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ABSTRACT Recent advances in automation have accelerated the development of autonomous electric
vehicles (AEVs), which offer the potential for continuous operation, constrained primarily by the need
for recharging. We propose a dynamic charging strategy based on Mobile Autonomous Charging Pods
(MAPs), which are battery-equipped electric vehicles capable of transferring energy to AEVs while in
motion. We introduce a dedicated simulation framework within the microscopic traffic simulator SUMO,
incorporating MAP-specific modules for assignment, navigation, and real-time energy transfer under
realistic traffic constraints. We model the behavior of both MAPs and AEVs in a stylized looped network
and evaluate system-level performance under various demand and fleet configurations. Key performance
indicators include energy consumption, charging efficiency, battery utilization, and reductions in AEV
battery capacity requirements. Simulation results demonstrate that MAPs can effectively support continuous
AEV operation, achieving up to 14% battery downsizing with minimal infrastructure investment, while
also reducing travel time by 7%, relative to fixed charging solutions. This study lays the foundation
for simulation-based evaluation of MAP-based dynamic charging as a scalable, flexible, and efficient
alternative to fixed charging solutions.

INDEX TERMS Autonomous electric vehicles, dynamic charging, mobile autonomous charging pods,
vehicle-to-vehicle charging, SUMO.

I. INTRODUCTION

WITH the exponential rise of Electric Vehicles (EVs)
and the corresponding efforts of governments to

encourage their adoption, electrification of transport has
been the subject of extensive research in the past decade.
Conventional charging solutions such as stationary or static
charging face many challenges with high infrastructure costs,
low flexibility and low utilization rates. In tandem with the
rise of EVs, new modes of transportation such as autonomous
electric vehicles (AEVs) are emerging, with companies such
as Waymo already deploying robotaxis for public use [1].
These AEVs pose additional challenges to the EV charging
infrastructure as they have different needs and requirements.
The introduction of AEVs is expected to reshape the

transportation sector, enabling cheaper and safer modes of

The review of this article was arranged by Associate Editor Weichao
Zhuang.

transport. As these vehicles also have the capability to
communicate with other vehicles and infrastructure, they
have the potential to generate improvements in safety, cost
and time savings for users and other entities [2]. Moreover,
these improvements may generate potential benefits in other
sectors like technology, freight and logistics, insurance as
well as infrastructure and land use [3]. The overall potential
impact of these AEVs is expected to amount to around 1.3
trillion dollars annually in the U.S. alone [4]. In particular,
AEVs can improve the efficiency and lower costs for public
and freight transport due to the absence of human drivers,
which account for about 40% to 70% of total operation costs
for these transport modes [5], [6]. The increased penetration
of AEVs in traffic may also increase road capacity as these
vehicles can travel more closely to each other, and use less
energy due to efficient and coordinated use of brakes and
acceleration (eco-driving) [7].
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Compared to conventional EVs, AEVs have the potential
to reduce travel times as these vehicles can theoretically drive
continuously, the only constraint being recharging [8]. The
reduction in travel times offered by autonomous vehicles can
have significant impacts on various industries, for instance
emergency services, where reductions in response times can
lead to reduced mortality rates [9]. With a market penetration
of 50% of connected vehicles and 50% of autonomous
vehicles, the response times of these emergency services can
be reduced by up-to 68% as estimated in [10].
For the freight industry, AEVs can enhance efficiency

and reduce operation times, potentially generating economic
gains of up-to 500 billion dollars/year [4]. For last-mile
logistics, where delivery times are important, AEVs are
expected to handle the majority of demand due to shorter
travel times, lower operational costs and growing customer
demand in urban city areas [11]. However, with conventional
charging technologies, the charging time including routing
to charging stations, queuing at stations and active charging
time, can significantly increase the total travel time of these
AEVs. A study in Germany found that additional travel
to charging stations can increase total travel time by 30%,
compared to non-stop travel [12].
To reduce travel time and exploit the advantages of

AEVs, dynamic charging solutions, which charge vehicles
while in motion, are being researched by both industry
and academia. These charging solutions can be broadly
categorized into (i) charging lanes which relate to charging
via an electrified road or overhead line, (ii) vehicle-to-
vehicle (V2V) charging which relates to charging from other
vehicles and, (iii) dynamic battery swapping methods, i.e.,
battery swapping while in motion by either drones or other
mobile robots [13], [14]. These charging technologies have
the potential to significantly reduce the overall travel time as
there is no need to stop, queue or change route to charge, thus
improving the economic benefits of autonomous vehicles.
There are several challenges associated with the aforemen-

tioned dynamic charging technologies. For charging lanes,
the major obstacles are large investment costs and the
requirement of lower speeds for an efficient charge, thus
restricting their potential use to bus stops, intersections, or
near traffic lights [15], [16]. For dynamic battery swapping,
the main challenges are the technological complexity, the
need for common standards, and logistics for handling
the batteries [14], [17]. The principal challenges for V2V
charging are the requirements for vehicles to travel closely
in a platoon and the enhanced communication to manage
the fleet and total charge. With recent advancements in
connected and autonomous vehicles to travel closely in
a platoon while having enhanced communication, V2V
charging may be one of the most promising options for
implementing dynamic charging [18], [19], [20], [21], [22].
In this work, we explore the use of mobile autonomous

charging pods (MAPs), which are autonomous battery
vehicles that can travel and provide dynamic charging via
V2V energy transfer. These MAPs exploit the enhanced

communication advantages offered by autonomous vehicles
to get the required information from the vehicle, including
its speed, location and energy required. The charging pods
then travel to the vehicles, connect and charge the EVs while
moving, and then disconnect to return to their stations.
These MAPs provide several potential advantages: With

portable batteries, they can increase energy storage at low
prices during low demand, and then either charge AEVs, or
sell the energy back to the grid at higher prices via vehicle-to-
grid (V2G) [23] connections. MAPs can also spread energy
demand over time and space, by charging vehicles at different
times along the route, thereby reducing energy peaks. With
the possibility of charging en-route, the vehicles will need
smaller batteries, considerably reducing their weight and
costs [24].
The principal contributions of this paper include:

• Development of a MAP-specific simulation framework
within a microscopic traffic environment. Extending
the capabilities of the SUMO platform, the framework
introduces custom modules for the modeling of MAPs,
encompassing task assignment, navigation behavior, and
real-time charging interactions with energy-deficient
AEVs.

• Implementation of decision logic for dynamic MAP—
EV interactions. The framework integrates (i) an
assignment algorithm based on spatial proximity and
state-of-charge (SOC) thresholds, (ii) navigation rou-
tines enabling MAPs to safely approach, couple with,
and detach from target AEVs while respecting traffic
dynamics and safety constraints, and (iii) energy transfer
protocols for platoon-based charging, including support
for preemptive disengagement based on MAP energy
limitations.

• Simulation-based validation in a stylized looped urban
network. The feasibility and effectiveness of the MAP
framework are evaluated in a synthetic traffic environ-
ment. Controlled experiments measure key performance
indicators such as energy consumption, charging effi-
ciency, the number of vehicles served, and overall
battery utilization under varying traffic and demand
scenarios.

• Proposal of a baseline and modified greedy heuristic
algorithms for MAP operations. The study introduces
a heuristic approach that governs MAP deployment,
routing, and energy transfer decisions. These algorithms
serve as a computationally efficient baseline and enable
multi-metric performance evaluation in terms of system-
wide energy efficiency, demand coverage, and energy
consumption.

• Assessment of system-level implications and opera-
tional challenges. The study further identifies limitations
and research opportunities related to fleet sizing, routing
logistics, spatial safety, and integration into real-time
operational frameworks.
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The remainder of this article is organized as follows:
the literature review is presented in Section II followed
by methodology in Section III and experimental design in
Section IV. Section V presents the results and analysis and
Section VI discusses the limitations. Section VII concludes
and outlines future work.

II. LITERATURE REVIEW
There have been considerable developments in V2V charging
in recent years, spanning technological innovations, appli-
cation models, and coordination frameworks. These can be
organized into the following thematic areas:

A. TECHNOLOGICAL FOUNDATIONS FOR DYNAMIC V2V
CHARGING
Recent progress in enabling technologies has made V2V
energy transfer increasingly feasible. Advancements in power
converters, wireless transfer, and blockchain are central to
creating reliable, secure V2V systems. For example, [25]
highlights that while V2V can mitigate range anxiety, it may
accelerate battery degradation, underscoring the importance
of integrating the battery’s state of health (SoH) into charging
protocols.
Wireless energy transfer has also been extensively studied

in the context of dynamic charging for unmanned ground
vehicles. Xu et al. (2023) [26] discuss developments in
magnetic coupling design, compensation topologies, and
system control strategies, projecting efficiencies of over
90% for short-range (less than 50 cm) carrier-type vehicles
and moderate efficiencies (around 70%) for formation-
type groupings (1-7 meters). These works suggest that the
technical feasibility of in-motion energy transfer is steadily
improving, though efficiency, alignment, and stability remain
practical concerns.

B. PLATOONING-BASED AND WIRELESS V2V
CHARGING APPROACHES
A major stream of research frames V2V charging within
platooning or convoy-based operations. Nezamuddin et al.
(2022) [27] propose a system where a charger vehicle travels
alongside a user EV until sufficient charge is delivered,
modeled via MATLAB/Simulink. Their results indicate
potential travel time reductions of up to 20%. Similarly,
Qu et al. (2022) [28], using 24-hour taxi GPS data in
Shenzhen, show that even at 50% transfer efficiency, V2V
can offset two-thirds of the need for static charging stations,
and at 75% efficiency, EV battery sizes could be halved [29].
Mobile Energy Disseminators (MEDs), such as buses or

trucks repurposed as mobile chargers, have been proposed
as scalable solutions for both urban and highway contexts.
Simulation studies show that MEDs can improve driving
range and travel time by up to fourfold when deployed
alongside fixed infrastructure [30], [31]. To improve deploy-
ment efficiency, Yan et al. (2022) [32] apply multi-objective
optimization and reinforcement learning for real-time MED
routing, while [33] extends the concept to platoon-based

charging, where an MED supplies the lead EV, which then
redistributes charge wirelessly to following vehicles.
Building on this line of research, [16], [17] propose a

peer-to-peer highway charging solution in which vehicles
can share charge among each other, complemented by the
use of mobile charging stations as roaming energy providers.
Using a 240 km highway simulated in SUMO over 5 hours,
the study examines the effects of charge transfer rate, the
number of mobile chargers in the network, and EV battery
capacity reductions. Results show that such hybrid systems
can reduce halts and lower the overall battery capacity
needed for travel, highlighting the potential of integrating
peer-to-peer exchange with mobile infrastructure.
These approaches demonstrate the promise of continuous,

in-motion charging, but they are still largely restricted
to structured highway or bus-route settings rather than
heterogeneous urban networks.

C. OPTIMIZATION AND ASSIGNMENT MODELS FOR V2V
CHARGING
Parallel to technological development, many studies frame
V2V charging as a vehicle routing or assignment problem
(VRP/AP). Qiu and Du (2021) [34] model Charging-as-a-
Service (CaaS) by routing dedicated provider vehicles to
synchronize with demand vehicles en route. This formulation
accounts for features unique to V2V, such as trip synchro-
nization and partial charging by multiple providers.
Dynamic assignment formulations extend this idea. For

example, [35] designs integer programming and local search
heuristics on time–space networks to pair energy suppli-
ers with requesters. Such approaches mirror Dial-a-Ride
problems with moving targets, where synchronization in
time and space is as important as route optimization. Other
studies also considered the deployment of V2V along with
static chargers. Results show that when used in combination
with fixed charging infrastructure, this charging method
can improve energy usage and travel time, and the higher
flexibility of vehicles in the V2V positively affects the
performance of the system [36].

These centralized optimization models highlight the effi-
ciency gains of coordinated V2V scheduling but rely heavily
on global information and centralized dispatch, assumptions
that may be unrealistic in decentralized urban settings.

D. DECENTRALIZED AND MARKET-BASED ENERGY
SHARING MECHANISMS
Another stream of research focuses on peer-to-peer and
decentralized charging frameworks, where ordinary EVs
with surplus charge assist others opportunistically. These
approaches often emphasize decentralized matching, pricing
mechanisms, and participant incentives rather than preset
fleets of dedicated chargers [37]. Similarly, Zhang et al.
(2023) [38] propose a cooperative EV-to-EV charging
protocol with adaptive matching algorithms to balance
energy distribution in a way that is fair and efficient.
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These protocols often leverage game theory or market-
based control, for instance, auctions or bargaining to allocate
charging opportunities among EVs.
These systems often leverage market-based mechanisms,

such as auctions, bargaining, or incentive pricing, to allocate
charging opportunities. Bulut et al. (2019) [39] emphasize
spatio-temporal matching, pairing vehicles already in close
proximity and traveling in similar directions to minimize dis-
ruption. Such decentralized frameworks reduce the reliance
on central control but face challenges in communication,
trust, and uncertain driver behavior.
Together, these studies illustrate that localized decision-

making can produce system-wide benefits but also introduce
complexity in coordination and incentive design.

E. IDENTIFIED RESEARCH GAPS
Most of the aforementioned studies validate their algorithms
via numerical experiments or coarse simulations. These
approaches capture routing and energy constraints but do
not explicitly simulate vehicle kinematics or traffic rules.
As a result, they often assume that when a charging
rendezvous is needed, it can happen seamlessly. In reality,
coordinating two moving vehicles to safely form a charging
platoon involves complex maneuvers – merging into the same
lane, maintaining a stable short gap, and possibly slowing
surrounding traffic.
Despite growing interest in dynamic V2V charging, the

above literature reveals several research gaps that motivate
the present work:

• Lack of realistic traffic modeling of MAPs: Most exist-
ing V2V charging models assume ideal conditions
vehicles meet on command and transfer energy instantly,
without accounting for traffic conflicts or time lost
coupling and decoupling. They neglect constraints such
as maintaining safe following distance, coordinating
lane changes, and obeying signals during a charge. This
gap in realism means it is unclear how V2V charging
would perform in practice.

• Limited exploration of dynamic in-motion charging:
Many prior works require the charging vehicle and
target EV to be stationary (e.g., meeting in a parking
lot) or at least to complete charging before moving on.
While some recent studies examine charging on the
move, they often rely on simplified scenarios such as
highway platooning with predefined routes. The general
case of ad-hoc on-demand charging in city traffic has
received little attention.

• Underexplored use of specialized charging agents vs
opportunistic EVs: Most V2V energy-sharing concepts
assume either regular EVs as opportunistic chargers or
large mobile charging trucks. The concept of purpose-
built, compact charging agents (such as MAPs), that
can be efficiently dispatched, vertically stored [40]
and dynamically routed for in-motion charging, is
underexplored and requires investigation.

III. METHODOLOGY
This section describes the methodology used to assess the
performance of MAPs in facilitating continuous AEV opera-
tion. We adopt a microscopic approach to model the behavior
of MAPs and AEVs using the open-source traffic simulator
SUMO. As illustrated in Fig. 1, the framework integrates
SUMO, network inputs, and the MAP modeling contributions
from this study, with corresponding performance assessment
metrics, offering a structured approach to analyze MAP-EV
interactions, routing behavior, and system-wide impacts on
operational feasibility, energy efficiency, and battery capacity
reductions.
To model the autonomous behavior of AEVs and MAPs,

we use the cooperative adaptive cruise control (CACC) [41]
car-following model available in SUMO. The selection of
CACC is motivated by its capacity to emulate inter-vehicle
cooperation, reduced reaction times, and tighter headways,
characteristics that are critical for accurately capturing the
high-precision platooning required during dynamic in-motion
charging. The cooperative dynamics embedded in the CACC
model facilitate stable vehicular formations and sustained
spatial alignment between MAPs and AEVs, which are
essential for enabling uninterrupted and efficient energy
transfer while vehicles are in motion [42], [43].
For the charge sharing between MAPs and EVs, we

assume a conductive transfer through robotic conductive
arms as proposed in [16] or through charge sharing in
modular pods proposed in [44]. We assume that AEVs cannot
share charge amongst each other, and that each MAP can
only charge one AEV at a time.

A. ALGORITHMS FOR AEVS AND MAPS
Each AEV operates according to a decision-making algo-
rithm illustrated in Fig. 2, adapted from [31], [45]. The
algorithm continuously monitors the SOC of the AEV.
When the SOC falls below a predefined threshold, the
system identifies and assigns the nearest stationary MAP
with sufficient available energy. As MAPs are strategically
positioned along the network, AEVs are not required to
deviate from their planned routes, thereby maintaining route
continuity and minimizing operational disruption.
If no suitable MAP is available, either due to insuffi-

cient energy reserves or because all MAPs are currently
engaged, the AEV continues along its path, periodically
reassessing the availability of charging support. Once a
MAP is successfully assigned, the AEV temporarily reduces
its speed to facilitate safe rendezvous and coupling. Upon
establishing a stable platoon formation, dynamic energy
transfer commences, and the AEV resumes its nominal
cruising speed. The algorithm continues to monitor the SOC
in real-time and triggers disengagement from the MAP once
the AEV attains a sufficient charge level.
This study employs a baseline charging algorithm

for MAP deployment and assignment, grounded in
greedy heuristics [35]. These heuristics offer computational
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FIGURE 1. Simulation modeling framework integrating MAP–EV interactions in SUMO to evaluate deployment feasibility of MAPs.

FIGURE 2. Baseline Algorithm for charging AEVs in the simulation.

efficiency and are well-suited for generating opera-
tional benchmarks in large-scale traffic simulations [46].
Nevertheless, their myopic nature—favoring locally optimal
decisions without considering system-wide implications, can
result in feasible but suboptimal charging schedules [35].
The operational logic governing MAPs follows a three-

phase structure, illustrated in Fig. 4, and draws conceptual
inspiration from the time-expanded charging framework
proposed in [47]:

FIGURE 3. Minimum distance threshold for MAP-to-AEV assignment.

Matching phase: Each MAP is initially stationed at
a designated parking location, remaining idle until it is
assigned to an AEV with a low SOC. The assignment is
based on spatial proximity, with each AEV dynamically
seeking the nearest available MAP that has sufficient energy
reserves [48], [49]. Given the mobility of the AEVs, a
proximity threshold is introduced to prevent inefficient MAP
assignments. Specifically, a MAP will not be matched if the
time taken to reach the AEV renders the energy transfer
inefficient—i.e., when the AEV would have already moved
closer to another MAP location by the time contact is
established as shown in Fig. 3.

This threshold distance is defined as:

dt ≤ d

2
− dm (1)

where dt is the threshold distance, d denotes the distance
between consecutive MAP parking positions, and dm repre-
sents the distance traveled by the AEV before the MAP can
initiate charging.
Substituting dm = sc · t yields:

dt ≤ d

2
− sc · t (2)

Assuming the MAP reaches the midpoint between stations
in time t = d

2sm
, we derive:

dt ≤ d

2

(
1 − sc

sm

)
(3)
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FIGURE 4. Algorithm for assigning MAPs in the simulation.

where sc and sm are the maximum speeds of the AEV and
MAP, respectively.
Charging phase: After successful matching, the MAP

navigates to the assigned AEV and initiates a moving platoon
for dynamic charging. This interaction is modeled in SUMO
using the CACC car-following model to simulate high-
precision vehicle following behavior. While SUMO does not
natively support physical vehicle coupling, dynamic charging
is approximated by minimizing the inter-vehicle distance to
replicate a trailer-like configuration. Charging continues until
one of the following termination conditions is met: (i) the
AEV reaches its target SOC, or (ii) the MAP’s remaining
energy drops below the threshold needed for a return trip. At
intersections, MAPs temporarily disengage for maneuvering
and resume charging upon completion of the turn.
Post-Charging phase: Following disengagement, the

MAP autonomously navigates to the nearest designated
parking zone to recharge. The simulation incorporates
SUMO’s charging lane model, wherein the parking locations
are equipped with static charging infrastructure that allows
MAPs to replenish their energy before being reassigned to
a new AEV.

B. NETWORK SETUP
To evaluate the feasibility and performance of the proposed
MAP-based dynamic charging system, we develop a stylized

FIGURE 5. Charging process of MAPs where charging pod (in yellow) leaves
parking spot and starts charging the AEV (green denotes charging) and disengages
when charging is finished to move to next parking spot.

FIGURE 6. Simulation network of four edges of 1 Km long each, with pods stationed
in the middle. The multiple pods per station represent the pods being stacked
vertically to save space [40].

synthetic network that captures essential interactions between
MAPs and AEVs while maintaining manageable computa-
tional complexity. Given the complexity of V2V dynamic
charging in a microscopic traffic simulation framework, this
abstraction allows controlled experimentation and parameter
sensitivity analysis before transitioning to more complex,
real-world scenarios.
The network is configured as a closed-loop circuit

comprising four directed road segments (edges), forming
a rectangular structure as shown in Fig. 6. Each edge
is 1 km in length, resulting in a total loop length of
4 km. This configuration was chosen to provide a balance
between computational tractability and sufficient network
space for evaluating charging behaviors, platoon formation,
and interactions between multiple MAPs and AEVs. The
4 km length ensures that MAPs can engage in realistic
charging interactions long enough for sustained platooning
and short enough to test system responsiveness across
multiple charging events. While longer loops could be
considered, our choice is guided by the need for controlled
analysis under steady-state conditions and for preserving
runtime efficiency during repeated simulations.
Each edge consists of three lanes, with the leftmost lane

exclusively reserved for MAP operations. This dedicated lane
fulfills two primary functions: (1) it enables MAPs to park
safely without obstructing regular traffic, and (2) it allows
MAPs to maneuver and synchronize with target AEVs for
dynamic charging while minimizing traffic disruptions. In
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the midpoint of each MAP lane, a dedicated parking lot is
embedded to represent a MAP charging station. These lots
allow multiple MAPs to be simultaneously recharged using
a simplified static infrastructure model, simulating vertical
MAP storage and charging schemes as proposed in [40].
To address common initialization issues in microscopic

simulators, particularly insertion backlog errors that may
arise due to insufficient road capacity at simulation startup,
we introduce an auxiliary edge connected to the main loop.
During the warm-up phase, this edge allows AEVs to be
loaded into the simulation without congestion. Additionally,
the primary edge is temporarily initialized with a higher
number of lanes to facilitate vehicle insertion. Once the
AEVs have entered the main loop, the auxiliary edge is
no longer utilized, and all operations are restricted to the
intended 4 km network circuit.
In all experiments:

• The AEVs continuously circulate within the loop
without exiting, allowing analysis under steady-state
conditions. This abstraction ensures that transient
behaviors due to entry and exit do not dominate results.

• The initial state assumes that all MAPs are fully charged
and evenly distributed across the four parking locations.

• The vehicle fleet is composed of 100% autonomous
electric vehicles, including both AEVs and MAPs, with
full communication and coordination capabilities.

C. ANALYZING THE PERFORMANCE OF THE SYSTEM
To analyze the performance of the system, we consider
the energy consumed by MAPs, the number of vehicles
discharged and the efficiency of the system. For determining
the efficiency of the system we use equation (4), where Es
is the energy shared with the AEVs by the MAPs and Ec
is the total energy provided by the charging station to these
MAPs. Thus, we consider the system efficiency rather than
energy transfer efficiency between AEVs and MAPs.

η = Es
Ec

(4)

D. PARAMETER SCALING
As SUMO is a discrete-time microscopic simulation model,
and as an average EV can travel up to 4 hours on a single
charge, we scale down battery capacities to allow for more
frequent charge and discharge cycles of the AEVs within a
reasonable duration of the simulation. To be as consistent as
possible, we also scale down the weight and charging time
of AEVs and MAPs in the simulation. For all AEVs in the
simulation, we reduce the battery capacity and weight by
a factor of 100 to allow for frequent charge and discharge
cycles.
As the battery capacities are scaled down in the simulation

and AEVs run out of charge earlier than in the real world,
we also scale down the charging time (which also represents
the amount of time MAPs and AEVs travel together). To
scale down the charging time, we consider the ratio of time

the vehicles spend charging and the respective time they can
travel before requiring a charge as shown in eq. (5):

rt = tc
tt

, (5)

where tc is the charging time for the vehicles and tt is the
travel time for the vehicles before requiring another charge.
To account for the fact that AEVs also expend energy while
moving, the charging time in the simulations for AEVs is
longer than the charging time for MAPs.
All other parameters are kept the same for both the AEV

and MAP. While parameters such as air drag coefficient
and front surface area may also play a role in energy
consumption [50], in particular at higher speeds, these
parameters are kept the same (are not scaled down), for
simplicity.

E. GENERATING SOC LEVELS OF AEVS
The AEVs enter the simulation with their SOC level being
drawn from a Gaussian distribution (truncated to strictly
positive values). The AEVs keep moving in the loop until
the simulation ends. The random seed of the simulation is
kept fixed so that the only source of stochasticity in the
simulation is the random SOC level of AEVs entering the
simulation.

F. DETERMINING NUMBER OF SIMULATION RUNS
To calculate the required number of replication runs due to
the stochasticity in the arrival SOC values of AEVs from m
initial runs, we use equation (6) [51], [52]:

N(m) = S(m)tm−1,1−α/2

X(m)ε

2

, (6)

where N(m) is the number of replications required given
the m initial runs, X(m) denotes the estimate of real mean
μ from the m initial runs, S(m) is the estimate of real
standard deviation σ , α and ε are the level of significance
and allowable percentage error of X(m), and tm−1,1−α/2
represents the critical value of the two-tailed t-distribution at
a level α of significance, given m−1 degrees of freedom [53].
A value of 0.05 for both the significance level α and
the allowable percentage error ε is used in the subsequent
experiments.

G. DETERMINING SIMULATION TIME
To determine the required simulation time, we first identify
the duration needed for the SOC levels to stabilize. In our
experiments, we assume all the MAPs to have full battery
capacity when AEVs enter the simulation. To facilitate this,
we set a warm-up period for MAPs to occupy the parking
spots and reach full battery capacity at each edge. To identify
whether the simulation reaches a steady state within the
simulation duration, we examine the box-plots as well as the
mean, median and standard deviation values of SOC of all
AEVs entering the simulation. All of our experiments are
conducted using this simulation setup.
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TABLE 1. Parameter values used in the simulation (before scaling).

IV. EXPERIMENTAL DESIGN
We conduct a series of experiments to assess the viability
of the proposed charging approach. The python source code
for these experiments is available [54]. We consider the
parameters proposed in [55] of KIA Soul EV 2020 for AEVs,
64 kWh battery capacity and a weight of 1830 kg (real-
world values). For MAPs, we assume a battery capacity
of about three times the AEV capacity, 200 kWh (real-
world), and weight of about three times less, 500 kg (less
weight due to the absence of passengers and smaller size).
This battery capacity is smaller than in previous works,
where the capacity of the mobile charger is proposed to be
ten times that of the AEVs [16]. The weight and battery
capacity of MAPs are based on recent advancements in
battery energy density of 700 Wh/Kg [56] and the fact
that batteries generally make up to 25% of the vehicle’s
weight. The values of the important parameters used in the
experiments are mentioned in Table 1.

We only charge AEVs from 20% to 80% of battery
capacity to maintain their state of health (SOH). Based on
real-world data [57], we assume the values of tc to be
20 minutes and tt to be 210 minutes, which results in a ratio
rt of 0.095 in eq. (5).

The SOC levels of AEVs entering the simulation are drawn
from a Gaussian distribution (truncated to strictly positive
values), using a mean of 34 KWh and a standard deviation
of 13 kWh (in real-world values), based on the real-world
dataset presented in [58]. The AEVs enter with a gap of
10 seconds in their departure times. The AEVs travel in
the simulation with a speed of 36 Km/h, based on recent
values of speed of autonomous vehicles and mobile charging
stations [59], [60]. These speeds are also most commonly
used for public buses and delivery vehicles in urban settings.
As the main aim of MAPs is to charge as many AEVs as

possible, the MAPs are allowed to speed up to 108 km/h to
catch up with AEVs, while reducing their speeds to 36 km/h
when charging the AEVs in a platoon. The AEVs travel with
36 km/h and only reduce their speeds to 24 km/h on low
batteries (below 20% SoC) to allow the MAPs to catch up
more easily.

A. DETERMINING THE MAXIMUM NUMBER OF AEVS
THAT CAN BE SUPPORTED
This experiment aims at determining the maximum
number of AEVs a fixed number of MAPs can support.

Understanding this limit is crucial for identifying use cases
and establishing the feasibility of the technology. To identify
the maximum number of AEVs that can be supported by a
fixed number of MAPs in the network, we fix the number
of MAPs to 20 vehicles, where five MAPs are parked in
the middle of each edge. The MAPs are initially parked at
these spots and are fully charged in the warm-up time before
the AEVs start entering the simulation as mentioned in the
previous section. The algorithms to charge AEVs and assign
MAPs are shown in Fig. 2 and Fig. 4, respectively. We
test various numbers of AEVs in the network ranging from
low-density scenario of 25 AEVs, to a high-stress scenario
of total of 95 AEVs in the network, in steps of 10. We
evaluate the SoC levels of AEVs and MAPs as well as the
efficiency of MAP charging system, the energy consumed
by MAPs, and the percentage of fully discharged vehicles,
for the various numbers of AEVs in the network.

B. IMPACT OF AEV BATTERY CAPACITIES
One of the potential benefits of dynamic charging is the
reduction in required battery capacities of vehicles. As the
vehicles can charge en-route, they no longer have a need to
travel with large battery capacities [61]. The batteries have a
significant contribution to the total costs and overall weight
of electric vehicles, which has been one of the main reasons
for their slow adoption. With the use of MAPs, AEVs will
be able to charge en-route, thereby considerably reducing
their weight as well as costs. To analyze this potential benefit
of V2V dynamic charging, we investigate the potential of
reduction in battery capacities of AEVs in this network. We
consider the highest number of AEVs that can be supported
in the network, as determined from previous experiments
and scenarios examined. We then generate the SOC demand
based on a Gaussian distribution as mentioned in Section III,
while varying the maximum battery capacity of AEVs. The
battery capacity of MAP is kept constant at 200 KWh (real-
world values). The results are reported in terms of efficiency
of MAP charging, the energy consumed by MAPs, and the
percentage of fully discharged AEVs.

C. COMPARISON WITH STATIC CHARGING AND
BATTERY SWAPPING
To evaluate the performance of the proposed MAP-based
charging infrastructure, we conduct a comparative exper-
iment involving two conventional charging approaches:
(i) static DC fast charging and (ii) battery swapping. In this
scenario, MAPs are removed from the network, and AEVs
must rely exclusively on fixed infrastructure to recharge their
batteries. The parking areas previously designated for MAPs
are repurposed to serve as static charging stations and battery
swapping facilities. For static charging we assume about 5
charging station at each edge similar to MAPs, while for
battery swapping we assume only one charging spot per edge
due to their huge costs.
The charging rate for the DC fast charging stations is

set equal to the rate used during MAP-based charging to
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ensure consistency in energy transfer capabilities. For battery
swapping, we incorporate empirically observed replacement
times of 144 seconds [62], scaled to simulation time
using Equation (5). To simplify modeling complexities, we
introduce a fixed charging delay of around 2 minutes (real-
world-values) representing the total time from arrival to
commencement of actual charging, based on average values
reported in prior studies [63].
Upon detecting low SOC, each AEV checks for avail-

ability at the upcoming parking area. If a charging space is
available, the vehicle stops and begins charging or battery
swapping. If the station is fully occupied and the AEV
retains sufficient battery, it proceeds to the next available
station. Conversely, if the SOC is critically low, the vehicle
queues at the occupied station. Queue dynamics are handled
using SUMO’s internal parking area queuing model, which
allows for simulation of waiting times and charging station
congestion.
To facilitate performance comparison, we evaluate key

traffic metrics—mean speed, vehicle density, and average
travel time, aggregated per edge over the full simulation
duration. Consistent with prior experimental setups, all AEVs
continuously circulate within the network without exiting the
simulation. The number of AEVs is fixed at the maximum
capacity identified in earlier MAP-based experiments to
ensure comparability. Furthermore, all vehicles maintain
uniform cruising speeds and decelerate under low SOC
conditions to extend their operational range.
Finally, simulation duration is adjusted to reflect the

absence of MAP initialization delay, thereby ensuring parity
in temporal conditions across all experimental scenarios.

D. COMPARING ALTERNATIVE CHARGING STRATEGIES
To assess the impact of varying operational policies, we
consider an alternative charging strategy in which AEVs
initiate charging only when in close proximity to a MAP,
rather than requiring MAPs to travel to the AEVs’ locations.
This proximity-based approach aims to reduce MAP travel
distances, thereby conserving energy and enhancing overall
system efficiency. The baseline algorithms for AEVs and
MAPs, depicted in Figures 2 and 4, are accordingly modified
to implement this strategy, as illustrated in Fig. 7.
In this modified configuration, the distance threshold

derived in Equation (3) is further constrained such that a
MAP is assigned to an AEV only when the vehicle is
sufficiently close to a designated MAP parking location.
This adjustment minimizes MAP travel energy, supporting
more energy-efficient operations. Additionally, the AEV
algorithm is updated to incorporate a proximity check before
assignment: when an AEV’s SOC falls below the threshold,
the vehicle assesses the spatial proximity of available MAPs.
If the nearest MAP is deemed too distant, the AEV postpones
charging until it approaches the next pod location.
This operational mode promotes more strategic deploy-

ment of MAP resources and mitigates inefficient MAP
movements across the network. As a result, the system

FIGURE 7. Alternate charging Algorithm for AEVs in the simulation to account for
proximity to the MAPs.

may realize improvements in charging coverage, energy
consumption, and fleet-level efficiency, key performance
dimensions explored in the comparative simulations.

V. RESULTS AND ANALYSIS
This section presents the results obtained from each exper-
iment and discusses relevant consequences. The results in
this section are aggregated from eleven simulation runs per
scenario, as determined using (6). The corresponding figures
are the aggregation of these eleven simulation runs, where
each simulation run has a different distribution of SOC levels
of arriving AEVs.

A. STEADY STATE
As described in Methodology Section III-G, the achievement
of steady state is determined based on the spread of SOC
levels evaluated in 5-minute intervals as shown in Fig. 8.
AEVs enter the simulation from 3000 seconds and undergo
about 5 to 7 charging cycles. From the box-plots in Fig. 8, we
can see that the SOC steady state is reached as the spread of
box-plots is similar at each time-step of 5 minutes interval.
The SOC spread is somewhat uneven at the beginning of
the simulation, due to vehicles entering the simulation, but
reaches a stable level at around 3600 sec. Based on these
results, we ran all simulation experiments for 7,500 seconds
in simulation time.
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FIGURE 8. Distribution of SOC levels over time with the boxplots showing the
distribution of SOC levels of AEVs.

B. MAXIMUM NUMBER OF SUPPORTED AEVS
Fig. 9 shows the histogram of SOC levels of AEVs for
different numbers of AEVs in the network. The performance
of each scenario is evaluated based on the frequency of
AEVs reaching a 0% SOC and the proportion of vehicles
with a SOC below 10%. In most scenarios, the number of
AEVs dropping to these critical SOC levels is relatively low,
indicating a generally stable performance. However, in the
high-stress scenario depicted in Fig. 9d, there is a noticeable
increase in the count of AEVs reaching both 0% and below
10% SOC levels, resulting in a significant number of vehicles
running out of charge.
The histogram of SOC levels of MAPs is shown in Fig. 10,

which shows that many of the MAPs remain at full battery
SOC, especially for low demand scenarios. This shows great
potential for using optimization algorithms to improve their
usage and better spread the charging demand across all the
MAPs [32], [64].
The efficiency of the system, calculated using eq. (4),

peaks at around 74%. The resulting metrics of efficiency of
the system, total energy consumed by MAPs and percentage
of vehicles discharged are shown in Fig. 11.
From Fig. 11b, we consider 75 AEVs to be the threshold

for the number of continuously running AEVs in the
system that can be supported with this setup with 20
MAPs. Increasing the number of AEVs beyond this point
substantially increases the number of fully discharged AEVs.
At the 75 AEV level, around 2% of the AEVs run out
of charge, and this scenario also has a high efficiency of
about 69%.
Thus, based on the scenarios examined, we could deter-

mine that the highest number of AEVs that can be supported
in this small network with just 20 MAPs is around 75.
This experiment highlights that the energy consumed

by MAPs also needs to be considered when analyz-
ing the overall efficiency of the V2V charging system.
Moreover, the V2V charging system will only be
feasible if the energy transfer rate between the vehi-
cles is highly efficient, either through conductive or
battery swapping technologies [16], [17], or wireless trans-
fer [65], as the MAPs themselves consume energy to
move.

C. IMPACT OF AEV BATTERY CAPACITIES
This experiment investigates if it is possible to reduce the
AEV battery capacity due to the use of MAPs. Based on the
previous experiment, we consider 75 AEVs and 20 MAPs
in the network and vary the battery capacities. The results
from the simulations are shown in Fig. 12, displaying the
efficiency, percentage of vehicles discharged and energy
consumed by MAPs with varying battery capacities of AEVs.
In Fig. 12c, we observe that with reduced battery capacity,

the probability of an AEV running out of charge increases,
especially for capacities smaller than 55 kWh. Fig. 12a
shows a local peak in system efficiency, with only the
original capacity of 64 kWh showing higher efficiency. This
implies a 14.06% reduction in battery capacity, at a 3%
reduction of efficiency. Note that in Fig. 12b the energy
consumed by the MAPs is similar across all scenarios,
showing a slight downward trend towards the larger AEV
battery capacities. In conclusion, we note that the battery
capacities of AEVs can likely be decreased with the usage
of MAPs, by around 14% in the scenarios tested.

D. COMPARISON WITH STATIC CHARGING AND
BATTERY SWAPPING
This experiment evaluates the relative performance of MAP-
based charging against two conventional alternatives: static
DC fast charging and battery swapping. We consider a
scenario with 75 AEVs and 20 MAPs, representing the upper
bounds of network capacity established in prior simulations.
Fig. 13 presents a comparative analysis of key traffic
metrics—travel time, speed, and density, across all network
edges for each charging strategy.
The deployment of MAPs leads to a 17% increase in

average vehicle density compared to static charging and
a 2% increase relative to battery swapping. Despite the
elevated density, the average vehicle speed improves by
approximately 6% compared to static charging and 34%
compared to battery swapping. Consequently, MAP-based
charging reduces average travel time by around 7% and 26%
when compared to static charging and battery swapping,
respectively. These improvements are expected to scale more
significantly in larger and more congested networks, where
queuing delays at static infrastructure become increasingly
pronounced.

E. COMPARING ALTERNATIVE CHARGING STRATEGIES
In this experiment, we consider an alternate charging strategy
using the modified algorithm in Fig. 7, where the MAPs
do not need to travel to AEVs, as they only start charging
when in the proximity of MAPs to improve the efficiency of
the system. However, from the simulation results, we find
that this MAP assignment performs poorly compared to the
baseline algorithm where MAP travel to AEVs.
The results are shown in Fig. 11, where although the

highest efficiency is indeed considerably improved from 74%
to about 80%, it has a major shortcoming in leading to an
increase in the percentage of AEVs being fully discharged.
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FIGURE 9. Histogram of SOC percentage of AEVs in the simulation under (a) low density of 25 AEVs (b) medium density of 45 AEVs (c) high density of 65 AEVs and
(d) high-stress test with 95 AEVs in the simulation.

From the analysis of the simulation results, the main reason
for this poor performance is the unavailability of MAPs in
multiple parking lots simultaneously when AEVs required
charge.
Thus, we find that making MAPs travel to AEVs performs

much better in this network and demand scenario, than AEVs
only initiating charge when near MAPs. This is due to the
fact that when MAPs travel to AEV, they also spread the
energy demand over space. Thus, the MAPs are continuously
moving in the system and are available to charge most of the
AEVs. In contrast, the alternate charging strategy only allows
AEVs to charge when they are nearby the MAPs. This causes
multiple MAPs to be assigned at the same time in multiple
locations, leaving no MAPs for other AEVs on the same
edge. This performance analysis illustrates that the behaviour
of the system also depends on network configuration and
the location of parking spots, the adaptation of which might
yield better performance.

VI. DISCUSSION AND LIMITATIONS
This study introduces and evaluates the operational feasibility
of MAPs as a flexible, infrastructure-light dynamic charging
solution for AEVs. Simulation results suggest that MAPs can
enhance charging flexibility, reduce required battery capacity,
and lower overall infrastructure investment relative to static
or battery-swapping systems. However, several limitations

inherent to the study design warrant attention, as they
influence the generalizability and practical applicability of
the findings.
This study utilizes a stylized, closed-loop network with

uniform traffic characteristics and assumes 100% penetration
of AEVs. While this abstraction allows for controlled
parametric evaluation and isolation of MAP–AEV interac-
tions, it simplifies the complexities of real-world traffic
systems, including variable routing, mixed traffic flows,
signalized intersections, and heterogeneous energy demand.
Moreover, interactions such as MAP–MAP and AEV–AEV
energy exchange are not modeled, although they may offer
considerable gains in collaborative charging architectures.
The deployment strategy relies on greedy heuristics,

which, while computationally efficient, may not fully exploit
the optimization potential of coordinated MAP behav-
ior. Although computationally efficient and well-suited for
benchmark simulations, such heuristics tend to prioritize
local optima at the expense of system-wide performance.
Despite these limitations, the study presents several mean-

ingful insights. Under the assumed simulation parameters,
a fleet of 20 MAPs can support up to 75 AEVs. However,
this threshold is inherently use case-dependent and sensitive
to the acceptable proportion of discharged vehicles in the
network. In our experimental setting, a discharge rate of
approximately 2% was deemed acceptable, corresponding to
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FIGURE 10. Histogram of SOC percentage of MAPs in the simulation (a) with of 25 AEVs (b) with 45 AEVs (c) with 65 AEVs and (d) with 95 AEVs in the simulation.

FIGURE 11. Performance of MAP charging system with variable AEVs in terms of (a) efficiency of MAP charging system and (b) percentage of AEVs fully discharged in the
network.

a maximum supportable fleet size of 75 AEVs. Many use
cases with more stringent service reliability requirements,
such as emergency or logistics fleets, would require that no
vehicle would ever run out of charge, thereby reducing the
effective number of AEVs that can be supported by a fixed
number of MAPs.
Conversely, relaxing the acceptable discharge threshold to

10%, based on the assumption that vehicles can resort to
static charging or reduce cruising speeds to extend range,
would allow up to 95 AEVs to be sustained, as illustrated in
Fig. 11b. Furthermore, if the system objective shifts toward

maintaining a higher average SOC, such as above 50% as
proposed in [66], the network could potentially accommodate
more than 100 AEVs. This underscores the trade-off between
service reliability, battery reserve levels, and MAP fleet
utilization. Such trade-offs between service reliability and
efficiency would be a recommended area for future research.
Further, in low-demand scenarios, we observe substantial

underutilization of MAPs. As shown in Fig. 10, many MAPs
retain high SOC levels, indicating skewed operational load
distribution across the fleet. This asymmetry may adversely
affect the SOH of heavily used units, leading to accelerated
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FIGURE 12. Performance of MAP charging system with variable battery capacities (a) efficiency of MAP charging system (b) Energy consumed by MAPs and (c) percentage of
AEVs fully discharged in the network.

FIGURE 13. Performance comparison of MAPs with static charging and battery
swapping across density, speed, and travel time.

degradation. The number of AEVs that can be effectively
supported is therefore not only a function of MAP quantity,
but also of the charging assignment strategy and operational
efficiency.
One contributing factor to MAP underutilization is the

current model’s constraint that limits each MAP to charging
a single AEV before returning to a parking area for
replenishment. Future enhancements should explore multi-
session charging, whereby MAPs charge several AEVs
sequentially during a single dispatch cycle. This would
involve dynamically identifying AEVs approaching SOC
thresholds along the MAP’s route. Additionally, inter-MAP

charging, where MAPs recharge one another, could further
improve overall energy utilization and routing efficiency,
especially in sparse traffic scenarios.

A. COMPARISON WITH STATE-OF-THE-ART
APPROACHES
To situate our findings within the broader literature, we
compare the MAP-based approach against other state-of-
the-art dynamic charging paradigms. While previous studies
demonstrate that V2V charging can reduce EV battery size
requirements by up to 50–70% [28], and travel time by
up-to 20% [27], under idealized transfer efficiencies, our
results suggest a more modest reduction of 14.06% in battery
capacity and 7% reduction in travel time using MAPs.
However, unlike previous V2V systems, our modeling explic-
itly incorporates the propulsion costs of mobile chargers,
which diminish the net savings but offer a more realistic
system-level assessment. Similarly, dynamic wireless charg-
ing lanes are reported to achieve battery downsizing of up to
70% [61], but at the expense of extremely high infrastructure
cost and limited deployment flexibility. In contrast, MAPs
require only modest fleet investment and no embedded road
infrastructure, making them more scalable for heterogeneous
urban networks.
Relative to reinforcement learning–based MED

systems [32], which improve charger routing efficiency but
rely on deployments of buses or trucks, MAPs introduce
higher spatial flexibility by allowing autonomous pods to
reposition dynamically across the network. This flexibility
comes at the cost of slightly higher traffic density (17%
increase in our experiments), yet still provides measurable
system benefits, including a 7% reduction in travel time
and a 6% improvement in average speed. Compared to
battery swapping, which can offer quick replenishment but
has shown poor energy efficiency in our tests and carries
capital costs exceeding USD 1 million per station [67],
MAPs deliver improved service reliability with significantly
lower investment barriers.
Furthermore, the environmental implications of battery

downsizing are notable. Recent studies have shown that non-
exhaust particulate matter (PM) emissions, such as those
from tire and road wear, can equal or exceed those of
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internal combustion engine vehicles (ICEVs), primarily due
to the higher mass of battery-electric vehicles [68], [69]. By
reducing battery size through dynamic charging with MAPs,
the overall vehicle weight may decrease, potentially lowering
PM emissions and contributing to improved environmental
sustainability [70].

Ultimately, our contribution lies not in maximizing any
single metric (e.g., downsizing potential as in DWC, or
efficiency as in idealized V2V), but in demonstrating that
MAPs offer a balanced trade-off across multiple performance
dimensions, including moderate battery reduction, improved
travel times, flexible deployment, and lower infrastructure
cost, while accounting for realistic propulsion energy costs.
This broader evaluation complements and extends prior
works, which often isolate one aspect of the charging process
without considering its systemic effects.

VII. CONCLUSION AND FUTURE WORK
This study introduces a vehicle-to-vehicle (V2V) dynamic
charging paradigm for autonomous electric vehicles (AEVs)
utilizing mobile autonomous charging pods (MAPs). A dedi-
cated simulation framework, integrated within a microscopic
traffic environment, was developed to model MAP opera-
tions, including real-time task assignment, energy transfer
protocols, and traffic-aware navigation. The performance of
MAP-based dynamic charging was evaluated and bench-
marked against conventional static charging infrastructure
and battery swapping systems.
Simulation results reveal that MAPs can reduce average

travel time by up to 7% and increase vehicle speeds by
approximately 6% compared to static DC fast chargers.
While battery swapping offers faster individual charging
sessions, it underperforms overall due to queuing delays and
substantial infrastructure demands. Notably, MAP deploy-
ment enables an estimated 14.06% reduction in required
battery capacity for AEVs, contributing to operational
efficiency and potential reductions in vehicle weight and
associated particulate emissions.
Urban environments are identified as particularly promis-

ing for MAP implementation. These areas often face space
constraints and high land costs, limiting the feasibility of
extensive static charging or swapping infrastructure. The
dynamic and relocatable nature of MAPs allows them to
adapt to spatiotemporal fluctuations in charging demand,
mitigate congestion around fixed charging hubs, and operate
effectively at lower urban speeds. Furthermore, MAPs offer
potential to serve high-priority user groups, including emer-
gency responders, logistics providers, premium ride services,
and transit fleets, with targeted, on-demand charging.
Several directions for future research are identified. First,

the development of congestion-aware dispatch algorithms
and dynamic fleet management strategies, could enhance
system performance and reduce operational disruptions.
Second, real-world deployment scenarios should be explored,
particularly in areas with limited grid coverage (e.g., rural

and peri-urban zones) or temporary high-load demand (e.g.,
public events, logistics hubs).
In addition, further work is needed to establish quan-

titative criteria, such as grid capacity thresholds, demand
surge intensities, and acceptable vehicle discharge levels,
to inform MAP deployment decisions and fleet sizing
strategies. A comprehensive cost-benefit analysis comparing
MAP systems to conventional infrastructure should also
be undertaken. Such analysis must account for capital
and operational expenditures, energy efficiency, maintenance
costs, and broader environmental externalities under varying
traffic conditions and market penetration levels.
In conclusion, this study lays the groundwork for MAP-

based dynamic charging as a scalable, flexible, and efficient
alternative to fixed charging solutions. While the initial
results are promising, future research integrating empirical
traffic data, advanced optimization models, and detailed
economic assessments will be essential to validate and guide
the real-world implementation of this emerging paradigm.
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