<]
TUDelft

Delft University of Technology

Language-Parametric Reference Synthesis

Pelsmaeker, Daniel A.A.; Zwaan, Aron; Bach, Casper; Mooij, Arjan J.

DOI
10.1145/3720481

Publication date
2025

Document Version
Final published version

Published in
Proceedings of the ACM on Programming Languages

Citation (APA)

Pelsmaeker, D. A. A., Zwaan, A., Bach, C., & Mooij, A. J. (2025). Language-Parametric Reference
Synthesis. Proceedings of the ACM on Programming Languages, 9(OOPSLA1), 1213-1238. Article 123.
https://doi.org/10.1145/3720481

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/3720481
https://doi.org/10.1145/3720481

o.)

Check for
updates

Language-Parametric Reference Synthesis

DANIEL A. A. PELSMAEKER®, Delft University of Technology, Netherlands
ARON ZWAAN”, Delft University of Technology, Netherlands

CASPER BACH T, Delft University of Technology, Netherlands
ARJAN J. MOOI]J, TNO-ESI, Netherlands and Ziirich University of Applied Sciences, Switzerland

Modern Integrated Development Environments (IDEs) offer automated refactorings to aid programmers in
developing and maintaining software. However, implementing sound automated refactorings is challenging,
as refactorings may inadvertently introduce name-binding errors or cause references to resolve to incorrect
declarations. To address these issues, previous work by Schéfer et al. proposed replacing concrete references
with locked references to separate binding preservation from transformation. Locked references vacuously
resolve to a specific declaration, and after transformation must be replaced with concrete references that
also resolve to that declaration. Synthesizing these references requires a faithful inverse of the name lookup
functions of the underlying language.

Manually implementing such inverse lookup functions is challenging due to the complex name-binding
features in modern programming languages. Instead, we propose to automatically derive this function from
type system specifications written in the Statix meta-DSL. To guide the synthesis of qualified references we
use scope graphs, which represent the binding structure of a program, to infer their names and discover their
syntactic structure.

We evaluate our approach by synthesizing concrete references for locked references in 2528 Java, 196
ChocoPy, and 49 Featherweight Generic Java test programs. Our approach yields a principled language-
parametric method for synthesizing references.

CCS Concepts: « Software and its engineering — Semantics; Software maintenance tools.

Additional Key Words and Phrases: references, synthesis, semantics, scope graphs

ACM Reference Format:

Daniel A. A. Pelsmaeker, Aron Zwaan, Casper Bach, and Arjan J. Mooij. 2025. Language-Parametric Reference

Synthesis. Proc. ACM Program. Lang. 9, OOPSLA1, Article 123 (April 2025), 26 pages. https://doi.org/10.1145/
3720481

“Both authors contributed equally to the paper.
T Author’s current affiliation: University Of Southern Denmark, Odense, Denmark, casperbach@imada.sdu.dk

Authors’ Contact Information: Daniel A. A. Pelsmaeker, Software Technology, Delft University of Technology, Delft,
Netherlands, d.a.a.pelsmaeker@tudelft.nl; Aron Zwaan, Software Technology, Delft University of Technology, Delft,
Netherlands, a.s.zwaan@tudelft.nl; Casper Bach, Software Technology, Delft University of Technology, Delft, Netherlands,
c.b.poulsen@tudelft.nl; Arjan J. Mooij, TNO-ESI, Eindhoven, Netherlands and Ziirich University of Applied Sciences, Win-
terthur, Switzerland, arjan.mooij@tno.nl.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/4-ART123

https://doi.org/10.1145/3720481

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

HTTPS://ORCID.ORG/0000-0003-0196-0567
HTTPS://ORCID.ORG/0000-0002-1818-4245
HTTPS://ORCID.ORG/0000-0003-0622-7639
HTTPS://ORCID.ORG/0009-0005-9566-7696
https://doi.org/10.1145/3720481
https://doi.org/10.1145/3720481
https://orcid.org/0000-0003-0196-0567
https://orcid.org/0000-0002-1818-4245
https://orcid.org/0000-0003-0622-7639
https://orcid.org/0009-0005-9566-7696
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3720481
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3720481&domain=pdf&date_stamp=2025-04-09

123:2 Daniel A. A. Pelsmaeker, Aron Zwaan, Casper Bach, and Arjan J. Mooij

1 Introduction

[P]reserving bindings is at the heart of any refactoring
that moves, creates, or duplicates code. (Ekman et al. [5, §3])

As software projects evolve, their code is frequently refactored to improve their structure and
maintainability. Refactoring often involves copying or moving code from one code unit (such as
a class, module, or trait) to another, in a way that preserves the program’s behavior. A crucial
aspect of behavior-preserving transformations is name binding preservation, to ensure references
in refactored code resolve to the same distinct declarations as before. While behavior preservation
also needs control- and data flow analysis, name binding preservation can be achieved using only
the static semantic analysis of the program. However, due to the sophisticated name binding fea-
tures found in many modern programming languages, preserving the name resolution semantics
of code across transformations is generally challenging.

To illustrate the complexity of reasoning about advanced name binding features, consider the
Java program shown in Fig. 1a. If we rename the field x (line 2) to y, Java’s static semantics would
cause the reference to y on line 7 (in method f00) to resolve to the newly renamed field y on line 2,
rather than the intended declaration of y on line 5. This undesired change would alter the name
binding structure of the program. To prevent this, the reference to y on line 7 should be qualified
as Outer.this.y, as shown in the refactored example in Fig. 1b.

Transformations that require name binding preservation are common across many refactorings,
such as those from Fowler’s catalog [7]. Yet, manually refactoring code is time-consuming and
error-prone. Consequently, many modern Integrated Development Environments (IDEs) provide
automated refactorings such as RENAME, INLINE/EXTRACT METHOD, and PurL Up/Pusu DowN [7],
which attempt to automatically requalify references to maintain the program’s binding structure.

However, even popular IDEs for mainstream languages struggle to implement sound refactor-
ings. For example, Ekman et al. [5] identify several bugs in Eclipse 3.4 where automated refactor-
ings inadvertently altered the program’s binding structure. These errors arise from the difficulty
of accurately determining which references need to be fixed and computing the correct requalifi-
cations. Not only references in the modified code, but references throughout the entire code base
may require requalification. Ensuring both soundness (preserve name bindings) and completeness
(finding all possible requalifications) is particularly difficult.

Ekman et al. conclude that these challenges are “not related to the core ingredients of the im-
plemented refactoring, [but] inherent to the complexity of name binding rules in mainstream lan-
guages.” As a result, existing research on the sound requalification of references is often language-
specific, focusing on mainstream languages like Java [31]. Implementing sound automated refac-
torings for other languages, like Domain-Specific Languages (DSLs) with small language developer
teams, can require a prohibitively high effort. As such, a more principled and language-parametric
approach to guarantee name binding preservation is needed.

1.1 Locked References

Ekman et al. [5] observe that many bugs in automated refactorings could “be avoided if a set of
carefully crafted building blocks were available to refactoring developers.” One such building block
is locked references!, proposed by Schifer et al. in previous work [29, 30]. A locked reference is an
abstract reference that continues to refer to the same unique declaration even if code is moved
or the declaration is renamed. This ensures that transformations cannot cause such a reference to
accidentally capture a different declaration.

ITerminology introduced by Schifer et al. [31]. Also referred to as “bound names” [28], “locked names” [29], and “locked
bindings” [31]. We use “locked references” throughout this paper.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

Language-Parametric Reference Synthesis 123:3

class Base { class Base {

1 1
2 int x = 1; 2 int y = 1; // x renamed to y
3 } 3 }
4 class Outer { 4 class Outer {
5 int y = 2; 5 int y = 2;
6 class Inner extends Base { 6 class Inner extends Base {
7 int foo() { return y; 3} 7 int foo() { return Outer.this.y; }
8 } 8 }
9 } 9 }
(a) Before renaming. (b) After renaming.

Fig. 1. RENAME refactoring of a small Java program, where renaming the field x to y on line 2 requires the
reference x on line 7 to be appropriately qualified.

class Base { class Base {

1 1
2 int x;, = 1; 2 int y; = 1; // x renamed to y
3 } 3 }
1 class Outer { 1 class Outer {
5 int y, = 2; 5 int y, = 2;
6 class Inner extends Base { 6 class Inner extends Base {
7 int foo() { return (—y,); 3 7 int foo() { return (—y,); }
8 3 8 3}
9} 9 3
(a) After locking references, before renaming. (b) After renaming, before unlocking references.

Fig. 2. Intermediate steps for performing the RENAME refactoring from Fig. 1 using locked references. After
locking the relevant reference y to declaration y, (a) and performing the transformation (b), our approach
would synthesize a solution for the locked reference and obtain Fig. 1b.

The following diagram summarizes program transformation with locked references:

lock transform , unlock
P Plocked

Before refactoring, we first ‘lock’ each relevant concrete reference by replacing it with a locked
reference pointing to the original declaration. In Fig. 2a we replace the concrete reference y (line 7)
with a locked reference (—vys,) to the declaration y, on line 5. (We use subscript indices to distin-
guish different occurrences of the same name, but the indices are not part of the syntax.)

Next, we ‘transform’ the program as required for the refactoring, renaming declarations and
moving code. In Fig. 2b, the declaration on line 2 is renamed to y. Finally, we ‘unlock’ each locked
reference in the program by replacing it with a synthesized concrete reference that unambiguously
resolves to the intended declaration. In this case, unlocking replaces the locked reference with
Outer.this.y, maintaining the name binding semantics of the program (see Fig. 1b).

Every step in this pipeline gives rise to challenges, but in this paper we focus on the key chal-
lenge of synthesizing concrete references when unlocking locked references. The program should
remain well-typed and synthesized references should resolve to their intended declarations. Sepa-
rating name binding preservation from the transformation guarantees that refactorings preserve
name bindings, and also makes it easier to implement refactorings.

2Qur syntax for locked references (—d)) is inspired by the syntax Omar et al. [18] use for holes.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

123:4 Daniel A. A. Pelsmaeker, Aron Zwaan, Casper Bach, and Arjan J. Mooij

There are numerous potential applications of reference synthesis. In the line of work by Schéfer
et al. [30, 31], it can be applied to implement sound (editor) refactorings. Furthermore, it provides
a powerful transformation tool for implementing sound transformations of DSL programs or per-
forming large-scale codebase transformations aiming to improve the overall code quality. How-
ever, one can also envision user-extensible refactoring tools (such as presented by Li and Thomp-
son [15]) or transformation languages (such as Intelli]’s structural search and replace) that need to
preserve name bindings. Finally, it could be used to build an editor service that suggests fixes for
type errors (e.g., QUICK FIX in Eclipse).

1.2 Language-Parametric Reference Synthesis

Following Schifer et al. [30, 31], a reference synthesis function can be thought of as the right
inverse of a reference resolution function. That is, if QRef is the set of qualified references, Decl
is the set of uniquely identified declarations, and the function resolve, : QRef — Decl resolves a
reference at some location p in the program, then locked reference synthesis should be a function
synthesize,, : Decl — QRef such that resolve, (synthesize,(d)) = d for any p.% The lock function
uses resolve to obtain the target declaration when replacing a concrete reference with a locked
reference, and conversely, unlock uses the synthesize function to replace the locked reference with
a concrete reference.

The reference synthesis pipeline shown above is conceptually language-parametric. However, as
discussed before, implementing correct reference synthesizers manually is error-prone and time-
consuming. In this paper, we present a language-parametric approach to derive the synthesize func-
tion automatically from declarative type system specifications, letting language designers generi-
cally synthesize valid concrete references for programs with multiple locked references. The goal
of reference synthesis is to find for each locked reference in a program a valid concrete reference
that resolves to the intended declaration.

We derive the synthesize function from only a declarative specification of the language’s static
semantics, specified using the Statix specification language [27, 36]. Statix allows syntax-directed
typing rules to be specified, uses scope graphs as a declarative model of static name binding and
name resolution [17], and generates executable type checkers by interpreting specifications as con-
straint programs. In our implementation of synthesize, we reinterpret the name resolution queries
from the specification to infer syntax for concrete references that resolve to a particular target dec-
laration, guaranteeing name binding preservation. We reuse the Statix solver (see §2) to validate
that the syntax we infer is sound with respect to the typing rules and represents a reference that
resolves to the intended declaration.

This paper makes the following technical contributions:

e We present a language-parametric implementation of the synthesize function (see §4 and §5).
This function automatically synthesizes concrete references that resolve to the specified dec-
laration, and that are sound with respect to a type system specification written in Statix.

e We evaluate our implementation on 2773 test programs of Java, ChocoPy, and Featherweight
Generic Java (§6). Our results demonstrate that our approach applies to mainstream lan-
guages with complex name binding semantics without modifying their typing rules.

We first (§2) introduce scope graphs and Statix. Next, in §3 we illustrate our reference synthesis
algorithm. Then, in §4 we give an operational semantics of our synthesize function’s implementa-
tion, and the heuristics we apply in §5. We evaluate our implementation in §6, and discuss related
work in §7. We conclude in §8.

3Schifer et al. use “lookup” instead of “resolve” and “access” instead of “synthesize”, but the idea is the same.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

Language-Parametric Reference Synthesis 123:5

1 var x; = 42

mod A { B
’ var x; =@ LEX*IMP?VAR
o} VAR<IMP<LEX
5 mod B { /| TTLEX—T" | TULEX— | o
6 import A::x*
7 var y = x

8} [sxz - X3 intJ [le = X1 :int] [sy >y int]

isVary 1

(a) Program. (b) Scope graph for the program in Fig. 3a.

Fig. 3. An example LM [17] program and its scope graph, where boxes and arrows represent scopes and
reachability relations between scopes, respectively. The dashed box represents a query and the dashed arrows
its resolution path to x2, the second occurrence of a declaration named x.

2 Scope Graphs and Statix

This paper presents a language-parametric approach to synthesizing concrete references. To this
end, we build on existing work: (1) scope graphs as a language-parametric model of name binding,
and (2) Statix as a uniform representation of typing rules.

In this section we first describe what scope graphs are (§2.1), and how they let us resolve ref-
erences via graph search (§2.2). Then we provide a high-level introduction to the Statix language
(§2.3) and its constraint solver (§2.4).

2.1 Scope Graphs

The example program in Fig. 3a contains two declarations named x, namely x; on line 1 and x; on
line 3, and a named reference x on line 7.* The question is: does x refer to declaration x; or x;?
Either can be true, depending on the semantics of the programming language.

Scope graphs [17, 27, 34, 36, 42] offer a uniform model for name resolution that supports sophis-
ticated name binding patterns in programming languages. As their name suggests, scope graphs
model the scoping structure of programs as graphs. Such graphs let us model both nested and
recursive scoping structures, and name resolution policies as graph search queries.

To illustrate this, consider the program and its scope graph in Fig. 3. The nodes in the graph
represent scopes: sy represents the global scope, while s and sg represent the scopes of modules A
and B, respectively. Scopes sy1, sx2, and sy represent named declarations. A scope s may have data d
associated with it, written as s +— d, such as the name of the module that they correspond to or
the name and type of their declaration. As we shall see later, associating scopes with names lets
us define name resolution queries that resolve module names to their corresponding scopes.

Edges between scopes represent reachability relations. Queries can follow these edges to reach
other scopes and declarations. The two module scopes are reachable from the global scope via
MOD edges, representing the fact that A and B are modules declared in the global scope s. The
module scopes s, and s are also lexical children of the global scope, so each is connected via a
LEX edge to sy. VAR edges connect scopes to declared names. Due to the wildcard import A::*
on line 6 (which imports all members of the module A) module scope sg is connected to module
scope s, via an IMP edge, making all declarations in module A reachable from module B.

4We use subscript indices to distinguish different occurrences of a particular name. For example, x, uniquely identifies one
of the declarations named x.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

123:6 Daniel A. A. Pelsmaeker, Aron Zwaan, Casper Bach, and Arjan J. Mooij

2.2 Scope Graph Queries

We define name resolution as queries in scope graphs. Resolving a query entails finding all paths
from this source scope to matching declarations. To explain the syntax of a name resolution query,
we take the query shown in the dashed box on the right of the graph in Fig. 3b:

LEX*IMP’VAR __ :
ST Ty
SB "VAR<IMP<LEX isVary

Here, sg is the initial scope of the graph search, and isVary is a filter that ensures only declarations
with name x are selected. The regular expression LEX*IMP?VAR is a reachability policy declaring
which declarations are reachable; i.e., those declarations we can reach by following a sequence
of labeled edges that match the regular expression. The path ordering VAR < IMP < LEX is a
visibility policy used to disambiguate which reachable names are visible, i.e., to model shadowing.
For example, both sy, and sy, are reachable in Fig. 3b. However, the order prefers IMP edges over
LEX edges, so the only valid path through the graph is the path to s,.

2.3 Statix Rules and Constraints

In classical typing rules, terms are typed relative to one or more typing contexts [25], or typed via
symboltables [1] or class tables [10]. Following existing work [26, 27, 36], we can define typing rules
in a similar style, but with terms typed relative to one or more scopes in a scope graph instead. The
constraint language Statix [27, 36, 38] lets us declare such inference rules using a syntax inspired by
logic programming. Type system specifications written in Statix have a declarative interpretation,
specifying a class of well-typed programs. Alternatively, specifications can be used operationally
to type check programs by constructing a scope graph and resolving references by traversing it.
This subsection highlights the main features of Statix rules and constraints. For a more detailed
breakdown of the syntax, we refer to the discussion in §4.1 and the work of Rouvoet et al. [27].

The rules in Fig. 4 show a representative subset of the Statix rules we derived for LM, a toy
language from [17] used throughout this paper. The figure declares rules for five different typing
relations: typeOfExpr, memberOk, modQOk, importOk, and scopeOfMod. Each rule has a conclu-
sion on the left of an arrow («), and a premise given by one or more constraints on the right.
For example, the rule T-Add states that the expression e; + e, has type int in scope s, if both e;
and ez have type int under the same scope s. Rule T-QRef is a more complex example, where a
qualified module access expression a.x has type T when the a resolves to a module (asserted by
the predicate constraint scopeOfMod(s, 4, s,,)), and x resolves from that module to a declaration
of type T (asserted by the query constraint s, ~2% isVar,).

The rules in Fig. 4 do not mention the underlying scope graph explicitly. Instead, premises of
rules assert requirements on the scope graph structure, such as the existence of scopes with as-
sociated data (Vs, +— x : T) and edges (s 2% s,) and the ability to resolve query constraints. A
program is well-typed when a minimal scope graph exists that satisfies each such assertion and
query. Minimality implies that the scope graph only has the scopes and edges asserted by the
rules of a program: no extraneous edges or scopes. There exists a solver for Statix constraints that
computes this minimal scope graph, which we discuss in the next section.

2.4 Statix Constraint Solver

Following Rouvoet et al. [27], the operational semantics of Statix is given by a constraint solver
that soundly constructs and queries scope graphs, and uses unification to solve equality constraints.
The reference synthesis approach we illustrate in §3 is sound by construction because it builds on
this operational semantics. We defer a deeper discussion of the operational semantics to §4.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

Language-Parametric Reference Synthesis 123:7

typeOfExpr(s, n,int) «— emp (T-Num)
typeOfExpr(s, e; + ez, int) «— typeOfExpr(s, e;, int) x typeOfExpr(s, e,, int) (T-Add)
typeOfExpr(s,x, T) « s % isVary = {(,x:T)} (T-Var)

typeOfExpr(s, a.x, T) < 3s,,. scopeOfMod(s, a, sp,) *
Sm 2R isVar, = {(Lx: T)} (T-QRef)
memberOk(s,var x = e) « 3Ts,. typeOfExpr(s, e, T)

Vse o x: T x s 8% g (M-Var)

modOk(s,mod a { imp mem }) «— sy Vs > a * sy 2o 5 % s X% 5

importsOk(s, imp) * membersOk((s,,, mem) (M-Mod)

importOk(s, import a: : %) <« 3s,,. scopeOfMod(s, g, s;) * s 25 s, (D-ImportOk)
scopeOfMod(s, x, sp) « Tp. s =MD s jsMod, > {(p, %)} * sm = tgt(p) (S-Mod)

scopeOfMod(s, a.x, sp) < Ips,,. scopeOfMod(s, g, s7,) *
s), 1% isMod, - {(p, x)} * sy £ tgt(p) (S-QMod)

isVar, 2 Ax’. AT. (x: T) 2 &’

isMod, £ Ax". x x’

Fig. 4. A subset of the typing rules of LM, a toy language from [17] used for the examples in this paper.

The Statix solver will solve as many constraints as possible, yielding either a state with no
unsolved constraints (i.e., the program type-checks), a state that derives false (i.e., the program
does not type-check), or a stuck state, where the solver does not have enough information to
solve the remaining constraints. There are two reasons why constraints get stuck: either (1) it is
not sufficiently instantiated, or (2) it is a query constraint which is not yet guaranteed to yield
a stable answer. For (1), the solver will only expand a predicate such as typeOfExpr(x, y, z) once
x, y, and z are sufficiently instantiated such that only a single rule matches. Similarly, it will only
run and solve a query constraint once its source scope (e.g., s in s % isVary) and data
well-formedness predicate (e.g., isVary) are ground. In case (2), a query gets stuck when it needs to
run but another unsolved constraint might add a scope graph edge that could invalidate the query.
The Statix solver implements guards that detect these cases [27].

Our synthesize function runs the Statix solver on a program with holes, where each hole is rep-
resented by a free unification variable that maps to a target scope representing the hole’s intended
target declaration. The unification variables cause the Statix solver to get stuck on predicate and
query constraints directly related to the holes. Once a stuck state is reached, our reference synthe-
sis approach extends the usual operational semantics of Statix with the ability to use the typing
rules of a language to refine the holes of the program, and use the Statix solver to verify the so-
lution. Once the term of a hole becomes ground and all constraints in the state have been solved,
we have successfully synthesized a concrete reference.

We will illustrate how the Statix solver, scope graph, and typing rules are used in our reference
synthesis algorithm in the next section, and discuss the operational semantics of Statix and our
extension in more detail in §4.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

123:8 Daniel A. A. Pelsmaeker, Aron Zwaan, Casper Bach, and Arjan J. Mooij

LEX—

''g
1 mod A { 1 mod A { MOD
) var x = (—vy) 2 var x = ?E G =
3 var y =1 3 var y = 1 VAR VAR
i) i) ¥ \
[sx — X ?T] [sy =y int]
(a) Program with locked reference. (b) Program with hole. (c) Scope graph.

Fig. 5. Small example program and its scope graph

3 Reference Synthesis by Example

As the name suggests, reference synthesis is used to synthesize a concrete (qualified) reference to
a given declaration. References in many languages take the shape x;.x;. - - .x,, modulo syntax.
Here, the first name x; is resolved from the place in the program where the reference occurs, and
subsequent names x; are resolved relative to wherever the previous qualifiers x;. - - - .x;_1 led. The
final name x;, leads to the target declaration.

This informal definition of a reference encompasses many syntactic constructs that we intu-
itively recognize as (qualified) references across languages, for example Person.this.name in
Java, std: :option::Option in Rust, and ID IN CUSTOMER IN LAST-TRANSACTION in Cobol. On
the other hand, according to our definition, syntax like List<String> in Java does not constitute
a reference: it is a parameterized type, akin to how a method call foo(x, y) would also not be
considered a reference. We give a more precise definition of a reference in §4.

lock ————— transform —— unlock

P = X[r] — X[(—=d)] ——5 X'[(—d)] — X'[r'] = P’

The above diagram reiterates program transformation with locked references. Initially, we have a
program %, which can be represented as a context® X with references 7 occurring in it. First, we
lock relevant references. That is, we replace concrete references with locked references that durably
remember which declaration they point to, regardless of where the locked reference occurs in the
program (X[(—d)]). Then we transform the program, possibly moving code around (X'[(—d)]).
Finally, we unlock the locked references: synthesizing their concrete references (r’) and plugging
them into the program to yield the concrete transformed program (P’ = X’ [r’]).

In this section, we use a simple program with a locked reference, shown in Fig. 5, to illustrate
the semantics of our synthesize function. The idea is to model locked references as holes given
by unification variables, and strategically apply typing rules to infer a substitution for each hole.
The strategy used to apply typing rules must guarantee that inferred substitutions correspond to
references that resolve as intended.

3.1 Initial Constraint Solving

Consider the example in Fig. 5a, where for the locked reference (—y) we want to synthesize a
concrete reference that must resolve to variable y’s declaration scope in the underlying scope
graph. Valid concrete references that our approach could yield include y and A.y.

The first step of our approach is to replace each locked reference in the program by a hole,
represented by a fresh unification variable, shown in Fig. 5b. Then we use the original language’s
static semantic rules and run the Statix solver on the input program. The presence of holes causes

SWe can regard a ‘context’ as a zipper-like structure over an AST.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

Language-Parametric Reference Synthesis 123:9

the solver to yield a stuck state, where the solver neither has enough information to solve all
constraints nor can derive false, due to the free unification variables.

In our example, the Statix solver will recursively expand predicates and solve scope graph con-
straints to yield a solver state, shown below, with the inferred scope graph G (see Fig. 5¢) and a
single constraint that is stuck because Statix cannot infer which rule to apply to expand the predi-
cate. Additionally, in the state we record that the unification variable ?E is associated with hole h,
and that hole 4 should become a concrete reference that resolves to the scope sy, which is the scope
associated with the locked reference’s target declaration y in G.

G typeOfExpr(sa, 2E ,?T) ?E > h h — (sy, ?E)

The state has the form (G | C i U | H) Following Rouvoet et al. [27], the solver state is given by
the (partially constructed) scope graph G and the set of yet unsolved constraints C. To support
reference synthesis, we have augmented the solver state with U and H. U is a partial function that
maps free unification variables to hole identifiers where applicable. H maps each hole identifier in
a program to a pair (s, t) of the current target scope s; and the term t synthesized for the hole so
far. Note that s; changes as we synthesize qualifiers for the concrete reference.

3.2 Forking States

By default, the Statix solver only expands a constraint when there is exactly one possible expan-
sion, and otherwise the constraint gets stuck. To support reference synthesis we augment the
solver to allow solver states to be forked. This way we can obtain the solver state for each possible
expansion of a constraint. This way we can speculatively apply each possible expansion of a con-
straint, obtaining a solver state. Forked solver states that fail are discarded, but those that can be
successfully solved represent programs for which we have synthesized a valid reference.

For the stuck state discussed above, we can speculatively expand the stuck typeOfExpr predicate
constraint and fork the state for each of the typeOfExpr rules shown in Fig. 4, yielding different
states. However, some of those rules will not lead to well-formed references, and therefore we
only expand to rules that could yield a reference. For the simple LM language shown in Fig. 4, the
relevant rules are T-Var and T-QRef. We fork the solver state, and discuss how each of these two
rules leads to a synthesized reference.

3.3 Expanding Query Constraints

Applying the rule T-Var and solving the constraints as far as possible yields the first forked solver
state with one stuck query constraint:

<§ sA%isVar?xv—){(d?x:?T)} ?2x > h h (s, 2x) >
As the free variable ?x in the stuck constraint is related to hole h, we can infer that the query is also
related to hole h: attempting to solve the constraint could be fruitful for synthesizing a reference
to the target scope s,. Therefore, reference synthesis searches for valid scope graph paths from s,
to the intended target the scope s, while respecting the reachability regex and visibility ordering
of the query. There is exactly one such path, namely the one-step path traversing the VAR edge
from s to sy. This implies that ?x = y and ?T = int. This solves all constraints and results in the
mapping h — (sy, y). As all constraints have been solved and the term for the hole is ground, the
unqualified reference y is returned as a solution.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

123:10 Daniel A. A. Pelsmaeker, Aron Zwaan, Casper Bach, and Arjan J. Mooij

3.4 Qualified Reference

In the second forked solver state, applying the rule T-QRef and solving constraints yields the
following solver state with a stuck predicate constraint and a stuck query constraint, where the
term for the hole is representing a possible qualified reference ?a. ?x:

G scopeOfMod(sy, ?a, ?s;,) % — h

h (s, ?a.?x)
25m 2R isVars, > {(, ?2x : ?T)} o h

Next, we expand the scopeOfMod predicate. One of the possible expansions (using rule S-Mod)
yields the following state:

Sh oot isModa, > {(?p,2a)} (1)

2a—> h
g 25m = tgt(?p) (2) ’

25m 2R 5 isVary, = {(L,?2x:?T)} (3)

oo h— (sy,?a.?x)

The solver state has two stuck query constraints: the module query (1) and the variable query (3).
Both query constraints have unification variables that relate to the hole h, so we cannot know
which of these query should resolve to the target scope s,. Therefore, we fork the solver state
again: one branch where we attempt to expand query (1) and one where we attempt to expand
query (3). Only the fork that attempts to expand the variable query (3) to the target s, will succeed,
so in this example we continue with that branch.

Because of the mapping ?x + h, query (3) may be relevant for resolving to the target scope sy.
Thus, we inspect the scope graph and search for well-formed paths to s,. Since the query in ques-
tion has the unification variable ?s,, as its source, we need to look for paths with any possible
source. For the graph Fig. 5c in the solver state, only the one-step path from s, to s, matches the
regular expression of the query. Hence, the query is resolved by substituting s, for the scope vari-
able ?s,,. Next, we make s, the new target for the hole h, since we assume that the source scope
was not ground because the query forms part of a qualified reference; i.e., a sequence of paths.
Eventually, we solve the constraint by substituting ?s,, > sx and ?x - y.

S —LEXIMOD i sModo, > {(?p, 2a) }
G A "MOD<LEX a p 20— h h— (SA -sy,?a.y)

sy =tgt(?p)

In addition to refining the hole term to ?a.y, the target scope was also refined to s,. The new prob-
lem to be solved is to find the qualifier that resolves to s,. Using the same principles as illustrated
above, the remaining stuck query can be expanded. This will solve the remaining constraints and
make the hole term ground, yielding A.y as the solution.

<Q 0 ‘ 0 hl—)(SA'SA'Sy,A.y)>

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

Language-Parametric Reference Synthesis 123:11

Following to our definition of a reference, the solution A.y is a composite path in the scope graph
from the source scope su, s, -+ sy - > s to the scope of qualifier A, followed by s, --> s, to the
scope of the intended target declaration y, as shown here:

MOD

D D

VAR~A sy r—)y int

The next section formally defines the approach illustrated above. In §5 we describe the heuristics
we apply to make the approach usable in practice. We evaluate our synthesize function on test
programs with locked references in §6.

4 Operational Semantics

The previous section illustrated our approach to synthesize concrete references using an extension
of the Statix solver. This section presents an operational semantics that defines that extension.

4.1 Syntax of Statix

The syntax of Statix terms and constraints, defined in Fig. 6, follows Rouvoet et al. [27] and has a
separation-logic-inspired flavor, as the declarative semantics of Statix constraints is defined using
separation logic. We refer to Rouvoet et al. for the details of this declarative semantics, and focus
on the operational semantics instead in §4.2 and §4.3.

The syntax uses these distinct enumerable sets of symbols: TermConstructor for term constructor
symbols, Var for term variables, SetVar for set variables, PredSymbol for names of predicates (such
as typeOfExpr in Fig. 4), Scope for scope graph node identifiers, Label for scope graph edge labels,
RegEx is the set of regular expressions over words comprised of label symbols, and PartialOrd is
the set of partial orders on label symbols.

In the Constraint syntax, emp is the trivially satisfiable constraint, akin to a true constraint
in a traditional logic. Conversely, false is never satisfiable. C; * C, is a separating conjunction,
where the declarative and operational semantics of Statix guarantees C; and C;, construct separate
scope graph fragments. However, the reader can approximately think of C; * C, as traditional
logic conjunction. The constraint Jx. C asserts the existence of some term named x, which may be
referenced and constrained by C. single(t, t) asserts that set term ¢ is a singleton set whose element
is equal to t, while Vx in t. C asserts that C holds for all its elements x. Vt; + ¢, asserts that the
scope graph contains a scope identified by #; and with associated data t,, whereas t; = t, asserts
that the scope identified by #; is connected via an [-labeled edge to the scope identified by ¢,.

The syntax of queries is t - Ax. E z. C. Here, the term ¢ represents a source scope term; r
represents a regular expression that determines reachability; o is a partial order that determines
visibility; Ax. E is a data-well-formedness constraint which characterizes whether a target scope
and its associated data matches the query; z is a set variable that will be bound in C to the result
of the query. The syntax used by Rouvoet et al. provides a separate constraint for applying the
visibility ordering o. We include this ordering as a part of the query, following the syntax used by
the implementation of Statix found in the Spoofax Language Workbench [11].°

Also in contrast to Rouvoet et al., we distinguish equality constraints (ranged over by E) from
plain constraints (C). This way, data well-formedness predicates of queries (Ax. E) use constraints
that can only inspect terms and data, but cannot extend the scope graph. Another difference
from Rouvoet et al. is that we define the semantics of predicate constraints. The constraint P(t*)

Shttps://spoofax.dev/

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

https://spoofax.dev/

123:12 Daniel A. A. Pelsmaeker, Aron Zwaan, Casper Bach, and Arjan J. Mooij

f € TermConstructor s € Scope
x € Var I € Label
z € SetVar r € RegEx
P € PredSymbol o € PartialOrd
Term>t == x| f(t*)|1]s
SetTerm>t == z|{
SetLit>{ == 0|{t}|lu{

Constraint > C emp | false | C + C | 3x. C | single(t,t) | Vxint.C
| Vitet|tLt»t|tL»Ax.E—>z.C|E|P(t")

EqConstraint > E == tZt|dataOf(t,t) |E*E|3x.E

Fig. 6. Syntax of Statix terms and constraints.

h € Hole
Configuration > k == <Q i C* | U € (Var — Hole) iH € (Hole — (s* x t)))
ScopeGraph> G == (S C Scope, R C (Scope X Label x Scope), p € (Scope — Term))

Fig. 7. Syntax of Statix configurations and scope graphs.

represents an invocation of a user-specified predicate, such as those from Fig. 4. The rules we
discuss next are parameterized by a specification S comprising rules of the form P(t*).

In the syntax of constraints and terms in Fig. 6 and throughout the paper, we use © notation
to represent (possibly empty) sequences, and «* notation to represent their syntax. For example,
P(t*) represents the syntax of a predicate symbol followed by a parenthesized sequence of terms.
We use x; y for sequences that can be freely reordered (e.g., x;y ~ y; x) and x - y for sequences that
cannot (e.g., x - y # y - x). We overload notation and use x; y and x - y to represent sequences both
when x is an element and when x is a sequence, and similarly for y.

4.2 Operational Semantics of Statix with Hole State Tracking

The operational semantics in Fig. 8 also follows Rouvoet et al. [27]. The transition relation uses the
configurations whose syntax is given in Fig. 7. A configuration (G | C | U | H > comprises:

e G: the currently constructed scope graph.

e C: the current set of constraints.

e U € (Var — Hole): associates unification variables with holes. This lets us determine to
which hole a given constraint might relate.

e H € (Hole — (s* X t)): maps each hole in the program to its state, consisting of a list of
traversed scopes s* and the term ¢ constructed so far.

A main difference from Rouvoet et al. is that we extended the configuration to track the state of
reference synthesis holes via the entities U and H. While the rules in Fig. 8 never access them, U
and H are explicitly propagated by these rules such that substitutions resulting from unification
get applied to them. We return to the role of U and H in §4.3.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

Language-Parametric Reference Synthesis 123:13

Stk —«' Configuration k steps to k" using specification S

Or-Cony
SE(G|(C1=C);ClU|H) - (G| Ci;CosC|U | H)

Op-Emp _ _
St(G|emp;C|U|H) - (g|C|U|H)

y is fresh
Op-EXISTS — —
SH(G|@x.0:C|U|H)Y - (g|Cly/x];C|U|H)
mgu(tl,tg) = 9
Or-E

* St (g|(himsC|U|H) - (g|C|U|H)o

OP-SINGLETON

S+ (G |single(t, {t'});C|U|H) = (G| (t1t);C|U|H)

Or-FORALL

SH{G|(vxin{.C;ClU|H) - (G |{Clt/x] | te{};C|U|H)

s¢S

Opr-NEW-SCOPE

SI—((S,R,p)\(Vth);E|U|H>—>((s;S,R,p[sn—>t])|5|U|H>[s/x]

Opr-NEW-EDGE _ _
SE{(SRp)|(s1 = 5:);C|U|H) = ((S, (s1,&,52):E.p) |C|U | H)

pg(s) =t
S+ (G| dataOf(s,1):C|U|H) — (G| (11 20):C|U |H)

Or-DATA

A=Ans(G,s —» Ax. E) guard(G, (s =» Ax. E — z.C),C)
OP-QUERY

SF(G|(s4» Ax.E 2.C);C|U|H) - (G| C[A/z];C|U|H)

ANP(t;) « C) €S.30. mgu(ty, ;) =0

Or-PRED

SH(Gg|Pt);ClU|H) > (g|c;ClU|H)o

‘ GrE~0 Equality constraint E produces a unifier 0 ‘
E-Cong E-ExisTs
E-EQ E-DATAOF GrE w0 y is fresh
mgu(ty, &) = 6 mgu(pg(s).t) =0 GrHE w0, G+ E[y/x] ~ 0
thlitzwe QFdataOf(s,t)w@ G+ E; % Ey ~» 0,0, G+r3dx.E~ 0

Fig. 8. Operational semantics of constraints in Statix

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

123:14 Daniel A. A. Pelsmaeker, Aron Zwaan, Casper Bach, and Arjan J. Mooij

Predicate Constraints. Rule Or-PRED defines the semantics of predicate expansion. To support
this rule, the transition judgment in Fig. 8 is parameterized by a specification S. This specification
is given by a set of predicate rules where each rule has the shape P(t) « C. Each rule is closed
(i.e., FV(P(t) « C) = 0), and we assume that the domain of every predicate rule is disjoint from
all other rules; i.e.:

VPt 1, C; Co. (P(8) « C1) €SA(P(f2) « C2) € SA(F0.mgu(t, i) =0) = =6 ACr=Cy

We also assume that premises that access rules in a specification S (e.g., (P(t) « C) € S) are
automatically a-renamed to avoid variable capture. Rule Op-PRED thus expands a predicate only
when there exists a unique rule P(t;) « C in specification S whose head matches the predicate
constraint P(#;). In case the predicate constraint matches multiple rules in S, rule Op-PReD does
not apply. For example, if P is a predicate symbol, f and g are constructors, x, y are variables, and
we have a specification with rules P(f(x)) « C; and P(g(x)) <« C,, then the Op-PRED rule does
not apply to the predicate constraint P(y) because y can be instantiated to both f(x) and g(x).

The substitution yielded by mgu in the premise of Op-PRED is applied to the entire configuration
after unfolding a predicate. Here and in the rest of the paper, mgu is the partial function computing
the most general unifier (i.e., a substitution). We use L to denote failure in partial functions. We
use 0, 01, 0 ¢suis, - - - to range over substitutions of variables by terms (Var — Term) or set variables
by set terms (SetVar — SetTerm). The type of substitution will be clear from the context. The
substitution functions for constraints, terms, and scope graphs are standard and elided for brevity,
except for the reference entity U which we describe in §4.3.

Logic Constraints. The other rules in Fig. 8 are directly adapted from Rouvoet et al. [27]. Rule
Or-Cony splits a separating conjunction constraint into two constraints. Op-Emp dispatches the
vacuously satisfiable constraint emp. Op-Ex1sTs unpacks an existentially quantified constraint by
choosing a fresh variable name, which may get unified using, for example, Or-EqQ.

Set Constraints. Queries yield sets of results, so the rules in Fig. 8 include two dedicated con-
straints for matching on sets. The semantics of single(t1, tz) is given in rule OP-SINGLETON which
asserts that t, must be a singleton set {t'}, such that t; unifies with ¢’. The semantics of constraint
Vxint.C is given in rule Or-FORALL. The rule asserts that t must be some set literal {; i.e., a union
of singleton sets. The rule expands Vx in {. C into as many constraints as ¢ has singleton sets, in
each case substituting x for the singleton set inhabitant.

Scope Graph Constraints. The rules OP-NEw-ScoPE and OpP-NEW-EDGE create new scopes and
edges in the scope graph, respectively. Rule Op-DATA asserts that a constraint dataOf(#;, ;) can
be solved when ¢, is a scope s, and #; unifies with the term associated with scope s. Rule OP-QUERY
has two premises. The function Ans returns the set of all paths that match the query parameters
(see §2.1). The guard predicate ensures that the query is guarded in the sense that the constraints
C;C do not add a new edge to the scope graph that would cause the query to yield a different
answer. Both Ans and guard are discussed in detail by Rouvoet et al. [27, §3.1 and §5.3].

4.3 Operational Semantics of Reference Synthesis

The usual operational semantics of Statix in Fig. 8 is conservative about solving query and predicate
constraints. As discussed before, OP-PRED solves a predicate constraint only when there is exactly
one possible expansion, otherwise it is stuck. Similarly, Or-QUERY only solves a query constraint
when the source scope of the query is ground (i.e., it is a scope rather than a variable), and the
guard premise holds.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

Language-Parametric Reference Synthesis 123:15

As we can observe from the example discussed in §3, speculatively solving predicate and query
constraints allows the Statix solver to infer what syntax of valid references to substitute for each
hole of a program. To admit such inference, the rules in Fig. 9 let us speculatively expand predicate
and query constraints in states that would otherwise be stuck. We achieve this by introducing
two new relations: > performs a speculative expansion step, and > relates sets of potentially
speculatively expanded configurations.

The »» Relation. As long as the regular Statix constraint solving rules can make progress, the
Opr-SoLve rule applies. Once the solver gets stuck, Or-ExPAND applies. The set comprehension
in the bottom premise of the rule lets us speculatively solve stuck query constraints and expand
predicates. Configurations for which neither Op-SoLvE nor Op-ExPAND apply are truly stuck, and
will be pruned by the set comprehension premise of Op-EXPAND.

Speculative Predicate Expansion. The rule Op-EXPAND-PRED augments the plain Statix constraint
solving rules from Fig. 8 to support selecting an arbitrary rule for expanding a predicate constraint.

Speculative Query Expansion. The rule Or-EXPAND-QUERY augments the plain Statix constraint
solving rules from Fig. 8 with support for solving a stuck query constraint, by synthesizing a path
from a (possibly unknown) source scope to the current target scope of the related hole. The rule
assumes that we are resolving a reference given by a composite path, and attempts to “prepend”
a step to the composite path. Intuitively, if we think of composite paths as (qualified) references,
this corresponds to attempting to prepend a qualifier.

Or-ExpPAND-QUERY uses the U and H components of the state, to determine which hole it is
expanding. For each free variable in the program U tracks to which hole it is related. For this
reason, its substitution function U[t/x] has a guard that checks that each free variable in t are
either not related to a hole, or are related to the same hole as x. As shown previously in Fig. 7,
the state of a hole H(h) is given by a pair (5, t). Here, t is a term representing the inferred syntax
for the reference, while 5 represents a non-empty sequence of query-connected scopes that form its
composite path.

Definition 4.1 (Query-Connected Scopes). For a given scope graph G, two scopes s; and s; in G
are query-connected by a query g = s; - Ax. E, which we denote s; 1> s, when there exists an p
such that p € Ans(G, s; =» Ax. E) where either s, = tgt(p) or s; € pg(tgt(p)).

This uses the notation s; € pg(tgt(p)) to mean that s, is a syntactic sub-term of the data asso-
ciated with tgt(p). Using the definition we can define composite paths, which model references.

Definition 4.2 (Composite Path). For a given scope graph G, a sequence of scopes s . . . s, and
a sequence of queries g; € g, a composite path in the scope graph is given by a series of query-
connected scopes; i.e.: sg LI LN Sn

The first premise of rule Or-ExPAND-QUERY asserts that the data well-formedness predicate
(Ay. E) has a variable occurring in it which is relevant for a hole A. The head scope s; of the com-
posite path component in the state of h represents the scope that we need to connect to, in order to
prepend a step to a query-connected path. The remaining premises assert that we choose a source
scope s” and a target scope s’ that is connected to s;, such the query resolves from s’ to s”.

Accepting States. The Accept(C, H) premise of Op-ExPAND holds iff (1) C is empty (all constraints
are solved), and (2) the state of each hole in H has a composite path component of length > 1 (we
have constructed a composite path for each hole).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

123:16 Daniel A. A. Pelsmaeker, Aron Zwaan, Casper Bach, and Arjan J. Mooij

SEK>»» K/ Configurations ¥ step to k’ using specification S

S+ <Q|E|U|H> + —Accept(C, H)
Op-Sorve “={(g[Clu|m)o|s+(G|C|U|H) 0.1}

Stx—«' Or-ExpPAND

SH(G|C|U|H);x»» x’;k

Skx;k > k' %

Stk 6, H For k, synthesize substitution 6 and hole state H, using specification S ‘

(P() = C) €S mgu(t,tz) =0

Opr-EXPAND-PRED —
SH(G|P(®);C|U|H) — 0,H
OP-EXPAND-QUERY
he{h|xeFV(Ay.E),h=U(x)} H(h) = (s; - s}, ')
s',s" € Sg mgu(t,s’) = 6 (st =5" Vs €pg(s”)) G v E[s" [y]0; » 0,
Ep S Ans(§9192, s’ %» /‘ly E9102) tgt(p) =" guard(g9102, (S/ —> Ax.E > z. C)@lez,a)

SF(G|t4»Ay.E> 2. CC|U|H) » 016, H[h — (s" s s, t)]

‘ Auxiliary functions ‘

U if x ¢ dom(U)
Ul{y— U(x) |y e FV(t)}] ifx € dom(U) and

Yy e FV(t),.U(y) =h = K =U(x)
1 otherwise

Ult/x] =

Fig. 9. Operational semantics of reference synthesis.

4.4 Building the Synthesize Function

Now, we have all the pieces to build the synthesize function:

D ={x — d | (—d) € Plockeds x fresh} U={x+ h|xedom(D),h fresh}
0r={(—d)~ x| D(x) =d} Po=Pokeadi (0|Po(Po)|U|0)—>"(Go|C|U|0)
H={h (s4,x) |U(x) =hD(x) € pg,(sa)} (Go|C|U|H) "%
(G|CT|U|H Y er Accept(CLH') Oresur = {x =t | H'(U(x)) = (5,1}

synthesize(Piocked) = PoOresulr

We first create a fresh unification variable and hole for each locked reference in the program
(D and U, respectively), and replace each locked reference by a fresh unification variable in the
program (0;). Then, we solve the initial constraint (P) on the program with holes. From the partial
scope graph in the result state, we initialize the hole state H for each hole. Then, we synthesize
the references, and extract an accepted state. From this state, we build a substitution 0,.s,;; that
substitutes each hole variable with the synthesized reference term.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

Language-Parametric Reference Synthesis 123:17

4.5 Properties

In this section, we discuss some properties of our operational semantics: soundness, completeness,
and confluence; and we discuss liveness.

Soundness. First, we consider the soundness of our approach. Soundness consists of two compo-
nents: (1) the resulting solutions are well-typed; and (2) each solution corresponds to a composite
path in the scope graph to the target declaration.

THEOREM 4.3 (SOUNDNESS 1). Programs with synthesized references are well-typed.

THEOREM 4.4 (SOUNDNESS 2). Every synthesized reference corresponds to a composite path (defi-
nition 4.2) to the target it was initially locked to.

Formal definitions and proofs of theorems 4.3 and 4.4 can be found in the extended version of
this paper [24], appendices A.2 and A.3, respectively.

Completeness. 1deally, we would conjecture completeness as well. However, completeness is hard
to define, as it must rely on a generic (language-independent) definition of a reference. For the
purpose of this paper, we consider a well-formed reference in scope sy to declaration d to be a
composite path (definition 4.2) through scope graph G, from sy to s; where d € pg(sq) (ie., sg
is associated with declaration d). However, this definition is an over-approximation, as queries
could be connected ‘by accident’. For example, a Java expression a.m(b) where a is an instance
of the class in which this expression occurs could be considered a reference a.b by our definition,
as the target of the query for a would match the source of the query of b. Thus, our definition
is not suitable to state a completeness theorem. In §6.3 we show experimental evidence that our
approach is practically complete.

Confluence. We also consider the property of confluence: if two different expansions are possible,
eventually, the final state sequence will be equivalent.

THEOREM 4.5 (CONFLUENCE). IfK »» K1 and K »» Kg, then 3k’. %1 »»* &/ A Ky »»" K/

Proor. This is a proof by case analysis on the expanded state:

o If different states were expanded in k; and k3, the step made to obtain k; can be applied

on k3 as well, and vice versa. This yields equivalent states again.

If the same state was expanded in k; and k;, either one of the following is true:

— An Op-SoLvE-step was made in both cases. In this case, confluence holds by virtue of — be-
ing confluent [27, Theorem 4.5].

— An Op-ExpAND-step was made in both cases. As this rule ranges over all possible expan-
sions, K1 = K3, so confluence trivially holds.

The same state cannot be expanded with both Op-SoLvE and OP-EXPAND, as the first premise

of Or-EXPAND requires the state to be stuck (i.e., Op-SOLVE does not apply). O

This confluence result is especially important for our next section, as we exploit this property to
design heuristics that reduce the huge search space of possible expansions.

Liveness. Finally, albeit not a property of the operational semantics, we discuss liveness here as
well. Liveness consists of two components: (1) the synthesis finds each solution in finite time, and
(2) when no (new) solution is available, the synthesis terminates. Property (1) can be guaranteed by
scheduling the expansion steps ‘fairly’; i.e. in a breadth-first manner. Property (2) requires special
care for predicates that are (potentially) infinitely expanding without yielding a solution. We return
to this in §5.5.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

123:18 Daniel A. A. Pelsmaeker, Aron Zwaan, Casper Bach, and Arjan J. Mooij

1 mod A {
2 var x =1 24 N h
50} t41 A ”
' mod B { H=1{7x > h, U= ha 1 (sa?41)
5 import (—A)::* hy (Sx, ?Az.?x)
2
6 var y = (—x) .Az = hx
7%
MOLD)' '\LE“QOD scopeOfMod sz, ?A1, ?51) (1)
ﬁ (=-5) o 00 251 @ | |
| ?ST\ALMP scopeOfMod(sg, 242, ?s3) (3)
sX =X mt] [sy >y ?T] ?s9 _VAR isVary, +— {(_, ?x : ‘?T)} (4)

Fig. 10. Example program (top-left) and intermediate synthesis state (below and top-right).

5 Heuristics

The operational semantics is highly non-deterministic. A direct, naive implementation would per-
form duplicate and unnecessary work. To reduce work, our implementation of reference synthesis
uses heuristics to guide the search. These heuristics have three goals: (i) to guide the search toward
results, (ii) to avoid duplicate work, and (iii) to cut search branches early that do not lead to results.
For all these heuristics, we argue that they do not yield solutions that are not derivable from the
operational semantics (soundness), and preserve all derivable solutions as well (completeness).

In this section, we discuss these heuristics, using the example in Fig. 10. Performing reference
synthesis on the program on the top-left eventually reaches the state shown in the figure. The first
two constraints are obtained from expanding rule D-ImportOk on the initial hole on line 5 (h4),
represented by the variable ?A;. Resolving this reference yields a scope, currently represented by
the variable ?s;. Once this scope is resolved, an incoming edge from sz can be created. Until then,
this edge is not present in the scope graph (hence it is indicated with a dashed line). The other two
constraints correspond to the hole on line 6 (hy), which is expanded to a reference with a single
qualifier ?A;.?x. The qualifier should resolve to a scope ?s;, in which afterward, a query resolving
to the target scope s will be performed.

5.1 Selecting Constraints

As discussed in §4.5, our system is confluent. For that reason, we can choose one single order in
which to expand constraints, instead of trying all possible orders. We choose the constraint to
expand according to the following criteria (considered in order): (i) prefer queries over predicate
constraints; (ii) prefer predicate constraints that can lead to queries over those that cannot; and
(iii) prefer older constraints over newer constraints. The rationale behind this order is that we try to
expand queries as soon as possible. Expanding queries typically blows up the search space less than
expanding predicates, and queries often reach terminal states (ground references). Using age as a
tiebreaker, we try to explore the remaining state space in a breath-first manner, to ensure we reach
all possible references. In our example, this implies that we first expand the query constraint (4),
inferring x to be the value of ?x, and s, to be the target ?s, of constraint (3). As we eventually
expand all constraints, we preserve soundness and completeness.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

Language-Parametric Reference Synthesis 123:19

5.2 Expanding Queries

When expanding a query, a source and target scope must be chosen (s" and s’ in OP-ExPAND-
QUERY in Fig. 9). Instead of trying the query with all possible combinations of source and target
scopes, we can be smart about the source and target scopes we pick. First, we choose s”’, based
on the premise that it should be equal to the current target scope, s;, or contain it. Then, we infer
a unifier from the query, G + E[s”/y] ~» 0. If no such unifier exists, we stop the search for
this branch. Finally, we traverse the scope graph backwards, starting at s”. We use the inverted
regular expression (e.g., inv(LEX* VAR) = VAR LEX") to guide the graph traversal to only find
source scopes that have a valid path to the target scope. This approach only over-approximates
when there is another declaration, reachable from s’, that shadows s”. It is sound, as eventually
we check all the premises of the rule. It is also complete, as all other choices for s’ do not satisfy
the premise that relates it to s;, and all other choices for s do not yield valid query answers.

In our example, when expanding the query constraint (4), the only reasonable choice for s is sy.
Then, solving E yields { ?x + x}. Next, following the inverted regular expression (VAR) traversing
the edge s, ~%» s, backwards, we choose s’ to be sa. This instantiation is a valid query expansion.

5.3 Expanding Predicates

When selecting a predicate (§5.1) we fork the computation and try each possible expansion of a
predicate to a rule concurrently. We prioritize expansions that lead to a query, as those might
converge to a result quicker. Additionally, we prioritize rules that have fewer free variables, as
those add less freedom to the problem; i.e., tell us more about the final solution. As we only pri-
oritize certain rules over others, but never discard any, we will eventually try all rules. Therefore,
this does not affect completeness. In our example, this implies that we prioritize expanding the
scopeOfMod constraints using rule S-Mod before rule S-QMod.

5.4 Isolating Holes

The schemes in §5.1 and §5.3 reduce the search space significantly, but may skew the search to
holes with less complicated solutions. Therefore, when starting the computation, we fork the state
for each hole, which we call the focus hole of that search branch. We only expand constraints that
are related to this focus hole, ensuring we make progress on this hole specifically.

However, this approach is incomplete, as sometimes the solution of one hole can only be com-
puted after another hole is solved. For example, for the program in Fig. 10, x is a valid solution
for h, (although in a different branch than the state presented there). However, this can only be
computed when the solution for hy is known, as it requires the edge sg 2 s, to be present in the
scope graph. We need a way to ensure such ‘composite’ solutions are computed as well.

We ensure this as follows. Suppose query expansion (§5.2) traverses an [-labeled edge. When
there is a scope s such that future steps might create an [-labeled edge in s (i.e., C — (s,1); see
Rouvoet et al. [27, §5.3]), we might miss edges. In this case, we find the constraint that is responsi-
ble for the missing edge, and all constraints that (transitively) share a variable with this constraint.
Some of these constraints may correspond to a different hole. Then, we peek at that hole for solu-
tions and try insert those solutions in our current state. Solving this state should create the missing
edge. Next, we can resume our backwards traversal. Since we over-approximate the missing edges
(= over-approximates, and the future edges may also have different target scopes), we preserve
completeness. In addition, we do not change the traversal itself, so we also preserve soundness.

In the example, we detect that constraint (2) is responsible for the missing edge. As this con-
straint shares a unification variable with constraint (1), we detect it is related to hy. Thus, we
insert a solution for hu (e.g., A) in the state, after which we can find the solution x for h,.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

123:20 Daniel A. A. Pelsmaeker, Aron Zwaan, Casper Bach, and Arjan J. Mooij

5.5 Recursive Qualifiers

Another heuristic concerns recursive qualifiers. We consider a reference recursive if multiple qual-
ifiers in the reference resolve to the same declaration. For example, consider a Java class A with
field int x and a field A a. In this case, a hole referring to x has an infinite number of possible
solutions: x, a.x, a.a.Xx, etc. In these cases, each a refers to the same declaration.

To explain how we optimize synthesizing these references, we consider two of the states the
synthesis of a. a. x goes through. After some steps, the synthesis reaches the following state:

k1 =(G | resolveQVar(sa, ?q,, ?s1) | {2, > h..} | {h (sa-502q1%), ... })

Some forks of this branch will arrive at a.x as a solution for this hole. However, on the path to
synthesizing a.a.x, the following state will also be reached:

k2= (G | resolveQVar sy, ?q,, 7s2) | {2q, > h...} | {h > (sa-sa-sx29p.a),...})

These states are very similar: they share the same scope graph, have a-equivalent constraints, and
the same target scope in the hole state of k. For that reason, we can conclude that each solution
for ?q, is also a solution for ?q,, as any derivation starting in 1, is also valid in k. Therefore,
we can avoid synthesizing the same solution multiple times by reusing solutions for ?q; when
synthesizing ?q,. As the traces are equivalent, we preserve soundness and completeness.

Algorithmically, we achieve this in the following three steps: (1) We detect pairs of solver states
where (a) the constraints are equivalent up to a-renaming, (b) the hole’s term in the recursive solver
state is an instantiation of the term in the base state, and (c) the hole has the same target scope.
For these states, we stop further synthesis on the recursive state. (2) For each ground solution for
the variable in the base state, we emit a solution derived from the recursive state. (3) Repeat from
step 2, using this new solution.

In the example above, this detects that k; is a recursive state with respect to k. Thus, solutions
from other branches rooted in x; (such as a. x) are reused in the variable ?g, in x,, yielding a.a.x.

This expansion is interleaved with executing other search branches, in order to guarantee live-
ness. In the case no base solutions exist, this immediately terminates a search branch that would
otherwise run infinitely without returning results. This ensures that we are terminating on recur-
sive instances that match this pattern. When we assume the predicates that model references do
not generate new scopes, only a finite number of recursive instances can be generated (because
there exist a finite number of scopes in the scope graph, and a finite number of rules in a speci-
fication; hence only a finite number of states that are not equivalent according to the definition
in step 1 above exist.). That implies that we can only have non-termination when the recursive
reference predicate generates fresh scopes, which typical specifications do not do.

The next section evaluates our implementation, which is based on these heuristics, providing
evidence that we indeed preserve soundness and completeness.

6 Experimental Evaluation

In evaluating reference synthesis, we focus on three key criteria: (1) ensuring that synthesized
references are valid according to the static semantic specification of the language and resolve
to the intended declaration (soundness), (2) verify the ability to find a valid reference if it exists
(completeness), and (3) assess the efficiency of the synthesis process (performance). In this section
we discuss how we evaluated these aspects of reference synthesis.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

Language-Parametric Reference Synthesis 123:21

[[Java [ChocoPy [FGJ l

Included 2528 (62%) | 196 (64%) | 49 (94%)

Negative 0(0%) | 55 (18%) 0% | | [Java | ChocoPy | FGJ |
Java 8 incompat. 1076 (26%) N/A N/A Success 2382 (94%) 155 (79%) 38 (78%)
Spec incompat. 197 (5%) 10 (3%) 0 (0%) Timeout 146 (6%) 41 (21%) 11 (22%)
No references 304 (7%) 47 (15%) 3 (6%) Failure 0 (0%) 0 (0%) 0 (0%)
Total 4105 (100%) | 308 (100%) | 52 (100%) Total 2528 (100%) | 196 (100%) | 49 (100%)

Fig. 11. Test selection. Fig. 12. Test outcomes.

6.1 Languages

We evaluated our synthesize function on three larger programming languages: Java, ChocoPy, and
Featherweight Generic Java (FGJ).

(1) Javais a mainstream language with sophisticated name binding features. We evaluated our
approach using an existing Statix specification of Java 8 from the artifact [37] associated
with the work of van Antwerpen and Visser [38]. This specification of Java unfortunately
does not support generics or method references. We derived test cases from Java files used
to validate the implementation of refactorings in the JetBrains Intelli] IDE.”

(2) ChocoPy [20] is a statically-typed dialect of Python. We used an existing Statix specification
and ChocoPy files for our evaluation.

(3) Featherweight Generic Java [10] (FGJ) is a functional Java core language with full generics
support. We used the Statix specification from the artifact [35] of van Antwerpen et al. [36].

6.2 Method

For each language we used the existing Statix semantic specifications without modification, as our
synthesize function works directly with these specifications. We collected a set of test cases: single-
file programs where we locked variable names, type names, and qualified member names that
occur in it. As a result, many test cases contain multiple locked references. Each locked reference
only has the target declaration as a parameter. The original syntax of the reference is erased. We
excluded negative test cases (tests that validated that the specification or implementation gives an
error on incorrect programs), those that are incompatible with our Statix specification or Java 8 (in
the case of Java tests), and those that had no references to lock. The resulting selection is shown
in Fig. 11. Our reference synthesis algorithm was then applied to propose concrete references until
the original reference in the program was recovered. We set a timeout of 60 seconds per test case
and ran the evaluation on a MacBook Pro 2019 with a 2.4 GHz Intel Core i9 processor and 64 GB
memory.

6.3 Results

A summary of the results of the evaluation is shown in Fig. 12. The results confirm the soundness of
our reference synthesis algorithm. Substituting the synthesized references back into the original
programs only produced well-typed programs (theorem 4.3).

Our evaluation demonstrates a high level of completeness, as it successfully synthesized each
reference encountered in our test cases, including non-trivial references such as Java’s A. super. x
and references with ambiguous qualifiers [8, §6.5.2]. Nevertheless, formally proving completeness
of the algorithm is challenging (§4.5).

"https://github.com/JetBrains/intellij-community/tree/idea/233.14808.21/java/java-tests/testData/refactoring

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

123:22 Daniel A. A. Pelsmaeker, Aron Zwaan, Casper Bach, and Arjan J. Mooij

While performance was not the main focus
of our approach, we also measured the time
taken to synthesize each reference, shown as
a violin plot in Fig. 13. The plot illustrates the
distribution of the synthesis time per hole as
a density curve, where for all three languages
most results lie between 10 and 200 millisec-
onds. A small box plot is depicted inside each
density curve, highlighting the median, range
of the central 50% results, and range of the
remaining data. For the majority of locked
references the algorithm proposed a solution
within one second. In around 7% of the test Fig. 13. Logarithmic plot of the time spent synthesiz-
cases, reference Synthesis failed to find a so- ing references per hole in each of 2575 successful test
lution for all locked references within the 60- cases- The dashed line marks 1 second.

second timeout. This typically occurred when

references were strongly interdependent, as reference synthesis will exhaustively explore all com-
binations of solutions for the dependent and the dependency (see §5.4).

[y

o
rS
1

[y

o
w
T

=

o
e
1

[y
o
o

Mean Synthesis Time / Hole (ms)
=
o

Java ChocoPy FG]J

6.4 Threats to Validity

To mitigate bias in the references we lock, or the alternatives we try, we make two conservative
assumptions that are not generally true for a refactoring: (1) all references in the program must be
locked; and (2) the original reference syntax is unknown. These assumptions make our test cases
more challenging and may result in a worse performance than it would be in practical scenarios.

Instead of locking all references in the program, a typical refactoring would only need to lock a
subset of those references, namely those that could get changed due to the program transformation.
Consequently, the likelihood of interdependent locked references would be lower. Furthermore,
most existing references are likely to remain valid despite the transformation. Therefore, reference
synthesis could prioritize verifying that the existing reference syntax still resolves to the intended
declaration before synthesizing a new concrete reference. As a result, only a handful of references
need to be synthesized.

Another potential threat to validity is that our approach is parameterized by the language’s static
semantics written in Statix. As shown by Rouvoet et al. [27], van Antwerpen et al. [36], Zwaan
and Poulsen [41], Statix can express many interesting name binding and type system concepts,
but it is yet unclear what language concepts Statix cannot express. The features of Statix that we
heavily rely on are the solver interface, the presence of predicate constraints and query constraints,
and conservative scheduling. Given that we do not expect significant changes in any of these, we
expect that our reference synthesis algorithm will work without fundamental modifications being
required by possible future extensions to Statix.

7 Related Work

Refactoring as a discipline and subject goes back to the pioneering works by Griswold [9] and
Opdyke [19]. Since then, refactoring has become a well-established field that has grown exponen-
tially. Steimann [32] notes that the growth has been so large that a recent attempt to update the
Mens and Tourwe’s survey [16] was abandoned as there were too many works to be considered.
Consequently, we focus our discussion on prior work most relevant to reference synthesis.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

Language-Parametric Reference Synthesis 123:23

A distinguished line of work on implementing refactorings is Thompson et al’s work on refac-
toring tools for Haskell [12, 14] and Erlang [13], which provides support for scripting a general-
purpose code transformations with possibilities to specify pre- and post-conditions that ensure the
transformation preserves certain properties explicitly. This support is realized via name-binding
APIs implemented from scratch for each individual language.

As discussed in the introduction, our work builds upon previous work by Ekman et al. [5],
Schifer and de Moor [29], Schéfer et al. [30, 31], who introduced the idea of tracking name-binding
dependencies by “locking” references to declarations and then synthesizing concrete references.
Schéfer and de Moor applied this concept to synthesizing references for Java but deemed their ref-
erence synthesis algorithm to be beyond the scope of their paper [29, §2]. Our reference synthesis
algorithm is applicable to any language whose typing rules are defined using Statix [36].

In other closely related previous work, de Jonge and Visser [3] describe a language-generic
API for name-binding preserving refactorings. Their approach is inspired by the work of Ekman
et al. [5] on JastAdd [4], which they generalize by giving operations for querying name-binding
information and requalifying names. They demonstrate that this approach could be applied to
multiple languages, including Stratego and a subset of Java [39, 40]. The main difference between
their generic API and our work is that de Jonge and Visser require the requalification function to
be explicitly provided. Our work provides this function.

Tip et al. [33] demonstrate that the problem of checking that a refactoring preserves well-
typedness in a language like Java can be expressed as a type constraint problem [21]. Their type
constraint framework supports a wide range set of refactorings for a large subset of Java. While
their work focuses on Java-specific constraints, we address the broader problem of guaranteeing
that references resolve to the same declaration for any programming language whose semantics
of name resolution is defined using scope graphs, with Java serving as one of the case studies.

Steimann [32] generalizes the work of Tip et al. to also consider binding preservation and
provides a more general and language-independent foundation for constraint-based refactoring.
Although this foundation could in principle support refactorings in terms of name-binding con-
straints that would guarantee binding preservation in any language, the question of how to pro-
vide a language-parametric semantics for such constraints is left open. Our language-parametric
algorithm might provide an answer to this question.

An important aspect of refactorings that move code is to avoid accidental name capture. A
common approach to avoiding name capture is renaming (following, e.g., the Barendregt conven-
tion [2]). While our reference synthesis algorithm currently focusses on synthesizing (qualified)
references, it does not produce suggestions where name capture could be avoided by renaming
declarations. The language-parametric Name-Fix algorithm due to Erdweg et al. [6] provides an
interesting solution to this problem.

Despite serving a very different purpose, Pelsmaeker et al. [22] define a language-parametric
code completion algorithm that also relies on the Statix specification. Like our approach, they in-
sert a free unification variable in a placeholder position, and partially type-check the program. By
inspecting the stuck constraints, they find and propose type-sound suggestions for code comple-
tion. Their work, together with ours, shows that having a declarative but executable specification
of the static semantics is essential to deriving sound, language-parametric editor services.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

123:24 Daniel A. A. Pelsmaeker, Aron Zwaan, Casper Bach, and Arjan J. Mooij

8 Conclusion

We have presented a novel approach reference synthesis that is automatic, language-parametric,
and sound—generating only well-typed references to the intended declarations. This approach is
applicable to any language whose static semantics is defined using typing rules in Statix [36]. It
works out-of-the-box for such languages, is sound by construction, and uses non-deterministic
search to provide a high degree of completeness. Our evaluation demonstrates that our algorithm
works on practical examples, but also reveals that our generic approach comes with a high perfor-
mance cost, which we intend to explore in future work.

9 Data Availability

This paper is accompanied by an artifact [23], a Docker container that includes our reference
synthesis tool, source code, and its dependencies. Our tool can be executed in evaluation mode
to reproduce the data presented in §6. The evaluation utilizes a set of test programs with locked
references, that are all included in the artifact. Additionally, the original test sets from which the
test cases were derived are also provided for further reference.

Acknowledgments

We would like to thank Luka Miljak and the anonymous reviewers for their comments and feed-
back on previous versions of this paper. This work is supported by the Programming and Validating
Software Restructurings project (17933, NWO-TTW, MasCot).

References

[1] Alfred V. Aho and Jeffrey D. Ullman. 1972. The theory of parsing, translation, and compiling. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

[2] Hendrik Pieter Barendregt. 1984. The Lambda Calculus - Its Syntax and Semantics. Studies in Logic and the Foundations
of Mathematics, Vol. 103. North-Holland.

[3] Maartje de Jonge and Eelco Visser. 2012. A language generic solution for name binding preservation in refactorings. In
International Workshop on Language Descriptions, Tools, and Applications, LDTA ’12, Tallinn, Estonia, March 31 - April
1, 2012, Anthony Sloane and Suzana Andova (Eds.). ACM, 2. doi:10.1145/2427048.2427050

[4] Torbjérn Ekman and Goérel Hedin. 2007. The JastAdd extensible Java compiler. In Proceedings of the 22nd Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2007, October
21-25, 2007, Montreal, Quebec, Canada, Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele
Jr. (Eds.). ACM, 1-18. doi:10.1145/1297027.1297029

[5] Torbjorn Ekman, Max Schifer, and Mathieu Verbaere. 2008. Refactoring is not (yet) about transformation. In Second
ACM Workshop on Refactoring Tools, WRT 2008, in conjunction with OOPSLA 2008, Nashville, TN, USA, October 19, 2008.
ACM, 5. doi:10.1145/1636642.1636647

[6] Sebastian Erdweg, Tijs van der Storm, and Yi Dai. 2014. Capture-Avoiding and Hygienic Program Transformations.
In ECOOP 2014 - Object-Oriented Programming - 28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014.
Proceedings (Lecture Notes in Computer Science, Vol. 8586), Richard Jones (Ed.). Springer, 489-514. doi:10.1007/978-3-
662-44202-9_20

[7] Martin Fowler. 1999. Refactoring - Improving the Design of Existing Code. Addison-Wesley. http://martinfowler.com/
books/refactoring.html

[8] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. 2015. The Java Language Specification - Java SE
8 Edition. https://docs.oracle.com/javase/specs/jls/se8/html/

[9] William G. Griswold. 1992. Program Restructuring As an Aid to Software Maintenance. Ph. D. Dissertation. Seattle, WA,
USA.

[10] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: a minimal core calculus for Java
and GJ. ACM Transactions on Programming Languages and Systems 23, 3 (2001), 396-450. doi:10.1145/503502.503505
[11] Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax language workbench. In Companion to the 25th Annual ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, SPLASH/OOPSLA 2010,
October 17-21, 2010, Reno/Tahoe, Nevada, USA, William R. Cook, Siobhan Clarke, and Martin C. Rinard (Eds.). ACM,
237-238. doi:10.1145/1869542.1869592

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

https://doi.org/10.5281/zenodo.14592164
https://doi.org/10.1145/2427048.2427050
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1145/1636642.1636647
https://doi.org/10.1007/978-3-662-44202-9_20
https://doi.org/10.1007/978-3-662-44202-9_20
http://martinfowler.com/books/refactoring.html
http://martinfowler.com/books/refactoring.html
https://docs.oracle.com/javase/specs/jls/se8/html/
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/1869542.1869592

Language-Parametric Reference Synthesis 123:25

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]
[22]
[23]
[24]

[25]
[26

—

[27]

[28]

[29]

[30]

[31]

[32]

Huiging Li, Claus Reinke, and Simon J. Thompson. 2003. Tool support for refactoring functional programs. In Pro-
ceedings of the ACM SIGPLAN Workshop on Haskell, Haskell 2003, Uppsala, Sweden, August 28, 2003. ACM, 27-38.
doi:10.1145/871895.871899

Huiging Li, Simon Thompson, Laszl6 Lévei, Zoltan Horvath, Tamas Kozsik, Aniké Vig, and Tamas Nagy. 2006. Refac-
toring Erlang Programs. In The Proceedings of 12th International Erlang/OTP User Conference. Stockholm, Sweden.
http://www.cs.kent.ac.uk/pubs/2006/2455

Huiging Li, Simon Thompson, and Claus Reinke. 2005. The Haskell Refactorer, HaRe, and its APL. Electronic Notes in
Theoretical Computer Science 141, 4 (2005), 29-34. doi:10.1016/j.entcs.2005.02.053

Huiging Li and Simon J. Thompson. 2012. Let’s make refactoring tools user-extensible!. In Fifth Workshop on Refac-
toring Tools 2012, WRT ’12, Rapperswil, Switzerland, June 1, 2012, Peter Sommerlad (Ed.). ACM, 32-39. doi:10.1145/
2328876.2328881

Tom Mens and Tom Tourwé. 2004. A Survey of Software Refactoring. IEEE Trans. Software Eng. 30, 2 (2004), 126-139.
http://csdl.computer.org/comp/trans/ts/2004/02/e0126abs.htm

Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. 2015. A Theory of Name Resolution. In
Programming Languages and Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings
(Lecture Notes in Computer Science, Vol. 9032), Jan Vitek (Ed.). Springer, 205-231. doi:10.1007/978-3-662-46669-8_9
Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A. Hammer. 2017. Hazelnut: a bidirectionally
typed structure editor calculus. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM,
86-99. http://dl.acm.org/citation.cfm?id=3009900

William F. Opdyke. 1992. Refactoring Object-Oriented Frameworks. Ph. D. Dissertation. University of Illinois, Urbana-
Champaign, IL, USA. Advisor(s) Ralph E. Johnson.

Rohan Padhye, Koushik Sen, and Paul N. Hilfinger. 2019. ChocoPy: A Programming Language for Compilers Courses.
In Proceedings of the 2019 ACM SIGPLAN Symposium on SPLASH-E (SPLASH-E 2019). Association for Computing Ma-
chinery, New York, NY, USA. doi:10.1145/3358711.3361627

Jens Palsberg and Michael I. Schwartzbach. 1994. Object-oriented type systems. Wiley.

Daniél A. A. Pelsmaeker, Hendrik van Antwerpen, Casper Bach Poulsen, and Eelco Visser. 2022. Language-parametric
static semantic code completion. Proceedings of the ACM on Programming Languages 6, OOPSLA (2022), 1-30. doi:10.
1145/3527329

Daniel A. A. Pelsmaeker, Aron Zwaan, Casper Bach, and Arjan J. Mooij. 2025. Language-Parametric Reference Synthesis
(Artifact). doi:10.5281/zenodo.14592164

Daniel A. A. Pelsmaeker, Aron Zwaan, Casper Bach, and Arjan J. Mooij. 2025. Language-Parametric Reference Syn-
thesis (Extended). (2025). doi:10.48550/arXiv.2502.19143 arXiv:arXiv:2502.19143 [cs.PL]

Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press, Cambridge, Massachusetts.

Casper Bach Poulsen, Arjen Rouvoet, Andrew P. Tolmach, Robbert Krebbers, and Eelco Visser. 2018. Intrinsically-
typed definitional interpreters for imperative languages. Proceedings of the ACM on Programming Languages 2, POPL
(2018). doi:10.1145/3158104

Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. 2020. Knowing
when to ask: sound scheduling of name resolution in type checkers derived from declarative specifications. Proceedings
of the ACM on Programming Languages 4, OOPSLA (2020). doi:10.1145/3428248

Max Schifer, Mathieu Verbaere, Torbjorn Ekman, and Oege de Moor. 2009. Stepping Stones over the Refactoring
Rubicon - Lightweight Language Extensions to Easily Realise Refactorings. In 23rd European Conference on Object-
Oriented Programming (ECOOP °09).

Max Schifer and Oege de Moor. 2010. Specifying and implementing refactorings. In Proceedings of the 25th An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2010,
William R. Cook, Siobhan Clarke, and Martin C. Rinard (Eds.). ACM, Reno/Tahoe, Nevada, 286-301. doi:10.1145/
1869459.1869485

Max Schifer, Torbjorn Ekman, and Oege de Moor. 2008. Sound and extensible renaming for Java. In Proceedings
of the 23rd Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2008, October 19-23, 2008, Nashville, TN, USA, Gail E. Harris (Ed.). ACM, 277-294. doi:10.1145/1449764.1449787
Max Schéfer, Andreas Thies, Friedrich Steimann, and Frank Tip. 2012. A Comprehensive Approach to Naming and
Accessibility in Refactoring Java Programs. IEEE Trans. Software Eng. 38, 6 (2012), 1233-1257. doi:10.1109/TSE.2012.13
Friedrich Steimann. 2018. Constraint-Based Refactoring. ACM Transactions on Programming Languages and Systems
40, 1 (2018). doi:10.1145/3156016

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

https://doi.org/10.1145/871895.871899
http://www.cs.kent.ac.uk/pubs/2006/2455
https://doi.org/10.1016/j.entcs.2005.02.053
https://doi.org/10.1145/2328876.2328881
https://doi.org/10.1145/2328876.2328881
http://csdl.computer.org/comp/trans/ts/2004/02/e0126abs.htm
https://doi.org/10.1007/978-3-662-46669-8_9
http://dl.acm.org/citation.cfm?id=3009900
https://doi.org/10.1145/3358711.3361627
https://doi.org/10.1145/3527329
https://doi.org/10.1145/3527329
https://doi.org/10.5281/zenodo.14592164
https://doi.org/10.48550/arXiv.2502.19143
https://arxiv.org/abs/arXiv:2502.19143
https://doi.org/10.1145/3158104
https://doi.org/10.1145/3428248
https://doi.org/10.1145/1869459.1869485
https://doi.org/10.1145/1869459.1869485
https://doi.org/10.1145/1449764.1449787
https://doi.org/10.1109/TSE.2012.13
https://doi.org/10.1145/3156016

123:26 Daniel A. A. Pelsmaeker, Aron Zwaan, Casper Bach, and Arjan J. Mooij

[33] Frank Tip. 2007. Refactoring Using Type Constraints. In Static Analysis, 14th International Symposium, SAS 2007,
Kongens Lyngby, Denmark, August 22-24, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4634), Hanne Riis
Nielson and Gilberto Filé (Eds.). Springer, 1-17. do0i:10.1007/978-3-540-74061-2_1

[34] Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. 2016. A constraint
language for static semantic analysis based on scope graphs. In Proceedings of the 2016 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Martin Erwig
and Tiark Rompf (Eds.). ACM, 49-60. doi:10.1145/2847538.2847543

[35] Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. 2018. Case Studies for Article: Scopes
as Types. Proceedings of the ACM on Programming Languages 2, OOPSLA (2018). doi:10.1145/3276915

[36] Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. 2018. Scopes as types. Proceedings
of the ACM on Programming Languages 2, OOPSLA (2018). doi:10.1145/3276484

[37] Hendrik van Antwerpen and Eelco Visser. 2021. Scope States (Artifact). DARTS 7, 2 (2021). doi:10.4230/DARTS.7.2.1

[38] Hendrik van Antwerpen and Eelco Visser. 2021. Scope States: Guarding Safety of Name Resolution in Parallel Type
Checkers. In 35th European Conference on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Den-
mark (Virtual Conference) (LIPIcs, Vol. 194), Anders Mgller and Manu Sridharan (Eds.). Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik. doi:10.4230/LIPIcs. ECOOP.2021.1

[39] Eelco Visser. 2001. Stratego: A Language for Program Transformation Based on Rewriting Strategies. In Rewriting Tech-
niques and Applications, 12th International Conference, RTA 2001, Utrecht, The Netherlands, May 22-24, 2001, Proceedings
(Lecture Notes in Computer Science, Vol. 2051), Aart Middeldorp (Ed.). Springer, 357-362. doi:10.1007/3-540-45127-7_27

[40] Eelco Visser, Zine-El-Abidine Benaissa, and Andrew P. Tolmach. 1998. Building Program Optimizers with Rewriting
Strategies. In Proceedings of the third ACM SIGPLAN international conference on Functional programming, Matthias
Felleisen, Paul Hudak, and Christian Queinnec (Eds.). ACM, Baltimore, Maryland, United States, 13-26. doi:10.1145/
289423.289425

[41] Aron Zwaan and Casper Bach Poulsen. 2024. Defining Name Accessibility Using Scope Graphs. In 38th European
Conference on Object-Oriented Programming, ECOOP 2024, September 16-20, 2024, Vienna, Austria (LIPIcs, Vol. 313),
Jonathan Aldrich and Guido Salvaneschi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fir Informatik. doi:10.4230/
LIPIcs.ECOOP.2024.47

[42] Aron Zwaan and Hendrik van Antwerpen. 2023. Scope Graphs: The Story so Far. In Eelco Visser Commemorative
Symposium, EVCS 2023, April 5, 2023, Delft, The Netherlands (OASIcs, Vol. 109), Ralf Lammel, Peter D. Mosses, and
Friedrich Steimann (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik. doi:10.4230/OASIcs.EVCS.2023.32

Received 2024-10-15; accepted 2025-02-18

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 123. Publication date: April 2025.

https://doi.org/10.1007/978-3-540-74061-2_1
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/3276915
https://doi.org/10.1145/3276484
https://doi.org/10.4230/DARTS.7.2.1
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
https://doi.org/10.1007/3-540-45127-7_27
https://doi.org/10.1145/289423.289425
https://doi.org/10.1145/289423.289425
https://doi.org/10.4230/LIPIcs.ECOOP.2024.47
https://doi.org/10.4230/LIPIcs.ECOOP.2024.47
https://doi.org/10.4230/OASIcs.EVCS.2023.32

	Abstract
	1 Introduction
	1.1 Locked References
	1.2 Language-Parametric Reference Synthesis

	2 Scope Graphs and Statix
	2.1 Scope Graphs
	2.2 Scope Graph Queries
	2.3 Statix Rules and Constraints
	2.4 Statix Constraint Solver

	3 Reference Synthesis by Example
	3.1 Initial Constraint Solving
	3.2 Forking States
	3.3 Expanding Query Constraints
	3.4 Qualified Reference

	4 Operational Semantics
	4.1 Syntax of Statix
	4.2 Operational Semantics of Statix with Hole State Tracking
	4.3 Operational Semantics of Reference Synthesis
	4.4 Building the Synthesize Function
	4.5 Properties

	5 Heuristics
	5.1 Selecting Constraints
	5.2 Expanding Queries
	5.3 Expanding Predicates
	5.4 Isolating Holes
	5.5 Recursive Qualifiers

	6 Experimental Evaluation
	6.1 Languages
	6.2 Method
	6.3 Results
	6.4 Threats to Validity

	7 Related Work
	8 Conclusion
	9 Data Availability
	Acknowledgments
	References

