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Model Predictive Active Power Control of Waked Wind Farms

Mehdi Vali1, Vlaho Petrović1, Sjoerd Boersma2, Jan-Willem van Wingerden2, Lucy Y. Pao3 and Martin Kühn1

Abstract— In this paper, an adjoint-based model predictive
control (AMPC) is proposed in order to provide active power
control (APC) services of wind farms, even in the presence of
problematic wake interactions. The control objective is defined
to minimize wind farm power reference tracking error. The
non-unique optimal distribution of wind turbine power refer-
ences is a resulting by-product which can be very informative
for other wind farm control methods. The developed predictive
controller employs a medium-fidelity 2D dynamic wind farm
model to predict wake interactions at hub-height of wind
turbines in advance. An adjoint approach as a computationally
efficient tool is utilized to compute the gradient for such a large-
scale system. The axial induction factor of each wind turbine
is considered here as a control variable to influence the overall
performance of a wind farm by taking the wake interactions of
the wind turbines into account. The performance of the AMPC-
based APC is examined for a layout of a 2×3 wind farm in
a wake condition through simulation studies. The results show
the effectiveness of the proposed approach and introduce some
potential studies to improve and extend its performance.

I. INTRODUCTION

Control of turbines in a wind farm is challenging because
of their aerodynamic interactions through wakes. The char-
acteristics of a wake are reduced wind speed and increased
turbulence. The former reduces the total power production
of the farm and the latter leads to a higher dynamic loading
on the downstream turbines. Wind farm control has recently
received much attention in order to lower the levelized cost
of energy, e.g., by minimizing the undesirable effects of
wakes on the power production and fatigue loadings of the
downwind turbines [1], [2].

The idea to maximize the power production of wind farms
in the presence of wakes is to coordinate the control settings
of individual turbines, by taking their wake interactions into
account. Two common approaches for wake control of wind
farms are induction control [3], [4], [5] and wake-steering
control [6], [7], [8]. Furthermore, in order to balance power
supply with demand, a wind farm plant should respond to
grid requirements through control of its power production,
the so-called active power control (APC). Aho et al. [9],
[10] investigate thoroughly providing APC services at the
wind turbine level. Fleming et al. [11] study the automatic
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generation control (AGC) type of APC for a wind farm
plant, in which the total power production should track a
power demand signal provided by the transmission system
operator (TSO), and demonstrate the challenge of providing
APC services in wake conditions elaborately.

The traditional approach for APC of a wind farm is to
distribute the power demand evenly among wind turbines,
which are controlled locally for providing their parts, while
neglecting their wake impacts on the downstream turbines.
This open-loop method yields satisfying power tracking
performance only when enough available power exists, e.g.,
in non-waked conditions of a wind farm or at high ambient
wind speeds [11]. van Wingerden et al. [12] have extended
this approach to incorporate a classical feedback control
to improve the power tracking performance of a waked
wind farm. The total power production is fed back in order
to adjust the pre-selected power set-points, by distributing
wake-induced power tracking errors among the wind tur-
bines. However, the optimal collection of the power set-
points, considering dynamic wake interactions, is still an
open research question.

Shapiro et al. [13] present a model-based receding horizon
control for the wind farm power demand tracking. The
controller relies on a one-dimensional low-fidelity wake
model which assumes equal flow velocity for each row of
wind turbines within a wind farm. However, this assumption
cannot be held when wakes are deflected because of changes
in wind direction. In [13], a 5-minute averaged power pro-
duction of a simulated wind farm, in which the wind turbines
operate with the local greedy control setting, is perturbed
by an AGC signal for specifying the total demand from the
TSO. This power demand might be lower than the available
power of the wind farm when it operates at its global optimal
point considering wake interactions [3], [4], [5]. Several
other studies like [14] have also proposed optimal control
solutions, even though the wake interactions are neglected
in the optimal control problem.

We are developing a closed-loop wind farm control in or-
der to minimize the undesirable effects of wake interactions.
Figure 1 depicts the control architecture of our investigated
optimal control framework for waked wind farms, consisting
of the following four main elements:

1) a simplified model of the wind farm to capture the
dominant waked inflow dynamics [15], [16],

2) an adjoint-based model predictive control (AMPC) to
optimally adjust the wind turbine degrees of freedom,
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e.g., the axial induction factor and yaw angle [17], [18],
3) a state observer for flow field estimation against un-

certainties and mismatches [19], [20],
4) a Large Eddy Simulation (LES) model of the wind

farm in order to test the performance and realization
of the designed controller, under detailed time-varying
interactions with boundary layers [21].
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Fig. 1. Schematic illustration of the closed-loop optimal control of
wind farms. The grey block contains the main components of the
adjoint-based model predictive control (AMPC).

The current paper focuses on the extension of the adjoint-
based model predictive control (AMPC) for providing APC
services of a waked wind farm. An optimal control problem
is formulated for the wind farm power tracking with respect
to the axial induction factor of each wind turbine as a
control input, taking the wake interactions into account. It
employs a two-dimensional dynamic medium-fidelity wind
farm model, the so-called WFSim [15], [16], which enables
the controller to react to changes in wind direction. We
evaluate the performance of the AMPC-based APC for a
layout example of a 2×3 wind farm in a wake condition,
compared with a baseline controller.

Two important notes for this study are that first, we assume
all required state variables Xk for the proposed control ap-
proach are measurable (see Fig. 1). Doekemeijer et al. [19],
[20] have investigated wind field estimation in wind farms,
using a limited number of measurement points. Secondly,
since the main focus of this contribution is in the optimal
control of the wake interactions within a wind farm, we use
WFSim as a wind farm plant. In order to test the insensitivity
of the AMPC, we perturb the plant with disturbances, e.g.,
time-varying changes in wind direction, or the controller with
imperfect measurements and model mismatches.

The remainder of this paper is organized as follows. In
section II, we present briefly the fundamentals of WFSim, a
dynamic control-oriented wind farm model. The main focus
of section III is on the structure of the proposed AMPC-
based APC of waked wind farms. The investigated layout
example, the baseline APC, and wake challenges are intro-
duced in section IV. Then, the performance of the AMPC-

based APC is discussed through simulation studies for the
given wind farm example. Finally, we collect the strengths
and weaknesses of the proposed approach in section V as
conclusions of this contribution. The potential methods for
improving the performance are also outlined.

II. WIND FARM MODEL

This section presents the fundamentals of WFSim [16],
which is a control-oriented dynamic medium-fidelity wind
farm model. The wind flow is modeled using the incompress-
ible 2D momentum Navier-Stokes equations constrained by
the continuity equation [22]:

ρ

(
∂u
∂ t

+∇ ·uu
)
=−∂ p

∂x
+µ∇

2u+Sx, (1)

ρ

(
∂v
∂ t

+∇ · vu
)
=−∂ p

∂y
+µ∇

2v, (2)

∇ ·u = 0, (3)

where ρ is the air density, µ is the dynamic viscosity, p is
the pressure field and u = [u,v]T is the velocity vector field
at hub-height. Sx represents the external source terms in the
x-direction, which is employed for incorporating the wind
turbine models. Equations (1)-(3) are spatially discretized
over a staggered grid of (Nx ×Ny) cells. Furthermore, an
implicit differencing scheme is employed to discretize the
flow model temporally for unsteady solutions.

A wind turbine is modeled using actuator disc theory to
exert a thrust force into the incoming flow and extract a
certain amount of energy from the wind. The thrust force
and the produced power for a single turbine are expressed
as follows [23]:

FT =
1
2

ρAdU2
∞CT (a), CT (a) = 4a(1−a), (4)

PT =
1
2

ρAdU3
∞CP(a), CP(a) = 4a(1−a)2, (5)

where U∞ is the effective wind speed at a far distance upwind
from the rotor disc, Ad the swept area of the rotor plane,
and CT and CP are the thrust and power coefficients of
the turbine, respectively, which are functions of the axial
induction factor a. The latter is a measure of the decrease
in the stream-wise flow velocity at the rotor plane, which is
combined with a first-order lag to model the wind turbine
dynamic inflow as

ȧ =
1
τ
(ac−a), (6)

where ac is the wind turbine control command and τ repre-
sents the aerodynamic time constant.

Considering the induction effect of a rotor disc as

Ud = (1−a)U∞ (7)

enables us to estimate both exerted thrust force and captured
power using the measurable wind velocity Ud at the rotor
plane and the axial induction factor a. Therefore, the ith
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turbine model is incorporated inside the 2D flow model using
the following discretized source term:

Sxi =−FTi

∆yi

Ad
=−2ρ∆yiU2

di
βi, (8)

where ∆yi is the width of the corresponding grid cells where
the ith turbine is located and the averaged rotor velocity Udi is
measured. Note that the virtual control variable βi is defined
as

βi =
ai

1−ai
(9)

to obtain linear expressions of the thrust force and the
captured power with respect to the wind turbine control input.

Finally, the wind farm model over a specified staggered
grid, containing Nt wind turbines, can be represented in a
nonlinear descriptor state-space form as follows

E(Xk)Xk+1 = AXk +B(Xk)βk +b(Xk), (10)

where

Xk =

ūk
v̄k
p̄k

 , βk =

 β1,k
...

βNt ,k

 ∈ RNt×1,

and ūk ∈ R(Nx−3)(Ny−2)×1, v̄k ∈ R(Nx−2)(Ny−3)×1 and p̄k ∈
R(Nx−2)(Ny−2)×1 are the vectors that stack all the velocities
and pressures in every point of the staggered grid at the
time instant k. The matrix E(Xk) represents the spatial
discretization terms of the x and y-momentum and the
continuity equations (1)-(3). The constant matrix A addresses
the temporal discretization of the flow depending on the
chosen sampling time. The matrix B(Xk) represents the linear
expression of the thrust force with respect to the virtual
control input βk. Finally the matrix b(Xk) represents the
effect of the zero stress boundary conditions. The reader is
referred to [15], [16] for more details on WFSim and to [17]
for implementation of a wind turbine as an actuator disc.

III. MODEL PREDICTIVE ACTIVE POWER CONTROL OF
WIND FARMS

The adjoint-based model predictive control (AMPC) of
wind farms [17], [18] is extended here for providing APC
services. The grey box of Fig. 1 contains the main com-
ponents of the developed AMPC-based APC. The control
objective is defined here as the optimal distribution of wind
turbine power references, while the sum of the actual turbine
power productions follows the wind farm power command,
provided by the TSO. The predictive controller relies on a
constrained optimization problem, subjected to the control-
oriented wind farm model. It contains three main generic
steps: prediction, solving the optimization problem over a
finite prediction horizon Np, and implementing the optimal
control solutions β ?

k over the receding time horizon Nu <Np.
The whole procedure is repeated with new measurements,
providing feedback into the optimization problem, which
enables the controller to react to varying atmospheric and
operating conditions.

A. Optimal control problem

The optimization problem is formulated as minimizing the
wind farm power tracking error over a finite time prediction
horizon Np. Hence, we first define the following performance
index:

Jk(Xk,βk) =

(
Pref

k −
Nt

∑
i=1

Pi,k

)2

, (11)

addressing the square of wind farm power tracking error
with Nt wind turbines, at time instant k. The manipulat-
ing variables are the wind turbine induction factors βk =
[β1,k,β2,k, . . . ,βNt ,k]

T ∈ RNt×1. Note that there exists some
redundancy among the control inputs in that multiple solu-
tions β ?

k can lead to the same wind farm tracking error. This
flexibility can be used for additional wind farm control ob-
jectives, e.g., optimal load distribution among wind turbines.

We regard the discrete-time nonlinear descriptor dynamic
system (10) as the simplified wind farm model to predict the
responses in advance. We want to find an optimal feedback
control law β ?

k so that the system remains feasible and
minimizes the average cost of interest, e.g., wind farm power
tracking error, over the prediction horizon Np. The optimiza-
tion MPC scheme we propose solves, for each current system
state Xk, the following constrained optimal control problem:

min
β̃

J (X̃ , β̃ ) =
Np

∑
k=1

Jk(Xk,βk)+∆β
T
k R∆βk, (12)

s.t. C̃(X̃ , β̃ ) = 0, (13)

0≤ βi,k ≤
1
2
, i.e., 0≤ ai,k ≤

1
3
, (14)

where the first part of (12) describes the active power control
goal and the second term represents the quadratic integral cri-
terion of control inputs with ∆βk = βk−βk−1. This standard
criterion provides an assessment for deviation of the control
input. The weighting matrix R is introduced to penalize the
control efforts for a smooth and realizable induction control
of wind turbines. The equality constraint (13) represents the
wind farm model (10), which evolves over the prediction
time horizon Np, with the following expanded form

C̃ =


C1(X0,X1,β0)
C2(X1,X2,β1)

...
CNp(XNp−1,XNp ,βNp−1)

 , X̃ =


X1
X2
...

XNp

 , β̃ =


β1
β2
...

βNp

 ,
It should be noted that (13) represents the wake inter-

actions and their couplings with the axial induction factors
over the whole prediction time horizon Np, which allows us
to include them in the optimal control problem. Furthermore,
the inequality constraint (14) represents practical constraints
on the wind turbine control inputs, where βi,k =

1
2 (i.e., ai,k =

1
3 ) corresponds with the Betz limit [23] of the maximum
extractable power of an isolated wind turbine.

The optimal control problem is solved iteratively at each
prediction window [24]. Given an estimated control variable
β̃ (n) ∈ RNt Np×1 at the nth optimization iteration, a new
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estimation is determined using the gradient of (12)-(14) as
follows

β̃
(n+1) = β̃

(n)−α

(
∇
(n)
β̃

J
)T

, (15)

with α being the step size along a given search direction,
which is determined iteratively via a line search method.

B. Adjoint-based gradient of the cost function

Using common approaches, e.g., finite difference method,
makes the computation of the gradient intractable and im-
practical for real-time applications. Adjoint methods give
an efficient way to obtain the gradient of a performance
index when having many decision variables without tedious
calculation of the derivatives of the flow solution with respect
to the control variables (X̃

β̃
). Therefore, the gradient of the

performance index can be expressed as [17], [18]:

∇
β̃
J = J

β̃
(X̃ , β̃ )+Λ

T C̃
β̃
(X̃ , β̃ ), (16)

using the adjoint equation [25]

C̃T
X̃ (X̃ , β̃ )Λ =−J T

X̃ (X̃ , β̃ ) (17)

with Λ = [λ1,λ2, ...,λNp ]
T being the adjoint variable and (.)X̃

and (.)
β̃

representing the partial derivatives of the model and
the performance index with respect to X̃ and β̃ , respectively.
The structure of the matrices C̃X̃ and C̃

β̃
allows us to derive

the dynamic propagation of the adjoint variable and the
adjoint-based gradient (16) backward in time [18].

An active set method is employed to enforce the inequal-
ity constraint (14) to maintain the applied control inputs
within the practical constraints of the wind turbines. The
computational efficiency benefits from the sparsity in the
system matrices of WFSim. An analysis of the computational
complexity of the AMPC can be found in [26].

IV. SIMULATION STUDIES

The performance of the proposed model predictive active
power control is discussed here through simulation studies
with WFSim. This study focuses on a simulation scenario, in
which the wake interactions are problematic for a good wind
farm power tracking performance, similar to [11], [12]. Note
that the APC of wind farms in a non-waked condition sim-
plifies the control problem to a standard tracking one [11],
which is not addressed here.

A. Case study and optimal operational point

A layout of a 2×3 wind farm is considered (see Fig. 2)
and simulated with WFSim. The wind turbines with rotor
diameter D = 126 m are spaced 5D in the stream-wise di-
rection. The rotor centers of the middle turbines are offset
half a rotor diameter from the centers of the upwind and
downwind turbines. We have a field of 3000×2000 m2, i.e.,
approximately 24D×16D, with a staggered grid of 100×75
cells (Nx×Ny). The simulation is started with an uniform
wind field with velocity u =10 m/s and wind direction 8◦.

Figure 3 shows the optimal axial induction factors of
the wind turbines, achieved using a Game Theoretic ap-
proach [3]. Compared with the local greedy control setting

  

4D 5D

5D 5D

1

8o
2

4
6

5

3

x

y

Fig. 2. The layout of the simulated 2×3 wind farm.
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0.4

a
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-]
WT2 WT4 WT6

0.1

0.2

0.3

0.4

a
 [

-]

Greedy

Optimal

Fig. 3. Optimal axial induction factors of the simulated wind farm
example, corresponding to the maximal energy extraction Pmax

farm.
The greedy control setting a = 0.33 represents the locally optimal
induction of an individual wind turbine.

(ai = 0.33), some individual wind turbines are operating at
lower power production levels. However, the total wind farm
power production is maximized because of the optimal prop-
agation of wakes. Note that the asymmetric distribution of the
optimal induction factors at each wind turbine row originates
from wake deflections because of the 8◦ misalignment of the
incoming wind with the rotor discs.

The following simulation scenario is defined to evaluate
the APC performance. The wind farm starts operating with
the optimal axial induction factors (see Fig. 3). After inflow
propagation and wake interactions, the APC is activated
at time instant 600 s. The simulation sample time and the
aerodynamic time constant of each turbine are selected as
∆t = 2 s and τ = 13.5 s [27], respectively.

Moreover, unlike [13] we use the maximal available
power Pmax

farm instead of averaged power production with local
greedy control settings for specifying an AGC-based power
demand signal, making the APC of waked wind farms
more challenging. Figure 4 depicts the normalized RegD
type of an AGC signal, the most rapidly actuating test
signal which is used for APC qualification by a regional
transmission organization [28]. The time-varying wind farm
power command is defined as:

Pref
k = Pmax

farm

(
0.9+0.1nAGC

k

)
, (18)

where normalized nAGC is simulated according to Fig.4.
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Fig. 4. Normalized RegD type of an AGC test signal [28].

B. Baseline APC and wake challenge

A central open-loop control system, which is studied
in [11], is considered here as a baseline APC to share an
AGC power signal among the wind turbines. Two different
power set-point cases are chosen here. The corresponding
fractions of the required AGC response for all six turbines
are listed in Table I. The first is based on the traditional
APC idea that all wind turbines are de-rated equally. The
second uneven distribution is introduced here to illustrate
the necessity of considering the wake interactions in the
control problem. Hence, several different reserve levels are
examined to tune the power set-points of the second baseline
for a better wind farm power tracking performance. The
lowest power set-points are dedicated to the 4th and 5th wind
turbines because they operate fully waked in this case study.
Note that the sum of the individual turbine power references
for both cases is the same as the demanded power from the
TSO.

TABLE I
BASELINE APC POWER RESERVE DISTRIBUTIONS.

WT1 WT3 WT5
Baseline 1 1/6 1/6 1/6

Baseline 2 11/48 1/6 1/12

WT2 WT4 WT6
Baseline 1 1/6 1/6 1/6

Baseline 2 5/24 5/48 5/24

Figure 5 plots the distributed power references among all
six turbines along with their actual power productions with
both cases of pre-selected baseline set-points. The powers are
normalized with respect to Pmax

farm. Note that each wind turbine
has its own feedback controller to locally adjust its own
axial induction factor, which can be translated to practical
torque and pitch controllers, for following a commanded
power reference from a central APC. In the first baseline
case, it can be seen that the 4th and 5th wind turbines are
not capable of following the required AGC response (see
blue curves) because of the wake impact by their upwind
turbines. Hence, the wind farm power supply cannot be
balanced, as shown in Fig. 6. The wind farm power tracking
error can be improved with the second baseline APC (see
green curves) for this specific case study. Although the power
set-points are tuned to minimize the power tracking error,
the 5th wind turbine still cannot track its power reference
due to the operation inside the wake. Indeed, they should
also be adjusted with time-varying changes in atmospheric
conditions using feedback control. All in all, it is evident that
providing a high-quality AGC response in a wake condition
is a challenging control task, which demands an advanced
control methodology such as the proposed AMPC.

C. AMPC-based active power control performance

In this section, the performance of the AMPC-based APC
for an optimal distribution of a rapidly actuating AGC power
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Fig. 5. Normalized power production of the individual wind turbines with the baseline APCs in order to illustrate the challenges of the
wake interactions. The powers are normalized with respect to Pmax

farm. The APC curves are attempting to track their corresponding Ref.
trajectories.
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signal in a waked condition is illustrated and compared with
both baseline cases. The key parameters of the AMPC are
chosen here as the prediction horizon Np = 200 s and the
receding horizon Nu = 60 s. The prediction horizon Np should
be long enough to predict the inflow and wake propagation
within the given wind farm, while the controller sample
time Nu depends on how fast the wind farm dynamics change.
The weighting matrix on the control effort is chosen as R =
0.5 I[6] in order to avoid high changes of the axial induction
factors, where I is the identity matrix with its dimension be-
ing the number of wind turbines. Furthermore, it is assumed
here that the AGC power demand signal can be predicted
reasonably 200 s ahead of time at each measurement point
of the controller. Future work will investigate algorithms for
predicting AGC signals.
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Fig. 6. Normalized total power of the wind farm with the AMPC-
based APC, compared with the baseline APCs. The power is
normalized with respect to Pmax

farm. The accuracy of the APCs is
compared using the root mean square (RMS) of the tracking errors.

Figure 6 shows the AGC responses of our simulated exam-
ple. The normalized total power production of AMPC-based

APC is compared with the baseline open-loop distributions
described above (see Table I). The accuracy of the APC
approaches is assessed using the root mean square (RMS)
of the wind farm power tracking errors over the whole
controlled simulation run-time. It can be seen that the AMPC
is capable of optimally regulating the wind turbine power
production to enable the total wind farm power to follow the
time-varying power demand. Contrary to the aforementioned
baseline APCs, the AMPC-based APC takes advantage of
the feedback and wake interactions model for optimally
adjusting the power references of the wind turbines.

Figure 7 illustrates the individual wind turbine contribu-
tions to the wind farm power tracking performance with
all the investigated APC cases. The AMPC shows how the
AGC power signal should be distributed among the wind
turbines in order to address the wake effects. Indeed, the
upwind turbines regulate their own impacts on the downwind
machines to achieve a good wind farm tracking needed for
APC services.

Figure 8 illustrates the axial induction factor trajectories
of the individual wind turbines for all the simulated AGC
responses. Looking at the first baseline APC performance
(blue curves) reveals that the 4th and 5th wind turbines are
operating at their local optimum point a = 0.33 to capture
the most possible kinetic energy from the incoming wind.
As discussed before, due to wake effects from their upwind
turbine there is not enough wind power available to allow
the 4th and 5th turbines to follow their commanded power
references in the first baseline case. Note that the same
happens only to the 5th turbine with the second baseline APC
due to a different power set-point selection (see Table I).
However, the AMPC finds the optimal wind turbine control
trajectories, which regulate wake interactions among wind
turbines for a good wind farm power tracking performance.

In addition to the balance of power supply with demand,
one desirable APC service for wind farm operators is optimal
coordination of dynamic loadings on wind turbines in order
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Fig. 7. Normalized power production of the individual wind turbines with the AMPC-based APC, compared with the baseline APCs.
The power is normalized with respect to Pmax

farm.
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Fig. 8. Axial induction factor trajectories of the individual wind turbines with the AMPC-based APC, compared with the baseline APCs.

to prolong their operational lifespan. The flexibility of the
APC of wind farms has been discussed in [14], [12], which
can be exploited for minimization of the aggregate fatigue
loadings on wind turbines within a wind farm. The AMPC-
based APC seems promising for achieving this goal due to
the systematic formulation of an optimal control problem,
and this is an area of future work in the adjoint-based model
predictive control of wind farms.
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Fig. 9. Normalized total power of the wind farm with the AMPC-
based APC with imperfect measurements and a shorter preview of
the power demand.

At the end, we demonstrate the sensitivity of the AMPC
to some sources of uncertainties. So far, the optimal control
problem has been subjected to the dynamic wake interac-
tions of wind turbines. The reaction of the AMPC to slow
disturbances like time-varying changes in wind direction
is demonstrated in [18] and not repeated here. At each
control sample time, the wind farm responses to the control
inputs and disturbances, are fed back and then the optimal
control inputs are adjusted by analyzing new measurements.
Here, we assess the sensitivity of the AMPC-based APC

to imperfect measurements. Therefore, all the measured
velocity fields u = [u,v]T are perturbed with random values,
which are bounded by [-1,1] m/s. Moreover, we shorten the
preview knowledge of the AGC signal to the first 60 s of
the prediction horizon Np, equal to the chosen wind farm
controller sample time Nu. It is assumed that the signal
remains constant for the rest of the prediction window Np.

Figure 9 illustrates the performance of the proposed APC
subjected to imperfect measurements and a shorter preview
of the demand. It can be seen that the AMPC still provides
APC services with a good power tracking precision. The
large transients at the beginning of each controller sample
time are because of relatively high values of simulated noises
with respect to the measured velocity fields, which can be
reduced by increasing the weighting matrix R and as a result
slows the rate of change of the wind turbines control inputs.

V. CONCLUSIONS AND FUTURE WORK

An adjoint-based model predictive control, the so-called
AMPC, is proposed for providing active power control
services of waked wind farms. The wake challenge for wind
farm power tracking performance is elaborated first. The
optimal control problem is formulated to minimize power
reference tracking errors over a prediction horizon, subjected
to a dynamic wind farm model. Hence, the AMPC is capable
of optimally regulating the specified performance of interest
by taking the wake interactions into account. The controller
benefits from an adjoint approach as a computationally-
efficient tool for computing the gradient. The optimal so-
lutions are adjusted at each measurement point based on
the feedback. Hence, contrary to open-loop approaches, it
is capable of reacting to varying atmospheric and operating
conditions. The effectiveness of the AMPC-based APC is
examined using a layout example of a 2×3 wind farm in
a wake condition with imperfect measurements. Simulation
results show that the AMPC optimally commands the wind
turbines, while the total power productions of the wind farm
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follows the demanded time-varying AGC power signal from
the TSO.

In the future, we will implement the AMPC over a Large
Eddy Simulation (LES) model of a wind farm in order to
examine its performance under more detailed interactions
with boundary layers. Furthermore, The AMPC-based APC
of wind farms has multiple optimizing solutions with respect
to the control inputs, which might be used for providing
additional services, e.g., an optimal load coordination of
wind turbines.
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