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Abstract
Motor learning is a vital ability of the human brain in which multiple cortical areas like the primary motor cortex
are involved. One way to investigate the fast motor learning brain dynamics is with use of electroencephalography
(EEG). This non-invasive and mobile technique records continuous electrical activity on the brain cortex with a
high temporal resolution. Although there has been considerable research into motor learning in humans, the
mechanisms behind movement acquisition and execution are still largely unknown. A better understanding
of motor learning is relevant to treatment and training in neurorehabilitation and sports medicine. The aim of
this study was to provide insight into the neurophysiological mechanisms behind motor skill learning compared
to motor execution. Motor skill learning is defined as the acquisition of a complex movement sequence by
improving accuracy without comprising on speed. To investigate the neurophysiological mechanisms behind
motor skill learning, 128-channel EEG was recorded in 20 young, right-handed, healthy participants while
performing a motor skill learning task and a motor execution task. With use of adaptive mixture independent
component analysis (AMICA), time-frequency analysis and equivalent dipole fitting source localisation, functional
neurophysiological correlates of motor skill learning were investigated. Due to an excessive amount of electrical
bridged electrodes, 12/20 participants were excluded from further analyses. In the 8 remaining participants,
a cluster of independent components of electrical activity was located on the left primary motor cortex. In the
motor learning task, lower β -frequency power was found in these components compared to the control task. This
suggest that motor execution could be distinguished from motor learning on EEG by means of β activity in the
left primary motor cortex. The results of this study can be used for future research on motor skill recovery in
rehabilitation, motor learning in sports medicine and research on interventions to enhance motor learning, like
non-invasive electrical brain stimulation.
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Introduction
Motor learning is relevant to everyone, from young to old.
Whether you play tennis, brush your teeth or work on the
computer, you learn or improve motor skills. In the litera-

ture, the term motor learning is used for a variety of learning
paradigms involving movement. Examples are: learning to
improve reaction time, learning a finger tapping arrangement,
or adjusting movements to external perturbations [1]. The
learned information about movement planning and execution
is stored in our brain [2].

Rehabilitation physicians and sports doctors continuously
aim for finding the best ways of restoring or improving motor
skills by using motor learning strategies. A big challenge is
posed by the individual differences in motor learning capacity.
Diversity in brain function and structure could explain some
of the individual differences in motor learning [3]. However,
most of the variance in motor learning between subjects is
still poorly understood, which limits current efforts to im-
prove motor learning. Interventions aiming on enhancement
of motor learning, like non-invasive electrical stimulation of
the brain, are popular research subjects nowadays [4], [5],[6].
The effects of electrical stimulation are inconsistent and oc-
casionally debated [7],[8]. It is important to fully understand
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the working mechanisms behind motor learning in the brain
to investigate if and how these interventions could work [9].

One way to investigate the brain during motor learning
is with use of electroencephalography (EEG) [10],[11],[12].
This non-invasive, mobile and relatively affordable technique
records continuous electrical activity on the brain cortex with
a high temporal resolution, which is beneficial in case of very
fast cortical motor events [13]. Cortical structures, of which
activity can be measured on EEG, play a major role in motor
skill learning specifically [14]. In the literature, motor skill
learning is defined as the acquisition of a complex movement
sequence by reducing movement variability and improving
accuracy without comprising on speed [15],[14]. In this study,
motor skill learning is defined as an increase in accuracy
during a serial isometric pinch task.

In EEG research, the primary motor cortex, premotor cor-
tex and supplementary motor areas have found to be involved
in motor learning [16],[17]. Studies on this topic report modu-
lations in α and β -activity (7.5-15 and 15-30 Hz, respectively)
before and during motor events [18],[19],[20],[21],[22]. The
timing, source and direction of these EEG modulations are in-
consistent in these studies. These inconsistencies confirm that
the neurophysiology behind motor learning and performance
is still not completely understood [23].

From an earlier conducted literature review, the phenom-
ena most often and consistently linked to motor learning were
alterations in event-related β -desynchronisation [10],[19],
[24],[12],[25]. Desynchronisation describes the decrease of
power in given frequency bands [26]. However, it is unclear if
this activity can be related to motor learning, motor execution
or motor repetition.

The purpose of the present study was to distinguish neu-
rophysiological correlates of motor skill learning from motor
execution on EEG. To test for motor execution, a control
task was designed. It was hypothesised that accuracy in-
crease would be bigger in the motor learning task than in
the control task. During both tasks, 128-channel EEG was
acquired. To be able to draw physiologically plausible con-
clusions, independent components of electrical activity were
studied [27],[28]. It was investigated whether independent
components in the primary motor cortex, premotor cortex and
supplementary motor areas could be found consistently. Our
hypothesis was that event-related β -desynchronisation for
these independent components is stronger during the motor
learning task, compared to the control task.

Methods
Participants
Twenty healthy, right-handed participants, aged between 18-
35 years were recruited and gave written informed consent.
Exclusion criteria were: known neurological/psychological
disorders, pregnancy, metal parts/implants in the brain, use
of neuromodulatory medication or drugs or received brain
stimulation in the last month. All procedures were approved

Figure 1. Study design. All participants started with EEG
preparation and simultaneously practised each of the two
tasks. Participants were randomly assigned to the first or
second row and started with the motor learning task or control
task, respectively. RS = resting-state EEG, MT = motor
learning task and SMT = simple motor task (control task)

by the Ethics Committee of the Erasmus Medical Center in
Rotterdam.

Study design
The experiment took place in one session where participants
sat in a chair facing a computer screen on a table. In Figure
1 the study design is schematically presented. Participants
started with the motor learning task (MT) or control task
(SMT). The order of the two tasks was randomised among
the participants to be able to correct for possible transfer and
fatigue effects. During preparation of the 128- electrodes EEG
cap, the participants performed 3 practice blocks of each of
the two tasks to make sure the tasks were performed in a right
manner. Before every motor task, 3 minutes of eyes-open,
resting-state (RS) EEG was acquired. Then, the control task
or motor learning task was performed. Another 3 minutes
of eyes-open, resting-state EEG was acquired and the other
motor task was performed consequently. In between the two
tasks, the participants had a short break and were offered
something to eat and drink while the EEG cap remained on
the head. In Appendix B, a checklist of the complete protocol
can be found.

Motor tasks
To test for motor skill learning a serial, visually guided iso-
metric pinch task (SVIPT) was used. This task was used in
other studies as a motor skill learning task due to the slow,
approximately linear learning behaviour participants show
for a long period of practice [6], [29]. To be able to ex-
clude the effects of motor execution, a similar task without
indicated sequence was designed. In Figure 2, the SVIPT
(right) and control task (left) are depicted. During both tasks,
participants move the black rectangle cursor on a screen to
the right by pinching a force transducer. The pinching was
done five times, in a specific sequence in case of the mo-
tor learning task, at time points with 750 ms interval. For
the motor learning task, the force/displacement relation was
logarithmic and can be described by the following formula:
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Figure 2. Control task (SMT) on the left screen and motor
learning task (MT) on the right. The participant moved the
black rectangle cursor to the coloured targets in the above
indicated sequence by pinching the force transducer five
times with the right thumb and index finger. The harder the
participant pinched, the more the cursor moved to the right.
In the control task (left), the red target had to be reached five
times in one trial, so there was no sequence. Applied force
and cursor location data was collected and EEG was recorded
during both tasks.

y = 260.577log(25x+0.215443)−400, where y is the posi-
tion in pixels and x is the applied force as a percentage of the
participant’s measured max force. The farthest target was set
45% of the participant’s maximum pinch force. For the control
task, the force/displacement relation was linear, as described
by the following formula: y = 191.1680x. The average force
required in the control task was the same as the average force
required for the motor learning task, to equalise the effort for
both tasks. A new feature to the tasks was auditory guidance,
the participant knew when to press the force transducer by
listening to metronome ticks with a 750 ms interval (100 bpm).
The start of the trial was indicated with three metronome ticks
and a visual ’GO!’ signal above the cursor at the third tick.
This made the behaviour of all participants during all blocks
standardised in terms of speed. One trial consisted of five
times pinching. Participants performed 20 blocks of 10 trials
for both tasks. A pinch was judged as correct, if the cursor
block was inside of the target block in a time window of -100
to 100 ms around the metronome tick. An extra margin of 25
pixels (0.5 of the cursor width) was given on both sides of the
target, so if the cursor was half way in the target block, the
pinch was judged as correct. After each block, participants
received visual feedback on the percentage of correct pinches
per target block. The control task was designed to be consider-
ably easier. The participants did not need to follow a sequence
and the target block was bigger in this condition. After three
practice blocks, participants showed a nearly constant value

Figure 3. The absolute error in pixels (|e|) between the
cursor (black rectangle) and the closest border of the target
block (red rectangle) was considered as a measure of
accuracy. If the midpoint of the cursor was inside the target,
the absolute error was set at 0.

of the percentage of correct trials in the control task. The
instructions that every participant read before the experiment,
can be found in Appendix B.

Behavioural data analysis
Motor skill learning can be assessed as a practice-induced
change in accuracy without compromising on speed [15],[14].
In our tasks, the speed of movement was indicated by a
metronome, so this parameter was approximately constant
for both conditions. The primary learning parameter was
therefore defined as an increase in accuracy of movement.
Accuracy1 is a qualitative term to describe whether there is an
agreement between a measurement and it’s target value and
can be viewed as the proximity of a measurement to a true
value [31], [30]. To assess accuracy in our study, the abso-
lute errors between the target blocks and peak cursor location
points around the metronome ticks were calculated. A win-
dow of -100 ms to 100 ms around the metronome ticks was
evaluated. From the cursor location points in that window, the
maximum value was taken as peak cursor location of the par-
ticipants. This cursor location point is also taken into account
during the motor task evaluation, so the participants receive
feedback on the same measure. The accuracy definition fol-
lowed in this study is depicted in Figure 3. If the peak location
point was located inside of the target block, the absolute error
was set at 0. If the peak location point was located outside
of the target blocks, the error was defined as the absolute dis-

1Accuracy is often confused with precision, which is the repeatability of
a measurement [30]. Precision does not describe the proximity to a true or
target value.
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tance between this peak location and the nearest border of the
target block. The absolute error was averaged over all targets,
and over 10 trials per block. The more accurate people behave,
the lower the absolute error. The motor learning parameter
was transformed into a learning accuracy index, which was
calculated as the difference in accuracy between the first 50
and the last 50 trials.

EEG
Data acquisition
Data was acquired with a 128-electrode EEG cap and a TMSi
Refa amplifier system with a sampling frequency of 2048
Hz. The electrodes were localised following the international
10-20 system [32]. Peri-ocular EEG and electromyography
(EMG) of the right first dorsal interosseous muscle were
recorded and also amplified with the TMSi Refa system. The
EMG electrodes were referenced in a bipolar configuration.
The EEG electrodes and peri-ocular EEG were referenced to
a common reference. All data was imported and analysed
using Matlab R2016b with Signal Processing Toolbox [33],
the EEGlab Toolbox [34] and the Fieldtrip Toolbox [35].

Data preprocessing
First, low-frequent drift was removed with a zero-phase high-
pass FIR filter (Hamming window) with cutoff frequency
(-6dB) at 0.5 Hz. To remove line noise, notch filters were
used with cutoff frequencies at [49 51], [99 101], and [149
151] Hz. Noisy, high frequencies were removed with a low-
pass filter with a cutoff frequency at 225 Hz. The filter order
was estimated in the default mode of the eegfiltnew function
of EEGLAB. The data was resampled to 1024 Hz because
of working memory limitations. Visually detected bad and
flat channels were excluded. The presence of connections
between electrodes due to leakage of electrolyte (bridges) was
checked with use of the eBridge function [36]. Data sets with
more than 40 bridged electrodes or more than 25 bridge pairs
were excluded for further analysis. More information about
bridges can be found in Appendix A. Then, the resting state-,
motor task and control task data were merged into one file and
saved with the 1024-Hz sampling frequency for future use.

The moment of movement onset (’GO!’ signal) is saved
as an event in the EEG data. Non-overlapping epochs of -2 to
5 seconds were created around these events. Five pinches last
for 3750 ms, so a period before and after the trial was included
in these epochs. Bad epochs were rejected automatically using
the autorej function in EEGlab which detects extremely large
potential fluctuations with a probability threshold of 6 stan-
dard deviations and ensures a maximum of 5% epoch rejection
[34]. After this, the data was referenced to the common aver-
age of all channels, with exception of the EMG channel. The
merged files were resampled to 256 Hz for faster independent
component analysis (ICA). Reason for using ICA is that EEG
electrodes record a mixture of electrical and artefactual ac-
tivity. A source separation tool like ICA disentangles these
signal mixtures. It does so by organising all the EEG signals
into components with similar information. Hence, it reduces

the mutual information in the total data set. The AMICA algo-
rithm, which uses an adaptive mixture of ICA’s, was applied
as a source separation tool in this study [37]. This algorithm
produces the largest mutual information reduction and the
most near-dipolar components compared to other source sepa-
ration algorithms [38]. In EEGLAB, AMICA was called with
the amica15 function. The output independent components
were ordered in decreasing order of EEG variance accounted
for. Therefore, only the first 60 components were included
for further analysis. A more comprehensive description of
the EEG pre-processing and the used m.files can be found
Appendix A and C.

Data analysis
The AMICA sphere and weights matrix were projected back
onto the original 1024 Hz merged data sets including motor
task and control task measurements. These data sets were
divided into epochs of -2 to 5 seconds around the task events.
Bad epochs were rejected using the autorej function. After
that, the data is visually inspected to remove possible remain-
ing bad epochs. Sources of independent component electrical
activity were estimated with use of a spherical four-shell head
model as volume conductor [39]. These sources of electrical
activity can be described by single equivalent dipoles [38].
Equivalent dipoles were fitted using the DIPFIT2.x plugin of
EEGLab [34]. When the activity of a component’s source was
projected back to the scalp, the mismatch between the scalp
projection and the model pole projection is named the residual
variance. Components described by an equivalent dipole with
a residual variance < 15% were included for further research
[40]. Components belonging to out-of-brain dipoles were
excluded.

All included independent components of all participants
were clustered into 12 clusters based on their fitted dipole lo-
cation with the k-means clustering algorithm. The number of
clusters was chosen so that every participant would contribute
at least one component to every cluster. Equivalent dipole
location outliers (3 SD) were not included in the clusters. In
our right-handed task, only left-hemisphere equivalent dipole
clusters were of interest. After evaluation of these clusters,
the ones with a centroid located around left the primary motor
cortex, supplementary motor cortex and premotor cortex were
analysed further. Only one component per subject, with the
closest Montreal Neurological Institute (MNI) coordinates to
one of the motor areas, was included in order to perform fair
statistics.

Event-related desynchronisations (more generally, event-
related spectral perturbations (ERSP)) were calculated for the
remaining clustered components and compared between the
two different conditions within participants[26]. The new-
timef function in EEGlab is used to calculate ERSP with use
of a Morlet Wavelet time-frequency decomposition in the
frequency range of 2-45 Hz. The Morlet Wavelet transform
operates by computing the similarity over time between the in-
put signal and Gaussian-windowed complex sinusoidals [41].
This similarity is computed with a convolution in the time
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domain, or more efficiently, multiplication in the frequency
domain, like done in our study. The number of cycles of
the used sinusoidal is a parameter that determines the time-
frequency resolution of a Morlet Wavelet transform. The more
cycles, the higher the frequency resolution but the lower the
time resolution. The number of cycles of the used Morlet
Wavelets started at 3 and increased to 13.5 for the highest
frequencies. A shortening factor of 0.8 was added, which
determines linear shortening of the time window used for in-
creasing frequencies. In a pure Fourier transform this factor
would be 0, so the time window stays the same for every
frequency. This would result in many cycles for the higher
frequencies and therefore a lower time resolution. In the case
of a factor 1, a pure wavelet would be implemented, but here
the frequency resolution at higher frequencies would become
less. A factor of 0.8 is an intermediate option decided upon to
retain a good time-frequency resolution. For the comparison
of the two conditions, motor learning task (MT) and control
task (SMT), the data was divided by a common baseline. As
the baseline period, a period of 2000 ms to 1000 ms before the
event (t=0), where EEG activity was approximately similar
in both conditions, was taken. This research was preregis-
tered at the Open Science Framework and can be found at
https://osf.io/ufsyd/.

Statistical analysis
The difference in accuracy index between conditions was
tested with a non-parametric Wilcoxon signed rank test. The
difference in β -ERSP between conditions was tested at every
single time/frequency point with a paired t-test. The signifi-
cant p-value threshold was set at 0.05. The used m.files can
be found in Appendix C.

Results
Due to the excessive amount of bridged electrodes, 8/20 partic-
ipants could be included for further analysis. Characteristics
of all included participants are shown in Table 1.

Characteristic Included for final analysis

M/F [n] 3/5
Age [years], mean (SD) 24.1 (±3.0)

Table 1. Participant characteristics (n=8). M = Male, F =
Female, SD = Standard Deviation.

Behavioural results
The development of the absolute error averaged over the in-
cluded participants per block is shown in Figure 4. Individual
differences were indicated with error bars, representing the
spread (SD) between participants. Especially during the first
block, the individual differences were big for the motor learn-
ing condition. It can be observed that the absolute error de-
creased in the motor learning condition, while for the control
condition, the absolute error remained approximately constant.
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Figure 4. Absolute error averaged over 10 trials per block
and over 8 included participants. The bars indicate the
standard deviation between participants in a block.
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Figure 5. Accuracy index for the motor learning task and
control task per participant. The bars indicate the difference
in mean absolute error [pixels] between the first and last five
blocks.

The graph with behavioural data of all 20 participants can be
found in Appendix A and showed a similar trend. In Figure
5 the accuracy indices for both conditions are shown for the
included participants. The accuracy index represents the mean
absolute error decrease from the first five blocks to the last
five. All included participants had a higher accuracy index for
the motor learning task than for the control task.

EEG results
After AMICA source separation and removal of components
with equivalent dipoles that where outside of the head or
with <15% residual variance, 192 independent components
remained. These components of all participants together
were k-means clustered into 12 clusters based on dipole lo-
cation. The scalp maps of averaged electrical activity of
the clustered components is shown in Figure 6. Five clus-

https://osf.io/ufsyd/
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Figure 6. Average scalp map of electrical activity for all 12
clustered components (top view). The colours represent scalp
potential differences proportional to µV. The colour scale is
from blue to red (low to high potential). The encircled scalp
map represents the cluster located on the left primary motor
cortex.

ters were located on the left hemisphere as shown in Figure
7 on the left. In the right image, the blue cluster with a
centroid (red dot) at MNI = [-43 -18 45], Talairach = [-42
-16 42] (https://bioimagesuiteweb.github.io/
webapp/mni2tal.html) is depicted. This corresponds
to the left cerebrum, frontal lobe, primary motor cortex, Brod-
mann area 4. The blue cluster encompassed 8 equivalent
dipoles, one for each included participant. No clusters located
on other motor areas were found.

In Figure 8 the ERSPs averaged over the cluster on the pri-
mary motor cortex are plotted . In the upper figure the motor
learning task is depicted with corresponding mean location
trace in pixels underneath. The middle figure represents the
control task, with corresponding location trace. In the lower
figure, the areas where the difference between the conditions
is statistically significant (p<0.05) are shown. Other non-
significantly different areas are coloured green in this figure.
The zero time point indicates the trial onset, at the ’GO!’ sig-
nal. Frequencies from 2 to 45 Hz are plotted on the y-axis and
the total trial duration (3750 ms) including a period of 1000
ms pre-trial is shown. The location trace shows pinch activity
with 750-ms intervals around the five metronome ticks per
trial, starting at 750 ms. For both conditions, an α- and β

power (7.5-15 and 15-30 Hz, respectively) suppression rel-
ative to baseline occurs just around and after the trial onset.
During the pinches, which can be observed in the location
traces, the β -power decreased in the motor learning task and
control task. A decrease in α-power was found constantly
during the total trial in both conditions.

Statistical results
The difference in accuracy index between the control task
and motor learning task was significant on group level (p =

Figure 7. Left-hemisphere clusters of equivalent dipoles,
obtained by the k-means clustering algorithm are depicted on
the left (transversal view). Each cluster has its own colour,
centroids are coloured red. The cluster with its centroid
located at the primary motor cortex is shown on the right.
One dipole represents one clustered component per
participant (sagittal view).

0.0078). Before trial onset and around 1000 and 1800 ms after
trial onset, a statistically significant difference (p <0.05) in
low-frequent EEG δ power (2-3 Hz) was detected. Also, just
after 1000 ms, a burst of significant θ power (4-7.5 Hz) was
observed. Furthermore, from 1000 ms till 3900 ms after trial
onset, statistically significant differences in power in the β -
and lower γ (30-100 Hz)-frequencies were found between the
two tasks.

Discussion & Conclusion
The present study investigated motor skill learning related
changes in brain activity for a motor learning task compared
to a control task. To test this, EEG data and behavioural data
were collected during a visually- and auditory-guided sequen-
tial isometric pinch task and a control condition. In order to
connect the behavioural motor learning principles to EEG, we
expected to find independent components of electrical activ-
ity on the primary motor cortex, supplementary motor cortex
and premotor cortex by means of ICA. Our study revealed
differences in oscillatory β activity on the left primary motor
cortex between motor learning and motor execution.

On behavioural level participants increased their accuracy
more in the motor skill learning task than in the control task.
This supports the hypothesis that motor skill learning, defined
as an accuracy increase, is bigger in the motor learning task
compared to the control task. From time-frequency analysis of
components clustered on the primary motor cortex, an event-
related decrease in α and β frequencies right after the onset of
the trials was found. This phenomenon is often called event-
related desynchronisation, which insinuates that the power
decrease is caused by a decrease in synchrony of underlying
neuronal populations [26]. We will use the more neutral term
event-related spectral perturbation, or ERSP. Other studies
that investigated movement-related EEG phenomena also re-
port modulations in α- and β -ERSP before and during motor
learning tasks [10],[26],[22]. Our study revealed significant

https://bioimagesuiteweb.github.io/webapp/mni2tal.html
https://bioimagesuiteweb.github.io/webapp/mni2tal.html
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Figure 8. Grand mean ERSP averaged over components clustered on the left primary motor cortex, one component for each
participant. The first two figures represent the time-frequency plot of the motor learning task (MT) with corresponding mean
location trace underneath. The third and fourth figure represent the time-frequency behaviour during the control task (SMT)
with corresponding mean location trace below. At time point zero, the trial starts with a ’GO!’signal. The metronome ticks are
indicated with black vertical lines. The colours in the plot indicate dB normalised power for specific time points and
frequencies, compared to a common baseline period for both conditions (-2000 to -1000 ms). In the fifth figure, the ERSP of
the control task was subtracted from the motor learning task. In the lower figure, only the areas where the differences between
both conditions were statistically significant (p<0.05) are coloured red.

differences in β ERSPs during a motor skill learning task,
compared to a motor execution task. The decrease in β power,
relatively to baseline, is stronger in the motor learning task.
The difference in β ERSP seems to occur in multiple ’bursts’,
which could be related to the 750 ms pinch interval. With
use of the Morlet Wavelet transform, the time resolution is de-
creased, so the metronome ticks can not be directly coupled to
the ERSP data. The differences in β power are not likely to be
caused by differences in required pinch force, because in that
case, we would expect the differences to occur mainly around
the second and fifth pinch. Therefore, the detected differences
in β power could be interpreted as the electrophysiological
differences between motor skill learning and motor execution
in the brain.

In earlier conducted research, motor learning was associ-
ated with a decrease in brain activity after training [18],[42].
This phenomenon is often described as ’neural efficiency’.
Neural efficiency describes that skilled people need less brain
activity to perform the same actions and thus need less power
in movement-related brain areas and frequencies [10]. We
suggest that neural efficiency could be seen as a form of habit-
uation. Habituation is a kind of learning that occurs naturally
when people are exposed to repeated stimuli [43]. This would
explain the found decrease of brain activity with solely move-

ment repetition in earlier conducted research [44]. It could
be that the control task is so easy that habituation already
took place after three practice blocks. This is supported by a
visually observed decrease in β -ERSP between the first three
blocks of the control task, compared to the last three blocks.
In the motor learning task, the participant needs more atten-
tion and effort, which could lead to higher β -ERSP. When
the motor learning task would last longer or take more ses-
sions and people become an expert, this would imply that the
β -ERSP would be similar to a habituated task.

The reason that the ICA’s did not result in a consistent
component decomposition was found to be bridge forming be-
tween electrodes. This finding was supported by the relation
between the detected amount of bridges and the number of re-
liable ICA components (see Table 3 and Figure 16, Appendix
A). It has been reported before that bridges distort the corre-
sponding EEG topography [45]. Possibly, many researchers
are unaware of the risk of bridge forming or do not take this
into account during analysis of EEG data [36]. In the 8 re-
maining participants, a cluster of components located on the
left primary motor cortex was found. In an extensive MRI mo-
tor learning meta-analysis and review, the left primary motor
cortex was indicated as an important right-hand motor learn-
ing area [46]. Unlike in functional imaging studies, separate
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components on the premotor cortex and supplementary motor
area could not be differentiated in our study [47]. A reason for
this could be field spread of electrical activity, which makes
it hard to separate cortical components that are located close
to each other with EEG [48]. Studies that do describe EEG
analysis of these motor areas, used single channel data instead
of component data for their analyses [11], [21], [12]. Because
of field spread through the skull and brain tissue, it could be
questioned if all motor learning areas can be separated with
EEG recordings only.

The question if EEG time-frequency parameters like β

ERSP can be causally linked to neurophysiological parame-
ters like motor learning is another interesting discussion. It
deals with the manifest variable, EEG data in this case, and
the latent variable, which is the underlying activity of neurons
that cause certain behaviour [49]. It is impossible to measure
the latent variable directly, so coupling to known neurophysio-
logical mechanisms of oscillations need to be made carefully.
To be able to draw more physiologically plausible conclusions,
this study investigated the oscillatory behaviour of indepen-
dent components [28]. For the detection of causal relations
between motor learning and EEG, more research is needed.
Many studies use different EEG paradigms, data preprocess-
ing techniques and analysis methods which can influence the
results considerably [49]. In this research, we aimed for using
as mainly automated preprocessing- and analysis procedures
in order to make the results reproducible.

Limitations
The design of the motor tasks with five pinches per trial, vi-
sual and auditory feedback posed a challenge for EEG data
analysis. Motor learning processes could overlap during the
pinches and the combination of sensory and motor informa-
tion that arise around the same time points during trials, could
be hard to distinguish on EEG. Also, the difference in ac-
curacy index between both conditions was not very distinct
within all participants. This could be caused by the feedback
that participants received in the control task. The feedback
could have directed the participants to use other movement
strategies. They could, for example, pinch the force trans-
ducer longer around the moment of the metronome tick. This
would make it possible to still improve accuracy in the control
task. Another limitation of this study was that with equivalent
dipole fitting on standardised head models, only a rough esti-
mation of the source of activity can be made [39]. Due to the
inverse problem, the exact location of the source of electrical
activity was unknown.

Recommendations for future research
More plausible conclusions about the causality between β

oscillations and motor learning can be drawn in studies where
brain oscillations are modulated, for example with transcranial
Alternating or Direct Current Stimulation (tACS and tDCS).
From such research, it is to be expected that an effect of elec-
trical stimulation on motor learning would occur via β -power
modulation. This effect is indeed found in earlier research on

α and β stimulation with tDCS and tACS[50]. Source sep-
aration tools like ICA could also bring us a step further into
understanding the neurophysiological principles in the brain
[28]. It is often advised to use as many channels as possible
for the best ICA results. In our experience, however, a big
number of channels also poses a big risk of forming bridges
between electrodes. We found that 64 electrodes also led to
good source separation of (sensori-)motor components, as
confirmed by earlier research[51]. We would therefore recom-
mend to consider the risk of bridges when deciding whether or
not to use more than 64 electrodes in future research. Solving
the inverse problem of source localisation remains a challenge
in EEG research. A study that combines the spatial resolution
of MRI and the temporal resolution of EEG may provide more
insight on the neurophysiology behind motor learning.

The results of the present study bring us a small step
closer to the fundamental understanding of motor skill learn-
ing on a neurophysiological level. It could be used for future
research on motor skill recovery in rehabilitation, motor learn-
ing in sports medicine and research on the potential benefits
of electrical stimulation on motor learning. Furthermore, with
upcoming brain-computer interfaces, the results can be useful
for neurofeedback during specialised motor exercises. With
direct feedback on brain activity, motor training could become
more personalised and effective in the future.
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[21] Benjamin Thürer, Christian Stockinger, Felix Putze,
Tanja Schultz, and Thorsten Stein. Mechanisms within
the Parietal Cortex Correlate with the Benefits of Ran-
dom Practice in Motor Adaptation. Frontiers in Human
Neuroscience, 11:403, aug 2017.

[22] Adam W Kiefer, J Gualberto Cremades, and Gregory D
Myer. Train the Brain: Novel Electroencephalography
Data Indicate Links between Motor Learning and Brain
Adaptations. Journal of novel physiotherapies, 4(2), apr
2014.

[23] Jennifer Wu, Franziska Knapp, Steven C. Cramer, and
Ramesh Srinivasan. Electroencephalographic connectiv-
ity measures predict learning of a motor sequencing task.
Journal of Neurophysiology, 119(2):jn.00580.2017, feb
2017.

[24] Carlos Amo, Luis De Santiago, Daniel Zarza Luciáñez,
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Appendix

A. Comprehensive Methods
A.1 Motor tasks
The motor learning task was designed in Labview by Zeb
Jonker, a PhD student at Erasmus MC. The motor learning
task already existed and was based on other serial visually
guided isometric pinch tasks [6], [29]. The control task was
designed to control for motor execution only, so no motor
learning was expected here. As described before, motor learn-
ing was defined as an increase in accuracy. In the control
task, the target block was made very wide and it was at the
same location for all five pinches. This was in contrast to
the target blocks in the motor learning task, where the target
blocks were at different locations and needed to be reached
in a specific sequence. The average force needed to reach the
block in the control task, was the same as the average force
needed to reach the five targets in the motor learning task. In
Figure 9 the location trace averaged over 200 trials during
both tasks is shown. The participants were randomly assigned

Figure 9. Location trace averaged over 200 trials of the
control task (red) and motor learning task (blue).

to either a group that performed the motor learning task first,
or second. In Table 2, this is shown in a table.

B.3 Randomisation table motor tasks
The performance data was exported in txt. files. To be able
to analyse the results of this data, Matlab and the m.files
Cleandata.m, Importtrial.m and Analysis motor task.m were
used (see Appendix C). Importtrial.m was needed to convert
the punctuation of the exported files to Matlab language. Then,
the data was organised in a tracemat while time shifts due to
missing trials were removed. This resulted in a matrix with
steps, applied force and location of the cursor per participants
and condition.

There are multiple options to define motor learning pa-
rameters. Accuracy and precision are used the most in de-
scriptions of motor improvement. In our motor skill learning
task, precision increase is a logical consequence of an increase
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MT - SMT SMT - MT

110 101
104 102
107 103
115 105
106 108
114 111
112 113
109 116
117 119
118 120

Table 2. Subject numbers and their assignment to one of the
two groups that indicate the sequence of motor tasks. MT =
motor learning task, SMT = simple motor task (control).

in accuracy. It is impossible to be close to the target blocks
every trial without being precise. During the control task,
the target is bigger and therefore, this is not necessarily the
case. The accuracy could be assessed for the total movement
during a trial, so while reaching the target blocks five times or
around the target point. However, studies on motor learning
stated that the main improvement occurs in proximity of the
target point, so the movement around those points should be
assessed [52]. In Figure 9 and an example of the location
trace averaged over 200 trials can be seen for the motor learn-
ing task and control task. The time points 750, 1500, 2250,
3000 and 3750 indicate the moments where the tick of the
metronome occurs. At that moment, for the motor learning
task, the cursor is supposed to be at 400, 1000, 600, 200 and
800 pixels, respectively. In the control task, the cursor should
be at 600 pixels at all five moments. To investigate the motor
performance it can be chosen to analyse the movement of the
cursor around the target locations or around the metronome
ticks. Because of the changing strategy that some participants
apply and the sometimes very off-target location of the own
peaks, it is decided not to analyse the movement around the
target locations. Reason for changing strategy is the feedback
that participants receive, they see the percentage of correct
hits per target block. A hit is considered ‘correct’ if the partic-
ipant moves the cursor between the margins around the target
within the window of the metronome tick. Another possibility
is to analyse the location of the cursor at the exact moment
of the metronome tick or in a window around this tick. The
variability between locations of peaks and locations at the
metronome tick can be big. One reason is that with different
strategies, the same results can be achieved. To get the cursor
at the right moment at the right time, one can overshoot or
reach the target slowly, or stay longer at the target location,
for example. Hence, the metronome locations are not neces-
sarily a good indication of motor performance. The location
of the cursor around the metronome ticks, as shown in the
right figure, was therefore chosen to analyse. There was still
a lot of variation in this measure, so a window of 200 ms
around the metronome ticks was evaluated. From the location

points in that window, the maximum value was taken as aim
location of the participants. This window was also taken into
account during the motor task evaluation, so the participants
received feedback on the same measure. In Figure 10 the
window borders and target borders are shown for the averaged
location trace of the control task.

Figure 10. Example of evaluation of the control task pinches
(SMT) for location traces of one trial. One frame is 5ms. The
window around the metronome ticks are indicated with blue
vertical lines. The borders of the target block are depicted as
the green and red line.

To assess accuracy, the absolute errors between the target
blocks and the aforementioned peak points around the metronome
ticks are calculated [31]. The difference between the motor
learning task and control task posed a challenge for this mea-
sure. It was not possible to calculate the difference between
the middle of the targets for both tasks because the target
block in the simple motor task is bigger. It wax chosen to
take the whole block into account, rather than the middle of
the target blocks as a target, because the participants received
feedback on the amount of correct hits where the total width
of the block (+ 25 pixel margin) was considered as correct.
Therefore, if the cursor was located inside of the target block,
the absolute error was set at 0. If the cursor was located out-
side of the target blocks, the error was defined as the absolute
distance between the single location of the cursor and the near-
est border of the target block. The absolute error was averaged
over all targets, because it does not matter for the performance
if someone performs better around the first target or the last.
The lower this measure, the more accurate participants behave.
Precision describes how constant the behaviour of participants
is. It is calculated by taking the same location peaks in the
(-100 ms to 100 ms)-window around the metronome ticks.
Then, the standard deviation of these peaks per individual
target over all trials is considered. The lower this standard
deviation, the higher the precision. The precision learning
index for both conditions is shown in Figure 13. The index is
plotted on the vertical axis against all 20 participants on the



EEG correlates of motor skill learning: an independent component approach — 13/27

Figure 11. Accuracy averaged over all 20 participants

Figure 12. Precision (SD [pixels] over cursor location
points), averaged over all 20 participants

horizontal axis. Most participants (17 out of 20) increase their
precision for both motor tasks. This means that the standard
deviation of the cursor location around the target decreases.
In 16 out of 20 participants, the precision increase is higher
in the motor learning task than in the control task. The dif-
ference between the mean precision and accuracy during the
first five blocks compared to the last five are defined as motor
skill learning indices. This difference is independent of the
initial motor performance of participants and is therefore a
good indicator of individual motor skill learning. The mo-
tor learning indices are compared between the two tasks and
the difference within participants is tested for significance
with a paired t-test [53]. It is expected that for both tasks the
precision increases, but for the motor skill learning task, the
accuracy increases more than in the control task. The used
m.file ‘Analysis motor task.m’ can be found in Appendix C.
In Figure 11 and 12 the accuracy and precision were aver-
aged over all participants. It can be seen that on average,
people increase in precision and accuracy with practice. Some

Figure 13. Precision index for the motor learning task and
control task for every participant. The bars indicate the
difference between the first and last five blocks in precision.

Figure 14. Qqplot of accuracy index differences

individual participants, however, do not improve on both mea-
sures and some deteriorate. The differences in indices are not
normally distributed, as can be checked by the qqplots as in
Figure 14.

Therefore, the non-parametric Wilcoxon signed rank test
is used. This resulted in a significant difference for both the
accuracy and precision index (p = 0.0124 and p= 0.0438,
respectively).

A.2 EEG analysis
After loading the data into EEGlab, the raw data was filtered
with a FIR filter. Zero-phase filters like this can be used for
EEG- coherence and –synchrony measures, because it retains
phase information [49]. Reasons for applying the notch filter
at 50 Hz and harmonics is the line noise that was apparent in
many trials. This can be demonstrated by plotting a spectral
plot of data, where a peak at 50 Hz and harmonics can be
observed. Due to the high pass filter at 1 Hz, the EEG data
did not have to be demeaned to remove DC offset. This is
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tested by taking the mean of the data for an individual channel
and compare this to demeaned data, both values were close
to zero. The channels were visually inspected for rejection
for the resting-state and EEG data around the motor events.
In Figure 15 an example of bad channel removal by visual
inspection is shown, noisy channels were inspected and re-
moved. Channels that showed flat lines were also removed.
To be able to see where unexpected, strange data comes from,

Figure 15. Example of visual inspection of channels.
Channel potential in µV is plotted on the y-axis and time in
seconds on the x-axis. For this dataset, the output of the first
10 channels are plotted for 5 seconds. Channel F8 and FC5
can be considered as bad channels.

screenshots of the impedances before and after the measure-
ments were made. In this way, it is still possible to check
parts of the measurements after acquiring the data. During
the first measurements particularly, it was tedious to get the
required low impedances (< 5kΩ) for all 128 channels. Be-
cause of this, too much gel was used, which resulted in many
bridges between the electrodes in 12 out of the 20 participants.
Another possible explanation for the high amount of bridges
was the high temperature in the measurement room, which
could lead to excessive sweating. We think that the sweat
could have made the electrode gel more viscous so it leaks
easily to the other electrodes. The bridged channels were
detected by using the eBridge function [36]. This function
only behaved consistently when the data was high-, low-pass
and notch filtered as described in the preprocessing section.
Table 3 represents the number of bridged channels and cor-
responding number of fitted dipoles with less than 15% RV.
The lower the RV, the higher the ’dipolarity’ of components.
More independent linear EEG decompositions lead to more
near-dipolar components [38]. Pairs indicate the amount of
connections between different bridged electrodes. It could
be that one bridged channel connects to multiple others, then
the amount of pairs is higher than the amount of bridged elec-
trodes. It was not possible to detect the bridges by simply
calculating the rank of the data matrix in Matlab, because this
computation does not work well on EEG data for unknown
reasons. This is confirmed by the observation that the rank
of the data stays the same after average referencing, which
should reduce the rank by one.

In Figure 16 a scatter plot between the number of bridged
electrodes and the number of fitted dipoles with less than
15% RV is shown. In the first attempt to make the ICA de-

Table 3. Relation between EEG bridges and fitted dipoles

Participant Bridged channels (Pairs) Dipoles <15% RV

101 12 (9) 57
102 84 (453) 23
103 65 (1032) 23
104 63 (236) 32
105 92 (498) 11
106 90 (307) 29
107 21 (16) 56
108 43 (63) 35
109 74 (72) 31
110 49 (42) 23
111 32 (29) 40
112 37 (28) 59
113 74 (132) 33
114 36 (22) 45
115 23 (13) 52
116 47 (34) 38
117 51 (66) 37
118 27 (22) 45
119 26 (16) 44
120 54 (35) 62

Figure 16. Scatter plot of bridged channels and fitted dipoles
with <15% RV.

compositions better, all bad channels and bridged channels
were removed. After that, we spherically interpolated all re-
moved channels before performing ICA. The rationale behind
this was the chance that the removed channels could be very
asymmetrical resulting in biased components towards certain
regions. The ICA did not result in better independent com-
ponents after interpolation, however. We concluded that it
depends on the location and the amount of removed channels
if interpolation is useful and logical to use, but in general,
more included channels give better ICA decompositions. In
Figure 17 an example of the resulting channels in a participant
with many bridges is shown, it is clear that it is not sensible
to interpolated between the remaining electrodes here. The
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autorej function of EEGlab was used to further clean the data,
which detects extremely large potential fluctuations with a
probability threshold of 6 standard deviations with a maxi-
mum of 5% epoch rejection [34]. Examples of horizontal eye
artefacts (a), eye blink artefacts (b) and muscle artefacts (c)
that can be typically found in EEG measurements are shown
in Figure 18. Before the ICA decomposition, the artefacts
like in Figure 18 do not have to be removed manually, be-
cause they are recognised as individual components. Only the
autoreject function is therefore used to reject non-stationary
artefacts which are harder to separate for ICA.

Independent Component Analysis
ICA is one of the many blind source separation algorithms
used in signal processing. A source separation tool like ICA
could provide more insights in functional reorganisation of
cortical networks mediating motor skill learning [55]. The
Infomax algorithm for ICA is used frequently in EEG research
as it is able to maximise independent transferred information
while it does not need any information about the input distri-
butions. Also, Infomax is applicable to nonlinear networks
[56]. Before performing ICA, it was expected to find some
prominent ocular and cortical motor components in the EEG
data, due to the nature of our designed motor tasks. In Figure
19 an example of a clear ocular component is depicted on
top and a cortical component is shown underneath. Another
method to confirm these observations, is by plotting the power
spectra and time domain data of the components as can be
seen in the same figure. Notice that in this plot, the 50-Hz line
has not been removed yet. From the event-related potential
image on the upper right, a clear difference between the eye
movements in the control task and motor learning task can
be seen. This participant started with the control task, this
was very simple so one could gaze at the screen during the
first half of the trials. In the motor learning task, the cursor
need to be followed closely, which shows in this component.

Figure 17. Scalp plot with removed bridged channels

Figure 18. Horizontal eye movement (a), eye blink (b) and
muscle (c) artefacts as typically seen on EEG. The upper
channels show normal low amplitude oscillations. Retrieved
from: Oude Bos, D. P. (2008). “Automated Artefact
Detection in BrainStream A Evaluation of An Online Eye and
Muscle Artefact Detection Method” [54]

Cortical components can be recognised by the typical EEG
α-peak, while ocular components show more power at lower
frequencies and typically have a declining curve. In Figure
20, an example of a cortical EEG component is shown. The
rounder the scalp map projection, the better the component is
separated from other activity. During the preprocessing steps

Figure 19. Horizontal eye component, the upper left figure
shows the scalp map projection of the component. The upper
right figure shows event-related potentials over all trials and
averaged over all trials ( blue line). The typical eye activity
power spectrum is shown in the lower figure.

and examination of the data, the ICA decompositions did not
work as expected. For some participants it worked really well,
but for others, many different and elongated decompositions
did not result in consistent and clear components. We tried
many things to solve the ‘bad’ ICA decompositions, where
most solutions involved going through the preprocessing steps
again and again. We performed many ICA’s with help of
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Figure 20. EEG component, the upper left figure shows the
scalp map projection of the component. The upper right
figure shows event-related potentials over all trials and
averaged over all trials ( blue line). The typical EEG
spectrum is shown in the lower figure.

the quick cudaICA algorithm that uses a graphics processing
unit [57]. The cudaICA function uses the Infomax algorithm
to find independent sources with maximal temporally inde-
pendent information [56]. We tried using stricter ICA stop
criteria, different filters, strong or mild channel- and epoch
rejection, and so on but nothing delivered better results. Also,
different ICA algorithms were tested, where different forms
of the Infomax algorithm (runica function in EEGLAB and
faster versions like binica were used frequently. After many
attempts of the fast cudaICA, we concluded that it is best to
keep more channels for ICA decomposition, even if they ap-
pear noisy. Also, we concluded that the reason for the bad ICA
decompositions had to be the number of bridged electrodes
for some participants. We decided to include 8/20 participants
that showed reasonable scalp map plots of the components
after cudaICA decomposition. An alternative algorithm we
tested was the adaptive mixture of independent component
analyser (AMICA) decomposition, which produces the largest
mutual information reduction and the most near-dipolar com-
ponents [38]. This algorithm can accommodate non-stationary
environments and arbitrary source densities, which arise in
EEG data [37]. The AMICA algorithm gave the best results in
terms of distinguishable components on the plotted scalp maps
after ICA. Therefore, we chose to use this algorithm as the
final source separation method. This is also tested as the most
efficient source separation algorithm, which is another plus
[38]. In EEGLAB, AMICA can be called with the amica15
function. The output components are ordered in decreasing

Figure 21. Print screen of manual rejection of bad trials.
Potentials per electrode are plotted on the vertical axis against
the time. The red lines indicate the event ’mt’, a motor
learning task event. The orange coloured epochs are
manually rejected.

Figure 22. Equivalent dipoles for all clusters

order of EEG variance accounted for by each component. For
this reason, only the first 60 components were inlcuded for
further evaluation. The AMICA weights and sphere matrix
were projected back onto the original merged data sets. Bad
trials still needed to be removed in these sets so after epoching
(-2 to 5 seconds around an event), a semi-automatic rejection
followed. The automatic part was with use of the autoreject
function as described before and after that, the trials were
visually inspected and manually rejected. In Figure 21 an
example of trials that were removed manually are marked
in orange. The event (’mt’) is the motor learning task event.
Source localisation After source separation with ICA, it is
know which sources of activity are independent, but we do
not know the location of these sources. To do so, different
source localisation techniques could be applied. A common
one is the translation of electrical activity to an equivalent
dipole source. Equivalent dipoles of the found independent
components were fitted in a standard spherical head model
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using the DIPFIT2.x plugin of EEGLAB [34]. The rationale
behind this is that every independent component can be traced
back to a dipolar source [38]. A residual variance of 15%
is an acceptable threshold for estimation of the reliability of
independent components [58]. Only dipoles that were located
within the head and with a residual variance of less than 15%
were included for further analysis. The remaining components
were included in an EEGLab STUDY design. This design
automatically removes components that are described by out
of head dipoles. The included independent components were
statistically clustered (k-means algorithm) in 12 clusters based
on their 3-D dipole locations. In Figure 22 the resulting clus-
ters are shown. The first cluster consists of dipole location
outliers of ± 3 SD’s. The fourth, eighth and eleventh clus-
ter looked promising. After comparison of cluster centroid
MNI and Talairach coordinates, it was concluded that the third
cluster on the third row (no. 11) most likely consisted of left
primary motor components. The seventh cluster could be of

Figure 23. Grand mean ERPs for the left primary motor
cluster averaged over all trials for the motor learning task
(MT) and control task (SMT). Significant different parts are
marked red in the graph and with black blocks underneath the
graph.

auditory origin. The ERPs of this primary motor cortex clus-
ter, with statistically significant differences (p<0.05) between
conditions marked red, is shown in Figure 23. Event-related
spectral perturbations that have been linked to general mo-
tor behaviour are so-called event-related desynchronisations
(ERD). This event-related attenuation of brain signals is calcu-
lated with the following formula: (A−R)/R∗100, where A
is the power in the defined frequency band and R is the power
in the preceding reference or baseline period [26]. To localise
frequency band-specific activity in time, a Morlet Wavelet
convolution can be performed with using wavelets of different
frequencies. The newtimef function in EEGlab uses Morlet
Wavelets to calculate Event-Related Spectral Perturbations.
As a baseline period, the period of 2000 ms to 1000 ms before
the event, were the ERP’s of both conditions were more or
less alike, is chosen. In this manner, the readiness potential
which usually occurs around -400 ms at M1, was not included
in the baseline [59]. The sound of the metronome start around
-1500 ms, but it is chosen to take this into account as a base-

line because this sound is also apparent during the tasks. For
the comparison of the two motor tasks, a common baseline is
chosen. For future research, it would be useful to see if resting
state data of every participant could be better as a baseline
period.

From the behavioural data, it could be seen that some
participants still improve their accuracy in the control task,
especially during the first blocks. To check if the found ’motor
learning’ differences also occur in the last trials compared to
the first, the ERSP difference plots for these trials are plotted
in Figure 24.

A.4 tDCS and TMS
I spent the first three months of my graduation on the extensive
research of Joris van der Cruijsen and Zeb Jonker consider-
ing electrical and magnetic stimulation methods of the brain.
We learned to work with Transcranial Magnetic Stimulation
(TMS) and transcranial Direct Current Stimulation (tDCS).
It is assumed that tDCS increases cortical excitability, as is
recently confirmed by research on a new motor network tDCS
configuration and transcranial magnetic stimulation (TMS)
[60]. TMS can be used to asses the cortical excitability with
use of motor evoked potentials. My interests were if tDCS
improved motor learning, if this could be reduced to EEG
parameters and if the measured excitability was related to this.
We tested if new stimulation electrodes that could be attached
to an EEG cap worked during several pilot experiments. Dur-
ing these experiments, the stimulation electrodes, made from
Ag/Cl did not work as expected. The stimulation protocols
could not be finished due to impedance problems. We tested
if we could improve the impedances by scratching the scalp
more, using more gel, using other stimulation protocols and
so on, but nothing worked. Then, I performed an experiment
to test if the stimulation protocol would work with the lowest
impedance possible, by putting the two electrodes in a jar
with conductive gel. Still, it was not possible to finish the
complete protocol due to high impedance warnings in this
‘ideal impedance’ setting. From this experiment our suspicion
arose about an electrochemical reaction that took place at the
stimulation sides. We tested this by switching the anodal and
cathodal electrodes and noticed that the stimulation protocol
could last a bit longer then. Another clue that an electro-
chemical reaction took place, was precipitated material on
the forehead of a pilot subject after repeated stimulation. We
proposed that the electrodes should be made of material that
was suitable for electrical stimulation, like platinum. The de-
livery time of these electrodes was 3 months, so we decided to
change my research to more fundamental EEG motor learning
research.
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Figure 24. ERSP plots for the simple motor task. Averaged over the first three (upper figure) and last three (middle figure)
blocks. The colours in the plot indicate dB normalised power for specific time points and frequencies, compared to a baseline
period of -2000 to -1000 ms. The averaged power spectrum of the baseline is shown in the two most upper left plots. The
envelopes of ERSP are depicted underneath the first two plots. The lower figure depicts the differences between the first two
plots.



Study Information  
1. Title : MotorEEG 

 
2. Authors : Joris van der Cruijsen, Yvonne Greeuw 

 
3. Research Questions  

Though there is evidence to suggest that human motor performance on EEG is 
related to modulation of the β-frequencies in relevant cortical motor areas, this 
phenomenon has never been compared between motor execution and motor 
learning. Therefore, we will measure high-density EEG during a motor skill learning 
task and compare this to a motor control task to see if motor learning and 
performance can be distinguished on EEG. 

The relation between pre-trial EEG and the motor learning/motor action conditions. 
Are there clear differences in cortical activity between the two conditions, i.e. what 
brain activity is related to motor learning specifically? 

4. Hypotheses 
The expected relevant cortical motor components are located on the primary 
motor cortex, premotor cortex and supplementary motor areas. 
 
It is expected that the increase in accuracy and precision in the motor learning 
task is bigger than in the control task.  
 
If motor learning can be distinguished from motor performance, then 
event-related β-desynchronisation (so lower β power) in contralateral cortical 
motor components will be stronger for the motor learning task, compared to the 
control task.  

 
In the preparatory phase, stronger ɑ and β event-related desynchronisation occurs 
in the motor learning condition, compared to normal motor action, at the contralateral 
motor cortex and premotor cortex.  

 
Sampling Plan 
 
 

5. Existing data 
Preregistration (selection of description that best describes your situation) 
 Registration prior to creation of data  

 Registration prior to any human observation of the data  

 Registration prior to accessing the data  

 Registration prior to analysis of the data  
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 Registration following analysis of the data  
5.1.1. Registration prior to analysis of the data: As of the date of submission, the 

data exist and you have accessed it, though no analysis has been 
conducted related to the research plan (including calculation of summary 
statistics). A common situation for this scenario when a large dataset 
exists that is used for many different studies over time, or when a data set 
is randomly split into a sample for exploratory analyses, and the other 
section of data is reserved for later confirmatory data analysis.  

 
 

6. Explanation of existing data 
After collection of the data, the first steps were preprocessing of the very large datasets. 
Because of limited access to a fast computer with GPU, this step takes a long time. Clear 
independent components, which should result from the last preprocessing step, are not found 
yet, so we have not been able to statistically test our hypotheses by analysis of differences 
between conditions in the components.  
 

7. Data collection procedures. 
Twenty healthy, right-handed participants, aged between 18-35 years were 
recruited and gave written informed consent. Participants with known 
neurological disorders were not included in the study. Subjects were recruited via 
advertisement at the Erasmus MC in Rotterdam and the Technical University of 
Delft and were offered 25 euros payment for participation in the 2,5-hour 
experiment.  

8. Sample size 
20 participants. 

 
9. Sample size rationale 

In similar studies, 12-20 participants are included so this is taken as a guideline. 
Due to limited time and the time-consuming 128-channel EEG cap gelling, the 
sample size of 20 people is chosen in this study.  

 
10. Stopping rule 

The data collection is terminated after reaching of the required 20 subjects.  
 
Variables 
 
In this section you can describe all variables (both manipulated and measured variables) that 
will later be used in your confirmatory analysis plan. In your analysis plan, you will have the 
opportunity to describe how each variable will be used. If you have variables which you are 
measuring for exploratory analyses, you are not required to list them, though you are permitted 
to do so. 
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11. Manipulated variables 

The manipulated variable is the location of the targets in the motor task, where to 
the subject needs to move a cursor on a screen by pinching a force transducer. 
In the motor learning task, the location of the targets are at five different places 
and need to be reached in a specific sequence. In the control task, only one 
target is apparent which is placed in the middle of the aforementioned five 
targets, making the task considerably easier. 

 
12. Measured variables 

Measured motor performance variables are: the location of the cursor [pixels] 
during 200 trials of each motor task, number of ‘correct hits’ in the motor tasks. 
Measured brain variables are: potential differences [µV] at the 128 scalp 
electrodes during both motor tasks and during two times 3 minutes of resting 
state before and between the tasks. 

 
13. Indices 

The accuracy index is averaged over all five targets and 10 trials per block. The 
precision index is calculated as the standard deviation of the location around the 
metronome ticks per target over 10 trials. 
The potential differences of the scalp electrodes are processed following a 
pre-processing pipeline, as described in the analysis section. The outcome 
variable of the analysis will be averaged across all included trials per condition, 
per subject. 

 
 

Design Plan 
 
In this section, you will be asked to describe the overall design of your study. Remember that 
this research plan is designed to register a single study, so if you have multiple experimental 
designs, please complete a separate preregistration. 
 
14. Study type 

Experiment - A researcher randomly assigns treatments to study subjects, this 
includes field or lab experiments. This is also known as an intervention 
experiment and includes randomized controlled trials. 
Observational Study - Data is collected from study subjects that are not randomly 
assigned to a treatment. This includes surveys, ñnatural experiments,î and 
regression discontinuity designs. 
Meta-Analysis - A systematic review of published studies. 
Other - please explain. 

 
15. Blinding 
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Blinding describes who is aware of the experimental manipulations within a 
study. Mark all that apply. 

15.1.1. No blinding is involved in this study. 
15.1.2. For studies that involve human subjects, they will not know the treatment 

group to which they have been assigned. 
15.1.3. Personnel who interact directly with the study subjects (either human or 

non-human subjects) will not be aware of the assigned treatments. 
15.1.4. Personnel who analyze the data collected from the study are not aware of 

the treatment applied to any given group. 
 
16. Study design 

The study is conducted following a within-subject design, so all subjects perform 
the two motor tasks, where the order of the tasks is randomised.  

 
17. Randomization 

We applied permuted randomization of the subjects, we divided them into two 
equally-sized groups of 10 persons. One group started with the control task and 
performed the motor learning task after that and the other group conducted the tasks 
the other way around.  Assignment to one of the two groups is done with use of the 
randperm function in Matlab.  

 
Analysis Plan 
 
You may describe one or more confirmatory analysis in this preregistration. Please remember 
that all analyses specified below must be reported in the final article, and any additional 
analyses must be noted as exploratory or hypothesis generating. 
 
A confirmatory analysis plan must state up front which variables are predictors (independent) 
and which are the outcomes (dependent), otherwise it is an exploratory analysis. You are 
allowed to describe any exploratory work here, but a clear confirmatory analysis is required.  
  
18. Statistical models 

Within subjects, the difference in learning index for both conditions will be tested 
with a paired t-test. The mean event-related α- and β power over all trials will be 
tested within subjects, between the two conditions with a paired t-test as well.  
 

19. Transformations 
The motor learning parameters are transformed into a learning indices, which are 
calculated as the difference in accuracy and precision of the last 50 trials and the 
first 50 trials. Accuracy is defined by the absolute minimal difference between 
peak cursor location at the window of 200 ms width around the metronome tick 
and the target block. If the cursor location is inside of the target, the accuracy is 
0. This measure is averaged per target over all trials in a block.  
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Precision of movement is defined as the standard deviation of the peak cursor 
location at the same window around the metronome tick, per target, per block.  
The EEG data is preprocessed in the following manner: all data was recorded 
with a sample frequency of 2048 Hz and imported and analysed using Matlab 
R2016B and the Signal Processing Toolbox (The MathWorks, Inc., 2016) and the 
EEGlab Toolbox (Delorme & Makeig, 2004). First, the raw data was inspected 
after removal of low frequent drift with a 1- Hz high pass FIR filter and line noise 
with a notch filter at 50 Hz and harmonics. Noisy, high frequencies were removed 
with a 200-Hz low-pass FIR filter. Visually detected bad and flat channels were 
excluded from the start.  After this, the data was referenced to the common 
average of all channels, with exception of the EOG and EMG channels. 
Consequently an Independent Component Analysis (ICA) is performed with use 
of the Infomax and AMICA algorithms, provided by the EEGlab toolbox (Delorme 
& Makeig, 2004). Obtained components that have a clear scalp maps around the 
primary motor cortex, premotor cortex or anterior cingulate cortex and which can 
be described by a dipole with <15% residual variance, will be included for further 
analysis.  
To investigate the difference between the conditions, the data will be analysed in 
time-frequency domain with use of Morlet wavelet transforms.  Event-related 
changes in α- and β-power will be calculated for the aforementioned motor 
components.  

 
20. Follow-up analyses 

In a follow-up analysis, the influence of the sequence of the motor tasks will be 
analysed with use of a simple t-test to compare between subjects in the two 
different randomised groups.  

 
21. Inference criteria 

To draw conclusions from the results, p-values below 0.05 will be considered 
significant. Since a specific direction of results is expected for the behavioral 
motor learning parameter, one-tailed tests will be used.  
For the pre-trial and event-related changes in power, a decrease is expected, so 
one-tailed test will be applicable to the EEG data as well.  

 
22. Data exclusion 

Following the earlier described EEG preprocessing steps, bad channels and 
abnormal trials will be removed from the data before analysis takes place. Bad 
channel rejection is described in the appendix and a standardised script will be 
used to reject the abnormal trials. If, due to technical reasons such as excessive 
line noise or bridged channels, the data was is not suitable for analysis, it will be 
rejected.  

 
23. Missing data 
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Incomplete or missing data will not be included in the analysis. It could still be 
used for exploratory questions and to help prevent technical problems in further 
EEG experiments.  

 
24. Exploratory analysis (optional) 

The influence of pre-trial brain state, measured on EEG, is found to be correlated 
with motor learning. Our question is if connectivity between the earlier found relevant 
motor areas is a predictor of motor skill learning. 

 
 
Script (Optional)  
 
The purpose of a fully commented analysis script is to unambiguously provide the responses to 
all of the questions raised in the analysis section. This step is not common, but we encourage 
you to try creating an analysis script, refine it using a modeled dataset, and use it in place of 
your written analysis plan. 
 
25. Analysis scripts (Optional) 

(Optional) Upload an analysis script with clear comments. This optional step is 
helpful in order to create a process that is completely transparent and increase 
the likelihood that your analysis can be replicated. We recommend that you run 
the code on a simulated dataset in order to check that it will run without errors. 

 
Other 
 
26. Other (Optional) 

If there is any additional information that you feel needs to be included in your 
preregistration, please enter it here. 
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MotorEEG Erasmus MC 
Checklist EEG meting 
Version 1.4 5/5/2018 

 

1 

 

ID: 

Date: 

Task: MT/SMT  SMT/MT 

 

 

Items  Notes: 

Airco at comfortable temperature    

Set the tables in measurement setting   

Turn on computers, stimulation and 
recording programs 

  

Turn on EEG amplifier, connect cables to 
computer, trigger cable (3thd on the right) 
and electrodes  

  

Lay these within reach: 
- 2 syringes filled with gel 
- Paper towels    
- Alcohol pads  
- Nupreb Scrub                 
- EEG cap S/M (<57 cm) or M/L  
- 5 electrodes 
- Measuring tape   

  
 
 
 

 
When subject arrives 

Start time: 

Welcome, information   

Ask if the subject needs to go to the toilet 
before application of electrodes 

  

Declaration of consent signed by subject 
(first visit) 

  

Turn off all the phones in the room   

 
EEG & EOG & EMG 

Clean the right mastoid and attach ground 
electrode of Refa  

  

Control if cap fits check location of Cz  nasion – inion:                 cm 
left ear – right ear:              cm 

Inform subject about gelling   

Gel electrodes and check impedances (< 15 
kΩ)  

  

Clean skin next to the right and in between 
the eyes and attach the (green) EOG 
electrodes (13,19) 

  

Clean fdi muscle of the right thumb and the 
index finger tendon 

  

Attach the EMG electrodes on the fdi (red) 
and tendon (black) 

  

During EEG gelling: measure max force and 
three practice blocks of SMT (first) and MT 
(last), independent of sequence 

 Let subjects read instructions 

Check trigger during motor task practice   

Save impedances (pre-measurement)   
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MotorEEG Erasmus MC 
Checklist EEG meting 
Version 1.4 5/5/2018 

 

2 

 

ID: 

Date: 

Task: MT/SMT  SMT/MT 

 

Check EEG and EMG signals on the screen 
and show subject the influence of muscle 
contractions and eye movements 

  

Record resting state EEG for 3 minutes, 
save as condition: rs 

  

 

Motor task 

Start Labview Maxforce   

Move screen further away    

Pinch three times and press calculate if 
they are similar, save maxforce_subject 

  

Open Labview and load max force, type 
correct filenames below task, trial and 
block.txt 

 Draw 5 (MT) or Yvonnebreedblokje (SMT) (depends on 
sequence!) 

Check settings: bpm (750 ms) and 20 trials, 
10 blocks, click run 

  

Change filename and start EEG recording: 
mt ( or smt)  

  

Let subject perform 20 blocks of the first 
task 

  

Stop EEG measurement, give subject 
something to drink and eat 

  

Perform resting state EEG measurement for 
3 minutes 

  

Open Labview and load max force, type 
correct filenames below ,task, trial and 
block.txt 

  

Change filename and start EEG recording: 
mt ( or smt)  

  

Let subject perform 20 blocks of the second 
task 

  

Save impedances (post-measurement)  DONE! ☺ 

 
End time:  
 
After measurements 

Write down email of subject for financial 
compensation  

  

Shut down all computers, turn of amplifier 
and clean table 

  

Clean the EEG cap with toothbrush   

Replace tables etc. back to original position   

Check if there are enough supplies for next 
time  
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Motor task instructions 
Please read the instructions carefully and ask questions if anything is unclear.  You will have three 

practice sessions per task, in which the investigator will give feedback. 

One-Block Task: 

In this task, you will move a black rectangle from the left home position on the screen, to a red 

target block in the middle of the screen, see Figure 1. You can move the black rectangle by pinching 

the force transducer using thumb and index finger. The amount of pinch force is related to the 

movement of the black rectangle, the harder you pinch, the more the block moves to the right. 

After three beeps of the metronome, you can 

see a GO signal above the home block and it is 

your turn to pinch. Each time the metronome 

ticks from then, which will be 5 times per trial, 

you need to pinch the force transducer. It is 

your goal to get the black rectangle inside the 

red block at each beep of the metronome. 

Between the beeps, you have to let loose of 

the force transducer and let the black 

rectangle return to it’s home position. The 

time between the 5 beeps is constant.  After 

10 trials (of each 5 beeps), you will have the 

opportunity to take 15 seconds rest.  

 

 

Five-Block Task: 

This task has the same design of the beeps of the metronome. The big difference this time is the fact 

there are 5 target blocks, which have to be reached with the black rectangle in a specific sequence, 

from 1 to 5, see Figure 2.  

There will be three beeps and a GO 

signal and from then you need to move 

the black rectangle to the first block at 

the tick of the metronome, then back to 

the home position, then at the second 

block at the second tick of the 

metronome and back to the home 

position, then to the third, etc. Make 

sure the black rectangle is inside of the 

target block at the moment of the 

metronome beep! The time between the 

5 beeps is constant.  After 10 trials (of 

each 5 beeps), you will have the 

opportunity to take 15 seconds rest.  

Figure 1: One-Block Task 

Figure 2 Five-Block Task 
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