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Abstract

MRI machines use superconducting magnets to create an image. However, these
magnets are very expensive. It is possible to use weaker magnets in a low-field
MRI, but those will result in a lower signal-to-noise ratio, meaning the images
will be polluted.

An image can be smoothed by viewing it as the initial condition of a par-
tial differential equation (PDE) and changing it through time integration. The
choice for the PDE determines the way the image changes.

This paper compares four PDE’s: a second-order equation originally pro-
posed by Perona & Malik, a fourth-order equation as proposed by You & Kaveh,
and both aforementioned equations with a fidelity term added to them. Said
fidelity term ensures the result does not deviate too far from the original im-
age. All methods use a diffusion coefficient specially desiged to preserve edges.
These methods are tested on two versions of the Shepp-Logan phantom, one
having been corrupted with ’salt-and-pepper’ noise, and the other one having
been treated with a Gaussian filter, blurring the image.

The salt-and-pepper phantom is improved most by applying the Perona-
Malik method with a fidelity term. This method gives a good balance between
removing noise and preserving edges and details within the image.

For the blurry phantom the best result is seen using Perona-Malik, where
some of the edges become more defined. However, a delicate balance has to be
kept between refining the edges and blurring out any lower-contrast detail, and
the total effect is limited.

The methods are also tested on images that were created using a prototype
of a low-field MRI machine. The noise in these images is mostly the ’salt-
and-pepper’ type. Though the preferred result is somewhat subjective, the
Perona-Malik method with fidelity once again gives the clearest image here.
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1 Introduction

Magnetic Resonance Imaging, or MRI, is an incredibly useful tool for doctors
to be able to treat patients and analyse their internal organs. The downside
is that MRI machines are also incredibly expensive, due to their use of very
strong superconducting electromagnets that need to be cooled with liquid he-
lium. This means that though most hospitals in Western countries may have
access to these machines, many hospitals in developing countries simply cannot
afford to purchase an MRI scanner. For many illnesses, this means the rate of
recovery is much lower in developing countries since treatment is harder. One
of these illnesses is hydrocephalus. Hydrocephalus is a neurological condition
where cerebrospinal fluid (CSF) builds up in the skull, putting pressure on the
brain. An estimated 100,000 infants are affected by it every year in Sub-Saharan
Africa (Santos et al., 2017). It is usually very treatable, and the most common
treatment consists of placing a shunt to drain the CSF. However, usually an
MRI scanner is used to determine both the location where the shunt needs to
be placed and whether the treatment was successful (Gülbiz Kartal & Algin,
2014).
A group of researchers from TU Delft, Leiden University, Penn State and
Mbarara University have set up a project to develop a smaller, inexpensie MRI
scanner that can be used in developing countries. One problem this smaller
scanner has is that the use of a weaker magnet will inherently result in an im-
age with a lower signal-to-noise ratio.

MR imaging works by aligning the hydrogen atoms along the strong magnetic
field created by the electromagnet. A radiofrequency pulse is then fired at the
atoms in a specific area, and they absorb some of that energy and then release it.
That release of energy can be measured and as different kinds of tissue release
different amounts of energy, the kind of tissue in the area can be determined.
However, the strength of the magnetic field determines how fast the hydrogen
atoms spin and how high the frequency of the released pulse is. This in turn
determines the detail in the picture (Freeman, 2003).
The magnetic field in the new MRI scanner is not as strong as that in a tradi-
tional MRI scanner. This means there is more noise in the images. There are
several mathematical techniques that can be used to improve these images and
make them clearer. One such technique will be researched in this paper.
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1.1 Research questions

The image can be seen as the initial condition of a partial differential equation
(PDE). Time integration will then change the image. If the PDE is chosen the
right way, this will make it less noisy. A common choice is the Perona-Malik
model (Perona & Malik, 1990). This is a second order equation that works
to preserve the edges within an image while smoothing out the areas between
edges. In this paper, three methods will be compared to Perona-Malik:

• Perona-Malik with a fidelity term (Weickert, 1998)

• A fourth order equation (You & Kaveh, 2000)

• Fourth order equation with a fidelity term

These methods will each be researched to answer the following questions:

1. For each method, what are good choices for their parameters?

2. Which method performs best on which type of image?

3. What are the results when the methods are applied to images from the
MRI prototype?

1.2 Shepp-Logan phantom

To be able to test each method, two degraded forms of the 64 by 64 Shepp-Logan
phantom will be used. That way, there will be a model image to compare the
result to, so the results can be judged objectively. It will be assumed that all
images are 1 by 1 in size.
Figure 1 shows the Shepp-Logan phantom. This will be referred to as the ’model
phantom’. This image represents a matrix with values in [0,1].

In figure 2 a matrix with random numbers that are distributed normally
with mean µ = 0 and variance σ2 = 0.01 has been added to the model phantom.
This results in a ’salt-and-pepper’ style noise, where each pixel value is different
from its neighbour. This will from now on be referred to as the ’noisy phantom’.

In figure 3 a Gaussian filter with standard deviation σ = 0.6 has been applied
to the model phantom. This blurs the edges within the image. This image will
be referred to as the ’blurry phantom’. These phantoms will be the initial
conditions φ0 for the methods.
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Figure 1: Model phantom

Figure 2: Noisy phantom Figure 3: Blurry phantom

The images that are used to test the methods put the fourth-order ones at a
disadvantage. The second-order methods tend to a step image while the fourth-
order methods tend to a planar one, and our model is a step image. For the
purpose of this research, it may be presumed that clearly defined edges between
parts of the image are desirable, and therefore the Shepp-Logan phantom is
appropriate to test the methods.

1.3 Assessment method

The parameters will be optimized using the standard deviation of the image
compared to the model image, defined for every time step n as follows:

σmod(n) =
‖wmod −wn‖√

N
(1)

where wmod is the vector representation of the model phantom, wn is the vector
representation of the result in time step n, and N is the total number of pixels
in the image. This σmod indicates how far the solution deviates from the model
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on average in each time step. This means that ∆σmod < 0 indicates that the
image was improved, ∆σmod > 0 indicates that the image became worse, and
∆σmod = 0 indicates that there was no change in quality.
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2 Perona-Malik

Perona-Malik diffusion, or anisotropic diffusion, will be the benchmark that
the other methods in this paper will be held against. Perona-Malik works to
preserve the edges within the image while smoothing the areas between. The
equation as proposed by Perona & Malik (1990) is

∂φ

∂t
= ∇ · (c(x, y, t)∇φ). (2)

Here c(x, y, t) is the diffusion coëfficient, which influences the rate at which each
pixel changes. If c ≡ 1 equation 2 becomes the standard heat equation, and will
smooth the image equally everywhere. Perona & Malik propose to let c depend
on the gradient in the image and choose the function

c(∇φ) = e−(
(||∇φ||)

K )2 (3)

where K is a fixed constant. If K becomes larger relative to ||∇φ||, c approaches
1 and the image will be smoothed more overall. If K becomes smaller the image
will be smoothed less overall.
In equation (3), c becomes small for a large value of ||∇φ|| and vice versa.
This means that the function will smooth the image less when there is a large
difference between pixels next to each other, so at an edge.

This method does not allow dissipation across the boundary Γ of the image,
so the homogeneous Neumann condition

c
∂φ

∂n
= 0 (4)

is in effect on the boundary. A result of this boundary condition is that the sum
of all pixels in the image remains the same through every time step.

2.1 Discretisation

2.1.1 Spatial discretisation

In order to be able to apply this method, equation (2) needs to be converted by
spatial discretisation to be of the form

∂w

∂t
= Aw. (5)

where w is the vector representation of the image.
Equation (2) can be rewritten as

∂φ

∂t
=

∂

∂x

(
c
∂φ

∂x

)
+

∂

∂y

(
c
∂φ

∂y

)
. (6)

If we consider the centres of the pixels, equation (6) can be estimated in point
(xi, yj) by using central differences with the value of f = c∂φ∂x and g = c∂φ∂y in

8



the surrounding points (xi+ 1
2
, yj), (xi− 1

2
, yj), (xi, yj+ 1

2
) and (xi, yj− 1

2
), the pixel

edges. This gives

∂fi,j
∂x

=
fi+ 1

2 ,j
− fi− 1

2 ,j

h
+O(h2) (7)

∂gi,j
∂y

=
gi,j+ 1

2
− gi,j− 1

2

h
+O(h2). (8)

Here, h is the width of one pixel, which is 1
64 for the Shepp-Logan phantoms

used for these experiments.

The values of f and g in the necessary points are estimated as follows using
central differences:

fi+ 1
2 ,j

= c(xi+ 1
2
, yj)

φi+1,j − φi,j
h

+O(h2) (9)

fi− 1
2 ,j

= c(xi− 1
2
, yj)

φi,j − φi−1,j

h
+O(h2) (10)

gi,j+ 1
2

= c(xi, yj+ 1
2
)
φi,j+1 − φi,j

h
+O(h2) (11)

gi,j− 1
2

= c(xi, yj− 1
2
)
φi,j − φi,j−1

h
+O(h2) (12)

where h is the width of a pixel.

By estimating ||∇φ|| in (xi, yj) using central differences

||∇wi,j || =

√(
wi+1,j −wi−1,j

2h

)2

+

(
wi,j+1 −wi,j−1

2h

)2

,

a value ci,j for c can be estimated for the center of each pixel. However, we need
values for c on the edges of the pixels, which are found by taking the average of
c in the neighbouring pixel centers.

ci+ 1
2 ,j

=
ci,j + ci+1,j

2
.

The final equation for the spatial discretisation then becomes

∂φi,j
∂t

=
1

h

{
c(xi+ 1

2
, yj)

φi+1,j − φi,j
h

− c(xi− 1
2
, yj)

φi,j − φi−1,j

h
+

+ c(xi, yj+ 1
2
)
φi,j+1 − φi,j

h
− c(xi, yj− 1

2
)
φi,j − φi,j−1

h

}
+O(h)

(13)

Equation (13) contains a virtual point at every boundary, a point that does

not exist and we have no value for. For example, to find
∂φ1,j

∂t , the value of φ0,j
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is needed, which doesn’t exist. The boundary condition in equation (4) can be
used to remove these virtual points. This BC essentially states that a point and
its mirror image across the boundary are equal. For the given example, this
means

φ1,j − φ0,j = 0.

This means that at the boundaries, the term in (13) that contains the virtual
point will equal zero.

We neglect the error and represent the pixel at place (i, j) in the image by
w(k), where k(i, j) = i + n(j − 1). For an image that is nx by ny in size, the
matrix A in equation (5) will then be a square nx · ny by nx · ny matrix, with
the k(i, j)-th row representing the value of (13) at φi,j , and the values of 1

h2 c
each φa,b is multiplied with to find φi,j in the k(a, b)-th element of row k(i, j).

2.1.2 Time integration

For the time integration Euler Forward is used, meaning the time integration is
represented as follows:

∂w

∂t

n

=
wn+1 −wn

∆t
+O(∆t) (14)

where n represents the current time step.

The spatial and time discretisations combined give

wn+1 = wn + ∆t(A(wn)wn) (15)

which can be implemented directly in Matlab. Since A contains c, which changes
for every time step, A depends on wn and needs to be recalculated in every time
step.

2.1.3 Finding a stable ∆t

If ∆t is too small, the method will need a lot of time steps to progress the
image. However, ∆t can not be too large either, since then the method will not
be stable, meaning errors in the image are amplified. Therefore the boundary for
∆t past which the method will no longer be stable needs to be found. Equation
(15) can be rewritten as

wn+1 = (I + ∆tA)wn. (16)

G(∆tA) = I + ∆tA is the amplification matrix. From van Kan, Segal, &
Vermolen (2014): a sufficient condition for stability is that ||G(∆tA)|| ≤ 1.
This can be expressed using the eigenvalues λ of G by ||λ(G(∆tA))|| ≤ 1.
For Euler Forward this gives |1 + ∆tλ| ≤ 1 and thus ∆t ≤ −2

λmax
.

To estimate the eigenvalues of G Gershgorin’s Circle theorem can be used. Since
c always has a value between 0 and 1, the theorem gives us that − 8

h2 ≤ λ ≤ 0,

so λmax ≥ − 8
h2 and ∆t ≤ h2

4 . In the case of the Shepp-Logan phantom h is
defined as h = 1

64 and so the method is stable for ∆t ≤ 6.104 · 10−5. For the
following experiments, ∆t is set at 1 · 10−5

10



2.2 Noisy phantom

Figure 4 shows the noisy phantom before and after applying Perona-Malik. For
the optimal results, K is set at 4. The number of time steps nmax is set at 75,
since that is when the standard deviation is at its minimum for this choice of K.
If nmax is higher than that, too much detail in the middle of the image starts
to fade.
In figure 4b we see that Perona-Malik has been quite successful at clearing up
the image. The two dark ovals in the middle and the lighter patch between
them are clearly recognisable. The σmod of this optimal solution is 0.0521.

(a) Noisy phantom (b) Noisy phantom after Perona-Malik

Figure 4: Applying Perona-Malik to the noisy phantom, nmax = 75

2.3 Blurry phantom

Perona-Malik is now applied to the blurry phantom. Here, the desired result is
that the edges, which are unclear, are sharpened.
For most choices of K, σmod is monotonically increasing, and the image is only
blurred further. If K = 1, so the overall diffusion is kept low, the image does
improve somewhat. σmod is at its minimum, 0.0786, for nmax = 75. The result
is shown in figure 5b. The improvement is most visible for the dark blue ovals,
which are slightly more defined. However, the improvement is limited. If the
method is left to run for more time steps, the edges of the dark blue ovals are
defined further, but the details with less contrast start to fade out too much. It
appears Perona-Malik will be of limited use for the improvement of the blurry
phantom.

11



(a) Blurry phantom (b) Blurry phantom after Perona-Malik

Figure 5: Applying Perona-Malik to the blurry phantom, nmax = 75
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3 Fidelity term

The first method that will be tested to possibly improve upon Perona-Malik
diffusion is the inclusion of a fidelity term.
A fidelity term ensures the image does not stray too far from the original image
by creating a relation between the time derivative and the difference between
the (partially) filtered image and its original. Weickert (2000) states that the
equation for this method can be considered as the steady state of

∂φ

∂t
= ∇ · (c(|∇φ|2)∇φ) + λ(φ0 − φ) ∈ Ω. (17)

The definition of c is the same as for Perona-Malik. We also use the same
homogeneous Neumann boundary condition as for Perona-Malik:

c
∂φ

∂n
= 0 on Γ, (18)

The second term of the right hand side of (17) is the fidelity term. λ is a con-
stant that is chosen to determine to what extent the fidelity term influences the
outcome of the equation.

3.1 Discretisation

The discretisation of this method is mostly the same as in section 2.1, with A
the same matrix. However, in place of equation 5 we now have

∂w

∂t
= Aw + λ(w0 −w). (19)

3.1.1 Picard implementation

The solution of this method is its steady state. Since that is the case, ∂w
∂t = 0

can be inserted into equation (19) and the method can be solved using Picard
iterations.

A(wn)wn+1 + λ(w0 −wn+1) = 0

(A(wn)− λI)wn+1 = −λw0

wn+1 = (A(wn)− λI)−1(−λw0) (20)

Since there is no ∆t in this equation, there is no need to go through a certain
number of time steps. However, A depends on wn and so the method will have
to be run using Picard iterations. These Picard iterations converge to a fixed
point, so they will be stopped when the image no longer changes.
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3.2 Value of λ

An optimal value for λ needs to be determined to be able to compare the per-
formance of this method to others. However, this optimal value will be different
for every image. For the Shepp-Logan phantom it is possible to find an optimal
value by minimizing the standard deviation, and this will at least indicate the
ballpark in which to choose the value of λ for other images. Of course, the goal
is to find a λ which will work for a group of somewhat similar images.

3.2.1 Noisy phantom

First, the method is researched for the noisy phantom. After trying some values,
it quickly becomes clear that λ must lie somewhere around 2000-3000. As is
visible in figure 6a, when λ is much smaller than that value, most detail is
lost from the image. Figure 6b shows that a much larger λ results in too little
smoothing, and thus the details are barely any easier to make out than in the
original image.

(a) λ = 500 (b) λ = 6000

Figure 6: Fidelity method for small and large λ

When the standard deviation for the result is minimized, the best value for
λ for the noisy Shepp-Logan phantom turns out to be about 2500. About 25
Picard iterations are needed to reach the stable solution, whereas 75 time steps
were used for Perona-Malik. As the image (and therefore the size of the vectors
and matrices) gets larger, this reduction in the needed steps will quickly start
to make a difference in the computation time.
The results can be seen in figure 7.
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Figure 7: The fidelity method with optimal λ = 2500

It is clear that the fidelity term results in a less smooth image than Perona-
Malik does. However, σmod is 0.0507 for this method as opposed to 0.0521 for
Perona-Malik. The difference is small, but the fidelity term works slightly better
to preserve details in the image.

3.2.2 Blurry phantom

For small λ, the edges of the dark ovals are defined but most other detail is lost.
Meanwhile for larger λ the image does not lose as much detail, but the edges
are not defined as well. Of course, as λ goes toward ∞, the image is kept closer
and closer to the blurry phantom and so the limit of σmod is the σmod of the
blurry phantom.
The best balance between definition of edges and preservation of detail, and the
lowest σmod, is found at around λ = 1200. The result is shown in figure 8b.
Clearly, not much has changed. The decrease in σmod is at a scale of 1 · 10−5.
It appears this method will be of limited use for blurry images.

15



(a) Blurry phantom (b) Blurry phantom after fidelity, λ = 1200

Figure 8: Blurry phantom before and after applying fidelity.
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4 Fourth order equation

So far this paper has only explored second order PDE’s for noise filtering. These
methods perform reasonably well to remove the noise and preserve the edges
simultaneously, but they have disadvantages as well. The Perona-Malik method
minimizes the gradient of the image, and the gradient is at its minimum when
the image is (piecewise) constant. This means that the method will ultimately
tend to create an image that consists of blocks of the same colour (a step image).
This is not always desirable.
You and Kaveh (2000) propose a different method using a fourth order PDE.
This will minimize the Laplacian, and therefore deliver a (piecewise) planar
image instead of a constant image.
They give the formula for the fourth order method as

∂φ

∂t
= −∇2[c(|∇2φ|)∇2φ] ∈ Ω (21)

c is now defined by

c(|∇2φ|) = e−(
|∇2φ|
K )2 . (22)

Like the Perona-Malik method, this method uses symmetric boundary con-
ditions.

∂φ

∂n
= 0 (23)

c
∂∇2φ

∂n
= 0 (24)

4.1 Discretisation

4.1.1 Spatial discretisation

The spatial discretisation for the fourth order method is also given by You and
Kaveh (2000). It happens in several stages.
First, the rightmost Laplacian in equation (21) is discretised, adding together
the second order central differences in the x- and y-direction. This gives:

∇2wi,j =
wi+1,j + wi−1,j + wi,j+1 + wi,j−1 − 4wi,j

h2
+O(h2). (25)

At the edges, the symmetry as given by (23) is used to remove the virtual points.
For example, at a point (1, j), we have that w0,j = w1,j . Using this in equation
(25) gives

∇2w1,j =
w2,j + w1,j+1 + w1,j−1 − 3wi,j

h2
+O(h2).

We see that for every edge a pixel is at, one term disappears and the factor by
which wi,j is multiplied decreases by one.
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Second, the value of the function

f(∇2w) = c(|∇2w|)∇2w

is calculated. We define
fi,j = f(∇2wi,j). (26)

ci,j for each point is found through

ci,j = e−(
|∇2wi,j |

K )2 . (27)

Last, the Laplacian of f is found with

∇2fi,j =
fi+1,j + fi−1,j + fi,j+1 + fi,j−1 − 4fi,j

h2
+O(h2), (28)

using the boundary condition (24) to remove the virtual points. The complete
method, then, after neglecting the truncation errors, is comprised of a multipli-
cation of w by three matrices:

∂w

∂t
= −LCLw

The first and third matrix are the same, L, representing the Laplacian. This
matrix is equal to the one used for Perona-Malik if c ≡ 1 in that method. The
second matrix C is the multiplication with c from equation (27).

4.1.2 Time integration

Like for Perona-Malik, the method uses Euler Forward for the time integration.
This gives

wn+1 = wn −∆t(LC(wn)Lwn). (29)

L is constant, but C depends on wn and needs to be recalculated in every time
step.

4.1.3 A stable ∆t

To find a ∆t for which the method is stable, it can be estimated using the
eigenvalues of the matrices in the method. In a way similar to section 2.1.3,
but different by a negative sign, we find that |1 −∆tλ| ≤ 1 and so ∆t ≤ 2

λmax

and λmax(L) ≥ − 8
h2 . By definition, 0 ≤ c ≤ 1, so λmax(C) ≤ 1. This gives the

following.

|λmax(LCL)| = ||LCL||2
≤ ||L||2||C||2||L||2

≤ 8

h2
· 1 · 8

h2

=
64

h4
.
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This can be inserted into the previous inequality found for ∆t to see that for
stability ∆t ≤ 1.863 · 10−9, which is the square of the maximum ∆t for Perona-
Malik. In the following experiments, ∆t = 1 · 10−10 is used.

4.2 Noisy phantom

Figure 9 shows what happens when we run the method for a very large nmax.
We see that both the internal area of the phantom and the surrounding area
consist solely of smooth transitions, as we would expect from our equation. The
edge is mostly preserved as it was, because our c is very close to 0 in those areas
as a result of the large difference between neighbouring pixels.

Figure 9: Fourth order solution with nmax = 200000

Figure 10 shows the result of applying the fourth order method to the noisy
phantom with optimal nmax = 1400 and K = 1400. Almost all of the fea-
tures from the model phantom are recognizable in this image, though sometimes
faintly and with the possible exception of the lightblue area at the top of the
model phantom. The result is a lot less blotchy than that of the Perona-Malik
model. This is because in the Perona-Malik method the execution had to be
halted before the diffusion faded out too many details, and thus less smooth-
ing was done on areas that are smooth in the model image. This happens
because Perona-Malik ultimately approaches a step image. Using the fourth
order method, however, the minimization of the Laplacian instead of the gradi-
ent means that details will not fade away as fast, though their edges will fade
out. σmod = 0.0573 for this result. This is higher than it was for the previous
methods. Presumably, the fact that the model image is a step image plays a
role in this, since the second order methods will tend to a step image and the
fourth order will tend to a planar one.
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Figure 10: The fourth order method applied to the noisy phantom, nmax = 1400,
K = 1400

4.2.1 The despeckling algorithm

We see in figure 10 that there are a few spots around the darker areas in the
middle of the phantom where there are so-called speckles. These are pixels
whose values are so different from their neighbours in the original image that
our c-matrix identifies them as edges. Therefore they are not properly smoothed
during the operation of the function. The article by You and Kaveh (2000) pro-
poses a fairly straightforward algorithm to remove these remaining speckles after
the main function has finished.
They say the following:
“Denote the mean and variance of the neighbouring pixels around a pixel (i, j) as

m =
ui,j−1 + ui,j+1 + ui−1,j + ui+1,j

4
(30)

and

σ2 =
u2i,j−1 + u2i,j+1 + u2i−1,j + u2i+1,j

4
−m2. (31)

Then, this pixel is a speckle if σ is small and |ui,j −m| >> σ”
This makes sense: if σ is small, that means the surrounding pixels are relatively
close together in value and therefore ui,j is probably in an area of the image
that should be quite smooth. If the second condition is fulfilled that implies
that the difference between ui,j and its neighbours is relatively large. Therefore
these two terms make logical conditions for a speckle.
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You and Kaveh propose the following choice for the new value of ui,j :

ui,j =

{
m, if |ui,j −m|2 > kσ;

ui,j , otherwise;
(32)

Here k is a constant that can freely be chosen to influence the amount of
pixels that will be changed to the mean. Of course, if k is too large none of the
pixels will meet the condition in equation (32). However, as is visible in figure
11a, choosing k too low means that pixels in the yellow edge also meet the
condition and are removed. After some experimentation a choice of k = 4 turns
out to give a reasonable balance between removing the speckles and retaining the
yellow edge, but there is still a not insignificant amount of loss of the edge.This
edge deterioration results in a much higher σmod, which is now 0.0749.

(a) k = 0.5 (b) k = 4

Figure 11: Filtered SL-phantom after despeckling algorithm

Loss of details like this does seem likely to be a problem largely specific to
images where there are details a few pixels wide with values that are extremely
different from their neigbours. This means that whether this algorithm will
add to the result will depend on the shape and resolution of the image being
processed. It also means that optimally the resolution of an image needs to be
large enough relative to the scale of the results that details like this are at least
a few pixels in size.

4.3 Blurry phantom

This method is now tested on the blurry phantom. After testing multiple values
of K, we find that for a small enough K the fourth order method can result in
some improvement in the image. However, due to the very small ∆t, σmod only
decreases by roughly 5 · 10−9 in 10000 time steps, which means it would take
far too long to make any visible changes to the image. This method is not a
practical way to improve the blurry phantom.
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4.4 Computation time

As the resolution of an image becomes larger, the method becomes very slow
computationally. The fourth order method needs a much larger number of
time steps to reach a result than Perona-Malik does, since ∆t needs to be
quadratically smaller for stability. Each time step requires two matrix-vector
multiplications, and so the computation time is much higher than for the second-
order methods. This is a big disadvantage of the fourth order method.
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5 Fourth order with fidelity

As stated in section 4.4, the fourth order method becomes very slow to solve
as the images become larger. One way to potentially solve this problem is by
combining the fourth order method with the fidelity method. In this chapter
that combination will be researched and compared to the separate methods.
A fidelity term is added to the fourth order equation. The equation for this
method is

∂φ

∂t
= −∇2[c(|∇2φ|)∇2φ] + λ(φ0 − φ) ∈ Ω. (33)

c and the boundary conditions are all the same as for the Fourth order
method.

5.1 Discretisation

The spatial discretisation for the first term on the right hand side of equation
(33) is the same as for the Fourth order method. We get

∂w

∂t
= −LCLw + λ(w0 −w) (34)

As for Perona-Malik with fidelity, the solution being the steady state of (33)
means that ∂w

∂t = 0 can be inserted and the method can be solved with Picard
iterations.

− LCLwn+1 + λ(w0 −wn+1) = 0

(−LCL− λI)wn+1 = −λw0

wn+1 = (−LCL− λI)−1(−λw0) (35)

Here, only C depends on wn.

5.2 Noisy phantom

Once again values for λ and K need to be found. In this case, a choice of around
λ = 45000000 with about K = 1750 delivers the best result. This is roughly
the square of the best result for Perona-Malik with a fidelity term. This can be
explained by the fact that the vector w is now multiplied with a matrix twice,
and those matrices both have eigenvalues of roughly the same size as the one
for Perona-Malik did. Therefore the vector is multiplied by roughly the square
of what it was for Perona-Malik, and thus λ needs to be squared to influence
the diffusion in the same way. Figure 12a shows the result. Compared to the
Fourth order, this figure preserves the details much better. σmod for this image
is 0.0596, which is higher than for the previous methods. Figure 12b shows the
result of using the despeckling algorithm on the image. Since the image only
contains a few speckles, the despeckling algorithm does more harm than good
here, removing a significant portion of the yellow ellipse. λ can be lowered to
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smooth out the areas a little more, depending on what the desired use of the
images is. Though the result is not quite as smooth as that from the fourth order
method, this method is much, much faster computationally. Since the number
of Picard iterations needed to converge to a solution (about 50) is much smaller
than the number of time steps needed to find a good result for the Fourth order
method, this method could be very useful to achieve similar effects to those of
the Fourth order method without the long computation times.

(a) Fourth Fidelity method, λ = 45000000 (b) After despeckling algorithm

Figure 12: Fourth order method with fidelity applied to noisy phantom

5.3 Blurry phantom

Adding a fidelity term does not improve upon the results from the Fourth order
method. Though it is still possible to improve the image, the improvement is so
small that it is not visible in the image. Through experimentation, we find that
this is the same for all choices for λ. It is not surprising that this method does
not help, since the difference from the Fourth order method is that this method
keeps the image close to its original, just slowing any change more.

5.4 Conclusion

It can be concluded that although this combination of the two methods does
not necessarily improve on the results from the fourth order method, it is still
very useful. This is because this method improves upon the computation time
massively.
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6 Application to MRI images

The Perona-Malik, Fidelity and Fourth Fidelity methods will now be applied
to results from the MRI prototype. The Fourth order method is already very
computationally inefficient on the Shepp-Logan phantom which is half as big as
these images; therefore this method will not be considered further since it will
not be of use in practice. The image in figure 13a is a scan of an orange slice,
and the image in figure 13b is scan of a recreation of the Shepp-Logan phantom.
Of course, it is not practical to have to choose new optimal parameters every
time a new image is processed. Therefore, the parameters will be optimized on
figure 13a and then tested on figure 13b to see whether they also work for a
different, yet similar image.

(a) Orange image (b) Shepp-Logan image

Figure 13: Results from MRI prototype

6.1 Perona-Malik

First, the Perona-Malik method is calibrated to the Orange image. To balance
the total diffusion and the edge preservation in the image, K in equation (3) is
set to 60. Then nmax is set to 10. This gives the image in figure 14. Most of
the speckles have disappeared, while the shape of the orange is still very well
defined. If nmax is made much larger, the details of the orange begin to fade
out significantly.
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Figure 14: Perona-Malik applied to Orange image

The method is now applied to the SL image using the same parameters. The
result is figure 15. Like the Orange image, all edges are clearly defined and all
details are distinguishable.

Figure 15: Perona-Malik applied to SL image

6.2 Fidelity

For the fidelity method, K is left at 60. λ is set at 5000. The effect on the Orange
image is quite dramatic. In figure 16 nearly all graininess has disappeared from
the image. The edges of the orange have been redefined, and the algorithm
has done great at preserving the different shades within the orange. This result
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looks much better than the result for Perona-Malik, since here more smoothing
is possible without fading details.

Figure 16: Fidelity method applied to Orange image

When the fidelity method is applied to the SL image as in figure 17 and
compared to figure 15, the effect is not quite as dramatic. However, the details
and edges in the image are clearly visible, while the areas in between them have
been smoothed out. This smoothing is the main difference between figures 17
and 15, and the fidelity method performs better here. The definition of the
edges is about the same between the methods.

Figure 17: Fidelity method applied to SL image
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6.3 Fourth Fidelity

Finally, the Fourth Fidelity method is tested on the images. For a good result,
K in equation (3) now needs to be set much higher, at 10000. λ, however, is set
to 75. Figure 18 shows the result for the Orange image. This image is not as
polished-looking as figure 16. It does preserve more ’detail’, but it is not clear
whether that is detail that is actually part of the image or whether that results
from the noise.

Figure 18: Fourth order method with fidelity applied to Orange image

This method is applied to the SL image in figure 19. When the result is
compared to the SL result for the other methods, the interior of the phantom is
a lot brighter. This is a result of the despeckling algorithm: since after filtering
the high-valued (yellow) pixels outnumber the lower-valued (blue) ones in the
interior, the algorithm raises the value for a lot of pixels and therefore brightens
the interior.
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Figure 19: Fourth order method with fidelity applied to SL image

6.4 Best method

Both the fidelity method and the Fourth Fidelity method work well on the prob-
lems and improve them more than the Perona-Malik method does. For these
images, the fidelity method gives a smoother, more polished-looking result, while
still preserving the edges in the images very well. The Fourth Fidelity method
smoothes edges out a little more. For the purpose for which this smoothing
is ultimately needed in this case, to produce clear medical images, clear areas
with sharp edges are probably preferable. Therefore, for this purpose the fi-
delity method is a better fit. The fidelity method would also be a better fit if
the images needed to be interpreted by a computer, since a computer is best at
noticing sharp transitions.
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7 Conclusion and discussion

In this paper four methods of using PDE’s for noise reduction were compared:
Perona-Malik using a second-order PDE, a method with a fourth-order PDE,
and both of these methods with a fidelity term added to them. To compare
them, the methods were applied to distorted Shepp-Logan phantoms with op-
timised parameters. The standard deviation of the resulting image from the
model image was then used to judge the results.

For the noisy phantom, the lowest standard deviation, and therefore the best
result, was found for the PM-fidelity method. This fidelity method had the best
balance between edge- and detail preservation.
Perona-Malik smoothes out the noise, but will quickly deteriorate details with
low contrast.
While the fourth-order method may deliver an image with smoother transitions
in the interior, this method is very expensive computationally and not practical
for use on larger images. Smooth transitions may also be a disadvantage if a
computer is used to interpret and recognise parts of the image.
The fourth fidelity method solves the problem of computation time, but still
does not perform better than the PM-fidelity method.

Perona-Malik redefines the edges of the high-contrast parts of this phantom.
However, the parts with lower contrast start fading fast.
Using the fourth-order method, it was possible to improve the image, but by
such a small amount that this is not visible to the naked eye for a practical
number of time steps.
When applied to the blurry phantom, the fidelity terms do not improve upon
the methods they are added to in terms of edge definition, since they keep the
result close to the original and therefore prevent the edges from being defined
more.
Out of the methods tested here, Perona-Malik performs best on the blurry phan-
tom.

When the methods were tested on MRI-images the PM-fidelity method de-
livered the best results, making edges within the image stand out clearly and
redefining the interior of the images. The fourth fidelity method also performed
well, and the choice for which method is best will depend in large part on the
desired effect.

This paper does not investigate the effect of the methods on other types of
images. Extending the scope beyond the use for MRI images, this paper could
also apply to other noise reduction projects with different images. The Shepp-
Logan phantom is a step image with clearly defined zones. Depending on the
purpose for which filtering is needed, it may be useful to further research the
effect the methods have on other types of images, like planar images or pho-
tographs.
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Once a method had been chosen, the parameters would need to be cali-
brated to give a good result. However, presuming images have similar types
and amounts of noise every time, calibrating the parameters on one or a few
images should enable them to be used for all similar images.
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