

Delft University of Technology

Non-stationary Anderson acceleration with optimized damping

Chen, Kewang; Vuik, Cornelis

DOI
10.1016/j.cam.2024.116077
Publication date
2024
Document Version
Final published version
Published in
Journal of Computational and Applied Mathematics

Citation (APA)
Chen, K., & Vuik, C. (2024). Non-stationary Anderson acceleration with optimized damping. Journal of
Computational and Applied Mathematics, 451, Article 116077. https://doi.org/10.1016/j.cam.2024.116077

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cam.2024.116077
https://doi.org/10.1016/j.cam.2024.116077

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Journal of Computational and Applied Mathematics 451 (2024) 116077

A
0

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Non-stationary Anderson acceleration with optimized damping✩

Kewang Chen a,b,∗, Cornelis Vuik b

a College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, 210044, China
b Delft Institute of Applied Mathematics, Delft University of Technology, Delft, 2628XE, The Netherlands

A R T I C L E I N F O

MSC:
65H10
65F10

Keywords:
Anderson acceleration
Fixed-point iteration
Optimal damping

A B S T R A C T

Anderson acceleration (AA) has a long history of use and a strong recent interest due to its
potential ability to dramatically improve the linear convergence of the fixed-point iteration.
Most authors are simply using and analyzing the stationary version of Anderson acceleration
(sAA) with a constant damping factor or without damping. Little attention has been paid
to nonstationary algorithms. However, damping can be useful and is sometimes crucial for
simulations in which the underlying fixed-point operator is not globally contractive. The role
of this damping factor has not been fully understood. In the present work, we consider
the non-stationary Anderson acceleration algorithm with optimized damping (AAoptD) in
each iteration to further speed up linear and nonlinear iterations by applying one extra
inexpensive optimization. We analyze the convergence rate this procedure and develop an
efficient and inexpensive implementation scheme. We show by extensive numerical experiments
that the proposed non-stationary Anderson acceleration with optimized damping procedure
often converges much faster than stationary AA with constant damping, adaptive damping or
without damping, especially in the cases larger window sizes are needed. We also observe that
simple strategies like using constant damping factors and adaptive damping factors, sometimes,
work very well for some problems while sometimes they are even worse than AA without
damping. Our proposed method is usually more robust than AA with constant damping and
adaptive damping. Moreover, we also observed from our numerical results that damping can be
good, but choosing the wrong damping factors may slow down the convergence rate. Theoretical
analysis of the effects of damping factors are needed and important.

1. Introduction

In this part, we first give a literature review on Anderson Acceleration method. Then we discuss our main motivations and
the structure for the present paper. To begin with, let us consider the nonlinear acceleration for the following general fixed-point
problem

𝑥 = 𝑔(𝑥), 𝑔 ∶ 𝑅𝑛 → 𝑅𝑛

or its related nonlinear equations problem

𝑓 (𝑥) = 𝑔(𝑥) − 𝑥 = 0.

✩ Funding: This work was partially supported by the National Natural Science Foundation of China [grant number 12001287]; the Startup Foundation for
Introducing Talent of Nanjing University of Information Science and Technology, China [grant number 2019r106].
∗ Corresponding author at: College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, 210044, China.

E-mail addresses: kwchen@nuist.edu.cn (K. Chen), c.vuik@tudelft.nl (C. Vuik).
URL: https://homepage.tudelft.nl/d2b4e/ (C. Vuik).
vailable online 18 June 2024
377-0427/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://doi.org/10.1016/j.cam.2024.116077
Received 9 February 2022; Received in revised form 2 July 2023

https://www.elsevier.com/locate/cam
https://www.elsevier.com/locate/cam
mailto:kwchen@nuist.edu.cn
mailto:c.vuik@tudelft.nl
https://homepage.tudelft.nl/d2b4e/
https://doi.org/10.1016/j.cam.2024.116077
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2024.116077&domain=pdf
https://doi.org/10.1016/j.cam.2024.116077

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik

s
A
P

The associated basical fixed-point iteration is given in Algorithm 1.
Algorithm 1 Picard iteration

Given: 𝑥0.
for 𝑘 = 0, 1, 2,⋯ do

Set 𝑥𝑘+1 = 𝑔(𝑥𝑘).
end for

Algorithm 2 Anderson acceleration: 𝐴𝐴(𝑚)
Given: 𝑥0 and 𝑚 ≥ 1.
Set: 𝑥1 = 𝑔(𝑥0).
for 𝑘 = 0, 1, 2,⋯ do

Set: 𝑚𝑘 = min{𝑚, 𝑘}.
Set: 𝐹𝑘 = (𝑓𝑘−𝑚𝑘

,⋯ , 𝑓𝑘), where 𝑓𝑖 = 𝑔(𝑥𝑖) − 𝑥𝑖.

Determine: 𝛼(𝑘) =
(

𝛼(𝑘)0 ,⋯ , 𝛼(𝑘)𝑚𝑘

)𝑇
that solves

min
𝛼=(𝛼0 ,⋯,𝛼𝑚𝑘)

𝑇
‖𝐹𝑘𝛼‖2 𝑠. 𝑡.

𝑚𝑘
∑

𝑖=0
𝛼𝑖 = 1.

Set: 𝑥𝑘+1 = (1 − 𝛽𝑘)
𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑥𝑘−𝑚𝑘+𝑖 + 𝛽𝑘

𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑔(𝑥𝑘−𝑚𝑘+𝑖).

end for
The main concern related to this basic fixed-point iteration is that the iterates may not converge or may converge extremely

lowly (only linear convergent). Therefore, various acceleration methods are proposed to alleviate this slow convergence problem.
mong these algorithms, one popular acceleration procedure is called the Anderson acceleration method [1]. For the above basic
icard iteration, the usual general form of Anderson acceleration with damping is given in Algorithm 2. In the above algorithm, 𝑓𝑘

is the residual for the 𝑘th iteration; 𝑚 is the window size which indicates how many history residuals will be used in the algorithm.
The value of 𝑚 is typically no larger than 3 in the early days of applications and now this value could be as large as up to 100,
see [2]. It is usually a fixed number during the procedure, varying 𝑚 can also make the algorithm to be non-stationary. We will
come back to this point in section Section 2; 𝛽𝑘 ∈ (0, 1] is a damping factor (or a relaxation parameter) at 𝑘th iteration. We have,
for a fixed window size 𝑚:

𝛽𝑘 =

⎧

⎪

⎨

⎪

⎩

1, no damping,
𝛽, (a constant independent of 𝑘) stationary AA,
𝛽𝑘, (depending on 𝑘) non-stationary AA.

The constrained optimization problem can also be formulated as an equivalent unconstrained least-squares problem [3,4]:

min
(𝜔1 ,…,𝜔𝑚𝑘)

𝑇

‖

‖

‖

‖

‖

𝑓𝑘 +
𝑚𝑘
∑

𝑖=1
𝜔𝑖(𝑓𝑘−𝑖 − 𝑓𝑘)

‖

‖

‖

‖

‖2

(1)

One can easily recover the original problem by setting

𝜔0 = 1 −
𝑚𝑘
∑

𝑖=1
𝜔𝑖.

This formulation of the linear least-squares problem is not optimal for implementation, we will discuss this in more detail in
Section 4.

Anderson acceleration method dates back to the 1960s. In 1962, Anderson [1] developed a technique for accelerating the
convergence of the Picard iteration associated with a fixed-point problem which is called Extrapolation Algorithm. This technique is
now called Anderson Acceleration (AA) in the applied mathematics community and Anderson Mixing in the physics and chemistry
communities. This method is ‘‘essentially’’ (or nearly) similar to the nonlinear GMRES method or Krylov acceleration [5–8] and
the direct inversion on the iterative subspace method (DIIS) [9–11]. And it is also in a broad category with methods based on
quasi-Newton updating [12–16]. However, unlike Newton-like methods, AA does not require the computation or approximation of
Jacobians or Jacobian-vector products which could be an advantage.

Although the Anderson acceleration method has been around for decades, convergence analysis has been reported in the literature
only recently. Fang and Saad [14] had clarified a remarkable relationship of AA to quasi-Newton methods and extended it to define
a broader Anderson family method. Later, Walker and Ni [17] showed that, on linear problems, AA without truncation is ‘‘essentially
equivalent’’ in a certain sense to the GMRES method. For the linear case, Toth and Kelley [3] first proved the stationary version of
AA (sAA) without damping is locally r-linearly convergent if the fixed point map is a contraction and the coefficients in the linear
combination remain bounded. This work was later extended by Evans et al. [18] to AA with damping and the authors proved the
new convergence rate is 𝜃𝑘((1−𝛽𝑘−1)+𝛽𝑘−1𝜅), where 𝜅 is the Lipschitz constant for the function 𝑔(𝑥) and 𝜃𝑘 is the ratio quantifying the
convergence gain provided by AA in step 𝑘. However, it is not clear how 𝜃𝑘 may be evaluated or bounded in practice and how it may
2

translate to improved asymptotic convergence behavior in general. In 2019, Pollock et al. [19] applied sAA to the Picard iteration

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik

t
o
h
f
m
t

H
t
𝛽
a
c
a
L
P
s
t
g
t
e
i
r
F
t
b
a
i

S
f

2

s

D

T

A
o
b

for solving steady incompressible Navier–Stokes equations (NSE) and proved that the acceleration improves the convergence rate
of the Picard iteration. Then, De Sterck [20] extended the result to more general fixed-point iteration 𝑥 = 𝑔(𝑥), given knowledge of
he spectrum of 𝑔′(𝑥) at fixed-point 𝑥∗ and Wang et al. [21] extended the result to study the asymptotic linear convergence speed
f sAA applied to Alternating Direction Method of Multipliers (ADMM) method. Sharper local convergence results of AA remain a
ot research topic in this area. More recently, Zhang et al. [22] proved a global convergent result of type-I Anderson acceleration
or nonsmooth fixed-point iterations without resorting to line search or any further assumptions other than nonexpansiveness. For
ore related results about Anderson acceleration and its applications, we refer the interested readers to [2,23–28] and references

herein.
As mentioned above, the local convergence rate 𝜃𝑘((1 − 𝛽𝑘−1) + 𝛽𝑘−1𝜅) at stage 𝑘 is closely related to the damping factor 𝛽𝑘−1.

owever, questions like how to choose those damping values in each iteration [2] and how it will affect the global convergence of
he algorithm have not been deeply studied. In practice, 𝛽 is often chosen by experimenting with several representative constant

values. Anderson [2] suggested a conceptual procedure for adaptively choosing 𝛽𝑘. However, he has not had an opportunity to
ssess its practical utility. Evans et al. [18] developed a new strategy to adaptively choose the damping factors, where those 𝛽𝑘 are
hosen by a simple heuristic strategy based on the gain 𝜃𝑘 (𝛽𝑘 = 0.9−1∕2 ∗ 𝜃𝑘). The heuristic choice of damping yields 0.4 ≤ 𝛽𝑘 ≤ 0.9,
nd leads to fewer iterations to convergence than with the uniform damping factors tested on the p-Laplacian problem, where p-
aplacian is a noncontractive operators. We do not know how well this strategy works for other problems. For the linear problems,
otra and Engler [29] proposed an optimized version of Anderson acceleration, where at each step the mixing parameter is chosen
o that it minimizes the residual of the current iterate. Can we generalize this idea to solve nonlinear equations? How good will
his new strategy be compared with other constant damping and adaptive damping strategies? Besides, AA is often combined with
lobalization methods to safeguard against erratic convergence away from a fixed point by using damping. One similar idea in
he optimization context for nonlinear GMRES is to use line search strategies [30]. This is an important strategy but not yet fully
xplored in the literature. Moreover, the early days of Anderson Mixing method (the 1980s, for electronic structure calculations)
nitially dictated the window size 𝑚 ≤ 3 due to the storage limitations and costly 𝑔 evaluations involving large 𝑁 . However, in
ecent years and a broad range of contexts, the window size 𝑚 ranging from 20 to 100 has also been considered by many authors.
or example, Walker and Ni [17] used 𝑚 = 50 in solving the nonlinear Bratu problem. A natural question will be should we try
o further steep up Anderson acceleration method or try to use a larger size of the window? No such comparison results have
een reported. Motivated by the above works, in this paper, we propose, analyze and numerically study non-stationary Anderson
cceleration with optimized damping to solve fixed-point problems. The goal of this paper is to explore the role of damping factors
n non-stationary Anderson acceleration and comparing different strategies for choosing those damping factors.

The paper is organized as follows. Our new algorithms and analysis are in Section 2, the convergence analysis are given in
ection 3, the implementation of the new algorithm is in Section 4, experimental results and discussion are in Section 5. Conclusions
ollow in Section 6.

. Anderson acceleration with optimized dampings

In this section, we focus on developing the algorithm for Anderson acceleration with optimized dampings at each iteration and
tudying its convergence rate explicitly.

𝑥𝑘+1 = (1 − 𝛽𝑘)
𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑥𝑘−𝑚𝑘+𝑖 + 𝛽𝑘

𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑔(𝑥𝑘−𝑚𝑘+𝑖)

=
𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑥𝑘−𝑚𝑘+𝑖 + 𝛽𝑘

(𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑔(𝑥𝑘−𝑚𝑘+𝑖) −

𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑥𝑘−𝑚𝑘+𝑖

)

. (2)

efine the following averages given by the solution 𝛼𝑘 to the optimization problem by

𝑥𝛼𝑘 =
𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑥𝑘−𝑚𝑘+𝑖, �̃�𝛼𝑘 =

𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑔(𝑥𝑘−𝑚𝑘+𝑖). (3)

hen (2) becomes

𝑥𝑘+1 = 𝑥𝛼𝑘 + 𝛽𝑘(�̃�𝛼𝑘 − 𝑥𝛼𝑘). (4)

natural way to choose ‘‘best’’ 𝛽𝑘 at this stage is that choosing 𝛽𝑘 such that 𝑥𝑘+1 gives a minimal residual. This is similar to the
riginal idea of Anderson acceleration with window size equal to one. The idea has been used for solving linear iteration problems
y Potra and Engler [29]. So we just need to solve the following unconstrained optimization problem:

min
𝛽𝑘

‖𝑥𝑘+1 − 𝑔(𝑥𝑘+1)‖2 = min
𝛽𝑘

‖𝑥𝛼𝑘 + 𝛽𝑘(�̃�𝛼𝑘 − 𝑥𝛼𝑘) − 𝑔(𝑥𝛼𝑘 + 𝛽𝑘(�̃�𝛼𝑘 − 𝑥𝛼𝑘))‖2. (5)

Noting the fact that 𝑔(𝑥) is usually a nonlinear function, thus we proceed by linearization to allow for inexpensive computation of
𝛽𝑘. Using the approximations

𝑔(𝑥𝛼𝑘 + 𝛽𝑘(�̃�𝛼𝑘 − 𝑥𝛼𝑘)) ≈ 𝑔(𝑥𝛼𝑘) + 𝛽𝑘
𝜕𝑔
𝜕𝑥

|

|

|𝑥𝛼𝑘
(�̃�𝛼𝑘 − 𝑥𝛼𝑘)

≈ 𝑔(𝑥𝛼) + 𝛽
(

𝑔(�̃�𝛼) − 𝑔(𝑥𝛼)
)

, (6)
3

𝑘 𝑘 𝑘 𝑘

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik

r
g
t
𝐴

a
n
i
i
o
d

R
r
𝑚

we arrive at

min
𝛽𝑘

‖𝑥𝑘+1 − 𝑔(𝑥𝑘+1)‖2

= min
𝛽𝑘

‖𝑥𝛼𝑘 + 𝛽𝑘(�̃�𝛼𝑘 − 𝑥𝛼𝑘) − 𝑔(𝑥𝛼𝑘 + 𝛽𝑘(�̃�𝛼𝑘 − 𝑥𝛼𝑘))‖2

≈ min
𝛽𝑘

‖𝑥𝛼𝑘 + 𝛽𝑘(�̃�𝛼𝑘 − 𝑥𝛼𝑘) −
[

𝑔(𝑥𝛼𝑘) + 𝛽𝑘(𝑔(�̃�𝛼𝑘) − 𝑔(𝑥𝛼𝑘))
]

‖2

≈ min
𝛽𝑘

‖

(

𝑥𝛼𝑘 − 𝑔(𝑥𝛼𝑘)
)

− 𝛽𝑘
[

(𝑔(�̃�𝛼𝑘) − 𝑔(𝑥𝛼𝑘)) − (�̃�𝛼𝑘 − 𝑥𝛼𝑘)
]

‖2. (7)

Thus, we just need to calculate the projection

𝛽𝑘 =

(

𝑥𝛼𝑘 − 𝑔(𝑥𝛼𝑘)
)

⋅
[(

𝑥𝛼𝑘 − 𝑔(𝑥𝛼𝑘)
)

− (�̃�𝛼𝑘 − 𝑔(�̃�𝛼𝑘))
]

‖

[(

𝑥𝛼𝑘 − 𝑔(𝑥𝛼𝑘)
)

− (�̃�𝛼𝑘 − 𝑔(�̃�𝛼𝑘))
]

‖

2
2

. (8)

Set

𝑟𝑝 =
(

𝑥𝛼𝑘 − 𝑔(𝑥𝛼𝑘)
)

, 𝑟𝑞 =
(

�̃�𝛼𝑘 − 𝑔(�̃�𝛼𝑘)
)

,

we have

𝛽𝑘 =
(𝑟𝑝 − 𝑟𝑞)𝑇 𝑟𝑝
‖𝑟𝑝 − 𝑟𝑞‖22

. (9)

We will discuss how much work is needed to calculate this 𝛽𝑘 in Section 4. Since the damping factor 𝛽𝑘 is restricted in the interval
(0, 1], if the local ‘‘best’’ 𝛽𝑘 is not in this interval (i.e. 𝛽𝑘 is negative or 𝛽𝑘 is larger than one), to avoid a large value of the estimated
esidual, we can use a constant damping factor for this iteration. Without any pre-experiment or further calculations, a natural
uess for this constant damping factor is 𝛽𝑘 = 1∕2. Besides, 𝛽𝑘 = 1 is also a safe option, which means we do not use damping for
his iteration. Finally, our analysis leads to the following non-stationary Anderson acceleration algorithm with optimized damping:
𝐴𝑜𝑝𝑡𝐷(𝑚).

Algorithm 3 Anderson acceleration with optimized dampings: 𝐴𝐴𝑜𝑝𝑡𝐷(𝑚)

Given: 𝑥0 and 𝑚 ≥ 1.
Set: 𝑥1 = 𝑔(𝑥0).
for 𝑘 = 0, 1, 2,⋯ do

Set: 𝑚𝑘 = min{𝑚, 𝑘}.
Set: 𝐹𝑘 = (𝑓𝑘−𝑚𝑘

,⋯ , 𝑓𝑘), where 𝑓𝑖 = 𝑔(𝑥𝑖) − 𝑥𝑖.

Determine: 𝛼(𝑘) =
(

𝛼(𝑘0 ,⋯ , 𝛼(𝑘)𝑚𝑘

)𝑇
that solves

min
𝛼=(𝛼0 ,⋯,𝛼𝑚𝑘)

𝑇
‖𝐹𝑘𝛼‖2 𝑠. 𝑡.

𝑚𝑘
∑

𝑖=0
𝛼𝑖 = 1.

Set: 𝑥𝛼𝑘 =
𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑥𝑘−𝑚𝑘+𝑖, �̃�𝛼𝑘 =

𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑔(𝑥𝑘−𝑚𝑘+𝑖).

Set: 𝑟𝑝 =
(

𝑥𝛼𝑘 − 𝑔(𝑥𝛼𝑘)
)

, 𝑟𝑞 =
(

�̃�𝛼𝑘 − 𝑔(�̃�𝛼𝑘)
)

.

Set: 𝛽𝑘 =
(𝑟𝑝 − 𝑟𝑞)𝑇 𝑟𝑝
‖𝑟𝑝 − 𝑟𝑞‖22

. (If 𝛽𝑘 ∉ (0, 1], then set 𝛽𝑘 = 1∕2).

Set: 𝑥𝑘+1 = 𝑥𝛼𝑘 + 𝛽𝑘(�̃�𝛼𝑘 − 𝑥𝛼𝑘).
end for

Remark 2.1. As mentioned in Section 1, changing the window size 𝑚 at each iteration can also make a stationary Anderson
cceleration to be non-stationary. Comparing with the stationary Anderson acceleration with fixed window 𝑠𝐴𝐴(𝑚), our proposed
onstationary procedure (𝐴𝐴𝑜𝑝𝑡𝐷(𝑚)) of choosing optimal 𝛽𝑘 is somewhat related to packaging 𝑠𝐴𝐴(𝑚) and 𝑠𝐴𝐴(1) in each iteration
n a cheap way. Here ‘‘packaging 𝑠𝐴𝐴(𝑚) and 𝑠𝐴𝐴(1) in each iteration’’ means that we alternate the window size every other
teration in Anderson acceleration algorithm by using a window size equals to 𝑚 and then using a window size equals to 1. Since
ur proposed method AAoptD(m) uses a window size equal m first, then we do an extra optimization on choosing the local optimal
amping factor. The idea of doing this extra optimization is somewhat like applying stationary AA with a window size equal to 1.

emark 2.2. Here this optimized damping step is a ‘‘local optimal’’ strategy at 𝑘th iteration. It usually will speed up the convergence
ate compared with the one with constant damping, but not always. Because in (𝑘+1)th iteration, it uses a combination of all previous

history information. Usually, the more optimized damping 𝛽𝑘 values are in the interval (0, 1], the faster the convergence speed.
Moreover, when 𝛽𝑘 is close to zero, the system may be over-damped, which, sometimes, will also slow down the convergence speed.
See more discussion in our numerical results in Section 5.
4

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik

c
i
i
a

3. Convergence analysis

In this section, we first prove that the non-stationary Anderson acceleration with optimized damping converges and its residual
onverges q-linearly to zero in the case of linear problems. For nonlinear problems, we prove that it is locally r-linearly convergent
f the fixed point map is a contraction and the coefficients in the linear combination remain bounded. The main idea of this proof
s adopted from Toth and Kelley’s paper [3] with necessary modifications. We extend their results to our non-stationary Anderson
cceleration with optimized damping.

Recall that a sequence {𝑢𝑘} converges q-linearly with q-factor 𝑐 ∈ [0, 1) to 𝑢∗ if

‖𝑢𝑘+1 − 𝑢∗‖ ≤ 𝑐‖𝑢𝑘 − 𝑢∗‖

for all 𝑘 ≥ 0. Similarly, a sequence converges r-linearly means that there is 𝑐 ∈ (0, 1) and 𝑀 > 0 such that

‖𝑢𝑘 − 𝑢∗‖ ≤ 𝑀𝑐𝑘‖𝑢0 − 𝑢∗‖.

3.1. Linear problems and local q-linear convergence

Let 𝐴 be a linear operator with ‖𝐴‖ = 𝑐 < 1, we consider the following fixed point problem

𝑥 = 𝑔(𝑥) = 𝐴𝑥 + 𝑏.

The residual in this case is

𝑓 (𝑥) = 𝑔(𝑥) − 𝑥 = 𝑏 − (𝐼 − 𝐴)𝑥. (10)

Theorem 3.1. Let 𝑚𝑘 = min(𝑚, 𝑘) and assume that ‖𝐴‖ = 𝑐 < 1, then the non-stationary Anderson acceleration algorithm with optimized
damping

𝑥𝑘+1 = min
𝛽𝑘

‖𝑓 (𝑥𝛽𝑘𝑘+1)‖2 = min
𝛽𝑘

‖𝑔(𝑥𝛽𝑘𝑘+1) − 𝑥𝛽𝑘𝑘+1‖2, (11)

where

𝑥𝛽𝑘𝑘+1 = (1 − 𝛽𝑘)𝑥𝛼𝑘 + 𝛽𝑘�̃�
𝛼
𝑘 (𝑤𝑖𝑡ℎ 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟), (12)

�̃�𝛼𝑘 =
𝑚𝑘
∑

𝑗=0
𝛼𝑘𝑗 𝑔(𝑥𝑘−𝑚𝑘+𝑗) (𝑏𝑦 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑎 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑝𝑟𝑜𝑏𝑙𝑒𝑚) (13)

converges to 𝑥∗ = (𝐼 − 𝐴)−1𝑏 and the residuals converge q-linearly to zero with a q-factor equal 𝑐.

Proof. Using the fact that ∑𝑚𝑘
𝑗=0 𝛼

𝑘
𝑗 = 1 and if 𝛼𝑘 =

(

𝛼𝑘0 ,… , 𝛼𝑘𝑚𝑘

)𝑇
is the solution of the following least squares problem at iteration

𝑘, then by definition, we have
‖

‖

‖

‖

‖

‖

𝑚𝑘
∑

𝑗=0
𝛼𝑘𝑗 𝑓 (𝑥𝑘−𝑚𝑘+𝑗)

‖

‖

‖

‖

‖

‖

≤ ‖𝑓 (𝑥𝑘)‖, (14)

since 𝛼𝑘 = (0,… , 0, 1)𝑇 is just one of all possible choices.
Another important fact is that our way of choosing ‘‘best’’ 𝛽𝑘 gives a minimal residual, thus from (11) and (12), we obtain

‖

‖

𝑓 (𝑥𝑘+1)‖‖ ≤ ‖𝑓 (�̃�𝛼𝑘)‖, (15)

because 𝛽𝑘 = 1 is just one special case. Therefore, the new residual
‖

‖

𝑓 (𝑥𝑘+1)‖‖ ≤ ‖

‖

‖

𝑓 (�̃�𝛼𝑘)
‖

‖

‖

(𝑏𝑦 (15))

= ‖

‖

‖

𝑏 − (𝐼 − 𝐴)�̃�𝛼𝑘
‖

‖

‖

=
‖

‖

‖

‖

‖

‖

𝑚𝑘
∑

𝑗=0
𝛼𝑘𝑗 [𝑏 − (𝐼 − 𝐴)(𝑏 + 𝐴𝑥𝑘−𝑚𝑘+𝑗)]

‖

‖

‖

‖

‖

‖

(𝑢𝑠𝑒
𝑛
∑

𝑖=0
𝛼𝑘𝑖 = 1)

=
‖

‖

‖

‖

‖

‖

𝑚𝑘
∑

𝑗=0
𝛼𝑘𝑗 𝐴[𝑏 − (𝐼 − 𝐴)𝑥𝑘−𝑚𝑘+𝑗]

‖

‖

‖

‖

‖

‖

=
‖

‖

‖

‖

‖

‖

𝐴
𝑚𝑘
∑

𝑗=0
𝛼𝑘𝑗 𝑓 (𝑥𝑘−𝑚𝑘+𝑗)

‖

‖

‖

‖

‖

‖

(𝑏𝑦 ‖𝐴‖ = 𝑐 < 1)

≤ 𝑐 ‖
‖

𝑓 (𝑥𝑘)‖‖ . (𝑏𝑦 (14))

(16)

Thus, we have
‖

‖

𝑓 (𝑥𝑘+1)‖‖ ≤ 𝑐 ‖
‖

𝑓 (𝑥𝑘)‖‖ (𝑐 < 1),
5

this proves the residuals converge q-linearly to zero with a q-factor equals 𝑐. □

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik

s

A
s

A

3.2. Nonlinear problems and local r-linear convergence

In this section, we prove the local convergence result for more general nonlinear iterations with suitable assumption. Again, we
et

𝑓 (𝑥) = 𝑔(𝑥) − 𝑥.

s is standard we will let 𝐹 ′ denotes the Jacobian of 𝐹 and 𝑒 = 𝑥 − 𝑥∗. The assumptions we make on the nonlinearity 𝑔(𝑥) and the
olution 𝑥∗ follow the standard assumptions for local convergence of Newton’s method [3].

ssumption 1. We assume that

• 𝑔 ∶ 𝑅𝑛 → 𝑅𝑛 has a fixed point 𝑥∗ ∈ 𝑅𝑛 such that 𝑓 (𝑥∗) = 𝑔(𝑥∗) − 𝑥∗ = 0.
• 𝑔 is uniformly Lipschitz continuously differentiable in the ball 𝐵(�̂�) = {𝑥|‖𝑥 − 𝑥∗‖2 ≤ �̂�}.
• There exists 𝑐 ∈ (0, 1) such that ‖𝑔(𝑦) − 𝑔(𝑥)‖2 ≤ 𝑐‖𝑦 − 𝑥‖2 for all 𝑥, 𝑦 ∈ 𝑅𝑛.
• There is a 𝑁𝛼 such that for all 𝑘 ≥ 0, ∑𝑚𝑘

𝑗=0 |𝛼𝑗 | ≤ 𝑁𝛼 hold.

The second and the third assumptions indicate that ‖𝑔′(𝑥)‖ ≤ 𝑐 < 1 for all 𝑥 ∈ 𝐵(�̂�), and hence 𝑓 ′(𝑥) is nonsingular. For the last
assumption, although we have not seen large coefficient values in our numerical experiments, we are not able to prove they remain
bounded. Thus we keep it here. We also denote 𝑔∗ = 𝑔′(𝑥∗) and let 𝛾 be the Lipschitz constant of 𝑓 ′ (the Jacobian of 𝑓 (𝑥)) in 𝐵(𝜌).
We will need a special case of the results (Lemma 4.3.1) from [31].

Lemma 3.2. For 𝜌 ≤ �̂� sufficiently small and all 𝑥 ∈ 𝐵(𝜌), we have

‖𝑓 (𝑥) − 𝑓 ′(𝑥∗)𝑒‖ ≤ 𝛾
2
‖𝑒‖2 (17)

and

‖𝑒‖(1 − 𝑐) ≤ ‖𝑓 (𝑥)‖ ≤ (1 + 𝑐)‖𝑒‖. (18)

Theorem 3.3. Assume that the above assumptions hold and let 𝑐 < 𝑐 < 1. Then if 𝑥0 is sufficiently close to 𝑥∗, then the proposed
non-stationary Anderson acceleration algorithm with optimized damping

𝑥𝑘+1 = min
𝛽𝑘

‖𝑓 (𝑥𝛽𝑘𝑘+1)‖2 = min
𝛽𝑘

‖𝑔(𝑥𝛽𝑘𝑘+1) − 𝑥𝛽𝑘𝑘+1‖2, (19)

where

𝑥𝛽𝑘𝑘+1 = (1 − 𝛽𝑘)𝑥𝛼𝑘 + 𝛽𝑘�̃�
𝛼
𝑘 (𝑤𝑖𝑡ℎ 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟), (20)

�̃�𝛼𝑘 =
𝑚𝑘
∑

𝑗=0
𝛼𝑘𝑗 𝑔(𝑥𝑘−𝑚𝑘+𝑗) (𝑏𝑦 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑎 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑝𝑟𝑜𝑏𝑙𝑒𝑚) (21)

converges to 𝑥∗ r-linearly. In fact,

‖𝑓 (𝑥𝑘)‖ ≤ 𝑐𝑘+1‖𝑓 (𝑥0)‖ (22)

and

‖𝑒𝑘‖ ≤ 1 + 𝑐
1 − 𝑐

𝑐𝑘‖𝑒0‖ (23)

Proof. We proceed this proof by induction. To begin with, when 𝑘 = 0, it is easy to check that

‖𝑓 (𝑥0)‖ ≤ 𝑐0‖𝑓 (𝑥0)‖ = ‖𝑓 (𝑥0)‖. (24)

So we assume that when 𝑘 = 𝐾 (𝐾 ≥ 1) that

‖𝑓 (𝑥𝑘)‖ ≤ 𝑐𝑘‖𝑓 (𝑥0)‖. (25)

We want to show that for 𝑘 = 𝐾 + 1, we have

‖𝑓 (𝑥𝐾+1)‖ ≤ 𝑐𝐾+1
‖𝑓 (𝑥0)‖. (26)

Then, by induction, we can prove Theorem 3.3. The following part of this section is devoted to proof (26).
To begin with, using the fact that our way of choosing ‘‘best’’ 𝛽𝑘 gives a minimal residual, thus from (19) and (20), we have

‖𝑓 (𝑥𝐾+1)‖ ≤ ‖𝑓 (�̃�𝛼𝐾)‖. (27)

thus, we just need to show
𝛼 𝐾+1
6

‖𝑓 (�̃�𝐾)‖ ≤ 𝑐 ‖𝑓 (𝑥0)‖. (28)

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik

w

w

According to Toth and Kelley [3], let 𝑥0 ∈ 𝐵(𝜌) and assume that 𝜌 ≤ �̂�, where �̂� is from the statement of Lemma 3.2. Reduce 𝜌
if needed so that

𝜌 ≤ 2(1 − 𝑐)
𝛾

and
𝑐
𝑐 +

(

𝑁𝛼𝛾𝜌
2(1−𝑐)

)

𝑐−𝑚−1
(

1 − 𝛾𝜌
2(1−𝑐)

) ≤ 1, (29)

hich will be used later in the proof. Now reduce ‖𝑒0‖ further, which means we need a better initial guess, so that
(

𝑁𝛼(𝑐 + 𝛾𝜌∕2)
1 − 𝑐

)

𝑐−𝑚‖𝑓 (𝑥0)‖ ≤
(

𝑁𝛼(1 + 𝑐)(𝑐 + 𝛾𝜌∕2)
1 − 𝑐

)

𝑐−𝑚‖𝑒0‖ ≤ 𝜌. (30)

From Eqs. (25) and (30), we have that ‖𝑒𝐾‖ ≤ 𝜌. Hence, we have

𝑓 (𝑥𝐾) = 𝑓 ′(𝑥∗)𝑒𝐾 + 𝛥𝐾 , (31)

here (by Lemma 3.2),

‖𝛥𝐾‖ = ‖𝑓 (𝑥𝐾) − 𝑓 ′(𝑥∗)𝑒𝐾‖ ≤ 𝛾
2
‖𝑒𝐾‖. (32)

Thus, from (31) and 𝑓 (𝑥) = 𝑔(𝑥) − 𝑥, we have

𝑔(𝑥𝐾) = 𝑥∗ + 𝑔′(𝑥∗)𝑒𝐾 + 𝛥𝐾 = 𝑥∗ + 𝑔∗𝑒𝐾 + 𝛥𝐾 . (33)

From (21), (33) and use the fact that ∑𝑚𝑘
𝑖=0 𝛼

𝐾
𝑖 = 1, we get

�̃�𝛼𝐾 =
𝑚𝑘
∑

𝑖=0
𝛼𝐾𝑖 𝑔(𝑥𝐾−𝑚𝑘+𝑗)

= 𝑥∗ +
𝑚𝑘
∑

𝑖=0
𝛼𝐾𝑖 (𝑔∗𝑒𝐾−𝑚𝑘+𝑖 + 𝛥𝐾−𝑚𝑘+𝑖)

= 𝑥∗ +
𝑚𝑘
∑

𝑖=0
(𝛼𝐾𝑖 𝑔∗𝑒𝐾−𝑚𝑘+𝑖) +

𝑚𝑘
∑

𝑖=0
(𝛼𝐾𝑖 𝛥𝐾−𝑚𝑘+𝑖)

(34)

Denote the last term in (34) as

𝛥𝐾 =
𝑚𝑘
∑

𝑖=0
(𝛼𝐾𝑖 𝛥𝐾−𝑚𝑘+𝑖), (35)

then we will estimate 𝛥𝐾 . From (32) and (35), we get

‖𝛥𝐾‖ ≤
𝑚𝑘
∑

𝑖=0

|

|

|

𝛼𝐾𝑖
|

|

|

𝛾‖𝑒𝐾−𝑚𝑘+𝑖‖
2∕2. (36)

Using the induction hypothesis and Lemma 3.2, we have

‖𝑒𝐾−𝑚𝑘+𝑖‖
2 ≤ ‖𝑒𝐾−𝑚𝑘+𝑖‖

(1
1 − 𝑐

)

‖𝑓 (𝑥𝐾−𝑚𝑘+𝑖)‖

≤
(𝜌
1 − 𝑐

)

‖𝑓 (𝑥𝐾−𝑚𝑘+𝑖)‖

≤
(𝜌
1 − 𝑐

)

𝑐𝐾−𝑚𝑘+𝑖
‖𝑓 (𝑥0)‖

≤
(𝜌
1 − 𝑐

)

𝑐𝐾−𝑚
‖𝑓 (𝑥0)‖.

(37)

Thus, use the last assumption that ∑𝑚𝑘
𝑖=0 |𝛼

𝐾
𝑖 | ≤ 𝑁𝛼 and the fact ‖𝑔∗‖ = ‖𝑔′(𝑥∗)‖ ≤ 𝑐 < 1, we have

‖

‖

‖

‖

‖

𝑚𝑘
∑

𝑖=0
𝛼𝐾𝑖 𝑔∗𝑒𝑘−𝑚𝑘+𝑖

‖

‖

‖

‖

‖

≤
(

𝑁𝛼𝑐
1 − 𝑐

)

𝑐−𝑚‖𝑓 (𝑥0)‖ (38)

and

‖𝛥𝐾‖ ≤
(

𝑁𝛼𝛾𝜌
2(1 − 𝑐)

)

𝑐𝐾−𝑚
‖𝑓 (𝑥0)‖ ≤

(

𝑁𝛼𝛾𝜌
2(1 − 𝑐)

)

𝑐−𝑚‖𝑓 (𝑥0)‖. (39)

Therefore, from (34), we obtain that

𝑒𝛼𝐾 = �̃�𝛼𝐾 − 𝑥∗ =
𝑚𝑘
∑

(𝛼𝐾𝑖 𝑔∗𝑒𝐾−𝑚𝑘+𝑖) + 𝛥𝐾 . (40)
7

𝑖=0

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik
Thus, we get the following estimation,

‖𝑒𝛼𝐾‖ = ‖�̃�𝛼𝐾 − 𝑥∗‖ =
‖

‖

‖

‖

‖

𝑚𝑘
∑

𝑖=0
(𝛼𝐾𝑖 𝑔∗𝑒𝐾−𝑚𝑘+𝑖) + 𝛥𝐾

‖

‖

‖

‖

‖

≤
‖

‖

‖

‖

‖

𝑛
∑

𝑖=0
(𝛼𝐾𝑖 𝑔∗𝑒𝐾−𝑚𝑘+𝑖)

‖

‖

‖

‖

‖

+ ‖

‖

𝛥𝐾
‖

‖

≤
(

𝑁𝛼𝑐
1 − 𝑐

)

𝑐−𝑚‖𝑓 (𝑥0)‖ +
(

𝑁𝛼𝛾𝜌
2(1 − 𝑐)

)

𝑐−𝑚‖𝑓 (𝑥0)‖

≤
(

𝑁𝛼(𝑐 + 𝛾𝜌∕2)
1 − 𝑐

)

𝑐−𝑚‖𝑓 (𝑥0)‖

≤ 𝜌.

(41)

Since ‖𝑒𝛼𝐾‖ ≤ 𝜌 ≤ �̂�, we can use Lemma 3.2 again with 𝑘 = 𝐾 + 1 to obtain

𝑓 (�̃�𝛼𝐾) = 𝑓 ′(𝑥∗)𝑒𝛼𝐾 + 𝛥𝛼
𝐾 = (𝑔∗ − 𝐼)𝑒𝛼𝐾 + 𝛥𝛼

𝐾 , (42)

where, by Lemma 3.2

‖𝛥𝛼
𝐾‖ = ‖𝑓 (�̃�𝛼𝐾) − 𝑓 ′(𝑥∗)𝑒𝛼𝐾‖ ≤ 𝛾

2
‖𝑒𝛼𝐾‖

2.

Use the fact that ‖𝑒𝛼𝐾‖ ≤ 𝜌 ≤ �̂� and (18), we have

‖𝛥𝛼
𝐾‖ ≤ 𝛾

2
‖𝑒𝛼𝐾‖

2 ≤ 𝛾
2
‖𝑒𝛼𝐾‖

(1
1 − 𝑐

)

‖𝑓 (�̃�𝛼𝐾)‖ ≤
(

𝛾𝜌
2(1 − 𝑐)

)

‖𝑓 (�̃�𝛼𝐾)‖. (43)

Then, from (40) and (42), we get

𝑓 (�̃�𝛼𝐾) = (𝑔∗ − 𝐼)𝑒𝛼𝐾 + 𝛥𝛼
𝐾

= (𝑔∗ − 𝐼)

(𝑚𝑘
∑

𝑖=0
(𝛼𝐾𝑖 𝑔∗𝑒𝐾−𝑚𝑘+𝑖) + 𝛥𝐾

)

+ 𝛥𝛼
𝐾 .

(44)

Since 𝑔∗ and 𝑔∗ − 𝐼 commute, we obtain

𝑓 (�̃�𝛼𝐾) = 𝑔∗
𝑚𝑘
∑

𝑖=0
𝛼𝐾𝑖 (𝑔∗ − 𝐼)𝑒𝐾−𝑚𝑘+𝑖 + (𝑔∗ − 𝐼)𝛥𝐾 + 𝛥𝛼

𝐾 . (45)

Using the fact that

𝑓 (𝑥𝐾−𝑚𝑘+𝑖) = (𝑔∗ − 𝐼)𝑒𝐾−𝑚𝑘+𝑖 + 𝛥𝐾−𝑚𝑘+𝑖,

that is

(𝑔∗ − 𝐼)𝑒𝐾−𝑚𝑘+𝑖 = 𝑓 (𝑥𝐾−𝑚𝑘+𝑖) − 𝛥𝐾−𝑚𝑘+𝑖,

we have

𝐹 (�̃�𝛼𝐾) =𝑔
∗

𝑚𝑘
∑

𝑖=0
𝛼𝐾𝑖 (𝑔∗ − 𝐼)𝑒𝐾−𝑚𝑘+𝑖 + (𝑔∗ − 𝐼)𝛥𝐾 + 𝛥𝛼

𝐾

=𝑔∗
𝑚𝑘
∑

𝑖=0

(

𝛼𝐾𝑖 𝑓 (𝑥𝐾−𝑚𝑘+𝑖) − 𝛼𝐾𝑖 𝛥𝐾−𝑚𝑘+𝑖

)

+ (𝑔∗ − 𝐼)𝛥𝐾 + 𝛥𝛼
𝐾 .

(46)

Then, by using (35), we arrive at

𝑓 (�̃�𝛼𝐾) = 𝑔∗
𝑚𝑘
∑

𝑖=0
𝛼𝐾𝑖 𝑓 (𝑥𝐾−𝑚𝑘+𝑖) − 𝛥𝐾 + 𝛥𝛼

𝐾 . (47)

Now, use (43), we have

‖𝑓 (�̃�𝛼𝐾)‖
(

1 −
𝛾𝜌

2(1 − 𝑐)

)

= ‖𝑓 (�̃�𝛼𝐾)‖ −
𝛾𝜌

2(1 − 𝑐)
‖𝑓 (�̃�𝛼𝐾)‖

≤ ‖𝑓 (�̃�𝛼𝐾)‖ − ‖𝛥𝐾‖.
(48)

Then, use relation (47), we obtain

‖𝑓 (�̃�𝛼𝐾)‖
(

1 −
𝛾𝜌

2(1 − 𝑐)

)

≤ ‖𝑓 (�̃�𝛼𝐾)‖ − ‖𝛥𝐾‖

≤ 𝑐
‖

‖

‖

‖

𝑚𝑘
∑

𝛼𝐾𝑖 𝑓 (𝑥𝐾−𝑚𝑘+𝑖)
‖

‖

‖

‖

+ ‖𝛥𝐾‖.
(49)
8

‖ 𝑖=0 ‖

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik

4

A

u

i
𝑚
b

Using the fact that
‖

‖

‖

‖

‖

𝑚𝑘
∑

𝑖=0
𝛼𝐾𝑖 𝑓 (𝑥𝐾−𝑚𝑘+𝑖)

‖

‖

‖

‖

‖

≤ ‖𝑓 (𝑥𝐾)‖,

we get

‖𝑓 (�̃�𝛼𝐾)‖
(

1 −
𝛾𝜌

2(1 − 𝑐)

)

≤ 𝑐
‖

‖

‖

‖

‖

𝑛
∑

𝑖=0
𝛼𝐾𝑖 𝑓 (𝑥𝐾−𝑚𝑘+𝑖)

‖

‖

‖

‖

‖

+ ‖𝛥𝐾‖

≤ 𝑐‖𝑓 (𝑥𝐾)‖ + ‖𝛥𝐾‖.

(50)

Finally, use (28) and (39), we get

‖𝑓 (�̃�𝛼𝐾)‖
(

1 −
𝛾𝜌

2(1 − 𝑐)

)

≤ 𝑐‖𝑓 (𝑥𝐾)‖ + ‖𝛥𝐾‖

≤
(

𝑐
𝑐
+
(

𝑁𝛼𝛾𝜌
2(1 − 𝑐)

)

𝑐−𝑚−1
)

𝑐𝐾+1
‖𝑓 (𝑥0)‖.

(51)

Therefore, use (51) and the relation (29), we have

‖𝑓 (�̃�𝛼𝐾)‖ ≤

(

𝑐
𝑐 +

(

𝑁𝛼𝛾𝜌
2(1−𝑐)

)

𝑐−𝑚−1
)

(

1 − 𝛾𝜌
2(1−𝑐)

) 𝑐𝐾+1
‖𝑓 (𝑥0)‖

≤ 𝑐𝐾+1
‖𝑓 (𝑥0)‖.

(52)

Using (27), we have

‖𝑓 (𝑥𝐾+1)‖ ≤ ‖𝑓 (�̃�𝛼𝐾)‖ ≤ 𝑐𝐾+1
‖𝑓 (𝑥0)‖. (53)

This completes the proof. □

3.3. Residual bounds estimation

Lastly, we summarize the residual bounds estimation in Theorem 3.4. This theorem can be easily proved by following the steps
in [18].

Theorem 3.4 ([18]). Assume that 𝑔 ∶ 𝑅𝑛 → 𝑅𝑛 is uniformly Lipschitz continuously differentiable and there exists 𝜅 ∈ (0, 1) such that
‖𝑔(𝑦) − 𝑔(𝑥)‖2 ≤ 𝜅‖𝑦 − 𝑥‖2 for all 𝑥, 𝑦 ∈ 𝑅𝑛. Suppose also that ∃𝑀 and 𝜖 > 0 such that for all 𝑘 > 𝑚, ∑𝑚−1

𝑖=0 |𝛼𝑖| < 𝑀 and |𝛼𝑚| ≥ 𝜖. Then

‖𝑓 (𝑥𝑘+1)‖2 ≤ 𝜃𝑘+1
[

(1 − 𝛽𝑘) + 𝜅𝛽𝑘
]

‖𝑓 (𝑥𝑘)‖2 +
𝑚
∑

𝑖=0
𝑂(‖𝑓 (𝑥𝑘−𝑚+𝑖)‖22), (54)

where 𝛽𝑘 is our damping factors and

𝜃𝑘+1 =
‖

∑𝑚
𝑖=0 𝛼𝑖𝑓 (𝑥𝑘−𝑚+𝑖)‖2
‖𝑓 (𝑥𝑘)‖2

.

. Implementation

For implementation, we mainly follow the path in [4] and modify it as needed. We first briefly review the implementation of
A without damping. Then we focus on how to implement the optimized damping problem efficiently and accurately.

The constrained linear least-squares problem in Algorithm 2 can be solved in many ways. Here we rewrite it into an equivalent
nconstrained form which can be solved efficiently by using QR factorizations. We define 𝛥𝑓𝑖 = 𝑓𝑖+1 − 𝑓𝑖 for each 𝑖 and set

𝑘 = (𝛥𝑓𝑘−𝑚𝑘
,… , 𝛥𝑓𝑘−1), then the least-squares problem is equivalent to

min
𝛾=(𝛾0 ,…,𝛾𝑚𝑘−1)

𝑇
‖𝑓𝑘 − 𝑘𝛾‖2,

where 𝛼 and 𝛾 are related by 𝛼0 = 𝛾0, 𝛼𝑖 = 𝛾𝑖− 𝛾𝑖−1 for 1 ≤ 𝑖 ≤ 𝑚𝑘−1, and 𝛼𝑚𝑘
= 1− 𝛾𝑚𝑘−1. We assume  has a thin 𝑄𝑅 decomposition

.e., 𝑘 = 𝑄𝑘𝑅𝑘 with 𝑄𝑘 ∈ 𝑛×𝑚𝑘 and 𝑅𝑘 ∈ 𝑚𝑘×𝑚𝑘 , for which the solution of the least-squares problem is obtained by solving the
𝑘 × 𝑚𝑘 triangular system 𝑅𝑘𝛾 = 𝑄𝑇

𝑘 𝑓𝑘. As the algorithm proceeds, the successive least-squares problems can be solved efficiently
y updating the factors in the decomposition.

Assume that 𝛾𝑘 = (𝛾𝑘0 ,… , 𝛾𝑘𝑚𝑘−1
)𝑇 is the solution to the above modified form of Anderson acceleration, we have

𝑥𝑘+1 = 𝑔(𝑥𝑘) −
𝑚𝑘−1
∑

𝛾𝑘𝑖
[

𝑔(𝑥𝑘−𝑚𝑘+𝑖+1) − 𝑔(𝑥𝑘−𝑚𝑘+𝑖)
]

= 𝑔(𝑥𝑘) − 𝑘𝛾𝑘,
9

𝑖=0

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik

p
i

5

a
e
e

u
W

P

B
i
t

d
𝐴
c
d
s
i

where 𝑘 = (𝛥𝑔𝑔𝑘−𝑚𝑘 ,… , 𝛥𝑔𝑘−1) with 𝛥𝑔𝑖 = 𝑔(𝑥𝑖+1 − 𝑔(𝑥𝑖)) for each 𝑖. For Anderson acceleration with damping

𝑥𝑘+1 = (1 − 𝛽𝑘)
𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑥𝑘−𝑚𝑘+𝑖 + 𝛽𝑘

𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑔(𝑥𝑘−𝑚𝑘+𝑖)

=
𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑥𝑘−𝑚𝑘+𝑖 + 𝛽𝑘

(𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑔(𝑥𝑘−𝑚𝑘+𝑖) −

𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑥𝑘−𝑚𝑘+𝑖

)

.

Follow the idea in [4], we have
𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑔(𝑥𝑘−𝑚𝑘+𝑖) = 𝑔(𝑥𝑘) − 𝑘𝛾𝑘, (55)

𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑥𝑘−𝑚𝑘+𝑖 =

(

𝑔(𝑥𝑘) − 𝑘𝛾𝑘
)

−
(

𝑓𝑘 − 𝑘𝛾
𝑘) . (56)

Then this can be achieved equivalently using the following strategy:
Step 1: Compute the undamped iterate 𝑥𝑘+1 = 𝑔(𝑥𝑘) − 𝑘𝛾𝑘.
Step 2: Update 𝑥𝑘+1 again by

𝑥𝑘+1 ← 𝑥𝑘+1 − (1 − 𝛽𝑘)
(

𝑓𝑘 −𝑄𝑅𝛾𝑘
)

.

Now we talk about how to efficiently calculate 𝛽𝑘 as described in Algorithm 3. Taking benefit of the QR decomposition in the first
optimization problem and noting (55) and (56), we have

�̃�𝛼𝑘 =
𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑔(𝑥𝑘−𝑚𝑘+𝑖) = 𝑔(𝑥𝑘) − 𝑘𝛾𝑘,

𝑥𝛼𝑘 =
𝑚𝑘
∑

𝑖=0
𝛼(𝑘)𝑖 𝑥𝑘−𝑚𝑘+𝑖 = �̃�𝛼𝑘 −

(

𝑓𝑘 − 𝑘𝛾
𝑘) .

Then we could calculate optimized 𝛽𝑘 by doing two extra function evaluations and two dot products, which are not very expensive:

𝑟𝑝 =
(

𝑥𝛼𝑘 − 𝑔(𝑥𝛼𝑘)
)

, 𝑟𝑞 =
(

�̃�𝛼𝑘 − 𝑔(�̃�𝛼𝑘)
)

, 𝛽𝑘 =
(𝑟𝑝 − 𝑟𝑞)𝑇 𝑟𝑝
‖𝑟𝑝 − 𝑟𝑞‖22

.

Again, if 𝛽𝑘 ∉ (0, 1], we need to set 𝛽𝑘 = 1∕2 or 𝛽𝑘 = 1 for that iteration. In practice, we observe that our way of choosing 𝛽𝑘 usually
erforms much better than the constant damping 𝛽𝑘 = 1∕2 and 𝛽𝑘 = 1. Besides, the more optimized damping 𝛽𝑘 values are in the
nterval (0, 1], the faster the convergence speed.

. Experimental results and discussion

In this section, we numerically compare the performance of this non-stationary AAoptD with sAA (with constant damping,
daptive damping or without damping). The first part contains examples where larger window sizes 𝑚 are needed in order to
ffectively accelerate the iteration. The second part consists of some harder problems from incompressible fluid dynamics. All these
xperiments are done in MATLAB environment and the IFISS package [32]. MATLAB codes are available upon request to the authors.

This first example is from Walker and Ni’s [17] paper, where a stationary Anderson acceleration with window size 𝑚 = 50 is
sed to solve the Bratu problem. This problem has a long history, we refer the reader to Glowinski et al. [33] and Pernice and
alker [34], and the references in those papers. It is not a difficult problem for Newton-like solvers.

roblem 5.1 (The Bratu Problem). The Bratu problem is a nonlinear PDE boundary value problem as follows:

𝛥𝑢 + 𝜆 𝑒𝑢 = 0, 𝑖𝑛 𝐷 = [0, 1] × [0, 1],

𝑢 = 0, 𝑜𝑛 𝜕𝐷.

In this experiment, we used a centered-difference discretization on a 32 × 32 and 64 × 64 grid, respectively. We take 𝜆 = 6 in the
ratu problem and use the zero initial approximate solution in all cases. We also applied preconditioning such that the basic Picard

teration still works. The preconditioning matrix that we used here is the diagonal inverse of the matrix 𝐴, where 𝐴 is a matrix for
he discrete Laplace operator.

The results are shown in Figs. 1 to 5. In Fig. 1, we plot the results of applying 𝐴𝐴𝑜𝑝𝑡𝐷(5) and 𝐴𝐴(5) with different constant
amping factors and adaptive damping factors to accelerate Picard iteration on a grid of 32 × 32. As we see from the picture,
𝐴𝑜𝑝𝑡𝐷(5) performs much better than 𝐴𝐴(5) with constant damping factors and 𝐴𝐴(5) with adaptive damping factors. 𝐴𝐴(5) with
onstant damping performs better than the one without damping and 𝐴𝐴(5) with a constant 𝛽 = 0.3 is the best among those constant
amping strategies. We also plot the related 𝛽𝑘 values and gains in Fig. 2 for the top three acceleration strategies. As we know, the
maller the 𝜃𝑘 is, the bigger the gains are, which is consistent with the result in Fig. 1. Moreover, although only part of our 𝛽𝑘 values
10

n 𝐴𝐴𝑜𝑝𝑡𝐷(5) are actually obtained for the optimization problem (if the ‘‘optimal’’𝛽𝑘 does not belong to (0, 1], then we set 𝛽𝑘 = 1∕2),

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik

i
F
𝛽
d
F
w

P
d

Fig. 1. Solving nonlinear Bratu problem on a 32 × 32 grid with window size 𝑚 = 5.

Fig. 2. Compare AA and AAoptD for solving nonlinear Bratu problem: 𝛽𝑘 and 𝜃𝑘 values.

the convergence speed is much better than just using a constant damping 𝛽 = 1∕2. The main reason is that the local average gain is
relative bigger (i.e. 𝜃𝑘 is smaller) when those ‘‘optimal’’ 𝛽𝑘 are belong to the interval (0, 1] and it will also affect the later iteration.

In Fig. 3 to Fig. 4 and Fig. A.13 to Fig. A.14 as in the appendix, we plot the results of applying 𝐴𝐴𝑜𝑝𝑡𝐷(𝑚) and 𝐴𝐴(𝑚) with
different constant damping factors and adaptive damping factors to accelerate Picard iteration with 𝑚 = 10 and 𝑚 = 20 on a grid of
64 × 64. For 𝑚 = 10, we see from Fig. 3 that 𝐴𝐴𝑜𝑝𝑡𝐷(10) is the best one. The second one is 𝐴𝐴(10) with a constant damping factor
𝛽 = 0.1. 𝐴𝐴(10) with adaptive damping factors actually performs worse than stationary 𝐴𝐴(10). If we take a look at those 𝛽𝑘 values
n the adaptive damping strategy (i.e. 𝛽𝑘 = 0.9 − 1∕2 ∗ 𝜃𝑘), most 𝛽𝑘 values are close to 0.4 because 𝜃𝑘 are close to 1 as shown in
ig. A.13. Therefore, the performance of 𝐴𝐴(10) with adaptive damping factors is similar to 𝐴𝐴(10) with a constant damping factor
= 0.5, which is worse than 𝐴𝐴(10) without damping. Again, although a lot of 𝛽𝑘 values in 𝐴𝐴𝑜𝑝𝑡𝐷(10) are set to be 1∕2 since it

oes not belong to (0, 1], it still performs much better than the constant damping factor 𝛽 = 0.5. Similar results can be observed in
ig. 4 as in the appendix and Fig. A.14 for 𝑚 = 20. Moreover, in Fig. 5, we observe that 𝐴𝐴𝑜𝑝𝑡𝐷(𝑚) with a small window size 𝑚 = 10
orks better than stationary 𝐴𝐴(𝑚) with larger window size 𝑚 = 50.

roblem 5.2 (The Nonlinear Convection–Diffusion Problem). Use AA and AAoptD to solve the following 2D nonlinear convection–
iffusion equation in a square region:

(−𝑢 − 𝑢) + (𝑢 + 𝑢) + 𝑘𝑢2 = 𝑓 (𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝐷 = [0, 1] × [0, 1]
11

𝑥𝑥 𝑦𝑦 𝑥 𝑦

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik

P
s

Fig. 3. Solving nonlinear Bratu problem on a 64 × 64 grid with window size 𝑚 = 10.

Fig. 4. Solving nonlinear Bratu problem on a 64 × 64 grid with window size 𝑚 = 20.

with the source term

𝑓 (𝑥, 𝑦) = 2𝜋2 sin(𝜋𝑥) sin(𝜋𝑦)

and zero boundary conditions: 𝑢(𝑥, 𝑦) = 0 on 𝜕𝐷.

In this numerical experiment, we use the centered-difference discretization for diffusion term and use the upwind scheme
(backward difference) for the convection term on a 64 × 64 grid. We take 𝑘 = 3 in the above problem and use 𝑢0 = (1, 1,… , 1)𝑇 as
an initial approximate solution in all cases. As in solving the Bratu problem, the same preconditioning strategy is used here so that
the basic Picard iteration still works.

The results are shown in Figs. 6 to 9. In Fig. 6, we plot the results of applying 𝐴𝐴𝑜𝑝𝑡𝐷(10) and 𝐴𝐴(10) with different constant
damping factors and adaptive damping factors to accelerate Picard iteration on a grid of 64 × 64. 𝐴𝐴𝑜𝑝𝑡𝐷(10) are better than other
methods. In this case, the constant damping strategies and adaptive damping strategy are even worse than 𝐴𝐴(10) without damping.

roblem 5.3 (2D Lid-Driven Cavity). The 2D lid-driven cavity uses a domain 𝛺 = (−1, 1)2 with no-slip boundary conditions on the
ides and bottom and a ‘‘moving lid’’ on the top which is implemented by enforcing the Dirichlet boundary condition:

4

12

{𝑦 = 1;−1 ≤ 𝑥 ≤ 1|𝑢𝑥 = 1 − 𝑥 } 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑𝑐𝑎𝑣𝑖𝑡𝑦.

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik
Fig. 5. Solving nonlinear Bratu problem on a 64 × 64 grid with larger window size.

Fig. 6. Solving the convection–diffusion equation on a 64 × 64 grid with 𝑚 = 10.

There is no forcing and the kinematic viscosity 𝜈 is set to be 𝜈 = 1
𝑅𝑒 . We discretize with (𝑄2 − 𝑄1) Taylor–Hood elements on a

64 × 64 non-uniform mesh and use the corresponding discrete Stokes solution as the initial guess.

We test it with Reynolds numbers of 𝑅𝑒 = 1000, 𝑅𝑒 = 2500 and 𝑅𝑒 = 5000, respectively. In Fig. A.15 as in the appendix, we plot
the streamlines of the velocity and the pressure field for different Reynolds numbers. In Fig. 10(a), we plot the convergence rate for
the case where 𝑅𝑒 = 1000 and use the window size 𝑚 = 2. Our proposed method 𝐴𝐴𝑜𝑝𝑡𝐷(𝑚) performs better than other damping
strategies. We also observe that the constant damping 𝛽 = 0.5, 𝛽 = 0.1 and the adaptive damping 𝛽𝑘 = 0.9 − 1∕2 ∗ 𝜃𝑘 are all doing
even worse than 𝐴𝐴(2) without damping. Thus choosing the wrong damping factors may slow down the speed of convergence rate.
We also plot the 𝛽𝑘 values used in our 𝐴𝐴𝑜𝑝𝑡𝐷(2) and the adaptive damping method in Fig. 10(b). We can see from this figure
that those adaptive damping factors are around 0.4. This explains why the adaptive strategy behaves like the constant damping
𝛽𝑘 = 0.5. Besides, although around half of the 𝛽𝑘 values used in 𝐴𝐴𝑜𝑝𝑡𝐷(2) equal 0.5, the performance is much better than the
constant damping with 𝛽𝑘 = 0.5. Similar results are obtained for 𝑅𝑒 = 2500 as in Fig. 10(c) and (d). In this case, 𝐴𝐴𝑜𝑝𝑡𝐷(2) is much
better than other methods since most ‘‘local optimal’’ 𝛽𝑘 are achieved in the interval (0, 1]. When we keep increasing the Reynolds
number to 𝑅𝑒 = 5000, our proposed method 𝐴𝐴𝑜𝑝𝑡𝐷(2) and other damping strategies do not gain very much over 𝐴𝐴(2) without
13

damping.

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik
Fig. 7. Solving the convection–diffusion equation: 𝛽𝑘 and 𝜃𝑘 values.

Fig. 8. Solving the convection–diffusion equation on a 64 × 64 grid with 𝑚 = 30.

Problem 5.4 (Flow Over a Backward Facing Step). This example represents slow flow in a rectangular duct with a sudden expansion
on a L-shaped region generated by taking the complement in (−1, 𝐿) × (−1, 1) of the quadrant (−1, 0) × (−1, 0). A Poiseuille flow
profile is imposed on the inflow boundary (𝑥 = −1; 0 ≤ 𝑦 ≤ 1), and a zero velocity condition is imposed on the walls. At the outflow
boundary, a natural outflow boundary condition is imposed and the mean outflow pressure is set to be zero. We discretize with
(𝑄2 −𝑄1) Taylor–Hood elements on a 64 × 192 non-uniform mesh and use the corresponding discrete Stokes solution as the initial
guess.

We test it with Reynolds numbers of 𝑅𝑒 = 150 and 𝑅𝑒 = 250, respectively. In Fig. A.16 as in the appendix, we plot the streamlines
and pressure field for 𝑅𝑒 = 150 and 𝑅𝑒 = 250. The convergence results are shown in Fig. 11. For both cases, our proposed method
𝐴𝐴𝑜𝑝𝑡𝐷 performs better than the constant and adaptive damping strategies. The 𝛽𝑘 values for each case are shown in Fig. 11(b) and
(d). From Fig. 11(b), we observe again that even if only few ‘‘local optimal’’ 𝛽𝑘 values are achieved in 𝐴𝐴𝑜𝑝𝑡𝐷(2) (most values are
set to equal 0.5 since it does in the interval (0, 1]), it can much better than the constant damping 𝛽𝑘 = 0.5.

Problem 5.5 (Flow Over an Obstacle). This is another classical problem. The domain is a disconnected rectangular region (0, 8)×(−1, 1)
generated by deleting the square (7∕4, 9∕4) × (−1∕4, 1∕4). And it is associated with modeling flow in a rectangular channel with a
14

square cylindrical obstruction. A Poiseuille profile is imposed on the inflow boundary (𝑥 = 0;−1 ≤ 𝑦 ≤ 1), and a zero velocity

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik
Fig. 9. Solving the convection–diffusion equation: 𝛽𝑘 and 𝜃𝑘 values.

condition is imposed on the obstruction and on the top and bottom walls. A natural Neumann outflow condition is applied at the
outflow boundary which automatically sets the mean outflow pressure to zero. We discretize with (𝑄2−𝑄1) Taylor–Hood elements
on a 32 × 80 non-uniform mesh and use the corresponding discrete Stokes solution as the initial guess.

We test it with Reynolds numbers of 𝑅𝑒 = 300 and 𝑅𝑒 = 600, respectively. In Fig. A.17 as in the appendix, we plot the streamlines
and pressure field for 𝑅𝑒 = 300 and 𝑅𝑒 = 600. The convergence results are shown in Fig. 12. From Fig. 12(a), we see that the
performance of 𝐴𝐴𝑜𝑝𝑡𝐷(2) is very close to 𝐴𝐴(2). Other damping strategies work even worse. For 𝑅𝑒 = 600, we see that 𝐴𝐴𝑜𝑝𝑡𝐷(2)
is much better than other methods, as shown in Fig. 12(c).

6. Conclusions

We proposed and analyzed a non-stationary Anderson acceleration algorithm with an optimized damping factor in each iteration
to further speed up linear and nonlinear iterations by applying one extra optimization. By taking advantage of the QR decomposition
in the first optimization problem, the calculation of optimized 𝛽𝑘 at each iteration is cheap if two extra function evaluations are
relatively inexpensive. This procedure has a strong connection to another perspective of generating non-stationary AA (i.e. varying
the window size 𝑚 at different iterations). Our numerical results show that the gain of doing this extra optimized step on 𝛽𝑘 sometimes
could be very beneficial. Therefore, when the stationary AA is not working well or a larger size of the window is needed in AA, we
recommend using AAoptD proposed in the present work. Besides, we also observed from our numerical results that damping can
be good but choosing the wrong damping factors may slow down the convergence rate.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China [grant number 12001287]; the Startup
Foundation for Introducing Talent of Nanjing University of Information Science and Technology, China [grant number 2019r106];
The first author Kewang Chen also gratefully acknowledge the financial support for his doctoral study provided by the China
Scholarship Council (No. 202008320191). Moreover, the authors would like to thank the anonymous reviewers for their valuable
comments and suggestions.

Appendix. Figures

See Figs. A.13–A.17.
15

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik
Fig. 10. Lid-driven cavity: (a) 𝑅𝑒 = 1000, convergence results; (b)𝑅𝑒 = 1000, 𝛽𝑘 values of 𝐴𝐴𝑜𝑝𝑡𝐷(2) and 𝐴𝐴(2) with adaptive damping; (c) 𝑅𝑒 = 2500, convergence
results; (d) 𝑅𝑒 = 2500, 𝛽𝑘 values of 𝐴𝐴𝑜𝑝𝑡𝐷(2) and 𝐴𝐴(2) with adaptive damping; (e) 𝑅𝑒 = 5000, convergence results; (f) 𝑅𝑒 = 5000, 𝛽𝑘 values of 𝐴𝐴𝑜𝑝𝑡𝐷(2) and
𝐴𝐴(2) with adaptive damping.
16

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik
Fig. 11. Flow over a backward-facing step: (a) 𝑅𝑒 = 150, convergence results; (b)𝑅𝑒 = 150, 𝛽𝑘 values of 𝐴𝐴𝑜𝑝𝑡𝐷(2) and 𝐴𝐴(2) with adaptive damping; (c)
𝑅𝑒 = 250, convergence results; (d) 𝑅𝑒 = 250, 𝛽𝑘 values of 𝐴𝐴𝑜𝑝𝑡𝐷(2) and 𝐴𝐴(2) with adaptive damping.
17

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik

c

Fig. 12. Flow over an obstacle: (a) 𝑅𝑒 = 300, convergence results; (b)𝑅𝑒 = 300, 𝛽𝑘 values of 𝐴𝐴𝑜𝑝𝑡𝐷(2) and 𝐴𝐴(2) with adaptive damping; (c) 𝑅𝑒 = 600,
onvergence results; (d) 𝑅𝑒 = 600, 𝛽𝑘 values of 𝐴𝐴𝑜𝑝𝑡𝐷(2) and 𝐴𝐴(2) with adaptive damping.

Fig. A.13. Solving nonlinear Bratu problem: 𝛽𝑘 and 𝜃𝑘 values, 𝑚 = 10.
18

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik
Fig. A.14. Solving nonlinear Bratu problem: 𝛽𝑘 and 𝜃𝑘 values, 𝑚 = 20.

Fig. A.15. Lid-driven cavity: (a) 𝑅𝑒 = 1000, solution; (b) 𝑅𝑒 = 2500, solution; (c) 𝑅𝑒 = 5000, solution.
19

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik
Fig. A.16. Flow over a backward facing step: (a) 𝑅𝑒 = 150, solution; (b) 𝑅𝑒 = 250, solution.
20

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik

R

Fig. A.17. Flow over an obstacle: (a) 𝑅𝑒 = 300, solution; (b) 𝑅𝑒 = 600, solution.

eferences

[1] D.G. Anderson, Iterative procedures for nonlinear integral equations, J. ACM 12 (1965) 547–560, http://dx.doi.org/10.1145/321296.321305.
[2] D.G.M. Anderson, Comments on ‘‘Anderson acceleration, mixing and extrapolation’’, Numer. Algorithms 80 (1) (2019) 135–234, http://dx.doi.org/10.1007/

s11075-018-0549-4.
[3] A. Toth, C.T. Kelley, Convergence analysis for Anderson acceleration, SIAM J. Numer. Anal. 53 (2) (2015) 805–819, http://dx.doi.org/10.1137/130919398.
[4] H.F. Walker, Anderson acceleration: Algorithms and implementations, in: WPI Math. Sciences Dept. Report MS-6-15-50, 2011, URL https://users.wpi.edu/

~walker/Papers/anderson_accn_algs_imps.pdf.
[5] N.N. Carlson, K. Miller, Design and application of a gradient-weighted moving finite element code. I. In one dimension, SIAM J. Sci. Comput. 19 (3)

(1998) 728–765, http://dx.doi.org/10.1137/S106482759426955X.
[6] K. Miller, Nonlinear krylov and moving nodes in the method of lines, J. Comput. Appl. Math. 183 (2) (2005) 275–287, http://dx.doi.org/10.1016/j.cam.

2004.12.032.
21

http://dx.doi.org/10.1145/321296.321305
http://dx.doi.org/10.1007/s11075-018-0549-4
http://dx.doi.org/10.1007/s11075-018-0549-4
http://dx.doi.org/10.1007/s11075-018-0549-4
http://dx.doi.org/10.1137/130919398
https://users.wpi.edu/~walker/Papers/anderson_accn_algs_imps.pdf
https://users.wpi.edu/~walker/Papers/anderson_accn_algs_imps.pdf
https://users.wpi.edu/~walker/Papers/anderson_accn_algs_imps.pdf
http://dx.doi.org/10.1137/S106482759426955X
http://dx.doi.org/10.1016/j.cam.2004.12.032
http://dx.doi.org/10.1016/j.cam.2004.12.032
http://dx.doi.org/10.1016/j.cam.2004.12.032

Journal of Computational and Applied Mathematics 451 (2024) 116077K. Chen and C. Vuik
[7] C.W. Oosterlee, T. Washio, Krylov subspace acceleration of nonlinear multigrid with application to recirculating flows, SIAM J. Sci. Comput. 21 (5) (2000)
1670–1690, http://dx.doi.org/10.1137/S1064827598338093.

[8] T. Washio, C.W. Oosterlee, Krylov subspace acceleration for nonlinear multigrid schemes, Electron. Trans. Numer. Anal. 6 (Dec.) (1997) 271–290, URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.3799.

[9] L. Lin, C. Yang, Elliptic preconditioner for accelerating the self-consistent field iteration in Kohn-Sham density functional theory, SIAM J. Sci. Comput. 35
(5) (2013) S277–S298, http://dx.doi.org/10.1137/120880604.

[10] P. Pulay, Convergence acceleration of iterative sequences. the case of SCF iteration, Chem. Phys. Lett. 73 (2) (1980) 393–398, http://dx.doi.org/10.1016/
0009-2614(80)80396-4.

[11] P. Pulay, Improved SCF convergence acceleration, J. Comput. Chem. 3 (4) (1982) 556–560, http://dx.doi.org/10.1002/jcc.540030413.
[12] T. Eirola, O. Nevanlinna, Accelerating with rank-one updates, Linear Algebra Appl. 121 (1989) 511–520, http://dx.doi.org/10.1016/0024-3795(89)90719-2.
[13] V. Eyert, A comparative study on methods for convergence acceleration of iterative vector sequences, J. Comput. Phys. 124 (2) (1996) 271–285,

http://dx.doi.org/10.1006/jcph.1996.0059.
[14] H.-r. Fang, Y. Saad, Two classes of multisecant methods for nonlinear acceleration, Numer. Linear Algebra Appl. 16 (3) (2009) 197–221, http:

//dx.doi.org/10.1002/nla.617.
[15] R. Haelterman, J. Degroote, D. Van Heule, J. Vierendeels, On the similarities between the quasi-Newton inverse least squares method and GMRES, SIAM

J. Numer. Anal. 47 (6) (2010) 4660–4679, http://dx.doi.org/10.1137/090750354.
[16] C. Yang, J.C. Meza, B. Lee, L.-W. Wang, KSSOLV—a MATLAB toolbox for solving the Kohn-Sham equations, ACM Trans. Math. Software 36 (2) (2009)

http://dx.doi.org/10.1145/1499096.1499099, Art. 10, 35.
[17] H.F. Walker, P. Ni, Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal. 49 (4) (2011) 1715–1735, http://dx.doi.org/10.1137/10078356X.
[18] C. Evans, S. Pollock, L.G. Rebholz, M. Xiao, A proof that Anderson acceleration improves the convergence rate in linearly converging fixed-point methods

(but not in those converging quadratically), SIAM J. Numer. Anal. 58 (1) (2020) 788–810, http://dx.doi.org/10.1137/19M1245384.
[19] S. Pollock, L.G. Rebholz, M. Xiao, Anderson-accelerated convergence of Picard iterations for incompressible Navier-Stokes equations, SIAM J. Numer. Anal.

57 (2) (2019) 615–637, http://dx.doi.org/10.1137/18M1206151.
[20] H. De Sterck, Y. He, On the asymptotic linear convergence speed of Anderson acceleration, Nesterov acceleration, and nonlinear GMRES, SIAM J. Sci.

Comput. 43 (5) (2021) S21–S46, http://dx.doi.org/10.1137/20M1347139.
[21] D. Wang, Y. He, H. De Sterck, On the asymptotic linear convergence speed of Anderson acceleration applied to ADMM, J. Sci. Comput. 88 (2) (2021)

http://dx.doi.org/10.1007/s10915-021-01548-2, Paper No. 38, 35.
[22] J. Zhang, B. O’Donoghue, S. Boyd, Globally convergent type-I Anderson acceleration for nonsmooth fixed-point iterations, SIAM J. Optim. 30 (4) (2020)

3170–3197, http://dx.doi.org/10.1137/18M1232772.
[23] W. Bian, X. Chen, C.T. Kelley, Anderson acceleration for a class of nonsmooth fixed-point problems, SIAM J. Sci. Comput. 43 (5) (2021) S1–S20,

http://dx.doi.org/10.1137/20M132938X.
[24] P.R. Brune, M.G. Knepley, B.F. Smith, X. Tu, Composing scalable nonlinear algebraic solvers, SIAM Rev. 57 (4) (2015) 535–565, http://dx.doi.org/10.

1137/130936725.
[25] Y. Peng, B. Deng, J. Zhang, F. Geng, W. Qin, L. Liu, Anderson acceleration for geometry optimization and physics simulation, ACM Trans. Graph. 37 (4)

(2018) 1–14, http://dx.doi.org/10.1145/3197517.3201290.
[26] A. Toth, J.A. Ellis, T. Evans, S. Hamilton, C.T. Kelley, R. Pawlowski, S. Slattery, Local improvement results for Anderson acceleration with inaccurate

function evaluations, SIAM J. Sci. Comput. 39 (5) (2017) S47–S65, http://dx.doi.org/10.1137/16M1080677.
[27] W. Shi, S. Song, H. Wu, Y.-C. Hsu, C. Wu, G. Huang, Regularized Anderson acceleration for off-policy deep reinforcement learning, 2019, arXiv preprint

arXiv:1909.03245, URL https://arxiv.org/abs/1909.03245.
[28] Y. Yang, Anderson acceleration for seismic inversion, Geophysics 86 (1) (2021) R99–R108, http://dx.doi.org/10.1190/geo2020-0462.1.
[29] F.A. Potra, H. Engler, A characterization of the behavior of the Anderson acceleration on linear problems, linear Algebra Appl. 438 (3) (2013) 1002–1011,

http://dx.doi.org/10.1016/j.laa.2012.09.008.
[30] H. De Sterck, A nonlinear GMRES optimization algorithm for canonical tensor decomposition, SIAM J. Sci. Comput. 34 (3) (2012) A1351–A1379,

http://dx.doi.org/10.1137/110835530.
[31] C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, 1995, http://dx.doi.org/10.1137/1.9781611970944.
[32] H.C. Elman, A. Ramage, D.J. Silvester, IFISS: A computational laboratory for investigating incompressible flow problems, SIAM Review 56 (2) (2014)

261–273, http://dx.doi.org/10.1137/120891393.
[33] R. Glowinski, H.B. Keller, L. Reinhart, Continuation-conjugate gradient methods for the least squares solution of nonlinear boundary value problems, SIAM

J. Sci. Stat. Comput. 6 (4) (1985) 793–832, http://dx.doi.org/10.1137/0906055.
[34] M. Pernice, H.F. Walker, NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput. 19 (1) (1998) 302–318, http://dx.doi.org/10.

1137/S1064827596303843.
22

http://dx.doi.org/10.1137/S1064827598338093
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.3799
http://dx.doi.org/10.1137/120880604
http://dx.doi.org/10.1016/0009-2614(80)80396-4
http://dx.doi.org/10.1016/0009-2614(80)80396-4
http://dx.doi.org/10.1016/0009-2614(80)80396-4
http://dx.doi.org/10.1002/jcc.540030413
http://dx.doi.org/10.1016/0024-3795(89)90719-2
http://dx.doi.org/10.1006/jcph.1996.0059
http://dx.doi.org/10.1002/nla.617
http://dx.doi.org/10.1002/nla.617
http://dx.doi.org/10.1002/nla.617
http://dx.doi.org/10.1137/090750354
http://dx.doi.org/10.1145/1499096.1499099
http://dx.doi.org/10.1137/10078356X
http://dx.doi.org/10.1137/19M1245384
http://dx.doi.org/10.1137/18M1206151
http://dx.doi.org/10.1137/20M1347139
http://dx.doi.org/10.1007/s10915-021-01548-2
http://dx.doi.org/10.1137/18M1232772
http://dx.doi.org/10.1137/20M132938X
http://dx.doi.org/10.1137/130936725
http://dx.doi.org/10.1137/130936725
http://dx.doi.org/10.1137/130936725
http://dx.doi.org/10.1145/3197517.3201290
http://dx.doi.org/10.1137/16M1080677
http://arxiv.org/abs/1909.03245
https://arxiv.org/abs/1909.03245
http://dx.doi.org/10.1190/geo2020-0462.1
http://dx.doi.org/10.1016/j.laa.2012.09.008
http://dx.doi.org/10.1137/110835530
http://dx.doi.org/10.1137/1.9781611970944
http://dx.doi.org/10.1137/120891393
http://dx.doi.org/10.1137/0906055
http://dx.doi.org/10.1137/S1064827596303843
http://dx.doi.org/10.1137/S1064827596303843
http://dx.doi.org/10.1137/S1064827596303843

	Non-stationary Anderson acceleration with optimized damping
	Introduction
	Anderson acceleration with optimized dampings
	Convergence analysis
	Linear problems and local q-linear convergence
	Nonlinear problems and local r-linear convergence
	Residual bounds estimation

	Implementation
	Experimental results and discussion
	Conclusions
	Data availability
	Acknowledgments
	Appendix. Figures
	References

