
ABSTRACT

An evaluation of numerical models for the synthe-
sis of directional seas has been carried out in con-
junction with the installation of a multi-mode segmen-
ted wave generator at the NI C Hydraulics Laboratory.
Several authors have recently reported limitations
associated with the frequently used double summation
model which is neither ergodic nor spatially homogen-
eous for a finite number of terms. In order to over-
come these problems, a modified double summation model
is presented which uses unidirectional, narrow-band
random wave trains as the fundamental components rather
than plane sinusoidal waves. This provides a more
realistic representation by reducing the cross correla-
tion of waves from different directions at any given
frequency. Various alternatives For generating the
fundamental wave trains are investigated by numerical
simulation and results are compared to a simpler single
summation wave modeL Related techniques for computing
the required drive signals for a segmented wave machine
are also discussed.

1. 0 INTRODUCTION

There are now at least 10 major installations
throughout the world which are equipped with segmented
wave machines capable of generating multi-directional
waves [1]. Other installations are expected to follow
soon. This fact may have contributed to the recent and
growing interest in the methodoldgy of synthesizing
multi-directional random sea states.

Much of what is known to date about multi-direc-
tional wave generation has grown out of the experience
gained over the last 15 years in the simulation of 2-
dimensional random waves in wave flumes; an area of
endeavour which is still undergoing evolutionary change
and still provokes controversy. The added dimension of
directionality in multi-directional seas will unques-
tionably contribute to further discussions. The authors
therefore believe it to be helpful to summarize some of
the factors which have influenced the evolution of
2-dimensional random wave generation.
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From historical background given in [2] and [3],
it may be concluded that physical modelling has many
limitations which are inherent to the tank and to the
wave generating machinery. Nevertheless, in 2-dimen-
sional simulations, under deep water conditions, for
moderately high waves, and for wave frequencies up to
0.8 HZ (model scale) it is possib:e to preserve spec-
tral wave characteristics over considerable propagation
lengths of an irregular wave.

However, as waves become steeper and breaking com-
mences, the spectra will undergo a transformation due
to instabilities in the course of propagation. This
exhibits a typical shift of energy from higher to lower
frequencies. The larger waves will also become more
non-linear, leading to an interaction of phase-locked
and free harmonic components which interact in some
areas by cancellation and in other locations by addi-
tive superposition. This affects the spectral shape
significantly [4]. In addition, the higher frequencies,
at least those above 1 HZ, will visibly demonstrate
decay through attenuation.

In most physical model studies involving the test-
ing of stationary or nearly stationary structures,
these problems are not serious. It is generally pos-
sible, through various numerical tools, to tailor the
simulation to the client's specifications. This can be
done both for spectra as well as for time domain sta-
tistics so that, at least in the test area, the simula-
tion matches the expectation. However, when moving
vessels are being tested, the requirement to maintain a
homogeneous seaway is much more difficult, if not im-
possible, to achieve under severe sea states.

It is widely accepted that simulations of irregu-
lar waves can be adequately represented by the Gaussian
assumption. For moderate sea states under deep water
conditions, this seems to be satisfactory. However, as
the steepness of waves increase, this assumption be-
comes questionable. Recent work by Myrhaug and
Rjeldsen [5] suggests that the Gaussian assumption may
not be adequate to describe the properties of large
waves in deep water. Nevertheless, the Gaussian model



has served the simulation engineer well until now and
moreover, tools for non-linear simulation are not yet
generally available. The investigation reported in

this paper is therefore based on the Gaussian assump-
tion.

Although physical wave simulation brings along its
own set of problems, some of which may overshadow the
inadequacies of numerical synthesis techniques, it is
nevertheless quite important to understand the limita-
tions of numerical models as they form the input to
physical generators. Furthermore, a great deal of
research is carried out through numerical simulation in
which these tools are being used directly. For this

reason, the authors believe that the study presented
here is applicable to both areas.

It should be noted that physical and numerical

simulation have something in common; it is costly to
operate a physical model study over an extended dura-
tion and this applies also to numerical modelling. In

both situations, there is therefore a motivation to
develop models which can achieve adequate simulations
within a reasonable length of time, at least to a point

when reliable long term behaviour estimates can be

made.

For 2-dimensional random wave synthesis, there are
three digital computer methods which appear to be com-
monly used at this time. These are:

the "random phase" method [6], which has also been
referred to as the "deterministic spectral amplitude
model" [7]. Its application to the 3-dimensional
case shall be called here the RP method for "random
phase" method,

the "random complex spectrum" method [6], which is

also known as the "nondeterministic spectral ampli-
tude model" [7] or the "random coefficient scheme"
[8] and it shall be known here.for the 3-dimensional
application as the RFC method for "random Fourier

coefficient method ". Finally, there is

the "filtered white noise" method which will be

abbreviated here as the FWN method. For its appli-
cation to the 3-dimensional case, a distinction is
made between narrow band and wide band FWN.

1.1 The Randoa Phase Mil Method

In the random phase method, the amplitude of each
Fourier component is set deterministically according to
the desired spectral density and the phase is set to a
random variable with a uniform distribution from - n to
+ v. The intersample spacing is equal to the inverse

of the recycling length of the desired wave train.

This amplitude/phase spectrum pair is a polar represen-

tation of a complex frequency function and can be

readily converted to a time series through the inverse
Fourier transform. Although the phases are random, the
amplitude spectrum does not usually resemble the spec-

tra normally encountered in nature because the user

typically employs one of several parametric model spec-
tra as an input to the method. Sample spectra encoun-

tered in nature are quite erratic.

The method can be made to recycle over any

length. The only limitation is the capacity of the
computer which performs the transform operation. Its

main advantage is the fact that the desired spectrum

can be guaranteed over the duration of the simulation
as long as the sample length is equal to the recycling
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length of the wave simulation. This method appears to
be favoured by those who follow the school of thought
that the spectral shape of a simulation must be deter-
ministically defined over the duration of the test.

If the recycling period of. the simulation is very
long., say for example 10 hours, then individual samples
of 20 minute duration will exhibit significant varia-
tions in spectral distribution which appear exactly
like the spectra for short samples usually encountered
in nature. These variations fall within the range of
expected statistical variability.

1.2 The Random Fourier Coefficient (RFC) Method

The random Fourier coefficient method is a variant
of the RP method. In this technique, a complex spec-
tral function is created synthetically by drawing from
Gaussianly distributed random numbers with zero mean
and unity variance. These make up the Real and the
Imaginary parts of the function. The resultant complex
spectrum is identical to that which could have been
obtained by Fourier transforming a finite length sample
drawn from a white noise source.

The complex spectrum is then multiplied by the
square root of the desired spectral density. This
operation is equivalent to filtering. A subsequent
inverse Fourier transform yields the desired time
series. The analogy to the FWN method must be
apparent.

Any particular realization of a relatively short
duration will exhibit spectral shapes which resemble
those seen in nature. If the duration of the simula-
tion is increased while holding the frequency resolu-
tion of spectral analysis constant, it will be found
that the resulting spectral shape approaches that of
the desired (or target) spectral density; a situation
which effectively models what may be expected in
nature. What may come as a surprise to many newcomers
to the business is the fact that the spectral shapes
resulting from each short duration realization can
deviate very significantly from the target spectral
shape.

1.3 The Filtered White.Ebise (FM) Method

It is relatively simple to synthesize random num-
ber sequences by digital computers which have a uniform
or a Gaussian probability distribution. These sequen-
ces can be produced with nearly infinite recycling
periods and are therefore effectively nonrepetitive.
In order to filter these time series in accordance with
some predefined spectral characteristics, the user has
basically two choices; either

via the Fourier transform and then by performing
the filtering operation in the frequency domain or

by various time domain operations which are either
recursive or non-recursive running average computa-
tions.

Although auto-regressive moving average (ARMA)

filtering methods [9] can generate time series very

efficiently and are generally superior to non-recursive
techniques, the ARMA coefficients are difficult to

derive for a given spectrum. On the other hand, a fil-
tering operation via the Fourier transform is statisti-
cally equivalent to the RFC method.



The application of each of these three basic syn-
thesis techniques has been investigated for the case of
multi-directional waves in the context of the double
summation wave model.

2.0 DOODLE SUMMATION NAVE MODELS

The basic double summation model for directional
waves is a discrete version of the standard double
integral equation for the wave elevation of a random
sea with continuous -distribution of energy over fre-
quency and angle of propagation [10]. It is given by

N M

n(x,y,t) ° 1 Aij cos[wit- ki(xcosej+ysin0j) + eij]
i=1 j=1

(1)

where wi = i(2wAf), ki tanh(kih)

ej = 00 + JAE) and h = water depth.

The Aij's and eij's are selected by one of two
methods:

Model 1A: Aij = /2S(wg,6j)AwA5 and eij = 2v11[0,1]

(RP-method).

Model 1B: Agj = 13 + bij2 and eij = tan1- (bij/agj)

where Agj = /S(wg,13j ) AwA0
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and fij is a unidirectional narrow-band .random (or
pseudo random) wave train travelling in direction ej
with centre frequency wi, bandwidth Aw and unit vari-
ance. There are several reasonable ways to choose the
gj's. In each case, the aim is to make fij as un-
correlated as possible with fim unless m = j. The
following three wave models are considered.

Model 2A:

gj = 1 cos [wigt - aijg + eijg]
2.--1

wit = (wi - Aw/2)

aid(x,y).kil(xcoseFy sin ej)
3

21T17[0,1].

2B:

sii I [aid& cos(wigt-aijg) + bijg sin(wigt-aijg)]5 L=1
(4)

where aijt and bgjg are independent Gaussian vari-
ables with zero mean and unit variance.

Model 2C:

where

and

Model

+ 9. (&/P)

where C(s) is a normalization factor and the spreading
index s may be a function of E 8max was usually set
at 1T/2. See [15] for detailed derivations of the
equations given in the following sections.

(3)

where agj and bij are Gaussian random
variables with variance S(wi3Oj)AwA0

(RFC-method).

= Gaussian white noise filtered in the time
domain by a narrow band linear filter with centre
frequency wi, bandwidth Aw and phase lag

The wave field is thus a superposition of M two-
dimensional wave trains propagating in M different

k(x cosej + y 5in0j).

directions with each individual wave train having Other choices are also possible. The frequencies
either RP or RFC properties. This double summation within each fii could be chosen at random over a
model has been used quite extensively for directional bandwidth Aw, for example. This method is not computa-
wave simulation but several authors [11,12,13] have tionally attractive, however, because it precludes
reported difficulties with it. The two basic problems
are that the resultant wave field is neither ergodic

direct use of FFT techniques.

nor spatially homogeneous for finite values of N and M
regardless of the record length used. As pointed out by

When equations 3 and 4 are substituted into (2),
the RP and RFC versions of the standard double summa-

Jefferys [14], these effects are caused by artificial tion model are obtained at a finer frequency resolution
phase locking in any particular realization due to com- of df = Af/P. If the waves are analysed at resolution
ponents travelling in different directions with identi- Af, models 2A and 23 are therefore equivalent to using
cal frequencies. The wave energy in any one frequency frequency averaging on models IA and 13 which will
band will therefore typically vary over 'space from improve ergodicity and spatial homogeneity as shown by
approximately 0 to 4 times its average value regardless Jefferys [14]. Although 2A and 233 will give more real-
of how many directions are used. istic wave fields than model 1, they are still non-er-

godic and non-homogeneous for any finite P. Model 2C,
We shall consider the case where Af is the fre- on the other hand, is ergodic and homogeneous because

quency resolution required in the measured point the component wave trains are uncorrelated and it
spectrum S(f). This depends on the shape of the wave should therefore generate the most realistic simulation
speCtrum and the frequency response of the object being
tested but it is typically 0.02 to 0.05 HZ in model

of a natural sea state.

basin applications. The problem in applying equation 1 The behaviour of the variance and cross spectra
directly at Af is that all energy in a cell of finite of wave fields generated by each of the three models
size Af by A0 is represented by a single sinusoid. was investigated by numerical simulation. In all cases,
Within Af, energy from different directions is totally a target spectrum of the form S(f)D(f,0) was used where
phase locked in any given realization whereas in nature
it is uncorrelated. A more realistic version of the
double summation model is therefore given by

the spreading function D is defined by

2s

N M
D(f,0) = C(s) cos

(5)

[T(eec)i]

28max
n(x,y,t) ' / I Aid fij (x,y,t) (2)

i=1 j=1



2.1 Distribution of Viriance

The most fundamental, quantity for evaluating the
behaviour of the various wave models is the variance of
n either within a frequency band of Au or over all fre-
quencies. Let denote the variance of a particular
realization defined as

Lim .1 f n2 (x,y,t) dt.
T-1.= T

By considering the ensemble averages for the standard
double summation model, it. can be shown that

N M M

Var WI .1 i [1 Aij2 A1121 Aij4].
4 j..1 1.1

For Model -1A and large N and M, this becomes

Zr
Var[i2] Aw f Is2(w)[1.o Aef D2(w,e)de]}dw. (0)

This is similar to an expression derived by Pinkster
[13] except for the second term involving the spreading
function. In the limiting case of ,a very narrow
spreading function, D(w,B) tends to a Dirac delta func-
tion in 8 so equation 8 gives Varla2] = D for any &a
which corresponds to the unidirectional RP case. For
normal directional spreading functions, the second term
is quite small for A > 20 so equation 8 agrees. with
.Pinkster's expression for .large M. Thus, equation 8
shows that the variance of 02 is only weakly dependent
on the number of angles used. The only effective way to
decrease The variance is to decrease Aw and model 1A.

becomes ergodic in the limit as N +

Let denote the variance of n within the fre-
quency band from wi - Aw/2 to wi + Aw/2. It can be
shown for Model 2h that

varr;121 1 [i.o Ae2 *12- (wi,f)j)].
J.1

(9)

As before, the second term is small for normal spread-
ing widths when M > 20 so the variance of ai2 is also
only weakly dependent on M except in the limiting case
of unidirectional waves where Vat (0i21 = 0 for any P.
Thus, for M > 20, Cii2 has approximately a chi-square
distribution with 2P degrees of freedom. Since the
phase of each component of n is linear in both s and x,
equation 9 applies to both ensemble and spatial aver-
ages. Model 2P. can therefore be made as ergodic and
homogeneous as desired by using a sufficiently large
number of sub-frequencies but the computation time may
become prohibitive.

It was found by numerical simulation that model 216
has larger variance than 2h for small values of M but
both models have essentially the same 'variance statis-
tics when M is greater than 20.

2.2 Distribution of Cross Spectra

The cross spectra between the wave elevations at
various spatial positions are fundamental to many
methods which are currently in use for measuring the
directional wave spectrum in a-basim It was therefore
decided to also compare the wave synthesis models on
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+ sin (tin - rim)sin 'rind (11)

where yrill k(wm) [(kg-kp)cos el + (yeryp)sim et] .

and Dj = D0a,89 where it is
stant over a bandwidth of Au.

assumed that is con-
The expected value of

C obtained by averaging over all realizations.
Thus,

:E[Cpg] "))A9 Di cos(ymj).
P j=1 m=1

(12)

using the relation that Varlz] = E[z2] - E2 (z] for any
random variable z, it can be shown that the ensemble
variance of Cpg is given by

S2 ()AB2

2P2 j=11 L=
Lxj

2 m m

where CV = pg2 [1.0
2 j=1 l=1

9.*J

m=1

and yj = k(w) [(xg-xp)cos ej (yg-yp)sin Bj].

In a similar manner, it. follows that
var [Qpg] S2 (Ea) * QV/P

2 M MAO r rwhere QV- Dirk [1.0- cos (..ej :re)]. (15)
2 j1 L=1

/*j

CV and QV are functions of 61? - D(w,B)
and M. For parametric spreading functions such as equa-
tion 5, CV and QV are therefore functions of Ft/L, *, M
and s where R is the distance between points p and q, *
is the angle from p to q relative to the x-axis, s is
the spreading index and L is the wavelength correspon-
ding to frequency w. CV and QV are plotted in Figures
1 to 4 for typical ranges of these parameters. It can
be seen from Figure 1 that CV and QV are only weakly
dependent on M for M greater than 20 and so Cpq and
Qoa are similar to 0i2 in this respect. CV and QV are
always less than or equal to 1 and generally lie be-
tween 0.2 and 0.8. The magnitudes of Cpg and ¢pg
therefore have approximately chi-square distributions
with C*P degrees of freedom where C is a constant of
order L

Var[C] w
Dpg, [1.0 +

cos(ymi +
Ymi)(11)

If Aw is small, then k(wm) k(w) and thus
var[Cpg] S (w)2 * mvp

+ cos (yj + yl)] (14)

the basis of the cross spectral density of the wave
elevation at two arbitrary points, p and q. For the
continuous case [16], this is given by

2s
Spg (w) = S (w ) f D(w ,6 ) eip[ ( itp4Chci) 46 1 0 )

0

Let Spg(w) = Cpg(W) Qpg(w) where Cpg is the
co-spectrum and Qpg is the quad-spectrum. Considering
the cross spectrum for model 2A at frequency w wi
and dropping the subscript i, it follows that

SWAB r r
L L rdibi y.,

j=1 L.T m=1
cpq



For large M and N, we obtain

Var

[1:1 -
s2

2P
{i.0 ±

Qpq

2n

-Ae f E12(w,8) [1.0 ± cos(2y)] dOl (16)

0

where Spq . phase of Spq

and y = k(u)[ (xq-xp) cos 0 + (yq-yr) sin 0].

The last term in equation 16 is similar to the
last term in equation 8 and is usually quite small for
typical spreading functions. It can be seen that equa-
tion 16 reduces to equation 9 when p=q and that the
variance of C Qpq tends to zero as it should
in the limiting case of unidirectional waves.

The cross spectrum for a particular realization of
model ZB is given by

M M
s (w) S(w)A0 -

1001 / (5357 ): {
2? j=1 L=1 mp1

HajmakebjmbLm)cos yiLe(simbim-bilegm)Sin yiLmi

+ MajmaLebjmbLm)sin yjim-(aimbui-bimsim)cos yield}

where 'rib, = ajm(xp) - aim (xq)

and ajm(x) = k(wm)(x cos ej + y sin ei].

This equation was used to calculate the ensemble
variability of model 28 cross spectra by simulation
for comparison with the model 2h variability as given
by equations 14 and 15. A typical result for M = 30 is
shown in Table 1. In general, it was found that models
2A and ZB have essentially the same variability when M
is greater than 20 or so. This result can be explained
as follows. The cross spectrum of any realization is a
function of the a and b coefficients of the Fourier
transform of the wave elevation formed by adding wave
trains from M directions. At each frequency, a and b
are therefore the sum of M independent random vari-
ables. By the central limit theorem, they will have a
Gaussian distribution under fairly general conditions
regardless of the statistical distributions of the as
and b's in each component wave train. Thus, models 2A
and ZB are statistically equivalent except for small
M. This result is in contrast to the two dimensional
case where the RP and RFC models give completely dif-
ferent statistics [17]. It also supports Goda's
contention [18] that the RP method should correctly
reproduce the statistical variability of natural
multi-directional waves.

2.3 Effects of Finite Record Length

The variances and cross spectra considered so far
are based on wave records of infinite length. In this
situation, model 22 is clearly superior to models 2h
and 23 since it produces cross spectra with zero vari-
ability. The relative behaviour of the models must
also be compared at the finite record lengths required
by practical applications, however.

Since models 2h and 28 are periodic, the results
given in section 2.2 also apply for a finite record

Ispq(w)12
cos (2(w))

S2 Cu)

(17)
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length T if P is set equal to af*T. The distribution
of cross spectra for model 2C was investigated by
numerical simulation.

If the discrete Fourier transform of a finite seg-
ment of a FWN signal is computed, the coefficients will
be Gaussianly distributed about their mean value. In
this sense, one would expect model 2C to behave in a
similar manner to model 28 for finite length records.
Time domain synthesis does differ from model 28 in at
least two respects, however. The cardinal filter
implicit in 23 is not physically realizable in the time
domain and FFT synthesized records are always cyclic
whereas segments of filtered white noise are not. In
order to assess the significance of these effects,
model 2C was simulated using the following procedure.

For reasons of computational efficiency, the nar-
row band noise signals were synthesized by the RFC
method using the following spectral density:

Given E = s(f - fc)/fw,
a-1

S(f) = [cos(C)*Icos()1 + 1.]/2.

for fc-fw < f < fc+fw
= 0 everywhere else.

This function is illustrated in Figure 5 for
fc = 0.5 Hz, fw = 0.04 Hz and a . 0.5. A frequency
spacing of 1/1638.4 HZ was used.

In order to eliminate the cyclical property of the
noise signal, only 95% of the record was used for sub-
sequent statistical analysis. Cross-correlation coef-
ficients between the first and the subsequent 9 of 10
realizations varied from 0.191 to 0.266.

The narrow band wave trains were synthesized for
each of M directions and were then transposed and
summed to obtain the total wave elevation at two posi-
tions. Standard FFT techniques based on segment avera-
ging with a Parzen data window were then used to calcu-
late the cross spectrum for each realization of model
2C.

Typical results are shown in Table 2 and it can
be seen that model 2C has somewhat smaller variability
than model 2A for a given record length. This differ-
ence is probably due mainly to the shape of the filter
since the standard Blackman and Tukey relation [19]

gives an effective bandwidth of 1.22 df for the filter
used in model 2C compared to Af for the rectangular
filter implicit in model 2A. The spectral variance of
the narrow band wave trains should thus be 18% less
for model 2C which is consistent with the results in
Table 2.

All three models thus have similar statistical
behaviour on finite length records for 1.1 greater than
20 and any one of them should provide a realistic simu-
lation of a finite time segment of a natural sea state
within the range of linear wave theory. It therefore
appears that the only effective way to reduce spatial
variability with the double summation model is to in-
crease record length. This requires very long test
times compared to two dimensional testing. At a scale
of 1:40, for example, a model test period of 4 minutes
corresponds to 25 minutes full scale. As can be seen
from Figure 6, the average wave energy over this period
in a band of 0.04 HZ varies from 0.3 to 1.3 depending
on spatial position. This is not considered unrealis-
tic and we expect that a similar variation would be
observed in a full scale situation over the same period



of time. Thus, testing times must be very long to

properly cover all situations. For example, about 7
hours model (or 44 hours full scale) would be needed to
reduce the spatial variation of energy within this band

to t 5 percent. Such a test would represent the long
term average for a given spectrum rather than a single

continuous record since the sea is seldom statistically
stationary for more than a few hours at a time.

2.4 Synthesis of Nave Generator Drive Signals

In principle, the narrow band FWN method could be
used to synthesize drive signals for a segmented wave
generator in the time domain but it would be computa-
tionally intensive because of the filtering required to
propagate each component wave train to each segment of

the wave machine. One way to reduce the computation
time would be to exploit the narrow band property and
replace the filtering with a time shift based on the
phase velocity of the centre frequency. This technique

was investigated but it was found to be a useful

approximation only at relatively low frequencies.

Therefore, it will normally be more efficient to syn-
thesize in the frequency domain using a procedure such
as the following which is equivalent to model 2B.

Let Zn(w) be the Fourier transform of the drive
signal for the wave board motion of segment n. Z is

computed as follows:

Zn(w ) Hni (43 )0i ) (18)

j=1

where] 45.(w) is the Fourier transform of a long-ores-
ted wave train generated by the RFC method for a target

spectrum of S(w)D(w,8)A8. The recycling period is

set to P/Af where P is selected by equations 9, 14 and

15 for the required degree of spectral variability.

Hni(u) is a filter relating the wave board

motion of segment n to the wave elevation at the basin
reference position for a sinusoidal wave component with
frequency w and direction O. The Hfli's can be pre-
computed and stored on disk since they only depend on M
and the position of the basin reference point.

Thus, only one inverse FFT is required per seg-

ment. If desired, the point spectrum can be calculated
for each realization and used to rescale the Ofs. so
that the target spectrum will be obtained at resolu-

tion Af. This normalization can only be done at one

position in the basin, however.

3.0 SINGLE DIRECTION PER FREQUENCY MODELS

Another approach to synthesizing a directional sea

is to use a model in which each sinusoidal component

has a unique frequency which is resolvable in a finite

record length, T. This will produce a spatially homo-

geneous wave field because all cross product terms will

average to zero regardless of the direction of propaga-

tion of each component. One such method is the single

summation model defined by

cos[wit - ki(x cos ei + y sin ei) + ci]
(19)

where wi = i(&/M). The 8i are chosen by some

scheme such that all M angles are included in each fre-
quency band of width Aw. Ai and ci are selected

using either the RP or the RFC method.
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Sand [3] has described a variation on this method

in which two directions per frequency are included by
using components which are 90 degrees out of phase. Al-
though it is ergodic at the reference point, this model
does not seem to be spatially homogeneous because the
phase condition can only be enforced at one position
for any particular realization. Consequently, only the

single direction per frequency case is considered

here.

We define wave model 3 as a particular implemen-

tation of the single summation method in which

ei ((i-1)mod MAO - Bmax where AO = 2emax/(M-1)-
The discrete components are thus distributed on a

spiral in the wi3O plane in contrast to the circular
distributions of the standard double summation model as

shown in Figure 7. If we further consider the RP case

and also keep Ai constant over bandwidth Aw, then

wave model 3 can be written in the form of equation 2

where

= cos[wijt - kij(x cos ej + y sin 6) + eij]

and wij = (i - 1/2 + j/M)Aw.

Thus, the wave field is a superposition of M long-

crested wave trains. Each wave train contains N fre-
quencies at spacing Aw but they are shifted so that no
pair of wave trains contain the same frequencies. The
spectrum of the synthesized waves is equal to the tar-
get spectrum at all spatial positions for record length
T where T = M/Af. Thus, unlike models 2A and ZB, the
recycling period of model 3 is related to the number of

wave angles.

Although the frequency spacing is clearly artifi-
cial, the wave field should become realistic Bor suffi-
ciently large M and sufficiently small Aw. How large M

must be for a given Af will probably depend on the type
of model test being conducted. Some indication of the
minimum acceptable value may be obtained by considering
the differences between the cross spectra of waves gen-
erated by model 3 and the actual cross spectra for the
continuous target spectrum defined by equation 10. The

amplitude and phase errors were computed as functions
of M, s, R/L and * and are shown in Figures 8 to 11.

It can be seen that the cross spectra will be reason-

ably accurate for M > 32 over the normal ranges of the
other parameters.

If the primary aim is to generate the target dir-
ectional spectrum at all points in the test area, model

3 has definite advantages compared to the previous

models. At Af = 0.04 Hz and M = 32, a testing time of
13 minutes is required whereas model 21: would require

about 90 minutes to keep the spatial variability of the
spectral density within t 10 percent. Model 3 must be

used with caution when testing nonlinear devices, how-

ever, since the maximum wave heights may tend to be
smaller than those which could occur on a particular
realization of a real sea over the same time period.

4.0 CONCLUSIONS

The double summation method can be used to synthe-

size realistic multi-directional seas if P frequency
components are included in a band width Af where Af is
the required frequency resolution and P is sufficiently
large to reduce the variability of the cross spectra to

an acceptable level. In contrast to the unidirectional

case, the RP and RFC methods both produce statistically

similar waves when the number of wave directions

(20)

Ti (x,y,t) =I Ai

i=1



exceeds 20. The variability of the cross spectra

depends only weakly on the number of wave directions
and the only effective way to reduce it is to increase

the record length. The required test duration is

inversely proportional to Af and thus depends on the
shape of the wave spectrum and the frequency response

of the object. being tested; i.e. the smaller the

damping, the smaller should be [if. Test durations will
generally be much longer than those required for uni-

directional waves.

The single summation method can generate spatially
homogeneous seas with much shorter record lengths than
the double summation method. The cross spectra will be
reasonably accurate if at least 30 wave directions are

used. However, this method must be employed with

caution when testing nonlinear devices because the

variability is not commensurate with natural seas of

the same duration.
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Table 1
Measured Variability of Model 2B Cross Spectra

Table 2
Finite Time Cross Spectra Variability

(Measured Standard Deviation)

(M = 30, s = 1.0, ft, = 1.0 Hz, Af = 0.04 Hz,

500 Realizations)

P Theoretical Std. Dev. Measured Std. Dev.
(Model 2h) (Model 2B)

Cpq QP4 Cpq Qpq

10 0.1916 0.2418 0.1923 0.2353

100 0.0606 0.0765 0.0605 0.0790

200 0.0428 0.0541 0.0429 0.0544

(M = 17, s = 1.0, Record Length = 1638 sec,
R/L = 0.25, * = 45 deg, 200 Realizations)

Model 2A Model 2B Model 2C

CP4 0.0812 0.0785 0.0721

Saxi 0.0914 0.0901 0.0857
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Fig.8 Cross Spectrum Errors for Wave Model 3 versus M.
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