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Abstract

To regulate pollution emission of NO2 and greenhouse gasses like carbon dioxide and methane,
satellite images of the TROPOspheric Monitoring Instrument (TROPOMI) are used to map the
spread of air pollution. This instrument delivers near-daily ’snapshots’ of the NO2 concentration
over the whole Earth. In this report, first, the spread of NO2 pollution is modelled using a so called
convection-diffusion equation. This equation is constructed from a convection term, which contributes
to how much the wind transports matter, and a diffusion term which described the natural mixing
of gases. Next, NO2 pollution sources were reconstructed using the inverse of the time propagation
of the model. Thus, known NO2 concentrations are used to reconstruct temporal information. By
finding out what is missing between data snapshots, sources can be reconstructed. The verification
of the algorithm was first performed on artificial data, after which it was applied to experimental data.

The convection-diffusion equation that was used is a two dimensional equation, using longitude
and latitude as Cartesian coordinates. The equation was solved by the method of lines, i.e. first a
spatial discretisation was made using the Finite Volume Method, after which time integration methods
were used to propagate the problem in time. In this report two time integration methods formed
the basis for the time propagation and two source reconstruction algorithms. The algorithms take
two NO2 snapshots yn and yn+m, with m time steps in between. First the inverse form of Forward
Euler is used, which performed well on artificial data on a small time scale. Afterwards the Backward
Euler method is used to define the inverse problem of finding the source function. This algorithm
performed well on artificial data with 24 hours between snapshots. The algorithms were found to
be sensitive to noise and to be influenced greatly by the second NO2 snapshot. After applying the
algorithm to experimental data it was found that the algorithm is able to localise extended sources of
emissions, but is not capable of pin-pointing individual point sources. In addition, sources with low
emission rates were left undetected due to information being lost in the noise. Emission rates were
not reconstructed accurately either, although it was able to find the main sources of emissions. The
performance of the algorithm will take advantage from more frequent data. With this improvement,
this method is a viable option for finding not only NO2 sources, but can also be applied to other
tropospheric gases.
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1 Introduction

Nitrogen dioxide (NO2) is an atmospheric trace gas that plays a leading role in air quality issues. Not
only does it directly affect human health, it is also essential for the formation of acid rain and ozone
in the troposphere, which are harmful for the environment. As the world is working on trying to slow
down climate change, the need for monitoring instruments rises. In October 2017, the Sentinel-5 satellite
was launched with on board the TROPOspheric Monitoring Instrument (TROPOMI). This instrument
is capable of mapping the air quality of the entire Earth, giving daily ’snapshots’ of, among other things,
NO2 concentrations. These snapshots provide the concentration of NO2 in the troposphere, and can be
used to investigate the dispersion of pollution. The modelling of the spread of pollution, as well as finding
the locations of pollution sources, has been a topic of interest for years. With the coming of TROPOMI,
air pollution spread can be modelled more precisely than ever before.

The objective for this report is to use satellite images of NO2 concentrations over the Netherlands,
produced by TROPOMI, to find the sources of NO2 emissions. The basis for the research lies in the
application of a two-dimensional convection-diffusion equation to describe the transport of the pollution.
After which the inverse source problem is tackled by using the inverses of time integration methods.
Which leads to the research question that will be answered in this report:

Can an algorithm based on an inverse time integration method be used to accurately reconstruct NO2

pollution sources?

This report will be an orientational research into the possibilities of using the inverse of the Forward and
Backward Euler method as bases for source reconstruction algorithms.

The report will start by giving information on NO2 and a brief description of TROPOMI in Section
2. In the following Section, the data that will be used in this report is featured, including the measures
that need to be taken to make the data usable. Thereafter, in Section 4 the model that will be used
to numerically simulate the transport of NO2 is defined. This model is then used to estimate transport
parameters, by visually comparing the solutions of the model to experimental data. Following is Section
5 in which the inverse source problem is introduced and two source reconstruction algorithms are defined
and tested. Finally, in Section 6 the source reconstruction algorithm is applied to experimental data.
This report is finished by a conclusion and discussion, which can be found in Sections 7 and 8 respectively.

All of the code that will is written for this report is written in Python, and is available on request by reaching out to
Neil Budko (n.v.budko@tudelft.nl).
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2 TROPOMI

The data that is going to be used in this report consists of data products from the TROPOspheric
Measuring Instrument (TROPOMI). TROPOMI is an instrument that can measure gases such as ozone,
CO2, CH4 and NO2 in both the stratosphere and the troposphere (the higher and lower atmosphere).
In this report, however, only the tropospheric column of NO2 will be of interest. The instrument is
located on the satellite Sentinel-5. This satellite was launched on 13 October 2017, planned for a seven
year mission [24]. In this section it will first be explained what nitrogen dioxide is and what the impact
of this gas is on the environment. Afterwards there will be a brief explanation on how the TROPOMI
instrument works and what type of data product the instrument creates. The section is concluded by a
discussion on the accuracy of the instrument.

2.1 Nitrogen dioxide

Nitrogen dioxide is a gas that is produced during the combustion of fossil fuels. Therefore industry,
power plants, and traffic on both the roads and the waterways are important sectors for the emission of
NO2 [12]. The areas where the yearly average NO2 concentrations are the highest in the Netherlands
are: Amsterdam and Rotterdam. Outside of the Netherlands, close to the border, Antwerp and the
Ruhrgebiet are big polluters.
High concentrations of NO2 can have a direct effect on the human health. Exposure over short periods
can aggravate respiratory diseases, longer exposure can potentially increase susceptibility to respiratory
infections [7]. This is due to NO2 pollution at a surface level, on an atmospheric level the gas has
an environmental effect. NO2 and other nitrogen oxides can interact with water, oxygen and other
chemicals in the atmosphere to form acid rain [7]. Acid rain has harmful effects on plants, animal life,
causes corrosion on buildings and indirectly affects human health [19]. In addition, in the troposphere,
NO2 is one of the main sources of oxygen atoms for the formation of ozone. Which not only is damaging
for the environment, among which it decreases plant productivity. It is also harmful for human health, it
causes 0.7 million ± 0.3 million respiratory mortalities yearly worldwide [1]. Due to chemical processes
in the troposphere, NO2 has a lifetime of approximately one day [14]. So even though NO2 is not a
greenhouse gas, the indirect effects on climate change and human health are large.

2.2 How it works

The way TROPOMI works is visualised in Figure 1. As the satellite, on which TROPOMI is located,
orbits the Earth it images a strip of the of the Earth onto a grid. This strip is around 2600 km wide
and approximately seven kilometers long, measured during one second. In this way the instrument can
cover the Earth on a daily bases. The strip is partitioned into pixels, each pixel corresponds to a column
on the grid inside the instrument, and has a size of approximately 7 × 3.5 km2. The incoming light is
separated by wavelength and partitioned over the column on the grid in the instrument. This way, it can
be compared per wavelength how much light is measured.

Figure 1: Overview of the working of TROPOMI [24].

The spectral bands of TROPOMI, over which the light is partitioned, cover light spectra from 270 to
500 nm, from 675 to 775 nm and from 2305 to 2385 nm. This can be seen in Figure 2. In this figure the
absorption spectrum of various gases are also set out. The instrument can measure which gas is in the
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troposphere and in what concentration by analysing the measured wave lengths detected. For example, if
there is a large NO2 pollution plume in the troposphere, it will absorb light of a certain wavelength as can
be seen in Figure 2. This ranges somewhere between 350 and 600 nm. This means that the instrument
will measure less light in the range of 350 to 600 nm. With this information the instrument can not only
detect the presence of NO2 in the troposphere, but also its concentration.

Figure 2: The spectral ranges for the instrument TROPOMI and it’s predecessors: OMI, GOME and
SCIAMACHY [24].

Using this method, TROPOMI creates several types of data products among which the tropospheric
column of NO2. This gives the amount of NO2 molecules in the column above every pixel, in the
troposphere.

The method for detecting pollution as stated above is the main idea behind the instrument, in reality
this data retrieval is more complicated. It consists of three steps, in the first step the amount of NO2

molecules along the effective light path from Earth through atmosphere to satellite is calculated. This is
called the Slant Column Density (SCD). Next, the SCD is separated into its stratospheric and tropospheric
components. In the final step the vertical stratospheric and tropospheric column densities are determined
[23]. This means that there are multiple steps in which errors can occur, which could make the data less
accurate. In the following section the accuracy of the data will be analysed.

2.3 Accuracy of the data

There are multiple factors which influence the accuracy of the data. As shortly mentioned in the previous
section, there can be uncertainty in the steps for processing the data. In addition, the weather conditions
have an influence and there can be a decrease in accuracy over highly polluted areas.
To start, the bias requirement for the tropospheric NO2 retrieval is set to be 25% to 50% [6]. In addition
it is found that the tropospheric NO2 columns have a negative bias over polluted areas, close to the source.
There, the peak of the NO2 concentration is close to the ground. On the other hand, the concentration
of NO2 may be overestimated away from big sources [10].
Next, the influence of the weather conditions on the accuracy of the data will be analysed. The focus lies
mainly on the cloud coverage. TROPOMI uses a low surface albedo (measure of reflectivity) of 2% for
the signal-to-noise requirements [24]. This means that cloud-free pixels are of most interest. Since the
albedo grows as the cloud fraction grows [5], more cloud coverage results in less reliable data, therefore
cloud covered pixels can be filtered out.
Finally, when NO2 is measured over strongly polluted areas, there is a bigger chance of detecting very
large NO2 concentrations for individual pixels. It is currently unlikely to encounter NO2 concentrations
that are not optically thin in the TROPOMI data, except in a few individual pixels [23]. Therefore the
influence of strongly polluted areas will be neglected.
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3 Data

In this section the data that is received from TNO (Netherlands Organisation for Applied Scientific
Research) will be shown and explained briefly, the steps needed to make the data usable will be set out
as well. It will first be described how a selection is made which NO2 data is determined to be useful.
Afterwards it will be described how the data has to be interpolated, and the result of the interpolation
will be shown and discussed. Finally, it will be described what transformations are needed to convert the
data to the right units of measurement.

3.1 Received data sets

There are two different types of data that are received from TNO, namely data on the concentration
of NO2 and on the direction and speed of the wind. Both of this data is given for the months: June,
July and August. First the NO2 data set will be described. As described in Section 2.2, the data which
TROPOMI produces currently has a pixel size of 7 × 3.5 km2. For each pixel the tropospheric vertical
column of nitrogen dioxide is given. That is, the amount of molecules of NO2 are given per squared
centimeter for the column above the pixel, with a precision of 1× 1015 mol./cm2 [24]. This data is given
roughly on a daily basis and will be referred to as ’snapshots’. Since TROPOMI is not a stationary
measuring instrument, the concentration of NO2 in the north of the Netherlands is given on a slightly
different time than the concentration in the south of the Netherlands. It is found that the maximal time
interval for a total measurement of NO2 pollution over the Netherlands is one minute. Therefore it will
be assumed that all of the data is measured at the same time. In Figure 3a a visualisation of the data is
shown. In this figure the pixels are clearly visible and thus the picture looks rough.

(a) NO2 concentration spread over
the Netherlands on 22/08/2019.

(b) Hourly wind direction and speed in
the Netherlands on 22/08/2019.

Figure 3: Visualisations of the received data.

As previously mentioned, in addition to the the NO2 data, there is also data on the wind. This data
consists of two values: U and V given per hour, corresponding to the horizontal and vertical component
of the wind respectively. These components are given in m/s. Using these components the direction and
speed of the wind can be determined. The wind data can in turn be visually represented by arrows, as
is done in Figure 3b.

3.2 Selection of data

As was written in the beginning of this section, the first step in finding usable data is to make a selection
of which NO2 snapshots will be used. To be precise, which measurements of NO2 concentration. As
described in Section 2.3, not every day is optimal for the measuring of NO2. Days with a lot of cloud
coverage are less suitable for the measurement of NO2 concentrations than cloud-free days. This is
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because the retrievals are only reliable up to a certain cloud fraction [24]. Thus for cloudy days a lot of
information is too unreliable to use and is filtered out. To make sure the data that will be used in this
report has enough coverage of reliable data points over the Netherlands, a threshold is set. The condition
for an NO2 snapshot to be used in the report is that it has to have at least 3000 data points. This
resulted in that only data on four days in June, two days in July and seven days in August are selected
to be usable.

3.3 Interpolation of the data

After the selection of usable data, the data will be processed to be used in a numerical calculation. The
NO2 concentration and the wind speed and direction needs to be available on certain points determined
by the discretisation. For the discretisation the domain will be partitioned into a grid with N × N
interior points. The NO2 data will be needed on all of these interior points and the wind data will be
needed between and around all of these points. First, it will be described how the NO2 data needs to be
interpolated.
The domain on which the data for the NO2 concentration and the wind is given is the following: 3.16 ≤
x ≤ 7.45 and 50.65 ≤ y ≤ 53.67 in degrees longitude and latitude respectively. Since the wind data is
needed on a slightly bigger domain than the interior points, the domain on which the interior points will
be defined will have the following size:

longitude: 3.2 ≤ x ≤ 7.4,

latitude: 50.7 ≤ y ≤ 53.6.

This domain will be used throughout the report and covers the Netherlands entirely, in addition, parts
of Germany and Belgium are also within the domain.

3.3.1 NO2 data

The given NO2 data is given on a set of coordinates which are not the same as the interior points on
which the data is needed. In addition, the coordinates of the measured values slightly differ per day.
This is because TROPOMI is not stationary, but is on a different location every time. The data will be
interpolated on a grid with Ny × Nx interior points using linear interpolation, on the domain specified
in the previous section. If extrapolation is needed to find the value of a certain interior point, the value
zero is given.
To check whether the interpolation is usable it can be visually compared to the given data. For this the
Figures 3a and 4 can be compared. It can be seen that the interpolated data looks less blurred and more
precise. Other than a sharper image, the figures show the same clouds of NO2 pollution. Thus there is
no information lost in the interpolation.

Figure 4: Visual representation of the interpolated data on 22/08/2019.
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3.3.2 Wind data

In addition to the NO2 data, the wind data will also need to be interpolated. This will be done both in
space and in time to make sure the data is at the desired location and can be calculated for every desired
time. To interpolate this data, either in space or in time, it is not possible to simply interpolate the U
and V component, since these are vectors. Therefore the wind amplitude will be calculated per point.
Afterwards the wind amplitudes can the interpolated to find the amplitude of the wind on the desired
point. Separately the U and V components will be interpolated to find the corresponding direction of the
wind. Finally the found U and V components are normalised and afterwards multiplied by the amplitude
of the wind. This is necessary since the interpolation of unit vectors do not always result in unit vectors,
see Appendix B. This way the information remains.
First the data will be interpolated in space. From the final discretisation equation (3) one finds that the
value of the wind is wanted on different points than the NO2 concentration. This is visualised in Figure
5, the black circles are the points (xi, yj) where the NO2 concentration is calculated. The stars represent
the points on which the wind data is needed, for the red coloured stars the vertical component (V) is
needed. For the white stars the horizontal component (U) of the wind is needed.

Figure 5: Overview of data-points.

As stated above, the three components of the wind data: the amplitude and the U and V components,
will be interpolated separately. The amplitude of the wind vector will be needed for all stars in Figure
5. The normalised U component will be calculated for the white stars and the normalised V components
will be calculated for the red stars. This results in two different matrices with a different shape. The
matrix containing the U components will be a Ny × (Nx + 1) matrix, whereas the matrix containing the
V components of the wind will be a (Ny + 1)×Nx matrix.
In addition, the wind data will have to be interpolated in time, to match the NO2 data. For this a
function will be written that returns the U and V component matrices for the desired time. Again to
preserve the right information the amplitude and and directions of the wind are interpolated separately.
For the NO2 data it was sufficient to fill all of the values outside of the convex hull of the received data
points with zeroes. For the wind data this resulted into problems with the discretisation. Therefore
the domain containing the Netherlands was taken to be the size as defined in Section 3.3, such that no
extrapolation is necessary.

3.4 Transformation of units

In Appendix A an approximation is made to show that longitude and latitude can be used as Cartesian
coordinates for the discretisation of the model. This means that the units of measurements of the data
will need to be converted to work with longitude and latitude. The units of the NO2 data and the wind
data will be separately converted, starting with the wind data.
The wind data is given in meter per second, but should be converted to degrees per hour, since the time
is given in hours. To do this conversion, first the unit can be changed to kilometers per hour, this is done
by multiplying by 3.6. Now, kilometer has to be converted to longitude and latitude to receive the wind
data in degrees per hour. Kilometers can be written in degrees in the following way [16]:

latitude: 1◦ ≈ 111 km,

longitude: 1◦ ≈ 111 cos(latitude) km ⇒ 1◦ ≈ 66.6 km.

As mentioned in Appendix A, cos(latitude) was taken as a constant cos θ̂0, since the latitude takes value

between 50.65 and 53.70 the cosine takes value between 0.63 and 0.59. For simplicity cos(latitude) = cos θ̂0

will be approximated by 0.6. This gives that one degree in longitude is approximately equal to 67 km.
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Using this, the horizontal (U) and vertical (V) components of the wind vectors can be rewritten separately
in the following way:

U: 1 m s−1 ≈ 3.6 km/h ≈ 5.4× 10−2 deg/h

V: 1 m s−1 ≈ 3.6 km/h ≈ 3.2× 10−2 deg/h

This means that the received wind data has to be multiplied with a constant in the following way: the
U component will be multiplied by 5.4× 10−2 and the V component will be multiplied by 3.2× 10−2 It
is important to note that this conversion should be done after interpolation of the data, since one degree
in longitude is not equal to one degree in latitude the length of a vector cannot be described in degrees
only.

Next, the units of measurement of the concentration u have to be converted from molecules per cen-
timeter squared (mls/cm2) to molecules per degree squared (mls/deg2). A square degree in longitude
and latitude is equal to the multiplication of one degree in longitude times one degree in latitude, this
gives that: 1◦

2 ≈ 7392 km2 ≈ 7.392 × 1013cm2. This gives that the NO2 data should be multiplied by
7.392× 1013 to convert it to molecules per degree squared.

Now, using the above methods the data received is converted to the units: molecules, degrees longi-
tude, degrees latitude, and hour. In the rest of the report the variables x and y will be used to represent
longitude and latitude respectively.
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4 Numerical simulation of NO2 transport

The goal of the first part of this report is to simulate NO2 pollution plumes above the Netherlands.
This will be done by using a two dimensional convection diffusion equation. This is a partial differential
equation which consists out of a convection part, which determines the extent to which the matter is
transported by the wind, and a diffusion part, which determines how much the matter spreads out over
time. The exact equation that will be used is explained in the following section.
The convection diffusion problem that is going to be used is solved by using the method of lines. That
is, the problem is first spatially discretised, after which the problem is integrated in time. This process
is documented in the Sections 4.2 and 4.3.
The final subsections of this section will focus on the determination of parameters. First the value for the
time step and the grid size will be determined to avoid stability and discretisation errors. This section
will be concluded by an estimation of transport parameters.

4.1 Two-dimensional convection-diffusion model

A linear Eulerian air pollution dispersion model in three dimensions is based on the following partial
differential equation, see e.g. [15]:

∂u

∂t
+ wx

∂u

∂x
+ wy

∂u

∂y
+ wz

∂u

∂z
=

∂

∂x

(
Dx

∂u

∂x

)
+

∂

∂y

(
Dy

∂u

∂y

)
+

∂

∂z

(
Dz

∂u

∂z

)
+ f,

where u(x, y, z, t) is the concentration of NO2, wx(x, y, z, t), wy(x, y, z, t) and wz(x, y, z, t) are the Carte-
sian wind components, and Dx(x, y, z, t), Dy(x, y, z, t) and Dz(x, y, z, t) are the components of the tur-
bulence diffusion tensor D(x, y, z, t). The term f(x, y, z, t) is the source term.

In this report a simplified horizontal dispersion model in two dimensions, x and y, as in [9] is consid-
ered:

∂u

∂t
+ wx

∂u

∂x
+ wy

∂u

∂y
= D

(
∂2u

∂x2
+
∂2u

∂y2

)
− αu+ f,

where u(x, y, t) is the horizontal distribution of NO2, wx(x, y, t) and wy(x, y, t) are the horizontal com-
ponents of the wind, D is the diffusion coefficient, and f(x, y, t) is the source function. In addition, there
is a sink term αu with α ≥ 0. The derivation of this equation in latitude-longitude coordinates can be
found in Appendix A.

We shall consider the following conservative form of this two-dimensional convection-diffusion problem:

∂u

∂t
= D∆u−∇ · (wu)− αu+ f, (x, y) ∈ Ω, t > 0;

u(x, y, t) = g(x, y, t), (x, y) ∈ Γ, t > 0;

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

(1)

where w = 〈wx, wy〉 is the vector function of the wind and g, u0 are given functions.
The meaning of the diffusion term requires explanation. Indeed, the molecular diffusion of NO2 in air

is so small that it can be ignored. In the original paper [8] the molecular diffusion coefficient was given
a value of 1.54× 10−1 cm2/s at 21.1 °C at 1 atm pressure. In other, more recent, papers a similar value
can be found [13]. This means that the molecular diffusitivity is of order 10−12, which is very small in
comparison to the amplitude of the wind.

The approximately diffusive transport of NO2 is caused by the mixing of NO2 with the air due to
small eddy currents in the ever turbulent atmosphere. Therefore, the diffusion constant D is effective in
nature and is usually estimated from the observed lateral expansion of extended NO2 plumes.

From the records of tests with manned balloons [17], the horizontal eddy-diffusitivity has been found
to be in the order of 2 × 108cm2/s. This will give the effective diffusion coefficient D in the order of
9.7× 10−4deg2/h. Since the determination of this constant is based on a dated study, the coefficient D is
still subject to change. The order of this coefficient will however remain between: 1× 10−4 and 1× 10−2.

4.2 Spatial discretisation

The PDE (1) will be discretized using the Finite Volume Method (FVM). In simulations the homogeneous
Dirichlet boundary condition g = 0 is assumed.
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The first step of the FVM is to define the grid and the control cells. The received data that is given is
defined on a certain domain, and interpolated on a Ny ×Nx grid. The interior points of this domain will
be taken as interior points for the discretisation. Around the interior points there will be the boundary
points, thus if there will be Ny×Nx interior points, the total grid will have (Ny+2)×(Nx+2) points. For
data over the domain (x, y) ∈ [L1, LN ]× [H1, HN ], one gets the grid steps hx = LN−L1

Nx−1 and hy = HN−H1

Ny−1 .

The vertex-centered FVM will be used for both internal and boundary points of the grid, since the
Dirichlet boundary conditions are assumed. Each internal point has a control volume (cell) Ω of size
hx × hy associated with it as shown in Figure 6, while points on the boundary Γ have control half-cells,
and the four corner points have control quarter-cells.

Figure 6: Control cell.

The partial differential equation (1) is first re-written as:

∂u

∂t
= ∇ · (D∇u−wu)− αu+ f

This equation can be integrated over the control cell, afterwards the Gauss divergence theorem is applied.

∫
Ω

∂u

∂t
dΩ =

∫
Ω

(∇ · (D∇u−wu)− αu+ f) dΩ∫
Ω

∂u

∂t
dΩ =

∫
Γ

((D∇u−wu) · n) dΓ−
∫

Ω

αudΩ +

∫
Ω

f dΩ

The integral over the boundary can be split into four parts representing each of the sides of the control cell:
north(n), east(e), south(s) and west(w). Denoting the components of the wind vector as w = 〈wx, wy〉
we arrive at:∫

Ω

∂u

∂t
dΩ =

∫
Γn

(
D
∂u

∂y
− wyu

)
dΓ +

∫
Γe

(
D
∂u

∂x
− wxu

)
dΓ +

∫
Γs

(
−D∂u

∂y
+ wyu

)
dΓ+∫

Γw

(
−D∂u

∂x
+ wxu

)
dΓ−

∫
Ω

αudΩ +

∫
Ω

f dΩ

For the integrals over boundaries a one-point integration will be applied, for the integrals over the
control cell Ω the point (xi, yj) is taken. Multiplying this by the width and length of the control cell, hx
and hy respectively, results in an approximation for the integrals over the control cell. For the integrals
over the boundary of the control cell, the middle point of the boundary is chosen as integration point.
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This means that for integration over the northern boundary the point (xi, yj+1) is taken, for reference
see Figure 6. This is in turn multiplied with the length of the specific boundary, in the case of the
northern and southern boundary this is hx. For the derivatives a cell centered discretisation is taken.
Furthermore, u(xi, yj , t) will be written as ui,j and the dependence on time will be suppressed. This
leads to the following discretisation for the interior points:

hxhy
dui,j
dt

= Dhx
ui,j+1 − ui,j

hy
− hxwyi,j+ 1

2

ui,j+ 1
2

+Dhy
ui+1,j − ui,j

hx
− hywxi+ 1

2 ,j
ui+ 1

2 ,j

−Dhx
ui,j − ui,j−1

hy
+ hxw

y

i,j− 1
2

ui,j− 1
2
−Dhy

ui,j − ui−1,j

hx
+ hyw

x
i− 1

2 ,j
ui− 1

2 ,j

− hxhyαui,j + hxhyfi,j .

(2)

Dividing this by hxhy we obtain:

dui,j
dt

= D
ui,j+1(t)− ui,j(t)

h2
y

− 1

hy
wy
i,j+ 1

2

ui,j+ 1
2
(t) +D

ui+1,j(t)− ui,j(t)
h2
x

− 1

hx
wxi+ 1

2 ,j
ui+ 1

2 ,j
(t)−Dui,j(t)− ui,j−1(t)

h2
y

+
1

hy
wy
i,j− 1

2

ui,j− 1
2
(t)

−Dui,j(t)− ui−1,j(t)

h2
x

+
1

hx
wxi− 1

2 ,j
ui− 1

2 ,j
(t)− αui,j + fi,j

For the u on the boundary of the control cell, the value can be approximated by interpolation, so we
have:

ui,j+ 1
2
(t) =

ui,j(t) + ui,j+1(t)

2

ui+ 1
2 ,j

(t) =
ui,j(t) + ui+1,j(t)

2

ui,j− 1
2
(t) =

ui,j(t) + ui,j−1(t)

2

ui− 1
2 ,j

(t) =
ui,j(t) + ui−1,j(t)

2

This can be substituted into the equation, which gives:

dui,j
dt

= D
ui,j+1(t)− ui,j(t)

h2
y

− wy
i,j+ 1

2

ui,j(t) + ui,j+1(t)

2hy
+D

ui+1,j(t)− ui,j(t)
h2
x

− wxi+ 1
2 ,j

ui,j(t) + ui+1,j(t)

2hx
−Dui,j(t)− ui,j−1(t)

h2
y

+ wy
i,j− 1

2

ui,j(t) + ui,j−1(t)

2hy

−Dui,j(t)− ui−1,j(t)

h2
x

+ wxi− 1
2 ,j

ui,j(t) + ui−1,j(t)

2hx
− αui,j + fi,j .

Which is equivalent to:

dui,j
dt

= ui,j−1

(
D

h2
y

+
wy
i,j− 1

2

2hy

)
+ ui−1,j

(
D

h2
x

+
wx
i− 1

2 ,j

2hx

)

+ ui,j

(
−2D

h2
x

− 2D

h2
y

+

[
wy
i,j− 1

2

2hy
+
wx
i− 1

2 ,j

2hx
−
wx
i+ 1

2 ,j

2hx
−
wy
i,j+ 1

2

2hy

]
− α

)

+ ui+1,j

(
D

h2
x

−
wx
i+ 1

2 ,j

2hx

)
+ ui,j+1

(
D

h2
y

−
wy
i,j+ 1

2

2hy

)
+ fi,j . (3)

The discretisation of the boundary points is a simple substitution of the boundary condition. This
results in: u0,j = 0, u101,j = 0, ui,0 = 0 and ui,101 = 0.
The obtained discretisation can be written as a system of equations in the following fashion:

du

dt
= A(t)u + f(t) (4)
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To create the discretisation matrix, a horizontal numbering is used. Each point with coordinates
(xi, yj) corresponds to row number n = i+ (j − 1)N . The total matrix will be a N2 ×N2 block matrix,
which has the form:

A =


L1 L2

L3 L1 L2

. . .
. . .

. . .

L3 L1 L2

L3 L1


A is a block-diagonal matrix that consists of N × N block-matrices L. To describe the matrices

L1, L2 and L3, the discretisation will be rewritten in a more compact form using the following discreti-
sation:

dui,j
dt

= ui,j−1 (a) + ui−1,j (b) + ui,j (e) + ui+1,j (c) + ui,j+1 (d) + fi,j .

Then L can be written as:

L1 =


e c
b e c

. . .
. . .

. . .

b e c
b e

 , L2 =

d . . .

d

 , L3 =

a . . .

a



In (4) the vector u contains all points ui,j with i, j ∈ {1, . . . , N}, ordered using the same horizontal
numbering as for the discretisation matrix. The vector f consists of all values fi,j i, j ∈ {1, . . . , N} of the
source function. Again, the same horizontal numbering is applied.

4.2.1 Analysis of the discretisation matrix

For the analysis of the stability of the system and later for the stability of the time discretisation method,
it is important to analyse the matrix A. It can first be noted that the matrix A is not symmetric. The
next thing that will be analysed of the matrix A are the eigenvalues. The eigenvalues can be closer
investigated by using Gershgorin’s circle theorem: every eigenvalue λ of matrix A satisfies:

|λ− ai,i| ≤
N∑

j=1,j 6=i

|ai,j |.

This theorem will give an area in the complex plane in which the eigenvalues can be found. This area
is the union of as many discs as the amount of rows matrix A has. Applying Gershgorin’s theorem to
the obtained matrix A from Section 4.2, gives five different types of rows. These rows are the radii of the
discs, to find the smallest eigenvalue, the largest radius will be taken. This leads to the following interval:

|λ− e| ≤ |a|+ |b|+ |c|+ |d|. (5)

The found interval represents a circle with center: e and radius: |a|+|b|+|c|+|d|. The smallest eigenvalue
will be on the most left point of this disc. This implies that the minimal eigenvalue is located on the real
axis of the imaginary plane. Which in turn gives that the minimal eigenvalue is real. For the minimal
eigenvalue, the eigenvalue will be bounded first, after which this will be minimised numerically using the
received wind data. This means that for the smallest eigenvalue, the expression can be written out and
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bounded by using the triangle inequality.

λmin = min
i,j

[
−2D

h2
x

− 2D

h2
y

+
wy
i,j− 1

2

2hy
+
wx
i− 1

2 ,j

2hx
−
wx
i+ 1

2 ,j

2hx
−
wy
i,j+ 1

2

2hy
− α

−

∣∣∣∣∣Dh2
y

+
wy
i,j− 1

2

2hy

∣∣∣∣∣−
∣∣∣∣∣Dh2
x

+
wx
i− 1

2 ,j

2hx

∣∣∣∣∣−
∣∣∣∣∣Dh2
x

−
wx
i+ 1

2 ,j

2hx

∣∣∣∣∣−
∣∣∣∣∣Dh2
y

−
wy
i,j+ 1

2

2hy

∣∣∣∣∣
]

≤ min
i,j

[
−2D

h2
x

− 2D

h2
y

+
wy
i,j− 1

2

2hy
+
wx
i− 1

2 ,j

2hx
−
wx
i+ 1

2 ,j

2hx
−
wy
i,j+ 1

2

2hy
− α

−
∣∣∣∣Dh2
y

∣∣∣∣−
∣∣∣∣∣w

y

i,j− 1
2

2hy

∣∣∣∣∣−
∣∣∣∣Dh2
x

∣∣∣∣−
∣∣∣∣∣w

x
i− 1

2 ,j

2hx

∣∣∣∣∣−
∣∣∣∣Dh2
x

∣∣∣∣−
∣∣∣∣∣−w

x
i+ 1

2 ,j

2hx

∣∣∣∣∣−
∣∣∣∣Dh2
y

∣∣∣∣−
∣∣∣∣∣−w

y

i,j+ 1
2

2hy

∣∣∣∣∣
]

≤ min
i,j

−4D

h2
x

− 4D

h2
y

+
wy
i,j− 1

2

− wy
i,j+ 1

2

2hy
+
wx
i− 1

2 ,j
− wx

i+ 1
2 ,j

2hx
−

∣∣∣wxi− 1
2 ,j

∣∣∣+
∣∣∣wxi+ 1

2 ,j

∣∣∣
2hx

−

∣∣∣wy
i,j− 1

2

∣∣∣+
∣∣∣wy
i,j+ 1

2

∣∣∣
2hy

− α


(6)

This means that there is a difference in the smallest eigenvalue depending on the direction and speed
of the wind, the value for D and the refinement of the discretisation grid. The minimal eigenvalue can
be determined for each value of D and Nx, Ny. For a refinement of Ny ×Nx = 100 × 100, the minimal
eigenvalues are set out in Table 1. The values are numerically determined on the basis of the received
wind data.

Diffusion coefficient Month λmin

D = 0.001
June -38.97
July -24.22

August -26.96

D = 0.005
June -66.51
July -51.75

August -54.50

D = 0.01
June -100.93
July -86.17

August -88.91

Table 1: Lower bound on the minimal eigenvalues per month, with α = 0 and Ny ×Nx = 100 × 100 in
2019.

The value for the minimal eigenvalue also depends on the refinement of the grid, not only does a more
refined grid result in a smaller value for hx, hy. It also results in different values for the wind, since a
more refined grid results in smaller gradients. If this difference in the wind is assumed to be minimal
and solely hx, hy is decreased by the refinement, the minimal eigenvalues for different grid sizes can be
approximated. These approximated values are set out in Table 2. It is clear that the refinement of the
grid has a big impact on the value of the smallest eigenvalue.

Diffusion coefficient Month λmin

D = 0.001
June -92.32
July -62.65

August -68.17

D = 0.005
June -203.58
July -173.91

August -179.43

D = 0.01
June -342.65
July -312.99

August -318.51

Table 2: Approximation for the lower bound of the minimal eigenvalues per month, with α = 0 and
Ny ×Nx = 200× 200 in 2019.
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The found values for the minimal eigenvalue will later be used to analyse the stability of time dis-
cretisation methods.

4.3 Numerical time integration

Next, the convection-diffusion equation will be integrated in time. This can be done using various time-
integration techniques, starting with the Forward and Backward Euler methods. These two methods
will play an important role in the reconstruction of the source function in Section 5. In what follows
we denote un = u(tn), fn = f(tn) and An = A(tn). The Forward Euler (FE) method uses the following
single-point approximation:

du

dt
= A(t) u + f,∫ tn+1

tn

du

dt
dt =

∫ tn+1

tn

A(t) u dt+

∫ tn+1

tn

f dt

un+1 − un = ∆tAnun + ∆tfn +O((∆t)2),

un+1 ≈ [I + ∆tAn]un + ∆tfn

(7)

The Backward Euler (BE) method uses a different single-point approximation:∫ tn+1

tn

du

dt
dt =

∫ tn+1

tn

A(t) u dt+

∫ tn+1

tn

f dt

un+1 − un = ∆tAn+1un+1 + ∆tfn+1 +O((∆t)2),

un+1 ≈ un + ∆tAn+1un+1 + ∆tfn+1

[I −∆tAn+1]un+1 ≈ un + ∆tfn+1,

(8)

where a linear system must be solved at each time step to find un+1, which means that the Backward
Euler method results in an implicit time-stepping scheme. The benefit of the BE method with respect to
the much simpler FE method is in the unconditional stability of the resulting time-stepping scheme.

There exist higher-order time-integration techniques, such as the Runge-Kutta method, which use
multi-point approximations (quadratures) for the time integrals in the right-hand side. These methods
also result in implicit time-stepping schemes. Take, for example, the two-point Trapezoidal method, where
the integral is approximated using the values of the integrand at both ends of the interval [tn, tn+1]:∫ tn+1

tn

du

dt
dt =

∫ tn+1

tn

A(t) u dt+

∫ tn+1

tn

f dt

un+1 − un = ∆t

[
1

2
Anun +

1

2
An+1un+1

]
+ ∆t

[
1

2
fn +

1

2
fn+1

]
+O((∆t)3),[

I − ∆t

2
An+1

]
un+1 ≈

[
I +

∆t

2
An+1

]
un +

∆t

2
[fn + fn+1] .

(9)

As can be seen, here too a linear system needs to be solved at every time step. This method has a higher
numerical precision, compared to both the FE and the BE methods, and is unconditionally stable.

4.3.1 Stability of the Forward-Euler method

Consider the source-free problem and the FE time-stepping scheme:

un+1 = [I + ∆tAn]un,

un+1 =

n∏
i=0

[I + ∆tAi]u0 ≤ [I + ∆tAj ]
nu0,

(10)

where Aj is the matrix of the same form as Ai, but with the time-independent wind data, such that the
inequality above holds (the worst case wind). It is not clear how to construct the upper-bound matrix
Aj given the matrices Ai, i = 1, . . . , n in the general case. However, this analysis can easily be applied
in the situation where the direction of the wind remains the same and only its amplitude changes with
time.
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The solution is expected to decay with n, i.e., limn→∞ un+1 = 0. It is well-known that for any
A ∈ Ck×k, limk→∞Ak = 0, if and only if ρ(A) < 1, where ρ(A) is the spectral radius of A, i.e.,
ρ(A) = max{|λ1|, . . . , |λk|}, where λi are the eigenvalues of A.

Therefore, the FE method is stable if

max
i
|λ̃i| < 1,

|λ̃i| < 1, ∀ i,
|λ̃i|2 < 1, ∀ i,
|1 + ∆tλi|2 < 1, ∀ i,

(1 + ∆tRe(λi))
2

+ (∆t Im(λi))
2
< 1, ∀ i,

0 < ∆t < − 2Re(λi)

Re(λi)2 + Im(λi)2
≤ −2Re(λi)

Re(λi)2
, ∀ i,

0 < ∆t < − 2

mini Re(λi)
,

(11)

where λi are the eigenvalues of the (worst-case) matrix Aj and λ̃i = 1 + ∆tλi are the eigenvalues of the
matrix I + ∆tAj . To calculate the bound mini Re(λi) we use the results of the Section 4.2.1.

It was previously found that the smallest eigenvalue depends on the diffusion coefficient, the wind
direction and amplitude, the parameter α and the refinement of the grid. The found values for the
minimal eigenvalue, set out in Table1, will be used to give constraints for the stability.

∆t < − 2

λmin

⇒ ∆t ≤ −2

−38.97
= 0.05 for α = 0, D = 1× 10−3 and Nx = Ny = 100

⇒ ∆t ≤ −2

−66.51
= 0.03 for α = 0, D = 5× 10−3 and Nx = Ny = 100

⇒ ∆t ≤ −2

−100.93
= 0.02 for α = 0,D = 1× 10−2 and Nx = Ny = 100

(12)

From these calculations it becomes clear that as the diffusion coefficient increases, the ∆t has to
decrease for the method to be stable. The term α is above taken to be zero, as this parameter will
take value in the order 100 or lower, the influence of the time constraint is minimal. The influence of
the refinement of the discretisation does however have a large impact. Using the values for the minimal
eigenvalues from Table 2, the stability criterion can be determined for a refinement of Ny×Nx = 200×200.
In that case, the following criteria are found:

∆t ≤ −2

−92.32
= 0.022 for α = 0, D = 1× 10−3 and Nx = Ny = 200

∆t ≤ −2

−203.58
= 0.0098 for α = 0, D = 5× 10−3 and Nx = Ny = 200

∆t ≤ −2

−342.65
= 0.0058 for α = 0,D = 1× 10−2 and Nx = Ny = 200

(13)

These calculations will be repeated outside of the report for the grid sizes that will be used.
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4.4 Numerical effects due to convection

The problem defined in Equation (1) is a singularly perturbed problem. This is because the following
is true: |w| >> D, which makes the problem a convection dominated problem. To measure how much

the convection dominates the diffusion, the Péclet number is used: Pe = |w|L
D , where L is the length of

the domain. For a large Péclet number a boundary layer will occur which will cause problems in the
numerical treatment [11]. If there is a large gradient, the solution can start to oscillate. Specifically, for
the mesh Péclet number: ph, the condition ph ≤ 1 is necessary for a monotone solution. This gives the
following condition for the step size: h

L ≤
2
|Pe| . Note that there is a different Péclet number for the x- and

y-direction, P xe , P
y
e . The Péclet number depends on the diffusion coefficient D, since it was determined

that this coefficient ranges between 1× 10−4 ≤ D ≤ 1× 10−2, the Péclet numbers for multiple values for
D are calculated. The calculated values can be found in Table 3.

D P xe P ye hx = hy nx ny
1× 10−4 27300 18850 0.0003 14000 9670
5× 10−4 5460 3770 0.0015 2800 1940
1× 10−3 2730 1885 0.003 1400 967
5× 10−3 546 377 0.015 280 194
1× 10−2 273 188.5 0.03 140 97

Table 3: The Péclet number for different D, based on the maximum amplitude of the wind on 31 August
2019 of approximately 12 m/s.

As can be seen in Table 3, the Péclet numbers for both the x- and y-direction are large for each D,
which confirms that the problem is a convection dominated problem. To make sure the mesh Péclet
number is below one, which makes the solution monotone, the mesh can be refined. For D = 1× 10−4 a
step size of less than 0.0003 is needed, whereas for D = 5 × 10−3 a step size of 0.015 is needed. These
step sizes hold for both the x- and y-direction.
From the values for nx and ny, that can be seen in Table 3, it is clear that a the diffusion coefficient
grows, the number of grid points needed decreases. The refinements of the grid, where Nx ≥ 1400, will
cost too much computing power for a laptop with 16GB of memory. Therefore, in this report, the largest
refinement of the grid that will be worked with is: 194× 280. For future research this grid size could be
refined. If the refinement of the grid shows to need to much memory, other solutions can be considered.
For example, the refinement can be only applied to the boundary layer or upwind differencing can be
used for the discretisation. The latter still has a problem, since the direction of the wind changes over
time, the variable w can be either positive or negative. This means that for each individual point it needs
to be determined whether forward or backward differencing is needed.
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4.5 Estimation of transport parameters

To find the discretisation parameters, artificial data was created, where the source function is known.
This is done by first defining a source function, in the first instance with a couple of point sources. For
a second set of experiments extended sources are considered. The point sources that were chosen are
based on the data of the NO2 concentration on the 24th of August 2019. The wind data that was used
is also based on this date. To be precise, the wind data that is used is from the 24 hours before the data
measurement on the 24th of August 2019, thus from 12:50 23/08/2019. In Figure 7 the NO2 snapshot
is shown as well as the locations that are be used for the first test source function. These are found by
choosing the point with the highest concentration of NO2 for three different plumes. This resulted in the
following coordinates: (4.01,51.99), (4.51,52.43) and (6.59,51.55). Approximately located in Ijmuiden,
Rotterdam and the Ruhrgebiet.

Figure 7: Three chosen locations for sources in the test source function.

The found coordinates are used as (xs, ys) for the artificial source function (14). This source function
is used to describe point sources:

f(t) =

Ns∑
i=1

qsδ(x− xs)δ(y − ys), (14)

where Ns is the number of point sources, qs is the strength of each source and (xs, ys) are the coordinates
of the point sources. In this equation δ stands for the Dirac delta function. In the system of equations
this will result in a vector f with qs for each point source and zero otherwise.
For each different source a different strength can be used, but are assumed to be constant over time. First
the diffusion coefficient and the amplitudes of the sources are analysed, by showing the effect of different
values. Afterwards, the influence of the decay term: αu is be investigated. The goal of these analyses
is to find a set of parameters that best simulate the data given. Therefore, the goal for this section is
to find a set of parameters such that the solution of the discretisation after 24 hours resembles the data
as closely as possible. To create the artificial data, the wind data of 23/08/2019 12:50 until 24/08/2019
12:50 is used. That means that the objective is that the resulting data after 24 hours resembles the data
in Figure 7 as closely as possible.
Looking at Figure 7, there are two different hypotheses that can be made on how the parameters should
be set. The first hypothesis is that the NO2 moves mostly by convection and the diffusion is near zero.
This means that the clouds become curved and elongated by the wind. Thus that means that the pollu-
tion comes from relatively small point sources and get transported by the wind. To test this hypothesis,
the point sources as discussed in the beginning of this section are be used. Using that, the parameters:
D and α are varied in order to find a combination that best describes the data.
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The second hypothesis is: that the convection dominates the diffusion less, that the curved NO2 clouds
are more due to the location of the sources and less because of the wind. To test this hypothesis, a map is
created with known industrial areas and highways, where emission of NO2 takes place. This map serves
as the source function, which does not consist of point sources, but of extend sources.

It is important to note that for the first hypothesis the size of the grid is Nx ×Ny = 194× 280. For
the second, the grid size is taken to be Nx × Ny = 100 × 100. This means that for some combinations
of parameters the mesh Péclet number is larger than one and thus there can be discretisation errors
present, see Section 4.4. The goal of this section is, however, to asses the influence of the magnitudes of
the parameters. This influence is still visible when discretisation errors are present. Therefore to make
the determination of parameters based on the propagation of artificial data time efficient, the grid size
remains 194× 280 and 100× 100 throughout the section.

4.5.1 Hypothesis one: localized sources

To begin, the hypothesis that the sources are point sources is tested. For this hypothesis, first the diffusion
coefficient is studied, after which the influence of the decay term is analysed. Finally there is also a brief
discussion on the case that there are multiple sources in close proximity. For each of these experiments,
the Forward Euler method is used to propagate in time. The time steps is set to ∆t = 0.009, as this was
found to be stable for the Forward Euler method (12).

Diffusion coefficient D: As previously written, the first parameter that will be analysed is the
diffusion coefficient. To do this, first the amplitude of the source functions is set. Each source can be
given an individual emission rate, which is the amplitude of the source. To be precise, the sources will
all have a source strength of 5. This number is given in e1030 mls/deg2 h, and is purely an estimation.
In addition, we have that: α = 0. The grid used for the tests in this section has a size of 194 × 280
interior points. This means that according to the Péclet number there are numerical errors present in
the solution for D < 5× 10−3. This expresses itself in negative values in the solution, or oscillations.
In Figure 8, the influence of the magnitude of the diffusion coefficient is shown. Comparing the four
Figures 8a, 8b,8c and 8d shows that for a larger diffusion coefficient the clouds become less defined. The
NO2 ’plumes’ that are visible in Figure 7 have clear edges, with a large gradient on the edge. From the
test, this can be seen for the smallest value of the diffusion coefficient D. As the D grows, the edges of
the plumes become less defined and more saturated.
As well as on the diffusion coefficient, the figures give information on the influence of the source function.
In Figure 7, the maximum NO2 concentration is around 1.3×1030mls/deg2. From Figure 8 it can be noted
that as the diffusion coefficient grows larger, the maximal concentration of NO2 lowers. This maximum
is located at the source for all four sub figures. So as the diffusion coefficient decreases, the pollution
plumes get more defined, but the concentration of NO2 at the point source gets larger.
Based solely on this experiment it is not yet possible to define an emission rate for the sources. For this,
also the influence of the decay term α will be studied.

Decay term α: Next, the influence of the decay term α is analysed. Again, the other parameters:
∆t,D and the strength of the sources are set, whilst the parameter α is varied. The diffusion coefficient
is taken to be D = 0.0005, the sources have a strength of 5 and the time step remains ∆t = 0.009 The
result of this experiment can be seen in Figure 9. There are two main things that stand out, firstly it is
clear from the figures that as the α grows, the plumes start to fade. For α = 0.15 in Figure 9d the plumes
seem to have disappeared, there are only small plumes left around the sources. However, the maximum
NO2 concentration does not change for the varying α.

Multiple point sources: Finally, for the first hypothesis, the influence of multiple sources close to
each other is investigated. As an example, Figure 9a and Figure 10 can be compared. The only difference
between these two figures is that, for the second figure two sources are added. For that figure there are
three sources in close proximity. The distance between the sources is between 4-11 points, which comes
down to a maximum distance of less than 18 km between two sources. The comparison gives that adding
multiple sources in close proximity leads to a bigger plume with a higher NO2 concentration. Note that
the maximum NO2 concentration does not change significantly.

Conclusion: On the basis of the first hypothesis: that the pollution is emitted by sparsely located
point sources, conclusions can be made on the parameters that best replicate experimental data. For
these conclusions, Figure 7 is used as a reference. The plumes that are sought after are ones with a high
gradient on the edge, thus with well defined edges. This appears in the solution for a diffusion coefficient
D ≤ 5×10−4 and a decay parameter of α = 0. In addition, the case where multiple sources were placed in
close proximity looks more closely to the actual data, than very sparsely place point sources. Therefore,
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(a) D = 1× 10−4 (b) D = 5× 10−4

(c) D = 1× 10−3 (d) D = 5× 10−3

Figure 8: The influence of the diffusion coefficient D. The negative values present in the Figures are due
to a mesh Péclet number larger than one.

according to the findings of this section there is little diffusion in comparison to convection and there is
zero, or close to zero, decay in the time span of 24 hours. As well as there being multiple distinct sources
close to each other, which can create large plumes.

4.5.2 Hypothesis two: extended sources

From the first hypothesis it was found that there are probably multiple sources close to each other in
the experimental data. Since the pollution plumes are large and defined in the data, but the maximum
NO2 concentration is fairly low. It can also be the case that in addition to point sources, there are
different types of sources such as line sources. This could be due to highways, where cars produce NO2,
or waterways where cargo ships emit it. To try and replicate a possible map of sources, the map of the
Netherlands can be used. On the map all of the mayor highways and known industrial zones are pinned
as sources.

This map can be seen in Figure 11, as well as an interpolated version with 100× 100 pixels that will
be used for the tests. On both figures the roads and the industrial zones are distinguishable. For the
next test, this image will be taken as the source function. For the roads and the industrial zones, the
strength of the emission can be set manually.
To test what values the parameters: D and α should take, the strength of the sources will be set in
the following way. The industrial zones(the yellow zones in Figure 11) will have a strength of 2. The
roads (coloured green) will have an emission rate of 0.4. The resulting figures can be found in Appendix
C, in Figure 33. From this figure it can first be noted that for D = 0.01 the influence of α is almost
not noticeable. In addition it can be noted that as the α grows, the roads begin to become visible
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(a) α = 0.01 (b) α = 0.05

(c) α = 0.1 (d) α = 0.15

Figure 9: The influence of the decay coefficient α.

in the images. Since in Figure 7, the roads are not distinguishable, the α will be taken such that in
the experiment the roads are not visible either. Which roughly means: α < 0.5. What also stands
out from Figure 7 is that between the ’Ruhrgebiet’ and Rotterdam, so over Brabant and Limburg, the
concentration of NO2 is on the high end. In the experiment, the parameters for which this comes closest
is for 0.001 ≤ D ≤ 0.005, α = 0.1.
For D < 0.005, there will be numerical errors in the solution for grids with a refinement of less than
194 × 280 interior points, see Table 3. Therefore, by combining the usability and performance of the
parameters, the following parameters are taken: D = 0.005, α = 0.1.

4.5.3 Conclusion on found parameters

From the first hypothesis, where the pollution is taught to mainly come from point sources, the parameters
that looked best were: D = 5×10−4 and α = 0. Whereas from the second hypothesis the found parameters
were: D = 5 × 10−3, α = 0.1. In Table 3 it can be seen that for a diffusion coefficient of D = 5 × 10−4,
the grid will need to be refined to have a size of 2800 by 1940 interior points. This refinement is too
large for a laptop with 16 GB of RAM. For D = 5 × 10−3, the refinement needed is: 280 × 194 . This
is achievable for a laptop with 16 GB of RAM. Therefore, the diffusion coefficient found in the second
hypothesis will be taken to be used as a basis for the next experiments. This leads to set of parameters
that can be found in Table 4.

The ∆t in Table 4, is found by using the same technique as in Section 4.3.1.
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Figure 10: Multiple sources close to each other.

(a) Version with 343 by 498 pixels. (b) Interpolated version with 100 by 100 pixels.

Figure 11: Maps of the highways and industrial zones of the domain in different resolutions.

5 Inverse source problem

In the problem there are two terms left undefined. Namely the sink term αu and the source function f .
First, the source term is estimated. Based on that and the available data, the sink term is determined,
this is done in another section. To find an approximation for the source function f a large assumption is
made. The assumption that is made is that each source has a constant emission rate, which in turn makes
the source function a constant function. This gives that fn = f holds for each n. Reconstructed source
functions are represented by a vector as well, this vector is plotted to show visualise the reconstructed
sources.

5.1 Existing methods for determining the source function

The determination of sources in a convection-diffusion problem is important for the prediction of the
dispersion of pollutants. Not only for the spread of pollutants in the atmosphere, but also for pollutants
in water or even the spread of an infectious disease. Thus there is a collection of research done on the
topic. In this section some of these methods will be discussed, before the algorithm is introduced which
will be used in this report.
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Figure 12: Simulated NO2 concentrations based on extended sources, using parameters that best emulate
experimental data.

Parameters: D ∆t α ny × nx Source t0
Values: 5× 10−3 0.009 0.1 194× 280 5 23/08/2019 12:50

Table 4: Parameters for a stable discretisation.

To start, it is important to note that there are different approaches to this inverse problem of finding
sources. Two distinct main ideas are: first, using inverse numerical methods, by solving the governing
equations backward in time. The second approach is using probabilistic techniques to find the probability
of the location of the sources [3]. One method for numerical computations backwards in time is the
Backward Beam Equation (BBE) method [4]. Another method to find the locations of sources is by
writing the inverse problem as a constrained, regularized, least squares optimization problem [2]. From
the probabilistic approaches, using machine learning is an example. Ensemble learning methods can be
used to identify pollution sources [20].
lastly there can also be made a combination of both direct numerical inverse problems and probabilistic
techniques. In [21] a method is introduced that is a combination of inverse methods and machine learning
algorithms. Using the Green’s function of the convection-diffusion equation and a Blind Source Separation
(BSS) method in combination with a semi-supervised clustering algorithm.

5.2 Source reconstruction based on the Forward Euler method

As written in the previous section, there are multiple approaches for reconstructing source functions. For
this report, inverse numerical methods will be used. To find the source function f(x, y), the so-called
model-based inverse problem approach, is taken. This is a method where a mathematical model of the
measured data is inverted to reconstruct the source of the data. The mathematical model of the NO2

data consists of the boundary-value problem (1), the Finite-Volume spatial discretisation, and the chosen
time-integration method. In the first case, Forward Euler was taken as the time integration method. The
discretised source function f is a part of this model, and thus the task is to find f assuming that the two
snapshots of the NO2 data and the corresponding intermediate wind data are given.

Starting with a simple case where the given NO2 snapshots correspond to the two consecutive time
steps of the Forward Euler method. The forward problem is the one of finding the snapshot un+1 given
the snapshot un, and all other parameters. The explicit solution of this forward problem is:

un+1 = un + ∆tAnun + ∆tf. (15)
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The inverse problem with respect to this model is considered to be the one of finding f, given the snapshots
un,un+1 and the wind data. This inverse problem can be solved explicitly as:

f =
1

∆t
(un+1 − un)−Anun.

Hence, when both un and un+1 are known the source function can be reconstructed immediately. Unfor-
tunately, in practice, this is not the case, since the current satellite provides the NO2 data only roughly
every 24 hours. This is a large time interval, that cannot be bridged by one time step of a time-integration
method.

To find an equation which can determine the source function from time-sparse NO2 data and time-
dense wind data, the Forward Euler method is written out for multiple time steps. The updates with the
time-varying matrix An and a time-invariant source vector f are:

un+1 = [I + ∆tAn]un + ∆tf,

un+2 = [I + ∆tAn+1]un+1 + ∆tf

= [I + ∆tAn+1][I + ∆tAn]un + [I + ∆tAn+1]∆tf + ∆tf,

un+3 = [I + ∆tAn+2]un+2 + ∆tf

= [I + ∆tAn+2][I + ∆tAn+1][I + ∆tAn]un

+ [I + ∆tAn+2][I + ∆tAn+1]∆tf + [I + ∆tAn+2]∆tf + ∆tf,

. . .

un+m =

m−1∏
i=0

[I + ∆tAn+i]un +

m−1∑
i=1

m−1∏
j=i

[I + ∆tAn+j ]∆tf + ∆tf.

(16)

Here m is the number of time steps that the Forward Euler algorithm is required to take for a robust and
stable simulation of the NO2 data between the un and un+m snapshots. Note that in the last row the
left multiplication convention is used, i.e.

∏n
i=1Ai = An · · ·A2A1. This notation will be used throughout

the report.
From Equation (16) it follows that the source vector f can be recovered by solving the following linear
problem:

Sf = un+m − ũn+m (17)

S = ∆t

m−1∑
i=1

m−1∏
j=i

[I + ∆tAn+j ] + I

 (18)

ũn+m =

m−1∏
i=0

[I + ∆tAn+i]un, (19)

where un and un+m are the vectors of the measured NO2 concentrations at tn and tn+m, the matrices
Ai, i = n, n + 1, . . . , n + m − 1; containing the wind information, are given, and the system matrix S
is assumed to be invertible. Notice that the vector ũn+m represents the NO2 concentration that would
have been observed at tn+m if there was no source, i.e., if f = 0, whereas un+m is the actual observed
NO2 concentration.
There are two approaches to solving the linear problem in (17). The first approach is a direct approach,
where the matrix S is constructed as shown in (18). Afterwards a direct sparse solver is used to solve the
linear system (17). The other approach is based on a recurrence relation to compute the matrix-vector
product Sv, in order to omit matrix-matrix multiplications. This recurrence relation is then used to solve
(17) with an iterative method.

5.2.1 Direct approach

The linear system (17) can be solved with either direct or iterative solver. To use a direct solver, the
system matrix S should be constructed explicitly as shown in Equation (18) and the vector un+m is
computed as shown in Equation (19). Subsequently, the equation (17) is solved with a direct sparse
solver utilizing, for instance, the LU decomposition. In order to make sure the linear system is solvable
despite its large size, the matrix S is constructed as sparse. The perk of this approach is that it is the
most direct way to find f yielding small reconstruction errors. One disadvantage is that the explicit
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construction of the system matrix S via (18) will accumulate numerical errors. Another disadvantage
is that the matrix S is significantly less sparse than its constituent matrices, making it computationally
challenging to solve large-scale problems (fine spatial discretisation) and problems with many intermediate
time steps between the NO2 snapshots.

5.2.2 Recurrence relation

The explicit construction of the matrix S and the computationally expensive LU decomposition can both
be avoided by using an iterative instead of the direct linear solver. Iterative linear solvers require only
matrix-vector products and need significantly less storage. To compute the matrix-vector product, the
explicit construction of the matrix S is not necessary. Instead, a recurrence relation for computing the
product Sv for any v is derived:

v0 = ∆tv,

v1 = [I + ∆tAn+1]v0 + v0,

v2 = [I + ∆tAn+2][I + ∆tAn+1]∆tv + [I + ∆tAn+2]∆tv + ∆tv

= [I + ∆tAn+2]v1 + v0

. . .

vi+1 = [I + ∆tAn+i+1]vi + v0,

Sv = vm−1.

(20)

This recurrence relation can be written as a compact recurrence scheme:

v0 = ∆tv,

for i = 1, . . . ,m− 1 do:

vi = [I + ∆tAn+i]vi−1 + v0

Sv = vi

(21)

This recurrence relation is implemented in Python as a function that returns Sv for any input vector v.
Two different iterative solvers will be used to solve the linear system (17), namely, the Generalized

Minimum Residual Method (GMRES) [18] and the Bi-Conjugate Gradient Stabilized Method (BiCGStab)
[22].

5.3 Numerical experiments with synthetic data

In this section the influence of various factors on the quality of reconstruction of the source function f
is analysed. With the help of numerical experiments, to get a grasp on the values for the parameters
and the solving method. First, the difference in the performance of direct and iterative solvers is investi-
gated. Then, the differences between the two kinds of iterative methods are analyzed. Additionally, the
reconstruction of different types of sources is investigated. Next, the influence of erroneously estimated
transport parameters D and α are investigated. Finally, the effect of noise in the data on the reconstruc-
tion results is considered.
The numerical experiments presented in this section are all based on synthetic NO2 data computed with
artificial known sources and actual experimental wind data from 23/08/2019 12:50 to 24/08/2019 12:50.
The artificial known sources that are used, are shown in Figure 13. For the source function with point
sources, markers are set to indicate the location of the source. The placement of these markers are found
by finding local maxima in the data over a certain threshold. this is also done for the found source func-
tions after applying the algorithms. In addition, the strength of each source is indicated by a coloured
line on the colorbar of each figure. To find the sources, local maxima are used.

Parameters: D ∆t α ny × nx Source t0
Values: 5× 10−3 0.009 0.1 194× 280 50 23/08/2019 12:50

Table 5: Parameters that will be used to create synthetic data.

The Forward Euler method is used to generate the NO2 snapshots un and un+m. The relevant
parameters for these simulations can be found in Table 5. The transport parameters D and α are
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(a) Source function with five point sources.
(b) Source function using a map of roads and industrial
areas.

Figure 13: Visual representations of the sources used to create the artificial data, the red lines on the
colorbar indicate the strengths of each source.

estimated based on the visual comparison of multiple simulations and experimental data, as explained in
Section 4.5. The strength of the sources is chosen larger than in Section 4.5, to show the results of the
experiments more clearly. For the case of artificial point sources the simulated NO2 snapshots un and
un+m are shown in Figure 14.

Figure 14: Simulated NO2 snapshots, un (left) and un+m (right), 28 time steps apart, corresponding to
artificial points sources and actual wind data.
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5.3.1 Comparison of linear solvers

The direct and the iterative algorithms for reconstructing the source function are compared by applying
different algorithms to find the same source function and comparing the results. For each test, the
parameters will be kept as in Table 5. First, the direct algorithm was tested, which, however, could only
be applied with smaller grids due to the lack of memory to perform the LU factorization. Specifically,
to use the direct algorithm on a matrix with 194 ∗ 280× 194 ∗ 280 a computer with more than 16 GB of
RAM is needed. The construction of the matrix S, as in the equation (18), did work with a CPU time
of 284 seconds.

Then, the iterative source reconstruction algorithm, that can handle much larger grids, was tested.
Two different iterative solvers, GMRES and BiCGStab, for the linear system (17), employing the recur-
rence relation (37), have been implemented. For both solvers the tolerance was set to: tol=1e-6. The
two iterative solvers are compared both visually, by assessing the performance, and by comparing the
relative residual norm (r̂k) per iteration. The relative residual norm is defined as:

r̂k =
‖Rfk − (ũn − un)‖2
‖ũn − un‖2

. (22)

In Figure 15a the visual representations of the actual and the reconstructed source functions are shown
for the GMRES solver scipy.sparse.linalg.gmres().

It is clear that the algorithm is able to find both the locations and the strengths of the sources. While
the reconstructed f contains some numerical noise, its amplitude does not exceed 2.59 and it is mostly
localized around the actual point sources. The reconstructed strengths of the sources are between 49.62
and 50.06, i.e., within 0.05 percent of the actual strength. The global error in the L2 norm is 5.58.

(a) Visual comparison of the actual source function and the found
source function.

(b) Normalised residual plot.

Figure 15: Performance of the iterative GMRES solver, the red lines on the colorbar indicate the strengths
of each source.

In Figure 16a, the visual comparison is presented of the actual and reconstructed source functions
for the BiCGStab solver scipy.sparse.linalg.bicgstab(). The difference between the reconstructed
sources for the two iterative solvers is insignificant. Namely, the L∞ (max) norm of this difference is in
the order of 1× 10−5.

To compare the performance of the two iterative solvers, the behavior of the corresponding residuals
was analyzed, the total number of iterations till convergence, as well as the total CPU time. The residuals
as functions of iteration counts are shown in Figure 15b and Figure 16b. The GMRES method converges
to the target tolerance in just three iterations. Whereas the BiCGStab method shows a rapid initial
convergence, followed by a stage with a slower convergence rate, requiring 32 iterations to reach the
target tolerance. Table 6 summarizes these observations, as well as the total time it took the solvers
to solve the linear system. In addition to solving the system, it cost 40 seconds to construct the vector
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(a) Visual comparison of the actual source function and the found
source function.

(b) Residual plot.

Figure 16: Performance of the iterative BiCGStab solver, the red lines on the colorbar indicate the
strengths of each source.

ũn+m. From this it is found that for the tolerance of tol=1e-6, the GMRES method is both faster and
uses less iterations.

solver CPU time iterations
GMRES 623 s 3

BiCGStab 786 s 32

Table 6: Performance of iterative solvers.

The algorithms can also be applied to reconstruct a more complicated, spatially distributed, source
function based on a map of major roads and industrial zones, as shown in Figure 11. The result of
reconstruction can be seen in Figure 17. Again, both iterative solvers determine the spatial distribution
of the sources well. The L∞ norm of the difference between the two iterative solvers is 2× 10−3. Again
the GMRES method converges to the target tolerance of 1 × 10−6 using less iterations. With GMRES
using 2 iterations versus BiCGStab using 24. In this case, however, the BiCGStab method was slightly
faster than the GMRES method. The methods used 566 seconds and 675 seconds respectively.

Figure 17: Reconstruction of a spatially distributed source function by iterative solvers: GMRES (left),
BiCGStab (right). The red lines on the colorbar indicate the strengths of each source.

From the comparison of the direct and the iterative algorithms it is found that the GMRES method
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is the fastest. In addition, the difference in performance between the GMRES method and the BiCGStab
method is insignificant. Therefore, in the following numerical experiments the GMRES method will be
used in the algorithm for the reconstruction of the source function f.

5.3.2 Effect of errors in transport parameters

The source reconstruction algorithm (17)–(19) assumes the knowledge of the transport parameters, i.e., of
the diffusion coefficient D and the extinction rate α. In this section the effect of errors in the estimated D
and α are analysed. For this, the artificial data that is used remains the same as in the previous section,
with the parameters as stated in Table 5. Then, the algorithms is ran, but using ’wrong’ parameters.
For the first test the parameter D is taken smaller than what is used to create the data. To be precise,
D = 1× 10−3 is used in the algorithm. This means that the diffusion coefficient is underestimated. The
result of the test can be seen in Figure ??. The locations of the point sources are found exactly, but
the found strengths of the sources are too low. The found sources have a strength around 10, whereas
the actual sources have a strength of 50. Another thing that stands out is that the amount of iterations
needed for the calculation is less than for a correctly guessed D, the GMRES method only needed one
iteration to solve the system.

(a) Underestimation of diffusion, with D = 1× 10−3. (b) Overestimation of diffusion, with D = 7× 10−3.

Figure 18: Comparison of the effect of underestimation versus overestimation of the diffusion coefficient,
using the iterative GMRES solver. The red lines on the colorbar indicate the strengths of each source.

The next step in analysing the influence of a wrongly guessed diffusion coefficient D, is to overestimate
it. To start, the diffusion coefficient is taken as D = 7× 10−3, the results are shown in Figure ??. Again,
the locations are estimated perfectly. The strengths of the sources are estimated relatively close to the
actual strengths. The strengths are only slightly underestimated.

In addition, it is tested what happens if the diffusion coefficient is overestimated more. For this, the
diffusion coefficient is taken to be D = 1 × 10−2. The result of this test is shown in Figure 19a, as well
as the residual of the GMRES method per iteration in Figure 19b. The method is set to stop after 200
iterations, this meant in this case that the residuals did not manage to converge close to zero. For the
found source function this means that there is more noise, and there are more ’sources’ found.

Apart from the diffusion coefficient, there is also the parameter α, which determines the extinction
rate. To study the influence of a wrongly determined parameter α, all of the parameters except for α
itself are set to be as in Table 5. First the extinction rate is underestimated, for this α = 0 is taken.
Afterwards, the extinction rate is overestimated by taking α = 1. The results of these tests are shown in
Figures 20a and 20b. For both values of α, the locations of the found sources are equal to the locations of
the actual sources. In addition, the strengths of the found sources are close to the strengths of the actual
sources. Being between 49.49 - 49.90 for α = 0 and for α = 0 the strengths are between: 50.83 - 51.83.
Thus, the influence of the extinction rate parameter α is not as large as the influence of the diffusion
coefficient D. The effect that can be seen is that for an overestimated α the strengths of the sources are
slightly overestimated and vice versa for an underestimated α.
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(a) The found source function, using D = 0.01.

(b) Residual plot.

Figure 19: Performance of the algorithm using a largely overestimated diffusion coefficient, using the
iterative GMRES solver. The red lines on the colorbar indicate the strengths of each source.

(a) Underestimation of extinction rate, with α = 0. (b) Overestimation of extinction rate, with α = 1.

Figure 20: Comparison of the effect of underestimation versus overestimation of the extinction rate
parameter α, using the iterative GMRES solver. The red lines on the colorbar indicate the strengths of
each source.

5.3.3 Effect of a non-constant source function

In the introduction of Section 5 a big assumption was made, that the sources are constant between NO2

snapshots. Although this might be true for short time intervals, for an interval of multiple hours this is
not realistic. Therefore it is interesting to see the effect of a non-constant source in the artificial data.
First, a source function is created that is constant for a period of time, after which the source is set to
zero. This simulates a source that can be turned on and off. To be precise, artificial data is created in a
similar fashion as in Section 5.3, but the source function is altered. The source function has a constant
strength for n+ m

2 time steps, the last m
2 time steps the source function is set to zero. This comes down

to Equation (23). In a similar fashion Equation 24 is created, but in that case the source function is set
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to zero for the first m
2 time steps after data snapshot yn.

fh1(t) =

{ ∑5
i=1 50δ(x− xs)δ(y − ys) , for t < 12 : 43

0 , for t ≥ 12 : 43
(23)

fh2(t) =

{ ∑5
i=1 50δ(x− xs)δ(y − ys) , for t < 12 : 35 or t ≥ 12 : 43

0 , for 12 : 35 ≤ t < 12 : 43
(24)

Using the two Equations (23), (24) artificial data is created using the parameters from 5. This data is
then used for the source reconstruction algorithm, with the parameters equal to the parameters used to
create the data. In Figure 27a the found sources are shown for artificial data where the sources were set

(a) Found sources with artificial data created with
source function: fh1(t).

(b) Found sources with artificial data created with
source function: fh2(t).

Figure 21: Performance of the algorithm on artificial data created with sources that are non-constant,
using the iterative GMRES solver. The red lines on the colorbar indicate the strengths of each source.

to be zero during the second half of the time between yn and yn+m. The location of the sources is found
accurately, with some noise. The strengths of the sources, however, have not been reconstructed well.
The strengths are severely underestimated.
In Figure 21b the found sources are shown for artificial data where the sources were set to be zero during
the first half of the time between yn and yn+m. In this case, the algorithm managed to find both the
locations and the strengths of the sources accurately.
Even though there are differences between the found sources for non-constant sources versus constant
sources, it is not possible to see from the reconstructed source function what types of sources are present.
In the real situation, where there will be more sources present of different strengths, sources that are
close to zero emissions at the end of the time interval between yn and yn+m will likely be overlooked.
Thus it seems that the strength of the source at the end of this time interval is of importance. As this
will influence the strength of the source that is reconstructed.

5.3.4 Effect of noise in the NO2 data

In reality both the NO2 snapshots and the wind data are not given exactly and contain measurement
errors. Mathematically this can be modelled as random additive noise with some, generally unknown,
distribution function, which is often assumed to be a zero-mean normal distribution.

First, assume that the wind data are exact and the measurement noise is only present in the NO2

snapshots un and un+m. Then, the linear problem (17) can be written as:

Sf = F (un + εn)− (un+m + εn+m), (25)

where Fun = ũn+m, and εn, εn+m are the noise vectors. The formal solution of this problem is

fε = S−1[F (un + εn)− (un+m + εn+m)] = fex + δ, (26)

where fex = S−1[Fun − un+m] is the ”exact” solution that would have been obtained in the absence of
noise, and δ = S−1[Fεn − εn+m] is the noise in the solution due to the noise in the data.
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Hence, the obtained solution fε will, in general, be different from the exact solution fex. The amount
and type of noise in fε will depend on both the magnitude and content of the vectors εn, εn+m, and the
transformation that these vectors will undergo under the multiplication by the matrices S−1 and S−1F .
One quantity of interest is the global error in the solution that can be defined as the norm ‖δ‖2 and its
dependence on the magnitude of the noise.

Let the noise vectors be taken from the same multivariate normal distribution N (0, σ2I). The two
vectors εn, εn+m are then expected to have the same norm ‖εn‖2 =, ‖εn+m‖2 = ‖ε‖2. The error in the
solution is computed ‖δ‖2 = ‖fε − fex‖2 as a function of the noise level in the data ‖ε‖2. This is shown
in Figure 22a, from the graph it can be concluded that the relative error is approximately ten times the
level of noise. The source reconstruction algorithm is then applied to artificial data with added noise. To

(a) Plot of the relative error versus the noise
level, to be precise:
‖δ‖2/‖fex‖2 versus ‖ε‖2/‖un‖2.

(b) Source reconstruction algorithm applied to artificial data with
5% added noise.

both the snapshot un and un+m random normally distributed noise is added, with a standard deviation
of 0.05. The result is shown in Figure 22b, where the location and strength are estimated well, but there
is clearly noise present in the overall function. With amplitudes as high as 11. For experimental data
with sources that do not have a strength of 50, this can form a larger problem. As sources can be left
undetected.
The source reconstruction algorithm is found to be sensitive to noise in the data, which gives that the
problem is ill-posed. Therefore regularisation may be useful. Due to time restrictions, this will not be
studied in this report, in the Discussion in Section 8 a recommendation will be given on a regularisation
method that can be used. In addition, the case for which noise is also present in the wind data will not
be discussed in this report, but will be left for the Discussion.

5.4 Source reconstruction based on the Backward Euler method

The conditional stability of the Forward Euler method requires time steps ∆t in the order of a minute
making it practically impossible to process the actual experimental data where the NO2 snapshots are
currently taken 24 hours apart. Indeed this time scale would lead to the parameter m in (18) in the order
of 2.7×103. The Backward Euler method, on the other hand, is unconditionally stable and permits much
larger time steps. The iterations of the Backward Euler method can be written as:

un+1 = [I −∆tAn+1]−1un + [I −∆tAn+1]−1∆tf,

un+2 = [I −∆tAn+2]−1[I −∆tAn+1]−1un

+ [I −∆tAn+2]−1[I −∆tAn+1]−1∆tf + [I −∆tAn+2]−1∆tf,

. . .

un+m =

m∏
i=1

[I −∆tAn+i]
−1un +

m∑
i=1

m∏
j=i

[I −∆tAn+j ]
−1∆tf,

(27)
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These iterations can also be written as:

m∑
i=1

m∏
j=i

[I −∆tAn+j ]
−1∆tf = un+m − ũn+m, (28)

where

ũn+m =

m∏
i=1

[I −∆tAn+i]
−1un, (29)

is the NO2 concentration that would have been produced with f = 0, computed with the Backward Euler
method. It is easy to verify that:

m−1∏
i=0

[I −∆tAn+m−i](un+m − ũn+m) =

m−1∑
i=1

m−1∏
j=i

[I −∆tAn+m−j ]∆tf + ∆tf. (30)

Thus, the linear problem for the source vector f can now be written in the form:

Rf = B(un+m − ũn+m), (31)

with the matrices:

R =

m−1∑
i=1

m−1∏
j=i

[I −∆tAn+m−j ] + I

∆t, (32)

B = [I −∆tAn+1][I −∆tAn+2] · · · [I −∆tAn+m] (33)

=

m−1∏
i=0

[I −∆tAn+m−i]. (34)

One can avoid computing the Backward Euler solution ũn+m by taking into account that Bũn+m =
un, leading to the following equivalent formulation:

Rf = ũn − un, (35)

where ũn = Bun+m is the measured concentration un+m, ”back-propagated” in time with the matrix B.
The major difference with the algorithms based on the Forward Euler method is in the permitted larger
time step ∆t.

As was done in the algorithm using the Forward Euler method in Section 5.2.2, a recurrence relation
for computing the product Rv for any v is derived:

v0 = ∆tv,

v1 = [I −∆tAn+m−1]v0 + v0,

v2 = [I −∆tAn+m−2][I −∆tAn+m−1]∆tv + [I −∆tAn+m−2]∆tv + ∆tv

= [I −∆tAn+m−2]v1 + v0

. . .

vi+1 = [I −∆tAn+m−(i+1)]vi + v0,

Rv = vm−1.

(36)

This recurrence relation can be written as a compact recurrence scheme:

v0 = ∆tv,

for i = 1, . . . ,m− 1 do:

vi = [I −∆tAn+m−i]vi−1 + v0

Rv = vi

(37)
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5.5 Numerical experiments with synthetic data

In this section the performance of the source reconstruction algorithm based on the Backward Euler
method is assessed. First, the method is tested against the algorithm based on the Forward Euler method
by using the exact same parameters as the initial test in Section 5.3.1. It is expected for the Backward
Euler algorithm to perform less good than the Forward Euler method on the artificial data created by
the Forward Euler method. This is because artificial data created by the Forward Euler method slightly
differs from artificial data created by the Backward Euler method. By comparing Figures 14 and 23a,
there is no difference to be seen. The difference in the L2 norm is 2× 10−4, and in the L∞ it is 0.013 for
both un and un+m. Firstly, the algorithm will be tested on both types of artificial data.

(a) Snapshots which are 28 time steps (for ∆t = 0.009s)
apart.

(b) Snapshots which are 240 time steps (for ∆t = 0.1s)
apart.

Figure 23: Simulated NO2 snapshots, un (left) and un+m (right), corresponding to artificial point sources
and actual wind data.

This first test is done on data with only a short amount of time between data snapshots, in the real
data the time between snapshots is 24 hours. Therefore in the proceeding tests new artificial data is
used. This data is, again, created by using the parameters from Table 5, except for the time step. This
istaken to equal: ∆t = 0.1. In addition the snapshots are taken at 24 hours difference, which results in a
snapshot at 12:50 on 24/08/2019 and at 12:50 on 25/08/2019. These are shown in Figure 23b.
The first experiment that is conducted using the artificial data with 24 hours between snapshots is to
analyse the influence of the time step. Afterwards, the influence of the transport parameters is shortly
revisited and the effect of non-constant sources is shown.

5.5.1 Comparison of performance FE and BE method

As a first test the algorithm is applied to the exact same synthetic data as was made for the Forward
Euler algorithm, see Figure 14. This includes using the same parameters for the source reconstruction
algorithm, which can be found in Table 4. In addition, the tolerance of the GMRES solver was again
set to tol=1e-6. The solver did not converge to the tolerance and was stopped after 50 iterations. In
Figure 24b, it can be seen that the relative residual norms converge slower as the iterations proceed.
After 50 iterations, the relative residual is still in the order 1× 10−3. Comparing this to the convergence
of the residuals of the Forward Euler source finder method, see Figure 15b, shows that the Forward Euler
method is a lot faster on this data. This difference in speed is based on the time it takes GMRES method
to converge, or to reach the maximum number of iterations. The time it took to construct the vector ũn
was approximately 40 seconds. This is does not affect the total time for the calculation greatly, as the
total simulation took approximately 4 hours.
To assess the quality of the found source function, the difference between the actual source function
and the reconstructed source function is analysed. With an L2 norm of 125.6 and an L∞ norm of
approximately 59, it is clear that the found source function is not perfect. The reason for the infinity
norm to be as high is because of a wrongly estimated location for a peak.

5.5.2 Effect of a growing ∆t

The main argument for using the Backward Euler method in the source finding algorithm is that it is
an unconditionally stable method. Which means that the time step (∆t) can be chosen larger without
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(a)

(b) Relative residual plot.

Figure 24: Performance of the source reconstruction algorithm based on the Backward Euler method,
using the GMRES solver, tested on artificial data created by Forward Euler. The red lines on the colorbar
indicate the strengths of each source.

causing instabilities. Therefore, the first experiment that will be conducted is to analyse the influence
of the magnitude of the time step. To perform this experiment, first the artificial data from Figure 23b
is used. All parameters are left equal to Table 5 except for the time step which gradually gets enlarged
from ∆t = 0.666h to ∆t = 4h. Which means the number of time steps between the two data snapshots
ranges from 36 steps to 6 steps.
The result of the experiment can be seen in Figure 25. For each value for ∆t the locations of the sources
are reconstructed exactly. The difference in performance lies in the reconstruction of the strengths of the
sources, as well as the presence of noise and the time the computation takes. From the figure it becomes
clear that as the time step grows, the accuracy of the strengths of the sources get higher. In addition,
the level of noise shrinks. If the time step were to be increased to 24h, which gives one time step between
the data snapshots, the found sources are almost identical to the actual sources.
The other trend that can be noticed when performing this experiment is that as the time step grows,
the amount of time needed for the computation gets shorter. Where the computation with 36 time steps
took over five hours, the computation with six time steps took approximately 40 minutes.

From this experiment it becomes clear that the algorithm does not perform worse with a larger time
step, and thus less steps between two snapshots. This can be explained by taking a closer look at the
vector ũn, which plays a great role in the algorithm, see Equation (35). The vector is defined as follows:

ũn = Bun+m =

m−1∏
i=0

[I −∆tAn+m−i]un+m = [I −∆tAn+1] · · · [I −∆tAn+m]un+m. (38)

In Section 4.3.1 it was found that all eigenvalues of Ai have negative real part. Which implies that
1−∆tλ > 1. This in turn implies that the spectral radii of the matrices [I −∆tAi] are larger than one,
this gives that limk→∞[I −∆tAi]

k =∞. Which explains that for a large number of steps between NO2

data snapshots, the vector ũn grows large. Therefore the number of steps between data snapshots should
be limited.
Even though the result of this experiment would indicate that a time step of ∆t = 24h would be optimal,
this is not realistic. With a time step this large comes that the influence of the wind is not taken into
account as much. For a convection dominated problem, which the spread of NO2 is, neglecting the
influence of the wind is not done. Especially in case the wind is not constant over the period of 24 hours.
Thus, taking into account both the advantages and the disadvantages of a large time step, the time step
will be taken around ∆t = 1. Which is in agreement with the frequency on which the wind data is
available.
This leads to the parameter values presented in Table 7, which will be used as the basis for the conduction
of experiments in the following sections.
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(a) Reconstructed sources with ∆t = 0.666. (b) Reconstructed sources with ∆t = 1.

(c) Reconstructed sources with ∆t = 2. (d) Reconstructed sources with ∆t = 4.

Figure 25: Performance of the source reconstruction algorithm based on the Backward Euler method,
using the GMRES solver, tested on artificial data created by Backward Euler. The red lines on the
colorbar indicate the strengths of each source.

Parameters: D ∆t α ny × nx Source yn yn+m

Values: 5× 10−3 1 0.1 194× 280 50 24/08/2019 12:50 25/08/2019 12:50

Table 7: Parameters that will be used as a basis for the testing of the source finding algorithm based on
the Backward Euler method.

5.5.3 Effect of errors in transport parameters

In Section 5.3.2, the effect of errors in the transport parameters is studied for the algorithm based on the
Forward Euler method. In this section similar experiments are conducted to find out if wrongly estimated
transport parameters have an analogous effect on the source finding algorithm based on the Backward
Euler method. Therefore, first the diffusion coefficient is varied by taking D = 0.001 and D = 0.01, thus
underestimating and overestimating the parameter. The parameters other than D are kept equal to the
parameters in Table 7.
The results of the underestimation versus the overestimation of the diffusion coefficient D are shown in
Figure 26. If the diffusion is underestimated, the source locations are less accurately found. Instead of a
clear peak that is found in the source function, there is a lot of noise around the found sources of about
the same strength. In addition, the strengths of the sources are extremely underestimated, as can be
seen in Figure 26a.
For an overestimated diffusion coefficient, the impact is less drastic on the found sources. The locations
of the sources are estimated perfectly, but the strengths of the sources are lightly underestimated. The
effects of an underestimated level of diffusion on the source reconstruction algorithm based on the Back-
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(a) Underestimation of diffusion, with D = 1× 10−3. (b) Overestimation of diffusion, with D = 1× 10−2.

Figure 26: Comparison of the effect of underestimation versus overestimation of the diffusion coefficient
on the source reconstruction algorithm based on the Backward Euler method, using the GMRES solver.
The red lines on the colorbar indicate the strengths of each source.

ward Euler method are different from the effects seen in Section 5.3.2. For the algorithm discussed in
this section, the influence is bigger, suggesting that the algorithm does not perform well on a largely
underestimated diffusion coefficient.
The overestimation of the diffusion has a reverse relation. The algorithm based on the Backward Euler
method is less affected by an overestimated diffusion coefficient, than the algorithm based on the Forward
Euler method.
Since the variation of the decay parameter α did not have a significant effect on the performance of the
source finding algorithm based on Forward Euler, this will not be tested again for the Backward Euler
algorithm. This is due to time restrictions.

5.5.4 Effect of a non-constant source function

In Section 5.3.3 it was investigated how well the algorithm based on the Forward Euler method is at
reconstructing sources that are non-constant. This was tested by using the source functions as defined in
Equation (23) and (24), to create artificial data. In this section a similar approach is used to investigate
whether the source finding algorithm based on the Backward Euler method can reconstruct non constant
sources. The main goal is to find trends in what the effect is on the found source function. If trends are
found, this can be used for the application of the algorithm on experimental data, to see if it is possible
to determine what type of sources are present.
The exact source functions that are used to create the artificial data, are the following:

fh3(t) =

{ ∑5
i=1 50δ(x− xs)δ(y − ys) , for t < 00 : 50 (25/08/2019),

0 , for t ≥ 00 : 50 (25/08/2019).
(39)

fh4(t) =

{ ∑5
i=1 50δ(x− xs)δ(y − ys) , for t < 12 : 50 (24/08/2019) or t ≥ 00 : 50 (25/08/2019),

0 , for 12 : 50 (24/08/2019) ≤ t < 00 : 50 (25/08/2019).

(40)

The results of this test are shown in Figure 27, where a similar trend can be seen as was found in Section
5.3.3. In case of Equation (39), the algorithm based on Backward Euler is not able to find sources.
As the found source function is approximately one for each point in the domain. For the case with a
source function (40), the algorithm did find sources. The locations of the found sources are estimated
perfectly, but the strengths of the sources is underestimated. From this experiment it can be concluded
that sources that have not been emitting NO2 in the 12 hours before snapshot yn+m is taken, are not
reconstructed by the source finding algorithm. Sources that were emitting NO2 during that time were
found, but were underestimated in case they were not working the entire time between yn and yn+m.
Thus, when applying the source finding algorithm to experimental data, sources that are not constantly
emitting NO2 will be underestimated in strength, or will not be detected. On way this will be apparent
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(a) Found sources with artificial data created with
source function: fh3(t).

(b) Found sources with artificial data created with
source function: fh4(t).

Figure 27: Performance of the BE based algorithm on artificial data created with sources that are non-
constant, using the iterative GMRES solver. The red lines on the colorbar indicate the strengths of each
source.

is when comparing the found sources to the NO2 snapshots, where the second snapshot will likely have
a larger influence on the reconstructed sources than the first snapshot.
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6 Application of the algorithm on experimental data

In this section the source reconstruction algorithm based on the Backward Euler method was applied to
experimental data. This experimental data consists of near-daily snapshots of the NO2 concentration
over the Netherlands, delivered by TROPOMI. The snapshots that are used in the report are presented
in Figure 28, which consists of the data of August 2019. The source reconstruction algorithm is first

Figure 28: NO2 data snapshots for the month August (e30 mls/deg2).

applied to snapshots which are taken on consecutive days. The snapshots on the days: 24 and 25 August
are used to test the algorithm on. The results of the algorithm are compared to the current data TNO
has on the locations and strengths of NO2 sources. Based on this comparison, an optimal ∆t is chosen to
apply on the remaining data of August. This data on NO2 sources is made available on an hourly bases,
and thus it is not constant over 24 hours, for the period 01/07/2016 until 14/07/2016. This is clearly not
in the same time frame as the measured NO2 concentrations, but gives an indication on the strengths
and locations of known sources.

(a) Known source function at 15:00 on 01/07/2016. (b) Known source function at 00:00 on 02/07/2016.

Figure 29: Source functions over time based on data from TNO (e30 mls/deg2) on the emission of NO2,
the colorbar is scaled such that sources with a low emission rate are visible. The red crosses mark
sources with an emission rate over 4× 1030 mls/deg2h, the yellow mark sources with emission rates over
1× 1030 mls/deg2h.

In Figure 29 two source functions are shown, based on the data on known NO2 sources. Each source
that has a strength of over 5×1030 mls/deg2h is marked by a red cross. Figure 29a represents the sources,
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when the emission is the highest. On the other side, Figure 29b shows the sources at the time the emissions
are the lowest. There are clearly differences between the two source distributions, but there are also a
number of sources which they have in common. In a 24 hour cycle multiple sources in the Ruhrgebiet and
in Ijmuiden remain active with emissions over 5× 1030 mls/deg2h. In the areas: Amsterdam, Rotterdam
and Antwerp there are also constant emissions taking place, but at a lower amplitude.
As a primal test, the source reconstruction algorithm based on the Backward Euler method is applied to
the snapshots: yn = 20190824; 12 : 50 and yn+m = 20190825; 12 : 31. The parameters that are used are
equal to the parameters set out in Table 7, with the time step ∆t ∈ 0.79, 0.98, 1.32, 1.97. This gives that
there are between 36 and 12 time steps between yn and yn+m.

(a) Reconstructed sources with ∆t = 0.79h. (b) Reconstructed sources with ∆t = 0.98h.

(c) Reconstructed sources with ∆t = 1.32h. (d) Reconstructed sources with ∆t = 1.97h.

Figure 30: Reconstructed sources from yn = 20190824; 12 : 50 and yn+m = 20190825; 12 : 31, using the
source reconstruction algorithm based on the Backward Euler method. Local maxima are marked as
sources using different colours.

In Figure 30, the results can be seen of the first application of the source reconstruction algorithm on
experimental data. The figure shows the reconstructed sources that are found by using different values for
the time step. From these results it can be deducted that as the time step grows, the amount of sources,
and the strengths of these found sources, increases. This discovery, is in agreement with the findings of
Section 5.5.2. Comparing Figure 30 to Figure 29, would suggest that the best performing time step has a
value between: ∆t = 1.32h. Since, for this time step there are sources marked in all of the areas sources
are expected. For a ∆t which is larger, there are too many sources marked, which makes the found source
function chaotic. In addition, most found sources are located on the boundary of the domain, where few
sources are located in reality. For ∆t < 1.32h less sources are found. Furthermore, the sources which are
found have a lower strength, only very few sources have a strength over 4× 1030 mls/deg2h.
One thing that stands out in the reconstructed sources found in Figure 30, is that there are a lot of
sources located in the sea. Though there is a very lightly visible source located in the sea in Figure 29a,
this is a lot lower than what is found in the reconstructed sources. The emission of NO2 in the sea can
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be explained by the emissions of cargo ships and ferries, but this is not enough to explain the amount
of sources found in Figure 30c. The actual cause, is probably explained by the discovery in Section
5.5.4. That the second NO2 snapshot has a large effect on the reconstructed sources. Indeed, in the NO2

snapshot of 25 August the is high concentrations of NO2 visible over the sea, which is most likely due to
the off-shore wind on those days.

The chosen size of the time step: ∆t = 1.32 amounts to 18 time steps between data snapshots, thus
m = 18. This number of steps is used to apply the algorithm to more data, in order to see if there are
similarities. For this, the NO2 snapshots from 25, 26 and 27 August are used. The reconstructed sources
that are found using the source finding algorithm are presented in Figure 31.

(a) Reconstructed sources between:
yn = 20190825; 12 : 31, yn+m = 20190826; 12 : 12.

(b) Reconstructed sources between:
yn = 20190826; 12 : 12, yn+m = 20190827; 11 : 53.

Figure 31: Reconstructed sources using the source reconstruction algorithm based on the Backward
Euler method, local maxima are marked as sources and are pointed out in the plot and the colorbar using
different colours.

Figure 31a gives the reconstructed sources over the period from 25 August to 26 August. Most of the
found sources are located in the Rurhgebiet and in Rotterdam, no sources are found in Amsterdam. As
for the sources located in the ocean in Figure 30, this could be explained by the discovery that the second
NO2 snapshot has a larger effect on the reconstructed sources than the first snapshot, as was found in
Section 5.5.4. The NO2 snapshot of 26 August shows low NO2 concentrations over Amsterdam, but large
concentrations over the Ruhrgebiet and Rotterdam.
Figure 31b shows the found sources over the period from 26 to 27 August. In this case, again most sources
are found in the Rurhgebiet and Rotterdam, but there are also more sources found around Amsterdam,
Antwerp and Brussels. This can once again be explained by the distribution of NO2 concentrations in
the second snapshot on 27 August.
The Figures 31a and 31b can be compared to Figure 29, to study the difference between the found sources
and the known sources. The first thing that stands out is, that the reconstructed source function consists
of a lot more sources than there are known sources, with emissions over 1 × 1030 mls/deg2h. The main
locations of the reconstructed sources and the known sources match on a large scale. For both, the large
cities and industrial areas are pinned as NO2 pollution sources. Where large differences start to occur
is when the sources are shown with low emission rates. For the known sources, in Figure 29a, there are
for example line sources visible where roads are located. The scaled version of the reconstructed sources
between 25 and 26 August, in Figure 32, shows no clear lines where roads are located. The source function
contains noise over the whole domain, which makes it impossible to recognise low emission sources with
emissions under 1× 1030 mls/deg2h.

From the application of the algorithm based on the Backward Euler method, it is found that the
algorithm is capable of finding areas with large emission rates. The algorithm is able to reconstruct
the locations of industrial zones near Amsterdam, Rotterdam, Antwerp and the Ruhrgebiet. The actual
strength of individual sources is not determined accurately. In addition the found sources are mainly
based on the second NO2 snapshot. Thus, the algorithm can be used to determine source locations on a
large scale, but is not able to exactly determine locations of independent sources.
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Figure 32: Reconstructed source function found in Figure 31a, scaled to show sources with emissions
under 1× 1030 mls/deg2h.

To improve the reconstruction of sources, more frequent NO2 data snapshots are needed. Such that
the sources are not mainly based on the data of one NO2 snapshot. In addition, the algorithm can
take advantage of more knowledge on the transport parameters. In this Section all of the tests were
conducted using the same transport parameters, in future work multiple transport parameters should
be used. Finally, for more precise reconstruction of source locations using the current algorithm, more
precise wind data is needed.
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7 Conclusion

The objective of this report was to find out whether inverse time integration methods can be used to
reconstruct NO2 pollution sources. With the exact research question:

Can an algorithm based on an inverse time integration method be used to accurately reconstruct NO2

pollution sources?

To answer this question, first the transport of NO2 was modelled and transport parameters were esti-
mated. It was concluded that a visual comparison alone is not adequate for an accurate estimation of
transport parameters. Therefore, the found parameters were based on the stability of the numerical time
integration method: Forward Euler, and the avoidance of numerical errors. These found parameters are
set out in Table 4.
Afterwards, two different time integration methods were used as bases for source reconstruction algo-
rithms. For the algorithm based on the Forward Euler method it was found that the method is capable
of reconstructing sources when applied to artificial data, with a short period of time between data snap-
shots. It was additionally found that underestimation or overestimation of transport parameters had
little effect on the location determination of sources, but a larger effect on the determination of the
strengths of sources and the presence of noise around sources. When the algorithm was tested on ar-
tificial data created by a source function that was non-constant, it was found that is the source was
’off’ before snapshot yn+m was taken, the source was not reconstructed well. When the time between
snapshots grew, the number of time steps also grew, this made the source reconstruction algorithm time-
and computationally-intensive.
The second source reconstruction algorithm, based on the Backward Euler method, was capable of esti-
mating the location and strengths of sources with 24 hours between NO2 snapshots. It was found that
the magnitude of the time steps plays a mayor role in the performance of the algorithm, as a smaller time
step did not yield better results. In addition, similar trends were found for over- and underestimation of
the diffusion coefficient as for the algorithm based on the Forward Euler method. The same holds for the
effect of a non-constant source. Sources that did not emit any NO2 in the 12 hours before yn+m, were
not reconstructed.
Finally, the application of the algorithm based on the Backward Euler method on experimental data
has shown that the algorithm works for approximately determining the locations of emission zones. The
algorithm is not capable of finding exact locations for individual sources and reconstructing sources with
low emissions of less than 1× 1030 mls/deg2h.

This enables the formulation of an answer to the research question. The algorithms tested in this
report based on Forward and Backward Euler, were capable of approximately reconstructing NO2 sources.
However, the algorithms were not able to accurately reconstruct emission rates and exact locations of
sources. As there were only two time integration methods tested in this report, to exactly answer the
research question, more research would be required exploring other algorithms and further analysing the
ones implemented.
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8 Discussion

As mentioned in the Introduction, the research conducted in this report is orientational, and thus it forms
a basis for more research. In this Sections recommendations will be made for continuing research on this
topic.
The first area where improvements can be made is on the available data. Currently the data on tropo-
spheric NO2 is given approximately daily and the wind data is given on an hourly basis. For the NO2

data this means that there is a large amount of time between data snapshots, in this time the can be a
lot of variations in emissions from sources. As found in Section 5.5.4, sources that only emit NO2 during
a few hours a day, are not reconstructed properly. For this to be possible more frequent data snapshots
are needed. Good news on this topic is that there is a new satellite scheduled to be launched in 2023
which will produce hourly data on NO2 concentrations. This will make it possible to reconstruct variable
sources. At the same time, this highlights the problem of the hourly wind data, which is not precise
enough to describe the wind speeds and directions between data snapshots. Thus, as more frequent NO2

is coming, the need for more frequent wind data also rises.
Apart from the quality of the data, this research can also be applied to different types of data. The
source reconstruction from satellite images is not as interesting for NO2 as most sources are already
known. Since the source reconstruction algorithm does not make assumptions on the locations of sources,
it can be applied to source detection problems with no foreknowledge. For example, the detecting of
methane leaks could be an interesting application.

The following point on which additional research could be beneficial is on the model itself. In this
report a two-dimensional convection-diffusion equation is used to describe the transport of NO2 in the
troposphere. This equation has uses two main transport parameters: the diffusion coefficient D and the
decay term α. Both of these parameters are taken to be constants, in future research it would be inter-
esting to considered variable transport parameters. For example, the diffusion coefficient can be made
dependent on the location, the wind speed or other weather factors such as temperature and humidity.
In addition, the decay parameter can be taken variable, but this is of less importance.
Another part of the model that can be looked at is the convection term. In this report, the convection
completely depends on the wind speed and direction. Part of the movement of clouds is governed by the
rotation of the Earth, therefore the rotation of the Earth can be included in the convection term.

In Sections 5.3.2 and 5.5.3, the effect of errors in the transport parameters used for the source recon-
struction algorithms is studied. From this analysis, no clear indications were found that point to whether
the transport parameters were underestimated or overestimated. In this report, there was no focus on
the area directly around the sources. In future studies, the effect should be investigated more closely by
zooming in on the sources. Since it was found that the level of noise grew with an incorrectly chosen
diffusion coefficient, it was not shown what shape this noise exactly has.

After discussing the data, and the model that is used to described the transport of NO2, the source re-
construction algorithms will be discussed. In this report two different time integration methods are taken
as bases for the algorithms. It was found that both algorithms had their flaws, which stem from insta-
bilities. As the Forward Euler method is a conditionally stable method for propagating forward in time.
Which resulted in a very small time step of approximately half a minute. On the other hand, the Back-
ward Euler method is conditionally stable for propagating backwards in time. This resulted in the reverse
problem, where a small time step did not give desirable results. Therefore, a time integration method is
sought after which is unconditionally stable for both propagating forwards in time as backwards in time.
A method that would be worth investigating, is the Trapezoidal method, which is a mixed method. This
method can potentially balance out the instabilities resulting from the forward and backward propagation.

Finally, as mentioned in Section 5.3.4, it was found that the source reconstruction algorithm is sensitive
to noise. It was also seen in the tests on experimental data in Section 6, that noise was present in
the reconstructed source function. Therefore regularisation should be looked into. The most common
regularisation method for linear ill-posed problems is Tikhonov regularization [25]. For this method to
be useful, the level of noise in the data needs to be known. Therefore also other methods should be
investigated, such as solving the problem over a limited solution space or to pre-process the data.
The effect of noise in the NO2 data is briefly discussed, bit the presence of noise in the wind data is not
assessed. Therefore in future research, the effect of noise in the wind data should be studied. With this,
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an assessment of the level of noise in the wind data would be needed.
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Appendices

A Coordinate transformation

The received data from TNO is based on longitude and latitude, and thus is given in geographical
coordinates. Since it is easier to work with a Cartesian coordinate system than with spherical coordinates,
the longitude and latitude will be used as Cartesian coordinates. To substantiate this decision there will
follow a short approximation.

The convection-diffusion equation with constant diffusion coefficient D and windvector w is the fol-
lowing:

∂u

∂t
−D∆u+ w · ∇u = f

This equation can be written in spherical coordinates by taking the following:

r =
√
x2 + y2 + z2

x = r cosφ sin θ

y = r sinφ sin θ

z = r cos θ

This gives:

∂u

∂t
−D

[
1

r2

∂

∂r

(
r2 ∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂φ2

]
+ wr

∂u

∂r
+
wθ
r

∂u

∂θ
+

wφ
r sin θ

∂u

∂φ
= f

Since the area that is taken into consideration is the surface or Earth, or at a constant level above
the surface, we take r = r0, this gives that ∂u

∂r = ∂u
∂r0

= 0. This means the equation can be simplified to
the following:

∂u

∂t
−D

[
1

r2
0 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2
0 sin2 θ

∂2u

∂φ2

]
+
wθ
r0

∂u

∂θ
+

wφ
r0 sin θ

∂u

∂φ
= f

To convert the spherical coordinates to geographical coordinates the latitude (θ̂) becomes: θ̂ = 90−θ =
π
2 −θ and the longitude(φ̂) becomes: φ̂ = φ. By the trigonometric identities, we have: sin θ = cos π2 − θ =

cos θ̂. Substituting this results in:

∂u

∂t
−D

[
1

r2
0 cos θ̂

∂

∂θ̂

(
cos θ̂

∂u

∂θ̂

)
+

1

r2
0 cos2 θ̂

∂2u

∂φ̂2

]
+
wθ̂
r0

∂u

∂θ̂
+

wφ̂

r0 cos θ̂

∂u

∂φ̂
= f

Next, note that on the domain of the Netherlands the difference in latitude (θ̂) is small enough to

consider cos θ̂ as a constant, thus taking cos θ̂ = cos θ̂0 . Which means it can be taken out of the derivative,
this leads to the following:

∂u

∂t
−D

[
1

r2
0

∂2u

∂θ̂2
+

1

r2
0 cos2 θ̂0

∂2u

∂φ̂2

]
+
wθ̂
r0

∂u

∂θ̂
+

wφ̂

r0 cos θ̂0

∂u

∂φ̂
= f

In addition, now cos θ̂ is taken as a constant and since r is also a constant a final coordinate transfor-
mation can be made:

x̂ = φ̂ · r0 · sin θ̂0

ŷ = θ̂ · r0

This gives:

∂u

∂θ̂
=
∂u

∂ŷ

∂ŷ

∂θ̂
⇒ ∂2u

∂θ̂2
=

∂

∂ŷ

(
∂u

∂ŷ

∂ŷ

∂θ̂

)
∂ŷ

∂θ̂

⇒ ∂2u

∂θ̂2
=
∂2u

∂ŷ2

(
∂ŷ

∂θ̂

)2

+
∂u

∂ŷ

∂2ŷ

∂θ̂2

∂ŷ

∂θ̂
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The derivatives of ŷ can be calculated, this will give:

∂ŷ

∂θ̂
= r and

∂2ŷ

∂θ̂2
= 0 ⇒ ∂u

∂θ̂
= r

∂ŷ

∂θ̂
∂2u

∂θ̂2
= r2 ∂

2u

∂ŷ2

In the same way it can be derived that:

∂u

∂φ̂
= r cos θ̂0

∂2u

∂x̂2

∂2u

∂φ̂2
= r2 cos θ̂2

0

∂2u

∂x̂2

By substituting this, the partial differential equation can be further simplified to the following:

∂u

∂t
−D

[
∂2u

∂θ̃2
+
∂2u

∂φ̃2

]
+ wθ̃

∂u

∂θ̃
+ wφ̃

∂u

∂φ̃
= f

∂u

∂t
−D∆u+ w · ∇u = f

52



B Interpolation of unit vectors

In this section a proof will be given that the linear interpolation of two unit vectors does not in general
give a unit vector. This is only the case when the angle between the two vectors is close to zero.

Proof. Let u1,u2 be two unit vectors, write: u1 =

(
cos(φ)
sin(φ)

)
,u2 =

(
cos(φ̂)

sin(φ̂)

)
. Then the linear interpo-

lated point v is the following:

v =
u1 + u2

2
=

1

2

(
cos(φ) + cos(φ̂)

sin(φ) + sin(φ̂)

)
To show whether the vector v is a unit vector or not, the length of the vector will be calculated. We have
that:

|v|2 =

(
1

2

(
cos(φ) + cos(φ̂)

))2

+

(
1

2

(
sin(φ) + sin(φ̂)

))2

=
1

4

(
cos2(φ) + 2 cos(φ) cos(φ̂) + cos2(φ̂)

)
+

1

4

(
sin2(φ) + 2 sin(φ) sin(φ̂) + sin2(φ̂)

)
=

1

2
+

1

2

(
cos(φ) cos(φ̂) + sin(φ) sin(φ̂)

)
=

1

2
+

1

2

(
1

2

(
cos(φ+ φ̂) + (cos(φ+ φ̂)

)
+

1

2

(
cos(φ− φ̂)− (cos(φ+ φ̂)

))
=

1

2
+

1

2
cos(φ− φ̂)

In the fourth line the product identities of sine and cosine are used. This means that v is a unit vector
if and only if |v|2 = 1, in total this means:

|v| = 1 ⇐⇒ 1

2
+

1

2
cos(φ− φ̂) = 1 ⇐⇒ cos(φ− φ̂) = 1 ⇐⇒ φ = φ̂

Thus the interpolated vector v is a unit vector if and only if φ = φ̂.

This concludes that, only when the unit vectors that are to be interpolated have a similar angle, the
resulting interpolated vector is a unit vector.
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