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Operational modal analysis (OMA) enables the identification of modal characteristics under operational loads and conditions.
Traditional frequency-domain methods cannot directly capture modal changes over time, while existing time-frequency rep-
resentations are not sufficiently interpretable due to spurious modes and implicit parameter design. This paper develops a new
OMA method in time-frequency representation based on frequency-domain decomposition (FDD). Short-time FDD and
a convolution-based strategy are proposed to obtain singular values and local mode shape similarity, respectively, which are
further fused into mode indicators by a fuzzy-based strategy mimicking the modal assurance criterion. The method provides not
only a global view of the modal characteristics over time and frequency but also estimates of the modal parameters. It is applicable
to strongly nonstationary responses under time-varying loads and conditions. All the parameters explicitly affect the time-
frequency representation, and the interpretability is enhanced by including physical information from the user’s prior knowledge
in selecting parameters and peak bands. The proposed method is validated based on a study of railway sleepers under train passage.
The rigid-body motions and bending modes are identified at frequencies up to 6,500 Hz in laboratory tests and 4,500 Hz in field
tests at speeds up to 200 km/h. The identified natural frequencies and mode shapes agree with experimental modal analysis (EMA).
The proposed method outperforms EMA in terms of broad frequency range and low measurement cost and can be potentially
applied to structural health monitoring under operational conditions.

1. Introduction

Modal analysis is widely used in structural dynamics and
structural health monitoring (SHM). In many cases of ex-
perimental modal analysis (EMA), it is difficult or expensive
to manually excite a structure with a hammer or shaker [1]
or to analyze changes in modal properties under varying
loading conditions. Operational modal analysis (OMA)
enables modal characteristics to be identified solely based on
the response of a structure under operational loads and

conditions. It does not require manual generation and
sensing of excitations and is becoming increasingly popular
in SHM.

OMA methods are generally classified into time-domain
methods and frequency-domain methods. Time-domain
methods are based on the analysis of time histories or
correlation functions, e.g., natural excitation techniques,
autoregressive moving average, stochastic subspace identi-
fication, blind source separation, and the Bayesian time-
domain approach [2-4]. They are usually computationally
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demanding and require proper selection of model order and
the exclusion of spurious modes due to numerical com-
putation [1, 2]. Frequency-domain methods are based on the
Fourier spectrum or power spectral density (PSD), which are
naturally more interpretable. The most basic frequency-
domain method is the peak-picking method [1, 2], which
considers one mode at a time. Least square frequency
methods [5, 6] identify multiple modes together by itera-
tively estimating a parameterized spectrum. Furthermore,
Bayes’ theorem is incorporated to infer probability distri-
butions of modal parameters [7], such as the spectral density
approach [8], Fourier transform approach [9], Markov chain
Monte Carlo approach [10], and expectation-maximization
approach [11]. These Bayesian methods provide a rigorous
formulation that makes full use of measurement data, but
they face many challenges in solving ill-conditioned prob-
lems and estimating closely spaced modes [12].

Frequency-domain decomposition (FDD) is an exten-
sion of the peak-picking method, which can identify closely
spaced modes and does not require numerical iterations [2].
The method was first used for modal analysis in [13] and
then systematized to identify natural frequencies and mode
shapes under broadband excitations in [14]. Since then, it
has been applied to the SHM of many engineering structures
[15-19]. Meanwhile, many variants of the FDD method have
been proposed in the literature. The estimation of damping
ratios is achieved by converting the PSD back to the time
domain (known as enhanced FDD) [20, 21] or by fitting the
PSD in the narrow frequency band of a mode [22, 23]. The
FDD method is further adapted for nonstationary responses
or heavily damped structures by jointly using two PSD
estimates and detrending the correlation function [24, 25].
Moreover, model errors and measurement noise are in-
corporated into the analysis by estimating the PSD matrix
via maximum likelihood [26].

The FDD-based methods can produce a spectrum
describing the dominance of modes in frequency but
cannot directly capture the change of modal character-
istics over time. To address this issue, a time-frequency
representation is needed. Time-frequency methods based
on blind source separation were developed [27, 28], but
they may produce spurious modes, and the numerical
accuracy is sensitive to the number of sensors. As
a popular time-frequency analysis method, continuous
wavelet transform (CWT) was combined with ridge ex-
traction in [29-32], but the performance of ridge ex-
traction is sensitive to noise. Furthermore, CWT was
combined with singular value decomposition, but proper
selection of the mother wavelet and its parameters can be
tricky because they are not directly related to structural
dynamics, and a nonstationary signal over a long time
horizon still needs to be split into segments [33, 34]. Thus,
spurious modes and implicit parameter design reduce the
physical interpretability of OMA. To the best of our
knowledge, no existing method can produce a time-
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frequency representation indicating both the domi-
nance of structural modes and the correlation of their
mode shapes.

This paper develops a new OMA method suitable for
strongly nonstationary responses by extending the FDD
method to a time-frequency representation. A study of
railway sleepers under train passage is used to showcase the
proposed method. EMA, especially hammer tests, has been
widely applied in the modal analysis and SHM of railway
tracks [35-37], whereas the application of OMA is rare [38].
Furthermore, the characteristics of the train-induced load on
a sleeper vary considerably as the train approaches, passes,
and leaves, which further affect the stiffness and damping of
track components [39-41]. As a result, the sleeper vibration
in response to train passage is significantly nonstationary. In
addition, the damping effect from rail pads and ballast makes
modal identification more challenging.

The main contributions of this paper are summarized as
follows. First, the proposed method incorporates the in-
terpretability of FDD into time-frequency representation. It
can produce spectrograms indicating the dominance of
structural modes and also the local similarity of their mode
shapes. All the parameters explicitly affect the time-
frequency representation and can be selected based on the
physical information from the user’s prior knowledge.
Second, the proposed method provides not only a global
view of the modal characteristics over time and frequency
but also estimates of the modal parameters. It is applicable to
strongly nonstationary responses under time-varying loads
and conditions and is also robust to the length of signals.
Third, the proposed method is demonstrated to identify the
rigid-body motions and bending modes of railway sleepers
in different train passage phases and at different speeds. This
paper also showcases its capability to distinguish closely
spaced modes using numerical simulation.

The remainder of this paper is organized as follows. In
Section 2, the fundamentals of FDD are briefly introduced.
In Section 3, the new OMA method and the corresponding
parameter selection strategy are proposed. In Section 4, the
proposed method is validated through theoretical analysis
and laboratory experiments. In Section 5, the proposed
method is applied to field tests and compared with EMA.
Finally, some discussions are presented in Section 6, and the
conclusions are summarized in Section 7.

2. Fundamentals of FDD

Structural responses are usually measured by accelerometers
at a sampling frequency f;. Estimating the PSD matrix of the
response is the first step in FDD, for which Welch modified
periodogram method [42] is widely used owing to its
computational efficiency [2]. First, the measured response is
divided into n. overlapped (overlap ratio a;,) segments of
equal length ny,, and a window function tapers each segment
to reduce the leakage effect. The recommended overlap ratio



Structural Control and Health Monitoring

o, and window function are 0.5 and Hanning window,
respectively [42]. Then, the modified periodogram I;(f,) is
calculated for each windowed segment based on the fast
Fourier transform (FFT), where f, is the n-th discrete fre-
quency as follows [42]:

-1
fnzn_fs nzo,...,L)’@_ (1)
ny, 2 2

Next, the PSD matrix at each frequency f, is estimated by
averaging the periodograms over all n. segments as follows
[42]:

Sy (f) = Y L(F,) o)

¢ k=1

Once §Yy (f,) is obtained, singular value decomposition
(SVD) is applied as follows [2]:

gYY (fn) = U(fn)v(fn)U(fn)H’ (3)

where V(f,) is a diagonal matrix with singular values
arranged in descending order and U(f,) is a unitary
matrix containing the singular vectors corresponding to
the singular values. At each frequency f,,, a singular value
in V(f,) indicates the contribution of the corresponding
singular vector in U(f,), just as a modal response in-
dicates the contribution of the corresponding mode
shape based on the modal expansion of the structural
response [2].

Mathematically, the number of segments n. in PSD
estimation determines the number of nonzero singular
values in V(f,,) at each frequency [14], and multiple nonzero
singular values allow for the identification of closely spaced
modes. All nonzero singular values can be plotted in
a spectrum, where a resonance peak indicates the possible
existence of a mode at the corresponding frequency. To
further confirm such a mode, the singular vector of the peak
is usually compared with other singular vectors at its ad-
jacent frequencies. A popular scheme to quantify the sim-
ilarity between two vectors is the modal assurance
criterion (MAC) 2], denoted as MAC(p, q), which is equal to
0 (or 1) when the two vectors, p and g, are orthogonal (or
proportional). If the singular vectors in the vicinity of a peak
are of high similarity (MAC greater than a threshold), they
are identified as belonging to the same dominant mode
(2, 24].

Once a mode is confirmed, its modal parameters can be
estimated following the strategy of enhanced FDD [20, 21].
First, an auto PSD function is created using the identified
singular values at the corresponding frequencies, repre-
senting an equivalent single degree of freedom system. Then,
an inverse FFT is applied to the auto PSD to obtain an
autocorrelation function in the time domain. The zero
crossings of the autocorrelation function can give an esti-
mate of the damped natural frequency, while the extremes
are used to estimate the logarithmic decrement § through
linear regression. Further, the damping ratio is calculated as
follows [20, 21]:

0
e “

Finally, a real-valued mode shape vector can be obtained
from each of the identified singular vectors. A simple ap-
proach [2] is to normalize the complex singular vector by the
maximum absolute value of its components and then rotate
each component to 0°(or 180°) if its phase lies in the first or
fourth (or the second or third) quadrant. A mode shape
vector can be displayed with respect to sensor positions in
a static plot. It is noteworthy that the problem of spatial
aliasing can occur when the number of sensors is in-
sufficient. In this case, the identified mode shape should be
interpreted carefully.

In general, the validity of FDD is based on the as-
sumptions of white noise excitations, low structural
damping ratios, and orthogonal mode shapes for closely
spaced modes [24]. If these assumptions are not fully sat-
isfied or if measurement noise is present, the identification
result is an approximation to real modal characteristics
(24, 43].

3. Time-Frequency Representation of
OMA (TFOMA)

This paper develops a new OMA method, named, TFOMA,
by extending the FDD method to a time-frequency repre-
sentation. Figure 1 shows its framework. First, short-time
FDD and a convolution-based strategy are proposed to
obtain singular values and local mode shape similarity,
respectively. Then, they are fused into mode indicators by
a fuzzy-based strategy, and modal parameters are further
estimated. Sections 3.1-3.3 will introduce these main steps,
and Section 3.4 will discuss the parameter selection strategy.

3.1. Short-Time FDD (STFDD). In FDD, the Fourier
transform is used to average the frequency information over
the entire signal time, which is theoretically applicable to
stationary processes. The short-time Fourier transform [44]
is a modified version of the Fourier transform for strongly
nonstationary signals. We apply a similar strategy to FDD as
follows and name it short-time FDD (STFDD):

STEDD{y (s)} (, f) = FDD{y (s)r (s — )} (f), (5)

where y(s) is the vector of synchronized measurement from
multiple sensors at sampling time s and r(s —t) represents
a rectangular window centered at ¢.

As illustrated in Figure 2, y(s) is broken into segments of
equal length with an overlap ratio «,, and the procedures of
PSD estimation and SVD are applied to each segment,
producing a series of singular value matrices V(t, f) and
singular vector matrices U(t, f). The k-th diagonal term in
V(t, f) is denoted as v, (¢, f), and the k-th singular vector in
U(t, f) is denoted as u(t, f). At the k-th level, a singular value
spectrogram can be obtained by plotting v, (t, f) over time
and frequency with color mapping. According to Section 2,
the number of effective spectrograms is equal to the number
of nonzero singular values, which is further equal to n. used
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in PSD estimation. It is noteworthy that STFDD also holds
the drawbacks of STFT, the most significant of which is the
trade-off between time and frequency resolutions (discussed
in Section 3.4).

3.2. Local Mode Shape Similarity (LMSS). A peak in a sin-
gular value spectrogram indicates the possible existence of
a structural mode. According to MAC, a mode is effectively
dominant when the singular vector of the peak has a high

a b
k=Y Y wdhdf) MAC(uc(t, fyu (t+de- AL, f +df - Af)),

dt=—adf=—b

where a and b are the half kernel sizes (number of elements)
in time and frequency, respectively, At and Af are the time
and frequency resolutions, respectively, and w(dt, df) rep-
resents the weight assigned for each element in the kernel.

w(dt,df) = w, (dt, df)

similarity to the singular vectors in its vicinity. To enable
comparisons in both time and frequency dimensions, we
propose a convolution-based strategy to quantify the local
similarity of singular vectors. In a two-dimensional repre-
sentation, e.g., an image, convolution works by applying
a kernel to each location and evaluating the central element
based on all elements in the kernel [45, 46]. In the time-
frequency representation, we adapt it to compute the fol-
lowing scalar, named, local mode shape similarity (LMSS):

(6)

LMSS is a weighted sum of MAC values between the
central element and all other elements in a kernel. In this
paper, a separable kernel with Gaussian functions [46, 47] is
used, and the weights are determined as follows:

ifdt =0anddf =0,

(7)

T Y, w0<dt’, d f’) ~ 0, (0,0)

where the weight of the central element is zero and wy(dt, df)
is the unnormalized weight calculated based on the fol-
lowing Gaussian functions:

dr’
wO (dt, df) = eXp - F . eXp —2(7—2 . exp
t f

, otherwise,

Cdvp (dndf)’

2 >
20,

(8)
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where dv(, p (dt, df) denotes the logarithmic difference in
singular values with respect to the central element, as cal-
culated as follows:
dvp (dt,df) = log[v (¢t +dt- At, f +df - Af)]-log[w (t.)]. 9)
Furthermore, 0, 05 and o, are standard deviations
characterizing the decay rates of the weight as d¢, df, and dv
increase, respectively. We recommend determining them as
follows:
_a+l b+1 . - 1 Z“: zb: [dv (dtdf)]z (10)
%73 YT Pw T \@arn-@brn-1 g e, e

Equations (8)-(10) reflect that, from the kernel center to
the kernel boundary, the weight decreases from one to zero
as dt or df increases, according to the three-sigma rule. This
property allows comparisons to be made in a localized
manner with smooth transitions at kernel boundaries.
Additionally, the weight is lower when an element’s singular
value deviates more from the center’s. This property en-
hances the adaptability of LMSS to structural modes with
different bandwidths since the weight decays faster in the
case of a sharper resonance peak and vice versa. Meanwhile,
it allows LMSS to better capture the shift in resonance
frequency over time.

Figure 3 illustrates the calculation process of LMSS at the
k-th level. An LMSS spectrogram can be obtained by plotting
Ii(t, f) over time and frequency with color mapping. The
value of each point indicates the similarity of mode shapes
between that point and its vicinity, and a peak region in-
dicates a high local similarity at that time and frequency,
which can help to confirm the dominance of a mode.

3.3. Mode Indicator (MI). After obtaining the singular value
spectrogram and the LMSS spectrogram, structural modes
can be identified from regions with both large singular values
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and large LMSS. In this paper, a fuzzy-based fusion strategy
is proposed to fuse v, (t, f) and [, (¢, f) at each time and
frequency into a mode indicator (MI), denoted as MIi(t, f).
Fuzzy set theory quantifies the membership of an element in
a set through a membership function [48], which is usually
used to handle vague information, e.g., fusing multiple
images [49-51]. It is suitable for computing MI because
there is no precise relationship to determine the existence of
modes based on v, (¢, f) and [ (¢, f) but rather a soft and
flexible thresholding strategy according to MAC.
First, all v (t, f) and [i(t, f) are normalized as follows:

V(o f) = log (v (¢, f)) — min (logv (£, f))
K5I max (log (v (¢, f))) - min (log (v, (¢, £)))’

I (t, f) — min (lk (t, f))
max (I, (¢, f)) - min ([, (¢, )

k(t, f) =
(11)

Then, we use the following membership function to
compute the MI:

MI (¢, ) = [vi(t, O™ e HTY

where A, and A; are the contribution exponents of v’ (¢, f)
and I, (t, f), respectively.

Figure 4 illustrates the calculation process of MI, in
which the membership function with A, =1 and A;=3 is
shown as an example. It can be seen that MI(t, f) ap-
proaches 0 when v, (t, f) or Ii(t, f) is small and tends to 1 as
vi(t, f) and [;(t, f) increase. Meanwhile, I (¢, f) is more
dominant than vy (£, f) owing to the selection of 1, and A;. As
a consequence, when [)(t, f) is less than 0.45, MI(t, f) is
lower than 0.1 even if v (t, f) is large. The selection of A, and
A; enables the proposed fuzzy-based strategy to mimic
a thresholding strategy of MAC and provide a soft and
interpretable fusion between v (¢, f) and [i(¢, f).

(12)

As shown in Figure 4, the computed MIs at the k-th level
MI(t, f) are plotted as an MI spectrogram with peak regions
indicating the presence of structural modes. Then, a fre-
quency band that peaks continuously over time at physically
meaningful frequencies can be selected for each mode. To
further estimate the modal parameters of a mode, the sin-
gular values in its frequency band with MIs greater than
a threshold are selected to create auto PSD functions, which
can then be used to estimate the natural frequency and
damping ratio at each time instant (see Section 2). Mean-
while, the singular vectors corresponding to the selected
singular values can be converted into mode shape vectors
(see Section 2). Therefore, the proposed method provides
not only a global view of the modal characteristics over time
and frequency but also estimates of the modal parameters.

3.4. Parameter Selection Strategy. The time-frequency rep-
resentation of the proposed method depends on the selec-
tion of its parameters. Sufficient time and frequency
resolutions are necessary for clear visualization of modal
characteristics and accurate estimation of the modal pa-
rameters. The frequency resolution Af and the time reso-
lution At are determined as follows:

Af:i,: At=”b(1—“s)[”cf(1—“b)+“b]_

We propose the following strategy to select all the pa-
rameters of the TFOMA method.

(13)

Step 1. Select the number of segments n. in PSD estimation.
As mentioned in Sections 2 and 3.1, n. determines the
number of nonzero singular values. For structures with
separated modes, n. can be set to 1, whereas in cases of
closely spaced modes, n. should be greater than the maxi-
mum number of physical modes in each identified
frequency band.
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Step 2. Select the segment length #, in PSD estimation and
the overlap ratio «, in STFDD. According to (13), they
directly affect Af and At: larger ny, leads to smaller Af but
larger At, and larger «, leads to smaller At but higher
computational costs. We recommend first selecting n;, to
provide sufficient frequency resolution, e.g., at least five
discrete frequencies in the frequency band of a mode. Then,
as can be selected to provide sufficient time resolution, e.g.,
At to be shorter than the nonstationary behavior of the
signal.

Step 3. Select the half kernel sizes a and b. Under defined At
and Af, the kernel lengths in time and frequency are
(2a+1)-At and (2b+ 1) - Af, respectively. For comparisons
in a localized manner, we recommend setting a and b as
small integers, such as 3~10, to ensure that (2a+ 1) - At and
(2b+ 1) - Af are shorter than the duration and bandwidth of
each mode, respectively.

Step 4. Select the contribution exponents A, and A. As
exemplified in Section 3.3, we recommend setting A,;> 1, =1
to mimic a thresholding strategy of MAC. The larger A, is, the
greater the influence of LMSS on ML, i.e., a higher LMSS is
required to reach a certain level of MI.

All parameters in the TFOMA method explicitly affect
the time-frequency representation. They can be selected and
tuned according to the user’s prior knowledge of the
structural dynamics and goals of analyses.

4. Validation via Laboratory Tests

4.1. TFOMA of an In Situ Sleeper. We validate the proposed
TFOMA method on the V-Track test rig at TU Delft [52],
which resembles train-track interaction. As shown in Fig-
ure 5, the track consists of rails, sleepers, foundations, and
fastening systems. A beam is driven by a motor to rotate
around the central axis of the test rig, and the wheel at the
end of the beam rolls along the track. The wheel is vertically
loaded by a suspension system, and the static wheel load is

1,300 N in our measurement. There are four rail joints in the
test rig. When the wheel passes over these joints, significant
impacts occur.

We instrument one sleeper with eight accelerometers
(PCB 356B21) on its top surface. The vertical accelera-
tions are measured at the sampling frequency of
f¢=102,400 Hz. The running speed of the wheel is 8 km/h.
Figure 6(a) plots the measured sleeper accelerations with
four phases distinguished, which shows significant
nonstationarity. Phase A is caused by the passage over
a joint that is several sleepers away from the instru-
mented sleeper. It is similar to the response of a hammer
test. Phases B~D belong to the response caused by the
wheel passage, divided into prepassage, underpassage,
and postpassage phases.

We apply the TFOMA method to the measured data with
the parameters listed in Table 1. The spectrograms of sin-
gular value, LMSS, and MI are shown in Figure 6 at fre-
quencies up to 6,500 Hz. As shown in Figures 6(c) and 6(d),
most of the large singular values are located below 2,000 Hz,
while large LMSS is present throughout the frequency range.
By fusing the singular values with the LMSS, we obtain the
MI spectrogram in Figure 6(b), which shows peak regions
with sharper edges than those in Figures 6(c) and 6(d),
making them easier to be picked up.

In the MI spectrogram, the impact response in Phase A
produces a vertical ridge, along which the MI peaks at some
frequencies. In Phases B and D, a number of peak bands can
be observed, which continuously dominate at frequencies
close to the peaks in Phase A. The peaks in Phase C are less
clear as they belong to the forced response phase. We select
ten peak bands in Phases A, B, and D, as labeled in
Figure 6(b), where the label height represents the bandwidth.
At low (or high) frequencies, the density of peak bands is
high (or low), and their bandwidths are narrow (or wide). In
each selected band, we use points with MI greater than 0.4
for further parameter estimation, and the identified mode
shapes and average natural frequencies are shown in Fig-
ure 7. Most identification results are consistent between
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FIGURE 5: The V-Track test rig and the instrumented sleeper.

Phases A, B, and D, though the passage response suffers
more nonstationarity and noise.

4.2. EMA and Theoretical Analysis of a Free Sleeper. To verify
the above identification results, we perform hammer tests on
a free sleeper of the same type on an elastic foundation. Since
the sleeper is free of rail fasteners, it is instrumented with
more distributed accelerometers (PCB 356B21), as shown in
Figure 8(a). We use a small hammer (Briiel & Kjeer 8206-
003) to generate the impact at each of the four locations.

To reduce the effect of leakage and noise, the measured
response from each sensor is tapered by an exponential
window, and the measured force is tapered by the same
exponential window and also a force window [53]. Then, for
the i-th sensor (i=1, .. .,9) in response to the impact at the j-
th location (j=1, ..., 4), we compute the cross-spectrum
between the acceleration and the force S, ’, (f) and the auto-
spectrum of the force Spip, f) through the Fourier trans-
form. Furthermore, the frequency response function (FRF),
more specifically the receptance function, is calculated as
follows [54]:

S“in (f)

H.(f)=—5— .
1] (f) Spjpj (f) (27Tf)2

(14)

sin(k,L) — sinh (k,,L)

An FRF is a complex function of frequency that describes
the response of a structure at the sensor position to exci-
tation at the impact location. A resonance peak indicates the
presence of a structural mode at the corresponding fre-
quency. The mode shape vector can be obtained by com-
bining the imaginary parts of the FRFs from different sensors
as follows [54]:

[Im(H,;(f), Im(H,; (), -, Im(Hy;(N))]"
(15)

At each impact location, we repeat the test three times
and average the FRFs as the final result. For example,
Figure 8(b) plots the magnitude of the FRFs for all sensors in
response to Impact 2. Four resonance peaks are identified
from all FRFs at different impact locations, labeled as PO~P3,
and their mode shapes and average frequencies are shown in
Figure 8(c).

Meanwhile, we calculate the theoretical mode shapes by
simplifying the sleeper as a free-free beam. Based on its
boundary conditions, the #n-th order mode shape is given as
follows [55]:

w, (x) = [sinh (k,x) + sin (k,x)] +

where L is the beam length, x is the coordinate along the
beam (0 < x < L), sinh and cosh are hyperbolic functions, and
k, is the n-th (numerical) solution of the following equation
of k:

cosh (kL)cos (kL) = 1. (17)

cosh (k,L) — cos(k,L)

[cosh (k,x) + cos(k,x)], (16)

The mode shapes of a free-free beam with L =25 cm are
computed and plotted in Figure 8(c). Clearly, the mode
shapes of P1~P3 are in good agreement with the theo-
retical mode shapes of the first three bending modes,
respectively, and PO is the rigid-body motion of the
sleeper.
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4.3. EMA of the InSitu Sleeper. Hammer tests are also
performed on the in situ sleeper in Section 4.1 using the same
hammer. The locations of impacts and sensors are shown in
Figure 9(a). We repeat the test five times at each location,
which is more than that of the free sleeper due to lower
repeatability. The average FRFs for the first two impact
locations are shown in Figure 9(b) as examples. Seven
resonance peaks are identified, labeled as Q1~Q7. The
corresponding natural frequencies and mode shapes are
shown in Figure 9(c).

Compared with the free sleeper, the in situ sleeper shows
more resonance peaks below 2,000 Hz, and their mode
shapes deviate for different impact locations. Q1~Q4 cor-
respond to rigid-body motions but are not comparable to PO
due to different boundary conditions. Q5~Q7 correspond to
P1~P3 (the first three bending modes), respectively. The
results of Q5 and P1 show significant deviations. The fre-
quencies of Q6 and P2 are consistent, while those of Q7 and
P3 deviate slightly. Besides, the peaks of the in situ sleeper are
smoother due to the damping effect. The above findings
reflect the differences in modal characteristics due to dif-
ferent boundary conditions and also the influence of other
track components.

4.4. Comparisons between TFOMA and EMA. By comparing
the identification results of TFOMA and EMA for the same
in situ sleeper, we find that:

(i) A1/B1/D1~A4/B4/D4 in TFOMA correspond to
Q1~Q4 in EMA (the rigid-body motions). They
have similar frequency bands, but the bounce
motion is more dominant in TFOMA, while the roll
motion is more dominant in EMA. This indicates
that the rigid-body motions are sensitive to the
characteristics of excitations.

(ii) A5/B5/D5 in TFOMA corresponds to Q5 in EMA
(the 1*' bending mode) with an MAC of 0.92/0.93/
0.44. Among the first three bending modes, the 1%
bending mode is the most dominant in both

TFOMA and EMA. The frequencies of TFOMA are
lower than that of EMA, and A5/B5 provides
a higher MAC than D5.

(iii) A8/B8/D8 in TFOMA corresponds to Q6 in EMA
(the 2™ bending mode) with the MAC of 0.95/0.98/
0.87. Their frequencies are consistent.

(iv) A10/B10/D10 in TFOMA corresponds to Q7 in
EMA (the 3" bending mode) with the MAC of 0.98/
0.97/0.98. Their frequencies are consistent.

(v) B6/D6/A7 and A9/B9/D9 in TFOMA belong to extra
modes related to other track components, e.g., rails.

In summary, TFOMA provides comparable identifica-
tion results to EMA. The differences in the identified modal
parameters reflect the influence of a moving train load on
track dynamics. Among the three phases in TFOMA, the
impact response and the prepassage phase outperform the
postpassage phase in terms of mode shape consistency
with EMA.

5. Application to Field Tests

5.1. TFOMA of an InSitu Sleeper. We test the proposed
method using sleeper vibrations measured at the Faurei
Railway Test Center in Romania. The track consists of UIC60
El rails, Vossloh W14 fastening systems, and B70-W60
prestressed concrete sleepers. As shown in Figure 10, four
accelerometers (Briiel & Kjeer 4514-004) are mounted on
a sleeper. A train passes over the instrumented sleeper at
three different speeds —15 km/h, 80 km/h, and 200 km/h. The
vertical accelerations are recorded at a sampling frequency of
25,600 Hz. We find that Sensor L2 was not functional, most
likely due to a loose installation, so we use the data from the
other three functional sensors for analysis.

The TFOMA method is applied to the measured data
with the parameters listed in Table 2. According to Section 4,
only the prepassage phases are studied, while different
lengths of signals are used due to the difference in speeds.
The raw data and the corresponding MI spectrograms up to
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FIGURE 7: Modal identification results of laboratory tests.

4,500 Hz are shown in Figure 11. Generally, the patterns of
MI are similar at different speeds. Some peak bands are wide
in frequency, whereas others are narrow. The low-frequency
bands are more pronounced at low speeds, especially when
the train is close to the sleeper, whereas the high-frequency
bands are more pronounced at high speeds and continuously
dominant even when the train is still far away from the
sleeper. In addition, some peak bands are not horizontal, i.e.,
their frequencies change as the train approaches.

We select fourteen peak bands at each speed, labeled as
01~014. The first four columns of Table 3 present the
characteristics of each peak band and also the average
natural frequencies and mode shapes. In each plot, the
identified mode shapes at a certain speed are plotted in
a light color, and their average is plotted in a dark color. In
general, the identified frequencies and mode shapes are
similar at different speeds while varying slightly due to the

influence of train speed and noise. More discussion is
provided in Section 5.3.

5.2. EMA of the In Situ Sleeper. For comparison, we perform
hammer tests with the same setup in Figure 10. All the four
sensors were functional in the tests. We generate impacts at
five locations using a big hammer (PCB 086D50) and a small
hammer (PCB 086D05). At each location, we repeat the test
five times with each hammer. Considering their different
excitation frequencies [56], the results of the big and small
hammers are used for analyses below 2,000 Hz and above
500 Hz, respectively. The average FRFs are plotted in Fig-
ure 12, and eleven resonance peaks are identified, labeled as
E1~E11. Compared to the sleeper on the test rig, the natural
frequencies of the real sleeper are much lower due to its size
and material. Most of the resonance peaks, especially at high



Structural Control and Health Monitoring 13

I = 10N
: Z AN
E w0f
mpact 1 < 107 N\
3
g 100
o
Q
g 107
~
1010 1 1 1
0 1000 2000 3000 4000 5000 6000
Frequency (Hz)
Sensor L4: —— Sensor L1: —— Sensor R2:
Sensor L3: —— Sensor M: —— Sensor R3:
Sensor L2: —— Sensor R1: —— Sensor R4:
i
i
()
= =
g 10 PO (100 Hz) g 10 P1 (1200 Hz)
o 0.5 = 05 n=1
L k%
[} A
- 0.0 ~ 0.0
! £
S -05 s -05
g g
© -1.0 © -1.0
z z
-10 -5 0 5 10 -10 -5 0 5 10
Sensor Position (cm) Sensor Position (cm)
g 10 § 10
£ P2 (3150 Hz) - P3 (6040 Hz)
L5 Q
E’ 0.5 =2 g 0.5 n=3
- 0.0 — 0.0
= 8
= -05 g -0.5
g g
S -1.0 S -1.0
z z
-10 -5 0 5 10 -10 -5 0 5 10
Sensor Position (cm) Sensor Position (cm)
—— Theoretical: —eo— Impact 3:
—e— Impact 1: —e— Impact 4:

—eo— Impact 2:
()

FIGURE 8: EMA and theoretical analysis of a free sleeper: (a) test setup; (b) FRFs of all sensors for impact 2; (c) mode shapes and frequencies
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frequencies, are smooth, which is consistent with the finding
in Section 4.3. The average frequency and mode shapes for
each resonance peak are shown in Table 3, where the
identified mode shapes deviate for different hammers and
impact locations.

5.3. Comparisons between TFOMA and EMA. Moreover, we
compute the theoretical mode shapes of a free-free beam of
length 2.5m according to (16) and (17). Furthermore, in
Table 3, we match the identified modes of TFOMA with
those of EMA and theoretical analysis while referring to the
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spectrograms at 15km/h, 80 km/h, and 200 km/h.
characteristics of sleeper modes reported in [35, 57]. The (iv) Both TFOMA and EMA identify extra modes

average MAC in Table 3 quantifies the consistency of mode
shapes between TFOMA and EMA. The main findings are
summarized below:

(i) TFOMA identifies the rigid-body motions of the

(ii) In terms of mode shapes, both TFOMA and EMA

(iii) The frequencies of E1, E2, and E4 are close to those

probably related to other components.

Furthermore, the pros and cons of TFOMA and EMA
are discussed as follows:

(i) TFOMA can capture the change of modal charac-
teristics over time and frequency, whereas EMA
cannot.

sleeper at frequencies lower than those of the
bending modes, which is consistent with [35, 57].
The bounce motion is more pronounced, which is
consistent with the laboratory test. The rigid-body
motions are not observed in EMA because the
impact forces cannot effectively excite such modes.

(ii) TFOMA works under operational loads in a broad
frequency range, but the excitation spectrum is
usually not flat, which can cause errors in modal
identification. EMA works under controlled exci-
tations but requires manual impacts and also dif-

consistently (with high MAC values) identify the 1%, :
ferent hammers for different frequency ranges.

27 g4 5t 7t gth and 10™ bending modes.
However, neither identifies the 3™, 6", and 9™
bending modes, probably because these modes are
less dominant or the sensors are close to the nodes.

(iii) For a complex coupled system (e.g., a train-track
system), the response of a component (e.g.,
a sleeper) depends not only on its own modal
characteristics but also on the dynamical influence
of other components (e.g., trains, rails, fasteners,
and ballast). As a consequence, extra modes can be
more pronounced in OMA than in EMA.

reported in [35, 57] under unloaded conditions. For
the 1°* and 2™ bending, the frequencies of TFOMA
deviate from those of EMA, reflecting the influence
of the train load. For high-order modes, the fre-
quencies of TFOMA and EMA are very close.

(iv) For each mode, the mode shapes identified by
TFOMA spread within a certain variance, while



17

Structural Control and Health Monitoring

ZH 090 =Y

ApySiys sdoap

"apow BuIpuaq 9 oY) Surpuaq . ’
780 ZH 001C /9 _osy Kouanbaxy syf -spaads raysiy je 60
saynuapt YINH 10U YINOILL IoYIPN el Mm mmmmn m_um paounouoid arour st I
(Irews) ZH S0LT="Y
JUSISISUOD ww« Surpusq © ZHo0L ¢ 21 G691 =05 spaads 1oydy
sapuanbaiy oY) orym ‘opowr Surpuaq c 66°0 519) 9q Je JOPIM pue Y /un|gJ Je 80
@S W Amuapt YING pue VINOAL o [ NW QMZ w ZH 67LT=5Y moireu st pueq Louanbaiy s
sspow ZH 0821 = °0Y SaLIEpPUNOQ
- - ¥€0 ZH0sCI e st z —08 1830 JNOYIM o[Iym LO
B2 AJBUIPL VINE PUT VNOL NM mmm - m% opmm st pueq Louanbaig si
JU2)SISUOD dIE (rews) ZH 0901 =%/
I _o8
sorousnbaly A1) A[ryM ‘opotw Supusq maﬂwﬁ 660 Nm%oe v ZHOS0T="%/ /Un{08 pue Y/unSy Ie pueq o
. £(819) o JUBUTWIOP ISOW ) ST I]
Wb oW Anuspt VINE pue VINOAL 4 THCL6 ZH 0901="°Y
ZH 008 =Y
apowr Surpuaq ¢ oy} Surpuaq . { X %
SOUNUSPT VNG 10U VINOAL PPN £ 0 ZHO0S9  €d - 7HOo6L=" pyas sdoxp fouanbay i1 SO
¢ zZHO9L=fY
9)e1Adp P ZH 67§ = 00Y spaads mo]
sapuanbaiy Iy} arym opowr Surpus pueq 160 ZH S6€ 4 _ e A[reradss ‘asopd st ureny ¥
I J 1191} 9[IyM “op pueq z H q ZH 0%S = 8/ [Ier [o st uI (0]
pul U} JNUopr VING pue VINOAL P ZHGeg =5y O WUM padunouoxd st 31
— 00T
muﬂucosngwwum_wmﬁ_mﬂ M@Mw Surpua Surpuaq . z “H 56y =" saypeordde uren
. J 124} A[IYM Op Ipuaq o 86°0 H 091 14 ZH06P=" oy se sdoxp Aouonbay 511 €0
1 2 &nuapt VNG pue YINOAL 2 orp=5if
VA — 08
Moy — — — — HoTe="Y 20
. z a1 spaads mof
POQPISH 91} SIYHUSPT VINOAL ZHS6="Y  uoym paounouoid s1e Aayr,
32Uno — — — —
u m Nm mm - om\. ﬂo
ZH 001 ="°"/
adeys IopI sadeys bay IapI sadeys baxy 8a SonsLIa)oeIR I9p1
suosireduwion apoN PIO WMSN opOIN Say PIO POy J "SAY 1St Lo} PIO
stsdTeue [e2n21097, v VN VINOLL

"SIs[eue [ed1)2109Y) pue ‘VINA ‘VINOIL JO SINSaI 9y} usamiaq suostredwo)) :¢ a14v],



Structural Control and Health Monitoring

18

‘JUI}SISUOD oJe

ZH 01ZF =Y

. g Surpuaq . £ spaads 1oydiy je
sapuanbaly IRy} A[IYM ‘Opow Furpuaq o1 860 Lo FHO9TY g Wi ZHO6IF=f  poounouoid arowr st 1y v10
0T 2 Anuapt VNG pue VINOLLL » “ zHO08TE =Y '
“reqruats a1e sadeys SUIbU ZH 014¢ = °0Y soLIepunoq
2pOWI T2 2[TYM Opow SuIpuaq 6 3 P 660 ZHOZLE 01 Iisze =05 TP MO AWM DM €10
$aYRUap! VINH 10U VINOAL JoyieN o ZH Sp9¢ =5 st pueq A>uanbaiy sif
‘JUQ)SISUOD dIe Surpuaq . ZHO0ECE = ooz soyoeoxdde
sarouanbaiy Iy} AIyMm opowr Jurpuaq : ) 660 ZH 00T€ 64 H ZH 0¥z =%/ uren) ) se ApySiys 710
8 2 AJnuspt YINY pue YINOAL o Canogge=sy  Soseeut fouanbay sy
ZHO1LT =Y
660 ZH OON.N”O%.\‘ 110
JURISISUOD a1 Surpuaq ZH 5697 = spaads 1oySry je
sopuanbaiy 1oyy s[ym opowr Surpuaq : , . ZHO0T9C runotord s1ow 1w 4o
L 20 AINUSpI YN PUe VINOAL ; w 2110857 =% P L
. €6°0 2H 0857 =% 010
ZH 05T =Y
adeys BPIO  Hyw sadeys bay bayy 8ay SONSLIDOBIRY)) I9pIO
suostredwo) SpoN Sy SpON Say o
SIsA[eue [ed112109Y], VINA VINOAL

‘panunuo)) ¢ F14V],



Structural Control and Health Monitoring

Z 10° | Z 10,
g o g 9
e 1010 ES E9 EI0 Ell | < 1010 B8 o pio Ell
2 10 B e N N - [ e b
& 10 a 10
g 102 F g 1012 F
~ 10713 1 1 1 1 A~ 10.13 1 1 1 1
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Frequency (Hz) Frequency (Hz)
Sensor L2: —— Big ------ Small Sensor L2: Big ----- Small
Sensor L1: —— Big Small Sensor L1: Big Small
Sensor R1: —— Big Small Sensor R1: Big Small
Sensor R2: —— Big Small Sensor R2: Big Small
(®)
Z 107 fAR % 100 5 gy ot o E6
% 10° = 107p s g E7 B8 B9 g En
g 100 é 1010 k | | I R |
Z 10" 200k :
15
g 10y g v
10-13 L L L Il 10713 L L L L
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Frequency (Hz) Frequency (Hz)
Sensor L2: —— Big ----- Small Sensor L2: —— Big ----- Small
Sensor L1: —— Big Small Sensor L1: —— Big Small
Sensor R1: —— Big Small Sensor R1: —— Big Small
Sensor R2: —— Big Small Sensor R2: —— Big Small
(© (d)
Z 10° i
9
Ew E§  E9 EI0 Ell
e, 10™M
8 -12
g 10
10,13 L L L L
0 1000 2000 3000 4000
Frequency (Hz)
Sensor L2: —— Big ----- Small
Sensor L1: —— Big Small
Sensor R1: —— Big Small
Sensor R2: —— Big Small
(e)

19

FIGURE 12: EMA results of field tests: (a) FRFs for impact 1; (b) FRFs for Impact 2; (c) FRFs for Impact 3; (d) FRFs for Impact 4; (e) FRFs for

impact 5.

those identified by EMA are sensitive to impact

locations and may disappear or be distorted when

the impact is close to a node or an edge.

(v) TFOMA can provide informative results from ac-
celeration measurements of only a few seconds
under operational conditions, whereas EMA re-
quires longer experimental time, more workload,
and temporary operation shutdowns.

6. Discussion

6.1. Estimation of Damping Ratios. 'This paper mainly focuses
on estimating damped natural frequencies and mode shapes.
In this section, the estimation of damping ratios is discussed.
First, for the in situ sleeper in the laboratory tests, the
damping ratio of each peak band is obtained while esti-
mating the natural frequencies in Section 4.1. Besides, we
estimate the damping ratios from the FRFs in Section 4.3



20
0.20 T T T T T
g
é 0.15 - rigidf.body 1
oo motions
‘B o ;
E 010}° 1" bending 3" bending-
-
& .-
& \
It Pe\e
2 0.05 Y 4
< ; oo
e ¥ o
‘o
0.00 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000
Average Damped Natural Frequency (Hz)
-=— EMA -eo- TFOMA Phase B

-eo- TFOMA Phase A -eo- TFOMA Phase D

(a)

Structural Control and Health Monitoring

0.30 T T T T
1* bending

=]

[3%]

(=]
T

Average Damping Ratio
f=]
G

0.10 + . E
. 7"bendin
‘:Z RPN 50 bending 8‘hgbending
0.05 ) AN s 10" bending]
‘* -~ e o
0.00 L - ¥ L L
o 1000 2000 3000 4000

Average Damped Natural Frequency (Hz)

—=— EMA
-eo- TFOMA 15 km/h

(b)

-e- TFOMA 80 km/h
-e- TFOMA 200 km/h

FIGURE 13: Comparison of damping ratio estimation between TFOMA and EMA: (a) laboratory tests; (b) field tests.

using the traditional peak-picking method [58]. Then, for all
the matched modes in Section 4.4, the estimated damping
ratios are plotted against their natural frequencies in
Figure 13(a). For most modes, TFOMA in different phases
produces damping ratio estimates similar to EMA while
underestimating those at low frequencies.

Similarly, the damping ratios of the sleeper in the field
tests are estimated and plotted in Figure 13(b). The results of
TFOMA are similar at different speeds, but the estimated
damping ratios are lower than those of EMA. These de-
viations may come from two sources. On the one hand, the
different loading conditions can lead to different modal
characteristics, including damping ratios. This effect is
pronounced for railway tracks since the train load is
enormous. On the other hand, the estimation based on
a truncated spectrum (either in TFOMA or EMA) can cause
errors, especially when the frequency resolution is low or
adjacent modes affect each other [21, 23]. In summary,
TFOMA can provide accurate damping estimates in the case
of well-separated modes, but it needs further improvement
to handle structures with significant nonlinearity and
dense modes.

6.2. Identification of Closely Spaced Modes. In this paper, the
proposed method is applied to the modal identification of
railway sleepers, where the bending modes of different or-
ders are separated. It has the potential to identify closely
spaced modes by involving multiple nonzero singular values.
This section aims to demonstrate such capability using
a simulation example. As shown in Figure 14(a), a rectan-
gular plate suspended by springs and dampers vibrates in the
x-y plane with three degrees of freedom —x, y, and 6. External
excitation forces are applied at the upper right corner, and
the equations of motion are given as follows:

mx + 2k, x + 2¢,x = P,,

my +2k,y +2c,y =P,

16+ 2bk 60 + 2ak,0 + 2bc, 0 + 2ac 0 = aP , - bP,.
(18)

Based on the parameters and excitations defined in
Table 4, (18) is solved numerically using the Newmark-beta
method [59] with a time step of 0.2 ms. The bidirectional
accelerations of the four edge centers are fed into the
TFOMA method with the parameters in Table 5. The
number of segment n.=2 is used to distinguish the two
translational modes, which are closely spaced since they have
equal natural frequencies due to equal stiffness.

Two MI spectrograms are obtained, as shown in
Figures 14(b)-14(c), with eight peak bands (with MI > 0.8)
identified in different phases of the response. The estimated
natural frequencies and mode shapes are shown in
Figure 14(d). In 0~2s, the translational mode in the x di-
rection is identified (X1), whereas the one in the y direction
is not identified since the excitation is applied only in the x
direction. When the excitation is applied only in the y di-
rection in 2~4s, the translational mode in the y direction is
identified (Y1), while the one in the x direction is still
identifiable from the decay response (Y3). When the exci-
tations are applied in both directions, the two translational
modes are identified (XY1 and XY3), and XY1 (in the 1%
spectrogram) is more dominant than XY3 (in the ond
spectrogram) since the excitation in the y direction has
greater power. Moreover, the rotational mode is identified in
all three phases (X2, Y2, and XY2). For all modes, the es-
timated frequencies are consistent with the engine fre-
quencies calculated from the model parameters. The
simulation result demonstrates that the proposed method



Structural Control and Health Monitoring

L b -
=
¢ m, I
y
i 9
A
X
b

Frequency (Hz)

Frequency (Hz)
N
S
3

(©)

0.8

0.6

0.4

0.2

350
300
250 et
200
150
100
50
Time (s)
(b)
0.8 T T T T
04
=
2
k3]
£ 00Ff
A
>
8
§ 04t
z
v
] | ]
-0.8
_1.2 1 1 1 1
-1.2 -0.8 -0.4 0.0 0.4
Position in X Direction
W Original [ Y2 (241 Hz)
X1 (71 Hz) m XY2 (241 Hz)
B Y3 (71 Hz) B Y1 (72 Hz)
W XY3 (72 Hz) W XYI1 (71 Hz)
X2 (240 Hz)

(d)

21

FiGURE 14: TFOMA results of a vibrating plate: (a) plate model; (b) 1% MI spectrogram; (c) 27 M1 spectrogram; (d) natural frequencies and

mode shapes of different peak bands.
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can distinguish closely spaced modes under nonstationary
excitations as long as the modes are effectively excited. We
expect the validity of this capability to hold in real-world
scenarios, while it remains to be demonstrated.

7. Conclusions

This paper presents an interpretable OMA method in time-
frequency representation. Short-time FDD and a convolution-
based strategy are proposed to obtain singular values and local
mode shape similarity, respectively, which are further fused
into mode indicators by a fuzzy-based strategy. TFOMA is an
explicit tool that provides a global view of modal characteristics
and estimates of modal parameters. It is applicable to strongly
nonstationary responses under time-varying loads and con-
ditions and is robust to the length of signals due to its discrete
and localized nature. Its interpretability is enhanced by in-
cluding physical information from the user’s prior knowledge
in selecting parameters and peak bands.

In this paper, TFOMA identifies the rigid-body motions
and bending modes of the sleepers at frequencies up to
6,500 Hz in the laboratory tests and 4,500 Hz in the field tests.
The passage response provides similar results to the impact
response, while the prepassage phase slightly outperforms the
postpassage phase. TFOMA works effectively at speeds up to
200km/h by using only three sensors, and some high-
frequency modes are identifiable when the train is 150m
away. TFOMA provides identification results comparable to
EMA, while their deviations reflect the dynamical influence of
train loading and other track components.

In future research, theoretical analyses and numerical
simulations will be carried out to investigate the charac-
teristics of train loads on tracks and decouple the dynamics
of different components in a train-track system. Meanwhile,
the proposed method will be further improved to provide
adaptive time and frequency resolutions (especially for
signals with significant nonstationarity or nonuniform
frequency bands) and to more accurately estimate damping
ratios for nonlinear structures with dense modes. Moreover,
the uncertainty of modal analysis will be quantified so as to
assess the confidence level of identification results.
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