

Fault Diagnosis ofSelf-Localizationin Autonomous VehiclesUsing aModel-Based Approach
The WEpods Case

by

R.V. Kossen
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday May 7, 2019 at 13:15.

Student number: 4219686
Thesis committee: Dr. R. M. G. Ferrari, Delft University of Technology

Ir. F. Gaisser, Robot Robots Company
Prof. Dr. D. M. Gavrila, Delft University of Technology
Dr. Ir. W. Mugge, Delft University of Technology

This thesis is confidential and cannot be made public until May 1, 2020.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Autonomous driving is a development that has gained a lot of attention lately, because it can lead to major im-
provements in the mobility sector. First of all, safety will be improved because human errors are eliminated
from the driving process. Also, the effects on the environment will be beneficial in terms of using optimal
driving conditions and the outlook on car sharing possibilities. Thirdly, mobility will be improved for those
that are normally not capable of participating in traffic: (highly) disabled and elderly people for example.
Much research is conducted and even the commercial availability of (highly) automated cars has increased.
One example of a research project that aims to develop vehicles that are capable of reaching the highest level
of autonomy in driving, is the WEpods project. The goal of this research is in line with this aim, having the
thesis objective defined as follows: let the WEpods continue driving in autonomous mode more often than is
currently the case.

The WEpod shuttles are not yet completely able to drive autonomously due to their inability to handle un-
expected behavior (terminology: faults). Currently, such faults need to be detected and solved by a steward,
who will manually initiate a safe stop if necessary. The localization module, which is responsible for local-
izing the vehicle on a map, sometimes generates unreliable location estimates. This poses two challenges.
First, the fact that there is a mismatch between reality and the sensor outcomes of the localization module
that needs to be detected. Second, the question of how to prevent the system from showing behavior that
is different from what is desired (terminology: failure) in case such a fault is present (terminology: fault tol-
erant contol). Fault tolerant control can be performed in either a passive or an active manner. The passive
approach ensures that either the faults are prevented or the system is able to mitigate them by anticipation
in the design. The approach evolves from passive to active fault tolerant control when an on-line adaptation
of the system control is made. For applications in autonomous driving, it is apparent that it is important to
handle not only anticipated faults, but also to be able to deal with unexpected faults in an on-line manner.
This on-line fault tolerant control approach involves two fault diagnosis steps that lead to solving the first
challenge: detection and isolation.

A so-called model-based fault diagnosis approach turned out to be most suitable, as it has been used for simi-
lar applications in the past. However, a model-based fault diagnosis approach has not yet been implemented
for detecting and isolating faults in a localization module of autonomous driving, indicating the scientific
relevance of this research. In the model-based approach, kinematic and dynamic equations of the research
vehicle (WEpod) are used to build a computational model. This model is then subjected to an observer, that
is able to compare the model outcomes with the actual measurements in an off-line way. A residual is drawn
up by taking the difference between the model outcomes and the measurements. A threshold is computed
based on noise on the measurements to compare the residual with. When the residual exceeds the threshold,
an alarm is raised. This way, the system itself has been enabled to detect faults when they occur internally.

The research can be extended by an isolation step, that is able to determine which of the four different
sensors within the localization module is faulty. The measurements of all these sources are inspected and the
according residuals are computed on-line. Then, multiple observers analyze this and raise a message when
and which of the sensors should be excluded from the fusion for computing the localization.

In order to test the fault diagnosis algorithm, real data logs from the WEpods are used. Most of the logs come
with a description of the behavior during driving along the test track. Several logs that had a clear problem
profile for known sensors (so no isolation was needed) were chosen, so the plugin was tested on its ability of
detecting faults in that specific sensor. It is shown that the developed algorithm is indeed able to detect faults.

Based on these achievements, a suggestion can be given for updating the control and therewith tackling
the second challenge. Actual inclusion of this update would make the vehicle active fault tolerant for its lo-
calization module, but this is left outside of the scope of this master’s thesis.

Inclusion of the suggested fault diagnosis approach in an on-line manner into the system is a big step to-
wards fully autonomous driving of the WEpods, and therefore the goal of this research is met.

iii

Contents

List of Tables 1

List of Figures 3

1 Introduction 7
1.1 EU Interregional Automated Transport project (I-AT) . 7
1.2 Classification levels in autonomous driving . 7
1.3 Fault Tolerant Control. 8
1.4 Research goal and report structure . 9

2 System description and problem formulation 11
2.1 WEmi - WEpods shuttle Mission . 11

2.1.1 Hardware . 12
2.1.2 Architecture . 13
2.1.3 Driving modes . 14
2.1.4 Fault tolerance measures . 15

2.2 WEasy - WEpods shuttles WElly and WURbie . 18
2.2.1 Hardware . 18
2.2.2 Architecture . 21
2.2.3 Driving modes . 21
2.2.4 Modelling and control . 22
2.2.5 Fault tolerance measures . 24

2.3 Problem formulation . 24
2.3.1 Overview of fault occurrence. 25
2.3.2 Detailed description of localization module . 25
2.3.3 Visualization of faults in the localization module . 26

3 Methods 29
3.1 Fault diagnosis: model-based . 29
3.2 Data. 31

3.2.1 Rosbag logs . 31
3.2.2 Coordinate frames . 32
3.2.3 Input data . 33
3.2.4 Localization data. 33
3.2.5 Sensor (fusion) noise data . 33

3.3 Uncertainty characterization . 33
3.4 Model design . 35

3.4.1 Kinematic model. 35
3.4.2 Observer design . 36
3.4.3 Validation . 38
3.4.4 Fault detection . 43
3.4.5 Fault isolation . 54

4 Experiments and Results 55
4.1 Experiments . 55

4.1.1 Derivative of the residual combined with empirical threshold 56
4.1.2 Mahalanobis distance residual combined with Chebyshev threshold 57
4.1.3 Baseline . 58
4.1.4 Performance . 59

v

vi Contents

4.2 Results . 62
4.2.1 Derivative of the residual combined with empirical threshold 62
4.2.2 Mahalanobis distance residual combined with Chebyshev threshold 67
4.2.3 Baseline . 69
4.2.4 Performance . 71

5 Discussion and Conclusion 77
5.1 Discussion . 77
5.2 Conclusion . 80

5.2.1 Recommendations . 81

Bibliography 83
A Flyer Infographic I-AT 85
B Fault Tree Analyses (FTA) WEpods modules 87
C Failure Mode Effects Analysis (FMEA) 91
D Relevant rosbag topics and messages 93
E M-file: read_in_data_from_rosbags.m 95
F Data cleaning 105
G M-file: prepare.m 113
H Subsystems observer model Simulink 117
I Subsystems two observer model Simulink 119
J M-file: Mahalanobis.m 123

List of Tables

4.1 Fault detection ID derivative residual March 05, 2019 . 63
4.2 Fault detection ID derivative residual March 06, 2019 . 64
4.3 Fault detection ID derivative residual March 18, 2019 . 65
4.4 Fault detection ID Mahalanobis distance residual March 05, 2019 67
4.5 Fault detection ID Mahalanobis distance residual March 06, 2019 68
4.6 Fault detection ID Mahalanobis distance residual March 18, 2019 69
4.7 Fault detection ID parity approximation residual March 05, 2019 74
4.8 Fault detection ID parity approximation residual March 06, 2019 74
4.9 Fault detection ID parity approximation residual March 18, 2019 74
4.10 Fault detection and hit rate comparison of both the model-based approaches and the parity

approximation method . 75
4.11 Computational times of the methods . 76

5.1 Performance of the different methods, left two: model-based, right: validation by parity approx-
imation. 80

1

List of Figures

1.1 Levels of automation defined by Society of Automotive Engineers (SAE), reproduced AS-IS from
SAE International, J3016. 8

2.1 WEpod Mission design. Retrieved from: [20]. 11
2.2 Hardware diagram of the WEpod Mission. 12
2.3 Control architecture of the WEpod Mission. Retrieved form: [20]. 13
2.4 Simplified control architecture of the WEpod Mission. 14
2.5 Control architecture for the semi-autonomous driving mode of the WEpod Mission. 15
2.6 General FTA diagram WEpod. 15
2.7 HARA table WEpod. 16
2.8 Watchdog and process management diagram WEpod. 17
2.9 WEasy shuttle design. Retrieved from: [23]. 18
2.10 Sensor fusion. Retrieved from: [23]. 19
2.11 Hardware diagram of the WEasy shuttles. Retrieved from: [23]. 20
2.12 Control architecture of the WEasy shuttles. Retrieved from: [34]. 21
2.13 Switching between the three possible driving modes. Retrieved from: [27]. 22
2.14 Unicycle model representation of the WEasy. Adapted from: [17]. 22
2.15 Interface design description from localization to High Level Controller. Retrieved from: [23]. . . 25
2.16 Visualization of the IBEO input sources, left: block-scheme, right: visuals. Retrieved from: [23]. 26
2.17 Offset advanced navigation. Log files from March 18, 2019. 27
2.18 IBEO sawtooth. Log files from March 18, 2019. 27
2.19 IBEO overcompensation. Log files from March 18, 2019. 27

3.1 Approach for developing a fault detection system. 30
3.2 UTM coordinate system relating to global and local frames. Retrieved from: [35]. 33
3.3 Kinematic model in Simulink. 35
3.4 Comparison between measured x-position (normalized) and the open loop model output for

the x-position. 36
3.5 Comparison between measured y-position (normalized) and the open loop model output for

the y-position. 36
3.6 Model with observer in Simulink. 37
3.7 Comparison between measured x-position (normalized) and the closed loop model output for

the x-position. 38
3.8 Comparison between measured y-position (normalized) and the closed loop model output for

the y-position. 38
3.9 Comparison between measured x-position (normalized) and the closed loop model output for

the x-position. 39
3.10 Comparison between measured y-position (normalized) and the closed loop model output for

the y-position. Large jumps in the lateral position (y) are already visible between 14:07:15 and
14:07:30. 39

3.11 Comparison between orientation from the model and the IBEO localization output. The arrow
and circle indicate the notable difference in orientation. 40

3.12 Comparison between orientation from the model and the IBEO localization output (top plot),
complemented with steering angle (middle plot) and vehicle speed (bottom plot) coming from
the can bridge measurements (meas on y-axis). 40

3.13 Open loop output for modeled orientation with unadapted equations. 41
3.14 Corrected sign orientation output, left: open loop, right: closed loop (observer). 41
3.15 Comparison between measured x-position (normalized) and the closed loop model output with

updated A-matrix. 42

3

4 List of Figures

3.16 Comparison between measured y-position (normalized) and the closed loop model output with
updated A-matrix. 42

3.17 Residuals in all state entries (x, y , θ, v , δ) model versus IBEO localization sensor. 43
3.18 All measured speeds vs. model output. 44
3.19 All measured speeds vs. model output zoomed in. 44
3.20 Two observer model in Simulink. 45
3.21 Second observer model in Simulink. 46
3.22 First observer model in Simulink. 46
3.23 Residuals in all state entries (x, y , θ, v , δ) model vs. sensor two observer model. 47
3.24 Speeds computed on localization output for position. 48
3.25 Speeds computed on localization output for position vs. 1 [s] delayed GPS measurements. . . . 49
3.26 Residual of speeds computed on localization output minus shifted GPS measurements. 49
3.27 Histograms of the derivative of the residual in x-position (left) and y-position (right.) 52
3.28 Top two figures: residual with its derivative and the Mahalanobis distance thereof, bottom two:

localization output. 53
3.29 Mahalanobis distance versus threshold. 54

4.1 Empirical threshold determination for residual as derivative of the offset. 56
4.2 Absolute derivatives of the position differences as residuals vs. empirical threshold of 0.03,

March 6, 2019. 57
4.3 Mahalanobis distance residual versus threshold, March 18, 2019. 58
4.4 Log that is free from jumps in the localization module position (x) output, March 06, 2019. . . . 58
4.5 Covariances in the x- and y- direction provided by the IBEO localization versus the differences

between the model and measurements. 59
4.6 Absolute value of parity approximation residual vs. empirical threshold of 0.05, March 18, 2019. 60
4.7 Empirical threshold determination for parity approximation approach. 61
4.8 Detected fault in IBEO localization March 05, 2019. 62
4.9 Detected fault in IBEO localization March 05, 2019. 63
4.10 Detected fault in IBEO localization March 06, 2019. 64
4.11 Detected faults with threshold 0.03 in IBEO localization March 18, 2019. 65
4.12 Detected faults with threshold 0.03 in IBEO localization March 18, 2019. 66
4.13 Detected fault in IBEO localization with Mahalanobis distance as residual March 05, 2019. . . . 67
4.14 Detected fault in IBEO localization with Mahalanobis distance as residual March 06, 2019. . . . 68
4.15 Detected fault in IBEO localization with Mahalanobis distance as residual March 18, 2019. . . . 69
4.16 No detected faults for fault-free case using parity approximation March 06, 2019. 70
4.17 No detected faults for fault-free case using Mahalanobis distance March 06, 2019. 70
4.18 Some detected faults for the intendedly fault-free case using derivative of residual March 06,

2019. 71
4.19 Detections based on parity approximation approach with a threshold value of 0.05. March 18,

2019. 72
4.20 Absolute value of the residual based on parity approximation with a threshold of 0.5. March 05,

2019. 72
4.21 Absolute value of the residual based on parity approximation with a threshold of 0.5. March 06,

2019. 73
4.22 Absolute value of the residual based on parity approximation with a threshold of 0.5. March 18,

2019. 73
4.23 Detections made by the different methods compares, March 18, 2019. 75

5.1 Empirical threshold determination for residual as derivative of the offset. 78

A.1 Flyer of the Interregional Automated Transport project (Dutch). Retrieved from: [33]. 85

B.1 FTA diagram object detection module in WEpod. 87
B.2 FTA diagram localization module in WEpod. 88

C.1 Visualization of the FMEA of the steering component. 91

List of Figures 5

F.1 Comparison between vehicle can bridge commands and measurements beginning of sequence. 105
F.2 Comparison between vehicle can bridge commands and measurements end of sequence. 106
F.3 Comparison between vehicle can bridge commands and measurements of the speeds. 106
F.4 Comparison between vehicle can bridge commands and measurements of the steering angle

after prepare.m. 108
F.5 Comparison between speed measurements saved at seconds versus nanoseconds. 109
F.6 Comparison between vehicle can bridge commands and measurements of the speed after pre-

pare.m. 109
F.7 Residual in x-position and its according covariance in xx-direction. 111

H.1 Subsystem Ax of the observer model . 117
H.2 Subsystem Bu of the observer model . 117
H.3 Subsubsystem A of the observer model . 118
H.4 Subsubsystem B of the observer model . 118
H.5 Subsubsystem u of the observer model . 118

I.1 Subsystem Bu of the second observer model . 119
I.2 Subsubsystem B of the second observer model . 119
I.3 Subsubsystem u of the second observer model . 120
I.4 Subsystem Ax of the first observer model . 120
I.5 Subsubsystem A of the first observer model . 120
I.6 Subsystem Bu of the first observer model . 121
I.7 Subsubsystem B of the first observer model . 121
I.8 Subsubsystem u of the first observer model . 121

1
Introduction

The research presented in this report is conducted in the context of the master track BioMechanical Design
(specialization BioRobotics) in the major Mechanical Engineering at the Technical University of Delft. It has
been exerted in collaboration with Robot Robots Company (RRC). This chapter aims to introduce the reader
into the field of autonomous driving and the scientific relevance of introducing fault tolerant control in this
domain (which is the thesis objective). At the end, an overview of the structure of this report is presented.

1.1. EU Interregional Automated Transport project (I-AT)
RRC is participating in an infrastructural initiative from the European Union called the I-AT: Interregional Au-
tomated Transport [33]. In this project, various (government funded) companies work together with the aim
to improve the transportation facilities in the Dutch-German border area: provinces Gelderland, Brabant and
Limburg in the Netherlands and bundesland Nordrhein-Westfalen in Germany. One of the improvements is
the development of electrical shuttle buses that are highly automated, called: the WEpods. The exact part-
ners involved are shown in Appendix A. The role of RRC is to provide the software that enables the vehicle to
drive autonomously. Currently two WEpods (identified as WElly and WUrbie under the name of WEasy) are
operational at Weeze airport and are capable of transporting up to six (6) people under a maximum driving
speed of 25 km/h. Recently, the WEpods autonomous driving project got extended with the development of
a third vehicle (identified as Mission). This new vehicle is ought to drive up to 50 km/h and transport up to
sixteen (16) people. The launch of the Mission is planned for spring 2019 and will be tested on the roadways
between Aachen (Germany) and Vaals (the Netherlands).

1.2. Classification levels in autonomous driving
The ultimate goal is to develop the WEpods towards level 5 of automation for on-road motor vehicles, as
drawn up by the Society of Automotive Engineering (SAE) [25], shown in Figure 1.1. A short introduction into
these levels (retrieved from [21]) is presented below:

• Level 0 indicates no automation, driver warning systems could be classified as level 0, because they
strictly provide the driver with information, but do not interfere with the control of the vehicle in any
kind of way.

• Level 1 contains driver assistance systems that perform control in one direction, literally either the
longitudinal (along the vehicle) or lateral (sideways) direction. Examples are: (Adaptive) Cruise Control
(A)CC and lane keeping assistance.

• Level 2 includes control enhancements in both longitudinal and lateral direction simultaneously. Until
this level of automation, the human driver is still the one that monitors the driving environment and
only some driving modes profit from these systems.

• From level 3 and higher, the system is capable of monitoring the driving environment and selecting an
action accordingly, thus the subclass of higher automated driving is entered. However, for level 3, the
human driver needs to remain within the loop as the responsibility for the fallback performance always

7

8 1. Introduction

lies with him/her after a take-over request has been carried out by the system. Also the operational
domain is delimited. For example a traffic jam assisting system, which is capable of carrying out the
driving task on the highway below speeds of 60km/h [24]. Also self-parking systems can be included
within this category.

• Level 4 does not require continuous attention of the human driver and is capable of driving fully au-
tonomously within a certain domain (for example: transporting luggage at the airport). It could request
the driver to take over control in certain situations, but when the system notices that the human is un-
able to do so timely, it is able to come to a safe stop itself.

• Level 5 finally covers all ranges of design domains, so from specially designed roads with only a certain
type of road users, till urban traffic in which even dogs can intermingle in traffic. The car is now able to
drive completely autonomously and does not need a human driver to interfere with the system for any
driving mode. This is the ultimate goal for car manufacturers that aim for autonomous driving in the
future.

Figure 1.1: Levels of automation defined by Society of Automotive Engineers (SAE), reproduced AS-IS from SAE International, J3016.

The state-of-the art, however, is that a human operator is involved in the driving task as well that can take
over in case something is about to go wrong. The Dutch law also still prescribes that a human driver should
be present in any vehicle that is driving on the (public) road. The safety measures that need to be met in order
to get a license from the RDW (Dienst Wegverkeer) for driving on the public road got restricted lately and also
require research vehicles to meet high standards (as presented in ISO26262 [32]).

1.3. Fault Tolerant Control
An autonomous vehicle of level 5 should be able to fully perceive its environment and other road users, de-
termine what actions need to be taken to navigate safely through urban road conditions and reach its des-
tination without any interference of a human being. Therefore, it is important to design the vehicle as such

1.4. Research goal and report structure 9

that it won’t fail. Of course, it is unthinkable for such a complex system existing of many many components
to include all possible scenarios in which something goes wrong and prevent the system from emerging in a
failure. At one point in time, of course, some components will inevitably wear out. Of course it is possible
to try and achieve a longer lifetime by designing as robust as possible, by duplicating certain critical compo-
nents in case one fails (called: redundancy). A large limiting factor here is of course budget. Also, it is not very
environmentally friendly to have many components aboard (hence increased weight) that are not used in the
nominal operation of the vehicle. The measures that can be taken during the design phase for preventing
components from failing have therefore an upper limit. Apart from wear-out, there are many other factors
that can lead to faults. Faults are defined as the occurrence of unexpected behavior that might, if they have an
active character, lead to a complete system failure, in which the objected behavior cannot be met any longer
[21]. Examples of ‘faults’ are: certain weather conditions like sunlight, fog or rain that influence the outcome
of the sensors in the vehicle. But also malfunctioning of the hardware or other external influences can have
an unexpected effect on the vehicle: less grip due to an icy road or a strong wind for example. Right now, the
operator is asked to take over control in case some of these faults and/or expressions of unexpected behavior
are detected. A fully autonomous system should be able to handle all these types of faults itself in order to
prevent it from resulting in a complete failure.

The area of research which is called ‘fault tolerant control’ is tailored for that. It is assumed, as explained
above, that a system contains (unexpected) faults. On the contrary of trying to design a system in such way
that is resistant against all these type of faults, solutions are sought for a system in which faults occur. Vari-
ous methods and required steps for this so-called ‘fault tolerant control’ methodology are to be found in the
literature review [21]. Several aspects will be taken out of there to deploy further within this master’s thesis.
In short: in the first place, the outing of unexpected behavior needs to be detected. The next step is to find
the origin of the detected fault (isolation) and finally the effects of the fault on the system will be predicated
(estimation). The last two steps combined are called ‘fault diagnosis’. This way, measures can be taken in
order to mitigate the faults or adapt in another way such that the overall system behavior does not differ too
much from the objected behavior.

1.4. Research goal and report structure
The application of the fault tolerant control methodoly onto the WEpods-project is the goal of this graduation
thesis. From the literature review as found in [21], it became apparent that this approach, which knows a
history for mainly industrial application, has not been used that often yet for the application of autonomous
driving. This stresses the scientific relevance of the work presented here as it brings together two relevant
fields. The aim that is to be met by bringing the field of autonomous driving together with the field of fault
tolerant control, is to: let the WEpods continue driving in autonomous mode more often than is currently
the case. More specifically, to enable the vehicle to continue driving autonomously in case of certain faults.
These ‘certain’ faults are identified in Chapter 2, where it is researched which areas are most pending for
receiving correction and therewith the actual problem is formulated. This is done by first providing a detailed
description of the WEpods, both for the older pods from WEasy and for the newer bus, the Mission. In Chapter
3, the proper fault detection strategy is chosen and the methods are described. Chapter 4 gives an overview
of the experiments that were designed and provides the results thereof. Finally, Chapter 5 concludes the
research and stresses a couple of recommendations for future implementation.

2
System description and problem

formulation

Since November 2015, as part of the I-AT project, two WEpod shuttle buses have been taken into operation
and a third (bigger and faster) one is on its way. First, a system description including hardware, software,
behavior objectives and the incorporation of fault tolerance is included for this new WEmi bus and then a
similar system description is presented for the already operational WEasy shuttles. The latter description
contains more details regarding the model of the system, because these pods will be the main focus of the
research. The reason for that is that these buses have been already in operation for a while, so test results are
available. The new bus is at the time of writing (March 2019) still under construction, therefore less freedom
in performing research is guaranteed.

2.1. WEmi - WEpods shuttle Mission
Before it is possible to evaluate where the possibilities lie for improvement in case any fault occurs, it is im-
portant to obtain understanding of how the nominal model of the system functions. First, the hardware of the
system with its relevant sensors will be assessed briefly, then some schemes about the control architecture
will be presented, along with an identification of all of its modules. A review of the driving modes is given af-
ter that. Finally, the following fault tolerance measures: FTA (Fault Tree Analysis), HARA (Hazard Assessment
and Risk Analysis), FMEA (Failure Mode Effects Analysis) and a watchdog are discussed. In Figure 2.1, the
designs of the exterior (left) and interior (right) of the Mission are shown.

(a) Exterior (b) Interior

Figure 2.1: WEpod Mission design. Retrieved from: [20].

11

12 2. System description and problem formulation

2.1.1. Hardware
The hardware of the Mission bus is provided by an external company, called UMS. It is out of scope to describe
all those hardware components. For the purpose of making the WEpod fault tolerant, the focus will remain
on the software-side, on which RRC is working. In Figure 2.2, the diagram of the hardware which is required
to let the software run, that will be incorporated in the Mission (November 2018 version) is shown.

6x via
network
switch

Coax 8x Camera's

CANDrive PX2 3 Radars

CAN real time bus

Vehicle Controllers
(See diagrams by UMS for more detailed schemas)

Automation layer (aka "High Level")

Vehicle layer (aka "Low Level")

Control Room
(video streaming)

Dashboard
Touch Screen

Ethernet Network
(via 16 port switch)

6x Velodyne
Interface Box

(read only)

Main PC6x Velodyne
Lidars

B&R X20
(RealTime PLC)

High Level / Low Level
Gateway

HDMI

USB Y cable

Dashboard
Tablet

Timesync Timesync

PPS/NMEA
splitter

GNSS/INS
RTK

V2l
802.11p

4G Router

Dashboard
USB socket

ANPP input (odom) / output (localization)

RTK input

ODU
cable
split

Dashboard
ETH socket

Figure 2.2: Hardware diagram of the WEpod Mission.

The software that is developed by RRC, is running on the Drive PX that has two separate Linux systems run-
ning, connected by the Main PC and finally there is one Dashboard Tablet present in the vehicle, which also
runs Linux. The hardware that is most relevant in this research, are the sensors. First, the bus contains the
same sensors that a modern car has: ABS (anti-lock braking system), ESP (electronic stability program) and
some that are dedicated to measuring temperature, amount of light in the surrounding, etc. To prepare the
bus for the incorporation of autonomous driving functions, RRC added the following sensors:

• Steering wheel change rate sensor;

• Steering wheel angle sensor;

• Motor rpm encoder;

• Breaking pressure sensor (cylinder);

• WiFi (for communicating V2V: vehicle-to-vehicle and V2I: vehicle-to-infrastructure);

• Eight cameras (as shown in Figure 2.2);

• Three radars (as shown in Figure 2.2);

• Six lidars (as shown in Figure 2.2);

• GNSS/INS (Global Navigation Satellite System/ Inertial Navigation System) RTK (Real Time Kinematic)-
unit (as shown in Figure 2.2), including: odometer, IMU (Inertial Measurement Unit) and GPS (Global
Positioning System) [19].

2.1. WEmi - WEpods shuttle Mission 13

Focus is placed on the latter four types of sensors, because these are used in several modules for autonomous
driving which are discussed in the upcoming sections. The combination of the first three are part of the the
object detection module, whereas the latter two are used by the localization module.

2.1.2. Architecture

Figure 2.3: Control architecture of the WEpod Mission. Retrieved form: [20].

In Figure 2.3, the control architecture of the Mission is depicted. On the left side, the sensors are marked in
the hexagon-shaped blocks. There is one odometry sensor and one combined GPS/IMU unit present in the
system. There are six lidars (laserscanners), three radars and even eight cameras incorporated in the system.
On the right side, another hexagon-shaped block is visible. This is the vehicle controller, which converts
information that is flowing in from the trajectory follower, into executable control laws. Here, the desired
speed and steering wheel angles are calculated and forwarded to the actuators. In the middle, there are many
rectangular blocks to be found, which all (except for the semantic map), have their own computations and
forward new information. The different modules within the control architecture will be briefly explained
below.

Object detection module
In the bottom left, the object detection module is indicated. It performs its detection through software algo-
rithms that receive input from various sensors. The eight cameras, three radars and six lidars provide infor-
mation about the surroundings. They are able to ‘see’ objects and/or obstacles around. Based on a machine-
learning algorithm, that compares the input to a large database, containing all sorts of ‘road-objects’, it iden-
tifies what objects are around and indicates whether these objects are ought to be static or dynamic.

Motion prediction module
In case of dynamic objects, the motion prediction module becomes of utmost importance, as it is aimed
to predict the behavior in terms of motion of these objects. Think: other road users like cars, pedestrians,
bicyclists, even pet animals, basically anything that moves around the car, so an assessment could be made
on whether the dynamic ‘object’ will come into the range of motion of the WEpod.

Localization module
The localization module has the objective to identify the location (also named: ego-position) of the WEpod
Mission in the world. It combines information from the GPS-unit (odometer, IMU, gyroscope and GPS) with
the information coming in from the lidars.

Trajectory planning module
Once the information about the ego-position of the vehicle is known, it can be compared to the desired route
(coming from an higher level as input). It uses the semantic map (provided by an external company, IBEO) to
plan a trajectory in order to reach the goal. The trajectory planner can be triggered again once the collision
avoidance module identifies dangers on the road ahead, as explained in the next subsection.

14 2. System description and problem formulation

Collision avoidance module
The collision avoidance module brings together various outcomes of other modules. It compares the planned
trajectory (resulting from the trajectory planning module) to the predicted motion of the surrounding objects.
If a dynamic object seems to be interfering with the projected trajectory, an update of this trajectory should
be made, in order to prevent any collisions. Once this is done, the newly planned trajectory could be sent
towards the actual trajectory following module that converts the information into motor torques, etc. such
that the vehicle controller can actually perform the appropriate control.

Concise version architecture
A more concise version of the scheme presented in Figure 2.3 is set up as follows in Figure 2.4. The in-lane
localization and freespace detection are left out for now, because the main focus of the master’s thesis will
be on the other components that have the necessity of implementation. Also, the trajectory planner and
trajectory follower could be regarded as one entity, such that the collision avoidance becomes the feedback
loop. The green entries on the left side indicate the sensors, the light yellow blocks are the modules. Light
blue indicates external entries, whereas the darker yellow blocks are the higher-level software modules. On
the right, in light purple, the final control command is indicated that will be send to the vehicle.

Figure 2.4: Simplified control architecture of the WEpod Mission.

2.1.3. Driving modes
The WEpod Mission will have three driving modes: manual, semi-autonomous and autonomous, described
in each of the following items.

• Manual
Only the driver is involved in the driving process and no extra, aside from the already present features
like cruise control etc., automation is incorporated. This is indicated as SAE level 0 of automation as
shown in the introduction.

• Semi-autonomous
The driver remains attentive during the driving process and executes the speed control by having com-
plete control over the brakes and gas pedal, therefore he/she is in charge of the longitudinal control of
the vehicle. The autonomy is restricted to following the planned path, including the modules ‘localiza-
tion’ and ‘trajectory planner’. The perception of the environment is done by the driver. The perception
of the environment is done by the object perception stack and actions are taken by the navigation stack
accordingly. However, for complex manoeuvres such as lane change and overtaking, the driver needs
to take over driving control. After the manoeuvre has been performed, the vehicle is given control
again. This is indicated as SAE level 3 of automation as shown in the introduction. The lateral control
architecture in case of autonomous driving mode, is shown in Figure 2.5.

2.1. WEmi - WEpods shuttle Mission 15

Figure 2.5: Control architecture for the semi-autonomous driving mode of the WEpod Mission.

• Autonomous
In this driving mode, the vehicle is taking control of both its longitudinal and lateral control. It is able to
fully perceives its surroundings and determine its behavior accordingly. All modules are incorporated:
‘localization’, ‘trajectory planning’, ’object detection’, ‘motion prediction’ and ‘collision avoidance’. The
human driver is still able to take over the control of the vehicle by pressing the brakes and/or gas pedal
and thereby switch to manual mode again. Since the bus is restricted to a maximum speed of 50km/h
and only urban road conditions are regarded, this mode is indicated as SAE level 4 of automation as
shown in the introduction.

2.1.4. Fault tolerance measures
In this subsection, some elaboration is made on the fault tolerance measures that have been included in the
design already (note that these all have a passive nature). The following subsubsections are aimed, in a row, at
identifying where faults can occur in each of the intermediate (control) steps by means of a Fault Tree Analysis
(FTA), Hazard Assessment and Risk Analysis (HARA) and Failure Mode and Effect Analysis (FMEA). Then, the
system that is designed to detect major issues in the software and disable the system when a failure is about
to happen, called the watchdog, is presented.

Fault Tree Analysis (FTA)
When the overall system is regarded, a general fault tree analysis could be made which is feasible in all driv-
ing modes (manual, semi-autonomous, autonomous) and shown in Figure 2.6. The cloud-block represents
control input that is sent to the vehicle. This could result from a manual manipulation of the gas pedal,
brakes and/or steering wheel, but also from a control command that is drawn up by the autonomous mod-
ules. Therefore, this scheme can be used for all three driving modes. Fault tree analyses (FTAs) are performed
for some of the WEpod modules and have been included in Appendix B.

Figure 2.6: General FTA diagram WEpod.

16 2. System description and problem formulation

Hazard Assessment and Risk Analysis (HARA)
The ISO26262 requires a broad hazard assesment and risk analysis, in which possible faults and failures are
stated. It is a qualitative description of how faults effect the system. In a way it is therefore similar to the FMEA
as described in [21], although it has no graphical representation. RRC used the following table (as presented
in Figure 2.7) for possible severity and frequency of occurrence of hazardous events.

Figure 2.7: HARA table WEpod.

Failure Mode Effects Analysis (FMEA)
A preliminary FMEA has been performed and represented in excel prior to the start of this project. Several
subdivisions for evaluation have been made based on the functions that the vehicle is ought to exert, namely:

• Steering

• Braking

• Acceleration

• Base vehicle functions (hardware like: wiper, lights, horn, power supply, etc.)

A visual representation of the FMEA is made and included in Appendix C for the first category: steering.
Similar representations and further elaboration of mathematics are left out now, for the sake of brevity, but
can be set up along the same line of thought.

2.1. WEmi - WEpods shuttle Mission 17

Watchdog
For controlling the performance of the software itself, a so-called ‘Watchdog’, as depicted in Figure 2.8, is
designed for the WEpods Mission. This is aimed at checking the information flows coming from the Linux
system and the lower-level modules (like object detection and localization, but also the sensors themselves)
and makes sure all processes are running normally. It also checks whether the information coming from the
modules matches the chosen driving mode (retrieved from the upper arrow). It forwards this information
by means of sending a summary to the high level/low level gateway. This is the only loop through which the
information resulting from the software, can reach the hardware of the system. This one gateway is very re-
liable on either passing or not passing information. The ‘Process Manager’-block is responsible for starting
and stopping the system only, it does not incorporate any higher-level thinking. The complete software (indi-
cated with blue) is running in ROS and can fail as a whole, therefore the ‘Watchdog watcher’ is included that
checks whether the software is running in the first place or if it might have experienced a crash.

Software running on several Linux Systems

Heartbeat
(UDP)

/overall_supported_
drivemode

High Level (HL)
Watchdog

Process Manager

Watchdog
watcher

(N times)
Linux System Monitor

[ID:Y]

/module_status

 all kinds of topic information

/request_process_restart(M times)
Module
[ID:X]

/overall_active_drivemode

Dashboard User
Interface (DUI)

Heartbeat /
Disengage

(CAN)

Restart Request (UDP)

High Level / Low Level
Gateway

(Embedded / B&R X20)

Mission
Vehicle Controllers

High Level (Autonomous Driving Layer)

Low Level (Base Drive-by-Wire Bus)

ROS nodes

Legend:

ROS agnostic
program

/ros_topic

other (comm. type)

/linux_system_monitor

general source/sink

Restart (systemd)

Figure 2.8: Watchdog and process management diagram WEpod.

18 2. System description and problem formulation

2.2. WEasy - WEpods shuttles WElly and WURbie
The design of the two shuttle buses that have been developed and taken into operation in 2015, is depicted
in Figure 2.9.

(a) Exterior (b) Interior

Figure 2.9: WEasy shuttle design. Retrieved from: [23].

These are called WElly and WURbie and have an identical set-up (the only difference lies in the batteries:
WElly has an additional 9.6 kWh and therefore an additional driving range of 30km - summing up to 80km
in total). They have the maximum capability of transporting up to 6 persons under a maximum speed of 25
km/h. Because of the fact that the WEpod Mission is planned to be operational from spring 2019 onwards,
the choice for this research is made to focus on the shuttles that are already in use. This way, test data can be
used for the design of the diagnosis modules.

2.2.1. Hardware
The hardware of the WEasy shuttles has been provided by an external company, called EasyMile. It is out of
scope to describe all those hardware components individually, the full description can be found in [23]. For
the purpose of making the WEpods fault tolerant, the focus will remain on the software-side, on which RRC
is working. The hardware included in the WEpod shuttles that is relevant for this software development is
described in this section. A list, which is retrieved from [23], is made of the sensors and actuators included in
the shuttles, along with their influence they exert on the physical way (i.e. the engineering versus the physical
units will be described).

• Independent front and rear steering with electric actuation, turning radius 7m

• 4 Sick Lidars for obstacle detection; one on each corner

• For semi-automated control, a wired plug in manual control unit is provided in the vehicle, enabling:
Control for speed, brakes (acceleration) and steering. Control switches for start, stop and ’call operator’.

• 9 Melexis High dynamic range cameras

• 9 airnozzles to clean the cameras

• 1 interior camera (for the operator)

• 9 Continental radars. Radars and cameras are solidly mounted in pairs on all sides of the vehicle at
bumper height behind non obstructive plastic shielding that is transparent for the camera and radar

• 6 IBEO lidars

• Ultrasonics 9 sensors including controller

• Localization 2 GPS receivers are mounted on the roof at Y=0 at front and rear

• 1 INS is mounted nearest to the center of the floor

The sensors have their impact onto the rest of the system in the way as shown in Figure 2.10.

2.2. WEasy - WEpods shuttles WElly and WURbie 19

Figure 2.10: Sensor fusion. Retrieved from: [23].

The cameras and lidars are fused in the Drive PX1 and function as an input the the path planner (here: ‘Path
Generator’) and the localization (here: coming together with the ‘IBEO Object Detector’). The IBEO Object
Detector is a piece of external software that outputs its localization based on the data it receives from the
lidars, GPS and IMU. All is forwarded to the High Level Controller, where the behavior is determined and
control inputs are given to the Low Level Controller.

In Figure 2.11, the diagram of the hardware which is required to let the software run, that is incorporated
in the shuttles, is shown. Description of the interface as retrieved from [23]:
"From top to bottom the figure shows:

• Three NVIDIA DrivePX 1 computers that each contain two Tegra GPU chips, whereas each DrivePX
connects 3 cameras each through a serial CS2 interface, and 3 radars all connected to a dedicated CAN
bus. The DrivePX computers are connected to the BRIX computer of the Object Fusion Center for the
fusion of the data of the 9 camera/radar pairs, as well as to the Central Vehicle computer for household
tasks and time synchronization.

• The INS/GNSS system (a.k.a. Advanced Navigation System) that takes care of the vehicle positioning
through GPS, RTK and odometry. It is connected with serial lines to the IBEO system to send vehicle
pose information and to the High Level Controller to receive time synchronization signals and odome-
try data from the vehicle’s CAN bus.

• The Central PC connects to all modules for the sake of time synchronization and watchdog signals to
check the sanity of the system. In addition it uses information from all modules to perform a scenario
analysis, e.g. for stopping at bus stop, traffic lights, interface with traffic lights, opening doors, etc. It
also connects to a relay box to switch on alarm lights, wipers, etc. Finally it connects to the control
room through a dedicated 4G connection. The vehicles front and rear cameras as well as the internal
vehicle camera and intercom system are connected to the control room through this computer. Finally
all system data logging is regulated by this computer.

• The entertainment system is a separate system that can be used by the passengers, e.g. to obtain touris-
tic information along the route. The passengers can also use a WIFI service. With their app that con-
nects to the server in the control room, passengers can make vehicle reservations and control the en-
tertainment system.

• The IBEO system, which uses its 6 LIDARs and stored internal key-point map, while receiving pose
information from the INS/GNNS system to output pose information to the BRIX computer of the fusion
centre/path planner and the B&R computer for the high level controller via the ethernet bus.

20 2. System description and problem formulation

CAN real time bus

A
u

xila
ry

 E
th

e
rn

e
t n

e
tw

o
rk

door

knobs
E-stop

Manual

Remote

control

SOS

button
Radar

10x

EZ10

Lidars

4x

Ethernet

Controlled

relay (8x)

On-off

Enter-

tainment

PC

Control Room

Front/Back

Camera’s

(for CC)

Wifi /4G

router

V2I

802.11p

4G

Cabine

camera

& mic

Ext coms

4x Alarm

light

USB rs232
Ticker

2x

Ticker

2x

INS/GNSS

Info

screen

Internal amp

& speakers

WP 1.2 & 1.4

BRIX

(Pathplanner

Localisatie

Object fusion/FC)

WP3

EZ10 Central PC

(SCM, etc.)
WP1.5

B&R X20

(HLC)

Lamps

outside

2x Air

nozzles

On/off

Wiper

CA
N

Owner

Version: 1.2

Author: MEE/PPJ

Date: 22/07/2016

Status: Final

Project number: TEE15002/1

Project name: WEpod

File: WEpods hardware diagram.vsd

Audience: WEpod team

Joystick Semi-

automatic-

mode

Touch

screen

GUI

guest

EZ10 Low Level Controller; Safety level 2

Vehivcle hardware;

Safety level 1

Auxilary

BMS 2x

IBEO ECU

(Loc

Obj. Trac/Class.)

Drive PX

Drive PX

Drive PX

(Obj. Trac./Class.)

3x camera

3x camera

3x camera

3x radar

3x radar

3x radar

WP1.3

Mapscape

(eHorizon)

Odo-

metry

Power supply

EZ10 batteries:

- Safety Level X

- Central PC

Aux batteries:

- All other components

IBEO

Lidars

6x

CA
N

RS-232

R
S

-2
3

2

Ultrasonic

Sensors

U
SB

 r
s2

3
2 U

SB
 rs2

3
2

C
A

N

Critical Ethernet network

Car P(L)C

Figure 2.11: Hardware diagram of the WEasy shuttles. Retrieved from: [23].

• The BRIX computer which performs the fusion of data from the DrivePX systems. The data from 9
radar/camera pairs for objects around the vehicle is fused together and fused with object data from
the IBEO system to a 360° environment around the vehicle in which all moving objects are known,
including their velocity vector and class label. It also receives through the Ethernet bus vehicle position
data from the IBEO system. The path planner consists of an off-line planning tool that uses eHorizon
data reconstructed from a map of the environment to generate a course track from a certain route; e.g.
the campus loop. This track can be driven and manually re-adjusted. When a satisfying track is found
the same track can be driven (several times) with the IBEO system switched on in learning mode. It then
learns the “virtual rail” that represents the true position on the road, even when the GPS/RTK fails. The
path-planner generates a list of points that predict ahead the trajectory points that have to be followed
by the High Level Controller. It sends this list over the Ethernet bus. The path planner can make use
of objects and their velocity vector to reduce the velocity of the vehicle, and within constraints it can
make an evasive motion, e.g. to overhaul parked cars.

• The B&R X20 system is a strict real-time system that houses the High Level Controller. It accesses the
CAN bus to listen to messages from the Vehicle and sends velocity set-points to the Low Level Controller
of the EZ10 vehicle. It receives overlapping trajectory point lists from the path planner in the BRIX, as
well as velocity vectors of objects in the environment of the vehicle. It sends odometry data to the
INS/GNSS over a serial line. It receives data from the 10 ultrasonic sensors around the vehicle through
the Ethernet connection. It also receives information from a joystick that is used for the semi-automatic
mode through a dedicated CAN bus. In this mode the velocity of the executed path can be increased or
decreased by the Steward."

Additional geometric parameters
• Wheelbase: 2800 mm;

• Weight of WEpod: 1350 kg.

2.2. WEasy - WEpods shuttles WElly and WURbie 21

2.2.2. Architecture
The (high-level) control architecture of the WEasy shuttles is presented in Figure 2.12. It is visible that the
representation is done differently than for the newly designed bus. The main difference is that the sensors
have been left out in this original design.

Figure 2.12: Control architecture of the WEasy shuttles. Retrieved from: [34].

A description of the modules that are regarded as the high-level controller (indicated in Figure 2.12 by area
that is delimited by the red dotted line) has been found and retrieved directly from [34] and is presented
below.

Trajectory control
Following a desired trajectory sr in the absence of other traffic.

Scaled trajectory generation
Slowing down reading out the nominal trajectory stored as a table in the on-board WEpod computer. By
slower reading out the desired trajectory, effectively a lower desired velocity is achieved. This methodology is
called time-scaling.

Object-following
Adapting the velocity of the vehicle to other relevant road users.

Path predictive collision avoidance
Predicting other road users’ trajectories and, if the intersect with the WEpods trajectory, activate a braking
action.

Collision avoidance
Braking to prevent (or at least mitigate the effects of) a collision with other road users, including vehicles,
bicyclists, and pedestrians.

Trajectory updater
A newly provided trajectory s∗r will be smoothly connected to the current one. This is relevant, because it is
expected that, due to memory constraints, the trajectory for the upcoming 200 m or so will be loaded, and
subsequently will be updated during driving.

2.2.3. Driving modes
The WEpods have the same three driving modes as described in section 2.1.3: manual, semi-autonomous
and autonomous, described in each of the following items. The switching between the driving modes for the
WEpods is visualized in Figure 2.13.

22 2. System description and problem formulation

Figure 2.13: Switching between the three possible driving modes. Retrieved from: [27].

2.2.4. Modelling and control
This section is aimed to describe the modelling and control of the WEpods. The vehicles are actuated by
exerting a steering angle to the front and to the back axle (which are capable of turning independently). One
approach for obtaining a model of such a vehicle is to take the bicycle model with non-holonomic constraints
for movement in the lateral direction. Although they can be actuated independently, the control applied to
the WEpods is the same for the front and back and acts in a counter-steering manner. Therefore the bicycle
model approach can be simplified to a unicycle model.

Unicycle representation
The unicycle model that is used for representing the vehicle, is shown in Figure 2.14.

Figure 2.14: Unicycle model representation of the WEasy. Adapted from: [17].

First, the kinematic model is retrieved, in which a description is given purely based on motion - no forces are
regarded. The front and rear axle of the pods are connected in such way that the exact opposite value of the

2.2. WEasy - WEpods shuttles WElly and WURbie 23

steering angle is given to the the back axle of the vehicle as to the front axle. The velocity of the wheels in
their own forward direction is indicated by v , the angle under which the wheels operate in comparison with
their local longitudinal direction by δ. Therefore, the overall vehicle speed of the center point equals in the
longitudinal direction (i.e. along the x ′-axis of the local coordinate system):

vcp = v ·cosδ. (2.1)

Expressing this speed in terms of the global coordinate system (x,y) this comes down to:

vcp,x = ẋ = vcp cos(θ),
vcp,y = ẏ = vcp sin(θ).

(2.2)

The angular velocity of the vehicle is expressed as the time derivative of the vehicle orientation in global
coordinates (i.e. the x,y system), θ: ω= θ̇. The angular velocity is determined by dividing the ‘perpendicular’
velocity by the radius, which in this case equals half of the wheelbase (1400mm): l . Thus:

ω= θ̇ = v sin(δ)

l
(2.3)

Now, by substituting equation 2.1 into equations 2.2 and taking equation 2.3, the kinematic model can be set
up as:

Pki n =

ẋ = v ·cosδcos(θ)
ẏ = v ·cosδsin(θ)
θ̇ = v sinδ/l

(2.4)

The nominal dynamics of the system are defined by means of a state vector and a state space representation.
The state space representation is given in equation 2.5 (an expression for the A-, B- and C-matrices is provided
later).

ẋ = Ax+Bu
y = C x

(2.5)

The state vector is defined as follows:

x = [
xpos ypos θ v δ

]T (2.6)

In which the entries mean: xpos represents the position in longitudinal direction of the vehicle in global
coordinates, ypos represents the position in lateral direction of the vehicle in global coordinates. θ indicates
the orientation of the vehicle in the global coordinate frame and finally v and δ indicate respectively the
forward speed of the vehicle and the steering wheel angle in the local coordinate system.

Input
The input of the system consists of the desired speed and the desired velocity vdes and δdes respectively and
results as an output from the trajectory controller, which has an input sr (r indicates the reference) of:

sr =
[
xr yr θr ẋr ẏr θ̇r ẍr ÿr θ̈r

]
(2.7)

Therefore, the input vector u is defined as:

u = [
vdes δdes

]T (2.8)

Finally, the output vector contains the actual velocity v and steering angle δ is equal to the state vector:

y = [
xpos ypos θ v δ

]T (2.9)

The complete system becomes:

ẋ = A · [xpos ypos θ v δ
]T + B · [vdes δdes

]T (2.10)

y = [
1 1 1 1 1

] · [xpos ypos θ v δ
]T = x (2.11)

Now, it is interesting to inspect how the desired control law relates to the actual output of the vehicle. The low
level control is exerted by actuators that are constructed by the company EasyMile. This controller functions

24 2. System description and problem formulation

as a black box and takes away the nonlinearities at a low level. The actuator dynamics, however, are known to
behave as follows:

v̇(t) =− 1

τv
v(t)+ 1

τv
vdes (t −φv), (2.12)

δ̇(t) =− 1

τs
δ(t)+ 1

τs
δdes (t −φs). (2.13)

In which τv,s indicate the time constants andφv,s are the time delays that describe the dynamics for the speed
of the tires. These values have been identified (and verified in comparison with a previous identification) in
[18] and measure the following:

τv = 0.496 [s]
τs = 0.17 [s]

φv = φs = 0.105 [s]
(2.14)

Based on the equations that were drawn up before (equations 2.4, 2.12 and 2.2.4), the A and B matrices
become as follows:

A = A(x) =

0 0 0 cos(δ)cos(θ) 0
0 0 0 cos(δ)sin(θ) 0
0 0 0 sin(δ)/l 0
0 0 0 −1/τv 0
0 0 0 0 −1/τs

,B =

0 0
0 0
0 0

1/τv 0
0 1/τs

. (2.15)

2.2.5. Fault tolerance measures
Right now, there are some physical redundancies in the sensors, as they have some overlap in namely their
‘view’ to the front. The perception system consists of six lidar (laserscanner) sensors, eight cameras (which
are used as monoview sensors only) and three radars. This system as a whole is redundant. The lidars have
360 degree view, therefore have some (semi-)redundancy for higher resolutions. The lidars and cameras pro-
vide raw data, whereas the radar already performs some filtering and abstraction in order to output meaning-
ful data. Because it has its own software module inside, it is able to output information about the reliability
of its measurement too. This is forwarded along with the actual object estimation.

Modules that make use of their own software modules too are the localization and the software prediction.
The localization module assesses the amount of standard deviation that is resulting from its computations.
When this has an unreasonable value, it is planned in future (for the development of the Mission), that the
in-lane localization module will take over (note that this is a costly process, CPU-wise).

2.3. Problem formulation
The aim of this research, as stated in the introduction, is to achieve a higher level of autonomy within the
WEpods project by including certain fault tolerant control measures. Because it is impossible to tackle ev-
erything within the scope of a master’s thesis, it is important to identify which part of the system requires an
update most. An initial overview of the possibilities of where focus on, are as follows:

• restrict to hardware failures of the car body (steering gear, motor, actuation, ...)

• restrict to failures in the electrical circuit (battery malfunctioning)

• restrict to localization module (mainly sensoring, existing of: GPS, IMU, camera, radar, lidar)

• restrict to path planning module (control: receiving data from localization module, object detection
and high level controller)

• restrict to object detection module (existing of: camera, radar, lidar)

• restrict to computational limits (software and control)

By having conversations with experts from the company, an overview of most pending fault occurrences is
gained. This overview is included in the next section.

2.3. Problem formulation 25

2.3.1. Overview of fault occurrence
The two modules that were introduced in the previous section that currently suffer from most problems, are:

• Processing time of the object detection and/or their motion prediction. When the environment is too
densely filled with objects, the pathplanner controller is unable to process this amount of information
quickly enough and gets stuck. A decision could therefore be made to drive slower or to stop performing
any overtaking manoeuvre.

• The localization module is sometimes off, leading to a frequent take-over request for the pilot. A vi-
sualization is provided in subsection 2.3.3. An improvement which could be made here is to assess a
degraded version of the performance, i.e. drive at a lower maximum speed, and execute this in the
autonomous mode.

As the former merely focuses on processing speed, efficient coding and hardware capabilities, the focus of
this master’s thesis will lie on the localization module, because it is possible to perform diagnosis of the faults
well and adapt the performance accordingly depending on the situation in order to retrieve a situation in
which the desired behavior still can be executed (i.e. not come to a complete system failure).

2.3.2. Detailed description of localization module
Before moving on, it is important to gain some understanding in how this localization module actually works.
A functional description has been provided by [10].

Figure 2.15: Interface design description from localization to High Level Controller. Retrieved from: [23].

As shown in Figure 2.15, the localization block (top left) consists of multiple algorithms that combine GPS
(Global Positioning System) updated with a GNSS (Global Navigation Satellite System) correction from a so-
called RTK (Real-Time Kinetic) network, IMU (Intertial Measurement Unit as part of the INS: Inertial Naviga-
tion System [19], laserscanner: lidar (IBEO) and odometer information with an off-line map of the environ-
ment in order to determine the position, orientation and velocity of the vehicle in the actual world. These
algorithms consist of on the one hand the advanced navigation unit combining the GPS, IMU and odometer
information, of type: ‘Spatial Dual’. More information can be found, also on documentation (see Spatial Dual
Reference Manual for that) on [1]. On the other hand it consists of the laserscanner from IBEO which com-
bines the information this sensor retrieves as a point cloud with the outcomes of the advanced navigation
unit, the latter is visualized in Figure 2.16.

26 2. System description and problem formulation

(a) IBEO input block description (b) IBEO input visualization

Figure 2.16: Visualization of the IBEO input sources, left: block-scheme, right: visuals. Retrieved from: [23].

Three drawbacks of using the IBEO system as it is are:

• using this external piece of hard- and software is expensive;

• the software is a blackbox, making it impossible to inspect what happens inside and debug accordingly;

• it appears to perform less robust than expected and required (in certain situations).

A laserscanner has the characteristic that is very well capable of determining a well-defined pointcloud in
case there are not too many inputs from the surroundings. This way objects can be succesfully distinguished
from another and recognised from what is known beforehand. Also, in an environment where surroundings
are very similar: for example a narrow street with high buildings that look similar makes it hard to distinguish
the individual characteristics and determine the position. Another drawback from a dense environment, is
that GPS performs less, as the signal coming from the satellite could be obstructed. An overview and qualita-
tive effect of environmental parameters, among which also wheather influence, on GPS is given by [22].

The assumption is made that the system therefore contains faults, that are mostly inevitable. The aim is
to find a way to handle these faults in such way that the system does not emerge into a complete failure.

2.3.3. Visualization of faults in the localization module
In this section, visualizations are provided in Figures 2.17-2.19 that show the (unexpected) behavior of the
advanced navigation localization and IBEO localization respectively. In order to understand what is shown
in the visualizations, it is important to get some understanding of what is visible. The screenshots were ob-
tained from a so-called visualization tool RVIZ that run on a docker that contained ROS. In the figures, the
path is shown in yellow. The path that is planned by the trajectory controller (as explained in section 2.2.4)
based on the map containing the trajectory and the information about the location and orientation of the
vehicle, is indicated by the thick green path ahead of the vehicle. The vehicle is represented by a rectangle
containing an arrow that indicates the driving direction. The orange vehicle and past trajectory represent the
measurements from the advanced navigation unit, whereas the green vehicle and past trajectory represent
the localization produced by the IBEO software piece. It is clearly visible in all three, but mainly in Figure 2.17,
that the advanced navigation (orange) has an offset and constantly produces wrong information about the
exact location of the vehicle. Figure 2.18 introduces us to some sort of unrealistic ‘sawtooth’ behavior. Over
time, the IBEO localization tends to perform this kind of faults. At the start of the day, this behavior is less.

2.3. Problem formulation 27

Figure 2.17: Offset advanced navigation. Log files from March 18, 2019.

Figure 2.18: IBEO sawtooth. Log files from March 18, 2019.

Figure 2.19: IBEO overcompensation. Log files from March 18, 2019.

As a first step towards fault tolerant control for the WEpods, the decision is made to focus on the fault de-
tection of the IBEO localization sensor. This is a problem that influences the pathplanner most in a negative
way. The path is planned based on the localization output. This leads to overshooting, zig-zag like behavior
in case the vehicle was already at the right track. RRC will be helped tremendously when this problem could
be tackled successfully. In order to be able to do so, several methods regarding the fault detection strategy
and preparation of the input are required. These will be elaborated on in Chapter 3.

3
Methods

This chapter is aimed to describe the methods that are used in order to introduce fault tolerance into the
WEpods project, and in particular to tackle the problems in the localization module. First, an introduction
about the chosen fault diagnosis: detection and isolation (FDI) methodology is given along with the general
approach. Next, the data that is used in this research and all the required cleaning and preparation steps are
described. The third section provides insight into the uncertainty in the system. Finally, the actual model is
introduced first by setting up the kinematic model, then extending the model with an observer and finally
preparing the model for fault detection and isolation.

3.1. Fault diagnosis: model-based
In this section, the main idea of what approach is used for fault diagnosis in the localization module of the
WEpods is sketched. There are many ways to enable detection of faults in an automated system. [21] stressed
that there are four main approaches for fault detection: signal-based, change detection, model-based and
soft computing techniques. All methods incorporate the computation of a so-called residual. This residual
indicates the difference between the nominal (healthy) and actual (faulty) conditions of a system. Once this
residual becomes large enough (i.e. exceeds a pre-computed threshold) and stays large for a long enough
duration, a detection takes place. In order to choose which method is most suitable for the application at
hand, the characteristics of each of these approaches are briefly summarized below.

While soft computing techniques and machine learning in general are very promising, they complicate
characterization of modelling uncertainty and derivation of robust detection thresholds. Therefore, this ap-
proach is disregarded within the rest of this research.

The signal-based approach seems an appropriate candidate at first glance: the output of the IBEO local-
ization unit directly provides the knowledge that something is incorrect. It is visible in Figure 2.18, that the
output indicates that the vehicle performs a sudden jump from one location to the other. This seems an easy
way to detect faults. However, using this information for detection directly, is only valid for the conditions in
which smooth driving behavior is assumed. When the vehicle drives for example some sort of zig-zag type of
path, it is apparent that the localization will change instantaneously under some sharp angle, simply because
this is what the vehicle does in reality. Therefore, the signal-based approach is not robust enough, as it does
not apply to all possible driving behaviors.

The change detection approach uses statistical parametric models for detection of faults. An example of
which is that sudden changes in the mean of the sensor output indicate that it is erroneous. The sensors
used in the WEpods-project are assumed to have zero mean of the output, because otherwise the sensors will
always have a constant offset. The drawback of this method is that when it is applied directly to signals from
a system, the assumption needs to be made that the system remains in steady state, which is not always the
case in driving [11].

The model-based approach is therefore the best candidate for the application at hand. For this approach,
a model of the system that can determine its nominal behavior is required. This nominal (fault-free) model
will be compared to a faulty representation of the system. The general adopted approach is shown in Figure
3.1. The black (‘inner’) stream is used when only simulated variables are regarded, the red (‘outer’) stream
comes into play as well when real recordings (measurements) from the vehicles sensors are used.

29

30 3. Methods

The MODEL blocks contain the kinematic model, that will be described in detail in section 3.4.1, based on
the equations introduced in section 2.2.4. The top model (REAL) has slightly different parameters than the
bottom one (NOMINAL). This is done to be able to include the deviations that reality has in comparison to the
nominal model. The parameters that can be tweaked in order to represent reality better with the ‘real’ model,
are the time delays on the actuators: τv (steering angle) and τs (drivetrain). However, these parameters have
been identified twice as described in [18], so not much deviation from reality is expected.

The input u, that is the same for both models, consists of the desired velocity vdes and the desired steering
angle δdes . The nominal state is represented by x: position in x-direction, position in y-direction, orientation
θ, speed v and steering angle δ. This state is subject to (measurement) noise, represented by external input
ξ. When this is added, output y is obtained. After that, there is a functionality to add faults φ manually.
The objective is to compare the model of the real (faulty) system, with the nominal model. This comparison
delivers residual r , which will be used as an input to the ALARM DETECTOR. This block is responsible for
raising an alarm when it detects a fault. It does so when the residual exceeds the threshold, as explained
above and in [21] and calculated in section 3.4.4.

In order to avoid excessive drift between the nominal model and reality (either output of the REAL model
or of the measurements inside the RECORDING block directly), the former is not implemented in open loop,
i.e. in free run. Instead, an observer is employed. This observer gain Λ consists of a diagonal matrix with
λ: 0 ≤ |λ| ≤ 1 on its diagonal entries. Values for λ close to 1 mean that a lot of weight is given to system
measurements (trusting them more), while values close to 0 mean that more weight is given to the model
(trusting the measurements less). The observer design is explained in section 3.4.2.

At the time of drawing up the scheme, it was unknown that the desired velocity and steering angle were
logged in the recording as well. That is why the PATH PLANNER loop was initially included for calculation
of these values. Later, it turned out that these inputs were stored as well, see also section 3.2. Therefore, the
drawing can be simplified by removing all the red parts, except for the RECORDING block with connections
to the switch and in addition to u directly.

MODEL
(REAL)

MODEL
(NOMINAL)

+

+

 λ

+

r

ϕ

RECORDING

z-1
-
+

ALARM
DETECTOR

x̂ ŷ

x y

ξ
vdes
δdes = u

PATH
PLANNER

y =(xp,yp,θ,v,δ)

sr

Figure 3.1: Approach for developing a fault detection system.

3.2. Data 31

3.2. Data
The data used in this research is recorded during testdrives with the WEasy pods and stored in so-called
rosbag logs. First, it is identified which of these rosbag logs are of interest and how to convert them to readable
data. Then, some preparation (coordinate frames) and cleaning steps are introduced for both the input and
localization data in order to be able to use it for further computation.

3.2.1. Rosbag logs
During test drives with the WEpod vehicles, data is recorded in rosbags. A rosbag is used to handle certain
message data and is aimed to store, process, analyze and also visualize data that is put into them. A so-called
node (which is a process that performs computation) can exchange messages via a certain topic [26]. For the
localization module for example, there is a rosbag called ‘advnav_gps_localization_<date_and_time>.bag’.
This contains a topic that is called /advnav/gps_localization which exchanges messages from type: wepods_-
msgs/Localization. All has been inspected by running the pre-built WEpods docker on Ubuntu, which has
ROS (Robot Operating System) installed. It became clear that quite some information is returned within
such a message. However, not everything is either interesting or filled with data, so they can be disregarded.
Therefore, first the relevant rosbags are identified below and then a selection on which of the messages are
relevant will be provided. Then it is described how this data can be converted to MATLAB-readable input. It
is important to use a format that can be handled by MATLAB, because the research will be exerted using this
programme as it contains a powerful extension called Simulink, in which models can be built.

Relevant rosbags
Several recorded rosbags are of interest to the research, namely:

• vehicle_can_bridge_commands: here, the actual control commands for the speed (vdes) and the steer-
ing angle (δdes) are stored (either resulting from a manual joystick movement in case of the manual
driving mode (recall section 2.1.3), or from the pathplanner in case of the autonomous driving mode;

• vehicle_can_bridge_measurements: this bag contains the measurements coming from the odometer
sensors in the wheels of the speeds and steering angles that are actually achieved;

• pathplanner_trajectory_controller: here, the output of the pathplanner defined as the objected state sr

of the vehicle is stored (recall equation 2.7, containing position in x and y, orientation and speed) if it
would be following its projected reference path;

• advnav_gps_localization: this returns the output of the GPS localization with relevant values for the
configuration of the vehicle (x, y , θ) in UTM coordinate frame, the xx-,xy- and yy-covariances and the
standard deviation of theta;

• advnav_wgs84: relevant values for the configuration of the vehicle (x, y , θ) in WGS84 coordinate frame;

• ibeo_republisher_gps_localization: this returns the output of the GPS localization of the external soft-
ware piece from IBEO with relevant values for the configuration of the vehicle (x,y,theta) in UTM coor-
dinate frame, the xx-, xy- and yy-covariances and the standard deviation of theta;

• ibeo_republisher_localization: this returns the output of the overall localization of the external software
piece from IBEO with relevant values for the configuration of the vehicle (x, y , θ) in UTM coordinate
frame, the local xx-, xy- and yy-covariances and the standard deviation of theta.

Relevant topics and messages
By inspecting the rosbags through the docker with ROS installed by writing the command: rosbag info <path_-
to_rosbag_file/rosbag.bag>, it became clear which topics were used. To find out what messages that are pub-
lished within these topics are relevant, rosbag play is run, while displaying the according topics that have
been identified by rosbag info. In Appendix D, the topics (/...), message names (italic) and important mes-
sages (SpeedMps, etc.) are listed for each of the rosbags. The (Header).Stamp.Sec message includes the Unix
time that indicates the time instance of saving each of the logs in amount of seconds after the Unix Epoch (ini-
tial time stamp 0), which is set to Thursday, 1 of January, 1970 [3]. The (Header).Stamp.Nsec can be added, so
nanosecond precision is reached.

32 3. Methods

Convert rosbag logs to MATLAB data
In order to be able to use the data in MATLAB at a later stage, the rosbag data had to be converted in such a way
that it became readable to MATLAB as well. An m-file (executable MATLAB file) called read_in_data_from_-
rosbags.m was made in order to reach this goal and is included in Appendix E. This m-file uses a graphical
user interface (GUI) that opens the file browser appointed to the folder where the data is saved off-line. The
user can navigate manually to the desired test data (date and time of the rosbag logs). Once arrived at the
correct folder, all vehicle_can_bridge_commands files with the extension .bag are shown, so that the desired
commands can be chosen. Using the information about the path where the file has been found (date and
time window) and the information from the name of the selected file (exact time and recording number),
the other six important rosbags (as listed before) are loaded in automatically. Using the command rosbag, a
rosbag will be selected for which a certain topic can be read. Using the bag selection functionality select in
MATLAB, all the messages belonging to the relevant topics (the list above is used in the code) for the selected
bag, are saved in a structure. The interesting messages are then taken out of these structures successively and
finally stored in .mat files, so they can be loaded in at a later stage to use for the fault diagnosis.

3.2.2. Coordinate frames
Because the data recordings exist in various coordinate systems (as briefly mentioned in the rosbag descrip-
tions), a preparation step is required to get the data into the same configuration. The coordinate systems
used are:

• Local coordinate system in the vehicle
The origin coincides with the mass point of the vehicle, x pointing in the longitudinal (forward) direc-
tion and y pointing in the lateral (to the left) direction.
The covariances of the IBEO localization are recorded in this frame.

• Global Cartesian (Eucledian) coordinate system in UTM coordinates.
The Universal Transverse Mercator (UTM) system contains a latitude and longitude value that is unique
for its position in the world [2][5].
Most of the data is recorded in this frame.

• Global coordinate system containing geographic coordinates WGS84
The World Geodetic System (WGS) frame had is last revision in 1984 (hence WGS84) and has its origin
at the center of mass of the earth and represents its location with respect to this location based on
spherical equations [4].
The GPS (advnav_wgs84) is measured and saved in this frame.

• Global Cartesian (Eucledian) coordinate system
By normalizing the data that is provided or converted in the UTM frame for the x- and y-position of the
vehicle, the origin is moved to the start of the driven track.
This coordinate system is what will be used throughout the entire approach.

The WGS84 is first transformed to UTM using the following code, as part of the script read_in_data_from_-
rosbags.m provided as Appendix E. The UTM zone of the test location is ‘32N’ [31]:

1 %% This s c r i p t i s intended to convert data to correct coordinate systems
2 utmstruct = defaultm (’utm ’) ;
3 utmstruct . zone = ’ 32N’ ;
4 utmstruct . geoid = wgs84Ellipsoid ;
5 utmstruct = defaultm (utmstruct)
6

7 l a t = y_adv_odom ;
8 lon = x_adv_odom ;
9

10 [x_adv_wgs84_utm , y_adv_wgs84_utm]=mfwdtran (utmstruct , l a t , lon)

Then, in order to compare the UTM frame to the frame used in the kinematic model, a translation has to be
made by subtracting the UTM offset. In Figure 3.2 it is shown how the coordinate systems relate to each other.

3.3. Uncertainty characterization 33

Figure 3.2: UTM coordinate system relating to global and local frames. Retrieved from: [35].

3.2.3. Input data
The data used was retrieved from the rosbags that were filled during the test drives. First, the date and time
of the log is retrieved by using the MATLAB function datetime. The dateType (third entry) is defined as the
‘posixtime’, because this represents the Unix time. The timezone is set to Europe/Amsterdam, because Weeze
is in the same timezone as Amsterdam.

1 date_and_time = datetime (commands(1 , 1) , ’ convertfrom ’ , ’ posixtime ’ , ’TimeZone ’ , ’ Europe/
Amsterdam ’)

The input to the vehicle was logged in the vehicle_can_bridge_commands bags. In order to see whether the
vehicle actually meet the desired speeds and steering angles, the commands are compared to the measure-
ments from the vehicles’ internal sensors. This data is logged in vehicle_can_bridge_measurements. Several
cleaning steps were required to make the data usable. These are described in Appendix F.

3.2.4. Localization data
The localization data returned by the advanced navigation GPS, WGS84, IBEO GPS and IBEO localization
sensors have been inspected on sampling frequency and other apparent oddities. Three similar preparation
steps as for the input data emerged and are included in Appendix F as well.

3.2.5. Sensor (fusion) noise data
Finally, the noise data has been inspected at the time it was used for threshold computation. Only then, it
appeared that there was something wrong with the noise data and some preparation steps were needed in
order to correct for this, which are added to Appendix F as well.

3.3. Uncertainty characterization
It is of utmost importance to take influencing factors due to uncertainty into account when modelling a ve-
hicle. When left unassigned, these factors could lead to unexpected changes between reality and the model,
simply because the vehicle does react differently and the controller will be unable to reach the reference

34 3. Methods

values. Below, a brief overview is provided of (external) influences that could possibly make up for the uncer-
tainty in the system.

• Time delays on actuators
The actuators that are responsible for controlling the vehicle, are subject to time delays. These have
been identified for both the steering angle (τs) and the drivetrain (τv). In case they change, because
of wear-out or accumulation of dirt or dust in the hardware, the performance will be different than
expected, because the desired input does not lead to the desired output one-to-one any longer.

• Tire stiffness/deformation
The upper operational limit of the vehicle lies at a speed of 15 km/h, which is slightly less than 4.2 m/s.
As deformation of the tires and hence increased friction will play a major role for higher speeds, it is
assumed that this will not pose any problem [8].

• Wheel slip
When driving on an icy road under a speed that is too high, the wheels can start slipping when braking
is initiated. Also aquaplaning is an example of what can cause the wheels to slip. This is obviously not
measured by the odometer sensors (although there are ways of incorporation this, as found by: [7]), as
the wheel remains in standstill. This is problematic for the sensor output. However, the WEpods are
driving when the weather conditions are good enough, so this is not a problem for the data logs used
either.

• Tire inflation
One influencing factor is the extent to which the tires are in- or deflated. Because of increased friction
when the tires are slightly deflated, the actual speed will be lower than in full inflated state. Also, the
number of rotations of the wheel is not linearly related to the distance travelled in the same way as be-
fore any longer, because the diameter is slightly decreased. The measurements from the wheel sensors
will therefore assume a larger distance travelled than is actually the case. In this application, the posi-
tion based on those sensors is not saved. The vehicle speed, however, is saved. Since the speed is equal
to the derivative of the position, the problem arises here as well. The tires are pumped up on a regular
basis, so for this research, it is assumed that tire inflation does not influence the data accuracy.

• Wind
Side-wind can influence the lateral dynamics of the vehicle [36]. It has to deliver a larger force in order
to compensate for the extra force that pushes the vehicle aside. This is something that has to be taken
into account in the control loop. Not only the lateral dynamics can suffer from wind influence, but the
longitudinal dynamics as well, think: headwind and tailwind.

• Inertia
The inertia of the vehicle is another influence on the longitudinal dynamics. When a heavy object has
accelerated to a certain speed, it is harder to again slow it down. For higher speeds, this influence gets
larger. The influence due to inertia can be determined based on the weight of the vehicle of 1350 kg
and a maximum speed of 4.2 m/s.

• Wear-out of brakes
In case the brakes start to wear out, the braking applied as a result of the control, will lead to different
results than expected as well. When the speeds tend to overshoot, this can imply such wear-out of the
brakes.

3.4. Model design 35

3.4. Model design
In order to build a model, the software plugin Simulink as an extension of MATLAB has been used. This
section describes the Simulink model and what it consists of. First, the kinematic model is discussed in
section 3.4.1, then the observer design is included in section 3.4.2, after which a validation of the overall model
is given in section 3.4.3. After that, two sections are devoted to fault diagnosis: fault detection is described in
3.4.4 and fault isolation in section 3.4.5.

3.4.1. Kinematic model
In Figure 3.3, the first Simulink model that is set up for preparing the kinematic model is shown. It includes
one function block that calculates the A-matrix that is dependent on the state. Recalling again the equations:

ẋ = Ax + Bu,
y = C x = x.

(3.1)

With x and u:
x = [

xpos ypos θ v δ
]T ,u = [

vdes δdes
]T . (3.2)

And A and B :

A = A(x) =

0 0 0 cos(δ)cos(θ) 0
0 0 0 cos(δ)sin(θ) 0
0 0 0 sin(δ)/l 0
0 0 0 −1/τv 0
0 0 0 0 −1/τs

,B =

0 0
0 0
0 0

1/τv 0
0 1/τs

. (3.3)

Figure 3.3: Kinematic model in Simulink.

A discrete-time integrator block, which is visible in the top stream as K∗Ts
z−1 , is included for retrieving the state

x from the computed ẋ. The step time (Ts) of the model has been defined as 0.01s, because the sampling
frequency of the commands equals 100Hz. The end time (T stop) of the simulation is defined as the number
of samples (i.e. always 30,000) of the commands minus 1, multiplied by the step time. These preparations are
made in the prepare.m file.

Initial position
The K∗Ts

z−1 integrator block starts from an initial position. This initial position includes the configuration of the
vehicle (i.e. its state) from the moment that the driving has been initiated. The initial position is determined
in prepare.m as well. Instead of taking the UTM coordinates of the location of the vehicle (x,y), the data is
normalized letting the vehicle drive always from a starting position of 0 meter driven in x-direction and 0
meters driven in y-direction. This is done to simplify inspection. Therefore, the initial position in x and y

36 3. Methods

always equals 0. The orientation angle θ is taken as the first value of the measurements because the vehicle
is left off under a certain angle in the global frame. In case no orientation is known (the WGS84 sensor for
example only returns postions), the orientation angle is set to 0. The speed and steering angle (that are mostly
non-zero as well at the start of a log because the vehicle has been driving already), are taken as the first entry
of the can bridge measurements, or, when the sensor outputs a speed as well, using that speed output.

3.4.2. Observer design
When the model is run in open loop for the x- and y-position, it turns out that the model diverges when
compared to the measurements. See Figures 3.4 and 3.5.

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

-300

-250

-200

-150

-100

-50

0

50

dr
iv

en
 d

is
ta

nc
e

ea
st

 in
 n

or
m

al
iz

ed
 U

T
M

 fr
am

e
[m

]

Longitudinal position [x] comparison model vs. measurements

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

Figure 3.4: Comparison between measured x-position (normalized) and the open loop model output for the x-position.

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

-50

0

50

100

150

200

250

300

dr
iv

en
 d

is
ta

nc
e

no
rt

h
in

 n
or

m
al

iz
ed

 U
T

M
 fr

am
e

[m
]

Lateral position [y] comparison model vs. measurements

modeled lateral displacement
measured lateral displacement (ibeo_loc)

Figure 3.5: Comparison between measured y-position (normalized) and the open loop model output for the y-position.

This is why an observer is included, that prevents drifting away of the model, by calculating the difference
between the model output and the actual model (under some gain value) and adding this offset to the current

3.4. Model design 37

output of the model. This way, it will shift towards the ‘correct’ position. The equations used for designing
such an observer are as follows:

x̂+ = f (y,u)+Λ(ŷ − y),
= Ay +Bu +Λ(ŷ − y).

(3.4)

x̂+ = f (x̂,u)+Λ(ŷ − y),
= Ax̂ +Bu +Λ(ŷ − y).

(3.5)

ŷ = x̂. (3.6)

The observer in equation 3.4 will be called a soft observer, that takes the measurements (y) as an input to
the kinematic model (by multiplying it with A). The observer in equation 3.5, however, only takes the mea-
surements into account in the observer part (Λ(ŷ − y)). Therefore, the second equation has been used in the
model. The Simulink model of this observer design is included in Figure 3.6. Note that the observer is the
third input to the mux-block in the middle.

Figure 3.6: Model with observer in Simulink.

It is visible that the model has been refactored in order to achieve a better overview, in comparison to Figure
3.3. The subsystem blocks are shown in Appendix H.

Determination of the observer gain values λi in diagonal observer matrix Λ has the following characteris-
tics:

• High observer gain (close to 1) puts a lot of trust on the sensors, while a low observer gain (close to 0)
depends solely on the model;

• When there is a lot of sensor noise, it is advisable to trust the model more, whereas in case there is less
noise, the measurements could be trusted. This can be determined using covariance indications of the
measurements;

• A high gain means that by trusting the sensor a lot, the sensor fault will be ‘followed’ and therefore the
observer will not be very sensitive to detecting it. A lower gain is better for the sensitivity and therewith
detectability of the observer.

A gain value for Λ is chosen as 0.9. This is because a gain close to 1, takes the measurements into account
more. By keeping it close to 1, the model will start ‘following’ the fault. A value of 0.9 forms a good compro-
mise, between filtering out noise and being sensitive to fast changes like those emerging from faults. This
way, smooth model outputs are reached that are good for comparison at a later stage. Therefore the matrix
looks as shown below in equation 3.7.

Λ=

0.9 0 0 0 0
0 0.9 0 0 0
0 0 0.9 0 0
0 0 0 0.9 0
0 0 0 0 0.9

(3.7)

38 3. Methods

New comparisons in the x- and y-positions are made now the model has been updated with the observer
loop. The localization output of the model and the measurements are visualized in Figures 3.7 and 3.8.

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

-200

-150

-100

-50

0

50
dr

iv
en

 d
is

ta
nc

e
ea

st
 in

 n
or

m
al

iz
ed

 U
T

M
 fr

am
e

[m
]

Longitudinal position [x] comparison model vs. measurements

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

Figure 3.7: Comparison between measured x-position (normalized) and the closed loop model output for the x-position.

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

-50

0

50

100

150

200

250

300

dr
iv

en
 d

is
ta

nc
e

no
rt

h
in

 n
or

m
al

iz
ed

 U
T

M
 fr

am
e

[m
]

Lateral position [y] comparison model vs. measurements

modeled lateral displacement
measured lateral displacement (ibeo_loc)

Figure 3.8: Comparison between measured y-position (normalized) and the closed loop model output for the y-position.

3.4.3. Validation
Inspecting the Figures provides the knowledge that the model at least seems to match the measurements
quite well. In this section, a validation check will be done to see if the model indeed behaves as expected.
When zooming in on the plots of the model versus the measurements, as shown in 3.9 and 3.10, first of all,
a small delay of the model with respect to the measurements is visible for the instances where the vehicle
changes direction. This is an indication of some unexpected behavior in longitudinal direction in reality,
which is investigated further in section 3.4.4.

3.4. Model design 39

14:06:50 14:07:00 14:07:10 14:07:20 14:07:30
Mar 18, 2019

-20

-10

0

10

20

30

dr
iv

en
 d

is
ta

nc
e

ea
st

 in
 n

or
m

al
iz

ed
 U

T
M

 fr
am

e
[m

]
Longitudinal position [x] comparison model vs. measurements

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

Figure 3.9: Comparison between measured x-position (normalized) and the closed loop model output for the x-position.

14:07:00 14:07:15 14:07:30 14:07:45
Mar 18, 2019

-5

0

5

10

15

dr
iv

en
 d

is
ta

nc
e

no
rt

h
in

 n
or

m
al

iz
ed

 U
T

M
 fr

am
e

[m
]

Lateral position [y] comparison model vs. measurements

modeled lateral displacement
measured lateral displacement (ibeo_loc)

Figure 3.10: Comparison between measured y-position (normalized) and the closed loop model output for the y-position. Large jumps
in the lateral position (y) are already visible between 14:07:15 and 14:07:30.

Changed sign in equations for orientation
While checking the model including the observer on validity above, an extra plot was generated for the ori-
entation, as shown in Figure 3.11. It turned out that the model showed something odd for the orientation
entry. When the measured orientation angle becomes larger, the model seems to become smaller first before
correcting towards the expected value. Since the equation for the orientation is only based on the steering
angle and the speed, the latter two were plotted against the unexpectedly shaped orientation to retrace the
error. It is presumed that a minus sign is missing in the equations. This is shown in Figure 3.12.

40 3. Methods

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00

time [hh:mm:ss] Mar 18, 2019

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10
he

ad
in

g
an

gl
e

[r
ad

]

Orientation angle [theta] comparison model vs. measurements

modeled orientation
measured orientation (ibeo_loc)

Figure 3.11: Comparison between orientation from the model and the IBEO localization output. The arrow and circle indicate the
notable difference in orientation.

14:06:48 14:06:52 14:06:56 14:07:00 14:07:04 14:07:08 14:07:12 14:07:16
Mar 18, 2019

5.6

5.8

6

6.2

or
ie

nt
at

io
n

th
et

a
[r

ad
]

Orientation, delta model, delta measured, speed measured

14:06:48 14:06:52 14:06:56 14:07:00 14:07:04 14:07:08 14:07:12 14:07:16
Mar 18, 2019

-0.2

-0.15

-0.1

-0.05

0

st
ee

rin
g

an
gl

e
m

ea
s

ca
n

[r
ad

]

14:06:48 14:06:52 14:06:56 14:07:00 14:07:04 14:07:08 14:07:12 14:07:16
Mar 18, 2019

0

0.5

1

sp
ee

d
m

ea
s

ca
n

[m
/s

]

Figure 3.12: Comparison between orientation from the model and the IBEO localization output (top plot), complemented with steering
angle (middle plot) and vehicle speed (bottom plot) coming from the can bridge measurements (meas on y-axis).

3.4. Model design 41

The relevant kinematic equation is θ̇ = sin(δ)/l ∗v , which has been drawn up as one of entries in the A-matrix
in the system description Ax+Bu. By inspecting this equation and noting that it is multiplied with v_des,
it becomes clear that the output will be negative for the plotted steering angle (which remains below 0) and
speed (which remains above 0). The steering angle is namely a small negative value, so the output of taking
the sinus of that, is negative as well and the speed is positive. Because the length of the wheelbase remains
constant and is obviously positive as well, the orientation could never become positive for this plotted time
interval. This means that only the observer is responsible for pulling ‘up’ the orientation towards the correct
value, so probably a minus sign is missing in the kinematic equations. This is tested by running the model in
open loop (i.e. by setting the observer gain equal to 0). The result is shown in Figure 3.13.

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

1

2

3

4

5

6

7

8

9

10

he
ad

in
g

an
gl

e
[r

ad
]

Orientation angle [theta] comparison model vs. measurements

modeled orientation
measured orientation (ibeo_loc)

Figure 3.13: Open loop output for modeled orientation with unadapted equations.

This validated the presumption of having a mismatch in the sign. In Figure 3.14, the output for the orientation
based on the model when the minus sign is added, are shown. First, in open loop form and then in closed
loop, where correction by the observer is performed.

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

he
ad

in
g

an
gl

e
[r

ad
]

Orientation angle [theta] comparison model vs. measurements

modeled orientation
measured orientation (ibeo_loc)

(a) Open loop output corrected sign orientation

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

he
ad

in
g

an
gl

e
[r

ad
]

Orientation angle [theta] comparison model vs. measurements

modeled orientation
measured orientation (ibeo_loc)

(b) Closed loop output corrected sign orientation

Figure 3.14: Corrected sign orientation output, left: open loop, right: closed loop (observer).

42 3. Methods

From this point onwards, the equations have been updated by the addition of a minus sign:

1 function A = fcn (angles , par)
2 tau_s = par (1) ; % time delay actuators [s]
3 tau_v = par (2) ; % time delay actuators [s]
4 l = par (3) ; % length of h a l f the wheelbase
5

6 A = [0 0 0 cos (angles (2)) * cos (angles (1)) 0 ;
7 0 0 0 cos (angles (2)) * sin (angles (1)) 0 ;
8 0 0 0 −sin (angles (2)) / l 0 ;
9 0 0 0 −1/tau_v 0 ;

10 0 0 0 0 −1/tau_s] ;

After updating the equations, the output of the model in x- and y-position slightly improved as well. Two
zoomed-in plots of the comparison between the measurements and positions resulting from the model are
included in Figures 3.15 and 3.16. Especially the lateral position is improved in comparison to Figure 3.10.

14:06:50 14:07:00 14:07:10 14:07:20 14:07:30
Mar 18, 2019

-20

-15

-10

-5

0

5

10

15

20

25

30

dr
iv

en
 d

is
ta

nc
e

ea
st

 in
 n

or
m

al
iz

ed
 U

T
M

 fr
am

e
[m

]

Longitudinal position [x] comparison model vs. measurements

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

Figure 3.15: Comparison between measured x-position (normalized) and the closed loop model output with updated A-matrix.

14:07:00 14:07:15 14:07:30 14:07:45
Mar 18, 2019

-5

0

5

10

15

dr
iv

en
 d

is
ta

nc
e

no
rt

h
in

 n
or

m
al

iz
ed

 U
T

M
 fr

am
e

[m
]

Lateral position [y] comparison model vs. measurements

modeled lateral displacement
measured lateral displacement (ibeo_loc)

Figure 3.16: Comparison between measured y-position (normalized) and the closed loop model output with updated A-matrix.

3.4. Model design 43

3.4.4. Fault detection
Now that the model has been drawn up, validated and prepared accordingly, the actual fault detection can be
implemented. For this, first the residuals will be generated that compare the model output to the measure-
ments. As a second step, the model will be split into two observers, one for the localization entries (x, y and
θ) and one for the speeds (v) and steering angles (δ). This is done to enable fault detection for the localization
module only, without experiencing influence from other sensors and resources that might not be completely
fault-free. Various residuals using different methods will be generated again once this update to the model is
made. Finally, the threshold is designed which the residual needs to cross in order to detect a fault.

Residual as difference in position
The residual is in the first instance computed by taking the difference between the model and the measure-
ments:

r = y − ŷ . (3.8)

The residual r that emerges for all state entries (x, y , θ, v , δ) for the model versus the sensor used, in this case
the IBEO localization, is shown in Figure 3.17.

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

-1

0

1

di
ff

x-
po

si
tio

n
[m

] Difference between state of the measurements from:ibeo_loc and model outcome (residual)

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

-0.5

0

0.5

1

di
ff

y-
po

si
tio

n
[m

]

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

-0.1

-0.05

0

di
ff

or
ie

nt
at

io
n

[r
ad

]

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

-2

-1

0

1

di
ff

sp
ee

d
[m

/s
]

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

-0.05

0

0.05

di
ff

st
ee

rin
g

an
gl

e
[r

ad
]

Figure 3.17: Residuals in all state entries (x, y , θ, v , δ) model versus IBEO localization sensor.

It is visible that the residuals for the x- and y-position stay relatively small. Only slightly before 14:07:00,
something interesting occurs. There are large peaks visible for both the x- and y-position. By inspecting how
the data behaves, it becomes clear that at that point in time the vehicle starts driving. The large difference
in speed could mean that this is an unreliable value to use. In order to determine this, the speeds emerging
from different sensors and the model are visualized in Figures 3.18 and 3.19 (zoomed in version of the plot in
Figure 3.18) for further inspection.

44 3. Methods

14:05 14:06 14:07 14:08 14:09 14:10 14:11
Mar 18, 2019

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

sp
ee

d
[m

/s
]

Speed comparison between commands and measurements

v commanded (input)
v measured (canbus)
v from automation ptc
v measured (adv nav)
v measured (ibeo loc)
v modeled

Figure 3.18: All measured speeds vs. model output.

14:07:14 14:07:15 14:07:16 14:07:17 14:07:18 14:07:19 14:07:20 14:07:21
Mar 18, 2019

0

0.2

0.4

0.6

0.8

1

1.2

sp
ee

d
[m

/s
]

Speed comparison between commands and measurements

v commanded (input)
v measured (canbus)
v from automation ptc
v measured (adv nav)
v measured (ibeo loc)
v modeled

Figure 3.19: All measured speeds vs. model output zoomed in.

It is obvious from Figure 3.19 that something unexpected happens in the control loop of the vehicle: the de-
sired speeds differ significantly from the measured speeds. The accelerations seem to be smoothed by a filter
in order to avoid jerks and uncomfortable accelerations of the vehicle. A second influencing factor according
to the team, is that the velocity controller only uses P(I) - Proportional (Integration) and does not include
feedforward control but only acts when the error became sufficiently large. The controller is unfortunately
a black box, so these assumptions have been made based on inspection. This is something that can not be
influenced from the position of performing the research, therefore the decision has been made to split the
observer into two parts: one for the localization, and one for the steering angle and speed. In order to prevent
the localization residual to be heavily influenced by the unexpected speed output, the observer will from now
on be two-fold: on the one hand there is the state of the localization (x, y and θ), on the other hand there are
the speeds (v) steering angles (δ).

3.4. Model design 45

Update model to two observers
The equations for the split observer model are as follows:

x2 =
[

v
δ

]
, A2 =

[−1
τv

0

0 −1
τs

]
,B2 =

[
1
τv

0

0 1
τs

]
,u2 =

[
vdes

δdes

]
, y2 = x2 +ξ2 (from can bridge). (3.9)

x1 =

px

py

θ

 , A1 =

0 0 0
0 0 0
0 0 0

 ,B1 =

cos(δmeas)cos(θg ps) 0
cos(δmeas)sin(θg ps) 0

sin(δmeas)/l 0

 ,u1 =

[
vmeas

δmeas

]
(= y2), y1 = x1 +ξ1 (from sensor).

(3.10)
The second observer is described first, because the output (y2) represents the input of the first observer. The
names ‘second’ and ‘first’ are chosen based on the different parts of the state entries that are used. The sec-
ond observer, which is denoted by equation 3.9, contains the steering angle and speed of the model (which
is the second part of the state), whereas the first observer, denoted by equation: 3.10, contains the position
in x and y and the orientation angle (which is the first part of the state). For the second model, the input is
defined as the desired (commanded) speeds, whereas the first observer takes the actual measured speeds as
its input. This is done because there was some unknown conversion between the commanded and modelled
speeds as identified above. In order to eliminate this unknown influence on computing the localization out-
put of the model, the measured speeds are taken directly. Then, a choice was made on which steering and
orientation angles to use in the B-matrix of the first observer (equation: 3.10). The steering angles are only
provided by the can bridge measurements and can bridge commands. As it is desired to stay close to reality,
the measurements are taken directly. Then, the orientation angle is retrieved from the advanced navigation
GPS unit. It could have been taken from the IBEO GPS or IBEO localization as well, but because these use the
advanced navigation GPS as an input and fuse this with their own information, the choice is made to stay as
raw as possible and use the advanced navigation GPS output as an input to this B-matrix.

In the Simulink model, the approach using two observers looks as follows (Figure 3.20):

Figure 3.20: Two observer model in Simulink.

The next two Figures, 3.21 and 3.22 contain a detailed overview of the 2nd and 1st observer blocks respec-
tively. A complete overview of all the subsystems for the two observers is included in Appendix I).

46 3. Methods

Figure 3.21: Second observer model in Simulink.

Figure 3.22: First observer model in Simulink.

Residual as difference in state output
After having split the model into two observers, the residuals indicating the difference between the model
and the measurements are drawn up again for each of the state entries and shown in Figure3.23. The resid-
uals for the localization (x, y and θ) are indeed smaller, as is visible in Figure 3.23 compared to Figure 3.17.
This update is beneficial for the detectability of the faults. However, it is visible that at the second part of
the log, there is a constant offset of about 0.2 above 0 in the x-position. This makes it hard to detect peaks
and therewith faults over the whole scope of the residuals during one log. Therefore, several elaborations in
computation of the residuals are made. The next three subsections are aimed to describe the following three
approaches that are more in-depth than only taking the difference between the state outputs:

• Residual as difference in speed based on measurements only

• Residual as derivative of residual in position based on model and measurements output

• Mahalanobis distance as residual in order to statistically evaluate the previous residual

3.4. Model design 47

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

0

0.2

0.4

0.6
di

ff
x-

po
si

tio
n

[m
] Difference between state of the measurements from:ibeo_loc and model outcome (residual)

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

-0.2

0

0.2

0.4

di
ff

y-
po

si
tio

n
[m

]

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

-0.02

0

0.02

0.04

di
ff

or
ie

nt
at

io
n

[r
ad

]

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

-2

-1

0

1

di
ff

sp
ee

d
[m

/s
]

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

-0.05

0

0.05

di
ff

st
ee

rin
g

an
gl

e
[r

ad
]

Figure 3.23: Residuals in all state entries (x, y , θ, v , δ) model vs. sensor two observer model.

Residual as difference in speed
The first approach to elaborate on the residual computation is to compute derivatives of the position resulting
from the model (i.e. the speeds vcomp) and compare these with the speed measurements (vmeas):

vcomp =
√
∆x2 +∆y2/∆t . (3.11)

r = vcomp − vmeas (3.12)

Taking this approach is a form of applying a first order filter. One thing that has to be taken into account, is
that the computed speeds will always be smaller than the actual speeds, because not the entire curvature is
taken into account, but it is approximated only by small increments. This is valid to do, because the incre-
ments are small enough (i.e. we have enough data points). Fitting the ‘known’ curvature to the data could be
a solution for obtaining more accurate results, if desired. First, an evaluation is made on the speeds as they
have been computed by taking the increments of just 0.01 seconds, which seems already small enough. The
result is shown in Figure 3.24.

48 3. Methods

14:06 14:07 14:08 14:09 14:10 14:11
Mar 18, 2019

0

2

4

6

8

10

12

sp
ee

d
[m

/s
]

computed speed of the localization outcome of IBEO

computed speed

Figure 3.24: Speeds computed on localization output for position.

There are large peaks visible in the computed speeds shown in Figure 3.24. These peaks indicate the instances
where a fault in the localization is present. Because of jumps in the positions, the derivative at that point
is very high, so the visualization of the faults will be enlarged. A residual can be drawn up to subtract the
actual speed from the computed speed, so that the faults remain nicely centered around 0, recall equation
3.12. The computed speeds can be compared (i.e. a residual can be drawn up) with the speed output of
another sensor. The choice is made to do this comparison with the GPS output, as these seem to represent
reality best. Recall that the modeled speed turned out to perform unexpectedly due to the difference between
input speed (canbus) and actual measured speed (canbus) and the fact that there are some unknown effects
emerging from the control. Also, it does not make much sense to compare a faulty sensor with its own output
for another state entry (i.e. use the IBEO localization speeds). When plotting the both of them against each
other, it turned out that the speed measurements from the advanced navigation GPS sensor are delayed with
around 1 second, see Figure 3.25. Therefore, the computed speeds are delayed before subtracting them (i.e.
before computing the residual). The resulting residual is shown in Figure 3.26.

3.4. Model design 49

14:06:52 14:06:56 14:07:00 14:07:04 14:07:08
Mar 18, 2019

0

0.5

1

1.5

2

2.5

sp
ee

d
[m

/s
]

computed speed of the localization outcome vs. gps measurements

computed speed
gps measurements

Figure 3.25: Speeds computed on localization output for position vs. 1 [s] delayed GPS measurements.

14:06 14:07 14:08 14:09 14:10 14:11
Mar 18, 2019

-2

0

2

4

6

8

10

co
m

pu
te

d
sp

ee
d

-
m

ea
su

re
d

sp
ee

d
(g

ps
)

residual based on the computed speed minus gps measurements

Figure 3.26: Residual of speeds computed on localization output minus shifted GPS measurements.

50 3. Methods

The peaks that show up in Figure 3.26, indicate now the fault occurences. Because it is nicely centered around
0, this residual would be very well eligible for fault detection when the absolute value of it is compared to a
threshold. This approach is actually not model-based anymore, since only the measurements are taken in
consideration. It is classified as a parity-checking approximation. A drawback of this method is that it only
holds if, in this case, the GPS measurements are assumed to be always correct, which is clearly not always the
case, because there could be many influencing external factors [22]. A second drawback of this approach is
that the results will be delayed with one seconds when implemented on-line, because the GPS measurements
have a delay of around 1 second. It depends on the desired time window in which the fault needs to be
detected if this method is applicable or not. A similar approach, that does take the model into consideration
so this uncertainty and immediate on-line computation inability can be avoided, can be defined as taking the
derivative of the residual on the position.

Residual as derivative of residual in position
Instead of comparing the derivatives of the position from the IBEO localization with the measured GPS speed,
another approach is to first compute the residual based on the position output of the model and the mea-
surements of the IBEO localization and then take the derivative of that as a new residual. This can be seen
as applying a simple first order filter to the residual. Another research that applied a filter on the output,
however before computing a residual, can be found in [9]. There, a a stable linear time invariant (LTI) filter is
applied to each of the measurement outputs and it is proved that it improved the detectability of faults. Note
that in our case, the residual (i.e. difference between localization model output and measurements) is taken
as an input to the filter, rather than only the measurements itself.

As a next step, the residual dynamics have to be computed. This is important because for threshold com-
putation, the residual should be bounded in healthy condition [12]. The residual dynamics are derived as
follows (recall: r (k) = y(k)− ŷ(k)):

r (k +1) = y(k +1)− ŷ(k +1),
= f (x(k),u(k))+η(k)+ξ(k +1)− (

f (y(k),u(k))+Λ(ŷ(k)− y(k))
)

,
= f (x(k),u(k))+η(k)+ξ(k +1)− f (y(k),u(k))−Λ(ŷ(k)− y(k)),
= f (x(k),u(k))+η(k)+ξ(k +1)− f (y(k),u(k))+Λ(y(k)− ŷ(k),
= f (x(k),u(k))+η(k)+ξ(k +1)− f (y(k),u(k))+Λr (k),
= Λr (k)+ f (x(k),u(k))− f (y(k),u(k))+η(k)+ξ(k +1),
= Λr (k)+δ(k),Σ(r (k),δ(k)).

(3.13)

In which the observer matrix Λ can be replaced by the gain values λ (as it is a diagonal matrix: Λ= diag{λi }).
x(k) represents y(k)−ξ(k), so uncertainty δ becomes:

δ(k), f (y(k)−ξ(k),u(k))− f (y(k),u(k))+η(k)+ξ(k +1). (3.14)

This means that the measured dynamics are subtracted from the true dynamics (modelled). Then the non-
linear dynamics of the vehicle which were not modelled, end up in η and the measurement noise is indicated
by ξ. η is assumed to be 0 in the model, since it represents uncertainty noise whereof the way of computating
is unknown. An upper bound η̄, however, can be defined as three times the variance (σ) of the measurement
noise of the sensor that is used.

Instead of using the residual directly, the suggested approach takes the time derivative of this residual, there-
fore leading to a new residual, r ′. A short notation is used for r (k +1) as r+, r (k) as r and r (k −1) as r−:

r ′ = r+− r. (3.15)

λ represents the observer gain used in the model. The actual residual dynamics are now equal to:

r ′ = λr +δ− (λr−+δ−),
= λr +δ−λr−−δ−,
= λ(r − r−)+δ−δ−,
= λr ′

−+δ−δ−.

(3.16)

An upper bound can be written on the residual, which is denoted by r̄ ′
+, as in the following:

r̄ ′
+ =λr̄ ′+2δ̄. (3.17)

3.4. Model design 51

Where δ̄ is an upper bound on δ and the fact is used that in the worst case δ and δ− have opposite signs. The
upper bound uncertainty δ̄ is defined as the maximum on both the model noise η and measurement noise ξ:

δ(i)(k),max
η

max
ξ

| δ(i)(k) |. (3.18)

In order to upper bound the absolute value of each component of the residual, advantage can be taken of the
triangular inequality [12] in the following way:

| r(i)(k +1) | É λi | r(i)(k) | + | δ(i)(k) | ,
É λi | r(i)(k) | + δ̄(i)(k).

(3.19)

Then, by using the Comparison Lemma [14], the adaptive threshold can be defined as:

r̄(i)(k +1) =λi r̄(i)(k)+ δ̄(i)(k) Ê | r(i)(k +1) | . (3.20)

Statistical evaluation of residual
When the residuals are obtained, one more step can be taken before proceeding to the threshold computa-
tion. This step is a statistical evaluation of the residuals. By taking this step, the detectability of a fault will be
improved and an assessment can be made about with which probability a fault will be detected. There are
several approaches that can be used [11]:

• Probability density function (pdf) of the Gaussian fit
This test aims to determine under a computable certainty whether a certain sample is produced by the
nominal probability density function. If this hypothesis is rejected, a fault is detected;
Pdf of a Gaussian is assumed to have zero mean for the sensors, otherwise a constant offset is visible;
Prerequisite: normal distribution of the residual;
Will lead to: tighter threshold;

• Student t-test
Testing the mean (when there is a change in mean, we assumed it to be 0);
Prerequisite: normal distribution of the residual and computation of the mean and variance;
Will lead to: tighter threshold;
Computed as follows:

t = µ̂(N)−µ
σ̂/

p
N

. (3.21)

With N as a window of a certain number of samples z that is large enough, but also not too big. The
samples z are in this case the residuals that are evaluated. The sample mean µ̂(N) is defined as follows:

µ̂(k) = µ̂(k −1)+ 1

k
[z(k)− µ̂(k −1)]. (3.22)

The variance σ̂ is determined as follows:

σ̂2(k) = k −2

k −1
σ̂2(k −1)+ 1

k
[z(k)− µ̂(k −1)]2. (3.23)

• χ2

Testing the variance (when there is a change in covariance assumed/observed);
Prerequisites: normal distribution of the residual and computation of the variance;
Will lead to: tighter threshold;
Computed as follows:

χ2 = (N −1)σ̂2
1

σ2
0

. (3.24)

• Mahalanobis distance
The Mahalanobis distance represents how far a sample (z) is away from the nominal distribution. Com-
putation can be done for data of which the covariance noise is known in form of a covariance matrix C ;
Prerequisite: none regarding the type of distribution (however, more suitable for multivariate data),
computation of the mean and known covariance matrix;
Will lead to: over-conservative threshold;
Computed as follows:

d(z) =
√

(z −µ)T C−1(z −µ). (3.25)

52 3. Methods

Because the decision was made to proceed with the residual that is computed by differentiating the residual
(i.e. difference) of the localization output for the x- and y-position of the model and the measurements (recall:
r ′ −λr ′

−), it will be checked for these residuals whether they are normally distributed or not. This is done
by computing histograms for the residuals and compare the result with a Gaussian fit. They are drawn up
by using the histogram and histfit function in MATLAB in the master m-file run_Simulink.m. This m-file is
excluded from the appendices for the sake of brevity. The histograms are shown in Figure 3.27.

Histogram of derivative of the residual: r-lambda*r(-) in x-position

-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

derivative of residual

0

1000

2000

3000

4000

5000

6000

fr
eq

ue
nc

y

bins
Gaussian fit

Histogram of derivative of the residual: r-lambda*r(-) in y-position

-0.04 -0.02 0 0.02 0.04 0.06 0.08

derivative of residual

0

1000

2000

3000

4000

5000

6000

7000

fr
eq

ue
nc

y

bins
Gaussian fit

Figure 3.27: Histograms of the derivative of the residual in x-position (left) and y-position (right.)

As the residuals turn out not to be distributed normally, the Mahalanobis distance will be calculated, because
this holds for every type of distribution. A big advantage of this approach is also that it can be incorporated in
an on-line fashion (when zero mean is assumed). Because the other probabilistic tests require a sufficiently
high number of samples, the outcomes can only be computed off-line (although computation of the mean
can be done in a recursive way if desired). Other solutions that have an on-line character are likelihood based
algorithms [11], but these are left out of the scope of this research.

Mahalanobis distance
The Mahalanobis distance on the ‘derivative of the residual’ can now be calculated. Recall equation 3.25. The
samples z are now represented by a 2x1 vector containing the residual: r ′−λr ′

− in x-position and y-position
for each time step and the mean µ is assumed to be zero (otherwise the sensor has a constant offset). The
covariance matrix is a symmetric matrix that is defined as follows:

C =
[

cov_xx cov_x y
cov_x y cov_y y

]
(3.26)

The IBEO localization sensor provides a measurement of these three covariances for each sampling time.
However, these covariances are given in the local coordinate frame of the vehicle. Therefore, it is required to
include a rotation over the orientation angle θi of the vehicle at that time instance:

R =
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(3.27)

Rotating a matrix can be done using the following approach: RC R ′. Instead of rotating the covariance matrix,
it is also possible (and easier) to rotate the samples (z) and fill in the inverse of C directly:

z ′(RC R ′)z = z ′R ′C−1Rz = (Rz)′C−1Rz. (3.28)

Therefore, the actual implementation of the Mahalanobis distance becomes:

d =
√

(Rz)′2C−1Rz. (3.29)

As is visible in equation 3.29, two times the covariance matrix is used. This is in order to achieve the upper
bound defined before (recall 2δ̄). The covariance represents the measurement noise ξ. Because the noise

3.4. Model design 53

η that was not modelled, is set to 0, the covariance can be used as δ immediately. All can be filled in and
computed off-line based on the logged information. Because the covariance is returned by IBEO every time
step, this could be easily extended to an on-line implementation as well, as still only information at each time
instance is used. In order to use the covariance of a single realization of a stochastic process in place of the co-
variance over time, the stochastic process is assumed to be stationary and ergodic during a single experiment.

The first time the Mahalanobis distance was computed by implementing equation 3.29 in Matlab, it turned
out that something was wrong. The outcomes of the Mahalanobis distance were complex numbers. The fact
that the covariance matrix is a positive definite matrix by definition [6], indicates that the covariance matrix
used for computation is incorrect. Therefore, again some data cleaning had to be performed. The way this,
and new emerging inconsistencies, were handled are added to Appendix F. After having all the data fixed in
an off-line way for now, the outcome of the Mahalanobis distance compared with the initial residual and the
derivative thereof, is shown in Figure 3.28. The new residuals have a smaller offset than the initial residual
based on the difference only, which is advantageous in terms of detectability. Also, using the Mahalanobis
distance makes detection easier, because the peaks are (at some points at least slightly) higher than the resid-
ual that is based on the derivative of the difference. This is due to the incorporation of covariance noises in
this approach. They will give an extra boost or hold-back when the noise is low or high respectively.

14:08:20 14:08:21 14:08:21 14:08:22 14:08:22
Mar 18, 2019

0

0.2

0.4

0.6

di
ff

x-
po

si
tio

n
[m

]

Three types of residuals for x and y (top two figures) and model vs. measured position in x and y

residual
abs(derivative residual)
Mahalanobis distance

14:08:20 14:08:21 14:08:21 14:08:22 14:08:22
Mar 18, 2019

0

0.1

0.2

di
ff

y-
po

si
tio

n
[m

]

residual
abs(derivative residual)
Mahalanobis distance

14:08:20 14:08:21 14:08:21 14:08:22 14:08:22
Mar 18, 2019

-62

-60

-58

dr
iv

en
 d

is
ta

nc
e

ea
st

 [m
] Fault in ibeo localization for the x position (top) and y position (bottom) compared to model outcomes

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

14:08:20 14:08:21 14:08:21 14:08:22 14:08:22
Mar 18, 2019

32.5

33

33.5

dr
iv

en
 d

is
ta

nc
e

no
rt

h
[m

]

modeled lateral displacement
measured lateral displacement (ibeo_loc)

Figure 3.28: Top two figures: residual with its derivative and the Mahalanobis distance thereof, bottom two: localization output.

54 3. Methods

Threshold design - Chebyshev inequality
Once the Mahalanobis distance is obtained, the threshold d̄ can be determined using the Chebyshev inequal-
ity as stated below [11].

d̄ , n

α
⇒P[d(z) > d̄] < 1−α (3.30)

This term indicates the probability of having a correct rejection: the probability that sample z for which the
Mahalanobis distance has been calculated (in this research z is set equal to the derivative of the residual in
x and y, therefore dimension n = 2), has been produced by the nominal distribution. α has to be chosen
as a value between 0 and 1 (excluding those bounds), because a probability is determined based on 1−α. A
scaling factor for the threshold is assumed, because the covariance is taken as the small values only, which are
a decade in the order of magnitude smaller than they were initially returned by IBEO. In Figure 3.29, a plot is
shown of the Mahalanobis distance versus a threshold that is determined with α equal to 0.01, so probability
1-0.01*100 = 99%. Because it was found that the covariance is subject to some scaling issues (by assessing the
covariance of fault-free experimental data), and therewith the Mahalanobis distance outcome is scaled, the
value of d̄ is scaled by 1e-4.

14:06 14:07 14:08 14:09 14:10 14:11
Mar 18, 2019

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

re
si

du
al

 a
n

th
re

sh
ol

d
va

lu
es

Mahalanobis distance vs. threshold

Mahalanobis distance
threshold: d=2/alfa, alfa=0.01, scaled:1e-4

Figure 3.29: Mahalanobis distance versus threshold.

3.4.5. Fault isolation
In order to isolate a fault, multiple single observers (as introduced in section 3.4.2) can be used for each of
the four sensors: advanced navigation GPS, advanced WGS84, IBEO GPS and IBEO localization. A combi-
nation of each of the sensors can be run for generating residuals. When one of the residuals appears to be
significantly lower than the other combination of sensors, the sensor that is excluded from this particular
combination, can be isolated as the faulty one, because it apparently has a negative influence on the overall
residual. In progress towards fault tolerant control, this sensor can be temporarily disabled or will be trusted
less in comparison to the other sensors, so the path planner will take only valid information into account
while computing its next time step. For this master’s thesis, the focus has been placed on the detection of
faults in the black box localization software rather than isolating the fault first. This is because at this mo-
ment, the faulty sensor was already known and finding a solution for detecting faults in this particular sensor
and providing information about the if and when of these occurrences is a more pending problem than pro-
viding information now that can identify that there is a fault and to isolate which sensor is the faulty one.
But as an extension of this research, the fault isolation can be implemented easily with the resources that are
already provided by this thesis.

4
Experiments and Results

This chapter discusses the experimental setup of the research based on the methods that were described
in Chapter 3 and provides the results. Also, an evaluation is provided that assesses the performance of the
overall model-based fault diagnosis approach.

4.1. Experiments
Two experiment cases have been drawn up based on the model-based approach. The first one tests the abil-
ity of detecting faults in the IBEO localization module using an empirical threshold in combination with the
derivative of the residual. The second one combines the residual that has been determined by the Maha-
lanobis distance with a threshold emerging from the Chebyshev’s inequality. Both cases are tested on three
measurement days that showed localization data containing faults: the 5th, 6th and 18th of March, 2019. A
baseline is provided for a log in which no faults were present in order to validate that the model does not
provide false positives (i.e. provides a message that there is a fault, although there is none [13]). The two ex-
perimental cases of the model-based approach are compared to the parity approximation approach in order
to determine the detectability rate in the performance section.

Every detected fault is reported uniquely with a message for the purpose of analysis, for example:

"fault in the IBEO localization localization y-position at: 18-Mar-2019 14:08:33"

The detected fault is defined as unique, when it is the first in the sequence to cross a certain threshold. Indices
that come directly after, belong to the same fault instancce. This is implemented in the run_Simulink.m-file
as:

1 idx = find (abs (res) >threshold) ;
2 D = d i f f ([0 , (d i f f (idx) ==1) , 0]) ;
3 f a u l t = idx (D>0) ; % find the ’ index of occurence ’ of a f a u l t
4 i f f a u l t
5 faultmess = s t r c a t (’ f a u l t in the IBEO l o c a l i z a t i o n position at : ’ , { ’ ’ } , datestr (

date_and_time+seconds (idx *Ts))) ;
6 secs = idx *Ts ; % determine time instance of f a u l t occurence
7 r e s _ f = res_c (idx) ; % determine residual values where the threshold i s

crossed
8 unmes = s t r i n g (unique (faultmess)) ;
9 unmes = uniquemes (unmes) % display unique (one for each time) f a u l t message

10 end

55

56 4. Experiments and Results

4.1.1. Derivative of the residual combined with empirical threshold
For this experiment, the model and the IBEO localization measurements are used. The outputs of the position
in the x- and y-direction will be subtracted as a definition of the residuals:

rx = xpos,I BEO −xpos,model , (4.1)

ry = ypos,I BEO − ypos,model . (4.2)

The derivative is taken of these residuals in order to retrieve the new residuals. Actually, the derivative is not a
strict derivative, because the time difference is subjected to observer gain λ. However, this approach will still
be named ‘derivative of the residual’, because it summarizes the used method best.

r ′
x = rx,+−λrx , (4.3)

r ′
y = ry,+−λry . (4.4)

The implementation in MATLAB looks as such:

1 lambda = 0 . 9 ;
2 residual_x = t r (: , 1)−x_mod ; % compute the residual in x−position
3 d i f r e s _ x = d i f f (residual_x) ’ ; % compute d i r e c t d e r i v a t i v e of the residual x
4 for i = 2 : length (residual_x)
5 z (i −1)=residual_x (i)−lambda* residual_x (i −1) ; % include observer gain
6 end
7 z (length (t r)) = z (length (t r)−1) ;
8 d i f r e s _ x = z ; % overwrite the d e r i v a t i v e of the residual x
9 residual_y = t r (: , 2)−y_mod ; % compute the residual in y−position

10 d i f r e s _ y = d i f f (residual_y) ’ ; % compute d i r e c t d e r i v a t i v e of the residual y
11 for i = 2 : length (residual_y)
12 z (i −1)=residual_y (i)−lambda* residual_y (i −1) ; % include observer gain
13 end
14 z (length (t r)) = z (length (t r)−1) ;
15 d i f r e s _ y = z ; % overwrite d e r i v a t i v e of the residual y

An empirical threshold is defined by inspection of the residual and set to 0.03. This indicates that the rate of
change of the model needs to be higher than 0.03 in order to exceed the threshold. Therefore, quick changes
in the position will be detected as a jump and thus a fault. Jumps of 9 cm and more can be detected when the
algorithm uses a threshold of 0.03, see Figure 4.1.

15:08:19.000 15:08:19.500 15:08:20.000 15:08:20.500
Mar 06, 2019

0

0.02

0.04

re
si

du
al

 a
nd

 th
re

sh
ol

d Derivative of the residual in x-position, threshold:0.03

abs(rx')

threshold:0.03
detections

15:08:19.000 15:08:19.500 15:08:20.000 15:08:20.500
Mar 06, 2019

0.01

0.02

0.03

re
si

du
al

 a
nd

 th
re

sh
ol

d Derivative of the residual in y-position, threshold:0.03

abs(ry')

threshold:0.03
detections

15:08:19.000 15:08:19.500 15:08:20.000 15:08:20.500
Mar 06, 2019

-60

-40

-20

0

x-
po

si
tio

n
[m

]

Fault in ibeo localization for the x-position compared to model outcomes

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

15:08:19.000 15:08:19.500 15:08:20.000 15:08:20.500
Mar 06, 2019

9.7

9.8

9.9

y-
po

si
tio

n
[m

]

Fault in ibeo localization for the y-position compared to model outcomes

modeled lateral displacement
measured lateral displacement (ibeo_loc)

0.09 [m]

Figure 4.1: Empirical threshold determination for residual as derivative of the offset.

A visualization of the absolute value of the residual in x- and y-direction versus the threshold, is provided in
Figure 4.2. This shows the barrier which the residual has to exceed in order to be detected as a fault. The
detections itself are shown in section 4.2.1.

4.1. Experiments 57

15:08:00.000 15:10:00.000 15:12:00.000
Mar 06, 2019

0

0.05

0.1

0.15

re
si

du
al

 a
nd

 th
re

sh
ol

d
va

lu
es

Derivative of the residual in x- and y-position vs. threshold

abs(r
x
')

abs(r
y
')

threshold: 0.03

Figure 4.2: Absolute derivatives of the position differences as residuals vs. empirical threshold of 0.03, March 6, 2019.

4.1.2. Mahalanobis distance residual combined with Chebyshev threshold
This experiment is based on an adaptation of the previous residual. The r ′

x and r ′
y are combined by means of

the Mahalanobis distance into one new residual, r ′′. An adaptation to the conventional definition as intro-
duced in equation 3.25 is made in order to be able to use it for the application at hand:

r ′′ =
√

(Rz)′2C−1Rz. (4.5)

Z is a 2x30,000 vector (based on the length of the inputs) containing the r ′
x as the first entry and r ′

y as the sec-
ond entry. R is a rotation matrix based on the orientations obtained by the measurements. C is the covariance
matrix containing the noise of the position measurements in x and y direction (i.e. the localization output).
The implementation in MATLAB is shown below, in which covmin is the function written in order to obtain
the correct covariance values, as explained in section 3.4.4, see also Appendix F.

1 cov_min = covmin (xx , yy , xy) ; % calculate covariance matrix based on l o c a l minima cov
2

3 for i = 1 : length (z)
4 d_min(i) = sqrt (([cos (theta (i)) , −sin (theta (i)) ;
5 sin (theta (i)) , cos (theta (i))] * [z (: , i)]) ’ *2* inv (cov_min { i }) * . . .
6 [cos (theta (i)) , −sin (theta (i)) ;
7 sin (theta (i)) , cos (theta (i))] * [z (: , i)]) ;
8 end

The threshold is defined based on the Chebyshev inequality. A slightly higher probability is desired than the
99% that was drawn up in section 3.4.4 and is set to 99.33%, Therewith, a detection threshold of 1e-4*2/0.0067
= 0.02985. In Figure 4.3, the residual as the Mahalanobis distance is shown versus this Chebyshev threshold.
The instances where the residual exceeds the thresholds, fault detection will take place. The actual detections
are shown in section 4.2.2.

58 4. Experiments and Results

14:06 14:07 14:08 14:09 14:10 14:11
Mar 18, 2019

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

re
si

du
al

 a
n

th
re

sh
ol

d
va

lu
es

Mahalanobis distance vs. threshold

Mahalanobis distance
threshold: d=2/alfa, alfa=0.01, scaled:1e-4

Figure 4.3: Mahalanobis distance residual versus threshold, March 18, 2019.

4.1.3. Baseline
It is important to ensure that the proposed approach does not generate false positives, i.e. outputs a message
that a fault occurred, although in reality, no fault was present. In this case, the vehicle might aim to adapt its
behavior or come to a safe stop, although this would have been unnecessary. This way, the algorithm might
pose more disadvantages than it improves the overall level of autonomy, at least delay in the overall time for
completing the track is introduced. This has to be avoided. A reference log is chosen where no big jumps in
the localization data occurred (i.e. that performed fault-free). The chosen log is also on the 6th of March, but
at the beginning of the day. Generally it turned out while testing, that the localization faults mainly occurred
later during the day. First, a plot is included as Figure 4.4 that shows the difference between the model and
the measurements. Although there is sometimes an offset visible, no clear jumps can be distinguished. The
peaks might be due to some other noise or variance in the system. It can be visualized by inspecting the
covariances. This is done in Figure 4.5 for the covariances in x- and y-direction. Indeed, at mainly 09:05:00, it
is visible that there is a drop in the covariance where the offset is small as well.

09:02:00 09:03:00 09:04:00 09:05:00 09:06:00 09:07:00
Mar 06, 2019

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

of
fs

et
 [m

]

Difference between model and measurements in longitudinal (x-) direction

Figure 4.4: Log that is free from jumps in the localization module position (x) output, March 06, 2019.

4.1. Experiments 59

09:02:00 09:03:00 09:04:00 09:05:00 09:06:00 09:07:00
Mar 06, 2019

0

0.2

0.4

of
fs

et
 [m

]
Difference between model and measurements in longitudinal (x-) direction

09:02:00 09:03:00 09:04:00 09:05:00 09:06:00 09:07:00
Mar 06, 2019

0

1

2

3

co
va

ria
nc

e

Covariance in x-direction of IBEO localization

09:02:00 09:03:00 09:04:00 09:05:00 09:06:00 09:07:00
Mar 06, 2019

-0.2

0

0.2

of
fs

et
 [m

]

Difference between model and measurements in lateral (y-) direction

09:02:00 09:03:00 09:04:00 09:05:00 09:06:00 09:07:00
Mar 06, 2019

0

1

2

3

co
va

ria
nc

e

Covariance in y-direction of IBEO localization

Figure 4.5: Covariances in the x- and y- direction provided by the IBEO localization versus the differences between the model and
measurements.

The baseline log has been used to generate the residuals for both the derivative of the residual and the Maha-
lanobis distance approach and compare them with the according thresholds. When no detections are made,
the approach functions as desired. The results are shown in section 4.2.3.

4.1.4. Performance

In order to determine the performance of the developed methods, experiments have been set up that assess
this. A measure of validation is used in form of the parity approximation approach as explained in 3.4.4.
First, the hit rate will be defined in which it is calculated what percentage of faults can be detected by the
model-based approach. Then, the computational speed is computed because it is important to find out if the
methods is eligible for an extension towards applying in an on-line manner.

60 4. Experiments and Results

Parity approximation
As a measure of validation, the residual is used that is defined by the difference between the derivatives of the
position of the measurements and the speed of the measurements.

r =
(√
∆x2

I BEO +∆y2
I BEO∆t

)
− vGPS,shi f ted (4.6)

The implementation is included in the master m-file run_Simulink.m and looks as follows:

1 %% Compute speed
2 dt = d i f f (tv (1 : 2)) ;
3 v_comp = sqrt (d i f f (t r (: , 1)) .^2+ d i f f (t r (: , 2)) . ^ 2) / dt ;
4 v_comp2 = [zeros (105 ,1) ; v_comp] ;
5 f i g u r e
6 tn = [] ;
7 for i = 1 : length (tv) +104
8 i f i >= length (tv)
9 tn (i) =tn (i −1) +0.01;

10 else
11 tn (i) =tv (i) +0.01;
12 end
13 end
14 res = v_comp2 (1 : end−104)−tr_adv_gps (: , 4) ;

The difference in speeds is used as a residual, because it stays close to what happened in reality. This approach
has a better detectability than the other two approaches (identified by inspection of Figure 4.6 of how the
residual is distributed around 0 with clear peaks at each fault occurrence. These peaks only represent jumps
in the position, because they are defined as the direct derivatives of these positions.

14:05 14:06 14:07 14:08 14:09 14:10 14:11
Mar 18, 2019

0

1

2

3

4

5

6

7

8

9

10

co
m

pu
te

d
sp

ee
d

-
m

ea
su

re
d

sp
ee

d
(g

ps
)

Residual based on the computed speed minus gps measurements vs. manual threshold

residual
threshold

Figure 4.6: Absolute value of parity approximation residual vs. empirical threshold of 0.05, March 18, 2019.

The threshold in Figure 4.6 is randomly picked at 0.05. It is visible that this value is too low. Therefore, again
an empirical evaluation has been made, as is shown in Figure 4.6. The value is set to 0.05, therefore able to
detect faults with an offset from 2 centimetres upwards. This is determined by checking the jump that was
visible from the position output of the measurements on the according first fault occurrence of this sequence.
The choice could be made to set a less strict threshold, for example to allow a maximum offset of almost 7.5
centimeters (threshold ∼0.5). The way the empirical threshold is determined, is shown in Figure 5.1.

4.1. Experiments 61

14:10:21.100 14:10:21.200 14:10:21.300 14:10:21.400 14:10:21.500 14:10:21.600 14:10:21.700
Mar 18, 2019

0

0.2

0.4

0.6

re
si

du
al

 a
nd

 th
re

sh
ol

d
va

lu
es Residual based on the computed speed minus gps measurements vs. empirical threshold

abs(residual)
threshold:0.5

14:10:21.100 14:10:21.200 14:10:21.300 14:10:21.400 14:10:21.500 14:10:21.600 14:10:21.700
Mar 18, 2019

-191.18

-191.16

-191.14

-191.12

-191.1

-191.08

x-
po

si
tio

n
[m

]

Fault in ibeo localization for the x position compared to model outcomes

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

14:10:21.100 14:10:21.200 14:10:21.300 14:10:21.400 14:10:21.500 14:10:21.600 14:10:21.700
Mar 18, 2019

199.3

199.35

199.4

dr
iv

en
 d

is
ta

nc
e

no
rt

h
[m

]

modeled lateral displacement
measured lateral displacement (ibeo_loc)

0.074 m

Figure 4.7: Empirical threshold determination for parity approximation approach.

Hit rate
The detection (or: hit) rate can be determined as the amount of true positives (correct classifications) divided
by the sum of the true positives (TP) and false negatives (incorrect rejection: the fault has not been classified
as such, FN) [13]:

Detection rate = T P

T P +F N
. (4.7)

The false alarm rate is defined as the amount of false positives (i.e. a false alarm), divided by the sum of the
true negatives (correct rejections, TN) and the false positives (FP):

False alarm rate = F P

T N +F P
(4.8)

The number of detected faults will be compared, so a hit rate percentage can be computed of the model-
based approach, assuming that this parity approximation reaches a hit rate of 100% for the given accuracy.

Computational speed
It will be determined for each of the computational steps, how much time has elapsed using the tic toc func-
tionality in MATLAB. The sections are divided as follows (and listed along with the responsible m-files if any):

• Read in, convert and save data from .rosbag to .mat files - read_in_data_from_rosbags.m: determine-
_noise.m;

• Read in the data from .mat files;

• Prepare the data as input for simulation - prepare.m;

• Simulate;

• Derivative of residual - faultmessage.m: uniquemes.m;

• Mahalanobis distance - Mahalanobis.m: vectorfourtimes.m, covmin.m and uniquemes.m;

• Parity approximation - uniquemes.m.

The first functionality does not have to be run each time, only once to convert and save new log data from
.rosbag to .mat files.

62 4. Experiments and Results

4.2. Results
First, an overview is provided for the detection using the derivative of the residual combined with a empirical
threshold in section 4.2.1. Then, the residual based on the Mahalanobis distance which is combined with a
Chebyshev threshold is visualized in section 4.2.2. Next, a baseline fault-free log is included to ensure that no
false positives are generated in section 4.2.3. Finally, the performance of the model-based diagnosis approach
is assessed in section 4.2.4.

4.2.1. Derivative of the residual combined with empirical threshold
First, an image is included in Figure 4.8 that contains a zoomed-in plot of a fault in the localization output
for March 5, 2019. The bottom two figures represent the model (blue) and the measurements (red). The
measurements show an unexpected jump between 11:16:48 and 11:16:49. The top two figures contain the
difference between the model and the measurement outputs for the position in x-direction and the position
in y-direction.

11:16:48 11:16:49 11:16:49 11:16:50 11:16:50 11:16:51 11:16:51 11:16:52 11:16:52
Mar 05, 2019

-0.6

-0.4

-0.2

0

0.2

di
ff

x-
po

si
tio

n
[m

]

Difference between state of the measurements from:ibeo_loc and model outcome (residual)

11:16:48 11:16:49 11:16:49 11:16:50 11:16:50 11:16:51 11:16:51 11:16:52 11:16:52
Mar 05, 2019

-0.1

0

0.1

di
ff

y-
po

si
tio

n
[m

]

11:16:48 11:16:49 11:16:49 11:16:50 11:16:50 11:16:51 11:16:51 11:16:52 11:16:52
Mar 05, 2019

-15

-14

-13

-12

dr
iv

en
 d

is
ta

nc
e

ea
st

 [m
]

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

11:16:48 11:16:49 11:16:49 11:16:50 11:16:50 11:16:51 11:16:51 11:16:52 11:16:52
Mar 05, 2019

-2

-1.8

-1.6

-1.4

dr
iv

en
 d

is
ta

nc
e

no
rt

h
[m

]

modeled lateral displacement
measured lateral displacement (ibeo_loc)

Jump in ibeo localization for the x position (top) and y position (bottom) compared to model outcomes

Figure 4.8: Detected fault in IBEO localization March 05, 2019.

The algorithm determines where the residuals exceed the empirical threshold. The instances where this is
the case, are indicated by the red dots in Figure 4.9. I.e. at these instances, the derivative is large enough to
make the detection. The bottom two figures represent the modelled and measured displacements in addition
of black dotted lines. These black lines indicate the initial moment in time of the occurrence of a fault. It is
visible that indeed the measurements (red line) performs a jump at the position of the black dotted line.
The small sawtooth that is visible in the y-position offset is not detected by the algorithm. This is because
these jumps lie in an order of magnitude of centimetres, while the threshold can detect from 9 centimetres

4.2. Results 63

upwards (recall section 4.1.1). In Table 4.1, a summary is provided of the date, threshold value and number
of detections made. First, the total number of detections (which are represented by red dots in Figure 4.9) is
given and then the number of ‘unique’ detections, defined as the first time a fault occurs (the black dotted
lines).

11:16:48.000 11:16:49.000 11:16:50.000 11:16:51.000 11:16:52.000 11:16:53.000
Mar 05, 2019

-0.4

-0.2

0

di
ff

x-
po

si
tio

n
[m

]

Difference between output of the x-position from ibeo and the model, detections based on derivative of residual, threshold:0.03

offset [m]
detections

11:16:48.000 11:16:49.000 11:16:50.000 11:16:51.000 11:16:52.000 11:16:53.000
Mar 05, 2019

-0.2

-0.1

0

0.1

di
ff

y-
po

si
tio

n
[m

]

Difference between output of the y-position from ibeo and the model, detections based on derivative of residual, threshold:0.03

offset [m]
detections

11:16:48.000 11:16:49.000 11:16:50.000 11:16:51.000 11:16:52.000 11:16:53.000
Mar 05, 2019

-15

-14

-13

-12

-11

x-
po

si
tio

n
[m

]

Fault in ibeo localization for the x-position compared to model outcomes

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

11:16:48.000 11:16:49.000 11:16:50.000 11:16:51.000 11:16:52.000 11:16:53.000
Mar 05, 2019

-3

-2

-1

y-
po

si
tio

n
[m

]

Fault in ibeo localization for the y-position compared to model outcomes

modeled lateral displacement
measured lateral displacement (ibeo_loc)

Figure 4.9: Detected fault in IBEO localization March 05, 2019.

Table 4.1: Fault detection ID derivative residual March 05, 2019

Date March 05, 2019
Threshold value 0.03
faults detected in x-position 108, of which unique: 1
faults detected in y-position 24, of which unique: 5

64 4. Experiments and Results

A similar Figure is provided for March 6, 2019 in Figure 4.10. Due to the size of the axes, the jumps can not be
inspected by eye in the plots showing the x- and y-positions emerging from the measurements vs. the model.
However, the derivatives of the positions (residuals) do clearly show the sawtooth behavior. The overview
of the fault detection is provided in Table 4.2. Comparing the results of this 6th of May to those of the 5th
of May, it becomes clear that the logs of the former contain way more faults and therefore more outings of
unexpected behavior by the IBEO localization unit.

15:11:08.000 15:11:12.000 15:11:16.000 15:11:20.000 15:11:24.000 15:11:28.000 15:11:32.000 15:11:36.000
Mar 06, 2019

-0.6

-0.4

-0.2

0

di
ff

x-
po

si
tio

n
[m

]

Difference between output of the x-position from ibeo and the model, detections based on derivative of residual, threshold:0.03

offset [m]
detections

15:11:08.000 15:11:12.000 15:11:16.000 15:11:20.000 15:11:24.000 15:11:28.000 15:11:32.000 15:11:36.000
Mar 06, 2019

0

0.2

0.4

di
ff

y-
po

si
tio

n
[m

]

Difference between output of the y-position from ibeo and the model, detections based on derivative of residual, threshold:0.03

offset [m]
detections

15:11:08.000 15:11:12.000 15:11:16.000 15:11:20.000 15:11:24.000 15:11:28.000 15:11:32.000 15:11:36.000
Mar 06, 2019

0

10

20

x-
po

si
tio

n
[m

]

Fault in ibeo localization for the x-position compared to model outcomes

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

15:11:08.000 15:11:12.000 15:11:16.000 15:11:20.000 15:11:24.000 15:11:28.000 15:11:32.000 15:11:36.000
Mar 06, 2019

-250

-200

-150

y-
po

si
tio

n
[m

]

Fault in ibeo localization for the y-position compared to model outcomes

modeled lateral displacement
measured lateral displacement (ibeo_loc)

Figure 4.10: Detected fault in IBEO localization March 06, 2019.

Table 4.2: Fault detection ID derivative residual March 06, 2019

Date March 06, 2019
Threshold value 0.03
faults detected in x-position 715, of which unique: 39
faults detected in y-position 709, of which unique: 37

4.2. Results 65

Finally, the third testing day is also evaluated with the residual as derivative of the difference between the
modelled and measured positions. This is shown in Figure 4.11 and the information is provided in Table 4.3.

14:10:26.000 14:10:27.000 14:10:28.000 14:10:29.000 14:10:30.000 14:10:31.000 14:10:32.000
Mar 18, 2019

0.05

0.1

0.15

0.2

0.25

di
ff

x-
po

si
tio

n
[m

]

Difference between output of the x-position from ibeo and the model, detections based on derivative of residual, threshold:0.03

offset [m]
detections

14:10:26.000 14:10:27.000 14:10:28.000 14:10:29.000 14:10:30.000 14:10:31.000 14:10:32.000
Mar 18, 2019

-0.25

-0.2

-0.15

-0.1

di
ff

y-
po

si
tio

n
[m

]

Difference between output of the y-position from ibeo and the model, detections based on derivative of residual, threshold:0.03

offset [m]
detections

14:10:26.000 14:10:27.000 14:10:28.000 14:10:29.000 14:10:30.000 14:10:31.000 14:10:32.000
Mar 18, 2019

-192

-191

-190

x-
po

si
tio

n
[m

]

Fault in ibeo localization for the x-position compared to model outcomes

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

14:10:26.000 14:10:27.000 14:10:28.000 14:10:29.000 14:10:30.000 14:10:31.000 14:10:32.000
Mar 18, 2019

210

215

220

225

y-
po

si
tio

n
[m

]

Fault in ibeo localization for the y-position compared to model outcomes

modeled lateral displacement
measured lateral displacement (ibeo_loc)

Figure 4.11: Detected faults with threshold 0.03 in IBEO localization March 18, 2019.

Table 4.3: Fault detection ID derivative residual March 18, 2019

Date March 18, 2019
Threshold value 0.03
faults detected in x-position 776, unique: 82
faults detected in y-position 96, unique: 25

66 4. Experiments and Results

Before moving on to the next approach (residual based on Mahalanobis distance), the overall fault detec-
tion of one log is presented. Figure 4.12 contains the absolute values of the residuals, the threshold and the
instances where the residual exceeds the threshold (represented by the yellow dots) for the 18th of March.

14:06:00.000 14:07:00.000 14:08:00.000 14:09:00.000 14:10:00.000 14:11:00.000
Mar 18, 2019

0

0.05

0.1

0.15

re
si

du
al

 a
nd

 th
re

sh
ol

d Derivative of the residual in x-position, threshold:0.03

abs(rx')

threshold:0.03
detections

14:06:00.000 14:07:00.000 14:08:00.000 14:09:00.000 14:10:00.000 14:11:00.000
Mar 18, 2019

0

0.05

0.1

re
si

du
al

 a
nd

 th
re

sh
ol

d Derivative of the residual in y-position, threshold:0.03

abs(ry')

threshold:0.03
detections

14:06:00.000 14:07:00.000 14:08:00.000 14:09:00.000 14:10:00.000 14:11:00.000
Mar 18, 2019

-200

-100

0

x-
po

si
tio

n
[m

]

Fault in ibeo localization for the x-position compared to model outcomes

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

14:06:00.000 14:07:00.000 14:08:00.000 14:09:00.000 14:10:00.000 14:11:00.000
Mar 18, 2019

0

100

200

y-
po

si
tio

n
[m

]

Fault in ibeo localization for the y-position compared to model outcomes

modeled lateral displacement
measured lateral displacement (ibeo_loc)

Figure 4.12: Detected faults with threshold 0.03 in IBEO localization March 18, 2019.

4.2. Results 67

4.2.2. Mahalanobis distance residual combined with Chebyshev threshold
The same test data has been inspected by the second approach, using the Mahalanobis distance as a residual
in combination with the Chebyshev threshold as well. Rather than only showing the difference in x- and
y-position, now, the Mahalanobis distance residual is visualized, along with the threshold. The height of
the threshold is determined by the Chebyshev inequality for a probability of 99.9%. Due to the scaling and
computation, the threshold itself has a value of 0.029851. The detections that are performed are visualized
on the residual as well. For the first testing day, March 05, 2019, see Figure 4.13. The overview of the fault
detection is provided in Table 4.4.

11:16:00.000 11:17:00.000 11:18:00.000 11:19:00.000 11:20:00.000 11:21:00.000
Mar 05, 2019

0

0.2

0.4

0.6

0.8

re
si

du
al

 a
nd

 th
re

sh
ol

d

Residual based on the Mahalanobis distance vs. Chebyshev threshold

residual
threshold
detections

11:16:00.000 11:17:00.000 11:18:00.000 11:19:00.000 11:20:00.000 11:21:00.000
Mar 05, 2019

-80

-60

-40

-20

0

20

x-
po

si
tio

n
[m

]

Fault in ibeo localization for the x-position compared to model outcomes

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

11:16:00.000 11:17:00.000 11:18:00.000 11:19:00.000 11:20:00.000 11:21:00.000
Mar 05, 2019

-40

-20

0

20

y-
po

si
tio

n
[m

]

Fault in ibeo localization for the y-position compared to model outcomes

modeled lateral displacement
measured lateral displacement (ibeo_loc)

Figure 4.13: Detected fault in IBEO localization with Mahalanobis distance as residual March 05, 2019.

Table 4.4: Fault detection ID Mahalanobis distance residual March 05, 2019

Date March 05, 2019 March 05, 2019
Threshold value 0.03 0.029851
faults detected in x-position 170 7403, of which unique: 170
faults detected in y-position 170 7403, of which unique: 170

68 4. Experiments and Results

On March 06, 2019, the results shown in Figure 4.14 and in Table 4.5 are achieved. The amount of unique
detections for some former manually inserted threshold values are included in this table as well. The lower
threshold results in a lower amount of detections, which does not seem correct at first. Actually, this is due
to the way the unique faults are computed. If two detections are following up on each other, the first will be
indicated as a unique fault and the second as a detection that belongs to that specific fault instance. If this
occurs for multiple detections in a row, they will be gathered as one unique fault, although there might be
more. This is why in the latter column (and in the other tables throughout this results section) both the ‘raw’
amount of detections is provided and the amount of unique faults.

15:08:00.000 15:09:00.000 15:10:00.000 15:11:00.000 15:12:00.000
Mar 06, 2019

0

0.1

0.2

0.3

re
si

du
al

 a
nd

 th
re

sh
ol

d

Residual based on the Mahalanobis distance vs. Chebyshev threshold

residual
threshold
detections

15:08:00.000 15:09:00.000 15:10:00.000 15:11:00.000 15:12:00.000
Mar 06, 2019

-50

0

50

100

150

x-
po

si
tio

n
[m

]

Fault in ibeo localization for the x-position compared to model outcomes

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

15:08:00.000 15:09:00.000 15:10:00.000 15:11:00.000 15:12:00.000
Mar 06, 2019

-200

-100

0

y-
po

si
tio

n
[m

]

Fault in ibeo localization for the y-position compared to model outcomes

modeled lateral displacement
measured lateral displacement (ibeo_loc)

Figure 4.14: Detected fault in IBEO localization with Mahalanobis distance as residual March 06, 2019.

Table 4.5: Fault detection ID Mahalanobis distance residual March 06, 2019

Date March 06, 2019 March 06, 2019 March 06, 2019
Threshold value 0.02 0.03 0.029851
faults detected in x-position 134 161 14122, of which unique: 160
faults detected in y-position 134 161 14122, of which unique: 160

4.2. Results 69

A zoomed-in plot is provided for the 18th of March in Figure 4.15 and the details are given in Table 4.6. By
enlarging the plots, the jumps are again better visible. Due to axes size, the x-position can be inspected better.
Not much can be interpreted from the top plot that indicates the residual based on the Mahalanobis distance,
the threshold value and the detections. All values of the Mahalanobis distance that lie above the threshold,
have gotten a yellow dot. More insightful is to inspect again the residual by means of the derivative of the
difference and plot the detections on there.

14:10:25.000 14:10:25.500 14:10:26.000 14:10:26.500 14:10:27.000 14:10:27.500
Mar 18, 2019

0.02

0.04

0.06

re
si

du
al

 a
nd

 th
re

sh
ol

d

Residual based on the Mahalanobis distance vs. Chebyshev threshold

residual
threshold
detections

14:10:25.000 14:10:25.500 14:10:26.000 14:10:26.500 14:10:27.000 14:10:27.500
Mar 18, 2019

-192

-191.5

-191

x-
po

si
tio

n
[m

]

Fault in ibeo localization for the x-position compared to model outcomes

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

14:10:25.000 14:10:25.500 14:10:26.000 14:10:26.500 14:10:27.000 14:10:27.500
Mar 18, 2019

208

210

212

214

216

y-
po

si
tio

n
[m

]

Fault in ibeo localization for the y-position compared to model outcomes

modeled lateral displacement
measured lateral displacement (ibeo_loc)

Figure 4.15: Detected fault in IBEO localization with Mahalanobis distance as residual March 18, 2019.

Table 4.6: Fault detection ID Mahalanobis distance residual March 18, 2019

Date March 18, 2019
Threshold value 0.029851
faults detected in x-position 1871, unique: 139
faults detected in y-position 1871, unique: 139

4.2.3. Baseline
First, in Figure 4.16, the parity approximation method is tested for the baseline log (March 6th, 2019). It is
visible that the absolute value of the residual stays below the threshold of 0.5 (i.e. faults of 8 centimetres or
bigger, discussed in section 4.2.4) for the complete log. This means that the parity approximation algorithm
performs as expected for a fault-free log. In Figures 4.17 and 4.18, the model-based approaches are shown.
The Mahalanobis distance performs as expected, but the derivative of the residual is still subject to some false
positives. Because the noise is high at the instances where the peak occurs, the residual is hold back slightly
by the approach in which the Mahalanobis distance is taken.

70 4. Experiments and Results

09:02:00 09:03:00 09:04:00 09:05:00 09:06:00 09:07:00
Mar 06, 2019

0

0.1

0.2

0.3

0.4

0.5

0.6

re
si

du
al

 a
nd

 th
re

sh
ol

d
va

lu
es

Residual based on the computed speed minus gps measurements vs. empirical threshold

abs(residual)
threshold:0.5

Figure 4.16: No detected faults for fault-free case using parity approximation March 06, 2019.

09:02:00 09:03:00 09:04:00 09:05:00 09:06:00 09:07:00
Mar 06, 2019

0

0.01

0.02

0.03

re
si

du
al

 a
nd

 th
re

sh
ol

d

Residual based on the Mahalanobis distance vs. Chebyshev threshold

residual
threshold

09:02:00 09:03:00 09:04:00 09:05:00 09:06:00 09:07:00
Mar 06, 2019

-200

-150

-100

-50

0

x-
po

si
tio

n
[m

]

Fault in ibeo localization for the x position (top) and y position (bottom) compared to model outcomes

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

09:02:00 09:03:00 09:04:00 09:05:00 09:06:00 09:07:00
Mar 06, 2019

0

100

200

300

400

500

y-
po

si
tio

n
[m

]

modeled lateral displacement
measured lateral displacement (ibeo_loc)

Figure 4.17: No detected faults for fault-free case using Mahalanobis distance March 06, 2019.

4.2. Results 71

09:02:00 09:03:00 09:04:00 09:05:00 09:06:00 09:07:00
Mar 06, 2019

0

0.02

0.04

re
si

du
al

 a
nd

 th
re

sh
ol

d Derivative of the residual in position: x (top), y (bottom)

abs(rx')

threshold:0.03
detections

09:02:00 09:03:00 09:04:00 09:05:00 09:06:00 09:07:00
Mar 06, 2019

0

0.01

0.02

0.03

re
si

du
al

 a
nd

 th
re

sh
ol

d

abs(ry')

threshold:0.03
detections

09:02:00 09:03:00 09:04:00 09:05:00 09:06:00 09:07:00
Mar 06, 2019

-200

-100

0

x-
po

si
tio

n
[m

]

Fault in ibeo localization for the x-position compared to model outcomes

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

09:02:00 09:03:00 09:04:00 09:05:00 09:06:00 09:07:00
Mar 06, 2019

0

200

400

600

y-
po

si
tio

n
[m

] modeled lateral displacement
measured lateral displacement (ibeo_loc)

Figure 4.18: Some detected faults for the intendedly fault-free case using derivative of residual March 06, 2019.

In the discussion, section 5.1, the detections made by the derivative of the residuals made, will be briefly
addressed.

4.2.4. Performance
For the parity approximation that will be used to assess several measures of performance of the remaining
two methods, also an empirical threshold can be defined. A visualization of the detection using the parity
approximation is shown in Figure 4.19 for a threshold of 0.05. It is visible that using this setting, detections are
made already for faults smaller than 0.02 [m] in the longitudinal (x) direction and for the lateral (y) direction,
even faults of half a centimeter can be identified. It is good that this method is capable of detecting faults
of this size and not get deceived by other forms of noise. This is visible in the upper plot, because in the
sections between the detections, the residual is more or less zero. Nevertheless, in order to be able to compare
the other two methods well, a threshold should be found that lies closer to the 9 centimetres defined as a
minimum offset requirement for a detection using the derivative of the difference as a residual. In section
4.1.4, an appropriate threshold is defined, with value 0.5. In Figures 4.20-4.22, the detections made for each
of the used log days are shown. After that, three Tables (4.7-4.9) are provided that contain the number of faults
detected for both the thresholds of a value of 0.05 and the other of 0.5.

72 4. Experiments and Results

Figure 4.19: Detections based on parity approximation approach with a threshold value of 0.05. March 18, 2019.

11:16 11:17 11:18 11:19 11:20 11:21
Mar 05, 2019

0

2

4

6

8

10

12

14

16

re
si

du
al

 a
nd

 th
re

sh
ol

d
va

lu
es

Residual based on the computed speed minus gps measurements vs. manual threshold

abs(residual)
threshold:0.5
detections

Figure 4.20: Absolute value of the residual based on parity approximation with a threshold of 0.5. March 05, 2019.

4.2. Results 73

15:08:00 15:09:00 15:10:00 15:11:00 15:12:00 15:13:00
Mar 06, 2019

0

1

2

3

4

5

6

7

8
re

si
du

al
 a

nd
 th

re
sh

ol
d

va
lu

es

Residual based on the computed speed minus gps measurements vs. empirical threshold

abs(residual)
threshold:0.5
detections

Figure 4.21: Absolute value of the residual based on parity approximation with a threshold of 0.5. March 06, 2019.

14:06:00 14:07:00 14:08:00 14:09:00 14:10:00 14:11:00
Mar 18, 2019

0

1

2

3

4

5

6

7

8

9

re
si

du
al

 a
nd

 th
re

sh
ol

d
va

lu
es

Residual based on the computed speed minus gps measurements vs. empirical threshold

abs(residual)
threshold:0.5
detections

Figure 4.22: Absolute value of the residual based on parity approximation with a threshold of 0.5. March 18, 2019.

74 4. Experiments and Results

Table 4.7: Fault detection ID parity approximation residual March 05, 2019

Date March 05, 2019 March 05, 2019
Threshold value 0.05 0.5
faults detected 10520, of which unique: 1083 287, of which unique: 64

Table 4.8: Fault detection ID parity approximation residual March 06, 2019

Date March 06, 2019 March 06, 2019
Threshold value 0.05 0.5
faults detected 16331, of which unique: 823 1433, of which unique: 93

Table 4.9: Fault detection ID parity approximation residual March 18, 2019

Date March 18, 2019 March 18, 2019
Threshold value 0.05 0.5
faults detected 15922, of wich unique: 359 1138, of which unique: 101

Hit rate
The amount of faults with a jump of 2 centimetres or higher, that has been successfully detected by the model-
based approach on the derivative of the residual only and a threshold of 0.03, is therefore for the x-position
on March 18, 2019 : 28/359*100%=7.8%. When the Mahalanobis distance is used, however, with a threshold
of 0.02985 is 139/359*100%=38.7%. When a threshold of 0.5 is chosen, 101 faults are detected by the parity
approximation approach. This means that around 25% is detected with only the derivation of the threshold,
and even more than 100% with the Mahalanobis distance. So, it can be said that all faults with an offset of
8cm and higher, can be detected by the Mahalanobis distance.

Using this line of thought, the table provided below is set up. The thresholds of 0.03, 0.02985 and 0.5 are
taken respectively for the derivative of the difference (Der_of_diff), the Mahalanobis distance (Mah_dist) and
the parity approximation approach in order to compare. In Table 4.10, the three log dates are visualized at the
top, with the number of detections for each of the three approaches underneath. Then, the last two columns
are dedicated to the hit rate percentages based on comparison with the parity approximation approach for
both the raw detections and the unique ones (o.w.u.).

4.2. Results 75

Table 4.10: Fault detection and hit rate comparison of both the model-based approaches and the parity approximation method

Date March 05, 2019 March 06, 2019 March 18, 2019
Der_of_diff: # F in x 108, o.w.u.: 1 715, o.w.u.: 39 776, o.w.u.: 82
Der_of_diff: # F in y 24, o.w.u.: 5 709, o.w.u.: 37 96, o.w.u.: 25
Mah_dist: # F in x 7403, o.w.u.: 170 14122, o.w.u.: 160 1871, o.w.u.: 139
Mah_dist: # F in y 7403, o.w.u.: 170 14122, o.w.u.: 160 1871, o.w.u.: 139
Parity approximation: # F 287, o.w.u.: 64 1433, o.w.u.: 93 1138, o.w.u.: 101

Hit rate derivative x 37.6%, o.w.u.: 1.6% 49.9%, o.w.u.: 41.9% 68.2%, o.w.u.: 81.2 %
Hit rate derivative y 8.4%, o.w.u.: 7.8% 49.5%, o.w.u.: 39.8 % 8.4%, o.w.u.: 24.8%
Hit rate Mahalanobis x 2579.4%, o.w.u.: 265.6% 985.5%, o.w.u.: 172.0% 164.4%, o.w.u.:137.6%
Hit rate Mahalanobis y 2579.4%, o.w.u.: 265.6% 985.5%, o.w.u.: 172.0% 164.4%, o.w.u.:137.6%

A visual comparison of the number of detections of the three methods is given in Figure 4.23. An assessment
of this figure is provided in the discussion, section 5.1.

14:06:30 14:07:00 14:07:30 14:08:00 14:08:30 14:09:00 14:09:30 14:10:00 14:10:30 14:11:00

time occurence of fault detections Mar 18, 2019

0

0.5

1

1.5

2

2.5

3

3.5

4

he
ig

ht
s

fo
r

co
m

pa
ris

on

Comparison of the fault detections made by the three approaches

residual based on derivative
residual based on Mahalanobis distance
residual based on parity approximation

Figure 4.23: Detections made by the different methods compares, March 18, 2019.

Computational time
The following computational times have been achieved at an initial run of the run_Simulink.m file:

• Read in, convert and save data from .rosbag to .mat files: 22.31 seconds.

• Read in the data from .mat files: 4.16 seconds.

• Prepare the data as input for simulation: 0.28 seconds.

• Simulate: 1.56 seconds.

• Derivative of residual: 0.98 seconds.

• Mahalanobis distance: 26.95 seconds.

76 4. Experiments and Results

• Parity approximation: 0.09 seconds.

The total computational time that is required equals therefore 56.34 seconds, slightly under one minute. Note
that reading in the data from the .rosbag and the .mat files depend on a GUI, so the speed with which the files
are selected, adds up to the actual computational time. The calculation of the Mahalanobis distance takes
relatively the most time.

Table 4.11: Computational times of the methods

Method Derivative of residual Mahalanobis distance Parity approximation
Comp. time inc. saving data 29.30 [s] 56.25 [s] 28.41 [s]
Comp. time exc. saving data 6.99 [s] 33.94 [s] 6.10 [s]

5
Discussion and Conclusion

This chapter concludes the research based on the findings presented in the preceding chapters. A discussion
is provided first, in which a critical view on the methods used and retrieved results is taken. Then, the actual
conclusion is provided. At the end, some future recommendations are included of how to implement the
methods found in an on-line way and an approach of how to extend the research towards actual fault tolerant
control is suggested.

5.1. Discussion
In this part, a critical evaluation is made of the methods and results. Also, some of the results are elaborated
on more in-depth in comparison to the results section (i.e. what has been observed and can be extracted
from this). The discussion will be provided in a point by point form, following the chronological order of
appearance in the report.

• The third method in residual determination that has been used for validation, is the parity approxima-
tion. This approach computes the speeds based on the localization measurements for the position in
x- and y-direction and calculates the offset between this outcome and the speed measurements of the
GPS sensor.

r =
(√
∆x2

I BEO +∆y2
I BEO∆t

)
− vGPS,shi f ted . (5.1)

The hit rate of this approach is assumed to be 100%. This is something that cannot be assumed for sure
at any random given point in time. Also, there is a delay in the GPS measurements in comparison to the
localization output, of around one second. It can be used as validation method for off-line inspection
(or on-line while driving, taking a delay of 1 second into account).

• The parity approximation approach itself can function as an isolation method, because a GPS offset
(which is very likely to occur due to environmental influences like weather, leaves from trees and tall
buildings in narrow streets) will be reflected in the detectability of this parity checking approach.

• It turns out that the model is not a 1-to-1 representation of reality, therefore it would be advisable to
update the model. One way of doing this is using another value for the model uncertainty η. This is
now set to 0. More realistic would be to retrieve and implement some actual model noise values.

• At this point, the way the covariance matrix is computed for the Mahalanobis distance residual, is not
strictly on-line compatible. A way to avoid this, is by determining fixed covariance matrices based
on previous fault-free logs and use this database for on-line computations. Along with all the rosbag
logs, the circumstances of the test day are provided as well. Several covariance matrices can be identi-
fied based on this information for different weather and/or surrounding density conditions. Once the
vehicle recognises certain circumstances (this functionality needs to be implemented in addition in
that case), it can distinguish the appropriate covariance matrix and compute the Mahalanobis distance
based on that uncertainty.

• Robustness of threshold computation can be improved. Using an empirical threshold as is done in
this model-based approach, is not the most robust way of determining an appropriate bound and the
minimum size of the detected fault since it requires visual inspection.

77

78 5. Discussion and Conclusion

14:07:46.000 14:07:46.200 14:07:46.400 14:07:46.600 14:07:46.800 14:07:47.000 14:07:47.200 14:07:47.400
Mar 18, 2019

0.01

0.02

0.03

re
si

du
al

 a
nd

 th
re

sh
ol

d Derivative of the residual in x-position, threshold:0.03

abs(rx')

threshold:0.03
detections

14:07:46.000 14:07:46.200 14:07:46.400 14:07:46.600 14:07:46.800 14:07:47.000 14:07:47.200 14:07:47.400
Mar 18, 2019

0

0.01

0.02

0.03

re
si

du
al

 a
nd

 th
re

sh
ol

d Derivative of the residual in y-position, threshold:0.03

abs(ry')

threshold:0.03
detections

14:07:46.000 14:07:46.200 14:07:46.400 14:07:46.600 14:07:46.800 14:07:47.000 14:07:47.200 14:07:47.400
Mar 18, 2019

-6

-5

-4

x-
po

si
tio

n
[m

]

Fault in ibeo localization for the x-position compared to model outcomes

modeled longitudinal displacement
measured longitudinal displacement (ibeo_loc)

14:07:46.000 14:07:46.200 14:07:46.400 14:07:46.600 14:07:46.800 14:07:47.000 14:07:47.200 14:07:47.400
Mar 18, 2019

9.3

9.4

9.5

9.6

y-
po

si
tio

n
[m

]

Fault in ibeo localization for the y-position compared to model outcomes

modeled lateral displacement
measured lateral displacement (ibeo_loc)

0.13 [m]

Figure 5.1: Empirical threshold determination for residual as derivative of the offset.

Therefore, it is better to use a dynamic or adaptive threshold that can take these edge-cases into account
and a more robust threshold can be defined.

• When validating the choice of threshold, it turned out that this method does not hold for specific cases.
Namely, in Figure 5.1, it is visible that even though the IBEO localization output jumps for over 10 cen-
timetres, the threshold of 0.03, which is supposed to be able to detect faults bigger than 9 centimetres, is
not exceeded. This is due to the fact that in this specific case, the jump of the IBEO localization ‘crosses’
the x-position output of the model. The sign flips and therefore the derivative of the difference between
the measurements and the model is not able to reach the threshold.

• The log (6th of March, early morning) that has been chosen as a baseline, seems not to be completely
fault free. Detections are even made by the derivative of the difference approach. This is due to noise
in the log, rather than actual malperformance of the method used. The noise data (of the covariances)
has been inspected with respect to the difference between the model output and the measurements
in both the longitudinal (x-) and lateral (y-) direction. Indeed, the covariance noise is smaller at the
instances where the vehicle model is deviating less from the actual measurements. By inspection of
Figure 4.18, it becomes clear that the vehicle remained also in standstill position at that moment, so
smaller covariances are already assumed because of that. This means that there are other external
noises that influence the log of the 6th of March. This could be due to one of the factors described
in section 3.3. Assessing these influences better and taking them into account while drawing up the
residuals and/or threshold, will lead to more accurate results, that will perform less false positives.

• Another apparent influencing factor is the unexpected behavior of the model when a change in direc-
tion of the driven path takes place. This becomes clear at March 5th, halfway the morning, where two
large peaks are visible at the beginning of the day (Figure 4.13). The rest of the log only contains small
peaks that quickly follow up on each other. What is interesting, is that the large peaks represent changes
in the driven direction. So the fault is detected correctly, only it addresses another type of fault: the un-
expected behavior due to smoothing out of the control (as described in section 3.4.4). It is key to come
up with an approach that is able to distinct between IBEO localization jumps and other type of faults
(this is where isolation comes into play).

• Regarding the results section, multiple findings are retrieved that are open for discussion. First of all,
the use of the ‘unique fault’. When two detections follow up on each other, the first will be indicated as
a unique fault and the second as a detection that belongs to that specific fault instance. If this occurs
for multiple detections in a row, they will be gathered as one unique fault, although there might have
occurred more faults during that specific time window. This is why in case of using a lower threshold
(i.e. more detections) the number of unique detections might lie lower than for a higher threshold,
which obviously incorrect: the lower the threshold, the higher the number of detections for the same
data set. It is important to group the instances that belong to the same fault together, while keeping the
fault occurrences ‘unique’. A way to do this, is for example by comparing the values of the successive
detections and select only the relatively big residuals (i.e. local maxima) to represent unique faults.

5.1. Discussion 79

• The approach of taking the derivative of the difference as a residual, is capable of detecting faults in x-
and y-direction separately, because two residuals are drawn up. The Mahalanobis distance only uses
one residual that incorporates the noise in x- and y-direction within the covariance matrix directly.
Therefore, the same residual is used for both the longitudinal and lateral direction, because it contains
the relevant information for both of them. However, it is beneficial to be able to detect separately be-
cause it is not always the case that when a fault occurs, it has influence on both the longitudinal and
lateral direction. The jumps due to the IBEO localization turned out to show this behavior: influencing
both the x- and y-direction, however sometimes the jump is larger for one of the two directions. There-
fore, using the derivative of the difference as a residual, can provide more information about the effects
of the faults. However, in essence it is important that a fault is detected in the first place, and less what
the effects thereof are. By extending the research to an actual fault tolerant approach, this becomes of
higher interest, see also the recommendations about performance degradation in section 5.2.1.

• When comparing the number of detected faults by the three approaches taken, it becomes clear that the
Mahalanobis distance residual detects significantly more faults than the other approaches. This is due
to the fact that by taking this approach, the detectability is improved. However, using the Chebyshev
inequality, a threshold almost equal to the one used for the derivative of the difference approach is
computed. Therefore, more faults are detected. It is advisable to use a lower threshold, i.e. choose a
smaller α in the Chebyshev inequality, to come up with a more realistic detection profile.

• It makes sense that the parity approximation approach also performs more detections than the first
approach, because the threshold is set differently. It is chosen as 0.5, which leads to detections of 8
centimetres and more, while the other two methods can detect faults of 9 centimetres and larger only.
A way of retrieving thresholds that achieve the same detection accuracy (i.e. minimum amount of
centimetres before detections take place), needs to be implemented for valid comparison.

• The hit rate now is determined based on a comparison of percentages only. What is more important,
however, is the detectability of the used approach. False positives (FP) can lead to unnecessary delays
in the system, since they represent unjustified detections of faults. Especially when the future imple-
mentations (again, for example: performance degradation) are regarded, a safe-stop could be initiated,
although nothing was wrong. Even more important to prevent are false negatives (FN), in which the
vehicle assumes its localization module to be fault-free, while there is actually a deviation from reality
present. This could lead to dangerous situations or a mismatch between the desired end location and
the actual end of the driven track. Therefore it is important to select the method of sufficiently high
detectability. Also, an optimal balance between true positives (TP) and false positives has to be found.
Having the information as shown in Figure 4.23 available, it is possible to determine the false positives
and false negatives. Assume the blue detections (bottom row in the plot), that represent the parity ap-
proximation approach, to be 100% correct. This way, the exact detection instances in seconds can be
compared. The number of congruent indices has to be determined. This indicates the number of TPs in
the approach. This amount can then be subtracted from the total amount of detections for the method
used. Now, the number of FPs is obtained. By subtracting the number of TPs for the used method from
the total amount of detections made by the reference method (in this case the parity approximation
approach), the number of detections that has been missed, i.e. the amount of FNs, is obtained.

• Finally, the computational time can be reduced by first optimizing the code by amongst others, avoid-
ing for-loops (by vectorizing) and preallocating data instead of using arrays of variable sizes. Also, more
functions can be defined that will make the master m-file faster. Completely using another program-
ming environment than MATLAB is another way of reducing the computational time, because MATLAB
tends to take in general more computational effort than other programmes. Also, using another envi-
ronment could lead to less dependency on expensive external software (and its updates), especially
when the choice is made for one of the open source available software environments.

The piece of code that is responsible for most of the elapsed time is the one where the Mahalanobis
distance is calculated. Making use of the Mahalanobis distance is a trade-off between detectability and
computational time. On the one hand, the detectability is improved when the Mahalanobis distance is
used, but on the other hand, the computational speed is lower. When the more basic residuals already
perform within the desired bounds of detectability, the choice could be made to continue only with
these residuals, rather than incorporating the Mahalanobis distance as well. Especially when the desire
of implementing the model-based fault diagnosis in an on-line way is kept in mind.

80 5. Discussion and Conclusion

5.2. Conclusion
The model-based fault diagnosis approach that is used, consists of a model based on the kinematic and dy-
namic equations of the vehicles from the application at hand (WEpods). This model is enhanced with an
observer that takes the actual measurements into account and prevents the model from an excessive drift
between the system and the model. Innovative here is that the model is split into two observers, so undesired
influence in the localization output (the x-position, y-position and orientation of the vehicle) of the model
resulting from other faulty sensors or noise in the measurements of the speed and steering angle is prevented.

The difference between the model and the measurements based on the same input u, consisting of the de-
sired speed and steering angle, functions as a preliminary residual of the approach:

r = ymeasur ement s − ymodel . (5.2)

The two developed fault detection methods are listed here:

• Derivative of the residual
The first approach is based on the derivative of this residual computed as such:

r ′ = r+−λr. (5.3)

This approach is able to achieve a hit rate of (averaged over the two directions and three log days): 36%,
hit rate of unique faults: 33% within a computational time of: 6.99 seconds. The hit rate for the longi-
tudinal (x-) direction, however, lies a bit higher ∼ 40% compared to the hit rate of ∼ 20% for the lateral
(y-) direction.

Advantages of this method:
- Ability to detect faults in longitudinal and lateral directions separately;
- On-line implementation possible.
Drawback of this method:
- Less robust, prone to false positives

• Mahalanobis distance
The second approach is based on the previous residual with an update. It includes the calculation of
the Mahalanobis distance:

d(z) =
√

(z −µ)T C−1(z −µ). (5.4)

Implemented by (with R: rotation matrix, z: vector containing r ′
x and r ′

y , C: covariance matrix contain-
ing noise of the localization measurements):

r ′′ =
√

(Rz)′2C−1Rz. (5.5)

This approach is able to achieve a hit rate of: 1243%, hit rate of unique faults: 189% within a computa-
tional time of: 33.94 seconds.

Advantages of this method:
- Relatively high detectability;
- On-line implementation possible.
Drawback of this method:
- Higher computational time.

In Table 5.1, a summary is provided of the average performance of the different approaches.

Method Derivative of residual Mahalanobis distance Parity approximation
Hit rate unique faults 33% 189% 100% (if fault-free GPS)
Computational time 6.99 [s] 33.94 [s] 6.10 [s]

Table 5.1: Performance of the different methods, left two: model-based, right: validation by parity approximation.

5.2. Conclusion 81

The parity approximation seems most beneficial in terms of hit rate and computational time. However, the
assumption of a hit rate of 100% is only valid when the GPS output is completely fault-free. Using the Ma-
halanobis distance ensures a higher hit rate (in this case larger than 100%, because the amount of detected
faults is compared to the number of detections in the parity approximation method for a slightly different
accuracy as explained in the discussion, point 12, section 5.1), but comes at a higher computational cost. The
approach in which the derivative of the difference is used, has the ability to detect faults separately for the
longitudinal and lateral direction.

Using either one of the model-based fault detection approaches described above, the ability is provided of
identifying the occurrence of a fault. By providing the ability to diagnose faults from within the automated
vehicle itself, the measure of autonomy is extended. Instead of remaining in need of a steward that presses
the emergency stop button when it inspects odd behavior (which indicates a system failure), the system can
provide information about which sensor is wrong and detail this information with messages about time of
fault occurrences. This will allow the vehicle to adjust its autonomous driving in such a way that it can handle
these faults internally, and they do not result into system failures. Therefore, the research goal: let the WEpods
continue driving in autonomous mode more often than is currently the case is met. Next to that does this re-
search form the relevant scientific contribution of successfully incorporating a model-based fault diagnosis
strategy into the localization module (also: self-localization) of an autonomous driving application.

5.2.1. Recommendations
In the future, the system can be extended with the functionality of affecting the path planner controller. By
adjusting the control on-line based on faults present in the system, active fault tolerant control is reached.
This could be done by putting less trust on a malfunctioning sensor. When this is done, the vehicle can either
continue its original driving behavior, or, if necessary, be subjected to a new behavior objective within the
safety limits. A performance degradation assessment can be made in order to find out which range of opera-
tion is still safe under the assumption that one (or multiple) of the sensors is (or are) not working correctly.

The methodology described in this research, has been applied in an off-line way: based on a pre-computed
model and using localization data from logs. It is very well possible to extend it to an on-line implementa-
tion, by running the model simultaneously with the actual driving. The model computes the expected output
and compares this with the localization data immediately. It is important to take computational time into
account. This is in an ideal case no less than the speeds at which the measurement samples of the vehicle are
acquired. Also, some of the values, that have been replicated or interpolated in order to match the highest
frequency in the loop, should be kept on hold or interpolated over the according time steps. To be able to
successfully run the model-based fault detection approach on the vehicle, only a conversion to runnable files
on the WEpod system has to be done.

Bibliography

[1] Spatial dual reference manual. https://www.advancednavigation.com/product/spatial-dual,
2017.

[2] Universal transverse mercator coordinate system. https://en.wikipedia.org/wiki/Universal_

Transverse_Mercator_coordinate_system, 2019.

[3] Unix time. https://en.wikipedia.org/wiki/Unix_time, 2019.

[4] World geodetic system. https://en.wikipedia.org/wiki/World_Geodetic_System, 2019.

[5] Cartesian coordinate system. https://en.wikipedia.org/wiki/Cartesian_coordinate_system,
2019.

[6] Definiteness of a matrix. https://en.wikipedia.org/wiki/Definiteness_of_a_matrix#

Examples, 2019.

[7] Karl Berntorp. Joint wheel-slip and vehicle-motion estimation based on inertial, gps, and wheel-speed
sensors. IEEE Transactions on Control Systems Technology, 24(3):1020–1027, 2016.

[8] Karl Berntorp and Stefano Di Cairano. Tire-stiffness and vehicle-state estimation based on noise-
adaptive particle filtering. IEEE Transactions on Control Systems Technology, (99):1–15, 2018.

[9] Francesca Boem, Riccardo MG Ferrari, Christodoulos Keliris, Thomas Parisini, and Marios M Polycar-
pou. A distributed networked approach for fault detection of large-scale systems. IEEE Transactions on
Automatic Control, 62(1):18–33, 2017.

[10] Peter de Bakker. Localization system design description. TU Delft, 2016.

[11] Riccardo M G Ferrari. Lecture 5: Change Detection Algorithms. Lecture slides for the course Fault Diag-
nosis and Fault Tolerant Control - Delft University of Technology, 2018.

[12] Riccardo M G Ferrari. Lecture 7: Model Based Fault Diagnosis: Detection. Lecture slides for the course
Fault Diagnosis and Fault Tolerant Control - Delft University of Technology, 2018.

[13] Fabio A González and Dipankar Dasgupta. Anomaly detection using real-valued negative selection. Ge-
netic Programming and Evolvable Machines, 4(4):383–403, 2003.

[14] Lj Grujic and D Siljak. On stability of discrete composite systems. IEEE Transactions on Automatic
Control, 18(5):522–524, 1973.

[15] Jose E Guivant and Eduardo Mario Nebot. Optimization of the simultaneous localization and map-
building algorithm for real-time implementation. IEEE transactions on robotics and automation, 17(3):
242–257, 2001.

[16] Elwan Héry, Philippe Xu, and Philippe Bonnifait. Lidar based relative pose and covariance estimation for
communicating vehicles exchanging a polygonal model of their shape. In 10th Workshop on Planning,
Perception and Navigation for Intelligent Vehicles, 2018.

[17] Remco de Lange Hugo van den Brand and Dragan Kostić. Ssd wepod high level control design. Sogeti,
2016.

[18] Remco de Lange Hugo van den Brand and Dragan Kostić. Tsr wepod system identification august 2016.
Sogeti, 2016.

[19] Charles Jeffrey. An Introduction to GNSS - GPS, GLONASS, BeiDou, Galileo and other Global Navigation
Satellite Systems. NovAtel Inc., 2015.

83

84 Bibliography

[20] Pieter Jonker and Jan Willem van der Wiel. System architecture description & safety report. Robot Care
Systems, 2018.

[21] R. V. Kossen. Literature survey - fault tolerant control. Delft University of Technology, 2018.

[22] Vijay Kumar. Effect of environmental parameters on gsm and gps. Indian Journal of Science and tech-
nology, 7(8):1183–1188, 2014.

[23] Peter de Bakker-Danny Suls Peter de Jager Jeroen Ploeg Jan Willem van der Wiel Tom Jansen Theo Tie-
man Henk van de Brink Pieter Jonker Koen Lekkerkerker Maja Rudinac, Dimitrios Kotiadis. Wepods -
system architecture document. Robot Care Systems, 2016.

[24] Florian Netter. Künstliche intelligenz im auto—applikationen, technologien und herausforderungen.
ATZelektronik, 12(1):20–25, 2017.

[25] Society of Automotive Engineers. Taxonomy and definitions for terms related to on-road motor vehi-
cle automated driving systems j3016_201401. https://www.sae.org/standards/content/j3016_

201401/, January 2014.

[26] Habib Oladepo. Ros graph concepts: Nodes. http://wiki.ros.org/Nodes, December 2018.

[27] Maja Rudinac and Koen Lekkerkerker. Technical safety report wepods. Robot Care Systems, 2016.

[28] Srishti Saha. Baffled by covariance and correlation??? get the math and the ap-
plication in analytics for both the terms.. https://towardsdatascience.com/

let-us-understand-the-correlation-matrix-and-covariance-matrix-d42e6b643c22, Octo-
ber 2018.

[29] Akshay Shetty and Grace Xingxin Gao. Adaptive covariance estimation of lidar-based positioning errors
for uavs.

[30] Akshay Shetty and Grace Xingxin Gao. Covariance estimation for gps-lidar sensor fusion for uavs. In Pro-
ceedings of the 30th International Technical Meeting of The Satellite Division of the Institute of Navigation
(ION GNSS+ 2017), Portland, OR, USA, 2017.

[31] MapTiler team. Epsg:32632 - wgs 84 / utm zone 32n. https://epsg.io/32632, 2019.

[32] ISO 26262-1 to 9:2011(E). ISO 26262-10:2012(E). Road vehicles – functional safety. International Orga-
nization for Standardization, Geneva, Switzerland.

[33] I-AT Interreg Automated Transport. Zelfrijdend vervoer in de grensregio nederland-duitsland. https:
//www.i-at.eu/, November 2018.

[34] Jan Verhaegh and Jeroen Ploeg. Wepods deliverable: Vehicle platform modelling, sensor fusion mod-
elling, and control architecture design. TNO, 2015.

[35] Erik Vlasblom. Coordinate systems. Robot Robots Company, 2019.

[36] Youhanna William, Walid Oraby, and Sameh Metwally. Analysis of vehicle lateral dynamics due to vari-
able wind gusts. SAE International Journal of Commercial Vehicles, 7(2014-01-2449):666–674, 2014.

[37] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and mapping in real-time. In Robotics: Science and
Systems, volume 2, page 9, 2014.

A
Flyer Infographic I-AT

Figure A.1: Flyer of the Interregional Automated Transport project (Dutch). Retrieved from: [33].

85

B
Fault Tree Analyses (FTA) WEpods modules

Two fault tree analyses (FTA) are performed for the WEpod modules, namely for the object detection module
and the localization module, as shown in Figure B.1 and Figure B.2 respectively.

Figure B.1: FTA diagram object detection module in WEpod.

87

88 B. Fault Tree Analyses (FTA) WEpods modules

Figure B.2: FTA diagram localization module in WEpod.

89

C
Failure Mode Effects Analysis (FMEA)

Figure C.1: Visualization of the FMEA of the steering component.

91

92 C. Failure Mode Effects Analysis (FMEA)

D
Relevant rosbag topics and messages

The relevant rosbag topics and messages for the localization module are listed below.

• /vehicle_can_bridge/commands - weasy_can_msgs/Commands
SpeedMps
SteerFrontRad = SteerBackRad
Stamp.Sec and Stamp.Nsec

• /vehicle_can_bridge/measurements - weasy_can_msgs/Measurements
SpeedMps
SteerFrontRad = SteerBackRad
Stamp.Sec and Stamp.Nsec

• /pathplanner/trajectory/controller - wepods_msgs/Trajectory
Points(1).Pose.X, Points(1).Pose.Y, Points(1).Pose.Theta
Header.Stamp.Sec and Header.Stamp.Nsec
Points(1).Speed.X̂2, Points(1).Speed.Ŷ2

• /advnav/gps_localization - wepods_msgs/Localization
XEasting, YNorthing, Heading
Header.Stamp.Sec and Header.Stamp.Nsec
XXCov, YYCov, XYCov
VxStd, VyStd, HeadingStd
Vx, Vy

• /advnav/wgs84 - sensor_msgs/NavSatFix
Latitude, Longitude
PositionCovariance
Header.Stamp and Header.NStamp

• /ibeo_republisher/gps_localization - wepods_msgs/Localization
XEasting, YNorthing, Heading
Header.Stamp.Sec and Header.Stamp.Nsec
XXCov, YYCov, XYCov
HeadingStd
Vx, Vy

• /ibeo_republisher/localization - wepods_msgs/Localization
XEasting, YNorthing, Heading
Header.Stamp.Sec and Header.Stamp.Nsec
XXCovLocal, YYCovLocal, XYCovLocal
VxStdLocal, HeadingStd
Vx, Vy

93

E
M-file: read_in_data_from_rosbags.m

1 %% This s c r i p t i s intended to read in the relevant rosbag data from the
pathplanner_trajectory_control ler 2018−12−06−10−47−05_3

2 % Rebecca Kossen
3 % RRC, TU Delft
4 % 06−03−2019
5

6 close a l l
7 clear a l l
8 cl c
9

10 [sel_vcbc_bag , path] = u i g e t f i l e (’ vehicle_can_bridge_commands * . bag ’ , ’ Select vehicle
can bridge commands, use same number for a l l to open ’) ;

11 [~ ,name_vcbc,~] = f i l e p a r t s ([path , sel_vcbc_bag]) ;
12 bag_vcbc = rosbag ([path , sel_vcbc_bag]) ;
13 bSel_vcbc = s e l e c t (bag_vcbc , ’ Topic ’ , ’ / vehicle_can_bridge /commands ’) ;
14 msgStructs_vcbc = readMessages (bSel_vcbc , ’ DataFormat ’ , ’ s t r u c t ’) ;
15

16 [b , c] = s t r t o k (name_vcbc , ’ 2 ’) ;
17

18 sel_vcbm_bag = dir (s t r c a t (path , ’ vehicle_can_bridge_measurements_ ’ , c (1 : end−5) , ’ * ’ , c (
end) , ’ . bag ’)) ;

19 name_vcbm = s t r t o k (sel_vcbm_bag .name, ’ . ’) ;
20 bag_vcbm = rosbag ([path , sel_vcbm_bag .name]) ;
21 bSel_vcbm = s e l e c t (bag_vcbm , ’ Topic ’ , ’ / vehicle_can_bridge /measurements ’) ;
22 msgStructs_vcbm = readMessages (bSel_vcbm , ’ DataFormat ’ , ’ s t r u c t ’) ;
23

24 sel_ptc_bag = dir (s t r c a t (path , ’ pathplanner_trajectory_control ler * ’ , c (1 : end−5) , ’ * ’ , c (
end) , ’ . bag ’)) ;

25 name_ptc = s t r t o k (sel_ptc_bag .name, ’ . ’) ;
26 bag_ptc = rosbag ([path , sel_ptc_bag .name]) ;
27 bSel_ptc = s e l e c t (bag_ptc , ’ Topic ’ , ’ / pathplanner / t r a j e c t o r y / c o n t r o l l e r ’) ;
28 msgStructs_ptc = readMessages (bSel_ptc , ’ DataFormat ’ , ’ s t r u c t ’) ;
29

30 sel_adv_gps_bag = dir (s t r c a t (path , ’ advnav_gps_localization * ’ , c (1 : end−5) , ’ * ’ , c (end) , ’
. bag ’)) ;

31 name_adv_gps = s t r t o k (sel_adv_gps_bag .name, ’ . ’) ;
32 bag_adv_gps = rosbag ([path , sel_adv_gps_bag .name]) ;
33 bSel_adv_gps = s e l e c t (bag_adv_gps , ’ Topic ’ , ’ /advnav/ gps_local izat ion ’) ;
34 msgStructs_adv_gps = readMessages (bSel_adv_gps , ’ DataFormat ’ , ’ s t r u c t ’) ;
35

95

96 E. M-file: read_in_data_from_rosbags.m

36 sel_ibeo_gps_bag = dir (s t r c a t (path , ’ ibeo_republisher_gps_localization * ’ , c (1 : end−5) , ’

* ’ , c (end) , ’ . bag ’)) ;
37 name_ibeo_gps = s t r t o k (sel_ibeo_gps_bag .name, ’ . ’) ;
38 bag_ibeo_gps = rosbag ([path , sel_ibeo_gps_bag .name]) ;
39 bSel_ibeo_gps = s e l e c t (bag_ibeo_gps , ’ Topic ’ , ’ / ibeo_republisher / gps_local izat ion ’) ;
40 msgStructs_ibeo_gps = readMessages (bSel_ibeo_gps , ’ DataFormat ’ , ’ s t r u c t ’) ;
41

42 sel_ibeo_loc_bag = dir (s t r c a t (path , ’ ibeo_republisher_local ization * ’ , c (1 : end−5) , ’ * ’ , c
(end) , ’ . bag ’)) ;

43 name_ibeo_loc = s t r t o k (sel_ibeo_loc_bag .name, ’ . ’) ;
44 bag_ibeo_loc = rosbag ([path , sel_ibeo_loc_bag .name]) ;
45 bSel_ibeo_loc = s e l e c t (bag_ibeo_loc , ’ Topic ’ , ’ / ibeo_republisher / l o c a l i z a t i o n ’) ;
46 msgStructs_ibeo_loc = readMessages (bSel_ibeo_loc , ’ DataFormat ’ , ’ s t r u c t ’) ;
47

48 %bag_adv_odom = rosbag (’D: \ backup_rebecca_30_01_2019\Documents\ t h e s i s \MATLAB\ data \
advnav_odom_2018−12−06−11−27−05_11 . bag ’) ;

49 %bSel_adv_odom = s e l e c t (bag_adv_odom , ’ Topic ’ , ’ / advnav/odom’) ;
50 %msgStructs_adv_odom = readMessages (bSel_adv_odom , ’ DataFormat ’ , ’ struct ’) ;
51

52 sel_adv_wgs84_bag = dir (s t r c a t (path , ’ advnav_wgs84* ’ , c (1 : end−5) , ’ * ’ , c (end) , ’ . bag ’)) ;
53 name_adv_wgs84 = s t r t o k (sel_adv_wgs84_bag .name, ’ . ’) ;
54 bag_adv_wgs84 = rosbag ([path , sel_adv_wgs84_bag .name]) ;
55 bSel_adv_wgs84 = s e l e c t (bag_adv_wgs84 , ’ Topic ’ , ’ /advnav/wgs84 ’) ;
56 msgStructs_adv_wgs84 = readMessages (bSel_adv_wgs84 , ’ DataFormat ’ , ’ s t r u c t ’) ;
57

58 %% I n i t i a l i z e empty matrices
59 x_ptc = [] ; x_adv_gps = [] ; x_ibeo_gps = [] ;
60 x_ibeo_loc = [] ; x_adv_wgs84 = [] ;
61 y_ptc = [] ; y_adv_gps = [] ; y_ibeo_gps = [] ;
62 y_ibeo_loc = [] ; y_adv_wgs84 = [] ;
63 theta_ptc = [] ; theta_adv_gps = [] ; theta_ibeo_gps = [] ;
64 theta_ibeo_loc = [] ;
65

66 ts_ptc = [] ; ts_adv_gps = [] ; ts_ibeo_gps = [] ;
67 ts_ibeo_loc = [] ; ts_adv_wgs84 = [] ; ts_vcbc = [] ;
68 ts_vcbm = [] ;
69

70 xx_cov_adv_gps = [] ; xy_cov_adv_gps = [] ; yy_cov_adv_gps = [] ;
71 theta_std_adv_gps = [] ; xx_cov_ibeo_gps = [] ; xy_cov_ibeo_gps = [] ;
72 yy_cov_ibeo_gps = [] ; theta_std_ibeo_gps = [] ; xx_lcov_ibeo_loc = [] ;
73 xy_lcov_ibeo_loc = [] ; yy_lcov_ibeo_loc = [] ; theta_std_ibeo_loc = [] ;
74 cov_pos_adv_wgs84 = [] ; vx_std_adv_gps = [] ; vy_std_adv_gps = [] ;
75 vx_lstd_ibeo_loc = [] ;
76

77

78 v_adv_gps = [] ; v_ibeo_gps = [] ; v_ibeo_loc = [] ;
79 v_ptc = [] ; v_des = [] ; delta_des = [] ;
80 v_meas = [] ; delta_meas = [] ;
81

82 % F i l l the arrays with data
83 % Vehicle_can_bus_commands
84 for j = 1 : length (msgStructs_vcbc)
85 v_des = [v_des msgStructs_vcbc { j , 1 } . SpeedMps] ;
86 delta_des = [delta_des msgStructs_vcbc { j , 1 } . SteerFrontRad] ;
87 ts_vcbc = [ts_vcbc double (msgStructs_vcbc { j , 1 } . Stamp . Sec) +1e−9*double (

msgStructs_vcbc { j , 1 } . Stamp . Nsec)] ;

97

88 end
89 ts0_vcbc = ts_vcbc−ts_vcbc (1) ;
90

91 % Vehicle_can_bus_measurements
92 for j = 1 : length (msgStructs_vcbm)
93 v_meas = [v_meas msgStructs_vcbm { j , 1 } . SpeedMps] ;
94 delta_meas = [delta_meas msgStructs_vcbm { j , 1 } . SteerFrontRad] ;
95 ts_vcbm = [ts_vcbm double (msgStructs_vcbm { j , 1 } . Stamp . Sec) +1e−9*double (

msgStructs_vcbm { j , 1 } . Stamp . Nsec)] ;
96 end
97 ts0_vcbm = ts_vcbm−ts_vcbm (1) ;
98

99 % Pathplanner_trajectory_control ler
100 for j = 1 : length (msgStructs_ptc)
101 x_ptc = [x_ptc msgStructs_ptc { j , 1 } . Points (1) . Pose . X] ;
102 y_ptc = [y_ptc msgStructs_ptc { j , 1 } . Points (1) . Pose . Y] ;
103 theta_ptc = [theta_ptc msgStructs_ptc { j , 1 } . Points (1) . Pose . Theta] ;
104 ts_ptc = [ts_ptc double (msgStructs_ptc { j , 1 } . Header . Stamp . Sec) +1e−9*double (

msgStructs_ptc { j , 1 } . Header . Stamp . Nsec)] ;
105 v_ptc = [v_ptc sqrt ((msgStructs_ptc { j , 1 } . Points (1) . Speed . X^2) +(

msgStructs_ptc { j , 1 } . Points (1) . Speed . Y^2))] ;
106 end
107 ts0_ptc = ts_ptc−ts_ptc (1) ;
108

109 % Advnav_gps_localization
110 for j = 1 : length (msgStructs_adv_gps)
111 x_adv_gps = [x_adv_gps msgStructs_adv_gps { j , 1 } . XEasting] ;
112 y_adv_gps = [y_adv_gps msgStructs_adv_gps { j , 1 } . YNorthing] ;
113 theta_adv_gps = [theta_adv_gps msgStructs_adv_gps { j , 1 } . Heading] ;
114 ts_adv_gps = [ts_adv_gps double (msgStructs_adv_gps { j , 1 } . Header . Stamp . Sec) +1e

−9*double (msgStructs_adv_gps { j , 1 } . Header . Stamp . Nsec)] ;
115 xx_cov_adv_gps = [xx_cov_adv_gps msgStructs_adv_gps { j , 1 } . XXCov] ;
116 xy_cov_adv_gps = [xy_cov_adv_gps msgStructs_adv_gps { j , 1 } . XYCov] ;
117 yy_cov_adv_gps = [yy_cov_adv_gps msgStructs_adv_gps { j , 1 } . YYCov] ;
118 vx_std_adv_gps = [vx_std_adv_gps msgStructs_adv_gps { j , 1 } . VxStd] ;
119 vy_std_adv_gps = [vy_std_adv_gps msgStructs_adv_gps { j , 1 } . VyStd] ;
120 theta_std_adv_gps = [theta_std_adv_gps msgStructs_adv_gps { j , 1 } . HeadingStd] ;
121 v_adv_gps = [v_adv_gps (sqrt ((msgStructs_adv_gps { j , 1 } . Vx) ^2+(

msgStructs_adv_gps { j , 1 } . Vy) ^2))] ;
122 end
123 ts0_adv_gps = ts_adv_gps−ts_adv_gps (1) ;
124 %for i = 1 : length (msgStructs { 1 , 1 } . Points)
125 % pos_y = [pos_y msgStructs { 1 , 1 } . Points (i) . Pose . Y] ;
126 %end
127

128 %for i = 1 : length (msgStructs { 1 , 1 } . Points)
129 % theta = [theta msgStructs { 1 , 1 } . Points (i) . Pose . Theta] ;
130 %end
131

132 % Ibeo_republisher_gps_localization − in UTM coordinates
133 for j = 1 : length (msgStructs_ibeo_gps)
134 x_ibeo_gps = [x_ibeo_gps msgStructs_ibeo_gps { j , 1 } . XEasting] ;
135 y_ibeo_gps = [y_ibeo_gps msgStructs_ibeo_gps { j , 1 } . YNorthing] ;
136 theta_ibeo_gps = [theta_ibeo_gps msgStructs_ibeo_gps { j , 1 } . Heading] ;
137 ts_ibeo_gps = [ts_ibeo_gps double (msgStructs_ibeo_gps { j , 1 } . Header . Stamp . Sec)

+1e−9*double (msgStructs_ibeo_gps { j , 1 } . Header . Stamp . Nsec)] ;

98 E. M-file: read_in_data_from_rosbags.m

138 xx_cov_ibeo_gps = [xx_cov_ibeo_gps msgStructs_ibeo_gps { j , 1 } . XXCov] ;
139 xy_cov_ibeo_gps = [xy_cov_ibeo_gps msgStructs_ibeo_gps { j , 1 } . XYCov] ;
140 yy_cov_ibeo_gps = [yy_cov_ibeo_gps msgStructs_ibeo_gps { j , 1 } . YYCov] ;
141 theta_std_ibeo_gps = [theta_std_ibeo_gps msgStructs_ibeo_gps { j , 1 } . HeadingStd

] ;
142 i f isnan (msgStructs_ibeo_gps { j , 1 } . Vx) | | isnan (msgStructs_ibeo_gps { j , 1 } . Vy)
143 else
144 v_ibeo_gps = [v_ibeo_gps (sqrt ((msgStructs_ibeo_gps { j , 1 } . Vx) ^2+(

msgStructs_ibeo_gps { j , 1 } . Vy) ^2))] ;
145 end
146 end
147 ts0_ibeo_gps = ts_ibeo_gps−ts_ibeo_gps (1) ;
148

149 %Ibeo_republisher_local ization − in UTM coordinates
150 for j = 1 : length (msgStructs_ibeo_loc)
151 x_ibeo_loc = [x_ibeo_loc msgStructs_ibeo_loc { j , 1 } . XEasting] ;
152 y_ibeo_loc = [y_ibeo_loc msgStructs_ibeo_loc { j , 1 } . YNorthing] ;
153 theta_ibeo_loc = [theta_ibeo_loc msgStructs_ibeo_loc { j , 1 } . Heading] ;
154 ts_ibeo_loc = [ts_ibeo_loc double (msgStructs_ibeo_loc { j , 1 } . Header . Stamp . Sec)

+1e−9*double (msgStructs_ibeo_loc { j , 1 } . Header . Stamp . Nsec)] ;
155 xx_lcov_ibeo_loc = [xx_lcov_ibeo_loc msgStructs_ibeo_loc { j , 1 } . XXCovLocal] ;
156 xy_lcov_ibeo_loc = [xy_lcov_ibeo_loc msgStructs_ibeo_loc { j , 1 } . XYCovLocal] ;
157 yy_lcov_ibeo_loc = [yy_lcov_ibeo_loc msgStructs_ibeo_loc { j , 1 } . YYCovLocal] ;
158 vx_lstd_ibeo_loc = [vx_lstd_ibeo_loc msgStructs_ibeo_loc { j , 1 } . VxStdLocal] ;
159 theta_std_ibeo_loc = [theta_std_ibeo_loc msgStructs_ibeo_loc { j , 1 } . HeadingStd

] ;
160 v_ibeo_loc = [v_ibeo_loc (sqrt ((msgStructs_ibeo_loc { j , 1 } . Vx) ^2+(

msgStructs_ibeo_loc { j , 1 } . Vy) ^2))] ;
161 end
162 ts0_ibeo_loc = ts_ibeo_loc−ts_ibeo_loc (1) ;
163

164 %Advnav_wgs84 − in WGS84 coordinates
165 for j = 1 : length (msgStructs_adv_wgs84)
166 x_adv_wgs84 = [x_adv_wgs84 msgStructs_adv_wgs84 { j , 1 } . Latitude] ;
167 y_adv_wgs84 = [y_adv_wgs84 msgStructs_adv_wgs84 { j , 1 } . Longitude] ;
168 cov_pos_adv_wgs84 = [cov_pos_adv_wgs84 msgStructs_adv_wgs84 { j , 1 } .

PositionCovariance] ;
169 ts_adv_wgs84 = [ts_adv_wgs84 double (msgStructs_adv_wgs84 { j , 1 } . Header . Stamp .

Sec) +1e−9*double (msgStructs_adv_wgs84 { j , 1 } . Header . Stamp . Nsec)] ;
170 end
171 ts0_adv_wgs84 = ts_adv_wgs84−ts_adv_wgs84 (1) ;
172

173 % This s c r i p t i s intended to convert data to correct coordinate systems
174 utmstruct = defaultm (’utm ’) ;
175 utmstruct . zone = ’ 32N’ ;
176 utmstruct . geoid = wgs84Ellipsoid ;
177 utmstruct = defaultm (utmstruct) ;
178

179 lon = y_adv_wgs84 ; l a t = x_adv_wgs84 ;
180

181 [x_adv_wgs84_utm , y_adv_wgs84_utm]=mfwdtran (utmstruct , l a t , lon) ;
182

183 %% Determine the noise
184 max_noise_adv_gps = determine_noise (xx_cov_adv_gps , yy_cov_adv_gps ,

theta_std_adv_gps) ;
185 max_noise_ibeo_gps = determine_noise (xx_cov_ibeo_gps , yy_cov_ibeo_gps ,

99

theta_std_ibeo_gps) ;
186 max_noise_ibeo_loc = determine_noise (xx_lcov_ibeo_loc , yy_lcov_ibeo_loc ,

theta_std_ibeo_loc) ;
187 noise_adv_gps . xx_cov = xx_cov_adv_gps ;
188 noise_adv_gps . yy_cov = yy_cov_adv_gps ;
189 noise_adv_gps . theta_std = theta_std_adv_gps ;
190 noise_adv_gps . vx_std = vx_std_adv_gps ;
191 noise_adv_gps . vy_std = vy_std_adv_gps ;
192 noise_adv_wgs84 = cov_pos_adv_wgs84 ;
193 noise_ibeo_gps . xx_cov = xx_cov_ibeo_gps ;
194 noise_ibeo_gps . yy_cov = yy_cov_ibeo_gps ;
195 noise_ibeo_loc . xx_lcov = xx_lcov_ibeo_loc ;
196 noise_ibeo_loc . yy_lcov = yy_lcov_ibeo_loc ;
197 noise_ibeo_loc . xy_lcov = xy_lcov_ibeo_loc ;
198 noise_ibeo_loc . theta_std = theta_std_ibeo_loc ;
199 noise_ibeo_loc . vx_lstd = vx_lstd_ibeo_loc ;
200

201

202 %% Compare some of the data outputs
203 f i g u r e
204 hold on
205 plot (ts0_ptc , x_ptc)
206 plot (ts0_adv_gps , x_adv_gps)
207 plot (ts0_adv_wgs84 , x_adv_wgs84_utm)
208 plot (ts0_ibeo_gps , x_ibeo_gps)
209 plot (ts0_ibeo_loc , x_ibeo_loc)
210 t i t l e (’ driven distance east in UTM coordinate frame ’)
211 xlabel (’ time [s] ’)
212 ylabel (’ distance [m] ’)
213 legend (’ desired t r a j e c t o r y ’ , ’ advnav gps l o c a l i z a t i o n ’ , ’ advnav wgs84 l o c a l i z a t i o n ’ , ’

ibeo gps l o c a l i z a t i o n ’ , ’ ibeo l o c a l i z a t i o n ’)
214

215 f i g u r e
216 hold on
217 plot (ts0_ptc , y_ptc)
218 plot (ts0_adv_gps , y_adv_gps)
219 plot (ts0_adv_wgs84 , y_adv_wgs84_utm)
220 plot (ts0_ibeo_gps , y_ibeo_gps)
221 plot (ts0_ibeo_loc , y_ibeo_loc)
222 t i t l e (’ driven distance north in UTM coordinate frame ’)
223 xlabel (’ time [s] ’)
224 ylabel (’ distance [m] ’)
225 legend (’ desired t r a j e c t o r y ’ , ’ advnav gps l o c a l i z a t i o n ’ , ’ advnav wgs84 l o c a l i z a t i o n ’ , ’

ibeo gps l o c a l i z a t i o n ’ , ’ ibeo l o c a l i z a t i o n ’)
226

227 f i g u r e
228 hold on
229 plot (ts0_ptc , theta_ptc)
230 plot (ts0_adv_gps , theta_adv_gps)
231 plot (ts0_ibeo_gps , theta_ibeo_gps)
232 plot (ts0_ibeo_loc , theta_ibeo_loc)
233 t i t l e (’ orientation of the vehicle ’)
234 xlabel (’ time [s] ’)
235 ylabel (’ angle [rad] ’)
236 legend (’ desired t r a j e c t o r y ’ , ’ advnav gps l o c a l i z a t i o n ’ , ’ ibeo gps l o c a l i z a t i o n ’ , ’ ibeo

l o c a l i z a t i o n ’)

100 E. M-file: read_in_data_from_rosbags.m

237

238 f i g u r e
239 hold on
240 plot (ts0_ptc , v_ptc)
241 plot (ts0_vcbc , v_des)
242 plot (ts0_vcbm , v_meas)
243 plot (ts0_adv_gps , v_adv_gps)
244 plot (ts0_ibeo_loc , v_ibeo_loc)
245 i f isempty (v_ibeo_gps)
246 else
247 plot (ts0_ibeo_gps , v_ibeo_gps)
248 end
249 t i t l e (’ actual speed of the vehicle ’)
250 xlabel (’ time [s] ’)
251 ylabel (’ speed [m/ s] ’)
252 legend (’ desired t r a j e c t o r y automation ’ , ’ input : v_des ’ , ’ can bus measurements ’ , ’ advnav

gps l o c a l i z a t i o n ’ , ’ ibeo l o c a l i z a t i o n ’ , ’ ibeo gps l o c a l i z a t i o n ’)
253

254 % Vehicle can bridge comparison
255 f i g u r e
256 hold on
257 t i t l e (’ vehicle can bridge commands compared to measurements ’)
258 xlabel (’ time [s] ’)
259 ylabel (’ angle [rad] ’)
260 plot (ts0_vcbm , delta_meas)
261 plot (ts0_vcbc , delta_des)
262 legend (’ angle measured ’ , ’ angle command ’)
263

264 f i g u r e
265 hold on
266 t i t l e (’ vehicle can bridge commands compared to measurements ’)
267 xlabel (’ time [s] ’)
268 ylabel (’ speed [m/ s] ’)
269 plot (ts0_vcbm , v_meas)
270 plot (ts0_vcbc , v_des)
271 legend (’ speed measured ’ , ’ speed command ’)
272

273 %% Save the data
274 saved = 0 ; % i n i t i a l i z e , i f succesful ly saved , t h i s value changes to 1
275

276 old = "−"; % MATLAB recognizes − as a minus sign , so i t needs to be changed
277 new = "_ " ; % the symbol used instead i s an underscore _
278

279 % vehicle can bridge commands
280 assignin (’ base ’ , s t r c a t (’ data_ ’ , replace (name_vcbc , old ,new)) , [double (ts_vcbc) ’ , double (

v_des) ’ , double (delta_des) ’]) ;
281 save (s t r c a t (’ data_ ’ , replace (name_vcbc , old ,new) , ’ . mat ’) , s t r c a t (’ data_ ’ , replace (

name_vcbc , old ,new))) ;
282

283 % vehicle can bridge measurements
284 assignin (’ base ’ , s t r c a t (’ data_ ’ , replace (name_vcbm, old ,new)) , [double (ts_vcbm) ’ , double (

v_meas) ’ , double (delta_meas) ’]) ;
285 save (s t r c a t (’ data_ ’ , replace (name_vcbm, old ,new) , ’ . mat ’) , s t r c a t (’ data_ ’ , replace (

name_vcbm, old ,new))) ;
286

287 % pathplanner t r a j e c t o r y c o n t r o l l e r

101

288 oldptc = " pathplanner_trajectory_control ler " ;
289 newptc = " ptc " ;
290 name_ptc = replace (name_ptc , oldptc , newptc) ;
291 assignin (’ base ’ , s t r c a t (’ data_ ’ , replace (name_ptc , old ,new) , ’ _corr ’) , [double (ts_ptc) ’ ,

double (x_ptc) ’ , double (y_ptc) ’ , double (theta_ptc) ’ , double (v_ptc) ’]) ;
292 save (s t r c a t (’ data_ ’ , replace (name_ptc , old ,new) , ’ _corr . mat ’) , s t r c a t (’ data_ ’ , replace (

name_ptc , old ,new) , ’ _corr ’)) ;
293 assignin (’ base ’ , s t r c a t (’ data_ ’ , replace (name_ptc , old ,new) , ’_norm ’) , double ([double (

ts0_ptc) ’ , double (x_ptc) ’−double (x_ptc (1)) , double (y_ptc) ’−double (y_ptc (1)) ,
double (theta_ptc) ’−double (theta_ptc (1)) , double (v_ptc) ’−double (v_ptc (1)) ’])) ;

294 save (s t r c a t (’ data_ ’ , replace (name_ptc , old ,new) , ’_norm . mat ’) , s t r c a t (’ data_ ’ , replace (
name_ptc , old ,new) , ’_norm ’)) ;

295

296 % advnav gps
297 assignin (’ base ’ , s t r c a t (’ data_ ’ , replace (name_adv_gps , old ,new) , ’ _corr ’) , [double (

ts_adv_gps) ’ , double (x_adv_gps) ’ , double (y_adv_gps) ’ , double (theta_adv_gps) ’ , double (
v_adv_gps) ’]) ;

298 save (s t r c a t (’ data_ ’ , replace (name_adv_gps , old ,new) , ’ _corr . mat ’) , s t r c a t (’ data_ ’ ,
replace (name_adv_gps , old ,new) , ’ _corr ’)) ;

299 assignin (’ base ’ , s t r c a t (’ data_ ’ , replace (name_adv_gps , old ,new) , ’_norm ’) , double ([
ts0_adv_gps ’ , x_adv_gps ’−x_adv_gps (1) , y_adv_gps ’−y_adv_gps (1) , theta_adv_gps ’−
theta_adv_gps (1) , v_adv_gps ’])) ;

300 save (s t r c a t (’ data_ ’ , replace (name_adv_gps , old ,new) , ’_norm . mat ’) , s t r c a t (’ data_ ’ ,
replace (name_adv_gps , old ,new) , ’_norm ’)) ;

301 assignin (’ base ’ , s t r c a t (’ max_data_noise_ ’ , replace (name_adv_gps , old ,new)) , double (
max_noise_adv_gps)) ;

302 save (s t r c a t (’ max_data_noise_ ’ , replace (name_adv_gps , old ,new) , ’ . mat ’) , s t r c a t (’
max_data_noise_ ’ , replace (name_adv_gps , old ,new))) ;

303 assignin (’ base ’ , s t r c a t (’ data_noise_ ’ , replace (name_adv_gps , old ,new)) , noise_adv_gps) ;
304 save (s t r c a t (’ data_noise_ ’ , replace (name_adv_gps , old ,new) , ’ . mat ’) , s t r c a t (’ data_noise_ ’

, replace (name_adv_gps , old ,new))) ;
305

306 % advnav wgs84
307 assignin (’ base ’ , s t r c a t (’ data_ ’ , replace (name_adv_wgs84 , old ,new) , ’ _corr ’) , [double (

ts_adv_wgs84) ’ , double (x_adv_wgs84) ’ , double (y_adv_wgs84) ’]) ;
308 save (s t r c a t (’ data_ ’ , replace (name_adv_wgs84 , old ,new) , ’ _corr . mat ’) , s t r c a t (’ data_ ’ ,

replace (name_adv_wgs84 , old ,new) , ’ _corr ’)) ;
309 assignin (’ base ’ , s t r c a t (’ data_ ’ , replace (name_adv_wgs84 , old ,new) , ’_norm ’) , double ([

ts0_adv_wgs84 ’ , x_adv_wgs84’−x_adv_wgs84 (1) , y_adv_wgs84’−y_adv_wgs84 (1)])) ;
310 save (s t r c a t (’ data_ ’ , replace (name_adv_wgs84 , old ,new) , ’_norm . mat ’) , s t r c a t (’ data_ ’ ,

replace (name_adv_wgs84 , old ,new) , ’_norm ’)) ;
311 assignin (’ base ’ , s t r c a t (’ data_noise_cov_diag ’ , replace (name_adv_wgs84 , old ,new)) , double

(noise_adv_wgs84)) ;
312 save (s t r c a t (’ data_noise_cov_diag ’ , replace (name_adv_wgs84 , old ,new) , ’ . mat ’) , s t r c a t (’

data_noise_cov_diag ’ , replace (name_adv_wgs84 , old ,new))) ;
313

314 % ibeo gps
315 oldibeogps = " ibeo_republisher_gps_localization " ;
316 newibeogps = " ibeo_gps " ;
317 name_ibeo_gps = replace (name_ibeo_gps , oldibeogps , newibeogps) ;
318 i f isempty (v_ibeo_gps)
319 assignin (’ base ’ , s t r c a t (’ data_ ’ , replace (name_ibeo_gps , old ,new) , ’ _corr ’) , [double (

ts_ibeo_gps) ; double (x_ibeo_gps) ; double (y_ibeo_gps) ; double (theta_ibeo_gps
)] ’) ;

320 save (s t r c a t (’ data_ ’ , replace (name_ibeo_gps , old ,new) , ’ _corr . mat ’) , s t r c a t (’ data_ ’ ,
replace (name_ibeo_gps , old ,new) , ’ _corr ’)) ;

102 E. M-file: read_in_data_from_rosbags.m

321 assignin (’ base ’ , s t r c a t (’ data_ ’ , replace (name_ibeo_gps , old ,new) , ’_norm ’) , double ([
ts0_ibeo_gps ; x_ibeo_gps−x_ibeo_gps (1) ; y_ibeo_gps−y_ibeo_gps (1) ;
theta_ibeo_gps−theta_ibeo_gps (1)] ’)) ;

322 save (s t r c a t (’ data_ ’ , replace (name_ibeo_gps , old ,new) , ’_norm . mat ’) , s t r c a t (’ data_ ’ ,
replace (name_ibeo_gps , old ,new) , ’_norm ’)) ;

323 else
324 assignin (’ base ’ , s t r c a t (’ data_ ’ , replace (name_ibeo_gps , old ,new) , ’ _corr ’) , [double (

ts_ibeo_gps) ; double (x_ibeo_gps) ; double (y_ibeo_gps) ; double (theta_ibeo_gps
) ; double (v_ibeo_gps)]) ;

325 save (s t r c a t (’ data_ ’ , replace (name_ibeo_gps , old ,new) , ’ _corr . mat ’) , s t r c a t (’ data_ ’ ,
replace (name_ibeo_gps , old ,new) , ’ _corr ’)) ;

326 assignin (’ base ’ , s t r c a t (’ data_ ’ , replace (name_ibeo_gps , old ,new) , ’_norm ’) , double ([
ts0_ibeo_gps ; x_ibeo_gps−x_ibeo_gps (1) ; y_ibeo_gps−y_ibeo_gps (1) ;
theta_ibeo_gps−theta_ibeo_gps (1) ; v_ibeo_gps])) ;

327 save (s t r c a t (’ data_ ’ , replace (name_ibeo_gps , old ,new) , ’_norm . mat ’) , s t r c a t (’ data_ ’ ,
replace (name_ibeo_gps , old ,new) , ’_norm ’)) ;

328 end
329 assignin (’ base ’ , s t r c a t (’ max_data_noise_ ’ , replace (name_ibeo_gps , old ,new)) , double (

max_noise_ibeo_gps)) ;
330 save (s t r c a t (’ max_data_noise_ ’ , replace (name_ibeo_gps , old ,new) , ’ . mat ’) , s t r c a t (’

max_data_noise_ ’ , replace (name_ibeo_gps , old ,new))) ;
331 assignin (’ base ’ , s t r c a t (’ data_noise_ ’ , replace (name_ibeo_gps , old ,new)) , noise_ibeo_gps)

;
332 save (s t r c a t (’ data_noise_ ’ , replace (name_ibeo_gps , old ,new) , ’ . mat ’) , s t r c a t (’ data_noise_

’ , replace (name_ibeo_gps , old ,new))) ;
333

334 % ibeo loc
335 oldibeoloc = " ibeo_republisher_local izat ion " ;
336 newibeoloc = " ibeo_loc " ;
337 name_ibeo_loc = replace (name_ibeo_loc , oldibeoloc , newibeoloc) ;
338 i f isempty (v_ibeo_loc)
339 assignin (’ base ’ , s t r c a t (’ data_ ’ , replace (name_ibeo_loc , old ,new) , ’ _corr ’) , [double (

ts_ibeo_loc) ; double (x_ibeo_loc) ; double (y_ibeo_loc) ; double (theta_ibeo_loc
)] ’) ;

340 save (s t r c a t (’ data_ ’ , replace (name_ibeo_loc , old ,new) , ’ _corr . mat ’) , s t r c a t (’ data_ ’ ,
replace (name_ibeo_loc , old ,new) , ’ _corr ’)) ;

341 assignin (’ base ’ , s t r c a t (’ data_ ’ , replace (name_ibeo_loc , old ,new) , ’_norm ’) , double ([
ts0_ibeo_loc ; x_ibeo_loc−x_ibeo_loc (1) ; y_ibeo_loc−y_ibeo_loc (1) ;
theta_ibeo_loc−theta_ibeo_loc (1)] ’)) ;

342 save (s t r c a t (’ data_ ’ , replace (name_ibeo_loc , old ,new) , ’_norm . mat ’) , s t r c a t (’ data_ ’ ,
replace (name_ibeo_loc , old ,new) , ’_norm ’)) ;

343 else
344 assignin (’ base ’ , s t r c a t (’ data_ ’ , replace (name_ibeo_loc , old ,new) , ’ _corr ’) , [double (

ts_ibeo_loc) ; double (x_ibeo_loc) ; double (y_ibeo_loc) ; double (theta_ibeo_loc
) ; double (v_ibeo_loc)]) ;

345 save (s t r c a t (’ data_ ’ , replace (name_ibeo_loc , old ,new) , ’ _corr . mat ’) , s t r c a t (’ data_ ’ ,
replace (name_ibeo_loc , old ,new) , ’ _corr ’)) ;

346 assignin (’ base ’ , s t r c a t (’ data_ ’ , replace (name_ibeo_loc , old ,new) , ’_norm ’) , double ([
ts0_ibeo_loc ; x_ibeo_loc−x_ibeo_loc (1) ; y_ibeo_loc−y_ibeo_loc (1) ;
theta_ibeo_loc−theta_ibeo_gps (1) ; v_ibeo_loc])) ;

347 save (s t r c a t (’ data_ ’ , replace (name_ibeo_loc , old ,new) , ’_norm . mat ’) , s t r c a t (’ data_ ’ ,
replace (name_ibeo_loc , old ,new) , ’_norm ’)) ;

348 end
349 assignin (’ base ’ , s t r c a t (’ max_data_noise_ ’ , replace (name_ibeo_loc , old ,new)) , double (

max_noise_ibeo_loc)) ;
350 save (s t r c a t (’ max_data_noise_ ’ , replace (name_ibeo_loc , old ,new) , ’ . mat ’) , s t r c a t (’

103

max_data_noise_ ’ , replace (name_ibeo_loc , old ,new))) ;
351 assignin (’ base ’ , s t r c a t (’ data_noise_ ’ , replace (name_ibeo_loc , old ,new)) , noise_ibeo_loc)

;
352 save (s t r c a t (’ data_noise_ ’ , replace (name_ibeo_loc , old ,new) , ’ . mat ’) , s t r c a t (’ data_noise_

’ , replace (name_ibeo_loc , old ,new))) ;
353

354 [~ , kp] = s t r t o k (name_vcbc , ’ 2 ’) ; % prepare name and date s t r i n g
355 [~ , km] = s t r t o k (path , ’W’) ; % prepare name and date s t r i n g
356 [ko , ~] = s t r t o k (km, ’ 1 ’) ; % prepare name and date s t r i n g
357

358 saved = 1 ; % i f succesful ly saved , t h i s value changes to 1
359 i f saved % show message that data has been saved succesful ly
360 show = s t r c a t (’ data has been saved c o r r e c t l y for the following logs : ’ , ko , kp)
361 end

F
Data cleaning

Input data
The vehicle can bridge data, that is used as an input to the model, was inspected in order to prepare it well
before using in the rest of the approach. The measurements turned out to be gathered at a lower frequency
than the commands were given. Around twice as small: ∼50Hz compared to 100Hz (sampling frequency of
the commands). Therefore, either the data containing the commands needed to be down-sampled or the
data containing the measurements needed to be sampled up in such way that the number of samples is
congruent. The choice is made for sampling up, in order to retain as much information as possible. At first,
the data was simply duplicated and plots were generated, as shown in Figures F.1-F.3. Because this is not a
very neat way of handling data, an update is included in the cleaning steps that interpolates the data with the
lower sampling frequency.

0 2 4 6 8 10

time [s]

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

an
gl

e
[r

ad
]

vehicle can bridge commands compared to measurements

angle measured
angle command

Figure F.1: Comparison between vehicle can bridge commands and measurements beginning of sequence.

105

106 F. Data cleaning

290 291 292 293 294 295 296 297 298 299 300

time [s]

0

2

4

6

8

10

an
gl

e
[r

ad
]

10-3 vehicle can bridge commands compared to measurements

angle measured
angle command

Figure F.2: Comparison between vehicle can bridge commands and measurements end of sequence.

0 0.5 1 1.5 2 2.5 3

sample (frequency is 100Hz) 10 4

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

sp
ee

d
[m

/s
]

vehicle can bridge commands compared to measurements

speed measured
speed command

Figure F.3: Comparison between vehicle can bridge commands and measurements of the speeds.

Several other things became clear from these plots and manual inspection of the acquired .mats:

• Each log consists of data recorded during a timespan of 5 minutes;
30,000 samples at 100Hz: 30,000*1/100 = 300 seconds => 300/60 = 5 minutes.

• The measurements have an offset in Unix starting time compared to the commands;

• The can bridge speed measurements indicated some problem in the time vector by showing a more
disrete type of behavior than expected;

• The speed commands drop to 0 sometimes (according to the team due to object handling/perception);

• The measured speed shows an overshoot (as a result of the control of the vehicle).

107

The input data is subject to a couple of cleaning steps (see also Appendix G, containing the prepare.m file
where most of the cleaning is performed), that will be explained here successively in the next seven subsec-
tions:

Compensating for offset
The offset between the first value of the commands and the first value of the measurements is calculated by
subtraction and this difference is added to the entire measurement data sequence, from which the first data
entry is subtracted in the prepare.m file:

1 i f offset_meas < 0
2 v_meas = interp1 (measurements (: , 1)−measurements (1 , 1) +offset_meas , v_meas , tv) ’ ;
3 delta_meas = interp1 (measurements (: , 1)−measurements (1 , 1) +offset_meas , delta_meas ,

tv) ’ ;
4 else
5 e = ’ error offset_meas ’
6 end

Because the measurements will always start later than the commands, the offset will be negative always and
the offset can be added. Just to make sure this is correct for all the measurements, the ‘safety if-statement’ is
included.

Solving problem of ‘vertical’ values in data
At first, I did not take the messages providing the Nsecs (nanoseconds) into account. This turned out to be a
shortcoming when comparing the data, so the Nsecs are retrieved and included, leading to less choppy data.

Eliminating fake 0’s from the commands
The commands return 0’s at unexpected instances. This is clearly not what happened in reality, otherwise a
drop would have shown up in the measurements too. These outcomes are caused by ghost object detections.
When an object is detected as an obstacle, the command is 0 for the speed, in order to prevent collisions. It
requests a stop for 1 or 2 timestamps because the algorithm first has to notice that the obstacle is actually
not present before it can update its command again. Therefore, it is important to eliminate these fake 0’s.
This is done in prepare.m by finding entries of 0 that did not last longer than 3 seconds (this timespan is
set as a minimum for an actual drop in the speed command, for example when it is desired that the vehicle
would come to or remain in a standstill position). These ‘short-term 0’s’ are replaced by the last commanded
non-zero value for the speed.

Sampling up data
Because the data is not gathered with the same sampling frequency, it is important to interpolate it in order
to retrieve the same number of data, to be able to feed it into the model and compare everything well. This
is done by making use of the interp1 function in MATLAB that makes use of a linear interpolation in order
to retrieve a vector with the same length as the desired time vector (which is constructed by taking the num-
ber of samples of the commands, which is 30,000 for each log). In prepare.m it is visible how this has been
implemented exactly.

Eliminating NaNs
Of course, after interpolating, NaNs will occur when there has been no neighbouring data to perform the
interpolation with at the beginning and/or end of the sequence. In order to solve this problem, a script was
written that copies the last neighbouring value as many times as required (at the end a message is generated
of how many NaNs needed to be replaced):

1 p = [] ;
2 for i = 1 : length (v_meas)
3 i f isnan (v_meas (i))
4 p = [p ; i] ;
5 v_meas (i , :) =v_meas (p(1) −1 ,:) ;
6 delta_meas (i , :) =delta_meas (p(1) −1 ,:) ;
7 end

108 F. Data cleaning

8 end
9 mess = s t r c a t (num2str (length (p)) , ’ NaNs replaced in v_meas and delta_meas ’)

Instead of performing this extrapolation manually, there is an option to the interp1-function in MATLAB as
well that takes care of this automatically. It is advised to use that functionality. It is left in because this way it
works as well.

Plots after data cleaning
After cleaning the data, again a visualization is made of the commands versus the measurements. The ‘pre-
pared steering angle’ is shown in Figure F.4 (zoomed in on).

192 194 196 198 200 202 204 206 208

time [s]

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

an
gl

e
[r

ad
]

vehicle can bridge commands compared to measurements

angle measured
angle command

Figure F.4: Comparison between vehicle can bridge commands and measurements of the steering angle after prepare.m.

The difference between the measured speeds saved at seconds versus nanoseconds is shown in Figure F.5.
And finally, the commanded speeds after all the preparation steps are shown in Figure F.6: the 0s have been
eliminated effectively (the prepared speed is plotted on top of the commanded speed, so the 0s are gone) for
the short time instances (the erroneous ones). The real speed commands for 0 m/s remained.

109

115 120 125 130 135 140 145 150 155 160

time [s]

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

sp
ee

d
[m

/s
]

vehicle can bridge measurements

speed measured [Sec]
speed measured [NSec]

Figure F.5: Comparison between speed measurements saved at seconds versus nanoseconds.

09:02 09:03 09:04 09:05 09:06 09:07
Mar 06, 2019

0

0.5

1

1.5

2

2.5

3

3.5

4

sp
ee

d
[m

/s
]

raw speed data from can bridge commands vs. prepared speed

commanded speed v
des

prepared speed v
des

Figure F.6: Comparison between vehicle can bridge commands and measurements of the speed after prepare.m.

Compensating for offset, sampling up data and eliminating NaNs
Also the measurement data have an offset in the Unix time stamp compared to the commands. They have
been shifted in the same way as the input data, see also Appendix G.

Localization data
The next two subsections belong to the cleaning steps for the localization data.

Sample up, eliminate NaNs, compensating for offset
All localization data turned out to be measured at a lower sampling frequency than the commands. Because
the model will return as many values as the input, it is important to scale up the localization data as well in

110 F. Data cleaning

order to be able to compare well. This is done using a similar approach as for the input data. Again, the NaNs
are eliminated using the same approach as before.

Wrap orientation angle
When inspecting the orientation angle coming from the localization data, it turned out that it is wrapped:
kept between bounds from 0 to 2π. Sudden jumps arose each time the orientation angle crossed this 2π
bound. When using the model at a later stage, this wrapping will not be automatically included. Therefore, a
solution is to unwrap the data first, as is done by using the MATLAB funcion unwrap in the prepare.m file.

Sensor (fusion) noise data
The next two subsections belong to the cleaning steps for the sensor (fusion) noise data.

Sample up
The noise was acquired at a frequency four times as small as the commands were given. Because it would not
make sense to interpolate the uncertainty in data, the entries in the arrays are simply replicated four times by
using the MATLAB functions repmat and reshape.

Prepare covariance matrix
Furthermore, retrieving the covariance matrix turned out not to be as straightforward as expected because
complex results were returned by calculation of the Mahalanobis distance. When the result is complex, this
indicates negative definiteness of the covariance matrix. This error was discovered by the team of RRC be-
fore, but was never solved properly. It was manually fixed by tweaking the matrix in such a way that it would
always be positive definite. An approach that was implemented first in order to prepare the covariance ma-
trix in this application, was by replacing the xy covariance entry (as these had too high negative values) in
the symmetric matrix by a 0 when the overall covariance matrix turned out to be negative definite. In the
meantime, in collaboration with the team, the origin of the covariance data was inspected and how it is saved
exactly in the rosbags. Not much documentation was provided by the external software piece, only that the
ibeo localization provided getXPositionSigma, getYPositionSigma and getXyCorrelation. These values were
saved as messages XXCovLocal, YYCovLocal and XYCovLocal respectively. This is where the error became
clear: although the XyCorrelation was returned, it was stored as if it would equal the covariance in xy, which,
by definition, is not the same [28]. The solution to this problem exists of calculating the correlation matrix
from the xx and yy covariance matrix, which simply is a 2x2 identity matrix. Then, the correlation for xy is en-
tered on the (1,2) and (2,1) entries and the corr2cov function from MATLAB has been used to find the correct
covariance matrix, based on the variances in x and y and the correlation matrix. The actual script, including
the preparation, is included in the Mahalanobis.m file, Appendix J.

Before proceeding, the covariance has been checked on validity by comparing the residual in the x-
position with the covariance in the x-direction. This comparison is shown in Figure F.7.

111

14:09:00 14:09:10 14:09:20 14:09:30
Mar 18, 2019

0

0.05

0.1

residual on x-position

14:09:00 14:09:10 14:09:20 14:09:30
Mar 18, 2019

0.5

1

1.5

2

2.5
xx covariance

Figure F.7: Residual in x-position and its according covariance in xx-direction.

Again, something unexpected is visible from Figure F.7. At the time of a fault, a high covariance would be
expected, but each time a fault occured (as indicated by a peak in the residual), a drop in the covariance is
visible. This could indicate that what is defined as a fault, the jump in the residual, actually represents the
end of a fault: namely a correction. When the vehicle is driving, the algorithm makes a prediction, until it gets
closer and when it is finally sure of its prediction, then it jumps to the correct measurement. The covariance
is low again when the algorithm had corrected itself. In order to validate this assumption, inspection again is
needed of the faults that have been visualized in Figures 2.18 and 2.19. There, it becomes clear from Figure
2.18 that this is not necessarily the case, as it jumps two times in a row to a location that lies further from the
actual path. So the hypothesis of the algorithm correcting itself, is rejected. There could be other reasons that
the covariance suddenly ‘jumps’: [15][16][30][37][29].

What is of higher interest than the actual reason, is how to handle it, while it is already present (following
the fault tolerant control vision). There are multiple possible approaches: one is to compute the median of
all the covariances and use this fixed value for computing the Mahalanobis distance (as included in Maha-
lanobis.m) by using the median function in MATLAB. A more reliable approach, however, is to take all the
local minima of the covariances. The assumption is made that the ‘reset’ values (which are small, but not
equal to 0) represent the real covariance best. A MATLAB-function is written that is able to do the job by
finding local minima lower than a certain pre-set value (in order to retrieve the actual minima) using the find
and islocalmin functionalities:

1 function cov_min = covmin (xx , yy , xy) ;
2 % This function i s written in order to r e t r i e v e the correct covariance
3 % matrix for the noise in the measurements , by taking the minimum values to
4 % which the covariances are resetted at the time of a jump .
5

6 xx_min (1) = xx (1 , 1) ;
7 idx = find (islocalmin (xx)&xx <2) ; % find l o c a l minima in xx_cov , below 2
8 for i = 2 : length (xx) % s t a r t at index 2 , for taking i−1
9 xx_min (i) =xx_min (i −1) ;

10 i f f ind (i ==idx >0)
11 xx_min (i) =xx (i) ;
12 end
13 end

112 F. Data cleaning

14

15 yy_min (1) = yy (1 , 1) ;
16 idx = find (islocalmin (yy)&yy <2) ; % find l o c a l minima in yy_cov , below 2
17 for i = 2 : length (yy) % s t a r t at index 2 , for taking i−1
18 yy_min (i) =yy_min (i −1) ;
19 i f f ind (i ==idx >0)
20 yy_min (i) =yy (i) ;
21 end
22 end
23

24 xy_min (1) = xy (1 , 1) ;
25 idx = find (islocalmin (yy)) ; % take l o c a l minima from xy at same instance as

yy
26 for i = 2 : length (xy) % s t a r t at index 2 , for taking i−1
27 xy_min (i) =xy_min (i −1) ;
28 i f f ind (i ==idx >0)
29 xy_min (i) =xy (i) ;
30 end
31 end
32

33 cov_min = [] ; % i n i t i a l i z e covariance matrix
34 for i = 1 : length (xx)
35 cov_min = [cov_min ; { [xx_min (i) , xy_min (i) ; % f i l l covariance matrix
36 xy_min (i) , yy_min (i)] }] ;
37 end
38 end

A major drawback of both approaches is the inability of implementing on-line. Both computations require
previous and future values of the covariance.

G
M-file: prepare.m

1 function [Ts , Tstop , tv , tr , posInit , v_des , delta_des , v_des_no_zero , v_meas , delta_meas] =
prepare (data_corr , data_norm ,commands, measurements)

2 % Prepare input [v_des ; delta_des]
3 v_des = commands(: , 2) ;
4 delta_des = commands(: , 3) ;
5 v_meas = measurements (: , 2) ;
6 delta_meas = measurements (: , 3) ;
7

8 % Convert data to time s e r i e s for simin blocks
9 nsamples = length (v_des) ; % number of samples [#]

10 Ts = 0 . 0 1 ; % step time [s]
11 Tstop = (nsamples−1)*Ts ; % stopping time of the simulation [s]
12 tv = (0 : (nsamples−1)) *Ts ; % time vector [s]
13

14 % Get the data to the correct length by interpolat ing
15 i f s i z e (data_corr , 2) <4
16 else
17 data_corr (: , 4) =unwrap(data_corr (: , 4)) ;
18 data_norm (: , 4) =unwrap(data_norm (: , 4)) ;
19 end
20 o f f s e t = commands(1 , 1)−data_corr (1 , 1) % compute o f f s e t with commands

to s h i f t data
21 i f o f f s e t < 0
22 data_corr = interp1 (data_corr (: , 1)−data_corr (1) + o f f s e t , data_corr (: , 2 : end) , tv) ;

% exclude the time vector
23 data_norm = interp1 (data_norm (: , 1) + o f f s e t , data_norm (: , 2 : end) , tv) ;

% exclude the time vector
24 else
25 e = ’ error o f f s e t ’
26 end
27 offset_meas = (commands(1 , 1)−measurements (1 , 1)) % compute o f f s e t with commands to

s h i f t data
28 i f offset_meas < 0
29 v_meas = interp1 (measurements (: , 1)−measurements (1 , 1) +offset_meas , v_meas , tv)

’ ;
30 delta_meas = interp1 (measurements (: , 1)−measurements (1 , 1) +offset_meas , delta_meas

, tv) ’ ;
31 else
32 e = ’ error offset_meas ’
33 end

113

114 G. M-file: prepare.m

34 % Get r id of NaNs; extrapolate f u n c t i o n a l i t y of interp1 can be used instead
35 p = [] ;
36 for i = 1 : length (data_corr)
37 i f isnan (data_corr (i))
38 p = [p ; i] ;
39 pext = find (p>length (data_corr) /2 ,1) ;
40 psmall = find (p<length (data_corr) /2) ;
41 i f p(end) > length (data_corr) /2
42 data_corr (i , :) =data_corr (p(pext) −1 ,:) ;
43 data_norm (i , :) =data_norm (p(pext) −1 ,:) ’ ;
44 end
45 end
46 end
47

48 i f isempty (psmall)
49 else
50 for j = 1 : length (p)
51 data_corr (j , :) =data_corr ((psmall (end) +1) , :) ;
52 data_norm (j , :) =data_norm ((psmall (end) +1) , :) ;
53 end
54 end
55 i f isempty (pext)
56 else
57 i f pext >1
58 i f p(pext−1)<length (data_corr) /2
59 for i = 1 : length (p)
60 data_corr (i , :) =data_corr (p(pext−1) + 1 , :) ;
61 data_norm (i , :) =data_norm (p(pext−1) + 1 , :) ;
62 end
63 end
64 end
65 end
66 mess = s t r c a t (num2str (length (p)) , ’ NaNs replaced in data_corr and data_norm ’)
67

68 p = [] ;
69 for i = 1 : length (v_meas)
70 i f isnan (v_meas (i))
71 p = [p ; i] ;
72 v_meas (i , :) =v_meas (p(1) −1 ,:) ;
73 delta_meas (i , :) =delta_meas (p(1) −1 ,:) ;
74 end
75 end
76 mess = s t r c a t (num2str (length (p)) , ’ NaNs replaced in v_meas and delta_meas ’)
77

78 % prerequisi te for ’ r e a l 0 ’ i s at l e a s t 3s 0 : 3/0.01 = 300 timesteps
79 equ = eq (v_des , 0) ;
80 arr = find (d i f f (equ)) ;
81 d_arr = d i f f (arr) ;
82 for i = 1 : length (d_arr)
83 i f d_arr (i) <300 % 0 holds for shorter than 3 seconds
84 i f commands(arr (i) , 2) ==0
85 else
86 ents = arr (i) +1;
87 ente = arr (i +1) ;
88 v_des (ents : ente) =v_des (arr (i)) ;
89 end

115

90 end
91 end
92 v_des_no_zero = v_des ;
93

94 t r = [] ;
95 for i = 1 : s i z e (data_corr , 2)
96 i f i == 3
97 t r = [tr , data_corr (: , i)] ; % get the orientation for theta correct
98 else
99 t r = [tr , data_norm (: , i)] ; % get normalized data for x and y

100 end
101 end
102

103 % Set i n i t i a l conditions and update t r − i f the sensor doesn ’ t have e n t r i e s for
104 % theta , speed and steering angle , input the measurements from the can bus
105 posInit = [] ;
106 for i = 1 : s i z e (data_corr , 2)
107 posInit = [posInit , t r (1 , i)] ; % take i n i t i a l posit ions from data
108 end
109 % F i l l up the i n i t i a l positions with values retr ieved elsewhere i f length =! 5
110 i f s i z e (posInit , 2) <3 % only x and y information a v ai l a b l e (f . e . : wgs84)
111 posInit = [posInit , 0 , v_meas (1) , delta_des (1)] ; % set i n i t i a l orientation to 0
112 t r = [tr , zeros (length (data_corr) , 1) ,v_meas , delta_meas] ;
113 e l s e i f s i z e (posInit , 2) <4 % only x , y and theta information a v ai l a b l e
114 posInit = [posInit , v_meas (1) , delta_meas (1)] ;
115 t r = [tr , v_meas , delta_meas] ;
116 e l s e i f s i z e (posInit , 2) <5 % only x , y , theta and speed information a v a i l a bl e
117 posInit = [posInit , delta_meas (1)] ;
118 t r = [tr , delta_meas] ;
119 end
120

121 end

H
Subsystems observer model Simulink

Figure H.1: Subsystem Ax of the observer model

Figure H.2: Subsystem Bu of the observer model

1 function A = fcn (angles , par)

117

118 H. Subsystems observer model Simulink

Figure H.3: Subsubsystem A of the observer model

2 tau_s = par (1) ; % time delay actuators [s]
3 tau_v = par (2) ; % time delay actuators [s]
4 l = par (3) ; % length of h a l f the wheelbase
5

6 A = [0 0 0 cos (angles (2)) * cos (angles (1)) 0 ;
7 0 0 0 cos (angles (2)) * sin (angles (1)) 0 ;
8 0 0 0 sin (angles (2)) / l 0 ;
9 0 0 0 −1/tau_v 0 ;

10 0 0 0 0 −1/tau_s] ;

Figure H.4: Subsubsystem B of the observer model

1 function B = fcn (par)
2 tau_s = par (1) ; % time delay actuators [s]
3 tau_v = par (2) ; % time delay actuators [s]
4

5 B = [0 0 ;
6 0 0 ;
7 0 0 ;
8 1/ tau_v 0 ;
9 0 1/ tau_s] ;

Figure H.5: Subsubsystem u of the observer model

I
Subsystems two observer model Simulink

Figure I.1: Subsystem Bu of the second observer model

1 Measurements_adv_gps_theta = timeseries (tr_adv_gps (: , 3) , tv) ;
2 Delta_canbus = timeseries (delta_meas , tv) ;

Figure I.2: Subsubsystem B of the second observer model

1 function B = fcn (par , angles)
2 l = par ; % length of h a l f the wheelbase [m]
3

4 B = [cos (angles (2)) * cos (angles (1)) 0 ;
5 cos (angles (2)) * sin (angles (1)) 0 ;
6 −sin (angles (2)) / l 0] ;

119

120 I. Subsystems two observer model Simulink

Figure I.3: Subsubsystem u of the second observer model

Figure I.4: Subsystem Ax of the first observer model

1 function A = fcn (par)
2 tau_s = par (1) ; % time delay actuators [s]
3 tau_v = par (2) ; % time delay actuators [s]
4

5 A = [−1/tau_v 0 ;
6 0 −1/tau_s] ;

Figure I.5: Subsubsystem A of the first observer model

121

Figure I.6: Subsystem Bu of the first observer model

Figure I.7: Subsubsystem B of the first observer model

1 function B = fcn (par)
2 tau_s = par (1) ; % time delay actuators [s]
3 tau_v = par (2) ; % time delay actuators [s]
4

5 B = [1/ tau_v 0 ;
6 0 1/ tau_s] ;

Figure I.8: Subsubsystem u of the first observer model

J
M-file: Mahalanobis.m

1 function [d ,d_med] = Mahalanobis (noise_ibeo_loc , tr , z)
2 %% Mahalanobis distance
3 %f i g u r e
4 %for i = 1 : length (xcov_ibeo_loc)
5 % e l l i p s e (xcov_ibeo_loc (i) , ycov_ibeo_loc (i))
6 %end
7

8 %meancovx = mean(xcov_ibeo_loc) ;
9 %meancovy = mean(ycov_ibeo_loc) ;

10 %meancov = [meancovx ; meancovy] ;
11

12 % Load in covariance data
13 xcovl = noise_ibeo_loc . xx_lcov ;
14 ycovl = noise_ibeo_loc . yy_lcov ;
15 xycovl = noise_ibeo_loc . xy_lcov ; % t h i s i s a c t u a l l y the correlat ion !
16 xcovl_x4 = vectorfourtimes (xcovl) ;
17 ycovl_x4 = vectorfourtimes (ycovl) ;
18 xycovl_x4 = vectorfourtimes (xycovl) ; % t h i s i s a c t u a l l y the correlat ion !
19

20 theta = t r (: , 3) ; % r e t r i e v e orientation of the vehicle for rotation
21

22 cov_xx_yy = [] ;
23 cor = [] ;
24 for i = 1 : length (xcovl_x4)
25 [cov_xx_yy] = [cov_xx_yy , { ([xcovl_x4 (i) , 0 ;
26 0 , ycovl_x4 (i)]) }] ;
27 cor = [cor , { corrcov (cov_xx_yy { i }) }] ; % correlat ion based on cov_xx , yy
28 end % turns out to be diagonal matrix with ones on the diagonal
29

30 for i = 1 : length (cor)
31 cor { i } (2 , 1) = xycovl_x4 (i) ; % f i l l correlat ion matrix with xy correlat ion
32 cor { i } (1 , 2) = xycovl_x4 (i) ; % f i l l correlat ion matrix with xy correlat ion
33 end
34

35 ExpCovariance = [] ; % i n i t i a l i z e covariance matrix
36 for i = 1 : length (cor)
37 ExpSigma = [xcovl_x4 (i) ycovl_x4 (i)] ;
38 ExpCorrC = cor { i } ;
39 ExpCovariance = [ExpCovariance , { corr2cov (ExpSigma , ExpCorrC) }] ;
40 cova = corr2cov (ExpSigma , ExpCorrC) ;

123

124 J. M-file: Mahalanobis.m

41 xx (i) = cova (1 , 1) ;
42 xy (i) = cova (1 , 2) ;
43 yy (i) = cova (2 , 2) ;
44 end
45

46 % Compute Mahalanobis distance d by : sqrt ((R* z) ’ *C^(−1) *R* z) R : rotation
47 % matrix , z : sample (r ’−lambda * (r ’(−))) , C: covariance matrix
48 for i = 1 : length (z)
49 d(i) = sqrt (([cos (theta (i)) , −sin (theta (i)) ;
50 sin (theta (i)) , cos (theta (i))] * [z (: , i)]) ’ *2* inv (ExpCovariance { i }) *
51 [cos (theta (i)) , −sin (theta (i)) ;
52 sin (theta (i)) , cos (theta (i))] * [z (: , i)]) ;
53 end
54

55 xx_med = median(xx) ; % prepare for calculat ing median l a t e r
56 xy_med = median(xy) ; % prepare for calculat ing median l a t e r
57 yy_med = median(yy) ; % prepare for calculat ing median l a t e r
58 cov_med = [xx_med , xy_med ; % constant covariance matrix based on median values
59 xy_med , yy_med] ;
60

61 for i = 1 : length (z)
62 d_med(i) = sqrt (([cos (theta (i)) , −sin (theta (i)) ;
63 sin (theta (i)) , cos (theta (i))] * [z (: , i)]) ’ *2* inv (cov_med) * . . .
64 [cos (theta (i)) , −sin (theta (i)) ;
65 sin (theta (i)) , cos (theta (i))] * [z (: , i)]) ;
66 end
67

68 cov_min = covmin (xx , yy , xy) ; % calculate covariance matrix based on l o c a l minima cov
69

70 for i = 1 : length (z)
71 d_min(i) = sqrt (([cos (theta (i)) , −sin (theta (i)) ;
72 sin (theta (i)) , cos (theta (i))] * [z (: , i)]) ’ *2* inv (cov_min { i }) * . . .
73 [cos (theta (i)) , −sin (theta (i)) ;
74 sin (theta (i)) , cos (theta (i))] * [z (: , i)]) ;
75 end
76 end

