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Automated parameter determination: From in-situ measurements to
constitutive models

Islam Marzouk, Haris Felić, Franz Tschuchnigg, Ronald Brinkgreve

Abstract: Site characterization relies on both in-situ and laboratory testing. In the early
stages of a project, in-situ tests are often performed before launching a full laboratory testing
program. At this stage—when soil data is limited—in-situ tests can provide valuable insights
for preliminary characterization. To enhance the interpretation of these tests, an automated
parameter determination framework has been developed, employing a graph-based approach
to derive soil and constitutive model parameters from in-situ measurements. Several studies
have been conducted to validate the framework’s output in terms of both soil properties and
model parameters. The framework is designed to be transparent and adaptable, allowing
users to trace the computed values for different parameters and incorporate their experience,
knowledge and expertise. In this study, the tool was applied to a well-documented test site
in Australia. Additionally, the integration of machine learning models for predicting soil
parameters is explored as part of ongoing efforts to incorporate data-driven techniques into
the framework.

1 Introduction

In-situ testing offers an alternative approach for determining soil parameters. Compared to
laboratory tests, in-situ methods are more economical, faster, capable of assessing larger soil
volumes, and cause less disturbance to the in-situ soil conditions. However, parameters cannot
be directly obtained from in-situ measurements; their determination depends on interpretation
through empirical correlations. These correlations are often limited in applicability, typically
developed for specific soil types or conditions—such as a specific overconsolidation ratio
(Kulhawy and Mayne 1990). As a result, multiple correlations may exist for the same parameter,
introducing (additional) uncertainty in the derived values.

An Automated Parameter Determination (APD) framework has been developed as part of a
research project to enable the automated interpretation of in-situ test results. The framework
determines parameters using a graph-based approach (Van Berkom et al., 2022). Various pu-
blications have addressed different aspects of the tool, ranging from the general structure and
implementation of the framework (Marzouk et al., 2024) to the integration of additional in-situ
tests (Marzouk et al., 2023). Several studies have focused on validating the tool’s output in
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terms of soil parameters (Marzouk et al., 2024; Marzouk and Tschuchnigg, 2024). An attempt to
validate the output with respect to constitutive model parameters was made by Marzouk et al.
(2025a), where parameters for the Clay and Sand Model (CASM) (Yu, 1998) were derived and
used to numerically simulate a cone penetration test (CPT), with the results compared against
the CPT used for interpretation. The automated connection between APD and a finite element
(FE) software was demonstrated by Marzouk and Tschuchnigg (2025b), in which a synthetic
shallow footing was modelled.

The framework consists of three main workflows, each dedicated to a specific in-situ test method
for parameter determination: the cone penetration test (CPT), the dilatometer test (DMT), and
shear wave velocity (Vs) measurements. This study explores additionally the integration of
data-driven methods as a fourth, complementary approach for parameter estimation. All four
approaches—the three conventional workflows and the data-driven method—are applied to a
well-instrumented test site in Australia, where the derived soil parameters are compared against
reference values interpreted at the site.

2 Automated parameter determination framework

The various components of the framework are described in detail in Marzouk et al. (2024). To
avoid redundancy, only the key aspects are outlined in this section; interested readers are referred
to Marzouk et al. (2024) for a comprehensive description.

The framework follows a modular architecture that links raw in-situ measurements to finite
element (FE) software. In the CPT-based workflow, Module 1 imports raw data and computes
some CPT parameters (e.g., normalized cone resistance Qt). Module 2 performs stratification of
the measurements into soil layers. Module 3 evaluates the stress state within each layer, including
the overconsolidation ratio (OCR) and the coefficient of earth pressure at rest (K0). Modules 4
and 5 implement the graph-based approach to derive both soil and constitutive model parameters.
The final step involves transferring the output to the FE software.

The graphs are generated using two CSV files: one describing the methods (i.e., correlations)
and the other specifying the parameters. The framework is developed in Python, and graph
visualization is done using the Graphviz library (Gansner, 2011). The current version of the tool
includes a validated database of more than 200 methods, covering both soil and constitutive
model parameters.

2.1 Data-driven Site Characterization for Soil Parameter Determination

Within the framework of APD, machine learning can be used as an additional source of infor-
mation that supports conventional methodologies based on laboratory and in-situ data. Rather
than replacing established empirical correlations, ML techniques augment them by data-driven
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estimations of soil parameters, particularly in contexts characterized by limited availability of
correlations. Validation against independent dataset (i.e. Ballina test site) has demonstrated the
robustness of ML-based soil parameter predictions.

2.1.1 Databases used for machine learning

Two independent databases were compiled for ML model development. First, the laboratory
database consists of paired records of CPT measurements and soil parameters derived from
laboratory testing on borehole samples collected in close proximity to the CPT locations. This
database contains 622 data pairs for saturated unit weight γt and 193 for undrained shear strength
su. Data sources include publicly accessible datasets from Ballina and NGTS (geocalcs.com/
datamap), a Dutch dataset (Lengkeek and Breedeveld 2022), as well as confidential datasets
from Norwegian and Austrian projects. To ensure an unbiased ML performance assessment,
the Ballina dataset was excluded from model training. Second, the in-situ database consists of
46 seismic CPT and 254 seismic CPTu tests, resulting in a total of 21,760 individual records.
Data sources include the New Zealand Geotechnical Database (Scott et al., 2015), project
data from Premstaller Geotechnik (Oberhollenzer et al., 2021), the Dutch dataset repository
(github.com/snakesonabrain/isc7_datasets), and site data from Taiwan (data.
mendeley.com/datasets/v7frv3k2d3/1).

2.1.2 Machine learning algorithm and feature selection

All models developed in this study utilize the XGBoost algorithm (eXtreme Gradient Boosting
Decision Tree), which represents an advanced variant of the Gradient Boosting Decision Tree
(GBDT) technique. XGBoost improves predictive performance and computational efficiency by
incorporating more regularization terms and parallelized tree building.

In supervised ML, a model creates a function between selected input features and the target
variable (Deisenroth et al., 2021). The input feature matrix used here comprises depth, cone
resistance qc, sleeve friction fs, and friction ratio Rf , similar to Felić et al. (2024). Preliminary
analyses showed that this feature set is suitable for robust predictions. Due to the use of tree-
based models, no feature transformation or normalization (i.e. feature engineering) was required.
Separate models were trained for each target variable in this study:γt, su, Vs.

2.1.3 Training workflow

The model training and evaluation protocol follows standard ML practices, as outlined by Dei-
senroth et al. (2021). Initially, the data are randomly split into a training set (80 %) and a test
set (20 %). The training data are further subdivided to create a validation set for hyperpara-
meter tuning and performance monitoring. The initial training phase is conducted with default
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hyperparameters. Model performance is assessed on the validation set using the coefficient of
determination R2 as the objective function. To reduce overfitting, ten-fold cross-validation is
employed. In addition, early stopping is employed to stop the training process if the validation
error does not improve for ten consecutive iterations. Hyperparameter optimization is carried out
using the Differential Evolution algorithm implemented via the pymoo library, with a population
size of 25. The optimization goal is to maximize R2. The process terminates after 1,000 iterations
or when a relative error threshold of 10−4 is reached. The best-performing hyperparameter set
is then used to retrain the model on the combined training and validation datasets. Final model
performance is evaluated on the test dataset. If acceptable performance is achieved, the final
model is retrained using the full dataset.

2.1.4 Results of model performance

Figure 1 shows scatter plots comparing predicted and observed values for γt, su, and Vs of the
ML model after hyperparameter optimization. The dashed 45° line indicates perfect agreement.
The scatter patterns show good predictive accuracy overall, with R2 values ranging from 0.58
to 0.83. Some deviations, particularly in Vs predictions in the lower range (0–350 m/s), are
observed. These deviations of the ML model is part of ongoing research.

Figure 1: Evaluation of ML model performance after optimization via ten-fold cross-validation
and early-stopping criteria.

3 Case study

3.1 Test site

This study focuses on the Ballina Soft Soil National Field Testing Facility (NFTF), located
near the town of Ballina in New South Wales, Australia. The facility was established by the
ARC Centre of Excellence for Geotechnical Science and Engineering (CGSE). Comprehensive
characterization of the site is provided in Pineda et al. (2016) and Kelly et al. (2017). Interpreted
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values used in this study were obtained from Datamap (Doherty et al., 2018), a web-based
platform for managing and accessing geotechnical data.

3.2 Soil parameters

As in Section 2, three parameters are considered in this study: unit weight (γt), undrained shear
strength (su), and small-strain stiffness (G0). For the determination of γt, a total of 13 methods
were employed. 4 methods were used in the CPT-based workflow, 5 in the DMT-based workflow,
and 4 in the Vs-based workflow. For su, 14 methods were utilized—6 from the CPT-based
workflow, 5 from the DMT-based workflow, and 3 from the Vs-based workflow. Regarding G0,
13 methods were applied: 10 from CPT, 2 from DMT, and 1 from Vs measurements. The details
of all applied methods are presented in Tables 1 and 3–5 of Marzouk and Tschuchnigg (2025b).

Estimating the unit weight early in module 1 is essential, as it is required for calculating
intermediate CPT and DMT parameters that rely on stress-dependent inputs. Consequently, an
initial unit weight must be defined at this stage. This value can be specified using either empirical
correlations or reference data. In this study, the initial unit weight for both the CPT- and Vs-based
workflows was estimated using the method proposed by Mayne et al. (2023), whereas for the
DMT-based workflow, it was derived from Marchetti’s chart (Marchetti and Crapps, 1981).

3.3 Results

The in-situ tests considered in this study are illustrated in Figure 2. Three piezocone penetration
tests (CPTu) (Figures 2(a–c)), one dilatometer test (DMT) (Figure 2(d)), and shear wave velocity
(Vs) measurements (Figure 2(e)) were used as input for the APD framework. For improved
visualization of the soft Ballina clay layers, Figure 2(a) has been clipped at 3 MPa. Soil parameters
were evaluated using the methods described in the previous subsection. Additionally, the three
CPTu soundings served as input for the ML models developed to predict the soil parameters (see
Section 2).

APD computes soil parameters generally based on layers and supports various stratification
approaches. These include built-in stratification algorithms, external sources (e.g., CPT inter-
pretation software), machine learning (ML) models, and manual layering. In this study, manual
layering was adopted: the in-situ measurements were averaged every 40 cm to generate thin
layers, facilitating a detailed comparison with the reference values.

Figure 3 presents the comparison between ML and the APD-derived parameters—computed
using the methods described in the previous subsection and the benchmark values interpreted
at the Ballina clay site. The shaded bands in blue, green, red, and grey represent the value
ranges obtained from the CPT, DMT, shear wave velocity (Vs) workflows, and ML predictions,
respectively. For the blue ranges (representing the output of the CPT-based workflow), the
shaded bandwidth reflects not only the variation among different methods but also the variability
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Figure 2: In-situ tests considered in this study, (a–c): CPTu results (profiles of qt, fs and u2); (d):
DMT results (P0 and P1); (e): Vs.

between the three CPT soundings used as input (see Figure 2). The same applies to the grey
ranges (output of the ML model), as the same three soundings were used as input. The solid lines
with circular markers denote the corresponding mean values, plotted at the mid-depths of the
respective thin layers.

Figure 3a presents the results for the unit weight. The reference values were obtained from two
continuous boreholes (Inclo 2 and Mex 9). At the top and bottom of the profile, the average values
derived from the CPT, DMT, Vs, and ML workflows tend to underestimate the reference values.
Between depths of approximately 2.5 and 10 m, the average values generally provide reasonable
agreement with the reference data. However, the ML-based values slightly overestimate the
reference unit weights in the depth range of 7 to 10 m.

Figure 3b shows the results for the undrained shear strength (su). Reference values are obtained
from triaxial compression tests (Inclo 2 and Mex 9) and triaxial extension tests (Mex 9 Ext).
The average values from the Vs-based workflow closely match the reference values from the
extension tests. Meanwhile, the CPT and DMT-based workflows align reasonably well with the
compression test data. The ML-based values tend to overestimate su at the top of the profile, but
show improved agreement with depth, particularly aligning with the compression test results.

Figure 3c presents the results for G0. The reference values were derived from the seismic
dilatometer test (SDMT 8) conducted at the site, which also provided the shear wave velocity
profile used as input for the Vs-based workflow. As a result, the Vs-based workflow aligns
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Figure 3: Comparison between APD and interpreted values at Ballina clay test site (the blue,
green, red, and grey shaded areas represent the range of values obtained from the CPT, DMT, Vs

workflows and ML, respectively): (a) unit weight, (b) undrained shear strength, (c) small-strain
stiffness.

of course perfectly with the reference profile. Due to the use of ten different methods, the
CPT-based workflow exhibits the largest spread, as reflected by the wide shaded band. The
average value of this distribution tends to overestimate the reference values in the upper layers,
while underestimating them toward the bottom. A similar trend is observed for the DMT-based
workflow. The ML predictions, on the other hand, significantly overestimate the reference values
throughout most of the profile, but show improved agreement at the bottom of the layer. A
comparable overestimation by the ML approach for clays is also reported in Felić et al. (2025),
which might be attributed to the under-representation of clay sites in the training database.

4 Conclusion and Outlook

APD is a parameter determination tool that utilizes a graph-based approach to derive soil
and constitutive model parameters from in-situ test data. At the early stages of geotechnical
projects—when soil data is limited—the tool supports early site characterization by providing
detailed insights. Its purpose is not to replace laboratory testing, but rather to complement it, as
laboratory results remain essential for the final design.

In this study, APD was applied using its three core workflows—CPT, DMT, and Vs measu-
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rements—at a testing facility in Australia. Additionally, the study explored the potential of
incorporating data-driven approaches as an alternative source for parameter estimation. The
findings indicate that key soil parameters can be reasonably estimated using all four approaches,
although some methods tend to under- or overestimate the reference values which might indicate
that both, the validity of implemented correlations and the structure of the database for the ML
approach requires some refinement.

Ongoing research aims to enhance the accuracy of the framework through statistical evaluation
of the computed values and the inclusion of additional in-situ tests. Furthermore, efforts are
underway to improve the machine learning models by expanding the training database to cover a
broader range of parameters and soil types.

Data repository

The GitHub repository for the machine learning approach is available here: https://github.
com/harifel/SmartGeotec2025

References

[1] Deisenroth M. P., Ong C. S., and Faisal A. A. (2021): Mathematics for machine learning.
Cambridge University Press.

[2] Doherty J. P., Gourvenec S., Gaone F. M., Pineda J. A., Kelly R., O’Loughlin C. D.,
Cassidy M. J., Sloan S. W. (2018): A novel web-based application for storing, managing
and sharing geotechnical data, illustrated using the national soft soil field testing facility
in Ballina, Australia. Computers and Geotechnics, 93, 3–8. https://doi.org/10.
1080/17499518.2021.1896005
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