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Operational modal analysis (OMA) enables the identifcation of modal characteristics under operational loads and conditions.
Traditional frequency-domain methods cannot directly capture modal changes over time, while existing time-frequency rep-
resentations are not sufciently interpretable due to spurious modes and implicit parameter design. Tis paper develops a new
OMA method in time-frequency representation based on frequency-domain decomposition (FDD). Short-time FDD and
a convolution-based strategy are proposed to obtain singular values and local mode shape similarity, respectively, which are
further fused into mode indicators by a fuzzy-based strategy mimicking the modal assurance criterion. Te method provides not
only a global view of the modal characteristics over time and frequency but also estimates of the modal parameters. It is applicable
to strongly nonstationary responses under time-varying loads and conditions. All the parameters explicitly afect the time-
frequency representation, and the interpretability is enhanced by including physical information from the user’s prior knowledge
in selecting parameters and peak bands.Te proposedmethod is validated based on a study of railway sleepers under train passage.
Te rigid-body motions and bending modes are identifed at frequencies up to 6,500Hz in laboratory tests and 4,500Hz in feld
tests at speeds up to 200 km/h.Te identifed natural frequencies andmode shapes agree with experimental modal analysis (EMA).
Te proposed method outperforms EMA in terms of broad frequency range and low measurement cost and can be potentially
applied to structural health monitoring under operational conditions.

1. Introduction

Modal analysis is widely used in structural dynamics and
structural health monitoring (SHM). In many cases of ex-
perimental modal analysis (EMA), it is difcult or expensive
to manually excite a structure with a hammer or shaker [1]
or to analyze changes in modal properties under varying
loading conditions. Operational modal analysis (OMA)
enables modal characteristics to be identifed solely based on
the response of a structure under operational loads and

conditions. It does not require manual generation and
sensing of excitations and is becoming increasingly popular
in SHM.

OMA methods are generally classifed into time-domain
methods and frequency-domain methods. Time-domain
methods are based on the analysis of time histories or
correlation functions, e.g., natural excitation techniques,
autoregressive moving average, stochastic subspace identi-
fcation, blind source separation, and the Bayesian time-
domain approach [2–4]. Tey are usually computationally
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demanding and require proper selection of model order and
the exclusion of spurious modes due to numerical com-
putation [1, 2]. Frequency-domain methods are based on the
Fourier spectrum or power spectral density (PSD), which are
naturally more interpretable. Te most basic frequency-
domain method is the peak-picking method [1, 2], which
considers one mode at a time. Least square frequency
methods [5, 6] identify multiple modes together by itera-
tively estimating a parameterized spectrum. Furthermore,
Bayes’ theorem is incorporated to infer probability distri-
butions of modal parameters [7], such as the spectral density
approach [8], Fourier transform approach [9], Markov chain
Monte Carlo approach [10], and expectation-maximization
approach [11]. Tese Bayesian methods provide a rigorous
formulation that makes full use of measurement data, but
they face many challenges in solving ill-conditioned prob-
lems and estimating closely spaced modes [12].

Frequency-domain decomposition (FDD) is an exten-
sion of the peak-picking method, which can identify closely
spaced modes and does not require numerical iterations [2].
Te method was frst used for modal analysis in [13] and
then systematized to identify natural frequencies and mode
shapes under broadband excitations in [14]. Since then, it
has been applied to the SHM of many engineering structures
[15–19]. Meanwhile, many variants of the FDDmethod have
been proposed in the literature. Te estimation of damping
ratios is achieved by converting the PSD back to the time
domain (known as enhanced FDD) [20, 21] or by ftting the
PSD in the narrow frequency band of a mode [22, 23]. Te
FDD method is further adapted for nonstationary responses
or heavily damped structures by jointly using two PSD
estimates and detrending the correlation function [24, 25].
Moreover, model errors and measurement noise are in-
corporated into the analysis by estimating the PSD matrix
via maximum likelihood [26].

Te FDD-based methods can produce a spectrum
describing the dominance of modes in frequency but
cannot directly capture the change of modal character-
istics over time. To address this issue, a time-frequency
representation is needed. Time-frequency methods based
on blind source separation were developed [27, 28], but
they may produce spurious modes, and the numerical
accuracy is sensitive to the number of sensors. As
a popular time-frequency analysis method, continuous
wavelet transform (CWT) was combined with ridge ex-
traction in [29–32], but the performance of ridge ex-
traction is sensitive to noise. Furthermore, CWT was
combined with singular value decomposition, but proper
selection of the mother wavelet and its parameters can be
tricky because they are not directly related to structural
dynamics, and a nonstationary signal over a long time
horizon still needs to be split into segments [33, 34]. Tus,
spurious modes and implicit parameter design reduce the
physical interpretability of OMA. To the best of our
knowledge, no existing method can produce a time-

frequency representation indicating both the domi-
nance of structural modes and the correlation of their
mode shapes.

Tis paper develops a new OMA method suitable for
strongly nonstationary responses by extending the FDD
method to a time-frequency representation. A study of
railway sleepers under train passage is used to showcase the
proposed method. EMA, especially hammer tests, has been
widely applied in the modal analysis and SHM of railway
tracks [35–37], whereas the application of OMA is rare [38].
Furthermore, the characteristics of the train-induced load on
a sleeper vary considerably as the train approaches, passes,
and leaves, which further afect the stifness and damping of
track components [39–41]. As a result, the sleeper vibration
in response to train passage is signifcantly nonstationary. In
addition, the damping efect from rail pads and ballast makes
modal identifcation more challenging.

Te main contributions of this paper are summarized as
follows. First, the proposed method incorporates the in-
terpretability of FDD into time-frequency representation. It
can produce spectrograms indicating the dominance of
structural modes and also the local similarity of their mode
shapes. All the parameters explicitly afect the time-
frequency representation and can be selected based on the
physical information from the user’s prior knowledge.
Second, the proposed method provides not only a global
view of the modal characteristics over time and frequency
but also estimates of the modal parameters. It is applicable to
strongly nonstationary responses under time-varying loads
and conditions and is also robust to the length of signals.
Tird, the proposed method is demonstrated to identify the
rigid-body motions and bending modes of railway sleepers
in diferent train passage phases and at diferent speeds. Tis
paper also showcases its capability to distinguish closely
spaced modes using numerical simulation.

Te remainder of this paper is organized as follows. In
Section 2, the fundamentals of FDD are briefy introduced.
In Section 3, the new OMA method and the corresponding
parameter selection strategy are proposed. In Section 4, the
proposed method is validated through theoretical analysis
and laboratory experiments. In Section 5, the proposed
method is applied to feld tests and compared with EMA.
Finally, some discussions are presented in Section 6, and the
conclusions are summarized in Section 7.

2. Fundamentals of FDD

Structural responses are usually measured by accelerometers
at a sampling frequency fs. Estimating the PSD matrix of the
response is the frst step in FDD, for which Welch modifed
periodogram method [42] is widely used owing to its
computational efciency [2]. First, the measured response is
divided into nc overlapped (overlap ratio αb) segments of
equal length nb, and a window function tapers each segment
to reduce the leakage efect. Te recommended overlap ratio
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αb and window function are 0.5 and Hanning window,
respectively [42]. Ten, the modifed periodogram Ik(fn) is
calculated for each windowed segment based on the fast
Fourier transform (FFT), where fn is the n-th discrete fre-
quency as follows [42]:

fn �
nfs

nb
n � 0, · · · ,

nb − 1( 􏼁

2
,

nb

2
. (1)

Next, the PSDmatrix at each frequency fn is estimated by
averaging the periodograms over all nc segments as follows
[42]:

􏽢Syy fn( 􏼁 �
1
nc

􏽘

nc

k�1
Ik fn( 􏼁. (2)

Once 􏽢Syy(fn) is obtained, singular value decomposition
(SVD) is applied as follows [2]:

􏽢Syy fn( 􏼁 � U fn( 􏼁V fn( 􏼁U fn( 􏼁
H

, (3)

where V(fn) is a diagonal matrix with singular values
arranged in descending order and U(fn) is a unitary
matrix containing the singular vectors corresponding to
the singular values. At each frequency fn, a singular value
in V(fn) indicates the contribution of the corresponding
singular vector in U(fn), just as a modal response in-
dicates the contribution of the corresponding mode
shape based on the modal expansion of the structural
response [2].

Mathematically, the number of segments nc in PSD
estimation determines the number of nonzero singular
values in V(fn) at each frequency [14], and multiple nonzero
singular values allow for the identifcation of closely spaced
modes. All nonzero singular values can be plotted in
a spectrum, where a resonance peak indicates the possible
existence of a mode at the corresponding frequency. To
further confrm such a mode, the singular vector of the peak
is usually compared with other singular vectors at its ad-
jacent frequencies. A popular scheme to quantify the sim-
ilarity between two vectors is the modal assurance
criterion (MAC) [2], denoted asMAC(p, q), which is equal to
0 (or 1) when the two vectors, p and q, are orthogonal (or
proportional). If the singular vectors in the vicinity of a peak
are of high similarity (MAC greater than a threshold), they
are identifed as belonging to the same dominant mode
[2, 24].

Once a mode is confrmed, its modal parameters can be
estimated following the strategy of enhanced FDD [20, 21].
First, an auto PSD function is created using the identifed
singular values at the corresponding frequencies, repre-
senting an equivalent single degree of freedom system.Ten,
an inverse FFT is applied to the auto PSD to obtain an
autocorrelation function in the time domain. Te zero
crossings of the autocorrelation function can give an esti-
mate of the damped natural frequency, while the extremes
are used to estimate the logarithmic decrement δ through
linear regression. Further, the damping ratio is calculated as
follows [20, 21]:

ξ �
δ

�������
δ2 + 4π2

􏽰 . (4)

Finally, a real-valued mode shape vector can be obtained
from each of the identifed singular vectors. A simple ap-
proach [2] is to normalize the complex singular vector by the
maximum absolute value of its components and then rotate
each component to 0°(or 180°) if its phase lies in the frst or
fourth (or the second or third) quadrant. A mode shape
vector can be displayed with respect to sensor positions in
a static plot. It is noteworthy that the problem of spatial
aliasing can occur when the number of sensors is in-
sufcient. In this case, the identifed mode shape should be
interpreted carefully.

In general, the validity of FDD is based on the as-
sumptions of white noise excitations, low structural
damping ratios, and orthogonal mode shapes for closely
spaced modes [24]. If these assumptions are not fully sat-
isfed or if measurement noise is present, the identifcation
result is an approximation to real modal characteristics
[24, 43].

3. Time-Frequency Representation of
OMA (TFOMA)

Tis paper develops a new OMA method, named, TFOMA,
by extending the FDD method to a time-frequency repre-
sentation. Figure 1 shows its framework. First, short-time
FDD and a convolution-based strategy are proposed to
obtain singular values and local mode shape similarity,
respectively. Ten, they are fused into mode indicators by
a fuzzy-based strategy, and modal parameters are further
estimated. Sections 3.1–3.3 will introduce these main steps,
and Section 3.4 will discuss the parameter selection strategy.

3.1. Short-Time FDD (STFDD). In FDD, the Fourier
transform is used to average the frequency information over
the entire signal time, which is theoretically applicable to
stationary processes. Te short-time Fourier transform [44]
is a modifed version of the Fourier transform for strongly
nonstationary signals. We apply a similar strategy to FDD as
follows and name it short-time FDD (STFDD):

STFDD y(s)􏼈 􏼉(t, f) � FDD y(s)r(s − t)􏼈 􏼉(f), (5)

where y(s) is the vector of synchronized measurement from
multiple sensors at sampling time s and r(s− t) represents
a rectangular window centered at t.

As illustrated in Figure 2, y(s) is broken into segments of
equal length with an overlap ratio αs, and the procedures of
PSD estimation and SVD are applied to each segment,
producing a series of singular value matrices V(t, f ) and
singular vector matrices U(t, f). Te k-th diagonal term in
V(t, f ) is denoted as vk(t, f), and the k-th singular vector in
U(t, f ) is denoted as uk(t, f ). At the k-th level, a singular value
spectrogram can be obtained by plotting vk(t, f) over time
and frequency with color mapping. According to Section 2,
the number of efective spectrograms is equal to the number
of nonzero singular values, which is further equal to nc used
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in PSD estimation. It is noteworthy that STFDD also holds
the drawbacks of STFT, the most signifcant of which is the
trade-of between time and frequency resolutions (discussed
in Section 3.4).

3.2. Local Mode Shape Similarity (LMSS). A peak in a sin-
gular value spectrogram indicates the possible existence of
a structural mode. According to MAC, a mode is efectively
dominant when the singular vector of the peak has a high

similarity to the singular vectors in its vicinity. To enable
comparisons in both time and frequency dimensions, we
propose a convolution-based strategy to quantify the local
similarity of singular vectors. In a two-dimensional repre-
sentation, e.g., an image, convolution works by applying
a kernel to each location and evaluating the central element
based on all elements in the kernel [45, 46]. In the time-
frequency representation, we adapt it to compute the fol-
lowing scalar, named, local mode shape similarity (LMSS):

lk(t, f) � 􏽘
a

dt�−a

􏽘

b

df�−b

ω(dt, df) · MAC uk(t, f), uk(t + dt · Δt, f + df · Δf)( 􏼁, (6)

where a and b are the half kernel sizes (number of elements)
in time and frequency, respectively, Δt and Δf are the time
and frequency resolutions, respectively, and ω(dt, df ) rep-
resents the weight assigned for each element in the kernel.

LMSS is a weighted sum of MAC values between the
central element and all other elements in a kernel. In this
paper, a separable kernel with Gaussian functions [46, 47] is
used, and the weights are determined as follows:

ω(dt, df) �

0, if dt � 0 and df � 0,

ω0(dt, df)

􏽐
a
dt′�−a 􏽐

b
df′�−b ω0 dt

′
, df
′

􏼒 􏼓 − ω0(0, 0)
, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

where the weight of the central element is zero and ω0(dt, df )
is the unnormalized weight calculated based on the fol-
lowing Gaussian functions:

ω0(dt, df) � exp −
dt

2

2σt
2􏼠 􏼡 · exp −

df
2

2σf
2

⎛⎝ ⎞⎠ · exp −
dv(t,f)(dt, df)

2

2σv
2

⎛⎝ ⎞⎠, (8)

Local mode shape
similarity (LMSS)

spectrogram

Short-time
FDD

Convolution-
based strategy

Fuzzy-based
strategy

Modal parameter
estimation

Non-stationary response

Operational vibration
measurement

Time-frequency representation of OMA (TFOMA)

Singular value
spectrogram

Mode indicator
(MI) spectrogram

Modal parameters

Figure 1: Framework of TFOMA.

4 Structural Control and Health Monitoring



where dv(t, f) (dt, df ) denotes the logarithmic diference in
singular values with respect to the central element, as cal-
culated as follows:

dv(t,f)(dt, df) � log vk(t + dt · Δt, f + df · Δf)􏼂 􏼃– log vk(t, f)􏼂 􏼃. (9)

Furthermore, σt, σf, and σv are standard deviations
characterizing the decay rates of the weight as dt, df, and dv

increase, respectively. We recommend determining them as
follows:

σt �
a + 1
3

σf �
b + 1
3

σv(t,f)
�

�����������������������������������������

1
(2a + 1) · (2b + 1) − 1

􏽘

a

dt�−a

􏽘

b

df�−b

dv(t,f)(dt, df)􏽨 􏽩
2

􏽶
􏽴

. (10)

Equations (8)–(10) refect that, from the kernel center to
the kernel boundary, the weight decreases from one to zero
as dt or df increases, according to the three-sigma rule. Tis
property allows comparisons to be made in a localized
manner with smooth transitions at kernel boundaries.
Additionally, the weight is lower when an element’s singular
value deviates more from the center’s. Tis property en-
hances the adaptability of LMSS to structural modes with
diferent bandwidths since the weight decays faster in the
case of a sharper resonance peak and vice versa. Meanwhile,
it allows LMSS to better capture the shift in resonance
frequency over time.

Figure 3 illustrates the calculation process of LMSS at the
k-th level. An LMSS spectrogram can be obtained by plotting
lk(t, f ) over time and frequency with color mapping. Te
value of each point indicates the similarity of mode shapes
between that point and its vicinity, and a peak region in-
dicates a high local similarity at that time and frequency,
which can help to confrm the dominance of a mode.

3.3. Mode Indicator (MI). After obtaining the singular value
spectrogram and the LMSS spectrogram, structural modes
can be identifed from regions with both large singular values

Sample s

y(s)

Overlap

Fr
eq

ue
nc

y 
f

k-th singular value spectrogram vk(t, f )

SVD

Periodogram

PSD matrix

FFT
Periodogram

Time t

Average

PSD &
SVD

PSD &
SVD

PSD &
SVD

PSD &
SVD

…

…

Windowing

PSD & SVD

vk(f )

k-th singular vectors uk(t, f )

Singular
values

Singular
vectors uk(f )

Sensor 1
Sensor 2
Sensor 3

Figure 2: Short-time FDD and singular value spectrogram.
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and large LMSS. In this paper, a fuzzy-based fusion strategy
is proposed to fuse vk(t, f) and lk(t, f) at each time and
frequency into a mode indicator (MI), denoted as MIk(t, f ).
Fuzzy set theory quantifes the membership of an element in
a set through a membership function [48], which is usually
used to handle vague information, e.g., fusing multiple
images [49–51]. It is suitable for computing MI because
there is no precise relationship to determine the existence of
modes based on vk(t, f) and lk(t, f) but rather a soft and
fexible thresholding strategy according to MAC.

First, all vk(t, f ) and lk(t, f ) are normalized as follows:

vk
′ t, fn( 􏼁 �

log vk(t, f)( 􏼁 − min logvk(t, f)( 􏼁

max log vk(t, f)( 􏼁( 􏼁 − min log vk(t, f)( 􏼁( 􏼁
,

lk′(t, f) �
lk(t, f) − min lk(t, f)( 􏼁

max lk(t, f)( 􏼁 − min lk(t, f)( 􏼁
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(11)

Ten, we use the following membership function to
compute the MI:

MIk(t, f) � vk
′(t, f)􏼂 􏼃

λv · lk′(t, f)􏼂 􏼃
λl , (12)

where λv and λl are the contribution exponents of v’k(t, f)

and l’k(t, f), respectively.
Figure 4 illustrates the calculation process of MI, in

which the membership function with λv � 1 and λl � 3 is
shown as an example. It can be seen that MIk(t, f ) ap-
proaches 0 when vk

′(t, f) or lk′(t, f ) is small and tends to 1 as
vk
′(t, f) and lk′(t, f ) increase. Meanwhile, lk′ (t, f ) is more

dominant than vk
′(t, f) owing to the selection of λv and λl. As

a consequence, when l′k(t, f ) is less than 0.45, MIk(t, f ) is
lower than 0.1 even if vk

′(t, f ) is large. Te selection of λv and
λl enables the proposed fuzzy-based strategy to mimic
a thresholding strategy of MAC and provide a soft and
interpretable fusion between vk(t, f ) and lk(t, f ).

As shown in Figure 4, the computed MIs at the k-th level
MIk(t, f ) are plotted as an MI spectrogram with peak regions
indicating the presence of structural modes. Ten, a fre-
quency band that peaks continuously over time at physically
meaningful frequencies can be selected for each mode. To
further estimate the modal parameters of a mode, the sin-
gular values in its frequency band with MIs greater than
a threshold are selected to create auto PSD functions, which
can then be used to estimate the natural frequency and
damping ratio at each time instant (see Section 2). Mean-
while, the singular vectors corresponding to the selected
singular values can be converted into mode shape vectors
(see Section 2). Terefore, the proposed method provides
not only a global view of the modal characteristics over time
and frequency but also estimates of the modal parameters.

3.4. Parameter Selection Strategy. Te time-frequency rep-
resentation of the proposed method depends on the selec-
tion of its parameters. Sufcient time and frequency
resolutions are necessary for clear visualization of modal
characteristics and accurate estimation of the modal pa-
rameters. Te frequency resolution Δf and the time reso-
lution Δt are determined as follows:

Δf �
fs

nb
Δt �

nb 1 − αs( 􏼁 nc 1 − αb( 􏼁 + αb􏼂 􏼃

fs
. (13)

We propose the following strategy to select all the pa-
rameters of the TFOMA method.

Step 1. Select the number of segments nc in PSD estimation.
As mentioned in Sections 2 and 3.1, nc determines the
number of nonzero singular values. For structures with
separated modes, nc can be set to 1, whereas in cases of
closely spaced modes, nc should be greater than the maxi-
mum number of physical modes in each identifed
frequency band.

Time t
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Figure 3: Local mode shape similarity and its spectrogram.
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Step 2. Select the segment length nb in PSD estimation and
the overlap ratio αs in STFDD. According to (13), they
directly afect Δf and Δt: larger nb leads to smaller Δf but
larger Δt, and larger αs leads to smaller Δt but higher
computational costs. We recommend frst selecting nb to
provide sufcient frequency resolution, e.g., at least fve
discrete frequencies in the frequency band of a mode. Ten,
αs can be selected to provide sufcient time resolution, e.g.,
Δt to be shorter than the nonstationary behavior of the
signal.

Step 3. Select the half kernel sizes a and b. Under defned Δt
and Δf, the kernel lengths in time and frequency are
(2a+ 1) ·Δt and (2b+ 1) ·Δf, respectively. For comparisons
in a localized manner, we recommend setting a and b as
small integers, such as 3∼10, to ensure that (2a+ 1) ·Δt and
(2b+ 1) ·Δf are shorter than the duration and bandwidth of
each mode, respectively.

Step 4. Select the contribution exponents λv and λl. As
exemplifed in Section 3.3, we recommend setting λl> λv � 1
to mimic a thresholding strategy ofMAC.Te larger λl is, the
greater the infuence of LMSS on MI, i.e., a higher LMSS is
required to reach a certain level of MI.

All parameters in the TFOMA method explicitly afect
the time-frequency representation. Tey can be selected and
tuned according to the user’s prior knowledge of the
structural dynamics and goals of analyses.

4. Validation via Laboratory Tests

4.1. TFOMA of an In Situ Sleeper. We validate the proposed
TFOMA method on the V-Track test rig at TU Delft [52],
which resembles train-track interaction. As shown in Fig-
ure 5, the track consists of rails, sleepers, foundations, and
fastening systems. A beam is driven by a motor to rotate
around the central axis of the test rig, and the wheel at the
end of the beam rolls along the track. Te wheel is vertically
loaded by a suspension system, and the static wheel load is

1,300N in our measurement. Tere are four rail joints in the
test rig. When the wheel passes over these joints, signifcant
impacts occur.

We instrument one sleeper with eight accelerometers
(PCB 356B21) on its top surface. Te vertical accelera-
tions are measured at the sampling frequency of
fs � 102,400 Hz. Te running speed of the wheel is 8 km/h.
Figure 6(a) plots the measured sleeper accelerations with
four phases distinguished, which shows signifcant
nonstationarity. Phase A is caused by the passage over
a joint that is several sleepers away from the instru-
mented sleeper. It is similar to the response of a hammer
test. Phases B∼D belong to the response caused by the
wheel passage, divided into prepassage, underpassage,
and postpassage phases.

We apply the TFOMAmethod to themeasured data with
the parameters listed in Table 1. Te spectrograms of sin-
gular value, LMSS, and MI are shown in Figure 6 at fre-
quencies up to 6,500Hz. As shown in Figures 6(c) and 6(d),
most of the large singular values are located below 2,000Hz,
while large LMSS is present throughout the frequency range.
By fusing the singular values with the LMSS, we obtain the
MI spectrogram in Figure 6(b), which shows peak regions
with sharper edges than those in Figures 6(c) and 6(d),
making them easier to be picked up.

In the MI spectrogram, the impact response in Phase A
produces a vertical ridge, along which the MI peaks at some
frequencies. In Phases B and D, a number of peak bands can
be observed, which continuously dominate at frequencies
close to the peaks in Phase A. Te peaks in Phase C are less
clear as they belong to the forced response phase. We select
ten peak bands in Phases A, B, and D, as labeled in
Figure 6(b), where the label height represents the bandwidth.
At low (or high) frequencies, the density of peak bands is
high (or low), and their bandwidths are narrow (or wide). In
each selected band, we use points with MI greater than 0.4
for further parameter estimation, and the identifed mode
shapes and average natural frequencies are shown in Fig-
ure 7. Most identifcation results are consistent between
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Phases A, B, and D, though the passage response sufers
more nonstationarity and noise.

4.2. EMAandTeoretical Analysis of a Free Sleeper. To verify
the above identifcation results, we perform hammer tests on
a free sleeper of the same type on an elastic foundation. Since
the sleeper is free of rail fasteners, it is instrumented with
more distributed accelerometers (PCB 356B21), as shown in
Figure 8(a). We use a small hammer (Brüel & Kjær 8206-
003) to generate the impact at each of the four locations.

To reduce the efect of leakage and noise, the measured
response from each sensor is tapered by an exponential
window, and the measured force is tapered by the same
exponential window and also a force window [53]. Ten, for
the i-th sensor (i� 1, . . ., 9) in response to the impact at the j-
th location (j� 1, . . ., 4), we compute the cross-spectrum
between the acceleration and the force Saipj

(f) and the auto-
spectrum of the force Spjpj

(f) through the Fourier trans-
form. Furthermore, the frequency response function (FRF),
more specifcally the receptance function, is calculated as
follows [54]:

Hij(f) �
Saipj

(f)

Spjpj
(f)(2πf)

2 . (14)

An FRF is a complex function of frequency that describes
the response of a structure at the sensor position to exci-
tation at the impact location. A resonance peak indicates the
presence of a structural mode at the corresponding fre-
quency. Te mode shape vector can be obtained by com-
bining the imaginary parts of the FRFs from diferent sensors
as follows [54]:

Im H1j(f)􏼐 􏼑, Im H2j(f)􏼐 􏼑, · · · , Im H9j(f)􏼐 􏼑􏽨 􏽩
T
.

(15)

At each impact location, we repeat the test three times
and average the FRFs as the fnal result. For example,
Figure 8(b) plots the magnitude of the FRFs for all sensors in
response to Impact 2. Four resonance peaks are identifed
from all FRFs at diferent impact locations, labeled as P0∼P3,
and their mode shapes and average frequencies are shown in
Figure 8(c).

Meanwhile, we calculate the theoretical mode shapes by
simplifying the sleeper as a free-free beam. Based on its
boundary conditions, the n-th order mode shape is given as
follows [55]:

wn(x) � sinh knx( 􏼁 + sin knx( 􏼁􏼂 􏼃 +
sin knL( 􏼁 − sinh knL( 􏼁

cosh knL( 􏼁 − cos knL( 􏼁
cosh knx( 􏼁 + cos knx( 􏼁􏼂 􏼃, (16)

where L is the beam length, x is the coordinate along the
beam (0≤ x≤ L), sinh and cosh are hyperbolic functions, and
kn is the n-th (numerical) solution of the following equation
of k:

cosh(kL)cos(kL) � 1. (17)

Temode shapes of a free-free beam with L � 25 cm are
computed and plotted in Figure 8(c). Clearly, the mode
shapes of P1∼P3 are in good agreement with the theo-
retical mode shapes of the frst three bending modes,
respectively, and P0 is the rigid-body motion of the
sleeper.
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Figure 5: Te V-Track test rig and the instrumented sleeper.
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4.3. EMA of the In Situ Sleeper. Hammer tests are also
performed on the in situ sleeper in Section 4.1 using the same
hammer. Te locations of impacts and sensors are shown in
Figure 9(a). We repeat the test fve times at each location,
which is more than that of the free sleeper due to lower
repeatability. Te average FRFs for the frst two impact
locations are shown in Figure 9(b) as examples. Seven
resonance peaks are identifed, labeled as Q1∼Q7. Te
corresponding natural frequencies and mode shapes are
shown in Figure 9(c).

Compared with the free sleeper, the in situ sleeper shows
more resonance peaks below 2,000Hz, and their mode
shapes deviate for diferent impact locations. Q1∼Q4 cor-
respond to rigid-body motions but are not comparable to P0
due to diferent boundary conditions. Q5∼Q7 correspond to
P1∼P3 (the frst three bending modes), respectively. Te
results of Q5 and P1 show signifcant deviations. Te fre-
quencies of Q6 and P2 are consistent, while those of Q7 and
P3 deviate slightly. Besides, the peaks of the in situ sleeper are
smoother due to the damping efect. Te above fndings
refect the diferences in modal characteristics due to dif-
ferent boundary conditions and also the infuence of other
track components.

4.4. Comparisons between TFOMAand EMA. By comparing
the identifcation results of TFOMA and EMA for the same
in situ sleeper, we fnd that:

(i) A1/B1/D1∼A4/B4/D4 in TFOMA correspond to
Q1∼Q4 in EMA (the rigid-body motions). Tey
have similar frequency bands, but the bounce
motion is more dominant in TFOMA, while the roll
motion is more dominant in EMA. Tis indicates
that the rigid-body motions are sensitive to the
characteristics of excitations.

(ii) A5/B5/D5 in TFOMA corresponds to Q5 in EMA
(the 1st bending mode) with an MAC of 0.92/0.93/
0.44. Among the frst three bending modes, the 1st
bending mode is the most dominant in both

TFOMA and EMA. Te frequencies of TFOMA are
lower than that of EMA, and A5/B5 provides
a higher MAC than D5.

(iii) A8/B8/D8 in TFOMA corresponds to Q6 in EMA
(the 2nd bending mode) with theMAC of 0.95/0.98/
0.87. Teir frequencies are consistent.

(iv) A10/B10/D10 in TFOMA corresponds to Q7 in
EMA (the 3rd bending mode) with theMAC of 0.98/
0.97/0.98. Teir frequencies are consistent.

(v) B6/D6/A7 andA9/B9/D9 in TFOMAbelong to extra
modes related to other track components, e.g., rails.

In summary, TFOMA provides comparable identifca-
tion results to EMA. Te diferences in the identifed modal
parameters refect the infuence of a moving train load on
track dynamics. Among the three phases in TFOMA, the
impact response and the prepassage phase outperform the
postpassage phase in terms of mode shape consistency
with EMA.

5. Application to Field Tests

5.1. TFOMA of an In Situ Sleeper. We test the proposed
method using sleeper vibrations measured at the Faurei
Railway Test Center in Romania.Te track consists of UIC60
E1 rails, Vossloh W14 fastening systems, and B70-W60
prestressed concrete sleepers. As shown in Figure 10, four
accelerometers (Brüel & Kjær 4514-004) are mounted on
a sleeper. A train passes over the instrumented sleeper at
three diferent speeds −15 km/h, 80 km/h, and 200 km/h.Te
vertical accelerations are recorded at a sampling frequency of
25,600Hz. We fnd that Sensor L2 was not functional, most
likely due to a loose installation, so we use the data from the
other three functional sensors for analysis.

Te TFOMA method is applied to the measured data
with the parameters listed in Table 2. According to Section 4,
only the prepassage phases are studied, while diferent
lengths of signals are used due to the diference in speeds.
Te raw data and the corresponding MI spectrograms up to
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Figure 6: TFOMA results of laboratory tests: (a) sleeper accelerations in the time domain; (b) MI spectrogram; (c) singular value
spectrogram; (d) LMSS spectrogram.
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4,500Hz are shown in Figure 11. Generally, the patterns of
MI are similar at diferent speeds. Some peak bands are wide
in frequency, whereas others are narrow. Te low-frequency
bands are more pronounced at low speeds, especially when
the train is close to the sleeper, whereas the high-frequency
bands are more pronounced at high speeds and continuously
dominant even when the train is still far away from the
sleeper. In addition, some peak bands are not horizontal, i.e.,
their frequencies change as the train approaches.

We select fourteen peak bands at each speed, labeled as
O1∼O14. Te frst four columns of Table 3 present the
characteristics of each peak band and also the average
natural frequencies and mode shapes. In each plot, the
identifed mode shapes at a certain speed are plotted in
a light color, and their average is plotted in a dark color. In
general, the identifed frequencies and mode shapes are
similar at diferent speeds while varying slightly due to the

infuence of train speed and noise. More discussion is
provided in Section 5.3.

5.2. EMA of the In Situ Sleeper. For comparison, we perform
hammer tests with the same setup in Figure 10. All the four
sensors were functional in the tests. We generate impacts at
fve locations using a big hammer (PCB 086D50) and a small
hammer (PCB 086D05). At each location, we repeat the test
fve times with each hammer. Considering their diferent
excitation frequencies [56], the results of the big and small
hammers are used for analyses below 2,000Hz and above
500Hz, respectively. Te average FRFs are plotted in Fig-
ure 12, and eleven resonance peaks are identifed, labeled as
E1∼E11. Compared to the sleeper on the test rig, the natural
frequencies of the real sleeper are much lower due to its size
and material. Most of the resonance peaks, especially at high
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Figure 7: Modal identifcation results of laboratory tests.
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frequencies, are smooth, which is consistent with the fnding
in Section 4.3. Te average frequency and mode shapes for
each resonance peak are shown in Table 3, where the
identifed mode shapes deviate for diferent hammers and
impact locations.

5.3. Comparisons between TFOMA and EMA. Moreover, we
compute the theoretical mode shapes of a free-free beam of
length 2.5m according to (16) and (17). Furthermore, in
Table 3, we match the identifed modes of TFOMA with
those of EMA and theoretical analysis while referring to the
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Figure 8: EMA and theoretical analysis of a free sleeper: (a) test setup; (b) FRFs of all sensors for impact 2; (c) mode shapes and frequencies
of the four resonance peaks.
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Figure 9: EMA results of the in situ sleeper in laboratory tests: (a) test setup; (b) FRFs of all sensors for impact 1 and 2; (c) mode shapes and
frequencies of the seven resonance peaks.
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Figure 10: Te instrumented sleeper in feld tests.
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characteristics of sleeper modes reported in [35, 57]. Te
average MAC in Table 3 quantifes the consistency of mode
shapes between TFOMA and EMA. Te main fndings are
summarized below:

(i) TFOMA identifes the rigid-body motions of the
sleeper at frequencies lower than those of the
bending modes, which is consistent with [35, 57].
Te bounce motion is more pronounced, which is
consistent with the laboratory test. Te rigid-body
motions are not observed in EMA because the
impact forces cannot efectively excite such modes.

(ii) In terms of mode shapes, both TFOMA and EMA
consistently (with highMAC values) identify the 1st,
2nd, 4th, 5th, 7th, 8th, and 10th bending modes.
However, neither identifes the 3rd, 6th, and 9th
bending modes, probably because these modes are
less dominant or the sensors are close to the nodes.

(iii) Te frequencies of E1, E2, and E4 are close to those
reported in [35, 57] under unloaded conditions. For
the 1st and 2nd bending, the frequencies of TFOMA
deviate from those of EMA, refecting the infuence
of the train load. For high-order modes, the fre-
quencies of TFOMA and EMA are very close.

(iv) Both TFOMA and EMA identify extra modes
probably related to other components.

Furthermore, the pros and cons of TFOMA and EMA
are discussed as follows:

(i) TFOMA can capture the change of modal charac-
teristics over time and frequency, whereas EMA
cannot.

(ii) TFOMA works under operational loads in a broad
frequency range, but the excitation spectrum is
usually not fat, which can cause errors in modal
identifcation. EMA works under controlled exci-
tations but requires manual impacts and also dif-
ferent hammers for diferent frequency ranges.

(iii) For a complex coupled system (e.g., a train-track
system), the response of a component (e.g.,
a sleeper) depends not only on its own modal
characteristics but also on the dynamical infuence
of other components (e.g., trains, rails, fasteners,
and ballast). As a consequence, extra modes can be
more pronounced in OMA than in EMA.

(iv) For each mode, the mode shapes identifed by
TFOMA spread within a certain variance, while
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Figure 11: TFOMA results of feld tests: (a) sleeper accelerations at 15 km/h, 80 km/h, and 200 km/h in the time domain; (b) MI
spectrograms at 15 km/h, 80 km/h, and 200 km/h.
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those identifed by EMA are sensitive to impact
locations and may disappear or be distorted when
the impact is close to a node or an edge.

(v) TFOMA can provide informative results from ac-
celeration measurements of only a few seconds
under operational conditions, whereas EMA re-
quires longer experimental time, more workload,
and temporary operation shutdowns.

6. Discussion

6.1.EstimationofDampingRatios. Tis paper mainly focuses
on estimating damped natural frequencies and mode shapes.
In this section, the estimation of damping ratios is discussed.
First, for the in situ sleeper in the laboratory tests, the
damping ratio of each peak band is obtained while esti-
mating the natural frequencies in Section 4.1. Besides, we
estimate the damping ratios from the FRFs in Section 4.3
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Figure 12: EMA results of feld tests: (a) FRFs for impact 1; (b) FRFs for Impact 2; (c) FRFs for Impact 3; (d) FRFs for Impact 4; (e) FRFs for
impact 5.
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using the traditional peak-picking method [58]. Ten, for all
the matched modes in Section 4.4, the estimated damping
ratios are plotted against their natural frequencies in
Figure 13(a). For most modes, TFOMA in diferent phases
produces damping ratio estimates similar to EMA while
underestimating those at low frequencies.

Similarly, the damping ratios of the sleeper in the feld
tests are estimated and plotted in Figure 13(b). Te results of
TFOMA are similar at diferent speeds, but the estimated
damping ratios are lower than those of EMA. Tese de-
viations may come from two sources. On the one hand, the
diferent loading conditions can lead to diferent modal
characteristics, including damping ratios. Tis efect is
pronounced for railway tracks since the train load is
enormous. On the other hand, the estimation based on
a truncated spectrum (either in TFOMA or EMA) can cause
errors, especially when the frequency resolution is low or
adjacent modes afect each other [21, 23]. In summary,
TFOMA can provide accurate damping estimates in the case
of well-separated modes, but it needs further improvement
to handle structures with signifcant nonlinearity and
dense modes.

6.2. Identifcation of Closely SpacedModes. In this paper, the
proposed method is applied to the modal identifcation of
railway sleepers, where the bending modes of diferent or-
ders are separated. It has the potential to identify closely
spacedmodes by involvingmultiple nonzero singular values.
Tis section aims to demonstrate such capability using
a simulation example. As shown in Figure 14(a), a rectan-
gular plate suspended by springs and dampers vibrates in the
x-y plane with three degrees of freedom −x, y, and θ. External
excitation forces are applied at the upper right corner, and
the equations of motion are given as follows:

m€x + 2kxx + 2cx _x � Px,

m€y + 2kyy + 2cy _y � Py,

I€θ + 2bkxθ + 2akyθ + 2bcx
_θ + 2acy

_θ � aPy − bPx.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(18)

Based on the parameters and excitations defned in
Table 4, (18) is solved numerically using the Newmark-beta
method [59] with a time step of 0.2ms. Te bidirectional
accelerations of the four edge centers are fed into the
TFOMA method with the parameters in Table 5. Te
number of segment nc � 2 is used to distinguish the two
translational modes, which are closely spaced since they have
equal natural frequencies due to equal stifness.

Two MI spectrograms are obtained, as shown in
Figures 14(b)–14(c), with eight peak bands (with MI> 0.8)
identifed in diferent phases of the response. Te estimated
natural frequencies and mode shapes are shown in
Figure 14(d). In 0∼2 s, the translational mode in the x di-
rection is identifed (X1), whereas the one in the y direction
is not identifed since the excitation is applied only in the x
direction. When the excitation is applied only in the y di-
rection in 2∼4 s, the translational mode in the y direction is
identifed (Y1), while the one in the x direction is still
identifable from the decay response (Y3). When the exci-
tations are applied in both directions, the two translational
modes are identifed (XY1 and XY3), and XY1 (in the 1st
spectrogram) is more dominant than XY3 (in the 2nd
spectrogram) since the excitation in the y direction has
greater power. Moreover, the rotational mode is identifed in
all three phases (X2, Y2, and XY2). For all modes, the es-
timated frequencies are consistent with the engine fre-
quencies calculated from the model parameters. Te
simulation result demonstrates that the proposed method
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Figure 13: Comparison of damping ratio estimation between TFOMA and EMA: (a) laboratory tests; (b) feld tests.
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Figure 14: TFOMA results of a vibrating plate: (a) plate model; (b) 1st MI spectrogram; (c) 2nd MI spectrogram; (d) natural frequencies and
mode shapes of diferent peak bands.
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can distinguish closely spaced modes under nonstationary
excitations as long as the modes are efectively excited. We
expect the validity of this capability to hold in real-world
scenarios, while it remains to be demonstrated.

7. Conclusions

Tis paper presents an interpretable OMA method in time-
frequency representation. Short-time FDD and a convolution-
based strategy are proposed to obtain singular values and local
mode shape similarity, respectively, which are further fused
into mode indicators by a fuzzy-based strategy. TFOMA is an
explicit tool that provides a global view ofmodal characteristics
and estimates of modal parameters. It is applicable to strongly
nonstationary responses under time-varying loads and con-
ditions and is robust to the length of signals due to its discrete
and localized nature. Its interpretability is enhanced by in-
cluding physical information from the user’s prior knowledge
in selecting parameters and peak bands.

In this paper, TFOMA identifes the rigid-body motions
and bending modes of the sleepers at frequencies up to
6,500Hz in the laboratory tests and 4,500Hz in the feld tests.
Te passage response provides similar results to the impact
response, while the prepassage phase slightly outperforms the
postpassage phase. TFOMA works efectively at speeds up to
200 km/h by using only three sensors, and some high-
frequency modes are identifable when the train is 150m
away. TFOMA provides identifcation results comparable to
EMA, while their deviations refect the dynamical infuence of
train loading and other track components.

In future research, theoretical analyses and numerical
simulations will be carried out to investigate the charac-
teristics of train loads on tracks and decouple the dynamics
of diferent components in a train-track system. Meanwhile,
the proposed method will be further improved to provide
adaptive time and frequency resolutions (especially for
signals with signifcant nonstationarity or nonuniform
frequency bands) and to more accurately estimate damping
ratios for nonlinear structures with dense modes. Moreover,
the uncertainty of modal analysis will be quantifed so as to
assess the confdence level of identifcation results.
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