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Abstract—Efficient execution of distributed database op-
erators such as joining and aggregating is critical for the
performance of big data analytics. With the increase of the
compute speedup of modern CPUs, reducing the network
communication time of these operators in large systems is
becoming increasingly important, and also challenging current
techniques. Significant performance improvements have been
achieved by using state-of-the-art methods, such as reducing
network traffic designed in the data management domain,
and data flow scheduling in the data communications domain.
However, the proposed techniques in both fields just view
each other as a black box, and performance gains from a
co-optimization perspective have not yet been explored.

In this paper, based on current research in coflow scheduling,
we propose a novel Coflow-based Co-optimization Framework
(CCF), which can co-optimize application-level data movement
and network-level data communications for distributed oper-
ators, and consequently contribute to their performance in
large distributed environments. We present the detailed design
and implementation of CCF, and conduct an experimental
evaluation of CCF using large-scale simulations on large data
joins. Our results demonstrate that CCF can always perform
faster than current approaches on network communications in
large-scale distributed scenarios.

Keywords-big data; coflow scheduling; distributed joins;
network communications; data-intensive applications

I. INTRODUCTION

An increasing number of companies rely on the results of
massive data analytics to improve their business operations,
customer service and risk management. Moreover, scientific
researchers such as bioinformaticians are also increasingly
looking into their data to find valuable insights about disease
and personal health [1], [2]. To cope with the added weight
of current Big Data in a timely manner, high-performance
analytics over large-scale systems, such as data centers
equipped with hundreds or even thousands of servers, is
becoming the mainstream.

As one of the key tasks in such scenarios, efficient
execution of distributed operators such as joining and ag-
gregating is still challenging current techniques. Specifically,
in large-scale distributed environment the core performance
challenge is network communications. The main reason is
that these operators always bring in expensive data shuffling,

which consumes tremendous network resources and thus
results in long communication time. In fact, in recent years,
as the performance of CPU has grown much faster than
network bandwidth, the network has become a performance
bottleneck to computation, even in a single data center [3].
Moreover, current work has shown that these operators in
data queries could spend more than 65% of their completion
time on transferring data even in a small network [4].
Therefore, efficient optimization on the executions of these
operators, which can minimize data communication time,
becomes increasingly desirable.

Reducing the volume of transferred data over networks is
an efficient way to speedup the operators [4]. Based on this,
various advanced approaches [5] and strategies [6] have been
proposed in the data management domain. Their philosophy
is generally to move small data chunks instead of large data
chunks during their executions. For example, track-join [4],
has adopted a very fine-grained way, which can search
all possible opportunities on reducing data movement, and
consequently minimize the network traffic in join executions.
Although all the approaches are shown to be very efficient,
minimizing communication traffic does not necessarily lead
to minimal communication time. This is because when
computing nodes use the network without any coordination,
utilization of network bandwidth could be very poor. For
instance, for a join implementation, if all computing nodes
first send their data to the first node, then to the second node,
and so on, then there will be significant network congestion,
since the nodes will compete for the bandwidth of a single
link while other links are not fully utilized [7].

To improve network communication time of current data
applications, scheduling over the abstraction coflow [8],
which is defined as a group of parallel data flows that are
related to each other (e.g., shuffle flows in MapReduce),
is being studied in the data communications domain. Rather
than individual flows, current work focuses on improving the
performance of data flows for a job (e.g., a parallel join),
such as minimizing the completion time of the slowest flow.
To date, several solutions, such as Varys [8], Aalo [9] and
RAPIER [10] have been shown to be very efficient on coflow
processing, and thus they can be directly applied to current



systems to speedup big data analytics. Regardless, all these
techniques focus on network-level optimization, which is
decoupled from application-level optimization/scheduling,
and thus they could lead to suboptimal performance (we
demonstrate this problem with more details in Section II).

With targets for more efficient big data analytics in large-
scale systems, in this work, we present a novel Coflow-based
Co-optimization Framework (CCF). This framework can co-
optimize the schedules of application-level data movement
and network-level data communications, and thus it can
speedup current distributed operators. The main contribu-
tions of this paper can be summarized as follows:
• We demonstrate that additional performance gains in

distributed operators can be achieved, by co-optimizing
current scheduling techniques studied in the data man-
agement and data communication domains.

• We present the detailed design and implementation of
the proposed CCF, with describing the co-optimization
problem by a detailed mathematical model.

• We develop a fast and efficient algorithm to approxi-
mately solve our theoretical NP-complete problem, in
terms of system implementations.

• Extensive simulations show that CCF can indeed
speedup network communications for distributed data
operators in the presence of big data.

In the following, we will focus on describing our tech-
niques based on the detailed execution of the joins. The pro-
posed techniques can be similarly applied to other distributed
operators, such as aggregation and duplicate elimination.

The remainder of this paper is organized as follows. In
Section II, we introduce the background with a motivating
example of this work. We present our framework design
and its detailed implementation in Section III. We carry
out extensive evaluation of our approach in Section IV. We
report the related work in Section V and conclude this paper
in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we have an overview of the techniques on
distributed joins and the coflow abstraction. Moreover, we
also illustrate the advantages of applying the techniques from
a co-optimization perspective through a motivating example.

A. Distributed Join Executions

The execution of a distributed join can be broadly de-
composed into an initial data redistribution stage followed
by a local join process [11], [5]. This latter process has been
extensively studied and its cost does not contain any inter-
machine communication. For the purpose of this work, we
focus on the former phase.

In fact, the process of the data redistribution replies on
the scheduling of the data movement of the input data. This
schedule process could be very simple. For example, in a
hash-based join [11], data tuples are assigned based on the

hash values of their join keys. In the meantime, the process
could be also very complex, e.g., track-join [4] adopts a four
phase schedule in its implementations.

A join facilitates the combination of two relations based
on a common key, if we want to implement a join in a
distributed environment, then all the tuples with the same
join key must be co-located on a same computing node.
To show more details of current schedule techniques in this
aspect, an example of three possible schedule plans of a
distributed join over a three-node system is demonstrated
as Figure 1. There, each data tuple is presented by its join
key and the superscript of each key means the frequency
it appears. For instance, 13 in means that there are three
tuples with the join key 1. Also, the dashed arrows in
each subfigure mean the outputs of the scheduling, i.e., the
destination node of each tuple, which will be delivered to
underlying systems for the final execution. Figure 1(a) shows
the details of a hash-based join. There, we use a very simple
hash function to assign the destination of input data, i.e., the
hash value of a join key is a modulus of the value of key
and the number of nodes. For example, tuples with keys 2
and 5 will be scheduled to Node 2 in join executions.

If we quantify the cost of network communication by the
number of tuples moved to remote nodes, then the cost of
three schedules in Figure 1 will be 8 (i.e., 3+1+2+1+1), 7,
and 6 respectively. Within the scope of current study in the
filed of data management (e.g., [4], [6]), the schedule plan
SP2 will be considered as an optimal solution and chosen
by underlying systems, because it transfers less data than
other two approaches.

B. The Coflow Abstraction

The coflow abstraction was first proposed in [12] to define
a group of parallel data flows that are related to each other
and also share a common performance goal. To optimize the
performance of big data analytics, we need to optimize data
flows transferred at the level of coflow rather than individual
ones. This is because the completion time of a job (i.e., a
distributed join) depends on the time it takes to complete
the entire coflow, which is also called the coflow completion
time (CCT), instead of the time to complete the individual
flows composing it [10].

An individual flow f within a coflow can be defined by a
3-tuple [src, des, v], where src and des are the source and
destination nodes, and v > 0 is the flow volume [13]. In
fact, coflows have been shown to be able to express most
communication patterns in data-parallel applications [12].
For example, the three data flows in the plan SP2 can be
seen as a single coflow (note that the tuples with keys 1
and 2 in SP2 will be combined as a single data flow in real
implementations because their source and destination are the
same). In this condition, the problem of improving network
communication time of a join execution can be transformed
into the problem of optimizing its CCT cost.
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Figure 1. An example of difference schedule plans (SP) for data movement in a distributed join over three nodes (application-level).
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Figure 2. Network-level schedules for the application-level SPs presented in Figure 1. The vertical height of each filled bar indicates the used bandwidth.

Online coflows (e.g., each individual flow starts at a
different time point [9]) are very common in real data
systems, and their scheduling techniques have been studying
in the filed of data communications. Regardless, without
sacrificing generality, we assume that each individual data
flow starts at the same time in this work. In the meantime,
though detailed performance analysis of coflows in com-
plex network environments (e.g., routing [10]) have been
explored, we adopt an approach similar to that of Varys [8]
and model the underlying network abstract as a non-blocking
switch, which interconnects all the machines1. Moreover, we
assume that all the network ports have the same normalized
unit capacity, and bandwidth competition only appears in
ingresses or egresses. Such an abstraction is simple, yet it is
practically reasonable and matches with recent full bisection
bandwidth topologies widely used in current production data
centers [8].

C. Potential Benefits of Co-optimization

As described in Section I and demonstrated in Figure 1,
current optimization techniques on join executions in the
data management domain only focus on application-level
data movement, but have not considered the impacts of un-
derlying data communications. On the other hand, current re-
search on coflow scheduling in data communication domain
assumes that the detailed information (i.e., [src, des, v])
of each data flow is known before a coflow starts [8],
[10], [13]. Namely, they have not realized that high-level
scheduling of data movement could actually impact the final
communication performance.

1Note that our proposed framework is based on the coflow abstraction,
thus it can be extended to online and complex network cases very easily.

To illustrate above problems, here we give an example
of network-level schedules for the previously described
application-level schedule plans SP1 and SP2. Assuming
that each node (i.e., network port Pi) transfers one data tuple
in one time unit, for the plan SP2, two potential strategies
on its coflow scheduling are demonstrated in Figure 2(a) and
Figure 2(b) respectively2. Obviously, it can be observed that
an optimal coflow schedule can indeed decrease the CCT of
SP2, from 6 to 4. However, as shown in Figure 2(c), using an
optimal coflow scheduling, a sub-optimal application-level
plan SP1 can even lead to a better performance, i.e., the
CCT of SP1 is 3. Then our question is: to achieve the best
performance on distributed operators, where should the data
exactly go? In fact, the above example has implied that both
the schedules on data locality and data communications must
be jointly considered in order to minimize the CCT cost,
which motivates our design as below.

III. CCF DESIGN AND IMPLEMENTATION

In this section, we introduce the detailed design of CCF.
Also, we present an efficient implementation of our approach
in large systems.

A. Architecture and Model

A logical view of the proposed CCF architecture is
demonstrated in Figure 3. There, an analytical job is decom-
posed into a sequential distributed data operators. For each
operator, based on the input information of underlying data
and network, the application-level scheduler and the coflow
scheduler at the schedule/control layer will co-optimize to

2Here, we use a bandwidth-based model [10] to describe the coflow
scheduling. Namely, all the data flows are ended at the same time point.
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Figure 3. A logical view of the architecture of CCF.

get an optimal execution plan on the final data movement.
After that, the plan will be delivered to the underlying data
processing layer (e.g., a coflow system) for execution.

To describe the detailed co-optimization process of a join
execution, we use the follow model: There are n computing
nodes and the two input relations on each node have been
partitioned into p parts. For a general case, we assume that
data tuples are hash partitioned based on their join keys in
this work, the hash value of the k-th partition is k, and the
size of included data chunks3 at each node i is denoted as
hik. Tuples at each node with the same hash value must be
assigned to a same node to implement the final local joins,
therefore, we can use the decision variables xjk ∈ {0, 1} to
indicate whether a data partition k is assigned to the node
j. Namely, xjk = 1 represents that partition k is assigned
to node j, and xjk = 0 means not. Moreover, we use fij
to indicate the data flow generated by data movement from
node i to node j, the size of which is vij , the assigned
bandwidth for the transmission is bij , and the set of its
communication links is Lij . Obviously, this model contains
both high-level scheduling of data assignment (i.e., xjk) and
low-level scheduling of data communications (i.e., bij). For
convenience of our presentation, we use the notations as
listed in Table I.

We only compute the network communication cost for
the data moved to remote nodes, since a local movement
will not consume any network resources. Based on the
information of data flow source, destination, volume and the
network resource status (i.e., the residual bandwidth on each
link), we can formulate the problem to minimize the network
communication time t of a join/query execution (i.e., CCT)
as following:

minimize t (1)

3In our presentation, we denote an individual partitioned data chunk at
each node as a chunk and a group of data chunks with a same hash value
as a partition. For example, in Figure 1(b), the 13 is a data chunk on the
Node 0, and the group of 13 and 16 is a partition of the input data.

Table I
TABLE OF NOTATIONS

Notation Meaning

n number of computing nodes
p number of data partitions
xjk decision variable to indicate whether the k-th partition

is assigned to node j
hik the size of the k-th data chunk on node i
fij the data flow from node i to node j
bij transmission bandwidth assigned to fij
vij size of data flow fij
Lij the link set of data flow fij
Rl the available bandwidth of link l

subject to:

vij =

p∑
k=1

hikxjk ∀i 6= j (1.1)

t =
vij
bij

(1.2)

n∑
j=1

xjk = 1 ∀k (1.3)

xjk ∈ {0, 1} ∀j, k (1.4)∑
l∈Lij

bij ≤ Rl ∀i 6= j (1.5)

For our network model (i.e., each link set contains two
links in a node-switch-node way), constraint (1.5) can be
represented by the following two constraints4. Namely, the
available bandwidth for the output and input links should
not be larger than the bandwidth of the physical port:

4Recall again that our model can be easily extended to complex network
conditions (e.g., routing) by adding parameters to these two constraints.



n∑
j=1

bij ≤ Rl ∀i 6= j

n∑
i=1

bij ≤ Rl ∀j 6= i

Moreover, based on constraint (1.2), we know that the rate
of each flow bij is directly proportional to its volume vij ,
i.e., bij = α · vij . Based on this, the optimization problem
(1) can be converted into:

maximize α (2)

subject to:
n∑

j=1

α

p∑
k=1

hikxjk ≤ Rl ∀i 6= j (2.1)

n∑
i=1

α

p∑
k=1

hikxjk ≤ Rl ∀j 6= i (2.2)

(1.3) and (1.4)

In fact, α = 1/t, the larger α, the more bandwidth
is obtained by flows in the coflow, and the smaller the
completion time will be. Moreover, because Rl is a constant
for a given network, if we set T = Rl/α (i.e., Rl · t ), from
the basis of the programming model (2), we will obtain:

minimize T (3)

subject to:
n∑

j=1

p∑
k=1

hikxjk ≤ T ∀i 6= j (3.1)

n∑
i=1

p∑
k=1

hikxjk ≤ T ∀j 6= i (3.2)

(1.3) and (1.4)

It is hard to solve the optimization problem (1) directly,
since the programming is not only nonlinear, but also has
binary integer variables. Regardless, as the model (3) shows,
our optimization problem is able to be transformed into a
mixed integer linear programming (MILP) problem. There,
we only have the binary integer variables (note that each h
will be a constant for a given data partitioning method).
Consequently, we can easily get an optimal solution of
our co-optimization problem by using an optimizer (e.g.,
Gurobi5).

B. Implementation in Large Systems

A system containing hundreds or thousands of computing
nodes becomes common in modern data centers. This would

5www.gurobi.com

Algorithm 1 Heuristic implementation of CCF
Input: data and system information n, p, hik, Rl

Output: values for decision variables xjk
1: Collect the information of h of each partition and group

them into p groups G based there hash values, then sort
G based on the max{h} in each Gk

2: Initialize xjk = 0 ∀j, k
3: for k = 1, 2, ..., p do
4: for d = 1, 2, ..., n do
5: Set xdk = 1, and xd̄k = 0 ∀d̄ 6= d
6: Based on all the values of xjk,

compute each Ci (∀i 6= j) based on (3.1),
compute each Cj (∀j 6= i) based on (3.2)

7: Get Td = max{Ci, Cj} ∀i, j
8: end for
9: Get the d with min{Td} achieved, and reset xdk = 1

and xd̄k = 0 ∀d̄ 6= d
10: end for

make the optimizer-based implementation not suitable in a
real data center environment from a practical angle. The
reason is that the optimization problem is an integer multi-
commodity flow problem [14], of which the computational
complexity is NP-complete. From a theoretical perspective,
the problem solving time is exponential time, and thus the
scheduling process could bring in a heavy overhead in an
analytical job: (1) an analytical job always contains multiple
distributed operators; and (2) for each operator, when the
number of nodes n and the number of data partitions p are
large, the problem instances will get too large to be solved
in a timely manner. Actually, in our initial tests, we find
that the overhead indeed can not be ignored in some large-
scale scenarios. For example, for a single join execution,
with a configuration with 500 nodes and 7500 partitions,
the Gurobi optimizer takes more than half an hour to get the
final optimal solution on a commodity machine. To reduce
such overhead and get an approximately optimal solution
quickly, we propose an efficient heuristic as following.

Implementation. Based on the model (3), our target is to
get the destination node for each data partition and guarantee
that T is minimized. To reduce the value of T as much
as we can, we use a step-by-step strategy to examine the
destination of each partition sequentially, and keep that T is
minimal in each step. From the constraint (3.1) and (3.2), it
can be observed that the value of T would be more sensitive
on large data chunks (i.e., with a greater h) rather than small
ones. Therefore, we first sort the size of data chunks in a
descending order and ensure that partitions including large
data chunks are processed with higher priority than the ones
with small chunks.

The details of our implementation is shown in Algo-
rithm 1. We start our searching process after the sorting
as we have described. For each partition k (line 3), we track



the cost of Ci and Cj for all possible destinations (i.e., in
total n possibilities as line 4). In this process, there are
Ci =

∑n
j=1

∑p
k=1 hikxjk and Cj =

∑n
i=1

∑p
k=1 hikxjk

based on the constraint (3.1) and (3.2). For each potential
destination d, the value of current T (i.e., Td) will be
determined by the maximum value of the computed Ci and
Cj (line 7), because of T ≥ C. After comparing all the
values Td for the n potential destinations, we will choose the
node as the destination node with the minimal Td achieved
(line 9), to guarantee that current T is the minimal one.
Then, the value of xjk will be updated for the computation
of following partitions, and the whole searching process will
be terminated until all the p partitions have been examined.

C. Skew Handling
Data skew occurs naturally in big data applications [5],

[15], and transfer skewed data will bring in heavy network
traffic and result in load imbalncing. Therefore, it is very
important for practical data systems to perform efficiently
in such contexts [5]. To further improve the CCT for the
above proposed implementations, here, we focus on how to
extend our co-optimization model to handle the skew issue.

To data, large number of techniques have been proposed
to handle data skew in join executions [5], [6], [11], [16].
Among them, we have chosen a very efficient method,
partial duplication [11], in our implementations. Its core
idea is: large number of skewed tuples in an input relation
are kept locally and not transferred at all, instead, just a very
small number of non-skewed tuples from another relation
are broadcast to all other nodes. Within such a scheme, the
constraints in our optimization model (1) is extended as:{

vij = v′ij +
∑p

k=1 h
′
ikxjk ∀i 6= j

(1.2), (1.3), (1.4) and (1.5)

where v′ij means flow volume generated by the broadcast
behavior, and this information will be considered as an initial
status of each flow fij . Moreover, h′ik means the size of each
data chunk, excluding the tuples, the destinations of which
have been assigned in the partial duplication process (keep
locally is considered as a local move).

The above skew handling method focuses on the pro-
cessing of skewed data, therefore, we can treat it as a pre-
processing in our approach. Based on its output, we can use
the same implementation as described in the Algorithm 1 to
schedule the rest data and then get the final execution plan. It
is obvious that extra operations in the skew handling process,
such as skew detection, will bring in extra overheads to our
join executions. Nevertheless, various efficient approaches
have been proposed to solve this issue, and various results
in real big data applications have shown that the overhead
can be ignored, compared to the performance improvement
it brings [17]. Therefore, we will not consider its detailed
overheads in our following evaluations.

IV. EVALUATION

In this section, we evaluate the performance of our CCF
through a set of simulation-based experiments.

A. Experimental Framework

We compare the network communication time of join
executions of our approach with the following two schemes:

- Baseline: the most commonly used hash-based ap-
proach [11] (referred to as Hash), in which, after the
hash partitioning, each data chunk is assigned to a node
based on its responsible hash value.

- Minimize network traffic: for each data partition, we
examine all the possible destinations and choose the
one that can minimize the network traffic. We refer
this method as Mini. This strategy has been adopted in
various advanced join approaches (e.g., track-join [4]6).

As previously described, the CCF approach, which is
based on the solving of linear programming problem, will
be not suitable for large-scale systems, due to its overhead.
Therefore, we just use our heuristic implementation (re-
ferred to as CCF) here. Moreover, current join techniques
in the data management domain (e.g., [11], [4]) seldom
consider underlying network communications, for the fare
of comparison, we have used an optimal coflow scheduling
to optimize the data communications for the Hash and Mini
approach. Additionally, since the skew handling method we
have described can also efficiently reduce network traffic
when the input is skewed, we have integrated it into the
Mini implementation. In such scenarios, Hash represents
the methods focusing on network-level optimization, while
Mini represents the approaches focusing on both application
and network level optimization, but in a decoupled way. In
contrast, our approach adopts a co-optimization way.

workload

data and
joins derived
from TPC-H

bechmark [18]

scheduling

Hash

Mini

CCF

coflow info.

The source,
destination
and volume
of each flow

simulator

CoflowSim
used in

Varys [8]
and Aalo [9]

Figure 4. Experimental approach used in the evaluation.

1) Methdology: In general, our experimental approach is
shown as Figure 4. Namely, for a given workload including
a dataset and a join, detailed data flow information generated
by different schedule techniques will be delivered to a coflow
system to measure the network communication time. In our
evaluations, we have chosen the state-of-the-art CoflowSim7

6It should be noticed that the track-join [4] focuses on exploring the
join relationships between input relations and minimize network traffic in a
per-key level. Our approach can be also extended to that level, regardless,
this will be beyond the scope of this paper.

7https://github.com/coflow/coflowsim



as our back-end simulation system, which is also used in
Varys [8] and Aalo [9]. Moreover, we have used the widely
used TPC-H benchmark [18] to generate test data, and used
the following join in our experiments.

select *
from CUSTOMER C join ORDER O
on C.CUSTKEY = O.CUSTKEY

2) Datasets: The scaling factor of TPC-H is set to 600.
The number of tuples in the two input relations is 90 millions
and 900 millions correspondingly. In the meantime, the
payload in each tuple is set to 1000 Bytes8, leading to around
1TB input size. The generated data is evenly distributed,
resulting in that the size of data chunks in each partition
is very closed to each other. To evaluate our approach in
more complex conditions, we make the difference of the
size more obvious: for each partition, we let the size of
included data chunks follow the Zipfian distribution over
the n nodes (referred to as zipf ). Moreover, as data skew
(referred to as skew) is quit common in join executions, in
order to control the skewness in our tests, similar to current
work [11], [19], we randomly choose a portion of data and
change their custkey to a specified value. For example,
we randomly choose 20% of the tuples and set their key to 1,
which will make the skewness to 20%. In this way, we can
easily identify on-going experiments and capture the essence
of a skew distribution.

3) Setup: We have compared the communication per-
formance of Hash, Mini and our CCF. For the original
CCF approach, we have used the Gurobi version 6.5.2 with
C++ to solve the optimization problem. All the schedule
approaches and simulations are implemented on a com-
modity machine with two 4-core Intel Xeon CPU E5430
processors running at 2.66 GHz and 32GB of RAM. The
operating system is Linux kernel version 3.13.0-91 with gcc
version 4.8.4. There are two parameters for our test datasets:
we set the zipf to 0.8 and the skew to 20% as default.
Moreover, without loss of generality, we just use a simple
hash function f(k) = k mod p to partition data tuples.
Because of increasing the value of p would let us have a
more fine-grained control on data assignment, we have set
p to a value which is 15 times the number of used nodes in
each test. Additionally, we use the default configuration of
CoflowSim in our experiments.

B. Experimental Results

1) Over number of nodes: We compare the performance
of Hash, Mini and CCF by varying the number of nodes,
from 100 to 1000, over the default data. The results of
the network traffic and network communication time are
presented in Figure 5. As demonstrated in Figure 5(a),

8This is just for the simplification of our tests, as we can then easily
control the size of the dataset. Moreover, we can also easily get the volume
of a data flow by counting the number of tuples in it.
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Figure 5. Performance comparison of the three approaches by varying the
number of nodes (zipf =0.8, skew=20%).

the Mini approach transfers the least amount of data over
networks, which is consistent with our expectation, because
it focuses on reducing network traffic in join executions.
Moreover, we can see that CCF has less network traffic than
Hash. The reason could be that Hash just simply redistributes
all the data chunks, while CCF could be able to explore part
of data locality based on the constraints in our optimization
model.

Looking at the communication time in Figure 5(b), it can
be seen that both Hash and CCF always perform much faster
than Mini by varying the number of computing nodes, i.e.,
less than 2000 secs versus more than 5000 secs. The main
reason is that the network traffic can be spread out over
all the nodes in the former two approaches, and thus the
network bandwidth can be efficiently utilized. In contrast,
Mini focuses on transferring data chunks to a node with
the largest size, for each given partition. In our case here,
following the Zipf distribution, the first node always holds
the largest data chunk for each partition, which means that
all the data will be flushed to the first node for Mini, and
this leads to longer communication time because of the
network congestion. Based on these results, we can see
that focusing on application-level optimization only could
sometimes result in a very poor join performance. In com-
parison, combining the optimization at both the application-
and network-level, our CCF can perform much faster than
the other two techniques. Here, we have achieved a speedup
of 8.1− 15.2× over Mini and 2.1− 3.7× over Hash, which
highlights the performance advantages of our framework in
various node configurations.

2) With different Zipf factors: We examine the efficiency
of each algorithm over 500 nodes with increasing the pa-
rameter zipf from 0 to 1. As shown in Figure 6(a), similar
to above results, Mini still transfers less data than the other
two approaches. In the meantime, the network traffics of the
three approaches are decreasing with increasing the value
of the Zipf factor. The reason is that the large data chunks
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Figure 6. Performance comparison of the three approaches by varying the
Zipf factor (500 nodes, skew=20%).

become even larger with the increment of zipf, and the data
locality of the three approaches is consequently increased.
Moreover, it can be seen that the network traffic of Mini
decreases more sharply than others. This is because that
all the largest chunks are kept locally in Mini but not in
Hash and CCF. In terms of network communication time, as
shown in Figure 6(b), it can be observed again that the Mini
approach performs the worse in all the cases, though its time
cost is decreasing with increasing the Zipf factor. Moreover,
the communication time of Hash is nearly constant and CCF
increases with increasing the factor. The reason could be
that the Hash approach redistributes all the data chunks in
an even way. For CCF, it is possible that the power of
our co-optimization becomes weak when some data chunks
are huge (because transferring such chunks could start to
dominate the final communication time). Regardless, we can
see that our approach is still obviously faster than Hash
and Mini, with a speedup of 6.7 − 395× over Mini and
1.9− 98.7× over Hash in all the cases.

3) Over various skews: We evaluate the performance of
the three approaches over 500 nodes with various skews,
increasing from 0 to 50%. The results are presented in
Figure 7. As illustrated in Figure 7(a), the network traffic
of Mini and CCF decreases linearly with increasing the
skew while Hash only decreases slightly. The reason is that
the skew handling technique we have adopted in Mini and
CCF can efficiently reduce network traffic. For Hash, the
data locality of a specified node increases (i.e., the node
with hash value equals to 1), and consequently the size of
whole transferred data is decreased. Moreover, Mini has less
network traffic than the other two approaches, demonstrating
its ability on minimizing network traffic once again. For the
communication time shown in Figure 7(b), Hash increases
sharply with increasing the skewness while Mini and CCF
decreases in a linear way. This is reasonable, because the
data skew will bring in network hotspots in Hash [5].
For Mini and CCF, the skewed tuples are simply kept

0 % 2 0 % 4 0 % 6 0 %4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

1 0 0 0

Ne
two

rk 
tra

ffic
 (G

B)

S k e w n e s s

 H a s h
 M i n i
 C C F

(a) network traffic

0 % 2 0 % 4 0 % 6 0 %0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

Ne
two

rk 
co

mm
un

ica
tio

n t
im

e (
s)

S k e w n e s s

 H a s h
 M i n i
 C C F

(b) communication time

Figure 7. Performance comparison of the three approaches by varying the
data skewness (500 nodes, zipf =0.8).

locally, namely, the network resources originally assigned
to these tuples are used to transfer other tuples, and thus the
communication time can be reduced. Again, we can see that
CCF always outperforms the Hash and Mini approach, with
a speedup of 12.8× over Mini and 1.1− 12.8× over Hash.
More specifically, even when the skewness is 0, namely the
whole dataset is uniform distributed, CCF is still about 50
secs faster than Hash.

4) Brief summary: From above results, it can be seen
that in various conditions, although optimization techniques
on application-level data movement can efficiently reduce or
even minimize network traffic, their network communication
performance could be still very poor in large-scale dis-
tributed systems, such as the Mini approach we have studied
here. On the other hand, scheduling approaches focusing
on improving underlying network communications only,
without any considerations of application-level optimization,
could also lead to a sub-optimal performance, e.g., the Hash
we have evaluated here. In contrast, the CCF proposes the
novel idea of co-optimization, which bridges the gap of
schedules at the application and network levels, and thus
it can always perform faster on network communications
than current techniques.

V. RELATED WORK

As the most essential tasks in large-scale environments,
distributed operations such as joins and aggregations can
incur significant time costs on network communications and
hence improving their execution efficiency would have a
significant impact on the overall performance of current big
data analytics. In fact, these operations have been extensively
studied in the field of data management, and large number of
methods have been proposed to improve their performance.
For example, for distributed join executions, current research
focuses on the challenge on how to efficiently move data,
either in the presence of different join workloads (e.g., skew)
or different computing platforms (e.g., clusters and Cloud) or



both [4], [5], [6], [11], [16], [20]. Their main target is either
to reduce network traffic or to improve load-balancing or
both, so as to balance computations and improve network
communication time.

Although all the solutions have been shown to be very
efficient, few of them has ever considered the impacts of
underlying networks. Namely, their designs are concentrated
on application workloads and computing platforms, but are
totally independent from networks. However, as we have
shown in this work, these approaches could result in poor
performance in large systems, even in the condition that an
efficient communication schedule approach (i.e., coflow) has
been employed. Moreover, although recent work [7], [19]
has ever considered the network communication problem
on data redistribution in join executions, they only focus
on application-level controls of network communications,
which is different from our framework that implements co-
optimization schedulers based on a data flow abstraction.

To realize high performance data analytics, a lot of
techniques have been proposed in various domains in recent
years. For example, the scheduling of I/O [21] and com-
puting resources [22] in data centers, the optimization of
VM migrations [23] and system parameter turning [24] in
Cloud, or even the designs of scheduling and security strate-
gies [25], [26]. These approaches can indeed speed up data
processing. However, because of agnostic on the existence of
coflows, they would not be able to achieve the best or even
could be harmful to the application-level performance [13].
Current research on coflow scheduling aims at minimizing
the average CCT cost and meeting coflow deadlines [8].
Advanced approaches and implementations, such as online
conditions [9], with complex networks [10], have been
proposed for practical environments. All of these methods
are based on the assumption the source and destination of
each data flow have been known. Namely, their designs are
totally isolated from the application-level optimization. As
we have demonstrated in this paper, this design will bring
in a sub-optimal or poor performance. Compared to this,
our CCF can always achieve a better performance. From
another aspect, our framework is based on the coflow model,
therefore, more advanced techniques on coflow scheduling
(e.g., routing [10], [13]) will be able to be integrated in
our framework, and consequently enhance its application in
practical data center environments.

In this era of software-defined networking (SDN [27]),
the entire network of a system becomes visible and pro-
grammable, which gives us the great opportunities for its
application on big data applications. It is true that SDN
has been applying to the domain of big data management
in these two years. For example, the work [28] presents a
method that be able to adaptively select an optimal query
plan based on the information provided by the network be-
fore a query execution. However, these techniques just focus
on using SDN to move data in a distributed way. Namely, at

each specified time point, they just move data from a node
to another node, but not like the problem we have studied
in this work, in which the data from different nodes moves
in a parallel way. We should know that parallel cases (e.g.,
coflows) are very common in large-scale data applications,
since data sets from different resources are always loaded
in computation nodes in a parallel way so that the loaded
data can undergo further downstream processing (e.g., for
analytics) as quickly as possible. Additionally, though some
related problems such as network path selection [29] are
being studied using SDN, none of them has ever considered
the coflow cases.

To the best of our knowledge, this is the first work to ana-
lyze the co-optimization opportunities of coflow scheduling
for distributed data operator optimization. We believe that
various big data applications will benefit from our designs,
e.g., organizations can make business decisions in time to
boost their sales, and governments can faster their response
to disasters, etc. It is also our hope that this will open up
a rich area of research and technology development for the
large scale data-analytics community.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel Coflow-based Co-
optimization Framework (CCF), which targets for speeding
up big data analytics in large-scale distributed systems. We
have presented the detailed implementation of the CCF, and
conducted a detailed performance evaluation using large-
scale simulations. Our experimental results show that the
proposed CCF can perform faster than current approaches
on network communications under various workloads.

Our future work lies in extending our framework model
to more complex workloads (e.g., analytical queries) and
more complex computing environments (e.g., InfiniBand
supported HPC Cloud [30]). Our long term goal is to
develop a high-performance data analytics system which
is always highly efficient and robust in the presence of
different workloads and network configurations in large-
scale distributed scenarios.
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