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Abstract: Water quality sensors are often spatially distributed in water distribution systems 32 

(WDSs) to detect contamination events and monitor quality parameters (e.g., chlorine residual 33 

levels), thereby ensuring safety of a WDS. The performance of a water quality sensor placement 34 

strategy (WQSPS) is not only affected by sensor spatial deployment that has been extensively 35 

analyzed in literature, but also by possible sensor failures that have been rarely explored so far. 36 

However, enumerating all possible sensor failure scenarios is computationally infeasible for a 37 

WQSPS with a large number of sensors. To this end, this paper proposes an evolutionary algorithm 38 

(EA) based method to systematically and efficiently investigate the WQSPS’ global resilience 39 

considering  all likely sensor failures. First, new metrics are developed in the proposed method to 40 

assess the global resilience of a WQSPS. This is followed by a proposal of an efficient 41 

optimization approach based on an EA to identify the values of global resilience metrics. Finally, 42 

the sensors within the WQSPS are ranked to identify their relative importance in maintaining the 43 

WQSPS’s detection performance. Two real-world WDSs with four WQSPSs for each case study 44 

are used to demonstrate the utility of the proposed method. Results show that: (i) compared to the 45 

traditional global resilience analysis method, the proposed EA-based approach identifies 46 

improved values of global resilience metrics, (ii) the WQSPSs that deploy sensors close to large 47 

demand users are overall more resilient in handling sensor failures relative to other design 48 

solutions, thus offering important insight to facilitate the selection of WQSPSs, and (iii) sensor 49 

rankings based on the global resilience can identify those sensors whose failure would 50 

significantly reduce the WQSPS’s performance thereby providing guidance to enable effective 51 

water quality sensor management and maintenance.  52 

Keywords: Global resilience; Contamination intrusion; Water quality sensor placement strategy; 53 

Water distribution system 54 



1. Introduction 55 

A water distribution system (WDS) is a network that is responsible for delivering drinking water 56 

produced at treatment plants to end users (Zheng et al., 2016; Qi et al., 2018). Because of a large 57 

spatial coverage and complex structures, WDSs are highly vulnerable to intentional or accidental 58 

contamination intrusion (Yang and Boccelli 2016; Zheng et al., 2018). A recent intrusion incident 59 

was reported in May 2016 in Beijing, China, where a large amount of reclaimed water entered into 60 

the WDS due to the misconnection between reclaimed and drinking water supply pipes 61 

(ChinaNews, 2016). The event had not been detected for a while and has resulted in severe public 62 

health hazard. This highlights the great importance and necessity to efficiently identify 63 

contamination intrusion incidents, thereby minimizing the potential impacts of these events 64 

(Ostfeld et al., 2004). To achieve this objective, water quality sensors are often placed within the 65 

WDSs (i.e., type of sensors and their deployments) to form a contamination early warning system, 66 

aimed to ensure potential intrusion events can be detected and a warning can be provided to the 67 

public in an efficient manner (Wu and Walski, 2006; Hart and Murray, 2010; Kroll and King 2010; 68 

Hu et al., 2017; Soldevila et al., 2018). However, due to the high cost associated with water quality 69 

sensors, it is impossible to deploy them at all possible locations in a large WDS (Zhao et al., 2016). 70 

This consequently motivates studies to investigate optimal deployment of a limited number of 71 

sensors in the WDSs aimed at maximizing their performance in detecting water quality issues 72 

(Rathi et al., 2015). 73 

Identifying water quality sensor placement strategies (WQSPS) typically involves formulating an 74 

optimization problem (Oliker and Ostfeld, 2014). Over the past decade, a number of different 75 

optimization objective functions have been developed to maximize the detection ability of the 76 

limited number of water quality sensors. These include the minimization of the detection time 77 



(Ostfeld et al., 2004), the maximization of the detection coverage (Rathi et al., 2015), the 78 

minimization of affected users (Aral et al., 2010), the minimization of sensor redundancy (Tinelli 79 

et al., 2018), and the minimization of the maximum possible influence expressed as the event with 80 

the highest consequence (Watson et al., 2009), the minimization of the mean extent of the potential 81 

source area and redundant detection (Van, 2014) as well as the minimization of the risk of 82 

contamination (Weickgenannt et al 2010). It has been demonstrated that the use of different 83 

objective functions can lead to significantly different WQSPSs, and hence it is often difficult to 84 

identify a single WQSPS that can ensure all these objectives are optimized (Zheng et al., 2018). To 85 

address this issue, the methods of integrating multiple objectives through weighting approaches or 86 

simultaneously considering multiple objectives within the optimization framework are adopted to 87 

account for the trade-offs between different objectives (He et al., 2018).  88 

In parallel with the development of objective functions, many optimization techniques have been 89 

proposed to enable these objective functions to be effectively minimized/maximized (Berry et al., 90 

2005; Bahadur et al., 2003; Hart and Murray, 2010). Among these optimization methods, 91 

Evolutionary Algorithms (EAs) have gained in popularity due to their strong search ability as well 92 

as their flexibility in linking to water quality simulation models (e.g., EPANET2.0, Ostfeld et al., 93 

2008). The practical applications of EAs to identify optimal WQSPSs are often challenged by their 94 

low computational efficiency especially when dealing with large WDSs (Zheng et al., 2017). This 95 

is because the EA search mechanisms are stochastically based and hence they need to call 96 

continuously the water quality simulation model (that is often computationally expensive) to 97 

enable the calculations of objective functions (Hart and Murray, 2010). To overcome this issue, 98 

continuous efforts have been made to improve the optimization efficiency with the aid of several 99 

techniques, including graph theory (Perelman and Ostfeld, 2011), preconditioning methods (Huang 100 



and Mcbean, 2006; Diao and Rauch, 2013), surrogate models (Bi and Dandy, 2015), data-archive 101 

methods (He et al., 2018) and sampling methods (Tinelli et al. 2017).  102 

Given the selected objective function and the optimization algorithm as mentioned above, optimal 103 

WQSPSs that have the best overall performance in detecting water quality issues can be identified 104 

for the WDS. However, it should be noted that the WQSPS’ performance is not only affected by 105 

spatial sensor deployment, but can also be substantially influenced by sensor failures (e.g., 106 

structural failures and communication failures). Failures of water quality sensors are not 107 

uncommon within practical applications, as they can be caused by internal structural failures, 108 

measurement errors, or communication failures (Berry et al., 2009). These failures can 109 

significantly reduce the performance of the optimal WQSPS that is identified based on the 110 

assumption that all water quality sensors can consistently provide accurate measurements (Berry et 111 

al., 2009). Therefore, there is a need to consider the resilience during the selection of WQSPSs, 112 

thereby ensuring the system performs well not only under normal conditions (perfectly working 113 

sensors), but also maintains acceptable functionality levels during unexpected conditions that lead 114 

to sensor failures.  115 

Resilience in engineering community is often defined as a system’s ability to ensure the continuity 116 

and efficiency of its function during and after the failure (Mugume et al., 2015). This concept has 117 

now been considered in some engineering domains, such as urban drainage systems (Mugume et 118 

al., 2015), water supply systems (Diao et al., 2016; Meng et al., 2018) and wastewater systems 119 

(Sweetapple et al., 2019). However, to the best of our knowledge, the WQSPS’s resilience that 120 

accounts for sensor failures has been rarely investigated so far, and hence there is still a lack of 121 

suitable method for resilience quantification. While Preis and Ostfeld (2008) and Berry et al. 122 

(2009) have made attempts to consider sensor failures during the selection/assessment of WQSPSs, 123 



they assume a known and fixed failure likelihood for each water quality sensor. However, these 124 

approaches only considered a narrow range of possible sensor failures, and hence the results can 125 

only represent a limited view of resilience (Mugume et al., 2015). Given that the failure 126 

probability of each sensor as well as the total number of failed sensors is actually unknown and 127 

unpredictable, it is ideal, if computationally feasible, to explicitly consider all possible failure 128 

scenarios, thereby quantifying the global resilience of the WQSPS in coping with possible sensor 129 

failures (Butler et al., 2014; Diao et al., 2016). However, enumerating all considered possible 130 

sensor failure scenarios is often computationally infeasible for WQSPSs with a large number of 131 

sensors. To this end, this study proposes an EA-based method to investigate the global resilience 132 

of WQSPSs considering all likely sensor failure scenarios. 133 

Rather than quantifying the probability of occurrence of sensor failures, which are highly uncertain, 134 

the proposed global resilience evaluation method considers the system performance as a result of 135 

sensor failure scenarios irrespective of their occurrence probability (Diao et al., 2016). The 136 

specific contributions/novelties of the present study are as follows: 137 

(i) The proposal of new metrics to assess the global resilience of WQSPSs under different 138 

sensor failure levels (i.e., the number of failed sensors). In this study, assessment metrics 139 

are proposed to measure quantitatively the WQSPS’s global resilience under different 140 

sensor failure levels, where the impacts of different number of sensor failure scenarios on 141 

the WQSPS’s ability to detect contamination intrusions are considered, irrespective of their 142 

occurrence probability.  143 

(ii) The development of a novel EA-based optimization approach to identify the values of the 144 

global resilience metrics for different sensor failure levels. To demonstrate the utility of the 145 

proposed EA-based method (EAM), its performance is compared with the traditional global 146 



resilience analysis (TGRA) approach (Diao et al., 2016) in capturing the impact extents of 147 

the failure scenarios. 148 

(iii) Identification of the relative importance of the sensors in maintaining the WQSPS’s 149 

detection performance based on the global resilience metric values. This also helps 150 

improving knowledge of the underlying system properties of the WQSPSs as well as 151 

offering important guidance for the management and maintenance of water quality sensor 152 

systems.  153 

This paper is organized as follows. The proposed methodology is described in Section 2, where the 154 

definition of the global resilience metrics and the proposed EAM are presented. This is followed by 155 

the descriptions of the case studies considered in Section 3, and results and discussions in Section 4. 156 

Finally, the conclusion section (Section 5) shows the main observations and implications of this 157 

paper.  158 

2. Methodology 159 

2.1 Global resilience metrics for WQSPSs 160 

2.1.1 Global resilience metrics definition 161 

The proposed global resilience metrics are characterized by the consumed contaminated water 162 

during the contamination events. A more resilient WQSPS indicates the ability of improved 163 

detection of contamination events under different sensor failure levels resulting in less 164 

contaminated water consumed. The (percentage) functionality loss of the WQSPS under different 165 

sensor failure levels (L) can be described mathematically as follows: 166 
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where  tESFL i
k
L ,,  is the proportion of contaminated water that has been consumed relative to 168 

the total consumed water of the entire WDS under the intrusion event Ei (i=1,2,…,M, M is the 169 

total number of intrusion events) at time t for the sensor failure scenario k (k=1,2,…K, K is the 170 

total number of sensor failure scenarios) with L  failed sensors (referred as k
LS ); ),,( tESQ i

k
Lj  is 171 

the contaminated water that has been consumed at node j (j=1,2,…,N, N is the total number of 172 

nodes with demand users) and )(tDQj  is the total water demands required by node j.  173 

Figure 1 further illustrates the proposed formulation of the global WQSPS resilience. As shown in 174 

this figure, the black solid curve line represents the dynamic behavior of the WDS functionality 175 

level (i.e., 1- ),,( tESFL i
k
L ) associated with the WQSPS over time for a given contamination 176 

event Ei starting at time s
it  and a given sensor failure scenario. As it can be seen from Figure 1, 177 

the functionality level of the WDS before the occurrence of the contamination event is 100%. 178 

This functionality level consistently declines for the duration of the contamination event until 179 

this event is detected by the WQSPS within the WDS at time d
it . The shaded region A between 180 

s
it  and d

it  is the total functionality losses of the WDS (i.e., the consumed contaminated water) 181 

during this time period as indicated in Figure 1. If this contamination event cannot be detected by 182 

the WQSPS, the functionality level would gradually increase after a period of reduction as 183 

indicated by the black dotted line in Figure 1. This is because the contamination intrusion, 184 

especially the intentional contamination injections, often lasts a limited time period (e.g., 1 to 2 185 



hours, see Ostfeld et al., 2016 and He et al., 2018) and hence the functionality level of the WQS 186 

can improve as the contaminated water is consumed over time. For this case, the total 187 

functionality losses of the WDS are the shaded region A+B above the black solid and dotted 188 

curve lines in Figure 1. 189 

 190 

Fig. 1. Illustration of the dynamic behavior of the WDS’s functionality level over time for a 191 

given contamination event and a given sensor failure scenario. 192 

For all M contamination events, the average of functionality levels (in percentage) of the WQSPS 193 

is developed as shown below 194 
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where  k
LSf  is the average of functionality levels (in percentage) of the WQSPS across M 197 

contamination events for the sensor failure scenario k
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functionality losses for the intrusion event starting at time s
it  and ending at time iT , and this 199 

value is normalized between 0 and 1 through dividing it by the time difference between e
it  and s

it  200 

(i.e., e
it - s

it ), where e
it  is the time at which all the contaminated water within the WDS has been 201 

consumed without detected by the water quality sensors. As shown in Equation (3), if a 202 

contamination event Ei can be detected by any sensors with normal functionalities, iT  equals to 203 

d
it  which is the time at which any of the sensors first detects this event. If the contamination 204 

event cannot be detected, iT  is set to be e
it  which is the time when all the contaminated water 205 

have been consumed by customers. 206 

The rationale behind Equations (1) and (2) used to represent the resilience of the WQSPS is that 207 

this formulation is able to simultaneously consider the impacts of sensor failures on the detection 208 

coverage and the time used to detect the contamination events, and the global resilience values 209 

are accordingly estimated when all possible failure scenarios are considered. In this study, three 210 

metrics are proposed to enable the global resilience assessment under a certain sensor failure level 211 

(L), which can be defined as follows 212 

  LfLR Smax)(max                                                               (4) 213 

  LfLR Smin)(min                                                                 (5) 214 

  Lf
K

LR S
1

)(mean                                                             (6) 215 

where )(min LR , )(max LR , )(LRmean  are the minimum, maximum and mean of global resilience 216 

values respectively for a given sensor failure level L;  Lf S  is the performance level function 217 



that is used to represent the resilience values of the WQSPSs and  TK
LLLL SSS ,...,, 21S  is the set 218 

that contains all possible scenarios with L  failed sensors where K is the total number of sensor 219 

failure scenarios; the resilience value of each scenario k
LS  is computed using Equation (1). 220 

Based on the definition of the global resilience metrics in Equations (1-6), a more resilient WQSPS 221 

would possess overall lower total functionality losses of the WDS (the shaded region in Figure 1) 222 

when their sensors fail (considering different failure levels). It is noted that Figure 1 only illustrates 223 

the dynamic behavior of the functionality level variations of the WDS over time for one 224 

contamination event under a given sensor failure scenario. To enable the identification of the 225 

global resilience, a large number of contamination events (M) and all possible sensor failure 226 

scenarios ( LS ) need to be considered. The global resilience as proposed in this paper (Equations 227 

1-6) can have a value between 0 and 1, with a larger value representing that the WQSPS being 228 

considered is more resilient as it can maintain acceptable detection performance during 229 

unexpected conditions that lead to sensor failures. Two important assumptions are made in the 230 

proposed global resilience metrics following Ostfeld et al. (2008). These are that: (i) the 231 

functionality level of the WDS is not further reduced once the contamination event has been 232 

detected (the A shaded region in Figure 1) by the water quality sensors as all users can be 233 

quickly notified/warned to avoid consuming contaminated water, and (ii) the time period of the 234 

contamination injections is limited as this is often the case for many intentional/accidental 235 

intrusion events (Diao et al., 2016).  236 

 237 

 238 

 239 



2.1.2 Sensor failure scenarios 240 

As shown in Equations (4-6), LS  includes all possible failure scenarios for a given failure level L, 241 

leading to a total of ),( LTLC  failure scenarios (TL is the total number of sensors within the 242 

WDS). Taking a WDS with four water quality sensors (TL=4) as an example, the total number of 243 

scenarios involving a random failure of a single sensor is four ( 4)1,4( C ) as shown in Fig. 2. 244 

For failure levels of L =2, 3 and 4, the total number of scenarios are six, four and one 245 

respectively (see Fig. 2). Therefore, for this small WQSPS, the total number of failure scenarios 246 

is 15.  247 

 248 

Fig. 2. A schematic of sensor failure scenarios in a simple WDS with four sensors at 249 

different failure levels (L). The total number of failure scenarios for L=1, 2 ,3 and 4 are 4, 6, 250 
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4 and 1, respectively. Note that only first 3 scenarios (i.e. for L=1, 2 and 3) are shown here 251 

for illustration purposes 252 

2.2 Resilience Assessment using EA-based optimization 253 

2.2.1 The EA-based method to identify global resilience values 254 

As stated in the previous section, for each failure level L, all possible failure scenarios have to be 255 

considered to enable the computation of the global resilience metrics (See Equations 4-6). 256 

However, enumerating all possible sensor failure scenarios is only applicable to WQSPS with a 257 

small number of sensors. For a relatively large WQSPS this is not tractable. For example, if 258 

WQSPS uses 30 sensors the total number of failure scenarios with L = 1 to 30 is 91007.1  . 259 

Simulating such a large number of scenarios requires massive computational resources, which 260 

would significantly go beyond the computational budgets that are typically available in practice. 261 

Therefore, the present study develops an efficient evolutionary algorithm based method (EAM) to 262 

identify the global resilience metric values (Equations 4-6) for different sensor failure levels.  263 

Figure 3 is used to illustrate the proposed EAM. For each given sensor failure level L, an EA is 264 

performed to identify the sensor failure scenario that has the largest detection ability of the 265 

remaining sensors of the WQSPS (Figure 3a), and the detection ability level is considered as the 266 

global resilience value Rmax in Equation (4). More specifically, a large number of initial solutions 267 

(sensor combinations with a given number of failed sensors L) are randomly generated, followed 268 

by solution evaluations (Equations 1-3) with the aid of EPANET2.0 as the hydraulic and water 269 

quality simulation model. These solutions are driven by the algorithm operations towards the 270 

maximum value of the detection ability levels (Figure 3a) until the final optimal solution (i.e., 271 

Rmax) is identified (Wu and Walski, 2006). Similarly, the EA is run again to determine the sensor 272 



failure scenario that has the lowest detection ability level of the remaining sensors of the WQSPS 273 

(Figure 3b), which is used to represent the global resilience value Rmin in Equation (5). All the 274 

individual members within the entire searching of the two optimization runs are used to estimate 275 

the mean value of the detection ability levels under sensor failures ( )(LRmean  in Equation 6), as 276 

shown in Fig. 3(c).  277 

  278 

Fig. 3. Illustration of the proposed EA-based optimization method (EAM) to identify the 279 

global resilience values for different sensor failure levels (L) 280 

2.2.2 The data-archive method to improve optimization efficiency 281 

In the proposed method, two EA optimization runs are performed for each sensor failure level, 282 

leading to a large number of EA runs as all different failure levels have to be considered. In 283 

addition, water quality simulation models need to be frequently called to enable the performance 284 

level computation (Equations 1-3) for each EA run, which are time-consuming especially for 285 

large-scale complex WDSs. To address this issue, a new data-archive method is developed in this 286 



paper to improve the computational efficiency of the optimization process. The data-archive 287 

method is based on the approach described in He et al. (2018) 288 

In the proposed data-archive method, a calibrated water quality model is first established, 289 

followed by the specification of simulation model parameters such as simulation time step and 290 

duration time. Subsequently, all possible contamination scenarios (intrusion events) are defined 291 

by adding a contamination source with a given injection rate and a given time period to each of N 292 

network nodes at different time within the total duration of a simulation described by DP 293 

demand patterns. Therefore, the total number of contamination scenarios is DPN  . A water 294 

quality simulation is then executed with the pre-specified parameters for each intrusion event. A 295 

data-archive is finally established to record the hydraulic and water quality simulation results 296 

that are required to enable the calculation of the performance levels as a result of sensor failures. 297 

However, it should be noted that the proposed data-archive approach is used to reduce the need 298 

for calling the water quality simulation model for each EA function evaluation conditioned on a 299 

predefined set of contamination characteristics (e.g., intrusion concentration and duration). This 300 

implies that the data archive needs to be re-developed if the intrusion characteristics are changed. 301 

This is a limitation of the proposed data-archive approach that needs to be addressed in future. 302 

The details of the proposed method for the development of data archives are shown using the 303 

pseudo-code in Figure 4.  304 

Step 0: Set up the water quality simulation model for the WDS. 
Step 1: Specify the simulation parameters, including the water quality time step, contamination injection 

quantity, injection time period, concentration threshold and total simulation duration time. 
Step 2: Define all the possible contamination intrusion events for each demand node Nj ,,2,1  (N is 

the total number of demand nodes) at time DPtttt ,...,, 21  (DP is the length of demand pattern) 

as ],...,,[ 21 MEEE ( DPNM  ). 
FOR Mi ,...,2,1  

Step 3: Perform the water quality simulation with the pre-specified parameters for the intrusion 

event iE  (the start time of the injection and which node is to be injected) 



  FOR TLm ,...,2,1 (TL is the total number of sensors) 

                     Step 4: Perform the water quality simulation model for the intrusion event iE  with the pre-

specified total duration time 

                                      If iE  can be detected by the mth sensor  
d
ii tT   

Otherwise  
e
ii tT   

FOR tBttt  ,...,2,,0  ( tBTi  ) 

Step 5: Perform the water quality simulation model at time t, and record 

),,( 1- tESQ i
m
TLj  and )(tDQj  for each demand node j, where m

TLS 1-  represents 

that only the mth sensor is considered and the all the other sensors are failed 
(i.e., the failure level is TL-1). This is followed by the use of Equation (1) to  

calculate and record ),,( tESFL i
k
L  for each t. 

                       END t 

Step 6: Compute   
i

s
i

T

t i
m
TL dttESFL ,,1  in Equation (2), which equals to the total values of 

),,( tESFL i
k
L  across different time.  

Step 7: Develop a data-archive for the event of iE  and the sensor m, referred to 

  },,,,,{),( 1  i

s
i

T

t i
m
TLi

e
i

s
ii dttESFLTttmE

           END m 
END i 

Fig. 4. The pseudo-code of the development of the data archives in the proposed method  305 

Relative to the data-archive method stated in He et al. (2018) that only recorded the time of each 306 

sensor in detecting each of the contamination events ( d
it ), the archive structure used in this paper 307 

has been significantly extended by adding a larger number of variables including 308 

  
i

s
i

T

t i
m
TLi

e
i

s
i dttESFLTtt ,, and ,,, 1  as shown in the pseudo-code (Figure 4). The application 309 

procedures of the developed data archives within the optimization framework are outlined in 310 

Figure 5 by pseudo codes. As shown in Figure 5, a total of Pop initial solutions is first randomly 311 

generated for each sensor failure level (L), followed by solution evaluations for all M intrusion 312 

events based on Equations 1-3. The individuals that are survived from the selection operator are 313 



subject to cross and mutation operations, and the generated offspring are driven by the EA 314 

operations towards the optimal value until the final optimal solution is identified.  315 

FOR L=1, 2,…, TL 

     FOR n=1, 2,…, Pop (Pop is the population size of the evolutionary algorithm, representing a 
sensor failure scenario with TL-L valid sensors) 

FOR Mi ,...,2,1 ( M is the total number of intrusion events) 

Step 1: Identify the sensor m that has the minimum value of iT  information recorded 

at the data archive ( ) from all TL-L valid sensors.  

Step 2: Compute and record   

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            END i 

Step 3: Compute and record  k
LSf  in Equation (2) using all the values recorded in 

Step 2. 

END n 

Step 4: Carry out the algorithm operators to lead the search towards identifying the 
minimum or maximum resilience values as defined in Equations 4 and 5. All 
the recorded values in Step 3 over different EA iterations are used to 
compute the mean of the global resilience values in Equation (6).  

END L 

Fig. 5. The pseudo-code of the applications of the data archives in the proposed method  316 

2.3 Sensor Ranking 317 

In the proposed method, the sensors are ranked based on their impact on the global resilience 318 

values obtained using methodology shown in the above section, thereby indicating their relative 319 

importance in affecting the performance of the WQSPS induced by their failures. More 320 

specifically, the frequency of the sensors associated with the lowest global resilience values 321 

across different failure levels is used to enable the ranking, with details represented by the two 322 

equations below, 323 
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where )(iPs  is the probability of the sensor i that has been identified to be included in the failure 324 

scenarios associated with the lowest reliance values (Rmin) over all different failure levels; TL is the 325 

total number of sensors; ),( Li  is an indicator function, with 1),( Li  if the sensor i  is in the 326 

failure scenario of Rmin at the failure level L, which is identified by the EA-based optimization 327 

method, otherwise 0),( Li . For example, if a sensor is selected three times in the failure 328 

scenario of Rmin relative to a total of six failure levels, it has a )(iPs =50%. As shown in Equation 329 

(7), a sensor with a larger value of )(iPs  indicates that this sensor is overall more important as its 330 

failure is likely to induce more serious consequences relative to the sensors with low )(iPs  331 

values. Such knowledge is practically important as it can be used as guidance for the 332 

management and maintenance of water quality sensor systems.  333 

3. Case Studies 334 

3.1. Description 335 

Two real-world WDSs in China, the Jiayou network (JYN) and the Zhuohao network (ZHN), are 336 

selected as case studies to demonstrate the proposed EA-based global resilience assessment 337 

method. The JYN consists of two reservoirs, 349 demand nodes and 509 pipes with many loops 338 

(Figure 6), and The ZHN has one reservoir, 3,439 demand nodes and 3,512 pipes with many 339 

branches (Figure 7). Both WDSs have a demand pattern varying over 24 hours, with each hour 340 



representing a demand scenario. The JYN and ZHN network supplies approximately 256,592 m3 341 

per day and 140,782 m3 per day respectively. Six and 30 water quality sensors (He et al. 2018) are 342 

available for JYN and ZHN, respectively. Four different water quality sensor placement 343 

strategies (WQSPSs) have been identified for each case study as shown in Figures 6 and 7. These 344 

four WQSPSs were identified by He et al. (2018) who used an optimization algorithm. Different 345 

contamination probability functions were considered to enable the WQSPS optimization. More 346 

specifically, the WQSPS1, WQSPS2, WQSPS3 and WQSPS4 for both case studies were 347 

determined using the equal contamination probability function at each node, the probability 348 

function based on nodal demands, the probability function based on length of pipes immediately 349 

connected to the contaminated nodes, and the probability function based on user properties, 350 

respectively (see He et al. (2018) for details). This study aims to investigate the global resilience 351 

of the four WQSPSs with sensor failures considered, thereby facilitating the selection of the 352 

resilient sensor deployment methods.  353 



 354 

Figure 6 The network typology of the JYN case study with four water quality sensor 355 

placement strategies (WQSPSs) 356 



 357 

Figure 7 The network typology of the ZHN case study with four water quality sensor 358 

placement strategies (WQSPSs) 359 

3.2 Application of the proposed method 360 

The EPANET2.0 was used as the hydraulic and water quality simulation model in this study. For 361 

each case study, a total duration of 96 hours (four times of the 24-hour demand pattern) with a 362 

time step of 5 minutes was used to simulate each contamination scenario. Following Ostfeld et al. 363 

(2008), a contamination scenario was represented by adding a contamination source to each node 364 



with an injection rate of 100 mg/L of two-hour duration. Consequently, the total numbers of 365 

contamination scenarios for JYN and ZHN case studies were 24  349 = 8,376 and 24  3439 = 366 

82,536, respectively. The detection threshold of water quality sensors was set to 0.01 mg/L 367 

following He et al. (2018). It is noted that as each node of the WDS was considered as possible 368 

intrusion injection location with wide ranging time of injection, the defined contamination events 369 

were also considered representative following the description in Tinelli et al. (2017). 370 

In the present study, the evolutionary algorithm Borg (Hadka and Reed, 2013; Zheng et al., 371 

2016), which has been successfully and widely used to deal with various water resources 372 

optimization problems, was employed to solve the proposed optimization problem. The 373 

population size of Borg applied to JYN and ZHN case studies were 500 and 1,000 respectively 374 

following the parameters used in He et al. (2018), and the maximum allowable number of 375 

evaluations was 500,000 for both case studies. The values of the remaining parameters of Borg 376 

were the default selections in Wang et al. (2014), which have been validated and verified through 377 

various applications. Five runs of the Borg with random number seeds were applied to each case 378 

study, and the results were overall similar among different runs.  379 

3.3 The traditional global resilience analysis (TGRA) approach 380 

The traditional global resilience analysis (TGRA) approach has been widely used to assess the 381 

resilience of various systems as a result of malfunctions (e.g., pipe breaks), such as electrical 382 

power systems (Johansson, 2010), urban drainage systems (Mugume et al., 2015) and water 383 

distribution systems (Diao et al., 2016). To demonstrate the capacity of the proposed EA-based 384 

method, its performance is compared with the TGRA presented in Diao et al. (2016) in terms of 385 

their ability to capture the global resilience values.  386 



The TGRA provided a response curve (envelope) that represented the range of resilience 387 

(corresponding Equations 4-6) under increasing failure levels by evaluating a limited number of 388 

failure scenarios. When only one sensor in WDS failed (i.e., the failure level 1L ), it required 389 

each sensor to be traversed and hence a total of M failure scenarios needed to be evaluated. 390 

When all the sensors failed ( TLL  ), there was only one failure scenario to be considered. For 391 

TLL 1 , the TGRA involved two different types of failure scenario selections, which were 392 

targeted failure type and random failure type (Diao et al., 2016). The targeted failure scenarios 393 

were determined through an incremental manner, where the sensor with the largest/lowest impact 394 

on the performance of WQSPS was incrementally added to the failure scenario as the failure 395 

level increased. The random failure scenario selection aimed to enrich the targeted failure 396 

scenarios through selecting the locations of L  failed sensors randomly, thereby improving the 397 

likelihood to identify the near-optimal failure scenarios that have the largest or lowest global 398 

resilience values. Details of the TGRA can be found in Mugume et al. (2015) and Diao et al 399 

(2016). 400 

4. Results and discussions 401 

4.1 Comparison between the proposed EAM and the TGRA 402 

The values of the three global resilience metrics defined in Equations (4-6) were identified by the 403 

proposed EAM and the TGRA respectively, with results given in Figures 8 (JYN) and 9 (ZHN). 404 

For the JYN with a relatively small number of sensors (six), it was seen that the proposed EAM 405 

exhibited similar performance with the TGRA in terms of Rmax, Rmin and Rmean values for each 406 

failure level applied to the four sensor placement strategies (SPSs). To further verify the 407 

effectiveness of the proposed EAM, all the possible failure scenarios for each failure level were 408 



fully enumerated to enable the identification of the global values of the global resilience metrics, 409 

with results also shown in Figure 8 (the EM). It is observed that while the Rmean values were 410 

slightly different between the proposed EAM and the EM, the Rmax and Rmin values identified by 411 

the EAM consistently matched those from the EM. This was also the case for the traditional global 412 

resilience analysis method (TGRA) as shown in Figure 8. Using the results of the JYN case study 413 

with six sensors, it can be deduced that the proposed EAM was effective in identifying the global 414 

resilience values.  415 

  416 



Fig. 8. Global resilience metric values of different failure levels applied to the four different 417 

WQSPSs of the JYN study 418 

Interestingly, when the methods were applied to the ZHN with 30 sensors (Figure 9), the 419 

envelope results produced by the EAM results consistently outperformed those from the TGRA 420 

across all sensor levels. This was especially the case for the Rmin as the proposed EAM was able 421 

to identify sensor failure scenarios with substantially more serious impacts on the WQSPS’s 422 

detection performance compared to the TGRA. For instance, if 20 sensors failed for the SPS2 423 

(Figure 9(b)), the value of Rmin identified by the proposed EAM was 0.78, but the TGRA offered 424 

a value of Rmin=0.84. This indicated that the TGRA can significantly underestimate the potential 425 

impacts of sensor failures on the detection performance of the water quality sensor systems. As 426 

shown in Figure 9, the advantage of the proposed EAM relative to the TGRA became more 427 

prominent for failure levels (L) between 10-20 (i.e., the number of failed sensors were between 428 

10 and 20) for all the four WQSPSs. This was expected as the total search space for the L 429 

between 10 and 20 was appreciably larger than other failure levels, and hence the TGRA had a 430 

lower likelihood to identify the global resilience metric values (minimum or maximum values) 431 

relative to the proposed EAM.  432 



 433 

Fig. 9. Global resilience metric values of different failure levels applied to the four different 434 

WQSPSs of the ZHN case study 435 

To reveal the underlying mechanisms that caused the performance variation between the 436 

proposed EAM and the TGRA, Figure 10 presents the locations of the failed sensors at four 437 

different failure levels (L) identified by these two methods applied to WQSPS1 of the ZHN case 438 

study based on Rmin metric. As shown in this figure, at L = 3, the locations of the three sensors 439 

with their failures having the largest impacts of the WQSPS1’s detection performance were 440 

identical between these two methods (Figure 10a). However, for the EAM identified failure 441 

scenario based on Rmin metric when L=4 (Figure 10b), one sensor has been removed when 442 



compared to the failure scenario with L=3, and two new sensors have been added to the failure 443 

scenario with L=4. However, for the TGRA, only one more sensor has been added to its already 444 

identified failure scenario based on Rmin metric when L=4. This was also the case when L 445 

increased to 5 and 15 as shown in Figure 9(c,d). This was because the TGRA selected the failed 446 

sensors mainly using an incremental (greedy) manner, where the sensor whose failure has the 447 

largest impacts on the WQSPS’s detection performance was incrementally added to the failure 448 

scenario as the failure level increased. Therefore, the identified failed sensors were highly likely 449 

to be trapped in a local solution. In contrast, the proposed EAM identified failed sensors 450 

independently for each failure level, and hence it was able to find improved global resilience 451 

metric values compared to the TGRA, especially for the large and complex problems (Figure 9).  452 



 453 

Fig. 10. Locations of sensors (to whose failure the resilience is sensitive) identified by the 454 

proposed EAM and TGRA methods applied to WQSPS1 (Figure 7) of the ZHN based on 455 

Rmin metric 456 

In terms of computational analysis, the computational budgets of the proposed EAM were 457 

primarily used by the generation of data archive that involved water quality simulations. For the 458 

ZHN case study, the total number of contamination scenarios considered was the value computed 459 

by the number of nodes (3,439) multiplied with the number of demand patterns (24), leading to a 460 

total of 82,536 events. Using a PC with 4.00-GHz Intel Core i9-7980XE processor in Windows 461 



10, the total time for simulating these events for data archive development was 19.6 hours (note 462 

that data archive only needed to be developed once). Within the optimization process, the 463 

established data archive, rather than the water quality simulator, was used to enable the objective 464 

function evaluations. Consequently, the optimization process was very efficient with a total of 465 

approximately 0.5 hours for all optimization runs. Therefore, the total computational time used to 466 

identify the global resilience metric values for the ZHN case study was 20.1 hours, which is 467 

practically affordable. For the TGRA, a total of 11,679 sensor failure scenarios was identified 468 

using the method described in Diao et al. (2016), and for each scenario, all the 82,536 469 

contamination events had to be simulated to enable the objective function evaluations. The 470 

estimated computational time was 229,261 hours or about 9,500 days (11,67919.6 hours used 471 

for the simulating 82,536 contamination events), which is impossible to complete. Therefore, the 472 

established data archive was also used by the TGRA to produce the results, and hence the total 473 

computational time of the TGRA was similar to that used by the proposed EAM (the main 474 

computational budgets of each method were used by the data archive establishment). This was 475 

also the case for the small JYN case study. However, the proposed EAM can produce 476 

significantly better results for the large ZHN case study compared to the TGRA as shown in 477 

Figure 9. 478 

4.2 Resilience comparison across different WQSPSs 479 

Figure 11 shows the global resilience metric (Rmin, Rmax and Rmean) values of each WQSPS for the 480 

two case studies over all different failure levels (L). All these values were divided by R0 (the 481 

global resilience value of WQSPS without sensor failures) to enable the performance comparison 482 

of the four WQSPSs. As shown in Figure 11, for each case study, the R0 values were overall 483 



similar for the four WQSPSs, implying that the difference of the detection performance of the 484 

four WQSPSs without any sensor failures was negligible.  485 

As expected, the detection performances of the four WQSPSs were consistently reduced as 486 

measured by the three global resilience metric values when the failure level increased for both 487 

case studies. Among the four WQSPSs, the WQSPS2 had an overall greater ability in 488 

maintaining its detection performance for both case studies under different failure levels 489 

compared to its counterparts. In contrast, the WQSPS4 exhibited the worst performance for the 490 

two case studies as it consistently exhibited the fastest performance deterioration in Rmin and 491 

Rmean induced by sensor failures with different levels.  492 

 493 

Fig. 11. Global resilience metric values of the four WQSPSs under all failure levels (L) for 494 

the two case studies (R0 is the global resilience value of WQSPS without sensor failures) 495 
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The rationale behind the observations made above was that the WQSPS2 was identified based on 496 

deploying sensors closer to large demand users (He et al. 2018). Therefore, the contamination 497 

events at these large demand nodes that could result in large functionality losses of the WDS can 498 

be detected in an efficient manner. Consequently, this sensor deployment strategy (WQSPS2) 499 

tended to be overall more resilient as measured by the proposed global resilience metrics. While 500 

the WQSPS4 also considered the demand values within its deployment, many sensors were 501 

located exactly at the important users such as hospitals and schools as stated in He et al. (2018) 502 

(this was the main difference between WQSPS2 and WQSPS4). Consequently, the global 503 

resilience of this deployment strategy can be significantly reduced if the sensors at the important 504 

users simultaneously failed. Therefore, the WQSPS2 was identified as the most resilient system 505 

for both the JYN and ZHN case studies in dealing with sensor failures.  506 

Another interesting observation from Figure 11 is that while WQSPS2 exhibited the overall best 507 

performance in global resilience metric values across different failure levels, this sensor 508 

deployment strategy performed similarly with the other three alternatives when the failure level 509 

was low, such as L between 1 and 3. This is because many contamination events can be detected 510 

by multiple sensors with relatively small time differences due to the looped water delivery 511 

manner as well as relative large sensor density (e.g., 30 sensors for the ZHN). Consequently, the 512 

relatively low sensor failure levels (e.g., L=2) would not induce significant variations across 513 

different WQSPSs given that their initial detection ability levels were overall similar. This 514 

implies that the global resilience that accounts for all possible failure scenarios (as it was done in 515 

this study) can provide knowledge/insights, which goes beyond the resilience analysis only 516 

considering limited failure scenarios (e.g., L between 1 and 3) as did in the majority of previous 517 

studies (Preis and Ostfeld 2008, Berry et al. 2009).  518 



4.3 Ranking the sensors within the WQSPSs  519 

The sensors of the WQSPS2 for the JYN and the ZHN (identified as the most resilient design 520 

solutions in the previous section) were ranked based on the Rmin values of all different failure 521 

levels, with results given in Figure 12. It was seen that Sensor 5 was selected in all failure 522 

scenarios (100% probability to be included in the failure scenarios) associated with Rmin within 523 

the WQSPS2 of the JYN (Figure 12(c)), and hence this sensor was crucial in maintaining the 524 

overall detection performance of the sensor system (the locations of Sensor 5 was shown in 525 

Figure 12(a)). Sensor 4 was selected in addition to Sensor 5 as the two sensors that have the 526 

largest impact on the WQSPS2 detection performance due to their simultaneous failures, i.e., 527 

L=2, as shown in Figure 12(c). For the WQSPS2 of the ZHN case study (ranks of only six 528 

sensors were presented to enable clear visualization), Sensor 29 (Figure 12(b)) was the most 529 

important sensor as it was consistently selected to be included in the failure scenarios that 530 

produced Rmin (100% probability in Figure 12(d)). This was followed by Sensor 18 as it was 531 

always selected from L=2 to 30 as shown in Figure 12(d). Detailed analysis of results revealed 532 

that sensors with a relatively high rank were either located in the surrounding regions of the 533 

large/important demand users or deployed in a region with sparse sensors. For example, Sensor 8 534 

of the ZHN case study (low ranking with a relatively low probability) was only selected when L 535 

was relatively large as shown in Figure 12(b,d). This was because this sensor was located at the 536 

downstream end of the WDS and hence the impact of its failure on the WQSPS’s detection 537 

performance can be relatively small when compared to other sensors located in the middle of the 538 

WDS.  539 

The results of the sensor rankings based on the Rmin are practically significant as this knowledge 540 

can be used as guidance to enable the effective water quality sensor maintenance management. 541 



For instance, for the WQSPS2 of the JYN, Sensor 5 needed to be maintained more frequently 542 

than other sensors as its failure consistently resulted in larger performance reduction of the 543 

WQSPS over different failure levels. This was also the case for Sensor 29 within the WQSPS2 of 544 

the ZHN case study. From the practical point of view, the number of simultaneously failed 545 

sensors often ranged between 2 to 4, and for such cases, the ranking results obtained from the 546 

global resilience analysis can also inform the sensors whose failures have the largest impacts on 547 

the WQSPS’s overall detection performance. For example, if L=2 was considered for the two 548 

case studies, Sensors 5 and 4 for the JYN and Sensors 29 and 19 for the ZHN were identified as 549 

the most important sensors that needed to be maintained in more frequently than other sensors. 550 

 551 



Fig. 12. Sensor rankings based on the Rmin of all the failure levels for both case studies, 552 

where )(iPs  is the probability of the sensor i that has been identified to be included in the 553 

failure scenarios associated with the lowest reliance values.  554 

4.4 Sensitivity analysis 555 

In this section, sensitivity analysis was conducted to evaluate the impacts of EA runs and 556 

intrusion characteristics on the values of global resilience metrics and sensor rankings. It is noted 557 

that the Borg parameter values used were default values based on a comprehensive sensitivity 558 

analysis performed in previous studies (Hadka and Reed, 2013; Zheng et al., 2016). Therefore, 559 

the parameterization strategies of Borg were not explored in this paper. This is also partly 560 

because Borg was only used as an optimization tool in the proposed method, rather than being 561 

the research focus of this study. More specifically, for each case study, five different invasion 562 

scenarios were considered, which were: (1) 50 mg/L intrusion concentration with 1 hour duration, 563 

(2) 100 mg/L intrusion concentration with 1 hour duration, (3) 100mg/L intrusion concentration 564 

with 2 hour duration, (4) 100 mg/L intrusion concentration with 3 hour duration, and (5) 150 565 

mg/L intrusion concentration with 2 hour duration. For each invasion scenario, the proposed EA-566 

based method was run five times with different starting random seeds. Therefore, a total of 25 567 

Borg runs were performed, leading to 25 global resilience metric values (Rmax, Rmean and Rmin) 568 

and sensor rankings obtained over different failure levels. 569 

Figure 13 presents the boxplot of global resilience metric values for the large ZHN case study 570 

over different failure levels. It can be observed from this figure that the variability ofglobal 571 

resilience metric values was insignificant, which was especially the case for thelow sensor failure 572 

levels. For instance, in terms of Rmin value, the largest variability occurred for the sensor failure 573 



level L=24 with a maximum difference of 0.11 (from 0.69 to 0.80). Figure 14 shows the boxplot 574 

of sensor rankings based on the Rmin values of all the failure levels calculated from the 25 575 

solutions for the ZHN case study. As shown in this figure, the rankings of the sensors that were 576 

associated with a high probability %80)( iPs  were not affected by the choices of different 577 

invasion scenarios and starting random number seeds for Borg. However, for the sensors with a 578 

moderate value of )(iPs  between 40% and 60%, slightly larger variations were observed. Similar 579 

observations were made for the small JYN case study. 580 

  581 

Fig. 13. Boxplot of global resilience metric values (Rmax, Rmean and Rmin) based on 25 Borg 582 

runs for the ZHN case study with five different invasion scenarios and five staring random 583 

number seeds over all different failure levels. 584 



 585 

Fig. 14. Boxplot of sensor rankings based on the Rmin of all failure levels calculated based 586 

on the 25 solutions for the ZHN case study, where )(iPs  is the probability of the sensor i that 587 

has been identified to be included in the failure scenarios associated with the lowest reliance 588 

values. 589 

5. Summary and conclusions 590 

A contamination early warning system is typically used to protect the water quality safety of a 591 

water distribution system (WDS), where the water quality sensors are spatially distributed to 592 

detect/warn contamination events. The majority of the current research focuses on identifying the 593 

water quality sensor placement strategy (WQSPSs) based on an assumption that all sensors are 594 

able to consistently provide accurate measurements, i.e., measure, record and communicate. 595 

However, water quality sensors are generally vulnerable to their surrounding environment and 596 

hence their failure likelihoods are often not insignificant. Therefore, it is critical to design a 597 

resilient WQSPS that cannot only detect contamination events with great effectiveness when all 598 

sensors are functioning normally, but also can maintain reasonable performance when sensors 599 

fail. However, few attempts have been made so far to explore the WQSPS’s resilience 600 



considering sensor failures, especially for the global resilience that should account for all 601 

possible failure scenarios.  602 

This paper proposes a method to systematically assess the global resilience of WQSPSs with 603 

sensor failures considered. In the proposed method, new metrics are firstly developed to represent 604 

the global resilience of WQSPSs under different sensor failure levels (i.e., the number of 605 

simultaneously failed sensors), where all possible sensor failure scenarios are considered 606 

irrespective of their occurrence probability. Subsequently, an efficient Evolutionary Algorithm (EA) 607 

based optimization approach is proposed to effectively identify the values of the global resilience 608 

metrics for different sensor failure levels. Finally, the sensors within the WQSPS are ranked based 609 

on their global resilience values. Two real-world WDSs with four WQSPSs for each WDS 610 

analyzed are used to demonstrate the utility of the proposed global resilience identification method. 611 

Based on the results obtained the following observations/implications can be made:  612 

(i) The proposed EA-based optimization method (EAM) was able to identify improved 613 

values of the global resilience metrics relative to the traditional global resilience analysis 614 

(TGRA) method that has been widely used so far for the WDS with a large number of 615 

sensors (Mugume et al., 2015, Diao et al., 2016). The advantage of the proposed EAM is 616 

more prominent when dealing with WQSPSs with a large number of sensors. This 617 

implied that the TGRA results may underestimate the potentially extreme 618 

impacts/consequences of the sensor failures on the WQSPS’s detection performance, and 619 

this issue has been addressed using the proposed EAM.  620 

(ii) It was observed that when using the global resilience metric Rmean, the WQSPSs based on 621 

deploying sensors relatively close to large demand users (WQSPS2) were overall more 622 

resilient in dealing with sensor failures compared to other designs. Similar observations 623 



were made before in the literature. However, this work also showed that deploying 624 

sensors very close to large or sensitive users (e.g., hospitals or schools) can also be risky 625 

as the failures of these sensors can significantly reduce the detection performance of the 626 

WQSPS. These insights were practically informative as it can be used to facilitate the 627 

selection of WQSPSs for the WDS. 628 

(iii) The sensor ranking based on the global resilience metric values Rmin can identify the 629 

important sensors whose failures would significantly reduce the WQSPS performance at 630 

different failure levels. In addition, a sensitivity analysis showed that sensor location 631 

rankings obtained this way were not significantly affected by the intrusion event 632 

properties such as injection concentration and duration. This knowledge can provide 633 

guidance to enable efficient and effective water quality sensor management as the highly 634 

ranked sensors should be given higher priority for maintenance (due to their large impacts 635 

on WQSPS’s detection performance).  636 

It should be noted that global resilience of identified optimal WQSPSs was assessed in the 637 

current paper as suggested by previous studies (Mugume et al., 2015, Diao et al., 2016). This was 638 

done post WQSPS optimization as incorporating such a methodology directly into the 639 

optimization process would be extremely computationally expensive. It is acknowledged that 640 

assessing the global resilience of WQSPS post-optimization rather than optimizing for global 641 

resilience in the first place may result in sub-optimal solutions. Having said this, the proposed 642 

method is still of high practical significance as the identification of sub-optimal solutions using 643 

manageable computational efforts is often sufficient for real-world water resources problems 644 

(Maier et al. 2014). Still, future studies should extend the proposed method to identify the most 645 

resilient solutions considering sensor failures within the WQSPS design optimization process.  646 
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