for generating
orthogonal polynomials in the ARMA-Forsythe filter (in Chapter 5) are designed
universally with 100 grid points in the range [0,2]. Meanwhile, the FIR filter is
designed using LLS also with 100 grid points and the IIR filter following the But-
terworth approach [16].

The filter is applied to a white input and the desired frequency response (low
pass filter) is compared to the division of the filter output and the input in the
frequency domain. We measure the approximation accuracy with the root nor-
malized mean square error (RNMSE) of the frequency response of the filter:

RNMSE =

∥∥∥ŷ (t) − ĥ
∥∥∥∥∥∥ĥ

∥∥∥ , (7.12)

7.2. CENTRALIZED IMPLEMENTATION

7

157

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
K

10-1

100

R
N

M
SE

FIR-LLS
IIR
ARMA(CG)
ARMA-Forsythe(CG)

Figure 7.1: RNMSE of the ARMA and ARMA-Forsythe graph filter implementations on an Erdős
Rényi graph with N = 500. Performance evaluation for the trade-off between computational cost
and approximation accuracy. For CG, the complexity of the ARMA (ARMA-Forsythe) implementa-
tion is limited by PT +Q ≤ K . Note that K represents the FIR and IIR graph filter order.

where ŷ (t) is the output of every iteration and ĥ is the designed ideal low pass for
the Erdős Rényi graph in the frequency domain.

In Fig. 7.1, we show the performance of the ARMA filter (Algorithm 7.1) when
the CG is halted after T iterations such that PT +Q ≤ K holds, i.e., the ARMA (or
ARMA-Forsythe) filter has a smaller or the same implementation cost compared
to the FIR filter. For the CG, we set ε = 10−3. The IIR filter has the same order
K as the FIR filter and is given a maximum number of iterations of T = 40. The
results show that the ARMA (or ARMA-Forsythe) filter has a lower approximation
error than other alternatives with similar or smaller complexity. Note that ARMA-
Forsythe has a better performance than the ARMA graph filter.

To highlight the benefits of the universal design approach, we consider an ER
graph of a larger size (> 100 nodes). In Fig. 7.1, we notice that even for the case
with N = 500, the universal design based on 100 grid points is a wise choice and
yields good performance.

BiCG implementation performance. Now, we consider a directed network
graph to show the trade-off between the performance and computational cost.
We test the implementation for a graph with N = 200, shown in Fig. 7.2. Note that
the frequencies in Fig. 7.2 are real and complex conjugate pairs. Similar to the
CG approach, the filter performance is evaluated by (7.12). The filter coefficients
and parameters for generating orthogonal polynomials are again computed by a

7

158 7. IMPLEMENTATION OF ARMA GRAPH FILTERS

universal design with 100 grid points. For BiCG, the break accuracy is 10−3.

Figure 7.2: Directed network graph of N = 200 nodes with E = 10597 edges having different weights
in the interval [0,8].

5 10 15 20 25 30 35 40
K

0.64

0.66

0.68

0.7

0.72

R
N

M
SE

FIR-LLS
FIR-Forsythe
ARMA(BiCG)
ARMA-Forsythe(BiCG)

Figure 7.3: RNMSE of the ARMA and ARMA-Forsythe graph filter implementations on a directed
graph with N = 200. Performance evaluation for the trade-off between computational cost and
approximation accuracy. RNMSE of BiCG implementation on a directed network graph with filter
order limited by 2PT +Q ≤ K . The minimum orders for both cases are K = 3 (P = 1, Q = 1, and
T = 1).

In Fig. 7.3, we show the performance when the BiCG is halted after T itera-
tions such that 2PT+Q ≤ K holds for the ARMA and ARMA-Forsythe graph filters.
Results show that with the same or lower implementation complexity and K < 25,
the ARMA-Forsythe design method has a smaller approximation error than the

7.2. CENTRALIZED IMPLEMENTATION

7

159

FIR and ARMA graph filters. With a higher-order K > 25, the ARMA graph filter
shows a slightly better performance than the ARMA-Forsythe. We notice that the
FIR and FIR-Forsythe (they overlap in the figure) show an unstable performance
for high order. However, ARMA (and ARMA-Forsythe) avoid this situation due to
the separation of filter order into P and Q.

Remark. The motivation of this section is to show the implementation ben-
efits of the ARMA model and the robustness of our universal design fashion. We
highlight the potential of the ARMA (and ARMA-Forsythe) graph filter regarding
the performance improvement over other alternative filters such as FIR, and IIR
graph filters. For some applications such as building graph filter banks, design-
ing graph wavelets, and spectral clustering, the above results can be useful for
replacing the FIR with ARMA (or ARMA-Forsythe) graph filters.

7.2.4. GRAPH SIGNAL INTERPOLATION.

In this subsection, we aim to show an application of the CG implementation.
We illustrate the performance of ARMA graph filters in interpolating missing val-
ues in the Molene weather data set. The data set contains hourly observations
of temperature measurements collected in January 2014 in the region of Brest
(France).

The undirected graph, containing 32 cities (nodes), is built according to [18],
which accounts for the smoothness of the data w.r.t. the graph structure. We
consider the case that a portion of the graph signal is missing, and by exploiting
the smoothness prior we aim to reconstruct the overall graph signal from noisy
measurements.

Experimental setup. Given x ′ the observed signal and x the original graph
signal, this interpolation problem is formulated as [19] [20]:

min
x

∥∥T (x −x ′)
∥∥2

2 +ωxT Ln x (7.13)

where T is a diagonal matrix with Ti i = 1 if xi is known and Ti i = 0 otherwise; ω
is the weight for the prior. The optimal solution of (7.13) is

x̃ = (T +ωLn)−1x ′, (7.14)

Access to the raw data is through the link: https://donneespubliques.meteofrance.fr/
donnees_libres/Hackathon/RADOMEH.tar.gz

https://donneespubliques.meteofrance.fr/donnees_libres/Hackathon/RADOMEH.tar.gz
https://donneespubliques.meteofrance.fr/donnees_libres/Hackathon/RADOMEH.tar.gz

7

160 7. IMPLEMENTATION OF ARMA GRAPH FILTERS

10%% 20%% 30%% 40%% 50%% 60%% 70%% 80%% 90%%

Percentage

10
-1

10
0

R
N

M
S

E

=1 Ideal filter

=2 Ideal filter

=1 ARMA

=2 ARMA

=1 FIR

=2 FIR

Figure 7.4: RNMSE of the ARMA graph filter for interpolation of the Molene data set, whereω= 1,2.
As two comparisons, the ideal graph filter and the FIR filter with order K = 20 are shown with the
same values of ω.

which considering P = T +ωLn is solved through an ARMA graph filter (7.5). We
consider using the CG to implement (7.14) where ε is set to 10−2 and the maxi-
mum number of iterations T to 20. As a comparison, for the FIR graph filter, the
coefficients are found as the solution of

min
gk

∥∥∥(T +ωLn)−1 −∑K
k=0 gk Lk

n

∥∥∥2

F
(7.15)

where the gk values represent the FIR coefficients.

Results. In Fig. 7.4 we show the RNMSE between the reconstructed signal
x̃ and the original one x as a function of the portion of missing data. Addition-
ally, to construct the observed signal x ′, we add a zero-mean Gaussian noise with
variance σ2 = 10−2 to the original signal x and randomly wipe off signals up to
the specified percentage. The performance is averaged over all 744 observations.
We plot the numerical RNMSE for different percentages and twoω values. These
results show that the RNMSE reduces for the ARMA graph filter when the per-
centage of known values increases. As a comparison, we notice that the ARMA
graph filter offers a similar performance to the ideal graph filter. The FIR graph
filter (K = 20) yields the worse result in this case.

7.3. DISTRIBUTED IMPLEMENTATION

7

161

7.3. DISTRIBUTED IMPLEMENTATION

Although the earlier mentioned iterative methods to solve the linear system P y =
Qx are efficient, they do not allow for an easy distribution. In this section, we
will illustrate two alternative iterative methods which are easy to distribute and
implement, named Richardson iteration and weighted Jacobi iteration.

7.3.1. RICHARDSON ITERATION

For the linear system P y =Qx , one distributed solution is given by the Richard-
son method [6–8] which results in the following iteration

y (t+1) = y (t) −w(P y (t) − z) (7.16)

with step size w , arbitrary initial point y (0) and z = Qx . Since the matrix-vector
product P y (t) can be computed recursively and matrix P is a (orthogonal) poly-
nomial in the shift operator S, this method can be easily realized in a distributed
manner as discussed earlier.

Convergence condition. The convergence of the Richardson method is de-
termined by the error in every iteration step. Subtracting the exact solution y ,
and introducing the notation for the error e(t+1) = y (t+1)− y , we get the following
derivation:

e(t+1) = y (t) −w(P y (t) − z)− y
= (I −wP)y (t) − (I −wP)y
= (I −wP)(y (t) − y)
= (I −wP)e(t)

Thus, we have ∥∥e(t+1)
∥∥= ∥∥(I −wP)e(t)

∥∥≤ ‖I −wP‖∥∥e(t)
∥∥ ,

for any vector norm and the corresponding induced matrix norm. Under this cir-
cumstance, the convergence condition for the Richardson method is formulated
as

‖I −wP‖ < 1, (7.17)

for any matrix P . Note that the standard Richardson iterative method does not
require P to be symmetric. In other words, the Richardson method can handle
directed graphs with shift operator S = A (or a modification thereof) as long as
the matrix P satisfies (7.17).

7

162 7. IMPLEMENTATION OF ARMA GRAPH FILTERS

Suppose that P is symmetric, i.e., the corresponding graph is an undirected
graph, then the convergence is determined by the spectral radius of I −wP , which
can be written as

ρ(I −wP) = max
k

|1−wP (λk)| .

More specifically, the iteration converges with the condition ρ(I − wP) < 1. In
other words, we need 0 < w < wmax where wmax = 2/maxp P (λk). Also, the
smaller ρ(I −wP) we have, the faster it converges. The fastest convergence for
the specific case of an undirected graph is obtained as

wopt = min
w

max
k

|1−wP (λk)| , (7.18)

which can be solved as

wopt = 2

mink P (λk)+maxk P (λk)
. (7.19)

The Richardson iteration is an iterative method for solving a system of linear
equations. The total computational cost for both undirected and directed graphs
is O((PT +Q)E) for the ARMA model, where T is the number of iterations and P,Q
are the filter orders.

In the next section, we will provide another distributed implementation named
weighted Jacobi iteration to solve the linear system which needs to decompose
the matrix P into two parts.

7.3.2. WEIGHTED JACOBI ITERATION

In numerical linear algebra, the Jacobi method [8–11] is an iterative algorithm
for determining the solution of a set of linear equations. The weighted Jacobi
iteration uses a parameter w in the iteration as

y (t+1) = wD−1(z −R y (t))+ (1−w)y (t). (7.20)

where y (t) is the t-th approximation or iteration of y , and w is the step size. The
matrix P in (7.5) can be decomposed into a diagonal component D , and the re-
mainder R as

P = D +R , (7.21)

7.3. DISTRIBUTED IMPLEMENTATION

7

163

where

D =


p11 0 · · · 0

0 p22 · · · 0
...

...
. . .

...
0 0 · · · pN N

 , R =


0 p12 · · · p1N

p21 0 · · · p2N
...

...
. . .

...
pN 1 pN 2 · · · pN N

 .

Note that the weighted Jacobi method is one of the splitting methods [8]
where D is the diagonal component. In general, the Jacobi method is efficiently
implemented in a distributed fashion, i.e., the inversion of a diagonal matrix is
trivial to distribute [21]. To be specific, we could compute the matrix R y (t) by
first implementing P x in a distributed way. i.e., recursively applying signal y (t)

on S, and then subtracting D x .

Convergence condition. Similar to the Richardson iteration, the conver-
gence condition of the weighted Jacobi iteration is determined by the error in
every iteration step using the notation e(t+1) = y (t+1) − y .

Specifically, we have

e(t+1) = wD−1(z −R y (t))+ (1−w)y (t) − y
= wD−1P y −wD−1R y (t) + y (t) −w y (t) − y
= (wD−1P − I)y − (wD−1R +wD−1D − I)y (t)

= (I −wD−1P)(y (t) − y)
= (I −wD−1P)e(t)

And, thus we obtain∥∥e(t+1)
∥∥= ∥∥(I −wD−1P)e(t)

∥∥≤ ∥∥I −wD−1P
∥∥∥∥e(t)

∥∥ .

As a result, the convergence condition for the weighted Jacobi iteration is∥∥I −wD−1P
∥∥< 1. (7.22)

Note that the convergence condition (7.22) is suitable for both directed and undi-
rected graphs.

In case the matrix P is symmetric, i.e., the graph is an undirected graph, the
weighted Jacobi iteration converges if ρ(I −wC) < 1, where C = D−1P . In other
words, we need 0 < w < wmax with wmax = 2/maxkC (λk). The optimal solution
for the step size can be formulated as

wopt = 2

minkC (λk)+maxkC (λk)
. (7.23)

7

164 7. IMPLEMENTATION OF ARMA GRAPH FILTERS

The total computational cost of the weighted Jacobi iteration is O((PT+Q)E+
PT N), where T is the number of iterations, N is the number of nodes, and E is
the number of edges.

For this section, we presented general guarantees for the convergence of dis-
tributed filter implementations. Differently from previous studies, we take both
directed and undirected graphs into account and provide the basic convergence
condition which is suitable for all situations. In the following section, we give
a series of numerical experiments to demonstrate the behavior of the two men-
tioned distributed implementations.

7.3.3. NUMERICAL RESULTS

In this section, we illustrate the convergence results for the two distributed im-
plementations and briefly discuss the changing of step size to provide the con-
vergence speed. Again, we assume that the graph spectrum is unavailable to the
designer and we use the coefficients from the universal design to test the imple-
mentations. Moreover, we apply a white input to the filter and consider an ideal
low pass filter for all tests.

To illustrate our results, we simulate two different case studies: one with an
Erdős Rényi graph (undirected case with N = 500 nodes) and the other one with
a directed network graph with N = 200 nodes. For both cases, we take the filter
orders as P = 2 and Q = 4. To test the different design methods, we take the ARMA
graph filter (of Chapter 4) for the undirected case and use the ARMA-Forsythe
graph filter (of Chapter 5) to evaluate the directed case.

Undirected case. We aim at analyzing the distributed implementation per-
formances. For the Erdős Rényi graph, we apply the ARMA(4, 2) graph filter de-
signed in Chapter 4.

Note that the coefficients of the ARMA filter are designed universally using
the LS approach with 100 grid points corresponding to Fig. 4.1. We use the root
normalized mean square error (RNMSE) (7.12) to show the performance of the
proposed methods in Fig. 7.5. In the figure, the results of the two distributed
implementations with the optimal step sizes overlap with each other.

We can notice that for the same step size w , the weighted Jacobi iteration
and Richardson iteration give different speeds of convergence. To be specific,
with a small step size, i.e., w = 0.01, we can see that the weighted Jacobi imple-
mentation converges faster than the Richardson implementation. In addition,
we observe that the convergence speed can be increased, and the fastest speed

7.3. DISTRIBUTED IMPLEMENTATION

7

165

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

T

10
-1

10
0

R
N

M
S

E

Richardson,w=0.01

Richardson,w=0.1

Richardson,w=opt

W Jacobi,w=0.01

W Jacobi,w=0.1

W Jacobi,w=opt

Figure 7.5: Convergence results of two distributed implementations of the ARMA(4, 2) graph filter
with different step sizes. The experiment uses an Erdős Rényi graph with link probability p = 0.1.
T is the number of iterations.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

T

10
-2

10
-1

10
0

R
N

R
M

S
E

Richardson,w=0.01

Richardson,w=0.1

Richardson,w=opt

W Jacobi,w=0.01

W Jacobi,w=0.1

W Jacobi,w=opt

Figure 7.6: RNRMSE versus the number of iterations of two distributed implementations for
ARMA(4, 2) with different step sizes. T is the number of iterations and the Erdős Rényi graph is
the same as in Fig. 7.5.

is obtained by the optimal step size wopt, i.e.,wopt = 1.88 for the Richardson iter-
ation and wopt = 0.21 for the weighted Jacobi implementation. Note that there
is no guarantee of monotonic convergence to the true solution and the error at
each iteration is not strictly decreasing, i.e., w = 0.1 using the weighted Jacobi
iteration gives a lower error before the iteration reaches convergence.

To compare the results, we define the root normalized residual mean square

7

166 7. IMPLEMENTATION OF ARMA GRAPH FILTERS

error (RNRMSE) as

RNRMSE =
∥∥y (t) − y

∥∥∥∥y
∥∥ , (7.24)

where y = P−1Qx and y (t) is the filter output for every iteration in the vertex do-
main. Fig. 7.6 gives the RNRMSE of the two distributed implementations after
different iterations. We see that the weighted Jacobi iteration and Richardson it-
eration converge much faster with the optimal step size wopt. From Fig. 7.5 and
Fig. 7.6, we notice that the optimal step sizes of the two distributed implementa-
tions give similar performances.

Directed case. In the following, we show the behavior for the directed case.
First, we highlight that there is no closed-form for computing the optimal step
size w in the directed case. Also, the step sizes w we selected in this section only
guarantee the condition (7.17) and (7.22) for the corresponding directed graph
in Fig. 7.2.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

T

0.8

1

1.2

1.4

1.6

1.8

2

R
N

M
S

E

Richardson,w=0.1

Richardson,w=0.3

Richardson,w=0.5

W Jacobi,w=0.1

W Jacobi,w=0.3

W Jacobi,w=0.5

Figure 7.7: Convergence results of a distributed implementation of the ARMA-Forsythe(4, 2) graph
filter with different step sizes. The experiment uses the directed network graph with N = 200 de-
picted in Fig. 7.2. T is the number of iterations.

Note that the coefficients of the ARMA-Forsythe(4, 2) graph filter are gener-
ated with 100 complex grid points in the unit disc. The filter is applied to a white
input and the output for every iteration is evaluated by the error RNMSE (7.12)
in the frequency domain. Fig. 7.7 gives the performances of two distributed im-
plementations with different step sizes w = 0.1,0.3 and 0.5.

We can make the following observations. After a few iterations, the errors

7.3. DISTRIBUTED IMPLEMENTATION

7

167

0 5 10 15 20 25 30 35 40 45 50

T

10
-10

10
-5

10
0

R
N

R
M

S
E

Richardson,w=0.1

Richardson,w=0.3

Richardson,w=0.5

W Jacobi,w=0.1

W Jacobi,w=0.3

W Jacobi,w=0.5

Figure 7.8: RNRMSE versus the number of iterations of two distributed implementations for
ARMA-Forsythe(4, 2) with different step sizes. T is the number of iterations. The directed graph
we used is the same as in Fig. 7.2.

become relatively close, meaning that the ARMA-Forsythe(4, 2) output spectra
of the two distributed implementations have a different convergence speed be-
cause of the different step sizes, i.e., w = 0.1,0.3 and 0.5. For both implementa-
tions, with larger step sizes, the convergence is faster.

To give further insight, Figure. 7.8 plots the RNRMSE (7.24) of the two dis-
tributed implementations for the ARMA-Forsythe(4, 2) graph filter with different
step sizes. Note that, for the selected directed graph, the weighted Jacobi iter-
ation shows better performance than the Richardson iteration for all three step
sizes. In the next subsection, we will give an application of the distributed imple-
mentations and compare the results with each other.

7.3.4. GRAPH SIGNAL DENOISING.

In this subsection, the aim is to design an ARMA graph filter for disturbance sup-
pression (denoising) [22, 23]. Consider a measurement, as in the temperature
data set, which is composed of a slow-varying desired signal x , and a superim-
posed fast changing disturbance ε. The noisy data then is

x ′ = x +ε. (7.25)

For the undirected graph [18] used for this application, we take the same one (32
cities) as in Section 7.2.4.

7

168 7. IMPLEMENTATION OF ARMA GRAPH FILTERS

Experimental setup. The optimal denoising system can then be formulated
through a minimization of the cost function

min
x

∥∥(x −x ′)
∥∥2

2 +ωxT Ln x , (7.26)

which is a special case of (7.13) with T = I .
In (7.26), the minimization of the first term forces the output signal x ′ to be

close to the observation x . The second term, ωxT Ln x , formulates a measure
for the signal smoothness of the graph filter output. The coefficient ω makes a
compromise between the two terms.

The solution of the minimization (7.26) is

x̃ = (I +2ωLn)−1x ′. (7.27)

which is an ARMA graph filter with P = I +2ωLn .

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iterations

10-1

100

R
N

M
SE

Richardson,w=0.2
Richardson,w=opt
W Jacobi,w=0.2
W Jacobi,w=opt

Figure 7.9: RNMSE of the ARMA graph filter for graph signal denoising of the Molene data set,
where ω = 2. The step size w = 0.2 and the optimal value wopt are shown for the two distributed
implementations.

Results. In Fig. 7.9, we show the RNMSE between the denoised signal and
the original one x . For the disturbance ε, we add a zero-mean Gaussian noise
with variance σ2 = 10−2 to the original signal x to generate the observation x ′.
The parameter isω= 2. Fig. 7.9 shows the performance for the 50-th observation
of the temperature data. We plot the results of two distributed implementations
for different step sizes w . These results show that the two methods have a similar

7.4. CONCLUSION

7

169

performance for the optimal step size, i.e.,wopt = 0.25 for the Richardson itera-
tion and wopt = 1.5 for the weighted Jacobi implementation. The weighted Jacobi
implementation is a bit faster though.

7.4. CONCLUSION

In this chapter, we discussed some implementation aspects of graph filters. We
formulated the relation between the output and the input of a graph filter for
the ARMA model. For the different ARMA formulations, we first discussed an
efficient implementation for both directed and undirected graphs namely the
conjugate gradient and biconjugate gradient methods. Through the ARMA and
ARMA-Forsythe graph filters, we illustrated the improvement of the approxima-
tion accuracy compared with the FIR graph filter for the same computational
cost.

In addition, the graph filter can also be implemented in a distributed fash-
ion leading to amenable savings in terms of distributed communication. The
Richardson method and weighted Jacobi iteration are utilized to implement the
graph filters for both directed and undirected cases in a distributed manner. For
the undirected graph case, we can formulate the optimal step size in closed form.
Alternatively, we derive a general convergence condition for the distributed im-
plementation which is suitable for the directed graph case.

REFERENCES

[1] J. Liu, E. Isufi, and G. Leus, Filter design for autoregressive moving average
graph filters, IEEE Transactions on Signal and Information Processing over
Networks 5, 47 (2019).

[2] D. P. Bertsekas, Convex optimization theory (Athena Scientific Belmont,
2009).

[3] J. R. Shewchuk et al., An introduction to the conjugate gradient method with-
out the agonizing pain, (1994).

[4] V. Faber and T. Manteuffel, Necessary and sufficient conditions for the exis-
tence of a conjugate gradient method, SIAM Journal on Numerical Analysis
21, 352 (1984).

7

170 REFERENCES

[5] J. Zhang, H. Dai, and J. Zhao, Generalized global conjugate gradient squared
algorithm, Applied Mathematics and Computation 216, 3694 (2010).

[6] L. F. Richardson, Ix. the approximate arithmetical solution by finite differ-
ences of physical problems involving differential equations, with an appli-
cation to the stresses in a masonry dam, Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers of a Mathematical or
Physical Character 210, 307 (1911).

[7] G. Opfer and G. Schober, Richardson’s iteration for nonsymmetric matrices,
Linear algebra and its applications 58, 343 (1984).

[8] Y. Saad, Iterative methods for sparse linear systems, Vol. 82 (siam, 2003).

[9] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: nu-
merical methods, Vol. 23 (Prentice hall Englewood Cliffs, NJ, 1989).

[10] L. Lei, Convergence of asynchronous iteration with arbitrary splitting form,
Linear Algebra and its Applications 113, 119 (1989).

[11] J. M. Bull and T. Freeman, Numerical performance of an asynchronous jacobi
iteration, in Parallel Processing: CONPAR 92—VAPP V (Springer, 1992) pp.
361–366.

[12] J. H. Wilkinson and J. H. Wilkinson, The algebraic eigenvalue problem,
Vol. 87 (Clarendon Press Oxford, 1965).

[13] M. E. Newman, The structure and function of complex networks, SIAM re-
view 45, 167 (2003).

[14] D. I. Shuman, P. Vandergheynst, and P. Frossard, Chebyshev polynomial ap-
proximation for distributed signal processing, in Distributed Computing in
Sensor Systems and Workshops (DCOSS), 2011 International Conference on
(IEEE, 2011) pp. 1–8.

[15] M. Křížek and J. Mlỳnek, On the preconditioned biconjugate gradients for
solving linear complex equations arising from finite elements, Banach Cen-
ter Publications 29, 195 (1994).

[16] X. Shi, H. Feng, M. Zhai, T. Yang, and B. Hu, Infinite impulse response graph
filters in wireless sensor networks, IEEE Signal Processing Letters 22, 1113
(2015).

REFERENCES

7

171

[17] P. Erdos and A. Rényi, On the evolution of random graphs, Publ. Math. Inst.
Hung. Acad. Sci 5, 17 (1960).

[18] S. P. Chepuri, S. Liu, G. Leus, and A. O. Hero III, Learning sparse graphs
under smoothness prior, arXiv preprint arXiv:1609.03448 (2016).

[19] S. K. Narang, A. Gadde, and A. Ortega, Signal processing techniques for in-
terpolation in graph structured data, in Acoustics, Speech and Signal Process-
ing (ICASSP), 2013 IEEE International Conference on (IEEE, 2013) pp. 5445–
5449.

[20] Y. Mao, G. Cheung, and Y. Ji, Image interpolation for dibr viewsynthesis us-
ing graph fourier transform, in 3DTV-Conference: The True Vision-Capture,
Transmission and Display of 3D Video (3DTV-CON), 2014 (IEEE, 2014) pp.
1–4.

[21] M. Coutino and G. Leus, Asynchronous distributed edge-variant graph fil-
ters, .

[22] S. Segarra, A. G. Marques, and A. Ribeiro, Optimal graph-filter design and
applications to distributed linear network operators, IEEE Transactions on
Signal Processing 65, 4117 (2017).

[23] L. Stankovic, D. P. Mandic, M. Dakovic, I. Kisil, E. Sejdic, and A. G. Constan-
tinides, Understanding the basis of graph signal processing via an intuitive
example-driven approach [lecture notes], IEEE Signal Processing Magazine
36, 133 (2019).

III
EPILOGUE

173

8
CONCLUSIONS AND FUTURE

RESEARCH DIRECTIONS

In this chapter, we conclude the thesis. We also mention the related contri-
butions and the future research directions.

8.1. SUMMARY OF RESULTS

In this thesis, we have mainly focused on graph filter design and implementa-
tions. We have presented several methods to efficiently design the ARMA graph
filters in the graph frequency domain. Meanwhile, we have developed several
implementations for ARMA graph filters, in the graph vertex domain, including
distributed and centralized methods.

Here we briefly summarize the research results:

• Research Question 1. How to efficiently design graph filters without know-
ing the graph topology?

Some filter designs are independent of the graph topology (frequencies).
These designs mainly focus on undirected graphs which use the Laplacian
matrix (or its modifications) as the shift operator.

175

8

176 8. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In Chapter 3 of this thesis, we have first extended the concept of universal
design from an undirected graph to a directed graph. Since the frequencies
of a directed graph are shown as real-values and complex conjugate pairs,
we grid points lying in the complex unit disc and design with the adjacency
basis. The well-studied FIR graph filter is designed for a directed graph in a
universal way. We have analyzed the numerical results for a universal FIR
graph filter design. To improve the performance, some other graph filters
have been designed in a universal way in this thesis.

• Research Question 2. How to efficiently exploit the potential of different
graph filter structures? Also, how to obtain the best approximation accuracy
through a filter with a given order?

In this thesis, we have mainly focused on the ARMA graph filter designs. In
Chapter 3, we have illustrated the widely used form of the ARMA graph fil-
ter and some modifications, i.e., pole-zero form and partial fraction form.
We have proposed an efficient method to design the ARMA graph filter
universally in Chapter 4. For either the Laplacian (undirected graph) or
adjacency (directed graph) matrix, the main aim of the ARMA graph filter
design is to fit the response on those grid points.

In Chapter 5, we have introduced the orthogonal polynomial basis into the
design structure of the ARMA model. We compute the orthogonal basis
separately for the numerator and denominator parts. The solutions for
undirected and directed graphs are formulated. It is worth mentioning
that the orthogonal polynomial basis also has benefits for design problems
with some graph information, e.g., the topology and the graph frequencies.
Moreover, in Chapter 6, the design focuses on the pole-zero form and par-
tial fraction form of ARMA graph filters. Since the ARMA filter splits a given
filter order into two parts, more freedom is introduced to the design prob-
lem. Thus, we could search for the best combination of filter orders which
can obtain the best approximation accuracy.

• Research Question 3. With the designed ARMA graph filters, how to imple-
ment the filter in the vertex domain?

This research question was mainly answered in Chapter 7. We have first
briefly discussed the implementation problem of the ARMA graph filter in
Chapter 3. Then, in Chapter 7, we propose several implementations for the
designs in the vertex domain, including distributed and centralized meth-
ods. For the centralized implementation, we have used the (bi)conjugate

8.2. FUTURE RESEARCH

8

177

gradient method to solve the ARMA model. Meanwhile, we have also pro-
posed the Richardson and weighted Jacobi iterations as distributed imple-
mentations for both undirected and directed graph filters. For an undi-
rected graph, we have formulated the convergence conditions for these
distributed implementations.

8.2. FUTURE RESEARCH

In this section, we provide some research directions that can be further studied
in this field.

• First of all, the design methods mainly focus on a model-driven (grid points)
or graph-driven (topology and graph frequencies) technique. An extension
of the proposed design methods to a data-driven approach can be a direc-
tion for the future. As we discussed in Chapters 2-3, the filter designs in this
thesis are solving a fitting problem between the desired response ĥ and ĝ .
For a data-driven concept, input and output graph signals are given and
we try to fit the output data to the filtered input data. The data-driven de-
sign may not be suitable to handle all cases (e.g., the universal design in
this thesis), while it will bring more information of the input and output
data into the design.

• Furthermore, as an application, the performance of a filter bank is often
influenced by the accuracy of FIR or IIR filters. Our methods bring more
degrees of freedom into FIR and ARMA graph filters which may benefit the
design of a filter bank. Meanwhile, our methods do not consider graphs
with changing nodes and edges. Since node-variant graph filters are more
appropriate for a dynamic environment, node-variant ARMA graph filters
could be considered in future works.

• Extensions of the proposed orthogonal polynomial basis could be studied
in future research. For our method in chapter 5, only the Forsythe orthog-
onal polynomial is considered. It is obvious that other types of discrete
orthogonal polynomials, even some continuous orthogonal bases, can be
used for the filter design which may bring some potential benefits. More-
over, designing the weight function, discussed in Chapter 5, can also bring
more freedom to some specific demands.

8

178 8. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

• The graph filter implementations carried out in this thesis are indepen-
dent of the process of computing the filter coefficients. In other words, we
always first compute the filter coefficients in the graph frequency domain
and then implement them in the vertex domain. One potential research
question would be to combine the two steps. As an example, for a directed
graph, the convergence condition of the distributed implementation can
be included in the design procedure which may have additional advan-
tages for the graph filters. With this design, we can draw conclusions about
the convergence without knowing the graph operator.

SUMMARY

The ability to model irregular data and the interactions between them have
extended the traditional signal processing tools to the graph domain. Under
these circumstances, the emergence of graph signal processing has offered a
brand new framework for dealing with complex data. In particular, the graph
Fourier transform (GFT) lets us analyze the spectral components of a graph sig-
nal in the graph frequency domain. Based on the GFT, graph filters provide use-
ful tools to modify or extract spectral parts in terms of different objectives, e.g.,
using a low-pass graph filter to construct graph signals without noise. This the-
sis mainly focuses on designing and implementing graph filters. Similar to tra-
ditional signal processing, we investigate two types of graph filters: finite im-
pulse response (FIR) and infinite impulse response (IIR) graph filters. Moreover,
this thesis takes both undirected and directed graphs into account for the design
methods and implementations.

We discuss the mathematical descriptions and representation of the graph
filter design problem. One of the main contributions of this thesis is to extend the
universal design concept from undirected to directed graphs. For either the nor-
malized Laplacian (undirected graph) or normalized adjacency (directed graph)
matrix, we sample the respective expected graph frequency area resulting in some
frequency grid points. With the determined grid points, we transfer the universal
linear least squares (LLS) strategy of designing FIR and ARMA graph filters from
undirected to directed graphs.

We propose a centralized ARMA filter design using a monomial polynomial
basis. We formulate two design methods that are inspired by Prony’s method
and the Steigliz-McBride iterative approach. The first method minimizes a mod-
ified error, while the second approach minimizes the true error and potentially
improves the approximation accuracy of that solution. We compare the per-

179

8

180 SUMMARY

formance of the developed methods with other well-studied filters, such as IIR
graph filters.

We extend the monomial polynomial basis to an orthogonal polynomial ba-
sis and design the related graph filter based on FIR and ARMA models. We dis-
cuss the discrete and continuous orthogonal polynomial basis and use the dis-
crete one to design FIR graph filters. After that, we demonstrate an efficient
ARMA design method with discrete orthogonal polynomials for both directed
and undirected graphs. The orthogonal polynomial basis is computed separately
on the numerator and denominator parts of the ARMA model.

We also consider another iterative framework of designing a special type of
ARMA graph filter corresponding to the pole-zero form for both directed and
undirected graphs. The filter is represented by a partial fraction belonging to
a rational basis. Our approach formulates the design as a least-squares problem
and recursively solves the error between the desired frequency response and the
filter response.

We present a set of practical implementations for the designed ARMA graph
filters in the vertex domain. We separate the methods into two categories, e.g.
centralized and distributed implementations. For the latter, we also formulate
the convergence conditions. We finally provide some examples to establish the
performance of the proposed implementations with the designed filter coeffi-
cients.

SAMENVATTING

De mogelijkheid om onregelmatige gegevens en de interacties daartussen te mo-
delleren heeft de traditionele signaalverwerkingsinstrumenten uitgebreid tot het
grafendomein. Onder deze omstandigheden heeft de opkomst van graph sig-
nal processing (GSP) een geheel nieuw kader geboden voor de behandeling van
complexe gegevens. Met name de graph Fourier transform (GFT) maakt het mo-
gelijk de spectrale componenten van een grafensignaal te analyseren. Gebaseerd
op de GFT bieden graph filters (GFs) nuttige hulpmiddelen om spectrale delen
te wijzigen of te extraheren met het oog op verschillende doelstellingen, bijv. het
gebruik van een laagdoorlaat GF om grafensignalen zonder ruis te construeren.
Deze dissertatie richt zich voornamelijk op het ontwerpen en implementeren
van GFs. Vergelijkbaar met de traditionele signaalverwerking, onderzoeken we
twee soorten GFs: finite impulse response (FIR) en infinite impulse response
(IIR) GFs. Bovendien houdt deze dissertatie rekening met zowel directionele als
niet-directionele grafen voor de ontwerpmethoden en implementaties.

We bespreken de wiskundige beschrijvingen en representaties van het GF
ontwerpprobleem. Een van de belangrijkste bijdragen van dit proefschrift is de
uitbreiding van het universele ontwerpconcept van niet-directionele naar direc-
tionele grafen. Voor de genormaliseerde Laplacian (niet-directionele graaf) of de
genormaliseerde adjacency (directionele graaf), bemonsteren we het verwachte
frequentiegebied van net netwerk, wat resulteert in een aantal frequentie - raster-
punten. Met de vastgestelde rasterpunten brengen we de universele linear least
squares (LLS) strategie voor het ontwerpen van FIR en auto-regressive moving
average (ARMA) GFs over van niet-directionele naar directionele grafen.

Wij stellen een gecentraliseerd ARMA filterontwerp voor dat gebruik maakt
van een monomiale polynomiale basis. We formuleren twee ontwerpmetho-
den die geïnspireerd zijn op de methode van Prony en de iteratieve aanpak van
Steigliz-McBride. De eerste methode minimaliseert een gewijzigde fout, terwijl
de tweede benadering de werkelijke fout minimaliseert en mogelijk de nauwkeu-
righeid van die oplossing verbetert. Wij vergelijken de prestaties van de ontwik-
kelde methoden met die van andere goed bestudeerde filters, zoals andere IIR
GFs.

181

8

182 SAMENVATTING

We breiden de monomiale polynomiale basis uit tot een orthogonale poly-
nomiale basis en ontwerpen de bijbehorende GFs op basis van FIR- en ARMA-
modellen. We bespreken de discrete en continue orthogonale polynomiale basis
en gebruiken de discrete basis om FIR GFs te ontwerpen. Daarna demonstreren
we een efficiënte ARMA-ontwerpmethode met discrete orthogonale veeltermen
voor zowel directionele als niet-directionele grafen. De orthogonale polynomiale
basis wordt afzonderlijk berekend op de teller- en noemerdelen van het ARMA
model.

Wij beschouwen ook een ander iteratief raamwerk voor het ontwerpen van
een speciaal type ARMA GF dat overeenkomt met de pool-nul vorm voor zowel
directionele als niet-directionele grafen. De filter wordt voorgesteld door een
partiële breuk die behoort tot een rationale basis. Onze benadering formuleert
het ontwerp als een kleinste-kwadraten probleem en lost recursief de fout op
tussen de gewenste frequentierespons en de filterrespons.

Wij presenteren een reeks praktische implementaties voor de ontworpen AR-
MA GFs in het vertex-domein. We verdelen de methoden in twee categorieën,
bijvoorbeeld gecentraliseerde en gedistribueerde implementaties. Voor de laat-
ste formuleren we ook de convergentievoorwaarden. Tenslotte geven we enkele
voorbeelden om de prestaties van de voorgestelde implementaties met de ont-
worpen filtercoëfficiënten vast te stellen.

ACKNOWLEDGEMENTS

My supervisor Prof. Leus mentioned to me once, that the Ph.D. stage is only
a very short duration in life. Now that the journey of my Ph. D. study is about to
end. It surprises me that I have changed so much during the past several years.
Also, I luckily have a lot of company, and I want to express the gratitude towards
those who are part of this journey.

First, I would like to give my deepest appreciation to my supervisor Prof.
Geert Leus. It is my honor to be his student, and I will always be thankful. I
have learned a lot of things from him, such as the high standard of research, crit-
ical and analytical thinking, the essentials of writing an article. Thanks for all the
patience, wisdom, and guidance. Without the valuable feedback from him, I can-
not even find the right path to finish the thesis. Beyond the research supervision,
he is also an easy-going person, and he helps me to grow in my personal life as
well.

I am grateful to Elvin Isufi, who has been a very helpful and knowledgeable
person. At the beginning of my Ph.D. research, his advice inspired me and made
my life easier. Thanks for all the discussion, and I really enjoy the collaboration
with him. I would also like to thank all the committee members for their insight-
ful comments on my thesis. Moreover, I would like to acknowledge TU Delft and
CSC for funding my research.

I thank all of the colleagues in the Circuit and Systems (CAS) group in the
TU Delft EWI building over the past few years. I am grateful for all the lunches,
events, and group outings. We enjoyed ourselves together. Thank Jamal Amini,
Andreas Koutrouvelis, Bahareh Abdi, Aydin Rajabzadeh, Thomas Sherson, Pim
van der Meulen, Wangyang Yu, Jie Zhang, Mario Coutino, Tarik Kazaz, Miao Sun,
Matthew Morency, Alberto Natali, Jac Romme, Yan Xie, Yongchang Hu for bring-
ing me unforgettable memories. I thank Prof. Alle-Jan van der Veen as a great

183

leader of the group. Thank Minaksie Ramsoekh and Irma Zomerdijk for taking
care of the paperwork.

Life beyond research in Delft is amazing. I thank Mei Liu, Juan Yan, and Yan
Song for all their love and support. Especially, thanks for including me in the ‘tan-
gerine’ group, and for all the moments we shared. Thank Shizhe Zhang, Qiang
Liu, Jia Yan for being a great part of my life in Delft.

Last but not least, I would like to thank my family! Thank my parents for all
the supports. Thank my grandparents for the unconditional love. In the end, I
want to thank my husband Bo Liu who accompanied me on this journey.

Jiani Liu

Den Haag, June 2021

CURRICULUM VITAE

Jiani Liu was born in 18th January, 1991 in Shaanxi, Xi’an, China. She received
the Bachelor of Science (B.Sc.) degree in information countermeasure technol-
ogy, in 2013 from the Northwestern Polytechnical University (NWPU), Shaanxi,
Xi’an, China. In 2016, she received the Master of Science (M.Sc.) degree in Un-
derwater Acoustic Engineering, from NWPU, China. She received the Outstand-
ing Graduate Award (in 2013) and National Scholarship of China (in 2012). In
2015, she started her Ph.D and joined the circuits and systems (CAS) group at the
Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)
of the Delft University of Technology. Her research interests contain the areas of
graph signal processing, statistical signal processing, deep learning, and mathe-
matical modeling.

185

	I Preliminaries
	Introduction
	Graph Signal Processing: a Brief Survey
	Motivation
	Outline and Contributions of the Thesis
	titleReferences

	Graph Signal Processing
	Introduction
	Graph Model
	Graph shift operator
	Graph signal

	Graph Spectral Analysis
	The graph Fourier transform
	Graph frequency analysis with GFT
	Illustration of GFT

	Graph Filtering
	Definition of graph filters
	Design of graph filters

	Conclusion
	titleReferences

	Graph Filters
	Introduction
	Universal Design
	Finite Impulse Response Graph Filter
	Implementation and cost
	Filter design
	Related FIR graph filters
	Discussion

	Infinite Impulse Response Graph Filter
	Implementation of IIR graph filter
	Autoregressive moving average graph filter
	Implementation of ARMA graph filter
	Discussions

	Conclusion
	titleReferences

	appendix-a

	II Filter Design
	Filter Design for Autoregressive Moving Average Graph Filters
	Introduction
	ARMA Graph Filter Design
	ARMA design problem
	Methods inspired by Prony
	Iterative approach

	Numerical Data
	Synthetic simulation results
	Data compression with graph filters
	Linear prediction with ARMA filters

	Conclusions
	titleReferences

	appendix-b
	ARMA-Forsythe Graph Filter Design with Orthogonal Polynomials
	Introduction
	Orthogonal Polynomial Basis
	FIR-Forsythe graph filter
	FIR-Forsythe implementation.
	General orthogonal polynomial basis

	ARMA-Forsythe
	ARMA model with Forsythe polynomials
	Solution for the ARMA-Forsythe

	Numerical Data
	Universal design
	Design with known graph frequencies
	Comparison

	Conclusion
	titleReferences

	appendix-c
	Rational Graph Filter Design Using Iterative Vector Fitting
	Introduction
	Rational Graph Filter
	Rational Filter Design
	Vector fitting
	Iterative approach
	Pole relocation
	Filter coefficients

	Experimental Results
	Conclusion
	titleReferences

	Implementation of ARMA Graph Filters
	Introduction
	Centralized Implementation
	Conjugate gradient
	BiConjugate gradient
	Numerical results
	Graph signal interpolation.

	Distributed Implementation
	Richardson iteration
	Weighted Jacobi iteration
	Numerical results
	Graph signal denoising.

	Conclusion
	titleReferences

	III Epilogue
	Conclusions and Future Research Directions
	Summary of Results
	Future Research

	Summary
	Samenvatting
	Acknowledgements
	Curriculum Viæ

