
Robust map building for
robot navigation in dynamic
environments

Master thesis project

Prakash Radhakrishnan





Robust map building for robot navigation in
dynamic environments

Master thesis project

by

Prakash Radhakrishnan

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Wednesday September 22, 2021 at 13:00 .

Student number: 5007224
Project duration: November 15, 2020 – September 22, 2021
Thesis committee: Prof. dr. ir. Wei Pan, TU Delft, Chair and supervisor

Prof. dr. ir. Javier Alonso Mora, TU Delft, External Committee
Ir. Yujie Tang, TU Delft, Daily supervisor

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Acknowledgments

This master thesis marks the completion of the number of credits required to obtain
the Masters in Mechanical Engineering under the track ‘Vehicle Engineering’ at the
Delft University of Technology.

I would like to thank my supervisor, Dr. Wei Pan, for allowing me to work on an excit
ing graduation project. I express my sincere gratitude to the daily supervisor Ir.Yujie
Tang for her timely support and guidance throughout my work.

I would like to share warm greetings with my family and friends for their unconditional
support during this journey.

Finally, I would like to acknowledge all the beautiful souls who motivated and helped
me during this master program.

Prakash Radhakrishnan
Delft, September 2021

iii





Abstract

Simultaneous Localisation andMapping (SLAM) provide a novel solution for the robots
to localise and navigate an unknown environment. Initial SLAM research focused
mainly on the indoor environment, assuming the background to be primarily static. In
contrast, the real world has dynamic interactions that restrict the implementation of
SLAM to limited scenarios. This brings a higher requirement to deal with the moving
objects in dynamic environments for robust SLAM performance.

Semantic understanding of the environment helps in filtering out the influence of dy
namic objects in the vicinity. An instance segmentation based on twostage neural
architecture is used for this purpose, which is hard to operate in realtime navigation.
In this project, the benefits of single stage neural architecture are studied in terms of
speed and accuracy for improving the efficiency of dynamic features removal in the
application of SLAM.

Although Instance segmentation architecture helps to identify the potentially dynamic
object by learning from the dataset, it cannot differentiate moving objects from non
moving objects in the dynamic class. Hence, all the features corresponding to the
predicted dynamic class are removed even when the objects remain stationary, af
fecting the quality of SLAM performance. A twostream encoderdecoder architecture
is developed to segment the moving masks using RGB and optical flow input, improv
ing feature tracking without affecting robustness. The feasibility of encoding dynamic
information to enhance quality semantic mapping is also studied.

v





Contents

Acknowledgments iii

Abstract v

List of Figures xii

List of Tables xiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related work 5
2.1 SLAM architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Direct method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Featurebased method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Dynamic objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Geometrical approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Learning based approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Review on deep learning architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Object detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2.1 Semantic segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2.2 Instance segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Methodology 17
3.1 Methodology overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Classification of dynamic objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Stages of development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Base  ORBSLAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Stage 1  Dynamic object segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2.1 SOLOV2 network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2.2 Combining dynamic object segmentation with ORB

SLAM2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Stage 2  Moving object segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3.1 Two stream network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3.2 Combiningmoving object segmentation with ORBSLAM2 26

3.3 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



viii Contents

3.3.1 Dynamic semantic mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Instance semantic mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2.1 Multiobject tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2.2 Combining multiobject tracking with ORBSLAM2 . . . . . . 30

3.3.3 Dynamic density estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Dataset and metrics 33
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 SLAM.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2 Stage 1  Segmentation dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 Stage 2  Moving object dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.3.1 New dataset generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Absolute trajectory error  SLAM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 IOU estimation  Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Experimentation and results 39
5.1 Object segmentation and tracking models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 SOLOV2  Dynamic object segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.1.1 Result and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.2 Two stream architecture  Moving object segmentation . . . . . . . . . . . . 41
5.1.2.1 Result and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.3 Multiobject tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.3.1 Selection of feature embedding model . . . . . . . . . . . . . . . . . . . . 46
5.1.3.2 Result and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Experiments on SLAM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.1 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1.1 Base  ORBSLAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.1.2 Stage 1  Dynamic object segmentation . . . . . . . . . . . . . . . . . . 49
5.2.1.3 Stage 2  Moving object segmentation . . . . . . . . . . . . . . . . . . . . 50

5.2.2 Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.2.1 Dynamic Semantic mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2.2 Instance semantic mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2.3 Dynamic density estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2.4 Map management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Realworld validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusion 61
6.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A Appendix 63
A.1 SLAM Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.1.1 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.1.2 Coordinate transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.1.3 Epipolar constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.1.4 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.1.5 Bundle adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



Contents ix

A.1.6 Graph based SLAM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.1.7 Optical flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.2 Deep learning Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.2.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.2.1.1 Neuron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2.1.2 Activation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.2.1.3 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.2.1.4 Optimiser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.2.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2.2.1 Convolution and its properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.2.3 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2.4 Stride and Padding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.2.4.1 Upsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B Appendix 75
B.1 Geometrical approach  Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B.2 Semidense Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography 88





List of Figures

2.1 Direct and feature based SLAM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Degenerative motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Deep learning on feature extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Two stage detectors overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 MaskRCNN .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Comparison of instance segmentation architectures . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Dynamic classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Stage 1 classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Stage 2 classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Components of ORBSLAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 SOLOV2 mask head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Two stream architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Semantic mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.8 Multiobject tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.9 Track image representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Ground truth of KITTI odometry dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 KITTI segmentation dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 KITTIMoSeg refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Moving object segmentation dataset generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Trajectory alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 IOU metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Quantitative comparison  SOLOV2 and MaskRCNN .. . . . . . . . . . . . . . . . . . . . 40
5.2 Qualitative comparison  SOLOV2 and MaskRCNN .. . . . . . . . . . . . . . . . . . . . . . 41
5.3 Loss function BCE loss vs dice loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Moving object segmentation  Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Moving object segmentation  Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6 Flow image on pure translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7 Heat map of moving object in the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.8 Flow image without camera motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.9 Flow image on pure rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.10 Moving object segmentation  Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.11 Implementation of tracking module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.12 Selection of feature embedder model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.13 Multiobject tracking  Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.14 ROS implementation of our pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.15 Tracking error comparison  Baseline vs Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.16 Tracking result  Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.17 Limitation of Stage 1  Kitti sequence 05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi



xii List of Figures

5.18 Tracking result  Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.19 Individual trajectory comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.20 ATE plot  Base vs Stage1 vs Stage2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.21 Base static map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.22 Dynamic semantic map  Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.23 Dynamic semantic map  Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.24 Instance semantic map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.25 Low dynamic interaction example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.26 Dynamic density estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.27 Octomap with different resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.28 Robot setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.29 Real world experiment result  Tracking and mapping. . . . . . . . . . . . . . . . . . . . . . 59

A.1 Epipolar geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.2 Graph based SLAM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.3 Optical flow explanation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.4 Optical flow representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.5 Activation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.6 Learning rate explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.7 Max and average pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.8 Qualitative comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B.1 Individual feature tracking using flow vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B.2 Epipolar line with tracked features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
B.3 Semidense mapping  ORBSLAM2 implementation . . . . . . . . . . . . . . . . . . . . . . 77
B.4 Semidense mapping results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



List of Tables

4.1 KITTI odometry dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Parameter setting  Motion segmentation model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Absolute trajectory error  Stage 1 experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Absolute trajectory error  Stage 2 experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Map memory management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xiii





1
Introduction

The autonomous robot uses perception to understand the surrounding environment
and performs actions based on planning and control. Robots’ autonomy opens new
possibilities in various applications, including unmanned ground vehicles, drones, and
even underwater robots. The primary task of an autonomous robot is to localize itself
in the given space. Currently, most outdoor applications localize using GPS signals
[1] and prebuilt maps available in the system. However, the GPS signal is not robust
due to disturbances in closely spaced buildings, tunnels and dense plantations. Simul
taneous Localisation and Mapping (SLAM) is a wellknown solution for locating and
navigating an unknown environment bymaking the system operate independently with
its learnt representations of surroundings. SLAM helps in tracking the poses of the
egovehicle and maps the surrounding environment space. The versatility of SLAM
usage comes with its flexible nature to adapt to various scenarios.

Simultaneous Localization and Mapping perceives the data from the exteroceptive
sensors like camera, lidar, radar and IMU. Exteroceptive sensors acquire measure
ments that contain meaningful representations of the surroundings. SLAM usually
process data from one of the sensors or in some case it fuses information from mul
tiple sensors to generate the final output. We focus on visual SLAM, which uses a
camera as the primary sensor modality. Cameras are passive sensor that is relatively
cheap and consumes less power for its operation. Monocular cameras are a minimal
istic visual sensor configuration with much practical application but suffer heavily from
scalability issues. It captures the threedimensional space into a twodimensional im
age by losing depth information. Nevertheless, visual features are always challenging
to process compared to the other sensors. Our study focuses on simultaneous local
ization and mapping using monocular cameras.

The main challenges of SLAM are loop closure, initialization, semantic reasoning and
handling dynamic objects in the environment [2]. Visual SLAM research has evolved
to address the initialization and loop closure issues. On the other hand, dynamic ob
jects are dealt with using the geometrical method that produces satisfactory outcomes.
After the advent of deep learning in computer vision, understanding semantics from
the visual features are learnt at ease. Artificial intelligence(AI) models achieve accu
rate and faster inference, which makes them popular across various domains. The

1



2 1. Introduction

semantics of the environment learnt from the AI model is used to identify and isolate
the dynamic objects to enhance the robustness in the SLAM functionality. This study
tackles important limitations such as semantic reasoning and dynamic object handling
by fusing the output of convolutional neural networks in SLAM to enhance tracking and
mapping results.

1.1. Motivation
Initial SLAM research mainly focuses on the indoor environment where the objects in
the surroundings are static [3]. This static assumption might not be valid in the real
world, causing inconsistent tracking and mapping results. High dynamic interaction in
the outdoor environment aggravates the problem affecting the quality of tracking and
mapping further. Thus, static assumption restricts SLAM to be implemented in limited
scenarios. Semantic perception of the environment gives fundamental knowledge of
the vicinity to deal with dynamic interactions [4]. The output of deep learning models
(learningbased approaches) offers valuable insight on learning semantics for improv
ing tracking and navigation by removing dynamic features. In addition to removing the
dynamic object, it is vital to semantically associate the learned representation in 3D
space to understand the map better. Hence, this study uses singlestage instance
segmentation architecture combined with moving object detection and multiobject
tracking to remove the dynamic objects in the tracking process and build a semanti
cally meaningful instance map.

1.2. Research question
The objective of the study is to build a semantically meaningful map using SLAM tech
niques while managing dynamic interactions, which helps enhance robot navigation
quality.

Our research question is,

‘ How to build robust interactivemap handling dynamic objects
that enhances the navigation quality of robots? ’

The following sub questions are framed from main research question,

• What is a popular approach to overcome challenges of dynamic objects in SLAM?

• How to improve the quality of tracking and mapping with dynamic interaction?

• How to build a semantically meaningful map?



1. Introduction 3

1.3. Contributions
We answer the research questions by following contributions.

• Singlestage instance segmentation architecture  According to the litera
ture study, the most advanced deep learning architecture used in SLAM is the
twostage instance segmentation architecture. In this project, the benefits of sin
gle stage instance segmentation architecture are studied and implemented for
dynamic object identification in SLAM.

• Moving object segmentation  To distinguish moving objects from nonmoving
objects, individual object states in threedimensional space are tracked in tightly
coupled methods [5] which are computationally intensive. On the other hand,
loosely coupled methods [6] based on a learningbased approach attain real
time performance on finding a particular class but fail to distinguish the mov
ing object. In this work, the implementation of moving object segmentation un
leashes the possibility of using loosely coupled methods directly to perform a
similar task that helps attain realtime performance.

• Semantic Mapping  Semantic mapping addresses 2D3D data association
problems to improve the semantic understanding of the generated map. We cre
ate dynamic and instancespecific semantic mappings. The dynamic semantic
map categorizes points as static, moving, or nonmoving dynamic points. In
stance semantic mapping detects and distinguishes individual instances of ve
hicles present in the environment.

• Multiobject tracking  Instance segmentation output does not correlate seg
mented objects between two frames, which prevents it from tracking the in
stances in the sequence. We implement a separate tracking module to track
objects by associating the same objects in successive frames.

1.4. Overview
This outline of the report is as follows; Chapter 2 summarizes the literature study
and the critical choices arrived from it. Chapter 3 walks through the learningbased
methodology used in our research to improve tracking and mapping results of SLAM.
Chapter 4 explains the selection of the dataset and chosen metrics used to evaluate
our procedures. Chapter 5 concentrates on the experiments, results and discussion
to justify the selection of architecture and showcases the improvement in SLAM with
our implementation. Chapter 6 winds up our study and suggest future direction on
improving key modules. At last, the appendix reveals trials on the geometrical ap
proach for moving object detection and semidense mapping, which are not included
in our final pipeline. It also delves into essential concepts on SLAM and deep learning
needed for comprehending the methods used in this study.





2
Related work

The objective of the chapter is to find the suitable SLAM architecture and discuss
various approaches to overcome the challenges of dynamic interaction in the SLAM.
The last part covers the widely used learningbased method and proves the empirical
choice of singlestage instance segmentation for completing our pipeline. Detour to
the appendix A would help brush up the basics before diving into the details of SLAM
and deep learning models.

2.1. SLAM architecture
Visual SLAM architecture uses optical sensors such as Monocular, stereo and RGB
D cameras to acquire information about the surroundings. In this study, monocular
cameras were kept as the prime focus. Monocular SLAM is categorised further into
featurebased, direct and learningbased methods based on how the image is pro
cessed to attain the desired outcome on tracking and mapping.

2.1.1. Direct method
The direct method correlates the pixel intensity values across the frames to find corre
spondences and build a map. Direct methods can generate dense, sparse, and semi
dense maps based on the utilisation of pixel correspondence. An important problem
of the direct method is the computational cost [7] and sensitiveness to noise due to il
lumination changes. Lens attenuation and gamma correction improve the robustness
against noise. On the other hand, direct methods are very robust towards motion blur
and camera defocus.

Dense Tracking and Mapping (DTAM) [8] is one of the direct methods which uses
input from the handheld camera and process them using GPU to achieve realtime
performance. The algorithm estimates inverse depth based on the photometric error
to generate a dense map. Photometric error is the difference in image intensity be
tween the same point in two image frames. The computation over entire pixels makes
the algorithm run slower in the CPU setting. Hence, sparse and semidirect meth
ods naturally become salient for many applications to operate in higher frequencies.
SemiDirect Visual Odometry (SVO) [9] fuses the direct and featurebased method

5



6 2. Related work

to estimate visual odometry. Algorithm process image patches instead of entire pixels
to reduce the computational cost. Photometric error is minimised to estimate the pose,
and reprojection error is minimised to align the feature patches. Though mapping is
similar to DTAM, depth is calculated in a probabilistic Bayesian fashion to reduce the
complexity. The final map generated by SVO is sparser than DTAM. Direct Sparse
Odometry (DSO) [10] is another direct method that produces a sparser map.

LargeScale Direct Monocular SLAM(LSDSLAM) [11] is a semidense direct method
designed to achieve realtime performance in the CPUby processing images as keyframes
in a graphbased outline. A keyframe is a representative frame that stores relative in
formation of all the frames in a given time interval. A key ingredient of LSDSLAM is
to use the image gradient to recover edges which makes them robust to changes in
intensity when compared with other direct methods.

Direct methods such as DTAM, DSO and SVO are relatively slow and do not sup
port loop closure functionality. On the other hand, LSDSLAM efficiently handles the
global maps, which makes loop closure feasible. Hence, LSDSLAM with semidense
maps is a natural choice among other direct methods due to its ability to operate real
time and loopclosure.

Figure 2.1: Comparison between direct and feature based method [12]

2.1.2. Featurebased method
Featurebased SLAM uses extracted visual features from the images for estimating
pose and map 3D landmarks. Unlike the direct method that utilises pixel intensities,
featurebased SLAM takes advantage of the geometry of the environment, making
them robust to noises. Most of the featurebased process runs in realtime but cre
ates a sparser map representation compared to the direct method.



2. Related work 7

Mono slam [13] is a featurebased filtering approach for monocular cameras that
focuses mainly on localisation compared to mapping. Probabilistic state estimation
is used to track the moving cameras and map landmarks. The map is initialised with
known objects and updated sequentially after tracking. The filtering based approach
encapsulates single probability distribution for all the estimated poses. The size of the
covariance matrix explodes with an increase in features resulting in a quadratic rise
of computational cost, which makes the algorithm restricts to a smallscale environ
ment. Parallel tracking and mapping (PTAM) [14] is developed to achieve realtime
performance by adding a parallel thread for tracking and mapping. Unlike sequential
tracking and mapping adapted in MonoSLAM, parallelizability allows the maps to be
optimised using bundle adjustment instead of incremental mapping. It is essential to
observe that bundle adjustment still increases the computational cost based on the
number of frames. Thus, usage of keyframes provides a tradeoff between accuracy
and computational cost. The important drawback of PTAM is that fivepoint stereo
map initialisation is done based on the user input manually. In the advent of track
ing failure due to changes in the environment, this might lead to map failure. PTAM
explicitly developed to a small AR environment restricting them from large scale map
ping. ORBSLAM [15] is a successor of PTAM designed specifically for monocular
cameras. ORBSLAM contains three parallel threads for tracking, mapping, loop clo
sure, and two modules explicitly for place recognition and map. ORBSLAM2 [16]
is an improvised version of ORBSLAM that could process stereo and RGBD inputs
in addition to monocular camera input. Unlike PTAM, ORBSLAM2 allows automatic
initialisation using two geometric models based on homography for a planar scene
and a fundamental matrix for a nonplanar scene. Heuristic calculation based on the
equation 2.1 identifies whether the scene is planar. If 𝑅𝐻 > 0.45, then homography
is chosen for initialisation or vice versa. A detailed explanation of all the modules in
ORBSLAM2 is discussed later in the report.

𝑅𝐻 =
𝑆𝐻

𝑆𝐻 + 𝑆𝐹
(2.1)

The vital difference between ORBSLAM2 with other featurebased methods is their
ability to perform loop closure. ORBSLAM2 is the best architecture among other
featurebased methods due to its ability to run in realtime, reinitialise automatically
and provide large scale mapping.

Conclusion  Choice of SLAM The learningbased approach supports visual odom
etry only. They do not provide a complete solution to SLAM and hence are not dis
cussed in detail the report. Based on the survey of direct and featurebased method,
the selection of SLAM architecture is narrowed down to LSDSLAM and ORBSLAM2
on account of their ability to run in realtime with loop closure functionality. In terms of
versatility, ORBSLAM2 extend its support to various visual sensors such as monoc
ular camera, stereo camera, and RGBD input, but LSDSLAM baseline uses only
monocular cameras. As our work is more focused on dynamic interaction, the SLAM
algorithm must be suitable for both indoor and outdoor environments. Outdoor envi
ronments tend to have global illumination changes, which violates the assumption of
brightness constancy used in LSDSLAM. Also, based on the experimental compari
son between ORBSLAM2 and LSDSLAM by [17], it is shown that the ORBSLAM2



8 2. Related work

algorithm provides robust tracking results on popular odometry datasets. Hence ORB
SLAM2 algorithm is chosen as SLAM architecture in our pipeline.

2.2. Dynamic objects
After selecting the SLAM architecture, we aim to find an effective method to improve
the robustness of SLAM results while managing the dynamic interaction of the envi
ronment. The issue of dynamic interaction is addressed by either eliminating dynamic
moving objects as outliers or track the individual dynamic object state in its 3D repre
sentation. To narrow down the review based on the final choice of SLAM, this part will
solely concentrate on studies related to ORBSLAM2(feature based methods).

2.2.1. Geometrical approaches
In the conventional SLAM approach, the area of static entities are considered as
background and dynamic objects as foreground. The moving object detection (MOD)
method [18] match the extracted features of moving objects with the previous set of
descriptors database created using prior knowledge. Three representative features of
moving objects are selected, and the assumption of rigidity aids in determining their
motion. It is a naive method since it can only identify objects based on a previous list
of features; however, the representation of feature descriptions varies substantially in
the actual world.

Some of the other studies deal with the background subtraction method [19] where ba
sic polynomial constraints is used to detach moving objects from the stationary states.
Researchers also use sparse labelling and rank restrictions to track points in the frame
and computes a projection matrix to solve for inliers and outliers. The primary draw
back of this pointbased method is that it does not consider structure consistency in
the calculation. The majority of background subtraction algorithms are only success
ful when the visual sensor is static and assumes the surrounding environment as a
planar surface.

To deal with dynamic objects captured by freely moving cameras, researchers ex
ploited the epipolar constraint. According to the constraint, static points always lie
closer to the epipolar line whereas points located outside the epipolar line are classi
fied as dynamic objects. A similar approach was used in [20], where, in addition to
the epipolar restriction, a Flow vector bound was added to account for degenerative
motion. Degenerate motion [21] occurs when the objects in the scene move paral
lel along the direction of the camera motion. Since, the points corresponding to the
objects move along the epipolar line, making it harder for epipolar constrains to sep
arate dynamic points. The flow vector bound defines how points translate in relation
to the depth. By specifying upper and lower limits for depth values, the displacement
of the points associated with those constraints may be calculated. A feature vector
that extends beyond these displacement limits is termed dynamic. Inaccurate depth
estimation precludes the use of flow vector bounds in monocular cameras.

Optical flow from the image sequence is compared with the predicted artificial op



2. Related work 9

Figure 2.2: Degenerative vs nondegenerative motion

tical flow to determine the dynamic pixels in the study [22]. Artificial optical flow is
estimated based on the relative pose variation acquired through homography during
tracking. The generated optical flow is calculated based on the egomotion of the
camera, which influences the quality of prediction when the camera is moving. Dis
entangling the camera motion from rest of the object is essential for detecting moving
objects in a scene, which is often accomplished by egomotion compensation. Ego
motion compensation using frame differencing is experimented by [23] in which
a list of feature correspondence is tracked to estimate the egomotion. Frame differ
encing of an egocompensated image with the current frame helps to identify poten
tially moving points. A similar idea of using compensated image in frame differencing
along with particle filtering is subsequently experimented on RGBD SLAM [24]. The
main limitation of the frame differencing approach is the assumption of small parallax
between image sequences. The algorithm does not work well in handheld cameras
where the parallax could vary significantly.

Correlation between the generated map points is also used in [25] to eliminate the
influence of dynamic objects in the surroundings. The relative position of any two
points on the map is always consistent in temporal space; hence these points could
be correlated. Such a correlation always exists between static points in 3D space.
The technique uses graph initialization, edge culling, and static point determination to
identify correlation represented as a sparse graph. Point correlation optimized using
bundle adjustment and squared Mahalanobis distance to remove inconsistent edges.
The graph with the greatest volume is considered static. However, when the ratio of
moving objects in the scene exceeds the ratio of static objects, the system fails.

According to the above discussedmethods, it is apparent that geometrical approaches
make several assumptions to locate dynamic points. These assumptions are often vi
olated in realworld situations. For example, the optical flow assumption of constant
brightness and velocity smoothness across adjacent pixels does not hold in the real
world. In the case of egomotion compensation and point correspondence, the back
ground is required to be larger than the foreground, which might not be possible in the
actual world.



10 2. Related work

2.2.2. Learning based approaches
To overcome the shortcomings of the geometrical method, the learningbased tech
nique is used to eliminate dynamic objects from the image frame using neural archi
tecture. The main idea is to integrate the output of deep learning models with SLAM,
thereby excluding features that fall inside the predicted area of the model output, con
sidering them to be dynamic. A learningbased approach could be applied either using
object detection or a segmentation architecture to remove the dynamic associations.
Small detour to next section would help in understanding the details of various convo
lutional neural architectures clearly. This section reviews various studies conducted
on SLAM using learning based approaches.

Object detection model YOLO [26] adapted by [27] for predicting dynamic classes,
and features extracted inside the predicted bounding box are removed considering
them as moving. However, some of the static zones which are not part of dynamic
objects are also included inside the bounding box as shown in the figure 2.3. Exact
contours identification of the object boundary is needed to isolate the dynamic areas.
These contours were usually estimated using depth histograms which could not be
directly applied in monocular cameras due to the inconsistent depth estimation. PO
SLAM [28] applies a similar technique to segment contours in YOLO prediction using
depth histograms. The major disadvantage of utilizing object detection is that it ne
cessitates using a separate algorithm to segment the object’s mask, which steers the
research towards semantic segmentation architecture.

(a) Object detection (b) Segmentation

Figure 2.3: Deep learning on feature extraction

The Semantic Segmentation is a simple and ready to use technique in SLAM since
it avoids contour estimation. For the same model complexity, the inference time of
semantic segmentation is slightly longer than that of the object detector. Taking this
into consideration, the shallow semantic network such as ENet [29] is usually adapted
in ORBSLAM2 to segment the dynamic classes in realtime [30]. Recent research
has merged learningbased and geometric approaches to remove dynamic classes
that neural networks have not learned efficiently. DSSLAM [31] combines SegNet
architecture [32] along with moving consistency (based on epipolar constraint) to seg
ment pedestrians from an image. SOFSLAM [33] extracts feature correspondence
of moving objects using semantic segmentation and optical flow. While the basic idea
of SOFSLAM is similar to that of DSSLAM, the former handles many classes.

While semantic segmentation is superior to object detectors, it lacks the ability to
recognize individual instances. To enhance pixellevel categorization and instance
identification, MaskRCNN [34] is used by SLAM researchers. In the study [35],
MaskRCNN is amended to segment the output of a dynamic mask. The output of



2. Related work 11

MaskRCNN is not quite accurate along the boundaries of the predicted mask. To
improve the accuracy along the edges, contour refinement using canny edge detec
tion is used. Canny edge detection refines edges by calculating moments between
the contour centroid and the edge centroid. Additionally, the Dynaslam [36] study
utilises MaskRCNN as a priori for detecting dynamic objects. The study also uses
multiview geometry utilising parallax angle (projection of key points from the previous
frame to the current frame) and depth to segment the moving objects in the current
scene as a region growth algorithm.

Conclusion Segmentation is preferred to the object detection as a separate mod
ule is needed to extract the shapes of the objects inside the bounding boxes. Under
segmentation, semantic segmentation architectures such as segNet and ENet used
in SLAM achieve a faster inference but are not sufficiently precise. On the other hand,
instance segmentation using MaskRCNN is not optimized for realtime applications.
Though the learningbased method delivers promising results, it is necessary to per
form a careful study to select an architecture that provides a favourable tradeoff be
tween speed and accuracy. The following section discusses various convolutional
neural architectures used in the computer vision domain.

2.3. Review on deep learning architectures
Deep learning techniques such as recurrent networks, convolutional neural networks
(CNNs), and a few generative networks aid in the solution of several computer vi
sion tasks such as detection, localization, and segmentation. This chapter highlights
the various computer vision tasks for predicting moving objects using a convolutional
neural network and aims to select the state of the art model for our experiments.

2.3.1. Object detection
Object detection is a technique that uses bounding boxes to locate an object in a given
picture. A substantial evolution of deep learning started after the onset of AlexNet
[37] which classify 1000 different classes in ImageNet challenge. Two significant cat
egories of object detectors are twostage and singlestage detector. Only the archi
tectures which are used in SLAM research were reviewed in detail.

The Two stage object detector detects objects in two stages: the first stage gener
ates region proposals, and the second step predicts the class for the generated pro
posals. Region proposal by selective search algorithm is adapted in RCNN (Regions
with CNN features) [38]. Since the proposals were chosen using a preset method, it is
possible to have inadequate recommendations. FastRCNN [39] process each can
didate feature proposal separately, bounding box and class predictions are obtained
jointly from the proposals. However, the model had poor inference due to the exter
nal region proposal approach, preventing FastRCNN from being used in realtime.
FasterRCNN [40] overcomes the issue of external region proposals by implement
ing Region Proposal Network (RPN), which uses a convolutional neural network to
predict possible proposals. The proposals are reshaped to a fixed size using ROI
pooling, and the objectness score for each proposal is estimated using RPN to pre



12 2. Related work

dict five outputs (4 for rectangular boxes and 1 for score). Nonmaximal suppression
and crossboundary implementation were adapted to remove the redundant results.
FasterRCNN runs much faster than previous methods; however, it suffers from re
dundant computation with expensive training procedures at each stage. MaskRCNN
used in one of our experiment inherits properties from FasterRCNN. While Faster

Figure 2.4: Overview of two stage object detectors [41]

RCNN has a high degree of accuracy, it is computationally intensive. The introduction
of singlestage detectors resolves this computation problem by automatically predict
ing bounding boxes and class categories from the picture without a separate region
proposal network. The design of a singlestage detector allows endtoend optimiza
tion during the training. You Only Look Once(YOLO) is a singlestage object detector
predicts the output based on a global understanding of the picture. This global rep
resentation eliminates false positives (a common issue with twostage detection) and
generalizes the model well on unseen data. YOLO divides the input image into grids,
and each grid is then responsible for detecting the presence of an object. The in
clusion of a spatial restriction in terms of grid boxes prevents YOLO from anticipating
smaller items within the trained class. To address this problem, the output is predicted
at various scales in designs such as Single Shot MultiBox Detector [42], and YOLOv3
[43].

2.3.2. Segmentation
The segmentation network predicts an output label per pixel in the given images. The
segmentation network categorized into semantic segmentation and instance segmen
tation based on its ability to estimate object instances.

2.3.2.1. Semantic segmentation
Semantic segmentation categorizes the object boundaries and predicts class labels
for each pixel in an image. The final prediction of the network is interpreted as a clus
ter of semantically meaningful labels. Supervised semantic segmentation architec
tures are grouped as featureenhancementbased, deconvolutionbased, and context
based approaches depending on the information flow for predicting the final semantic
output [44].



2. Related work 13

Feature enhancement techniques restore spatial characteristics in the network by
allowing feature information to flow from previously extracted feature levels to deeper
layers. Skip connections allow the semantics of shallow layers to be combined with
the semantics of deeper levels, helps in preserving object location and edges. It also
helps to restore the loss of spatial information caused by maxpooling layers. Fully
Conventional Networks (FCN) [45] and UNet [46] are two popular architectures that
employ feature enhancement approaches. Concatenating features from previous lay
ers raises the memory requirement, which is one of the significant drawbacks of this
method. Deconvolutionbased semantic segmentation adapts encoderdecoder ar
chitecture where pooling indices at each encoding stage are saved and retrieved in the
decoder stage to overcome the memory requirement issue faced by feature enhance
ment methods. The SegNet architecture [32] implements the deconvolution technique
for semantic segmentation across the encoder and decoder architecture. The use of
pooling indices in the maxpooling step considerably decreases the trainable param
eters and increases the inference speed, making it suited for various SLAM tasks.
Contextbased approach enlarge the receptive field of neural networks to perceive
characteristics on global scales. Global average pooling and dilated convolution are
used commonly to enlarge the receptive field of neural networks. Pyramid Scene
Parsing Network (PSPNet) [47] retrieves the global context by aggregating the fea
tures from pyramid pooling modules (stack of features in various scales) to produce
semantic segmentation. Global scaling improves segmentation in complicated situa
tions, creates a connection between different classes, and reduces scaling error.

Semantic segmentation does not offer a clear difference between the object’s in
stances, which is required to enhance map robustness. Instance segmentation ar
chitecture is adapted to address the need of comprehending object instances.

2.3.2.2. Instance segmentation
The important distinction between instance segmentation architecture and semantic
segmentation architecture is that instance segmentation architecture identifies indi
vidual object locations for each pixel. In instance segmentation, there are two primary
methods used, namely topdown and bottomup approaches. The topdown method
identifies objects using bounding boxes and then generates a segmentation mask. On
the other hand, bottomup approaches establish relationships between pixels from the
same instance that are processed as embedding vectors.

MaskRCNN [34] is a popular instance segmentation architecture employed in SLAM
applications that adopts a topdown method. It is built on FasterRCNN (twostage
object detector), adding a parallel branch for mask prediction. The masking branch
process each feature output using a fully convolutional layer to produce a binary mask.
The primary issue with MaskRCNN is misclassification and incorrect masking as a
result of the fixed mask resolution. In addition, the computational cost owing to the
extra masking branch is quite high.

On the other hand, singlestage instance segmentation models improve the perfor
mance of instance segmentation tasks by achieving realtime inference. Only the



14 2. Related work

Figure 2.5: MaskRCNN architecture

architecture that achieves realtime inference speed is reviewed here. Based on fig
ure 2.6, YOLACT [48] generates output mask using two parallel tasks by generating
the set of prototype masks and predicting per instance mask coefficients. Though
YOLACT is fast, it suffers from misalignment of bounding boxes and localization fail
ure in the presence of many objects resulting in reduced accuracy.

Figure 2.6: Speed vs accuracy comparison  instance segmentation architectures [49]

SOLO [50] is another significant singlestage instance segmentation design that pre
dicts the instances from an entirely new perspective. It splits an image into grids and
associates each cell for generating class, instance and mask. SOLOV2 [49] is a suc
cessor of SOLO, which use dynamic convolution andmatrix nonmaximal suppression
to achieve faster inference. Based on the comparison of popular instance segmenta
tion architecture as shown in figure 2.6, it is clear that SOLOV2 could achieve faster
inference without compromising the segmentation accuracy.

Conclusion  While various deep learning architectures have been suggested, seg
mentation architecture has successfully integrated dynamic object information with
SLAM. As our research question concentrates on generating an interactive map, we
adapt an instance segmentation model to improve the tracking and mapping. A theo
retical comparison among the common instance segmentation architectures reveals



2. Related work 15

that SOLOV2 is suitable to our study for dynamic object removal. Network architec
ture and implementation details of SOLOV2 are explained in detail in the following
chapters.





3
Methodology

The chapter explains the overall implementation of the various methodology adapted
in the project to improve the tracking andmapping results of ORBSLAM2 by efficiently
handling the dynamic objects in the scene. The structure of the chapter first introduces
a basic outline of our implementation in the methodological overiview 3.1 and then
explains systematical inclusion of the proposed methods with ORBSLAM2 to study
the behaviour in tracking and mapping results.

3.1. Methodology overview
3.1.1. Classification of dynamic objects
The core of this project is to build robust map for robot navigation in dynamic environ
ment. Firstly, our research is devoted to managing dynamic objects in the scene and
the improvement is studied by observing the tracking result. Elimination of dynamic
objects negates the tracking failure which inherently improves the mapping perfor
mance. So, it is essential to understand the basic categorization of dynamic classes
used in our studies using an example.

Figure 3.1: Classification of dynamic objects

17



18 3. Methodology

Let us consider that a deep learning model is used to predict the dynamic classes from
an RGB image. For instance, vehicles and pedestrians are two dynamic classes that
would possibly move within the environment. In the project, we classify the classes
that have ability to move as potentially dynamic objects based on our previous knowl
edge. However, the generic CNN model could not determine the moving vehicle sep
arately. To realize predefined classes movement in the scene, we should divide po
tentially dynamic objects into moving and nonmoving dynamic classes. In a nutshell,
all the cars observed in the scene is considered as potentially dynamic class. While
parked cars are subcategorized as nonmoving dynamic objects and the cars that are
actually moving in the current instance are subclassified as moving dynamic objects.

3.1.2. Stages of development
The primary objective of our approach is to answer the research questions 1.2 with a
suitable methodology. To build interactive map, we need to improve both tracking and
mapping results. Initially the tracking quality is studied in dynamic interactions where
the learning based method reviewed in the chapter 2 is implemented with baseline
ORBSLAM2. The deployment of these learning based methods are done in three
distinct stages. Each step is developed in response to the limitations of the preceding
stage.

The summary of each development step that contributes to the handling of dynamic
objects is as follows:

• Base  Base implementation of ORBSLAM2 architecture without any modifica
tions.

• Stage 1  This stage uses a singlestage instance segmentation architecture
in association with ORBSLAM2 to understand the semantics of all potentially
dynamic classes. In practice, SLAM would process the features into two groups
of points: static (e.g. buildings) and potential dynamic objects (e.g. all the cars
in the scene).

Figure 3.2: Stage 1  Dynamic classification



3. Methodology 19

• Stage 2  This stage incorporates moving object segmentation(not reviewed in
chapter 2) over stage 1 implementation to distinguish moving and stationary ob
jects. Overall, in the final process have three subsets namely static (e.g. Build
ings), moving dynamic class(e.g. moving cars) and nonmoving dynamic class
(e.g. parked cars) as shown in figure 3.3

Figure 3.3: Stage 2  Dynamic classification

Finally, our approach is directed towards strengthening the quality of maps by seman
tic reasoning. Our study experiments a concept of semantic mapping by efficiently
using the learnt features from stage 1 and stage 2 implementation by generating dy
namic and instance semantic maps. Output from the models that predicts dynamic
classes could be directly used for generating dynamic semantic maps. However, the
implementation of instance semantic segmentation involves the utilisation of the multi
object tracking in the segmentation output. Additionally, we compute a dynamic den
sity to determine the amount of traffic in a given region based on the dynamic map.
Lastly, map management is presented to store the global maps as point clouds and
octomaps.

3.2. Tracking
3.2.1. Base  ORBSLAM2
ORBSLAM2 algorithm comprises of tracking, mapping and loop detection module.
These module runs in parallel on three different thread to estimate visual odometry
and map the environment. ORBSLAM2 is a graphbased system that optimizes pose
graph of keyframes by reducing reprojection error to generate landmarks. The func
tioning of graph based system is explained in the appendix. In addition to three parallel
threads, each thread operates based on the subclasses such as frame, frame drawer,
keyframe, keyframe database, initializer, map point, map drawer, ORB extractor, ORB
matcher, solvers, and viewer. All the classes are interlinked, i.e.,any change to one
has a detrimental effect on the output. Hence, modifications on the class function



20 3. Methodology

during our implementation is done carefully to ensure that base functionalities of the
SLAM are not jeopardized. We are primarily concerned with modules that contribute
to final tracking and mapping in this project; no changes are made to the loop closure
thread.

Figure 3.4: Components of ORBSLAM2 [16]

Tracking thread: The tracking thread in ORBSLAM2 is responsible for the estima
tion of visual odometry. Primarily it extracts features from individual frames and uses
a perspectivenpoint algorithm to estimate the camera poses. The tracking thread
comprises of motion model, reference keyframes and relocalization module to track
the camera instances. The motion model assumes the constant velocity constraint
to predict the feature points based on the previous frame. The tracking is marked as
successful or unsuccessful based on the number of inliers. The motion model works
quite well only if the relative change between poses is minimal. When the motion
model fails to track, reference keyframes are used in tracking. Visual features based
on a bag of words are generated for the current frame compared to the reference
keyframe features to estimate poses. Local bundle adjustment is used to rectify these
postures. In certain situations, tracking might completely fail. To relocalize the cur
rent camera position in the advent of tracking failure, feature matching is performed
across all the keyframe. One with the highest similarity score was chosen to estimate
the current pose based on the perspectivenpoint algorithm.

In addition to the estimation of camera poses, the tracking module search for new
matches based on previous landmarks of the local map. These local maps are cre
ated using a collection of keyframes that shares the similar features of the current
frames. The 3D points from the local maps are projected onto the current image
frame and added as new matches if the viewing angle and distance from the camera
centre are under a specified threshold. Recent matches are then optimized to refine
the estimated poses.



3. Methodology 21

The tracking module also superintends the selection of new keyframes based on the
following condition.

• Gap between the last relocalization and current frame is at least 20

• Gap between the last keyframe and current frame is at least 20

• Current frame tracks at least 50 key points

• Local map thread is idle

• Similarity of points between the current frame and reference keyframe should
be less than 90%

Mapping thread: The mapping thread is responsible for maintaining keyframes and
map points. After a tracking thread selects a new keyframe, the mapping thread in
serts it into the covisibility graph and ensures that visual features corresponding to
the keyframes are updated appropriately. The covisibility graph is a layout where the
nodes correspond to keyframes, and the edges represent map points. Map points
and keyframes were added generously by the tracking thread. The map culling mod
ule monitors newly added points and retains them in the final map only if the created
points could be observed in three keyframes, and the tracking module detects the
points in 25% of frames. As map point culling, keyframe culling eliminates redundant
keyframes when 90% of its associated map points is observed in at least three more
keyframes. The culling process in the mapping thread assists in limiting the growth of
the graph.

The main functionality of mapping thread is the ability to insert new map points, which
results in a denser final map. Unmatched features in the current frame are examined
in the other keyframe for potential matches to triangulate as a new map point. New
map points should have depth, reprojection error, and scale within the specified limits
in addition to satisfying the epipolar requirement. Local bundle adjustment optimizes
the pose of the current keyframe and its neighbouring keyframes along with new map
points associated with those keyframes.

Loop closing thread: The loop closure module recognizes the features of the re
gions seen by the system in the previous instance that helps the system correct the
drift during tracking and mapping. The candidate frames for loop closure are chosen
based on the predicted similarity score in the covisibility graph. The similarity score
is determined by comparing the keyframe’s bag of words representations. Similarity
transformation with maximum inliers picked as a representative loop closure frame.
The transformation matrix with seven degrees of freedom generated during the loop
closure optimization corrects the current keyframe. It propagates the adjustment to
all adjacent keyframes until the whole graph is corrected.

Theoretical representation:
Let 𝑍, 𝑋, and 𝑂 denote the camera measurement, the camera state, and the object
state, respectively. 𝑙 denotes the estimated 3D landmark generated by SLAM. Let
𝑤, 𝑐, and 𝑞 symbolize the coordinates expressed with respect to world, camera, and



22 3. Methodology

object at any point in time i. Additionally, the superscript and subscript 𝑜 imply the
predicted class, 𝑠 and 𝑑 indicate static and dynamic objects, 𝑘 denotes the current
time instance, and 𝑁 denotes the number of dynamic objects in the given space.

Generally, SLAM works well under the assumption of a static environment [3]. Hence
with static world assumption poses and landmark for the given measurements could
be represented as,

𝑝(𝑋𝑘 , 𝑙|𝑍𝑘) (3.1)

When the dynamic objects are present in the environment, their states 𝑂𝑘 and corre
sponding landmarks 𝑙𝑜 are also assumed to be static by the SLAM algorithm repre
sented in equation 3.2. This static assumption of dynamic objects affects the estima
tions by creating false feature matches.

𝑝(𝑋𝑘 , 𝑙, 𝑂𝑘 , 𝑙𝑜|𝑍𝑘) (3.2)

This is one of the important limitations of SLAM that affects the quality of tracking.
In highly dynamic scenarios, inconsistent feature correspondences cause tracking to
even fail. Even though the camera measurement 𝑍 identifies distinctive visual fea
tures, the equation 3.2 demonstrates that pose estimation and map points of static
and dynamic entities are closely intertwined. However, in the real world, the states
of camera and dynamic objects are entirely independent; thus equation 3.2 can be
modified as

𝑝(𝑋𝑘 , 𝑙|𝑂𝑘 , 𝑙𝑜, 𝑍𝑘) (3.3)

The methodology implemented in stage 1 and stage 2 exploits the independent state
representation to overcome the limitation of static assumption.

3.2.2. Stage 1  Dynamic object segmentation
This stage uses the deep learning models to find potentially dynamic classes and
remove corresponding features in the ORBSLAM2. To achieve this objective, our lit
erature review demonstrates that a singlestage instance segmentation architecture,
particularly SOLOV2, could successfully generate an accurate output mask with faster
inference.

We only identify classes like vehicles, pedestrians, and bicycles as potentially dynamic
objects in our experiments. The important assumption of stage 1 implementation
is that regardless of how predicted classesmove in their surroundings, we clas
sify them as dynamic. Firstly, the neural architecture of SOLOV2 is explained, and
later integration of output with ORBSLAM2 is discussed.

3.2.2.1. SOLOV2 network architecture
SOLO is a term that refers to segmenting object by locations. As implied by the name,
the segmentation mask is produced depending on the image’s location. The central
idea is similar to that of a singlestage object detector, i.e., SOLOV2 analyzes the
presence of object instances and investigates the possibility of segmenting objects
based on their centre position.



3. Methodology 23

SOLOV2 [49] framework splits the input image into grid cells, and each cell is respon
sible for pixelwise categorization and object instance association. The architecture
uses the ResNetFPN backbone [51] to extract features at different scales from the in
put image, which are then utilized by the instance head and mask head. The instance

Figure 3.5: SOLOv2 mask head [49]

head is further subdivided into category head and kernel head. The category head
is in charge of determining the labels for the items included inside the grids, while
the kernel head calculates the filter weights for dynamic convolution. The dynamic
convolution module combines the output from the mask head with the kernel head to
produce the instance segmentation output. In SOLO, kernels convolve over feature
maps to create a single big tensor mask which is decoupled in SOLOV2 as a separate
kernel and mask to enable faster inference.

Unlike skip connection used in other segmentation architecture, the system gains
translation invariance by incorporating the normalized pixel coordinates into convo
lutional layers through the CoordConv operator [52]. When the coordconv layer is
added to the input dimension of 𝐻∗𝑊∗𝐶, the channel size increases by two, resulting
in a dimension of 𝐻 ∗𝑊 ∗ (𝐶 + 2).

SOLOV2 trained using conventional focal loss [53] and dice loss [54]. The details
of conventional focal loss and dice loss is as follows,

Dice loss: To comprehend the dice loss, one must first analyze the intricacies of
the dice coefficient. Dice coefficient is calculated as the ratio of correctly predicted
pixel to the total summation of pixels contributed by prediction and ground truth which
could be represented as,

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 2 ∗ ∑𝑁𝑖 𝑦𝑖𝑔𝑡𝑖
∑𝑁𝑖 𝑦2𝑖 + ∑

𝑁
𝑖 𝑔𝑡2𝑖

(3.4)

Dice loss is constructed based on the dice coefficient, which determines the overlap
between the ground truth and predicted segmentation that helps the model learn the
boundaries elegantly.

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 − 2 ∗ ∑𝑁𝑖 𝑦𝑖𝑔𝑡𝑖 + 1
∑𝑁𝑖 𝑦2𝑖 + ∑

𝑁
𝑖 𝑔𝑡2𝑖 + 1

(3.5)



24 3. Methodology

Focal loss: Focal loss is a modified version of crossentropy loss [55] designed to
work better on the highly imbalanced dataset. Focal loss contains hyperparameters
that gives lower weightage to the simple examples while increasing the weight of dif
ficult ones. Whereas crossentropy and weighted cross entropy [56] are used to cal
culate the gradient flow based on the positive and negative samples only. Positive
samples indicate target classes, while negative samples are usually background.

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑝𝑡) = −𝛼𝑡 ∗ log (𝑝𝑡) (3.6)

where,

𝑝𝑡 = {
𝑝, 𝑦 = 1

1 − 𝑝, otherwise } (3.7)

Equation 3.6 differentiates both positive and negative samples but does not provide
insight between easy and hard samples. Easy samples are those that are correctly
classified as foreground or background, while hard samples are those that are mis
classified. Focal loss address this problem with the following implementation,

𝐹𝑜𝑐𝑎𝑙 𝐿𝑜𝑠𝑠 (𝑝𝑡) = −𝛼𝑡 (1 − 𝑝𝑡)
𝛾 log (𝑝𝑡) (3.8)

𝛼𝑡 and 𝛾 are the hyper parameters that take value between 0 and 1 which are either
learnt or fixed during the training. If 𝛾 = 0 then focal loss becomes cross entropy
loss.

3.2.2.2. Combining dynamic object segmentationwithORBSLAM2
This section discusses the algorithm used to blend the segmentation output from
SOLOV2with ORBSLAM2 that helps identify the measurements that belong to poten
tially dynamic objects. The stage 1 implementation categorise the feature measure
ment 𝑍𝐾 into two subsets as static measurements 𝑍∗𝑘, potentially dynamic object’s
measurement 𝑍𝑜𝑘. These feature subset identified using segmentation mask modifies
the equation 3.3 as

𝑝(𝑋𝑘 , 𝑙|𝑍∗𝑘) . 𝑝(𝑂𝑘 , 𝑙𝑜|𝑍𝑜𝑘) (3.9)

Algorithm 1 describes the implementation steps involves in stage 1 to process individ
ual images and their associated masks to split the output features into subsets. The
algorithm is implemented on the feature extraction stage of ORBSLAM2(in Frame
subclass).

A key difference between our approach from other research studies is that our solu
tion discards dynamic features during the tracking step but includes them exclusively
at the mapping stage(discussed later in the chapter). Thus our implementation not
only improves robustness in tracking results but also creates semantically meaning
ful dynamic maps. Since we preserve the details of map points of all the objects,
the final result obtained by the combination of SOLOv2 with ORBSLAM2 could be
probabilistically expressed as,

𝑝(𝑋𝑘 , 𝑙|𝑍∗𝑘) . 𝑝(𝑙𝑜|𝑍𝑜𝑘) (3.10)



3. Methodology 25

Algorithm 1 Processing features as static and potential dynamic class
1: for 𝑡𝑖𝑚𝑒 𝑖 = 0 𝑡𝑜 𝐾 do
2: 𝑍𝑖 ← 𝑅𝐺𝐵𝑖 ORB feature extraction
3: for 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑍𝑖 do
4: if 𝑍𝑖 𝑖𝑛 𝑀𝑎𝑠𝑘𝑖 then Checking features in dynamic area
5: 𝑍𝑜𝑖 = 𝑇𝑟𝑢𝑒
6: else
7: 𝑍∗𝑖 = 𝑇𝑟𝑢𝑒
8: end if
9: end for

10: end for
11: return 𝑍∗𝑘 & 𝑍𝑂𝑘

3.2.3. Stage 2  Moving object segmentation
Though we adopt a state of the art instance segmentation architecture to remove
dynamic objects through stage 1, the experimental results achieved during the sim
ulation are not convincing. The main drawback comes from the inability of SOLOV2
to identify whether the predicted mask is moving or not. The current section dis
cusses the techniques employed for classifying dynamic objects into moving
and nonmoving entities. Some conventional methods based on the geometrical
approach reviewed in the literature study might well be utilized to find moving objects.
We performed experiments using the geometrical approach with epipolar constraint
to detect dynamic objects in the segmentation output. But the final results obtained
from geometrical methods are not consistent in all the use cases. The appendix B.1
contains the specifics of the geometric method implementation. To that extent, we
started exploring the possibilities of finding the moving object using a learningbased
approach for better generalization.

Action recognition [57] is an important area of computer vision that uses visualtemporal
characteristics to anticipate the action in the video sequence. Using the idea from ac
tion recognition, we develop twostream encoderdecoder CNN architecture to find the
moving object from the potential dynamic subset. The inclusion of temporal features
is the primary modification needed in stage 2 to detect moving subsets.

3.2.3.1. Two stream network architecture
Twostream architecture developed in our project follows a similar structure with MOD
Net [58]. The model uses a RGB image and an optical flow input to detect moving
objects and segment the spatial mask. The architecture contains two encoder and
two decoder units. Numerous modifications have been made to the base MODNet
structure to improve the final accuracy.

The encoder part of the network is based on VGG [59] backbone which extracts fea
tures from RGB and flow inputs. Optical flow input to the network is generated by
FlownetV2 [60] architecture. Optical flow quantifies the temporal connection between



26 3. Methodology

neighbouring frames in the near term. Moving elements observed between the two
consecutive images exhibit significant differences in form and degree of flow com
pared to static regions. FlowNet model captures these changes as twodimensional
flow maps representing the direction of flow along the x and y axes. The flow vectors
are transformed to an RGB picture based on the magnitude and direction of the flow
using the colourcoded encoding [61]. This colourcoded flow image could then di
rectly be used to identify the features using convolutional layers. The details of optical
flow representation could be reviewed in section A.1.7.

The spatial and temporal features extracted by two encoders are combined in the
network fusion stage. Features from intermediate layers are fused together by con
catenation of channel space or by summation operation. The feature fusion helps to
achieve better segmentation accuracy onmoving object segmentation. The combined

Figure 3.6: Two stream encoder decoder architecture for moving object segmentation

features are then processed by two FCN8based [45] decoders. The spatial decoder
infers the semantic segmentation of all the cars in the image, while the moving seg
mentation decoder infers the semantic segmentation of just the moving vehicle. ReLU
and maxpooling layers used in the encoders reduce the spatial resolution of feature
maps. Hence, high dimensional feature maps are upsampled by transposed convolu
tion to obtain the required final dimension. To enhance the information flow from the
encoder to the decoder at various scales, fused features from each stage are concate
nated carefully into the decoder unit through skip connections, as shown in figure 5.8.
This information from the encoder improves the localization of the features associated
with the objects in the final segmentation output.

3.2.3.2. Combining moving object segmentation with ORBSLAM2
Moving object segmentation categorizes the output into two distinct classes: moving
and nonmoving objects. These moving segmentation outputs are processed similar
to that of stage 1 implementation by modifying the feature extraction stage of ORB
SLAM2. In stage 2, the extracted features are subdivided into three subsets of mea
surements denoted by 𝑍∗𝐾, 𝑑𝑍𝑜𝑘, 𝑠𝑍𝑜𝑘, which represent static, moving, and nonmoving
dynamic features, respectively. The stage 2 implementation on the feature extraction



3. Methodology 27

stage of ORBSLAM2 is explained in algorithm 2.

Algorithm 2 Processing features as static, moving and nonmoving dynamic objects
1: for 𝑡𝑖𝑚𝑒 𝑖 = 0 𝑡𝑜 𝐾 do
2: 𝑍𝑖 ← 𝑅𝐺𝐵𝑖 ORB feature extraction
3: for 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑍𝑖 do
4: if 𝑍𝑖 𝑖𝑛 𝑀𝑎𝑠𝑘𝑖 then
5: if 𝑀𝑎𝑠𝑘𝑖 == 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 then
6: 𝑑𝑍𝑜𝑖 = 𝑇𝑟𝑢𝑒 Checking moving features
7: else
8: 𝑠𝑍𝑜𝑖 = 𝑇𝑟𝑢𝑒 Checking nonmoving features
9: end if

10: else
11: 𝑍∗𝑖 = 𝑇𝑟𝑢𝑒 Checking static features
12: end if
13: end for
14: end for
15: return 𝑍∗𝑘 & 𝑑𝑍𝑂𝑘 & 𝑠𝑍𝑂𝑘

Subcategorisation of nonmoving dynamic features in stage 2 overcomes the draw
back of our previous implementation. The nonmoving dynamic features are combined
with static features to enhance the robustness of the tracking. Similar to stage 1, in
stead of removing moving features, we use them in semantic mapping. Combined
optimisation of the subset of features could probabilistically represented as,

𝑝(𝑋𝑘 , 𝑙, 𝑠𝑙𝑜|𝑍∗𝑘 , 𝑠𝑍𝑜𝑘) . 𝑝(𝑑𝑙𝑜|𝑑𝑍𝑜𝑘) (3.11)

The first portion of the equation 3.11 is responsible for producing poses and landmarks
using static and nonmoving dynamic features. The second part of the equation, which
detects the moving object features in the vicinity, is utilized only for mapping.

3.3. Mapping
The previous implementations in section 3.2 concentrate more on handling the dy
namic objects to improve the tracking. As mentioned earlier, the robustness in track
ing would inherently estimate robust three dimensional maps. However the mapping
results of ORBSLAM2 will represent all the map points as static. Inclusion of the
points corresponding to the dynamic objects without modifications would also be rep
resented as static. So, we investigate the possibility of using the semantic information
obtained in stage 1 and stage 2 algorithms to enhance the quality of the map. This
section discusses the technicalities involved in semantic mapping implementation and
the prediction of dynamic density.

In ORBSLAM2, a monocular camera image is processed by triangulation to transform
twodimensional visual features to threedimensional map points. These map points



28 3. Methodology

represent the extracted static visual features and do not possess any additional infor
mation about these features. Semantic mapping helps in identifying the information
about individual map points generated by ORBSLAM2. The semantic information
could be merged in two ways: directly or in parallel fusion [30]. Direct semantic fusion
processes the final 3D point clouds directly to understand their underlying structure
and related semantics. The direct approach requires 3D annotated data and requires
heavy computation to predict the structure from the point cloud. On the other hand,
parallel semantic fusion utilizes the 2D image to comprehend the scene and associate
the 2D semantic knowledge appropriately in 3D space. As our solution already uses
deep learning models to infer semantics from images, we could immediately use the
information from previous stages to fuse it in a parallel fashion. Our implementation
integrates the dynamic classification and instance semantic segmentation to build a
dynamic semantic map and instance semantic map. The below subsection 3.3.1 and
3.3.2 will cover the implementation details of these semantic mapping in detail.

Figure 3.7: Semantic mapping. Semantic information associated with different color in 2D image(left)
is associated with 3D map points(right)

3.3.1. Dynamic semantic mapping
In general, semantic mapping associates the object class present in the environment
such as pedestrians and cars with map points. We take the idea of semantic mapping
one step ahead where in addition to finding the car present in the 3D space, we as
sociate the dynamic information. Hence, in dynamic semantic mapping, the details of
the dynamic subset obtained in the feature extraction stage are used in the mapping
thread. 2D3D data association from feature extraction to mapping thread is the key
to translating image semantics to threedimensional space.

The algorithm 3 details the various steps involved in the data association to built a
dynamic semantic map based on the output of stage 2. It is important to note that the
subset of feature measurements varies as per the stages. The algorithm 3 could be
slightly changed to adapt the result from stage 1.

Stage 1 classifies static or potentially dynamic features, producing static landmark
𝑙 and a dynamic landmark 𝑙𝑜 respectively. While stage 2 classifies them into three
subsets creating static landmark 𝑙, nonmoving dynamic landmark 𝑠𝑙𝑜 and moving
points 𝑑𝑙𝑜. Thus final map generated by stage 2 output provides dynamically separa
ble semantic maps in threedimensional space.



3. Methodology 29

Algorithm 3 Dynamic semantic mapping
1: for 𝑍𝑖 = 0 𝑡𝑜 𝐾 do
2: 𝑝𝑜𝑖𝑛𝑡𝑠 ← 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒(𝑍𝑖 , 𝑍𝑖 + 1) Depth estimation
3: for 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 do
4: if 𝑍∗𝑖 = 𝑇𝑟𝑢𝑒 then Static points
5: 𝑙 = 𝑇𝑟𝑢𝑒
6: else if 𝑠𝑍𝑜𝑖 = 𝑇𝑟𝑢𝑒 then Nonmoving dynamic points
7: 𝑠𝑙𝑜 = 𝑇𝑟𝑢𝑒
8: else if 𝑑𝑍𝑜𝑖 = 𝑇𝑟𝑢𝑒 then moving dynamic points
9: 𝑑𝑙𝑜 = 𝑇𝑟𝑢𝑒

10: end if
11: end for
12: end for
13: return 𝑙 & 𝑠𝑙𝑜& 𝑑𝑙𝑜

3.3.2. Instance semantic mapping
The implementation of SOLOV2 in our pipeline helps us to take advantage of instance
segmentation output to build instance semantic maps [62] [63]. While the SOLOV2
algorithm provides instance segmentation for each image, the output mask cannot be
correlated across successive frames. Thus, it is critical to track the instances pro
duced between two consecutive frames in order to construct instance semantic map
ping. A tracking module is developed to track instances between consecutive images
that generate an instance id for each image that could be later used in mapping to
identify two similar objects across frames.

3.3.2.1. Multiobject tracking
The tracking module is developed based on the idea of multiobject tracking (MOT)
[64]. In general, object tracking examines the video to find the existence of the same
object seen in the previous frame and tracks them until the object becomes apparent.
Tracking by detection is a common technique adapted for addressing MOT problems
in which the output of detection is acquired first, and tracking is done afterwards. After
the detection, the predicted area is cropped as patches from the corresponding RGB
image. A separate CNN model subsequently processes these image patches to pro
duce feature embedding. Feature similarity among the acquired embeddings on two
image frames is used to track the same object by assigning it to a unique instance
id. The discussed approach is also known as the Separate Detection and Embed
ding(SDE) model [66]. The other techniques include joint detection embedding and
cropping patch directly from feature maps. We chose to adopt the separate detection
and embedding technique in our study because it enables the tracking algorithm to be
implemented separately without any modification to SOLOV2. The independence of
our implementation allow us to adapt pretrained weights of SOLOV2 and even extend
the tracking module to work with different architecture in future.

The feature embedder model is the principal part of the tracking module. Any pre



30 3. Methodology

Figure 3.8: Multiobject tracking [65]

trained CNN based backbone architecture would be appropriate for the feature em
bedding model. However, ResNet18 architecture [67] pretrained on the ImageNet
dataset is chosen as the feature embedder in our pipeline. In addition to the feature
embedding model, our tracking module has a class constraint and IOU filtering, which
help us to reduce the computation needed in the feature matching stage. The section
5.1.3.1 will demonstrate why ResNet18 was selected and overall implementation of
tracking module in detail.

3.3.2.2. Combining multiobject tracking with ORBSLAM2
Each segmentation mask of SOLOV2 is processed in the tracking model possesses
an associative instance identification number(id). The results of tracked instances are
stored as an image(say as track image) by representing the pixel value of the segmen
tation mask replaced with instance id value as shown in figure 3.9. In addition to the
mask produced by SOLOV2, the ORBSLAM2 algorithm is now adjusted to receive
track images as well. As a result of this modification, ORBSLAM2 now accepts RGB
images, segmentation mask images, and track images.

Figure 3.9: Track image representation

The fundamental step in the instance semantic mapping is to identify a cluster of points
belonging to the same object instance and associate them with unique semantic la
bels. The algorithm 4 describes how tracked identifiers from object tracking modules



3. Methodology 31

could be correlated with threedimensional points in order to identify the individual
cluster.

Algorithm 4 Instance ID association
1: for 𝑍𝑖 = 0 𝑡𝑜 𝐾 do
2: 𝑝𝑜𝑖𝑛𝑡𝑠 ← 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒(𝑍𝑖 , 𝑍𝑖 + 1) Depth estimation
3: 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑑 ← 𝑍𝑖 𝑎𝑡 𝑡𝑟𝑎𝑐𝑘𝑖 Object ID from tracking module
4: for 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 do
5: if 𝑍𝑜𝑖 = 𝑇𝑟𝑢𝑒 then 3D association
6: 𝑙𝑜𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑑
7: end if
8: end for
9: end for

10: return 𝑙𝑜𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒

The representation of track id as track image helped us to directly extend the im
plementation on the feature extraction module done on stage 1 and stage 2. The
2D3D data association involves linking instance ids from the track image to each fea
ture measurement (map points are triangulation of similar features) if the extracted
features fall in one of the contours on the track image. For instance mapping, we only
consider all landmark points that belong to potential dynamic objects 𝑙𝑜𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 (results
of stage 1) and specifically on car class.

3.3.3. Dynamic density estimation
This section explains the utilization of the output of semantic maps through dynamic
density estimation. The dynamic density is nothing more than a metric for enumerat
ing the degree of dynamic interaction occurring in the local environment. Identifying
the level of dynamic interaction in the environment enables the robots’ navigation to
function more effectively by establishing appropriate priors to regulate the speed.

In contrast to tracking and mapping, dynamic density is calculated instantly based
on the current location of the egovehicle and is therefore shown only as visualization
output at the present instant. There are two approaches for estimating dynamic inter
action: one utilizes twodimensional semantic information directly received from the
neural network, and the other is based on threedimensional semantic maps. Though
twodimensional semantics is used in the previous mapping implementation, it is inef
fective in dynamic density estimation as the results become more reliant on the image
being seen. Due to the limitation in the camera focus, the dynamic objects that are
not recorded in the field of view could miss few objects present around it. In contrast,
the second approach that utilizes generated maps overcome the limitation, providing
more intuitive information around the space of the ego vehicle.

The dynamic semantic map from stage 2 encapsulates all the information about the
moving dynamic objects which is used to identify the dynamic classes that move in a



32 3. Methodology

Algorithm 5 Dynamic density estimation
1: 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑐𝑜𝑢𝑛𝑡 = 0
2: for 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑚𝑎𝑝 do
3: if 𝑑𝑙𝑜 = 𝑇𝑟𝑢𝑒 then
4: 𝑥, 𝑦, 𝑧 ← 𝑑𝑙𝑜
5: 𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ← 𝑋𝑘
6: if Equation 3.12 is satisfied then
7: 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑐𝑜𝑢𝑛𝑡 + +
8: end if
9: end if

10: end for
11: if 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑐𝑜𝑢𝑛𝑡 ≥ 10 then
12: 𝑑𝑖𝑠𝑝𝑙𝑎𝑦 = ℎ𝑖𝑔ℎ𝑙𝑦 𝑑𝑦𝑛𝑎𝑚𝑖𝑐
13: else
14: 𝑑𝑖𝑠𝑝𝑙𝑎𝑦 = 𝑙𝑒𝑠𝑠 𝑑𝑦𝑛𝑎𝑚𝑖𝑐
15: end if

local 3D space. With the centre set on the current camera pose, the spherical con
straint determines if the dynamic points are bounded inside the sphere. Spherical
constraint to find the 3D local space is given by,

𝑥, 𝑦, 𝑧 = 𝑑𝑙𝑜
𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 = 𝑋𝑘

√(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2 + (𝑧 − 𝑧𝑐)2 ≤ 𝑟
(3.12)

where:
𝑑𝑙𝑜 = landmark associated with moving class
𝑋𝑘 = current camera pose
𝑟 = radius of sphere

The map points satisfying the bounding conditions are the only points that involve
in the density calculation. The algorithm 5 explains how local space is classified into
high or low dynamic interaction states. To account for the potential outliers in the
mapping stage, we consider the local area to be dynamic only if at least ten dynamic
points satisfy the equation 3.12.



4
Dataset and metrics

4.1. Dataset
Proper choice of the dataset is essential to test our implementations proposed in the
methodology. This section deals with the selection of our dataset for testing SLAM
and segmentation models. Furthermore, it covers our contribution on generating a
new dataset for moving object segmentation.

4.1.1. SLAM
To validate our proposed methodology on ORBSLAM2, we need an odometry eval
uation dataset specifically tailored for visual SLAM. We conducted a review on three
widely used datasets, namely the EuRoC [68], TUM [69], and KITTI [70]. EuRoC
dataset is a collection of stereo sequences of the indoor environment recorded using
a micro aerial vehicle. Also, the TUM dataset contains collection of sequences that
are primarily focused on the indoor environment. On the other hand, the KITTI odom
etry dataset gathers outdoor environments, especially urban and highway settings.
Outdoor spaces have a high level of dynamic interactions, which aligns our interest in
the KITTI dataset.

KITTI odometry dataset contains 22 sequences, out of which only 11 sequences have
groundtruth information. In the 11 sequences only for six sequences loop closure is
possible as shown in the table 4.1. After manually observing these six sequences, we
noticed that only sequences 05 and 07 include a mix of moving and stationary vehi
cles, which could be ideal to evaluate our approaches. However, to better understand
our methodology in a highly dynamic setting, we also included the 04 sequence in our
list of selected datasets.

The ground truth of sequence 04 has 271 poses where camera motion runs almost
straight with path length closer to 394 meters. Sequence 07 has 1101 groundtruth
poses covering the loop with an average length of 694 meters, and sequence 05 is
the longest path with a stretch of 2205 meters with 2761 groundtruth poses.

33



34 4. Dataset and metrics

Sequence No. Remarks Dynamic details Loop closure Selection
00 Urban Parked cars Yes No
01 Highway Moving cars No No
02 Highway and Urban Parked cars Yes No
03 Urban Parked cars No No
04 Highway Moving cars No Yes
05 Urban Mixed traffic Yes Yes
06 Urban Parked cars Yes No
07 Urban Mixed traffic Yes Yes
08 Urban Mixed traffic No No
09 Urban Parked cars Yes No
10 Urban Parked cars No No

Table 4.1: KITTI odometry dataset [70]

(a) Sequence 04 (b) Sequence 05 (c) Sequence 07

Figure 4.1: Ground truth of KITTI odometry dataset

4.1.2. Stage 1  Segmentation dataset
Singlestage segmentation architecture for stage 1 is selected based on the litera
ture study. However, to justify our choice of architecture through quantified results
in SLAM setting, a segmentation dataset in an outdoor environment with dynamic
classes is needed. Images captured in Cityscape [71] and KITTI dataset are taken in
outdoor scene. Since SLAM odometry is evaluated on the KITTI dataset, we leverage
the KITTI segmentation dataset to assess our selected deep learning models. The
dataset contains 400 images with different classes where 200 images for each train
and test data. Although the labels include various dynamic classes, the training data
with car labels are used in the final evaluation. This is because almost 85% of the
potentially dynamic object seen in the KITTI odometry sequences belong to the car.

The KITTI segmentation dataset selected for stage 1 is just used for the final eval
uation of the models and not used in the training of the model.



4. Dataset and metrics 35

(a) RGB images

(b) Ground truth

Figure 4.2: KITTI segmentation dataset

4.1.3. Stage 2  Moving object dataset
The two stream neural architecture used in stage 2 requires details of the movement of
cars and optical flow images and RGB images to train the model. These requirements
are satisfied only by the KITTI MoSeg dataset [72] which contains semantic segmen
tation for all the cars and the bounding boxes for moving cars detection along with
optical flow images. Since our implementation requires ground truth segmentation in
put for both the decoders, the KITTIMOseg dataset needs to be modified to generate
a segmentation mask for the moving object from the bounding box. In addition, flow
images available in the dataset are distorted, representing inaccurate object bound
aries. As the authors do not disclose the details of the generation of flow images in
the paper, we use FlowNetV2 to regenerate the flow images.

(a) original distorted (b) Modified flow image

Figure 4.3: Improving boundaries of flow image KITTIMoseg



36 4. Dataset and metrics

4.1.3.1. New dataset generation
In this project, we created a new dataset based on KITTI odometry sequences target
ing moving object segmentation. Polygon tool Labelme [73] is used for annotation.
The polygon points are converted into segmentation images with a separate python
script. In total, 3085 static cars and 893 moving cars are annotated. FlowNetV2 ar
chitecture is used for generating optical flow images. The new dataset contains 1014
distinct sample frames with associated flow images and mask. A sample of our newly
created dataset is shown in the figure 4.4.

Figure 4.4: Stage 2 dataset created based on KITTI dataset. Row (i) RGB image, (ii) Flow image, (iii)
Segmentation mask of all cars, (iv) Segmentation of moving cars

4.2. Metrics
4.2.1. Absolute trajectory error  SLAM
This section explores the metrics used to compare the SLAM tracking results obtained
in each stage of our methodology with baseline. Quantitative metrics such as absolute
trajectory error and relative pose error are used to evaluate the estimated trajectory
against the ground truth. Absolute trajectory error used in ORBSLAM2 paper is uti
lized in our experiment to facilitate comparisons. Absolute trajectory error first aligns

Figure 4.5: Trajectory alignment for absolute trajectory error [74]

the estimated trajectory with ground truth and then calculates the root mean square



4. Dataset and metrics 37

error between aligned trajectory and ground truth [75]. Due to the scale ambiguity in
monocular slam, alignment of the trajectory becomes mandatory to obtain accurate
estimates. The Umeyama method [74] is used to estimate the alignment transforma
tion as a least square problem, as illustrated in the algorithm 6. The estimated trans
formation for rotation, translation and scale based on the Umeyama method would
result in the trajectory alignment as shown in the figure 4.5.

Algorithm 6 Umeyama  Alignment transformation estimation
1: Input: Estimated positions �̂� and ground truth position 𝑃
2: Calculate the mean— 𝜇𝑒𝑠𝑡 =

1
𝑁 ∑

𝑁
𝑛=0 �̂�𝑛 and 𝜇𝑔𝑡 =

1
𝑁 ∑

𝑁
𝑛=0 𝑃𝑛

3: Calculate the variance — 𝜎2𝑒𝑠𝑡 = 1
𝑁 ∑

𝑁
𝑛=0 ‖�̂�𝑛 − 𝜇𝑒𝑠𝑡‖

2
and 𝜎2𝑔𝑡 =

1
𝑁 ∑

𝑁
𝑛=0 ‖𝑃𝑛 − 𝜇𝑔𝑡‖

2

4: Calculate the covariance matrix— Σ = 1
𝑁 ∑

𝑁
𝑛=0 (𝑃𝑛 − 𝜇𝑔𝑡) (�̂�𝑛 − 𝜇𝑒𝑠𝑡)

⊤

5: Perform singular value decomposition — Σ = 𝑈𝐷𝑉⊤
6: if |𝑈| |𝑉| < 0 then
7: 𝑊 = diag(1, 1, −1)
8: else
9: 𝑊 = 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑀𝑎𝑡𝑟𝑖𝑥

10: end if
11: Calculate rotation 𝑅 = 𝑈𝑊𝑉𝑇
12: Calculate scale 𝑠 = 1

𝜎2p̂
trace(𝐷𝑊)

13: Calculate translation t = 𝜇gt − 𝑠R𝜇est
14: return 𝑅, 𝑠, 𝑡

After the trajectory alignment, the root mean square error of the euclidean distance
between new estimated poses and ground truth poses obtains the absolute trajectory
error. The primary advantage of the metrics is that a single number captures over
all variation in position estimation over the whole trajectory. However, the calculated
error is sensitive to time. During experiments, ATE for the change in the position is
calculated by the following formula,

ATEpos = √(
1
𝑁

𝑁

∑
𝑛=0

‖p𝑎𝑙𝑖𝑔𝑛𝑒𝑑𝑛 − p𝑔𝑡𝑛 ‖
2
) (4.1)

where:

𝑝 = position of individual pose

4.2.2. IOU estimation  Segmentation
Average precision is used as a metric to evaluate the accuracy of segmentation. Av
erage precision is usually calculated over all the classes and across all IOU threshold.
IOU [76], also known as intersection over union, determines the overlap of the ground



38 4. Dataset and metrics

truth(A) and predicted masks(B) to distinguish true positives, false positives, and false
negatives. If the IOU value is higher than the set threshold, it is considered as cor
rectly predicted. Usually, IOU threshold values are iterated from 0 to 1 in steps of 0.1,
and their final average is used for the comparison.

Figure 4.6: IOU metrics



5
Experimentation and results

The chapter covers various experiments conducted in the project and discuss the ob
tained result by comparing against the baseline. Though the final objective is to build
robust mapping by improving the SLAM process through the learningbased method,
we first analyse the deep learning architectures separately and then investigate the
influence of the model on SLAM in the second section.

5.1. Object segmentation and tracking models
Different convolutional neural network models discussed in the methodology are im
plemented to improve the quality of the SLAM. This section explains the experiment
details of all the model architectures used in the pipeline and their limitations.

5.1.1. SOLOV2  Dynamic object segmentation
The choice of singlestage instance segmentation architecture SOLOV2 for dynamic
object removal adapted in development stage 1 [3.2.2.1] is justified by comparing the
segmentation accuracy with other popular baseline models used in SLAM. Based on a
literature review, it is apparent that MaskRCNN is widely used, for instance segmen
tation architecture among SLAM researchers. Hence, we evaluate the effectiveness
of our proposed singlestage architecture SOLOV2 by comparing it to the twostage
instance segmentation architecture MaskRCNN. As explained in the previous chap
ter, the KITTI segmentation evaluation dataset is used in our accuracy comparison.
Given that the primary dynamic class of the KITTI sequence is the car, we disregard
all other classes for evaluation.

Initially, SOLOV2 was built from scratch in the Pytorch framework. Since our spec
ified classes are pedestrians and cars, we adopt the pretrained model proposed in
the paper. However, the adoption of pretrained COCO weights directly to our im
plementation became infeasible due to changes in model parameter naming conven
tion. Hence SOLOV2 is later implemented in Python using detectron2 [77], a vision
library developed by Facebook AI researchers using Pytorch framework based on the
reference provided in the paper. The postprocessing steps in SOLOV2 have been

39



40 5. Experimentation and results

tweaked to infer just the vehicle labels. For comparison, MaskRCNN is also imple
mented in Python. Similar to SOLOV2, pretrained weights on the COCO dataset are
used in MaskRCNN, and the postprocessing stage of MaskRCNN is modified to
infer car segments.

5.1.1.1. Result and discussion

Segmentation output for both the models is generated for 200 KITTI images with a
batch size of one and a confidence score of 0.3. Models are tested in the Intel i7
8850H 16GB RAM CPU system configuration and NVIDIA Quadro P1000 GPU.

(a) Segmentation accuracy (b) Inference time

Figure 5.1: Quantitative comparison  SOLOV2 and MaskRCNN

The quantitative result from the figure 5.1 shows that SOLOV2 improves the seg
mentation accuracy by 10.27% compared to MaskRCNN. MaskRCNN takes about
201.96 seconds to process 200 images, while SOLOV2 takes just 67.25 seconds, i.e.,
SOLOv2 takes 0.4 seconds to process a single image, whereas twostage architec
ture takes 0.91 seconds. Overall, the proposed singlestage architecture have 2.5
times faster inference time. The faster inference is analogous to the fact that, un
like MaskRCNN, which predicts the bounding box first and then segments inside it,
SOLOV2 predicts the instance mask directly as a classification problem.

Based on the quantitative analysis, it is evident that MaskRCNN misses most of the
cars when placed closer to each other, while SOLOV2 captures the accurate bound
aries of all the available instances. One such example is shown in figure 5.2. Mask
RCNN detects the objects in a fixed resolution which results in poor accuracy on com
plex scenes. The quantitative and qualitative evaluations justify our choice of the
singlestage instance segmentation architecture in terms of speed and accuracy.



5. Experimentation and results 41

(a) SOLOv2

(b) MaskRCNN

Figure 5.2: Qualitative comparison of SOLOV2 and MaskRCNN

5.1.2. Two stream architecture  Moving object segmentation
This section covers the basic implementation details of the model used in the stage
2 module [3.2.3.1]. The neural network architecture is developed in python using the
Pytorch framework. VGG16 architecture imported from torch models and initialised
with pretrained weights based on ImageNet. Instead of just employing binary cross
entropy as recommended in the base MODNet paper, dice loss is implemented in
combination with binary crossentropy for training the model. The details of dice loss

Parameter Name Values
Backbone VGG16
Optimiser Adam

Loss function BCE and dice loss
Learning rate 1e4

Learning decay step 10
Learning decay coefficient 0.1

Table 5.1: Parameter setting  Motion segmentation model

and crossentropy is discussed in the section 3.2.2.1. Most of the hyperparameters are
maintained consistent with the MODNet implementation. Model is trained using Adam
optimiser [A.2.1.4] with a batch size of 1. The current model does not incorporate
any form of regularisation. By default, VGG16 is trained with an input resolution of
224×224. However, during our experimentation, we increase the input resolution as
448×448 and 370×1226 to improve segmentation accuracy based on the research
paper [78]. The table 5.1 shows the list of parameters used during training. The
intermediate feature fusion, pretrained weight initialization and joint optimization of



42 5. Experimentation and results

two decoder units accelerates the convergence of the loss function.

5.1.2.1. Result and discussion
Initially, we experiment on the implementation of intermediate features with channel
concatenation and summation junction. The final segmentation results were found
to be better with summation junction. Loss functions have a drastic influence on the
final accuracy. The loss function for the final model is selected by experimenting with
binary crossentropy and dice loss. Each trial model is trained with an input resolution
of 224×224 for 60 epochs. The result of the convergence of each loss function reveals
dice loss is better. The reason is that dice loss works pretty well with dataset class im
balance (with respect to background) that occurs on segmentation. In our dataset, the
moving and nonmoving mask are not proportionate, and multiclass problem could
make the dice loss convergence unstable. So in the rest of the experiment, we train
our model using the combined loss of dice loss and binary crossentropy with lambda
as a hyperparameter to switch between the losses.

Figure 5.3: Loss function BCE loss vs dice loss

Finally, the input resolution of 448×448 and 370×1226 is used in training to see the
tradeoff between the accuracy and inference time improvement. Based on the above
experimental result, our proposed model trained with the combined loss for input res
olution of 370×1226 achieves the best outcome. We chose to train with 30 epoch,
as the loss during the experiments always converge after 25 epoch. Our final model
only attains 35% mIOU as the segmentation mask of moving objects is not entirely
accurate.

Figure 5.4: Moving object segmentation  Row (i) RGB image (ii) Ground truth (iii) segmentation result



5. Experimentation and results 43

(a) Poor segmentation(True positive) (b) Inaccurate segmentation(False positive)

Figure 5.5: Moving object segmentation  Analysis

Segmentation results of moving objects obtained from the model fall short of our ex
pectations. Semantic segmentation mask based on spatial features from decoder 1
yields good results by consistently predicting all the cars in the scene. This helps us
infer that the model can learn spatial features but does not learn temporal features
correctly. The inference is substantiated with the following discussion.

The model works considerably well when the relative change between the images
is purely translational. However, the main problem in a pure translational situation is
that FlowNet does not capture certain vehicles observed in far depth. In such a sce
nario, our model learns the spatial cues assuming the vehicle appears in the centre
to be moving. Misclassification occurs on the object present at the centre is due to
the influence of spatial features over temporal features.

Figure 5.6: Flow image on pure translation

The observational study done on the dataset reveals that most of the moving cars lie
at the centre of the image, which might bias the model. The heat map 5.7 represent
ing the concentration of moving objects based on 2000 training images supports our
discussion.



44 5. Experimentation and results

Figure 5.7: Heat map of moving object in the dataset

On closer examination of the behaviour, it is apparent that the output of FlowNet
plays a crucial role in determining the final results. The flow generated by the FlowNet
model is very accurate only when there is no relative transformation occurs between
two images in the sequence, i.e., when there is no egomotion. So the accuracy of
moving object segmentation on the static camera is relatively high.

Figure 5.8: Flow image without camera motion

On the other hand, if the relative transformation between image sequences is solely
rotational, the resulting flow does not offer enough information to comprehend the
realworld changes. Figure 5.9 shows the inability of the FlowNet model to estimate
the flow image on the KITTI sequence when the car is turning left.

Figure 5.9: Flow image on pure rotation



5. Experimentation and results 45

Optical flow estimated by Flownetv2 depends exclusively on the image quality, hence
performs poorly on areas with shadow, reflection, and illumination changes [79]. The
reason for the suboptimal results is primarily due to FlowNet’s inability to fragment
the egomotion flow. We need a precise depth estimate to have an appropriate ego
motion estimation. As we use a monocular setup for our project, the depth estimation
is uncertain. Depth estimation using monocular cameras is a separate domain to ex
plore. Current research on moving object recognition with a camera utilizes other
sensor modalities to compute depth and suppress egomotion in order to get an accu
rate estimate of optical flow. A recent study about moving object estimation in SMSNet
[80] and VMModnet [81] reveals that odometry data and IMU are used for egomotion
compensation. Methods for improving the results of moving object segmentation are
discussed in our future study. Currently, to circumvent the problem of incorrect shape
estimation of moving objects, the output of moving object segmentation is combined
with SOLOV2 based on IOU. The output of combined segmentation is shown below,

(a) (b)

Figure 5.10: Moving object segmentation  Refinement

5.1.3. Multiobject tracking
The multiobject tracking module of the segmentation output used in mapping [3.3.2.1]
is implemented in a python programming language. For each output mask produced
by SOLOV2, the corresponding segmentation from the RGB image is cropped. The
patch would then be rescaled to fit into the ResNet18 model, which then generates
feature embedding.

Our implementation of class constraint allows only the subset of features that belongs
to the same class to be used in feature matching. These feature embedding after the
class constraint is filtered using IOU metrics (details of IOU metrics is discussed in
section 4.2.2). IOU filtering is hinged on the assumption that the relative velocity be



46 5. Experimentation and results

Figure 5.11: Implementation of tracking module

tween two frames does not vary abruptly. In other words, the relative transformation
of object states between two sequences is always bounded. This assumption facil
itates the IOU filtering to find the overlapping mask instances in two image frames.
Only masks overlapping with previous segmentation output are used in the feature
similarity stage, which increases tracking accuracy by eliminating false positives and
reducing computation time. The Euclidean distance between two embedding vectors
is used to compute feature similarity in which identical items get a lower similarity
score. Figure 5.11 depicts our pipeline amended in the tracking module.

5.1.3.1. Selection of feature embedding model
This section justify the choice of ResNet18 architecture as feature embedding model.
The objective of the experiment is to find the architecture with reduced model com
plexity that help us to achieve faster inference. We select popular backbone archi
tectures such as VGG16 [59], AlexNet [82], Resnet18 [67], DenseNet161 [83] and
MobileNetv2 [84] for our experimentation.

The pretrained backbone models from the PyTorch framework is directly used in the
experiments. Input resolution of 224×224 is used in all of our experiments. From the
graph 5.12, one could conclude that AlexNet outperforms all other models in terms of
inference time, while MobilenetV2 has a lower memory requirement. Careful observa
tion for a tradeoff between inference time and memory shows that ResNet18 has an
inference time of 45ms, which is 45% higher than AlexNet but it requires 80% lesser
space on the upside. Similarly, when compared to MobileNetv2, ResNet18 provides
32% faster inference at the cost of a 30MB additional memory requirement. From
these tradeoffs, it is evident that ResNet18 would be ideal as the feature embedder
model.



5. Experimentation and results 47

Figure 5.12: Tradeoff experiment between inference time and memory for embedder model

5.1.3.2. Result and discussion
The final results of multiobject tracking are validated qualitatively in outdoor scenar
ios. The result of object tracking experimented on the KITTI sequence is shown in the
figure 5.13. The same colour observed two image frames represent the same object
present in the scene. For correlating the track ids across the whole sequence, the
pixel value of the segmentation output is replaced with the identification number as
discussed in 3.3.2.2. The current implementation of the tracking module only checks
the correlation of the segmentation mask between two consecutive images. In case
of occlusion or missed detection due to poor confidence, the object is reassigned to a
new identification number. This limitation prevents us from comparing our implemen
tation quantitatively with other studies.

(a) Tracking image @ t (b) Tracking image @ t+1

Figure 5.13: Multiobject tracking  Result



48 5. Experimentation and results

5.2. Experiments on SLAM
Robotics Operating System facilitates communication among various implemented
modules. The primary benefit of utilizing the ROS platform in our experiment is that it
connects various applications written in languages like C++ and Python. In our case,
SLAM was implemented in C++, and deep learning models in python, making ROS an
ideal platform to complete the pipeline. Individual modules as ROS Node might pub
lish or subscribe to messages as particular ROS topics. A ROS topic is a messaging
channel. Each ROS message follows a unique data structure that could be used from
preset libraries or customized. Based on the methodology and experiments on neural
architecture discussed in the previous section, it is evident that the ORBSLAM2 pack
age needs to be modified to subscribe segmentation output and tracking instanceid
along with monocular image input. The corresponding ROS topics are indicated as
/camera/usb_cam_1/image_raw, /mask_image, /track_image respectively.

Figure 5.14: ROS implementation of our pipeline

/Solov2+tracking_node combines the singlestage instance segmentation model with
multiobject tracking that publishes the mask and track results. ROS graph for the
stage 1 implementation with tracking module is shown in figure 5.14. The same could
be extended to stage 2 by the addition of the motion segmentation model. To minimize
latency during SLAM operations, all relevant images are usually recorded and played
from ROS bags.

5.2.1. Tracking
This section focuses on improving the tracking quality by removing the dynamic inter
action. We compare the odometry results obtained from ORBSLAM2 by integrating
different development stages and discuss the limitation of individual stages separately.

5.2.1.1. Base  ORBSLAM2
Our initial experiments concentrate on creating the baseline results usingORBSLAM2
[3.2.1] without integrating modules from stage 1 and stage 2. We directly used the ab
solute trajectory error results from ORBSLAM and DynaSLAM study as the baseline
for comparing three KITTI sequences 04,05, and 07. DynaSLAM adapts MaskRCNN
architecture to remove the dynamic objects from the surroundings, which helps us to



5. Experimentation and results 49

validate our SOLOV2 implementation on SLAM. The average of the root mean square
of the absolute trajectory (RMSE) error [75] after five executions in each of the three
sequences is used as the final result to establish consistency. The main factors that
affect the consistency of final results are initialization and the latency introduced by
parallel computation. For appropriate comparison, it is necessary to repeat the exper
iment at least five times with the same sequence.

5.2.1.2. Stage 1  Dynamic object segmentation
We experiment our stage 1 implementation [3.2.2.2] for dynamic object removal in a
manner identical to that described above. Five trails were taken, and the average of
RMSE values are shown in the table 5.2.

Sequence
Number

Stage 1  Trajectory error in meter
T1 T2 T3 T4 T5 Average

04 1.37 1.33 0.62 0.62 1.105 1.009
05 4.61 6.75 4.77 5.56 4.61 5.26
07 2.03 1.82 4.11 1.93 1.72 2.32

Table 5.2: Absolute trajectory error  Stage 1 experiments

The obtained results of stage 1 is compared with baseline results obtained from ORB
SLAM and DynaSLAM. Overall, our results are in line with the dynaslam except on
sequence 05. From the graph, we could infer that our tracking error is less than base
ORBSLAM on sequence 04, a dynamic sequence, which complements the proposed
methodology for the removal of dynamic objects. On the other hand, sequences 05

Figure 5.15: Tracking error comparison  Baseline vs Stage 1

and 07 do not provide satisfactory results. This is because the chosen sequence has
a lower level of dynamic interaction since most vehicles are stationary. Using our
stage 1 module would remove all feature points associated with the potential dynamic
class without differentiating moving and nonmoving objects separately. Elimination of



50 5. Experimentation and results

static(stationary cars) features cause the SLAM to use low textured features present
at the far distance, impacting overall tracking results.

(a) Sequence 04 (b) Sequence 05 (c) Sequence 07

Figure 5.16: Tracking result  Stage 1

Discussion: From equation 3.1, we know that estimated poses and the landmarks
of ORBSLAM2 depend on features’ quality and quantity. Many seemingly dynamic
classes may exist in the environment without any movement in certain situations, i.e.,
they all are static. Since our segmentationmodel does not distinguish dynamic classes
into moving and nonmoving objects, all the features of dynamic classes are removed
during SLAM tracking. To investigate this issue further, we used KITTI sequences
and analyzed the existence of nonmoving dynamic objects. For instance, in KITTI
odometry sequence 05, it is observed that 95% of cars are static. It is possible to
infer from the figure 5.17 that the majority of the vehicles on the left side of the image
are motionless. By excluding features associated with static vehicles(nonmoving dy
namic class), the features available for tracking become skewed toward the right side
of the image. This may impair tracking quality and also make the map sparser.

Figure 5.17: Limitation of Stage 1  Kitti sequence 05

5.2.1.3. Stage 2  Moving object segmentation
The limitation of the stage 1 methodology put forward the need for moving object
segmentation (stage 2) [3.2.3.2] in the ORBSLAM2 method. To prevent bias due to
dynamic object removal in low traffic situations, we must correctly find moving objects
from nonmoving objects.

Even though the moving segmentation model results have some false positives in



5. Experimentation and results 51

Sequence
Number

Stage 2  Trajectory error in meter
T1 T2 T3 T4 T5 Average

04 1.53 1.14 0.96 1.26 1.35 1.25
05 4.85 4.37 4.85 4.97 4.93 4.79
07 2.61 1.99 2.03 1.62 2.25 1.97

Table 5.3: Absolute trajectory error  Stage 2 experiments

(a) Sequence 04 (b) Sequence 05 (c) Sequence 07

Figure 5.18: Tracking result  Stage 2

identifying the moving objects, the odometry results demonstrate a substantial in
crease in the performance of sequences 05 and 07 compared to stage 1. All the
cars in sequence 04 are moving; hence in stage 1, removing the features of vehicles
improved the tracking accuracy but due to misclassification of moving object segmen
tation tracking error gets higher in stage 2 implementation on sequence 04.

Discussion: The results demonstrate that the implementation of moving object seg
mentation could handle dynamic interaction in diverse traffic conditions without im
pairing SLAM’s overall performance. The limitation of stage 2 implementation comes
directly from the output of segmentation achieved from the twostream network. As
mentioned in moving object segmentation 5.1.2, egomotion compensation is required
for the proper estimation of flow image (input to the model).

Finally, the individual trajectory obtained for the sequences on each developmental
stages are compared. From the figure 5.19, all our implementation were able to fol
low the reference trajectory in all three dimensions with minimal variation. Though
the deviation along lateral direction(x) in sequence 04 appears to be prominent in
the graph, the magnitude of the variation is negligible. The violin plot 5.20 empha
sising the variation of trajectory errors seen at every timestamp reveals that stage 2
implementation on sequences 05 and 07 achieves lower error. The mean density on
05_stage2 and 07_stage2 concentrated on low ATE values. Our work authenticates
a new research direction for improving the performance using loosely linked coupled
approaches rather than primarily depending on tightly coupled approaches, which will
aid in attaining realtime performance in the near future.



52 5. Experimentation and results

(a) Sequence 04 (b) Sequence 05

(c) Sequence 07

Figure 5.19: Individual trajectory comparison along x,y,z direction

Figure 5.20: ATE plot  Base vs Stage1 vs Stage2



5. Experimentation and results 53

5.2.2. Mapping
The fundamental building block of SLAM is to determine the static points in the sur
rounding environment. This is achieved through the normal implementation of the
ORBSLAM2 algorithm. The visualisation of the static maps obtained for KITTI se
quence 04,05 and 07 on base ORBSLAM2 is shown in figure 5.21. Green colour
points are the static maps, whereas blue frames represent the keyframe poses of
ORBSLAM2. The mapping section focuses on improving the static maps by incor

(a) Sequence 04

(b) Sequence 05

(c) Sequence 07

Figure 5.21: Base static map of ORBSLAM2

porating the semantics learnt in stage 1 and stage 2, thereby building dynamic and
instance semantic maps. Later visualisation result of dynamic density estimation and
managing the maps for efficient storage are discussed.



54 5. Experimentation and results

5.2.2.1. Dynamic Semantic mapping
The dynamic subset removed during the tracking in stage 1 and stage 2 are used in
the mapping to generate a dynamically meaningful representation of the surround
ings. Stage 1 splits the extracted features into static and potentially dynamic subsets.
Based on these subsets, a dynamic map is created on KITTI odometry sequences
where stationary points are represented in green and potentially dynamic points in
red as shown in the figure 5.22. Along with the feature data association, the dynamic
information of each map point also needs to be correlated with respective keyframes.
These implementations allow the poses and map to be optimised through bundle ad
justment. Though we build maps for all the selected sequences, only KITTI sequence
07 is used to discuss the result in the rest of this section. The dynamic map built
based on the output of stage 2 has three subsets. The effect of our stage 2 imple
mentation on KITTI odometry sequence 07 shown in the figure 5.23 has static points,
nonmoving dynamic points and moving dynamic points.

(a) Sequence 07 (b) Sequence 07  Closer

Figure 5.22: Dynamic semantic map  Stage 1. Red  Potentially dynamic points, Green  static points

(a) Sequence 07 (b) Sequence 07  Closer

Figure 5.23: Dynamic semantic map  Stage 2. Red  moving dynamic points, Yellow  Nonmoving
points, Green  static points



5. Experimentation and results 55

The map obtained with stage 2 output is not accurate due to the limitation of moving
object segmentation. The falsepositive segmentation degrades the semantic quality
when distinguishing moving and nonmoving entities. Nevertheless, the maps are still
accurate in finding the objects that belong to the car.

According to the research [15], ORBSLAM2 allows lifelong mapping because of the
ability to accurately relocalize in the learnt map even when the viewpoint shifts sig
nificantly. Our dynamic semantic mapping could improve the robustness in scene
perception and make relocalization more successful by considering only static points
eliminating dynamic entities.

5.2.2.2. Instance semantic mapping
While the dynamic semanticmapping distinguishes dynamic classes from static points,
it is often necessary to analyze individual objects in the environment. Instance seman
tic maps helps to achieve desirable results on identifying individual instances in the
3D space. Multiobject tracking identification is used to relate map points that belong
to the same object. The results shown in the figure 5.24 demonstrate that our imple
mentation could correctly find the presence of an individual car in the surroundings.
Distinct colours is used to represent the multiple instances of cars. The figure 5.24a
represents the overall visualization of instance semantic map on KITTI sequence 07,
excluding the static points. While the figure 5.24b is the expanded representation of
instances of cars identified in KITTI sequence 05.

(a) KITTI sequence 07 (b) KITTI sequence 05  Closer look

Figure 5.24: Instance semantic maps  KITTI sequences

5.2.2.3. Dynamic density estimation
The benefit of the dynamic semantic map is exploited to represent the density informa
tion to motion planning robots. This module is implemented to show the usefulness of
threedimensional semantic reasoning in a realtime scenario. The dynamic density



56 5. Experimentation and results

estimation done based on spherical bounds are represented as a circle is shown in the
figure 5.25, where yellow and red denotes low and high dynamic density, respectively.
During experimentation, one important observation is that the density estimations of
previously mapped areas are more accurate than those of newly discovered areas.
This is very apparent since the newly created region may contain fewer map points to
study the dynamic interaction of the local map.

(a) Map representation (b) Corresponding RGB image

Figure 5.25: Low dynamic interaction example

(a) Map representation (b) Corresponding RGB image

Figure 5.26: Dynamic density estimation

5.2.2.4. Map management
By default, ORBSLAM2 does not support map storage and it only allow us to visualize
the map points during the SLAM operation. This section discusses our implementa
tion to save maps in point cloud libraries(PCL) [85] and octomaps [86] by untangling
the details of both libraries based on the storage efficiency.

PCL is an opensource library that is designed to handle point clouds efficiently. PCL
supports different data structures for storing point clouds, among which our imple
mentation make use of PointXYZRGB to save the final map. In the data structure
XYZRGB, each map point requires threedimensional coordinate values for x, y, and
z, as well as three color intensity information for RGB. x, y, and z values are directly
obtained from the coordinates of the global map generated by ORBSLAM2. While
RGB information helps to encode the dynamic semantic information of each points.
For instance, the output of stage 1 contains two different categories which are colour



5. Experimentation and results 57

coded as green(x,y,z,0,255,0) and red(x,y,z,255,0,0) in PCL data structure. All the
map visualisation shown in previous chapter are based on the point cloud represen
tation.

OctoMap uses voxelbased representation(based on leaf resolution) to stores map
efficiently. Octree provides a novel solution to represent maps in cubic volumes with
treebased architecture designed to update the map in a probabilistic fashion. The
map can be dynamically expanded and also be saved in multiresolution within the
given cubic space. The representation provides a proper distinction between free,
occupied, and unknown areas. This kind of representation reduces the computational
complexity when retrieving certain points in the map. Changing the leaf size would al
ter the input resolution and occupancy probability in 3D space. The figure 5.27 shows
the octomap representation for different leaf size on KITTI odometry sequence 07.

(a) Leaf size 0.03m (b) Leaf size 0.06m (c) Leaf size 0.12m (d) Leaf size 0.24m

Figure 5.27: Octomap with different resolution

PCL 1.12.0 library is accommodated in our pipeline to store the maps acquired from
the ORBSLAM2. The PCL library has an direct extension to save the octomap with
out any hassle. The system class function of ORBSLAM2 is modified to loop through
the global map points after global bundle adjustment, ensuring that the final optimized
map points are stored. The map management does not consider the estimated poses
when the map is stored. The comparison of memory needed to save the map as point
cloud library and octomap with high resolution (leaf size 0.03m) is shown in the table
5.4.

Sequence No. Size of PCL (in KB) Size of Octomap (in KB) % Reduction
04 328 13.1 96
05 2619 82.5 96.8
07 1275 67.58 94.69

Table 5.4: Map memory management

The table shows the benefit of octomap based on the percentage of reduction in the
memory requirement. Reduced memory footprint enables efficient implementation for
largescale mapping in embedded devices such as NVIDIA Xavier.



58 5. Experimentation and results

5.3. Realworld validation
We conducted realworld experiments to demonstrate the use of semantic mapping in
a diverse scenario. Instead of classifying dynamic objects in the scene, the implemen
tation is extended to identify the goal state in threedimensional space. We gathered
realtime data of our robot dynamics lab with the husky robot using zed2 cameras as
shown in the figure 5.28.

Figure 5.28: Robot setup used for real world experiment

For the demonstration, all the monitors present in the environment are set as our ob
ject of interest. Similar to the semantic association of car discussed in the earlier
section, a map is built to identify the monitor in 3D space. Along with determining the
semantic points associated with the monitor, we estimate the centroid of each mon
itor individually to locate the target point in the threedimensional space. However,
outliers from the mapping process of ORBSLAM2 would estimate the centroid with
error. This prevents the estimation of centroid directly from the obtained point clouds.
To improve the centroid calculation, the following conditions are employed,

• Only the subset of map points that belong to the same instanceid is selected for
calculation. The output of instance semantic mapping is used for isolating the
subset.

• Subset representing individual object must at least have 20 map points.

• Distance between the map points in the subset and latest reference keyframe
must be within a certain threshold.

The results attained on real world data reveals that our implementation could be easily
generalised to various applications, such as identifying a target location or avoiding
specific barriers in dynamic object removal.



5. Experimentation and results 59

(a) Monitors in the lab

(b) Mapping result

(c) Tracking result with centroid estimation

Figure 5.29: Real world experiment result  Tracking and mapping





6
Conclusion

This project thrives on the objective to build robust interactive maps for navigation in
a dynamic environment. The methodology discussed in the thesis is systematically
developed to achieve the final goal by answering the research questions.

1. What is a popular approach to overcome the challenges of dynamic objects
in SLAM?
From the literature study, a learningbased approach was identified as a suitable
methodology for removing the features that correspond to dynamic objects. To that
extend, we investigated the benefits of single stage instance segmentation architec
ture SOLOV2 with other popular architectures(MaskRCNN) adapted in SLAM. Ex
perimental results show that SOLOV2 is faster and gain 10.27% higher accuracy than
MaskRCNN.

2. How to improve the quality of tracking and mapping with dynamic interac
tion?
The evaluation of dynamic object removal using SOLOV2 on the KITTI sequence re
veals that our proposed method yields good odometry results in the presence of high
dynamic interaction. However, in low traffic scenarios i.e., when most of the cars are
static in the given sequence, tracking results have deteriorated. This insists on clas
sifying the potential dynamic objects into moving and nonmoving entities.

We developed moving object segmentation architecture based on MODNet paper
which uses monocular image and optical flow to find moving and nonmoving cars.
Though the results obtained from our model have false positives, the methodology
enhances the tracking results considerably in a low dynamic situation. Improving the
accuracy of the moving object segmentation module would open a new path for other
researchers who works on realtime isolation of moving entities.

3. How to build a semantically meaningful map?
In contrast to other studies which removes the dynamic features entirely from the
SLAM processing, we eliminate dynamic features during the tracking stage of SLAM
but retain them during the mapping stage. This enables us to develop semantically

61



62 6. Conclusion

meaningful dynamic maps, which facilitates understanding of traffic interactions in
threedimensional space.

In order to enhance semantic reasoning further, multiobject tracking is combined
with instance segmentation to produce instance semantic maps. The overall pipeline
for multiobject tracking was built to process the segmentation output independently
and generate object correspondence between the detected masks of two consecutive
images. The qualitative results of object tracking on images and threedimensional
instance semantic map demonstrates the potency of the proposed approach. The
real world experiments on the robot manifest the effectiveness of our interactive map
ping and highlight the generalisation of our method on various application scenarios.
Finally, the map management module examines various approaches to store and ef
ficiently handle maps.

6.1. Recommendations
• In our study, the monocular camera is used as the primary sensor modality to ex
periment the dynamic object removal and semantic mapping. The behaviour of
our proposed methodology needs to be studied on stereo and RGBD cameras.

• Experiments of stage 2 implementation on SLAM infers that moving object seg
mentation improves tracking marginally. Poor segmentation results from mov
ing segmentation restrict us to validate the actual benefits of moving and non
moving classification. The inaccuracy of moving object segmentation is mainly
due to the limitation of egomotion compensation during optical flow image esti
mation. Further research needs to be conducted to determine appropriate ego
motion to compensate for the influence of moving cameras.

• The observational study on the newly created dataset for moving object seg
mentation using KITTI sequences reveals that moving cars are concentrated on
the centre of the image. Also, the current dataset is annotated to capture only
moving car, not extended to other classes. Henceforward, the dataset needs to
be created with diverse classes with a proper spread of moving objects across
various positions in the image.

• Multiobject tracking tracks the segmentation instances just between two con
secutive frames. In case of occlusion or variation in the lighting, particular ob
jects are missed from the monitoring. If the same object is identified in the next
frame, it will switch the identification number to a new id. In future studies, the
search space of the tracking sublet needs to be increased from two to at least
ten frames to reduce the tracking id switch.

• Currently, the deep learning models used in tracking, stage 1 and stage 2, are
processed as separate modules. Joint training and evaluation would speed up
the inference time and improve the final accuracy.



A
Appendix

This chapter explains the technical concepts and empirical theory of SLAM and deep
learning models that are required to understand the overall implementation done in
this project to achieve the research goal. The structure is divided into two sections,
the first part discusses about SLAM and the second one covers technical details of
neural networks.

A.1. SLAM Background
A.1.1. Feature matching
Image is the collection of light intensity values represented in matrix form. The change
in intensity values provides distinctly useful information that is interpreted as visual
features. These features are the key for constructing data correspondence between
sequential frames. Identifying a single pixel as a feature might not be robust to track
the correspondence in the real world as the intensity value changes due to illumina
tion. Hence, key points are introduced to find distinct locations and descriptors to
understand the key points’ local structure. Key points are generally the corners where
the gradient change is sharp and distinguishable from other places in the image. In the
real world, these features are not sufficient to identify the appropriate representations.
A bag of visual words with handcrafted features that make the keypoint detection ro
bust in the practical condition. SIFT [87], SURF [88] and ORB [89] are some of the
commonly used feature matching techniques that deliver potent results. Extracted
features should be robust to change in transformations such as illumination, rotation
and scale. Each method have their own advantage and limitations; a detailed review
of all the keypoint estimation is not the area of focus. Instead, detailing the ORB fea
ture would be sufficient to understand the pipeline used in the project.

ORB(Oriented Fast and Robust BRIEF) uses FAST [90] and Harris corner measures
to identify the dominant key points. Features extracted from the FAST do not em
brace orientation and scale. ORB solves the scaling problem by employing the image
pyramid to extract FAST features at each pyramid level. The direction of the vector
between corners and the intensity weighted centroid orients the Fast features. ORB
uses rotation aware BRIEF(Binary Robust Independent Elementary Feature) as their

63



64 A. Appendix

descriptor. This binary descriptor enables faster processing with additional rotation
information. ORB features extracted between two images is used to find the feature
correspondences in this project.

A.1.2. Coordinate transformations
Let the coordinate system used in the SLAM represented as world (𝑤), camera (𝑘),
image (𝑖) and sensor (𝑠) coordinates. The transformation of 3D point in world coor
dinate system to a 2D point in sensor coordinates is computed based on the extrinsic
and intrinsic parameters,

[
𝑥𝑠
𝑦𝑠
1
] = 𝐸 𝐾

⎡
⎢
⎢
⎣

𝑥𝑤
𝑦𝑤
𝑧𝑤
1

⎤
⎥
⎥
⎦

(A.1)

where:

𝐸 = 𝑇𝑘𝑤 = extrinsic matrix (world →camera coordinate)
𝐾 = 𝑇𝑠𝑐 𝑃𝑐𝑘 = intrinsic matrix (camera →image →sensor coordinate)
𝑇 = transformation matrix

Extrinsic parameters involve a 3D transformation of world to camera coordinates
which has 6 degrees of freedom, three for rotation and three for translation. Let point
in the world coordinate be 𝑤𝑋𝑝 (𝑥𝑤, 𝑦𝑤, 𝑧𝑤) and camera centre be 𝑘𝑋𝑂 (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘), then
the point in camera coordinates is related to world coordinate based on the transfor
mation as,

𝑘𝑋𝑝 = 𝑇𝑘𝑤 𝑤𝑋𝑝
𝑘𝑋𝑝 = 𝑅(𝑤𝑋𝑝 − 𝑘𝑋𝑂)

(A.2)

Here R denotes rotational component of transformation. Usually homogeneous co
ordinates are convenient in expressing the rotation and translation as a simplified
matrix which makes the computation easier. In homogeneous coordinates equation
A.2 could be expressed as,

𝑘𝑋ℎ𝑝 = 𝑅[𝐼| − 𝑘𝑋ℎ𝑂] 𝑤𝑋ℎ𝑝 (A.3)

Intrinsic parameters involve 3D to 2D transformation from camera to image coordi
nates and 2D to 2D transformation from camera to sensor coordinates. 3D2D trans
formation is also known as perspective projection. Transformation to sensor coordi
nates is usually taken care by adding the deviation in the intrinsic parameters along x
and y axis. In an ideal scenario, transformation by the perspective projection matrix
without deviation is given by,

𝑐𝑋ℎ𝑝 = 𝑃𝑐𝑘 𝑘𝑋ℎ𝑝

𝑐𝑋ℎ𝑝 = [
𝑓 0 0
0 𝑓 0
0 0 1

] 𝑘𝑋ℎ𝑝
(A.4)



A. Appendix 65

A.1.3. Epipolar constraint
Consider a 3D point 𝑃 in the world observed as the features point 𝑝1 and 𝑝2 in the
camera coordinate of two individual frames respectively, as shown in the figure A.1.

Figure A.1: Epipolar geometry

The plane formed between the two camera centres and point 𝑃 is called the epipo
lar plane. From the figure A.1, it could be observed that point 𝑃 could lie at any loca
tion on the projected ray from the feature 𝑝1. The exact location of point P could be
identified by the intersection of the ray projected from feature 𝑝2 and 𝑝1. Hence, the
accuracy of the estimated point location depends on the quality of feature matching.
Relation between feature points in two images could be established using camera
motion model represented as the transformation matrix(rotation 𝑅 and translation 𝑡)
[91].

𝑝1 = 𝑅.𝑝2 + 𝑡 (A.5)

Cross product with t, then multiplying p1 on both sides we modify the equation into,

𝑝1(𝑡 × 𝑝1) = 𝑝1(𝑡 × 𝑅.𝑝2)
𝑝𝑇1 [𝑡𝑥] 𝑅𝑝2 = 0

(A.6)

Equation A.6 expresses the relationship between the point in the camera coordinate.
The translation and rotation matrix could be represented together as the essential
matrix 𝐸,

𝑝𝑇1𝐸𝑝2 = 0 (A.7)

Based on the relationship between essential and fundamental matrix 𝐹 we can extend
the epipolar constraint between two points 𝑢1 and 𝑢2 in the sensor/image coordinates.
Fundamental matrix correlates the same points observed from an scene in two differ
ent frames.

(𝑢𝑇1𝐾−𝑇)𝐸(𝐾−1𝑢2) = 0
𝑢𝑇1𝐹𝑢2 = 0

(A.8)

Equations A.7 and A.8 are interchangeably used as epipolar constraints where epi
polar lines is given by 𝑙 = 𝐹𝑢2 = 𝐹𝑇𝑢1. Fundamental matrix and essential matrix
found using eightpoint [92] or fivepoint algorithms [93]. Under pure rotation, it is



66 A. Appendix

hard to estimate the Essential and Fundamental matrix. In such cases, homography
matrix helps to relate a point in an image with another image. Homography is a projec
tive transformation of planar objects represented in a threedimensional matrix. The
idea of fundamental matrix, epipolar geometry, homography would be used in various
components of our SLAM module.

A.1.4. Triangulation
Triangulation estimates the depth in monocular SLAM to an arbitrary scale for esti
mating 3D map points. It uses epipolar constraint to estimate 3D location from the
intersection of rays originated from feature points. Error in feature extraction could
cause the rays not to intersect. Reprojection error is used to ensures the quality of
3D points by backprojecting rays onto the image coordinate with 2D feature location.
The obtained map points are refined along with camera poses later through bundle
adjustment methods. Details of reprojection error and bundle adjustment are dis
cussed in next section. The main disadvantage of triangulation is that it does not work
well with pure rotation.

A.1.5. Bundle adjustment
Bundle Adjustment (BA) [94] is an optimisation procedure to find the optimal transfor
mation that correct the accumulated drift during visual odometry. Bundle adjustment
is the minimisation problem that corrects the estimated poses and map points based
on the reprojection error. If the 3D point 𝑃𝑖 projected on the camera j (say 𝑝𝑖𝑗) is
compared with 2D image coordinate measured from the camera ̂𝑝𝑖𝑗, then reprojection
error is given as,

𝑚𝑖𝑛
𝑖=1

∑
𝑛

𝑗=1

∑
𝑛
(𝑝𝑖𝑗 − ̂𝑝𝑖𝑗) (A.9)

The analytical method cannot be used to solve the equation due high degree of non
linearity caused by the geometrical constraints associated between poses and cor
responding map points. Hence, iterated methods [95] such as GaussNewton or
LevenbergMarquardt algorithm used to estimate corrected R, t and 𝑃𝑖. Levenberg
Marquardt algorithm [96] bound the minimisation problem by damping factor which
chooses the optimisation trend between least square and steepest descent achieving
faster convergence. Sparsity observed in SLAM ensures the optimisation could run
in realtime by matrix decomposition. SLAM researchers uses G2o(General graphic
optimisation) [97] library to solve such nonlinear optimisation.

A.1.6. Graph based SLAM
The graphbased system enables usage of SLAM in largescale scenarios. Graph
based architecture composed of vertices where each vertex (node) in the graph cor
responds to the poses or landmarks. All nodes are connected by edges which rep
resents the spatial constraints between the poses/landmarks obtained from the cam
era measurements. Usually the keyframes that observe similar feature points are
connected with each other. Graphbased SLAM usually has a frontend finding the



A. Appendix 67

Figure A.2: Graph based SLAM [98]

relative transformation of poses to construct graph and backend bundle adjustment
to correct the drift accumulated due to reprojection error. Let 𝑥𝑖 be a node that ob
serves node 𝑥𝑗 by estimating the relative transformation ̂𝑧𝑖𝑗 between these two nodes.
Actual measurement 𝑧𝑖𝑗 and corresponding information matrix Ω (inverse covariance
matrix) identifies the expected location of these poses in the graph as shown in the
figure A.2. Information matrix adds weights to each node during the final optimisation,
where the optimisation involves minimising the loglikelihood. Then the minimisation
problem could be expressed as follows which is then solved using one of the popular
iterative methods discussed in previous section,

𝑋 = 𝑎𝑟𝑔𝑚𝑖𝑛∑
𝑖𝑗
𝑒𝑇𝑖𝑗Ω𝑖𝑗𝑒𝑖𝑗

𝑒𝑖𝑗(𝑥𝑖 , 𝑥𝑗) = 𝑧𝑖𝑗 − 𝑧∧𝑖𝑗
(A.10)

A.1.7. Optical flow
Optical flow is the estimation of relative motion of pixel intensity values captured be
tween two camera instances. For the static camera without dynamic objects in the
scene, optical flow is calculated as zero. Optical flow algorithms have two fundamen
tal assumptions [99],

• Temporal persistence  motion of any given point between two consecutive im
age frames should be relatively small.

• Brightness constancy  the intensity value of a pixel remains constant between
two subsequent images.

If a point represented as 𝑥 and 𝑦 in an image which moves with velocity 𝑣 from time 𝑡
to 𝑡 + 𝑑𝑡, then an image could be represented based on the above assumptions as,

𝐼(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡) = 𝐼(𝑥, 𝑦, 𝑡) (A.11)



68 A. Appendix

Figure A.3: Optical flow explanation

Using Taylor expansion and associating the first order derivatives to zero based on
the temporal consistence property, the optical flow equation is given by,

𝜕𝐼
𝜕𝑥𝑢 +

𝜕𝐼
𝜕𝑦𝑣 +

𝜕𝐼
𝜕𝑡 = 0 (A.12)

where:

𝑢, 𝑣 = flow vectors along x and y direction

Equation A.12 is underconstrained, and it is hard to obtain a direct solution. Lucas
Kanade or HornSchunck method assumes the local and global smoothing respec
tively to overconstrain the equation A.12, which helps in calculating the optical flow
vectors. Deep learning methods such as FlowNet [100], PWCNet [101], ARflow [102]
are used as a substitute to the conventional methods achieving the state of the art re
sult. These deep learning models captures the temporal variation of the image as
horizontal and vertical flow vectors in two channels. These vector representation are
converted as RGB images as shown in the figure A.4 for easy interpretation.

Figure A.4: Optical flow  Color representation [61]

A.2. Deep learning Background
Artificial intelligence brings a new dimension of possibilities to make the computer im
itate human behaviour. Machine learning is a popular subset of artificial intelligence
where the computer learns to differentiate among the given features to make suitable
decisions. Deep learning is a more specific area of machine learning where the model



A. Appendix 69

trains to learn the features directly for the given task. Inherited representation learning
in deep learning models overcomes the main problem of identifying the features sep
arately. Training the model, maps the input (x) to the output (Y) which is generalised
as

𝑌 = 𝑓(𝑥, 𝜃) (A.13)
where:

𝜃 = parameters learnt by the model

The deep learning method is categorized into supervised, semisupervised, or un
supervised based on the availability of ground truth information in the training data
[103]. Dataset of supervised learning contains target label for individual input based
on the final task. The model trained on supervised dataset learns the conditional
probability 𝑝(𝑌|𝑥) based on the error between prediction and output labels. Unsuper
vised learning trains the model in the absence of specific output labels and therefore
it attempts to determine the overall structure of the dataset. For a given input data,
unsupervised techniques determine joint distribution 𝑝(𝑥, 𝑌). Unsupervised learning is
typically employed in clustering, dimensionality reduction, and generative networks.
Semisupervised learning is a hybrid of supervised and unsupervised learning best
suited for situations with a small number of labelled and many unlabeled data. In our
study, we employ supervised learning approaches to train artificial neural networks to
obtain the required outcomes.

A.2.1. Neural networks
Let 𝑓 represent map function that ideally correlates the input to output. To effectively
learn the representation of the map function we define the model, cost function and
optimization methods. Neural network model is usually the stack of multiple layers
where the overall function 𝑓 is made up by the combination of features learn from the
intermediate layers represented as

𝑓 = 𝑓1(𝑓2(𝑓3, ...(𝑥, 𝜃))) (A.14)

where:
𝑓1 = first layer
𝑓2 = second layer
𝑓3 = third layer and goes on

Before diving deeper into the different model architecture, the functionality of the
primary component that made up the whole architecture is discussed briefly.

A.2.1.1. Neuron
Neurons are the basic building block of neural networks that store the parameter value
as weight and bias during training [104]. Many neurons act in parallel with each other
and final output is calculated as weighted sum of inputs with a bias term. The equation
below depicts a linear function in which nonlinearity is added by activation function.

𝑍 =∑
𝑖
𝑊𝑇
𝑖 . 𝑥𝑖 + 𝑏 (A.15)



70 A. Appendix

where:
𝑤 = weight term
𝑏 = bias term
𝑖 = {1,2,..n}
𝑧 = {∞,+∞}

A.2.1.2. Activation function
The activation function attempts to behave similarly to neurons in the human brain,
allowing output to pass only when it reaches a specific threshold. It also attempts
to limit the output to a particular range, preventing underflow during calculation. The
activation function might be linear or nonlinear. Only nonlinear activation functions
are discussed below.

Figure A.5: Various types of activation function

Sigmoid function squeezes the output between 0 to 1. Even a small change in
the input value causes significant change in the output which makes sigmoid ideally
suitable for classification task [105].

𝜎(𝑧) = 1
1+ 𝑒−𝑥 (A.16)

Unlike sigmoid function, Tanh function squeezes the output between 1 to 1, which
makes gradient flow much steeper than sigmoid. Though sigmoid and tanh add non
linearity in the system, they squeeze output to a smaller magnitude which causes
vanishing gradient problems for deeper model architecture [106].

tanh (𝑧) = 2
1+ 𝑒−2𝑥 − 1 (A.17)

Rectified Linear Unit (ReLU) [107] is a frequently used activation function that, to
some extent, avoids the problem of vanishing gradient. Because it limits the output
values between 0 and infinity, the ReLU activation may occasionally blow out the gra
dients. It is considerably more computationally efficient and sparse than sigmoid and
tanh. The primary disadvantage of the ReLU is that it ignores negative output, leading
some neurons to stay dormant. To address these disadvantages, leaky ReLU and pa
rameterized ReLU may be viable options. Models implemented in our pipeline uses
ReLU activation in intermediate layers.

𝑅𝑒𝐿𝑈(𝑧) = 𝑚𝑎𝑥(0, 𝑥) (A.18)



A. Appendix 71

A.2.1.3. Loss function
Neural networks use loss function as the evaluation criterion to minimize the error be
tween the predicted output and the ground truth. The scalar loss value calculated by
the general loss function A.19 is utilized to update the model parameters iteratively un
til the global minimum is attained. The choice of loss function depends on the ultimate
problem that the model must answer to complete the desired task. Individual details
of loss functions used in training the model is discussed in the following chapters.
General loss function is given by,

𝑙𝑜𝑠𝑠 = 𝐿𝑓(�̂�, 𝑦) (A.19)

where:

𝐿𝑓 = objective function
�̂� = network prediction
𝑦 = ground truth label
𝑙𝑜𝑠𝑠 = scalar value

BackPropagation: Model is trained by feeding the input in forward pass, com
paring the outcomes based on the loss function, and updating the model parameters.
Backpropagation is a technique for updating network parameters(weight and bias)
which computes partial derivatives based on a given objective function. The updating
rule based on the gradient descent algorithm is given by,

𝑤(𝑡+1) = 𝑤𝑡 − 𝛼
𝜕𝐿
𝜕𝑤(𝑡)

𝑏(𝑡+1) = 𝑏𝑡 − 𝛼
𝜕𝐿
𝜕𝑏(𝑡)

(A.20)

where:

𝛼(> 0) = learning rate

A.2.1.4. Optimiser
An optimizer is a method for adjusting the weights that aids in the faster convergence.
One of the significant hyper parameters of optimisation that determine the step size
of gradients flow is the learning rate. Setting a low learning rate will result in a slower
convergence to an optimal solution. The higher learning rate would speed up training,
but the training becomes unstable when the gradient approaches closer to zero [108].



72 A. Appendix

Figure A.6: Learning rate explanation

Gradient descent allows the gradient to flow in the negative direction of slope based
on the error. The primary downside of this approach is that it computes the gradient for
the entire dataset at once in order to optimize the model parameters, which increases
the computational cost. On the other hand, stochastic gradient descent (SGD) [109]
updates the model parameters based on single input data to ease the computation
burden. But, the frequent updating may result in significant variation and uneven
gradients update. The minibatch gradient descent enhances SGD’s capabilities by
updating after each designated minibatch.

Gradient descent algorithms have additional hyperparameters (depends on type of
optimiser) to properly govern the direction of the gradient flow by decreasing variation
that occur due to noise. The momentum term [110] is an often used to accelerate
the path of gradients towards global minima, thus avoiding the gradient from getting
trapped in a local minimum. The momentum term 𝛽1 accumulates an exponentially
weighted average of the past gradients in the current optimization step. The hyperpa
rameter value 𝛽1 of 0.9 was selected as default. RMSprop [111] accelerates learning
in the desired dimension by lowering variation in the other dimension using an expo
nentially weighted average analogous to momentum. Unlike momentum, this tech
nique discards extreme past gradients during accumulation, allowing it to converge
quicker. The Adam optimiser [112] is a combination of the momentum and RMSprop
algorithms that is extensively used in modern neural network implementation. It com
putes the gradient using first and second order derivatives and adjusts the learning
rate to converge more quickly. During training, we make use of Adam optimiser for
updating weights.

Based on the momentum optimiser,
𝑣𝜕𝑤 = 𝛽1 𝑣𝜕𝑤 + (1 − 𝛽1) 𝜕𝑤
𝑣𝜕𝑏 = 𝛽1 𝑣𝜕𝑏 + (1 − 𝛽1) 𝜕𝑏
𝑣𝑐𝜕𝑤 =

𝑣𝜕𝑤
1 − 𝛽𝑖1

; 𝑣𝑐𝜕𝑏 =
𝑣𝜕𝑏
1 − 𝛽𝑖1

(A.21)



A. Appendix 73

Based on RMSprop optimiser,
𝑠𝜕𝑤 = 𝛽2 𝑠𝜕𝑤 + (1 − 𝛽2) 𝜕𝑤2
𝑠𝜕𝑏 = 𝛽2 𝑠𝜕𝑏 + (1 − 𝛽2) 𝜕𝑏2

𝑠𝑐𝜕𝑤 =
𝑠𝜕𝑤
1 − 𝛽𝑖1

; 𝑠𝑐𝜕𝑏 =
𝑠𝜕𝑏
1 − 𝛽𝑖1

(A.22)

Adam optimiser could hence be derived as,

𝑤(𝑡+1) = 𝑤𝑡 − 𝛼
𝑉𝑐𝜕𝑤
√𝑠𝑐𝜕𝑤

𝑏(𝑡+1) = 𝑏𝑡 − 𝛼
𝑉𝑐𝜕𝑏
√𝑣𝑐𝜕𝑏

(A.23)

A.2.2. Convolutional Neural Network
A convolutional neural network (CNN) is a popular model architecture for extracting
features from the images. The below section goes through the key components of a
convolutional neural network.

A.2.2.1. Convolution and its properties
Convolution layer extracts spatial information by applying kernel filters to the input
image. Each convolutional layer has a collection of filters that convert the input into
feature maps by learning complicated pattern during training. Convolution mathemat
ically shares a similar structure as crosscorrelation as given in the equation A.24.
Convolution holds commutative property such that output remains the same when
kernel and input are interchanged.

𝐺[𝑖, 𝑗] =
𝑘

∑
𝑢=−𝑘

𝑘

∑
𝑣=−𝑘

𝐻[𝑢, 𝑣]𝐹[𝑖 − 𝑢, 𝑗 − 𝑣] (A.24)

Unlike normal neural networks, weights of CNN are tied with each other enabling
the parameter to share its local properties spatially. They also provide the benefit
of translation equivariance where the change in the input would also shift the output
accordingly. Convolution, on the other hand, is not equivariant for changes in size and
rotation.

A.2.3. Pooling
Feature maps generated by the convolutional layer are passed through the pooling
layer, usually after the nonlinear activation function. The pooling layer captures global
information without making the network bias towards the small nonrigid changes in
the image. The pooling layer does not learn any parameters; instead, it decreases
spatial resolution to smooth out the computational complexity of the subsequent lay
ers. Commonly used pooling methods are max pooling and average pooling. Max
pooling identifies the largest value in the provided patch of a feature map, whereas
average pooling calculates the average value of the patch to downsample the given
input as shown in figure A.7.



74 A. Appendix

Figure A.7: Max and average pooling

A.2.4. Stride and Padding
The stride parameter controls the sliding interval of the kernel window over the input
area. Applying Convolution over image usually reduces the dimension spatially but
in some tasks it is essential to retain output size to establish dimensional coherence
across the model structure. Padding is typically used to restore the size between input
and output layers. Padding is applied around borders of input with a predefined value
of zero.

(a) (b)

Figure A.8: Stride (a) and Pooling (b)

A.2.4.1. Upsampling
Padding could help retaining spatial resolution but the information at the boundaries
is processed as zeros. On the other hand, upsampling techniques with transposed
convolution proven to be an effective strategy for increasing the resolution of the fea
tures. Transposed convolution learns the weight and bias for upsampling the features
which outperforms conventional interpolation algorithms such as bicubic and bilinear.
The primary drawback is that separate weights have to be learnt during the training.



B
Appendix

B.1. Geometrical approach  Stage 2
The appendix B contains methodology studied during the phase of our project devel
opment but not included in the final pipeline. In section 3.2.3, the deep learning model
detects the moving object in the scene. Based on the literature, the moving object in
the scene could also be detected using geometrical approaches. One such geometri
cal approach, namely epipolar constraint, is studied in our project to classify potential
dynamic objects into moving and nonmoving entities.

Epipolar constraint is already associated in ORBSLAM2 algorithm to find the dynamic
points. The main difference between the epipolar constraint used in our implementa
tion and ORBSLAM2 lies with the handling of dynamic points. In ORBSLAM2, the
dynamic points could not associated with the individual object. Due to a lack of object
boundary information, points associated with objects are not entirely categorized as
dynamic would be included in the map. However, in our implementation, the points
corresponding to the dynamic objects are classified based on the segmentation mask
which ensures all the point associated with the object is removed during the SLAM
process. Such an implementation would undoubtedly improve the efficiency of han
dling dynamic points present in the scene.

Figure B.1: Individual feature tracking using flow vectors

Lucas Kanade method of sparse optical flow is used to track the feature correspon
dence between two consecutive images. Let us consider the feature correspondence

75



76 B. Appendix

points obtained from two images as 𝑓𝑡 , 𝑓𝑡+1. The segmentation output is coupled to
isolate features into the subset based on the instances, as shown in the figure B.1.

Figure B.2: Epipolar line with tracked features

The section A.1.3 suggest that an epipolar line could be formed based on the fun
damental matrix (F) and feature point as 𝐹 ∗ 𝑓𝑡. Based on the epipolar constraint,
feature correspondence associated with the static points in the next frame always lies
closer to the epipolar line. If the perpendicular distance between the feature points
and the epipolar line is higher than a threshold, the points are considered as dynamic.
We consider an object with at least three dynamic points to be moving. The epipolar
constraint governing the dynamic point detection is given by,

𝑓𝑇𝑡+1.𝐹.𝑓𝑡 = 0 (B.1)

The main challenges of using the geometrical approach involves the correct estima
tion of the fundamental matrix and mismatch of feature correspondence. Though the
feature mismatch problem during our experiments is tackled using IOU and the multi
object tracking result, the fundamental matrix could not be estimated robustly. In the
case of predominant camera rotation, the estimation of the fundamental matrix be
comes erratic. Such an inaccurate fundamental matrix would result in outliers causing
inefficient detection of dynamic points. Hence this approach is not implemented as
part of our final pipeline.

B.2. Semidense Mapping
ORBSLAM2 maps the features detected in multiple frames as the landmark in the 3D
space. The sparsity of the map created by ORBSLAM2 is one of its drawbacks when
compared to direct SLAM approaches. This section explores the densemapping tech
nique adapted to the featurebased SLAM architecture to overcome the sparsity.

The current implementation is based on the research proposed in [113]. The main
idea behind the semidense mapping lies in the estimation of inverse depth for the
neighbouring pixel association. Feature pixels of keyframes with high gradient values
are searched along the epipolar line to generate inverse depth hypotheses, proba
bilistically represented in the gaussian distribution. A cost function based on modulo



B. Appendix 77

Figure B.3: Semidense mapping  ORBSLAM2 implementation [113]

and orientation values is considered in addition to the intensity values to ensure ro
bust estimation void of outliers. The search space of hypotheses is confined using
the known depth estimated during tracking and local mapping. After the depth hy
potheses, intrakeyframe and interkeyframe depth checking and smoothening are
performed to remove the outliers and provide smoothened edges. The qualitative re
sult analysed in the paper suggest that reconstructed maps have better edges than
LSDSLAM.

The reconstructed semidense mapping of KITTI sequences is shown below,

Figure B.4: Semidense mapping results





Bibliography

[1] Giulio Reina, Andres Vargas, Keiji Nagatani, and Kazuya Yoshida. Adaptive
kalman filtering for gpsbased mobile robot localization. In 2007 IEEE Interna
tional Workshop on Safety, Security and Rescue Robotics, pages 1–6. IEEE,
2007.

[2] Muhammad Sualeh and GonWoo Kim. Simultaneous localization and mapping
in the epoch of semantics: a survey. International Journal of Control, Automa
tion and Systems, 17(3):729–742, 2019.

[3] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza,
José Neira, Ian Reid, and John J Leonard. Past, present, and future of simul
taneous localization and mapping: Toward the robustperception age. IEEE
Transactions on robotics, 32(6):1309–1332, 2016.

[4] Ioannis Kostavelis and Antonios Gasteratos. Semantic mapping for mobile
robotics tasks: A survey. Robotics and Autonomous Systems, 66:86–103,
2015.

[5] Berta Bescos, Carlos Campos, Juan D Tardós, and José Neira. Dynaslam ii:
Tightlycoupled multiobject tracking and slam. IEEE Robotics and Automation
Letters, 6(3):5191–5198, 2021.

[6] ChiehChih Wang, Charles Thorpe, Sebastian Thrun, Martial Hebert, and Hugh
DurrantWhyte. Simultaneous localization, mapping andmoving object tracking.
The International Journal of Robotics Research, 26(9):889–916, 2007.

[7] Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. Visual slam algorithms:
a survey from 2010 to 2016. IPSJ Transactions on Computer Vision and Appli
cations, 9(1):1–11, 2017.

[8] Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison. Dtam:
Dense tracking and mapping in realtime. In 2011 international conference on
computer vision, pages 2320–2327. IEEE, 2011.

[9] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. Svo: Fast semidirect
monocular visual odometry. In 2014 IEEE international conference on robotics
and automation (ICRA), pages 15–22. IEEE, 2014.

[10] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry.
IEEE transactions on pattern analysis and machine intelligence, 40(3):611–625,
2017.

79



80 Bibliography

[11] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsdslam: Largescale
direct monocular slam. In European conference on computer vision, pages
834–849. Springer, 2014.

[12] Thomas Schöps, Jakob Engel, and Daniel Cremers. Semidense visual odom
etry for ar on a smartphone. In 2014 IEEE international symposium on mixed
and augmented reality (ISMAR), pages 145–150. IEEE, 2014.

[13] Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse.
Monoslam: Realtime single camera slam. IEEE transactions on pattern anal
ysis and machine intelligence, 29(6):1052–1067, 2007.

[14] Georg Klein and David Murray. Parallel tracking and mapping for small ar
workspaces. In 2007 6th IEEE and ACM international symposium on mixed
and augmented reality, pages 225–234. IEEE, 2007.

[15] Raul MurArtal, Jose Maria Martinez Montiel, and Juan D Tardos. Orbslam: a
versatile and accurate monocular slam system. IEEE transactions on robotics,
31(5):1147–1163, 2015.

[16] Raul MurArtal and Juan D Tardós. Orbslam2: An opensource slam sys
tem for monocular, stereo, and rgbd cameras. IEEE transactions on robotics,
33(5):1255–1262, 2017.

[17] Maksim Filipenko and Ilya Afanasyev. Comparison of various slam systems for
mobile robot in an indoor environment. In 2018 International Conference on
Intelligent Systems (IS), pages 400–407. IEEE, 2018.

[18] YinTien Wang, MingChun Lin, and RungChi Ju. Visual slam and moving
object detection for a smallsize humanoid robot. International Journal of Ad
vanced Robotic Systems, 7(2):13, 2010.

[19] Yaser Sheikh, Omar Javed, and Takeo Kanade. Background subtraction for
freely moving cameras. In 2009 IEEE 12th International Conference on Com
puter Vision, pages 1219–1225. IEEE, 2009.

[20] Abhijit Kundu, K Madhava Krishna, and Jayanthi Sivaswamy. Moving object
detection by multiview geometric techniques from a single camera mounted
robot. In 2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 4306–4312. IEEE, 2009.

[21] Muhamad Risqi U Saputra, Andrew Markham, and Niki Trigoni. Visual slam
and structure frommotion in dynamic environments: A survey. ACMComputing
Surveys (CSUR), 51(2):1–36, 2018.

[22] Gonzalo R RodríguezCanosa, Stephen Thomas, Jaime Del Cerro, Antonio
Barrientos, and Bruce MacDonald. A realtime method to detect and track
moving objects (datmo) from unmanned aerial vehicles (uavs) using a single
camera. Remote Sensing, 4(4):1090–1111, 2012.



Bibliography 81

[23] Boyoon Jung and Gaurav S Sukhatme. Detecting moving objects using a single
camera on a mobile robot in an outdoor environment. In International confer
ence on intelligent autonomous systems, pages 980–987. Citeseer, 2004.

[24] Yuxiang Sun, Ming Liu, and Max QH Meng. Improving rgbd slam in dynamic
environments: A motion removal approach. Robotics and Autonomous Sys
tems, 89:110–122, 2017.

[25] Weichen Dai, Yu Zhang, Ping Li, Zheng Fang, and Sebastian Scherer. Rgbd
slam in dynamic environments using point correlations. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2020.

[26] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, realtime object detection. In Proceedings of the IEEE con
ference on computer vision and pattern recognition, pages 779–788, 2016.

[27] Gumin Jin, Xingjun Zhong, Shaoqing Fang, Xiangyu Deng, and Jianxun Li.
Keyframebased dynamic elimination slam system using yolo detection. In Inter
national Conference on Intelligent Robotics and Applications, pages 697–705.
Springer, 2019.

[28] Peiyu Guan, Zhiqiang Cao, Erkui Chen, Shuang Liang, Min Tan, and Junzhi Yu.
A realtime semantic visual slam approach with points and objects. International
Journal of Advanced Robotic Systems, 17(1):1729881420905443, 2020.

[29] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello.
Enet: A deep neural network architecture for realtime semantic segmentation.
arXiv preprint arXiv:1606.02147, 2016.

[30] Zhuo Chen, Weimin Zhang, Fangxing Li, Yongliang Shi, Yang Wang, Fuyu Nie,
Chi Zhu, and Qiang Huang. A research on the fusion of semantic segment net
work and slam. In 2019 IEEE International Conference on Advanced Robotics
and its Social Impacts (ARSO), pages 304–309. IEEE, 2019.

[31] Chao Yu, Zuxin Liu, XinJun Liu, Fugui Xie, Yi Yang, Qi Wei, and Qiao Fei.
Dsslam: A semantic visual slam towards dynamic environments. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1168–1174. IEEE, 2018.

[32] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep con
volutional encoderdecoder architecture for image segmentation. IEEE trans
actions on pattern analysis and machine intelligence, 39(12):2481–2495, 2017.

[33] Linyan Cui and Chaowei Ma. Sofslam: A semantic visual slam for dynamic
environments. IEEE Access, 7:166528–166539, 2019.

[34] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask rcnn. In
Proceedings of the IEEE international conference on computer vision, pages
2961–2969, 2017.



82 Bibliography

[35] Lili Zhao, Zhili Liu, Jianwen Chen, Weitong Cai, Wenyi Wang, and Liaoyuan
Zeng. A compatible framework for rgbd slam in dynamic scenes. IEEE Access,
7:75604–75614, 2019.

[36] Berta Bescos, José M Fácil, Javier Civera, and José Neira. Dynaslam: Track
ing, mapping, and inpainting in dynamic scenes. IEEERobotics and Automation
Letters, 3(4):4076–4083, 2018.

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica
tion with deep convolutional neural networks. Advances in neural information
processing systems, 25:1097–1105, 2012.

[38] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Pro
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 580–587, 2014.

[39] Ross Girshick. Fast rcnn. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), December 2015.

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster rcnn: towards
realtime object detection with region proposal networks. IEEE transactions on
pattern analysis and machine intelligence, 39(6):1137–1149, 2016.

[41] Lilian Weng. Object detection for dummies part 3: Rcnn family.
lilianweng.github.io/lillog, 2017.

[42] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
ChengYang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In
European conference on computer vision, pages 21–37. Springer, 2016.

[43] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[44] Shijie Hao, Yuan Zhou, and Yanrong Guo. A brief survey on semantic segmen
tation with deep learning. Neurocomputing, 406:302–321, 2020.

[45] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net
works for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3431–3440, 2015.

[46] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. Unet: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computerassisted intervention, pages 234–241.
Springer, 2015.

[47] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.
Pyramid scene parsing network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2881–2890, 2017.



Bibliography 83

[48] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. Yolact: Realtime
instance segmentation. In Proceedings of the IEEE/CVF International Confer
ence on Computer Vision, pages 9157–9166, 2019.

[49] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chunhua Shen. Solov2:
Dynamic, faster and stronger. arXiv preprint arXiv:2003.10152, 2020.

[50] Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, and Lei Li. Solo: Seg
menting objects by locations. In European Conference on Computer Vision,
pages 649–665. Springer, 2020.

[51] TsungYi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. Feature pyramid networks for object detection. In Proceed
ings of the IEEE conference on computer vision and pattern recognition, pages
2117–2125, 2017.

[52] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank,
Alex Sergeev, and Jason Yosinski. An intriguing failing of convolutional neural
networks and the coordconv solution. arXiv preprint arXiv:1807.03247, 2018.

[53] TsungYi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Fo
cal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980–2988, 2017.

[54] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and M Jorge
Cardoso. Generalised dice overlap as a deep learning loss function for highly
unbalanced segmentations. In Deep learning in medical image analysis and
multimodal learning for clinical decision support, pages 240–248. Springer,
2017.

[55] Zhilu Zhang and Mert R Sabuncu. Generalized cross entropy loss for training
deep neural networks with noisy labels. In 32nd Conference on Neural Infor
mation Processing Systems (NeurIPS), 2018.

[56] Yaoshiang Ho and Samuel Wookey. The realworldweight crossentropy loss
function: Modeling the costs of mislabeling. IEEE Access, 8:4806–4813, 2019.

[57] HengWang and Cordelia Schmid. Action recognition with improved trajectories.
In Proceedings of the IEEE international conference on computer vision, pages
3551–3558, 2013.

[58] Mennatullah Siam, Heba Mahgoub, Mohamed Zahran, Senthil Yogamani, Mar
tin Jagersand, and Ahmad ElSallab. Modnet: Moving object detection net
work with motion and appearance for autonomous driving. arXiv preprint
arXiv:1709.04821, 2017.

[59] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
largescale image recognition. arXiv preprint arXiv:1409.1556, 2014.



84 Bibliography

[60] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy,
and Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with deep
networks. In Proceedings of the IEEE conference on computer vision and pat
tern recognition, pages 2462–2470, 2017.

[61] Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black, and
Richard Szeliski. A database and evaluation methodology for optical flow. In
ternational journal of computer vision, 92(1):1–31, 2011.

[62] Margarita Grinvald, Fadri Furrer, Tonci Novkovic, Jen Jen Chung, Cesar Ca
dena, Roland Siegwart, and Juan Nieto. Volumetric instanceaware seman
tic mapping and 3d object discovery. IEEE Robotics and Automation Letters,
4(3):3037–3044, 2019.

[63] Martin Runz, Maud Buffier, and Lourdes Agapito. Maskfusion: Realtime recog
nition, tracking and reconstruction of multiple moving objects. In 2018 IEEE In
ternational Symposium on Mixed and Augmented Reality (ISMAR), pages 10–
20. IEEE, 2018.

[64] Wenhan Luo, Junliang Xing, Anton Milan, Xiaoqin Zhang, Wei Liu, and Tae
Kyun Kim. Multiple object tracking: A literature review. Artificial Intelligence,
page 103448, 2020.

[65] Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon Luiten, Berin Bal
achandar Gnana Sekar, Andreas Geiger, and Bastian Leibe. Mots: Multiobject
tracking and segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7942–7951, 2019.

[66] ZhongdaoWang, Liang Zheng, Yixuan Liu, Yali Li, and ShengjinWang. Towards
realtimemultiobject tracking. InComputer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16, pages
107–122. Springer, 2020.

[67] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[68] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Re
hder, Sammy Omari, Markus W Achtelik, and Roland Siegwart. The euroc
micro aerial vehicle datasets. The International Journal of Robotics Research,
35(10):1157–1163, 2016.

[69] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel
Cremers. A benchmark for the evaluation of rgbd slam systems. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages
573–580. IEEE, 2012.

[70] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision
meets robotics: The kitti dataset. The International Journal of Robotics Re
search, 32(11):1231–1237, 2013.



Bibliography 85

[71] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The
cityscapes dataset for semantic urban scene understanding. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[72] M Siam. Multitask learning with motion and appearance.

[73] Kentaro Wada. labelme: Image Polygonal Annotation with Python. https:
//github.com/wkentaro/labelme, 2016.

[74] Shinji Umeyama. Leastsquares estimation of transformation parameters be
tween two point patterns. IEEE Transactions on Pattern Analysis & Machine
Intelligence, 13(04):376–380, 1991.

[75] Zichao Zhang and Davide Scaramuzza. A tutorial on quantitative trajectory
evaluation for visual (inertial) odometry. In 2018 IEEE/RSJ International Con
ference on Intelligent Robots and Systems (IROS), pages 7244–7251. IEEE,
2018.

[76] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid,
and Silvio Savarese. Generalized intersection over union: A metric and a loss
for bounding box regression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 658–666, 2019.

[77] Yuxin Wu, Alexander Kirillov, Francisco Massa, WanYen Lo, and Ross
Girshick. Detectron2. https://github.com/facebookresearch/
detectron2, 2019.

[78] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolu
tional neural networks. In International Conference onMachine Learning, pages
6105–6114. PMLR, 2019.

[79] Rishav Rishav, Ramy Battrawy, René Schuster, Oliver Wasenmüller, and Didier
Stricker. Deeplidarflow: A deep learning architecture for scene flow estimation
using monocular camera and sparse lidar. In 2020 IEEE/RSJ International Con
ference on Intelligent Robots and Systems (IROS), pages 10460–10467. IEEE,
2020.

[80] Johan Vertens, Abhinav Valada, and Wolfram Burgard. Smsnet: Semantic mo
tion segmentation using deep convolutional neural networks. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
582–589. IEEE, 2017.

[81] Hazem Rashed, Ahmad El Sallab, and Senthil Yogamani. Vmmodnet: Vehicle
motion aware moving object detection for autonomous driving. arXiv preprint
arXiv:2104.10985, 2021.

[82] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks.
arXiv preprint arXiv:1404.5997, 2014.

https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2


86 Bibliography

[83] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE confer
ence on computer vision and pattern recognition, pages 4700–4708, 2017.

[84] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Pro
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 4510–4520, 2018.

[85] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl).
In 2011 IEEE international conference on robotics and automation, pages 1–4.
IEEE, 2011.

[86] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. Octomap: An efficient probabilistic 3d mapping framework based on
octrees. Autonomous robots, 34(3):189–206, 2013.

[87] David G Lowe. Distinctive image features from scaleinvariant keypoints. Inter
national journal of computer vision, 60(2):91–110, 2004.

[88] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust fea
tures. In European conference on computer vision, pages 404–417. Springer,
2006.

[89] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An
efficient alternative to sift or surf. In 2011 International conference on computer
vision, pages 2564–2571. Ieee, 2011.

[90] Edward Rosten and Tom Drummond. Machine learning for highspeed cor
ner detection. In European conference on computer vision, pages 430–443.
Springer, 2006.

[91] Robert C Bolles, H Harlyn Baker, and David H Marimont. Epipolarplane im
age analysis: An approach to determining structure from motion. International
journal of computer vision, 1(1):7–55, 1987.

[92] Richard I Hartley. In defense of the eightpoint algorithm. IEEE Transactions on
pattern analysis and machine intelligence, 19(6):580–593, 1997.

[93] David Nistér. An efficient solution to the fivepoint relative pose problem.
IEEE transactions on pattern analysis andmachine intelligence, 26(6):756–770,
2004.

[94] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon.
Bundle adjustment—a modern synthesis. In International workshop on vision
algorithms, pages 298–372. Springer, 1999.

[95] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science
& Business Media, 2006.



Bibliography 87

[96] Jorge J Moré. The levenbergmarquardt algorithm: implementation and theory.
In Numerical analysis, pages 105–116. Springer, 1978.

[97] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, andWolfram
Burgard. g 2 o: A general framework for graph optimization. In 2011 IEEE In
ternational Conference on Robotics and Automation, pages 3607–3613. IEEE,
2011.

[98] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial on graph
based slam. IEEE Intelligent Transportation SystemsMagazine, 2:31–43, 2010.

[99] Berthold KP Horn and Brian G Schunck. Determining optical flow. Artificial
intelligence, 17(13):185–203, 1981.

[100] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas,
Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox.
Flownet: Learning optical flow with convolutional networks. In Proceedings of
the IEEE international conference on computer vision, pages 2758–2766, 2015.

[101] Deqing Sun, Xiaodong Yang, MingYu Liu, and Jan Kautz. Pwcnet: Cnns
for optical flow using pyramid, warping, and cost volume. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 8934–
8943, 2018.

[102] Liang Liu, Jiangning Zhang, Ruifei He, Yong Liu, Yabiao Wang, Ying Tai, Dong
hao Luo, Chengjie Wang, Jilin Li, and Feiyue Huang. Learning by analogy: Re
liable supervision from transformations for unsupervised optical flow estimation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6489–6498, 2020.

[103] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[104] S AgatonovicKustrin and Rosemary Beresford. Basic concepts of artificial neu
ral network (ann) modeling and its application in pharmaceutical research. Jour
nal of pharmaceutical and biomedical analysis, 22(5):717–727, 2000.

[105] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international con
ference on artificial intelligence and statistics, pages 249–256. JMLRWorkshop
and Conference Proceedings, 2010.

[106] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Mar
shall. Activation functions: Comparison of trends in practice and research for
deep learning. arXiv preprint arXiv:1811.03378, 2018.

[107] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz
mann machines. In Icml, 2010.

[108] Josh Patterson and Adam Gibson. Deep learning: A practitioner’s approach. ”
O’Reilly Media, Inc.”, 2017.



88 Bibliography

[109] Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient
descent as approximate bayesian inference. arXiv preprint arXiv:1704.04289,
2017.

[110] Ning Qian. On the momentum term in gradient descent learning algorithms.
Neural networks, 12(1):145–151, 1999.

[111] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for
machine learning lecture 6a overview of minibatch gradient descent. Cited on,
14(8):2, 2012.

[112] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[113] Raúl MurArtal and Juan D Tardós. Probabilistic semidense mapping from
highly accurate featurebased monocular slam. In Robotics: Science and Sys
tems, volume 2015. Rome, 2015.


	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research question
	Contributions
	Overview

	Related work
	SLAM architecture
	Direct method
	Feature-based method

	Dynamic objects
	Geometrical approaches
	Learning based approaches

	Review on deep learning architectures
	Object detection
	Segmentation
	Semantic segmentation
	Instance segmentation



	Methodology
	Methodology overview
	Classification of dynamic objects
	Stages of development

	Tracking
	Base - ORB-SLAM2
	Stage 1 - Dynamic object segmentation
	SOLOV2 network architecture
	Combining dynamic object segmentation with ORB-SLAM2

	Stage 2 - Moving object segmentation
	Two stream network architecture
	Combining moving object segmentation with ORB-SLAM2


	Mapping
	Dynamic semantic mapping
	Instance semantic mapping
	Multi-object tracking
	Combining multi-object tracking with ORB-SLAM2

	Dynamic density estimation


	Dataset and metrics
	Dataset
	SLAM
	Stage 1 - Segmentation dataset
	Stage 2 - Moving object dataset
	New dataset generation


	Metrics
	Absolute trajectory error - SLAM
	IOU estimation - Segmentation


	Experimentation and results
	Object segmentation and tracking models
	SOLOV2 - Dynamic object segmentation
	Result and discussion

	Two stream architecture - Moving object segmentation
	Result and discussion

	Multi-object tracking
	Selection of feature embedding model
	Result and discussion


	Experiments on SLAM
	Tracking
	Base - ORB-SLAM2
	Stage 1 - Dynamic object segmentation
	Stage 2 - Moving object segmentation

	Mapping
	Dynamic Semantic mapping
	Instance semantic mapping
	Dynamic density estimation
	Map management


	Real-world validation

	Conclusion
	Recommendations

	Appendix
	SLAM Background
	Feature matching
	Coordinate transformations
	Epipolar constraint
	Triangulation
	Bundle adjustment
	Graph based SLAM
	Optical flow

	Deep learning Background
	Neural networks
	Neuron
	Activation function
	Loss function
	Optimiser

	Convolutional Neural Network
	Convolution and its properties

	Pooling
	Stride and Padding
	Upsampling



	Appendix
	Geometrical approach - Stage 2
	Semi-dense Mapping

	Bibliography

