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Abstract
Path tracing is a well-known light transport algorithm used to render photo-realistic images. However, it is an
expensive algorithm with an active area of research for improving its efficiency. In our work, we present a method
to measure and visualize the regions of high computational cost for unidirectional path tracers. We have defined
metrics to estimate the cost per pixel that can be visualized as a two-dimensional(2D) image. To show its use-
fulness, we present how our method can visualize the effect of changing material properties, object placement
and other scene variables on computational cost. With this insight, the user can make clever choices to improve
computational time.

1. Introduction

Path tracing is a rendering technique used to produce photo-
realistic images. This technique falls under the category of
light transport algorithms and these algorithms have become
the standard for producing realistic images in the VFX in-
dustry. However, this is a computationally heavy technique.
Even with the best machines, it can take hours and even days
to render a scene. This defines the need to improve compu-
tational time while maintaining photo-realistic properties.

There is a significant body of research in improving ren-
dering hardware and light transport algorithms such as path
tracing [DNL∗17, WMG∗09]. Along with these improve-
ments, involving the users can provide additional impact on
computational time. A method that provides the user, namely
artists, insight into how their designs affect computational
time could empower the artist to make clever scene changes.
These scene changes can reduce computational costs and po-
tentially negate weaknesses in the rendering engine.

For this purpose, we propose metrics for the estimating
the computational costs per pixel in a rendered image, which
reflects the contributions of changes an artist can make for
unidirectional path tracers. These include changes in mate-
rial properties, object placement, and other scene variables.
These metrics can be used to visualize the costs per scene
and compare costs between scenes to showcase the effect of
scenic changes on computational costs.

We first cover relevant related work in Section 2. We then

explore the different components of our method in Section 3.
Next, we discuss details of our implementation in Section 4,
which we evaluate for a variety of scenarios in Section 5.
Afterwards, in Section 6, we cover the responsibility of our
research. Finally, we discuss our method in Section 7 before
concluding in Section 8.

2. Background and Related Work

Unidirectional path tracers

Path tracing is a light transport algorithm that faithfully sim-
ulates the true nature of light to produce an unbiased photo
render of a scene. It uses Monte Carlo methods [AK90] to
solve the rendering equation proposed by Kajiya [Kaj86]. In
its simplest form, the algorithm traces a significant amount
of paths that light takes in a scene. Since only the light that
hits the camera is seen in an image, the light paths are traced
from the camera to the light source in naïve unidirectional
path tracers.

In the case of a unidirectional path tracer, a path can be
defined as a sequence of light rays, each cast from where
the previous ray intersected in the scene, starting from the
camera. We find where a ray intersects by performing inter-
section tests against the scene. Scenes are represented as a
collection of shapes, typically triangles [PJH16]. However,
complex scenes can easily have hundreds of thousands of
triangles [Lum17, NHB17]. Performing intersection tests on
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all those triangles is very expensive. In order to narrow down
the number of intersection tests needed, acceleration struc-
tures are used [HM08].

After the intersection point is found, the path can ter-
minate or cast new rays. The cause of termination can be
due to the maximum allowed path length, Russian roulette
(RR) [AK90], or zero-energy carried in a path. However,
it can vary between rendering engines. If new rays are to
be cast, then depending on the material at the intersection
point, calculations are performed to evaluate the direction of
the newly cast ray spawned from the intersection point.

The above provides a significantly summarized overview
of the unidirectional path tracer. We highly recommend
looking into PBR book [PJH16] for a further in-depth ex-
planation.

Evaluating render time costs

Rendering scenes with a path tracer is expensive due to var-
ious factors. To estimate the costs, analysis and heuristics
metrics can be defined. The work of Wimmer et al. [WW03]
shows how rendering time can be estimated for real-time
rendering. Additionally, they proposed heuristics for mea-
suring the costs of rendering. As paths are defined as a se-
quence of recursively cast rays in its simplest form, looking
into the costs of a ray provides insight into the computational
complexity [RKJ96,WS95,ABCC02]. From these analyses,
we can see the importance of an acceleration structure con-
cerning the cost.

Visualizing path tracing

Applying visualization techniques to path tracing enables the
users to gain a better insight into path tracing. Simons et
al. [SHP∗18] previously showed how visual analytics could
be used with path tracing to optimize rendering and perform
further analysis. It can also aid in finding the causes of arte-
facts. Furthermore, Interactive visualizations can further aid
in debugging, educational and performance analysis of path
tracing [GFE∗12].

3. Methodology

We now detail our approach to providing visual support tool-
ing for artists. In this respect, our approach highlights re-
gions of potentially high computational cost for a unidirec-
tional path tracer. We also show how the computational costs
are affected by changing scene variables such as material
properties. To address this problem, we first introduce the
notion of a computational hotspot and define how to describe
it using a metric. Afterward, we describe how this metric can
be measured efficiently inside a unidirectional path tracer.
Finally, we detail approaches to visualizing and comparing
measurements of this metric.

Computational hotspot and metrics

Computational hotspots are regions where computational
costs are higher than the average cost of all the pixels in
an image. To spot these regions, we first look at where a ray
spends most of its computational time. In our observations
profiling the PBRT-v3 renderer, we find that most computa-
tional time is spent on ray traversal and visibility computa-
tions. This matches the findings of Vasiou et al. [VSM∗18].

Following our observation from the profiler, the major
contributor to the high time consumption is dependent on the
intersection tests. The actual costs for these tests highly de-
pend on the type of acceleration structure used to store these
shapes. Reinhard et al. and Walter et al. provided an in-depth
analysis of the costs of these structures [RKJ96, WS95]. In
general, the cost can be defined as the following heuristic:

C(r) = c0Ntrav + c1Nshapes (1)

Here r is a ray, c0 and c1 are constants dependent on the
acceleration structure, Ntrav is the number of traversals taken
by the ray r within the acceleration structure, and Nshapes is
the number of shapes for which intersection tests were taken
with the ray r.

An important thing to note here is that shooting new rays
always adds to the cost. Thus, it can be used as a metric to
evaluate computational costs. The main advantage of having
path length as a metric is that it is relatively easy to integrate
onto existing rendering engines. However, it does not rep-
resent the true cost of rendering a scene. Defining the path
length metric similar to Equation 1 would be Cray = 1.

Gathering the data

The metrics mentioned above are defined as a cost function
of a ray. To get the cost of the path, the costs of all the rays
cast in a path are accumulated. The cost of a ray can further
be split into two separate costs. One for the cost of tracing
the ray, and the other for tracing the shadow ray. Note that
a naïve unidirectional path tracer does not cast any shadow
ray. So in cases where a shadow ray is not cast, the cost func-
tion for those rays will be 0.

This leads us to a general cost function of a path as fol-
lows:

C(p) =
N−1

∑
i=0

(Ctr(ri)+Cvis(ri)) (2)

Here a path p is defined as a set consisting of N rays such
that p = {r0, ...,rN−1}, Ctr is the cost of tracing a ray to it’s
intersection point and Cvis is the cost of performing visibility
computations on the ray.

To gather this cost, we need to trace a significant amount
of paths throughout the scene. There are different ap-
proaches to this. For example, we can trace paths from the
light source and then connect the paths with the camera us-
ing an approach such as photon mapping [Jen01]. To keep
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(a) (b) (c) (d)

Figure 1: (a) True image of the scene and heat map visualizations of (b) time taken, (c) intersection costs and (d) path length
metrics. For each heatmap (b), (c), (d), the values are normalized between 0 and 1.

the approach simple, we trace paths from the camera like a
generic unidirectional path tracer.

An accumulator collects the data for each path traced from
a pixel. To get the expected cost of rendering a pixel, the ac-
cumulated costs are averaged based on the number of sample
paths taken per pixel. This cost per pixel is then exported for
visualization and analysis.

Visualizing results

As the data is calculated per pixel, we represent the data sim-
ilar to a rendered 2-dimensional image. The data is visual-
ized by applying color maps to showcase the costs effec-
tively. However, outliers can potentially affect the range of
colors shown. To overcome this, the data distribution needs
to be analyzed to determine the range of values that needs to
be visualized. This step does not always have to be taken as
these outlier values can indicate the problematic areas that
need to be investigated. Contemporary outlier removal and
noise reduction algorithms can be applied to the data before
visualization.

4. Implementation

We implemented our method on top of PBRT v3 [PJH16] as
an extension of the existing PathIntegrator structure, which
passes custom data structures encapsulating said metric data.

Note that additional functions must be modified to pass
the metric data depending on the data collected. In the
case of the intersection costs metric (Equation 1), the func-
tion performing intersection tests with acceleration structure
and shapes, estimating direct lighting and other intermedi-
ate function calls had to be modified. However, the function
modifications mentioned earlier are unnecessary for collect-
ing the path length metric. Additionally, as the path length
has a fixed cost for all shadow rays, those rays need not be
traced while collecting this metric. This can lead to a signif-
icant speedup in accumulating the metrics as tracing those
rays have a high computational cost.

After the cost of a path sample is accumulated, it is added

to the pixel cost. This process is identical to how an inte-
grator accumulates radiance, except that the Spectrum value
received from tracing the path contains the metric data in
the color channels instead with a uniform path weight of 1.
This way, the pixel cost is an unweighted average of the path
costs.

5. Evaluation

We evaluate our metrics by comparing them against the
ground truth represented by measuring the time spent cal-
culating the outgoing pixel’s radiance in microseconds. As
thread and process scheduling introduces inaccuracies, the
time metric is considerably noisy. To reduce the impact on
the noise on the color maps, the data is despiked using a 3x3
median filter on values higher than the 99.9th percentile. All
the test scenes uses the BVH acceleration structure and the
constants c0 = 1 and c1 = 1 for the intersection costs (Equa-
tion 1).

The metric is taken from its respective channel to be visu-
alized by applying a color map. Unless specified in the test
scenes, the data is not modified. If the data has few extreme
outliers, it is clipped depending on the data distribution of
the absolute values. To compare and visualize the metric
costs between different scenes, red-blue diverging color map
is applied to the cost difference.

To evaluate our method, we first compare our metrics’
performance to the time taken to render a pixel. Next, we
show how our method can be used to see the effect of scene
changes by comparing costs. Finally, we show a simple ex-
ample where a problematic region can be spotted and ad-
dressed using our method.

Correspondence with the time taken

For our first test scene, we look into the killeroo scene pro-
vided by PBRT [PJH16] in Figure 1. The actual image is
rendered with 128 spp. and the metrics with 10 spp. All the
images are rendered with a maximum path depth of 15.

Looking at Figure 1, we can see that the intersection met-
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(a) Red box (b) Blue box (c) Path length difference (d) Intersection cost difference

Figure 2: Cornell box rendered with (a) red matte material and (b) blue matte material. The cost difference in rendering the (b)
compared to (a) is shown for (c) path length and (d) intersection costs. We can see how the estimated costs are lowered for (b)
the blue box scene. This is due to low throughput and Russian roulette.

ric corresponds well with the time taken as the region it high-
lights closely matches that of the time metric. On the other
hand, the path length is not as accurate as the intersection
metric but still highlights the hotspots caused due to paths
stuck in the geometry.

Comparing scene costs

We demonstrate an application of our technique by com-
paring the cost differences of similar scenes to pick the
least computationally expensive. To showcase this, we will
use a modified version of the Cornell box with two differ-
ent color schemes. In these scenes, the tall matte-material
box is either colored in red (Kd = {0.5,0.1,0.1}) or blue
(Kd = {0.1,0.1,0.5}). Given these two scenes, the costs for
rendering the scene through the same camera properties are
compared to evaluate the cost differences across the scenes.

We rendered the scenes as mentioned earlier with 128 spp.
and the metrics with 8 spp. as shown in Figure 2. All the ren-
ders were rendered with a maximum allowed path depth of
15. The absolute costs after the 99.9th percentile are clipped.

Looking at the results shown in Figure 2, we can see that
both the intersection metric and the path length metric have
similar changes. This is likely because only changing an
object’s color would lead to a potential increase/decrease
in some path’s throughput but not their trajectory. As in
the PBRT renderer, path throughput is considered to ter-
minate the path either due to zero throughput or Russian
roulette. The probability of terminating a path through Rus-
sian roulette is dependent on the throughput of the high-
est contributing color channel. Where high throughput cor-
responds to a lower chance of termination due to RR, the
effects of changes in path throughput can be directly seen
through the path length metric. Evidently, in the Cornell box
scene, costs contributed by intersection tests and the acceler-
ation structure are relatively uniform throughout the scene.

Comparing the change in cost for rendering the red box
to the blue box scene, we can see how the costs of the paths
between the wall and the box are affected. As the blue box

reduces the throughput of paths bouncing from the red wall,
it gets terminated earlier due to lack of throughput and Rus-
sian roulette.

In the following example, we look at the "White Room"
scene provided by Benedikt Bitterli [Bit16]. In this scene, we
replace the material of the center table (substrate material)
with the same material as the table leg (matte material). The
scenes are rendered with 256 spp. each and the metrics are
evaluated with 32 spp. All the images are rendered with a
maximum path depth of 33 in Figure 3. Due to the presence
of few outliers, the absolute values in the difference costs are
clipped after the 99.9th percentile.

As opposed to just changing the material’s color, changing
material properties additionally affects the path’s trajectory.
This change can lead to paths taking more or less expensive
routes. At the same time, these changes can lead to paths
terminating earlier. Looking at the cost difference, we can
see how the change in the table’s reflection affected the in-
tersection cost. The places with high specular reflection had
their costs increased when replaced with a matte material,
whereas the regions without the specular highlights had their
costs reduced. As the intersection cost is more representative
of the actual computational cost, we can further see how sig-
nificant the change is in estimated cost.

Spotting problematic areas

Looking at the metric visualization, we can see potential
problem areas that are otherwise hidden while rendering the
actual image. Take a simple example of a room with a mir-
ror as shown in Figure 4. Here, looking at the actual ren-
der, we might not see anything unusual, but after visualizing
our metrics, we can see an unusually high cost around the
mirror’s borders. It is caused due to the small gap between
the wall and the mirror. This gap causes multiple rays to be
trapped. To address this problem, we move the mirror closer
to the wall. As a result, fewer paths get stuck between the
wall and the mirror. Comparing the costs, we can see that
we have reduced the estimated cost for rendering this scene.
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(a) Original (b) Modified table

(c) Path length difference (d) Intersection cost difference

Figure 3: White room scene where the table is rendered with (a) substrate (mix of glossy and diffuse properties) material and
(b) matte material matching the table legs. The cost difference in rendering the matte table scene is shown for (c) path length
and (d) intersection cost. We can see how changing from a substrate to matte material increased the costs near the specular
highlights in (a) the original image but deceased the costs in other regions.

(a) Original (b) Path length (c) Intersection cost

(d) Modified (e) Path length difference (f) Intersection cost difference

Figure 4: (a) Rendered image of mirror hanging on a wall and its corresponding (b) path length and (c) intersection costs
(Equation 1). This scene is (d) modified to reduce the gap between the wall and the mirror. The difference in (e) path length
and (f) intersection costs after performing this modification. The decrease in cost is due to less paths being trapped between the
wall and the mirror.
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6. Responsible Research

Due to the nature of path tracing, very few ethical consider-
ations need to be taken. However, it does not imply that no
ethical concern needs to be considered. As with any other
research, high importance is given to ensuring that the data
is not silently tampered with to match the expected results.
Our work explicitly mentions where the data has been al-
tered and why. In all cases, it is for visualization reasons,
as a few outliers affect the range of colors utilized in color
maps. Further, we mention the outlier removal technique ap-
plied for this purpose.

As our method is built on top of the widely known, open-
source PBRT v3 renderer [PJH16], it is straightforward to
re-implement our method. Furthermore, to address the re-
producibility of our methods, we include the implementation
details in Section 4. Additionally, all our test scenes except
the scene with the mirror are extended from openly avail-
able scenes provided by PBRT [PJH16] and Benedikt Bit-
terli [Bit16]. Any alterations in the scenes are mentioned in
Section 5.

7. Discussion

We have shown how our method can be used to estimate the
cost of rendering a pixel and compare the effects of changing
scene variables. It can be used to compare the cost contribu-
tion of changes in scene variables and highlight problematic
areas that might need to be addressed. However, our method
currently only supports visualizing the contribution of inter-
section tests to computational time. Although it can signif-
icantly contribute to computational time, it is not the only
contributor. A few other contributors would involve load-
ing memory-intensive textures, complex material properties
and other rendering engine specific constraints. Developing
a cost function to account for those factors can provide a
more accurate representation of time spent per pixel.

Knowing the areas of computational hotspots defined by
the metric might not always be helpful for an artist. Know-
ing the cause of the hotspots is beneficial as it will enable
the artists to reduce the computational cost by addressing
the cause. For example, path throughput can be defined as
a metric to reason why the path length is high. However,
it depends on how the rendering engine is built to determine
the metrics. Suppose the rendering engine performs the Rus-
sian roulette calculation for path termination based on a fixed
number. In that case, path throughput might not be a helpful
metric to show how it affects path length.

In the depicted results, the sample rate per pixel is signifi-
cantly lower than what would be used in practice for render-
ing a scene for an actual render of the scene. Still, it high-
lights the regions of high computational, albeit a noisy ver-
sion of it. Due to the low sampling rate, it is significantly
faster to render and potentially enables progressive render-
ing. It can also be extended to move the camera to make an

interactive progressive cost map of the scene from a single
movable viewpoint.

8. Conclusions and Future Work

We have developed a method for measuring and visualiz-
ing the costs for rendering a pixel for unidirectional path
tracers and metrics for defining these costs. We showed that
the intersection metric corresponds well to showing compu-
tational hotspots for the scenes where the intersections are
still the highest contributor to computational time. Further-
more, the path length metric can be used along with the in-
tersection metric to reason about high costs. These metrics
can spot computationally expensive regions in a scene that
might need to be addressed. To aid that, metrics can be used
to compare similar scenes and get a better insight into the
effects of changing scene variables on computational cost.
This insight enables the user to perform clever modifications
on the scene to reduce the computational cost.

In the future, this visual toolkit may be extended to sup-
port more metrics for a broader range of analyses and cost
estimation. Additionally, the data collection method can be
modified to collect the costs of the scene rather than for a
single viewpoint.
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