

Delft University of Technology

Sampling-based Motion Planning in Configuration and State Spaces
Using supervised learning tools
Bharatheesha, Mukunda

DOI
10.4233/uuid:dd56840f-050e-419c-9ceb-8eca3be414bd
Publication date
2018

Citation (APA)
Bharatheesha, M. (2018). Sampling-based Motion Planning in Configuration and State Spaces: Using
supervised learning tools. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:dd56840f-050e-419c-9ceb-8eca3be414bd

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:dd56840f-050e-419c-9ceb-8eca3be414bd
https://doi.org/10.4233/uuid:dd56840f-050e-419c-9ceb-8eca3be414bd

SAMPLING-BASED MOTION PLANNING IN
CONFIGURATION AND STATE SPACES

USING SUPERVISED LEARNING TOOLS

SAMPLING-BASED MOTION PLANNING IN
CONFIGURATION AND STATE SPACES

USING SUPERVISED LEARNING TOOLS

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T. H. J. J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op woensdag 4 juli 2018 om 12:30 uur

door

Mukunda BHARATHEESHA

Master of Science in Embedded Systems,
Technische Universiteit Delft, Nederland

geboren te Bangalore, India.

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. M. Wisse

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. ir. M. Wisse Technische Universiteit Delft, promotor

Onafhankelijke leden:

Prof. dr. ir. C. Witteveen Technische Universiteit Delft
Dr. J-P. Laumond LAAS-CNRS, France
Prof. dr. J. de Schutter Katholieke Universiteit Leuven, Belgium
Prof. dr. P. G. Plöger Hochschüle Bonn-Rhein-Sieg, Germany
Prof. dr. ir. R. R. Negenborn Technische Universiteit Delft
Dr. J. Kober Technische Universiteit Delft

The research presented in this thesis has received financial support from the European
Commission’s Seventh Framework Programme (FP7/2007-2013) under grant agreement No.
609206.

The author expresses his sincere thanks to Ir. Wouter J. Wolfslag for his support and
collaborations in realizing some of the results in the second part of this thesis.

Keywords: sampling-based motion planning, supervised learning, kinodynamic plan-
ning, distance metric approximation

Printed by: Ipskamp Drukkers B. V., Enschede.

Front & Back: Cover design by Maryam Sharify, TU Delft.

Copyright © 2018 by M. Bharatheesha

Author e-mail: mukunda1028@gmail.com

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

To the memory of my dear uncle Gunda.

SUMMARY

Robotic systems are the workhorses in practically all automated applications. Manufacturing
industries, warehouses, elderly care, disaster rescue and (unfortunately) warfare are example
applications where human life has benefited from robotics. By precisely planning and
controlling their motions via computer programs, real world tasks can be performed with
high levels of accuracy and repeatability. Devising methods and algorithms that generate
such motions by a) correctly reporting and finding the desired motion if it exists and b) doing
so as fast as possible, has constituted the field of robot motion planning research over the
last four decades.

In recent years, the Industry 4.0 initiative has provided a promising avenue for further
advances in industrial automation. Modular, quickly reconfigurable and versatile robotic
systems that safely collaborate with humans hold the key to future industrial automation.
This is a challenging endeavor from an industrial and an academic perspective and inspires
the work in this thesis. In alignment with these perspectives, this thesis is presented in two
parts.

In the first part, we propose methods and frameworks to effectively utilize open source
implementations of configuration space planners to realize flexible and robust solutions
for bin picking. To this end, we make three contributions achieved via collaborations with
multiple research groups.

First, we present a framework using model-based algorithm configuration tools to make
the best choice of a motion planning algorithm for a given application. This framework
abstracts the complex interaction between algorithm implementation parameters and the
algorithm performance as a blackbox tuning process. The benefits of such a tuning process
is shown on three different motion planning applications with industrial robots. From the
perspective of an end-user looking to utilize an open source motion planning software, this
framework serves a key purpose. The user can solely focus on specifying performance
indicators such as planning times, path lengths and so forth and eventually make an informed
choice of a planning algorithm.

As a second contribution, we present a motion planning module as a part of an integrated
software framework used in the robotic system that won the Amazon Picking Challenge in
2016. The key message here is that open source motion planning frameworks are effective
tools to model and optimize a robotic system design for a given application. Without
having to invest in actual hardware, some important initial design questions can be answered.
For example, which robot manipulator is best suited for a desired application? How can
flexibility be incorporated in the system design to enhance reusability? This is an interesting
prospect for Small and Medium Scale Enterprises (SMEs) looking at economical automation
solutions.

As the third contribution, we present a reactive collision avoidance framework in a
collaborative bin picking scenario. The main purpose of this contribution is to answer the
question: What is the main challenge from a motion planning perspective in realizing plug

vii

viii SUMMARY

and work robotic solutions for SMEs? It is observed that the main challenge arises from two
opposing requirements in achieving a reliable and robust reactive behavior. On the one hand,
a plug and work robot hardware has to be easily installable and reconfigurable with preferably
low costs. This points towards setups with small-sized robotic manipulators. On the other
hand, reactive motion generation principles rely on availability of redundant information in
a robotic system to obtain reactive motions. This points towards increased robot complexity,
size and costs. Utilizing shared efforts across multiple research organizations within Europe,
a prototype robotic system that is easily installable and reconfigurable has been realized.

A fundamental limitation of planning in the configuration space is that it is impossible
to realize versatile motions where a precise end velocity is desired. This limitation can be
addressed by planning in the state space which also implicitly accounts for the physical
laws governing the motion of a robot. However, sampling-based planning in state space
(also called kinodynamic planning) is computationally intensive and challenging to realize
in practice. This inspires the second part of the thesis which focuses on development of
methods to speed up sampling-based motion planning in state space.

In the second part of the thesis, the goal is to answer the question: Is it possible
to achieve planning speeds in state space that are comparable to planning speeds in the
configuration space? We pursue this goal by considering the Rapidly exploring Random
Tree (RRT) planner in state space. We make two contributions that significantly alleviate the
computation times of the following steps in an RRT: (i) choosing the state in the tree that is
nearest to the randomly sampled state (ii) steering from the nearest state to the randomly
sampled state.

In the first contribution, we present a framework to approximate the distance (pseudo)
metric in state space using supervised learning tools. It is observed that reliable approx-
imations are possible with speeds that are up to 3 orders of magnitude faster relative to
explicitly solving for the distance metric. It is also observed that, the main limitation of
this contribution is that the optimal control formulation used to compute the distance metric
does not have a parameterization of the steering inputs that can be learned. This limitation
inspires the following contribution.

The key idea of the second contribution is the utilization of indirect optimal control
principles that result in a steering input formulation as a (non-linear) function of generalizable
parameters called co-states. This enables the extension of the supervised learning idea to
also approximate these parameters and hence the steering input. It is observed that learning
the steering inputs further speeds up the planning times by an order of magnitude relative to
the earlier results. It is also shown that with assumptions such as small time reachability and
well bounded costs, the proposed learning-based RRT approach is probabilistically complete.

The 2-dimensional state space of a simple pendulum is considered for the proof of concept
for the above contributions. A planning time of ∼2.4 s is achieved to plan a swingup motion
for the pendulum. This seems quite slow compared to the planning speeds of configuration
space planners that generate plans within a tenth of a second in 7−8 dimensional planning
spaces. However, the achieved results are faster than current state of the art solutions for
motion planning in state spaces with similar dimensionality. Thus, reaching planning times
equivalent to or better than what is achievable in configuration space still remains an elusive
goal. Nevertheless, the achieved results serve as encouraging signs to pursue further research
in this direction.

SAMENVATTING

Robots zijn de werkpaarden in praktisch alle geautomatiseerde systemen. De maakindustrie,
distributiecentra, ouderenzorg, rampenbestrijding en (helaas) oorlogsvoering zijn voorbeel-
den van toepassingen waar mensen baat hebben bij robotica. Door het nauwkeurig plannen
en regelen van hun bewegingen middels software, kunnen taken in de echte wereld worden
uitgevoerd met grote precisie en herhaalbaarheid. Het bedenken van methodes en algoritmes
die zulke bewegingen genereren door a) het correct vinden en doorgeven van de gewenste
beweging, mits die bestaat, en b) deze zo snel mogelijk uitvoeren, heeft in 40 jaar het veld
van robot “motion planning” gevormd.

In de laatste paar jaren heeft het “Industry 4.0” initiatief een veelbelovende weg inge-
slagen voor vooruitgang in de industriële automatisering. Modulaire, veelzijdige en snel
te herconfigureren robotische systemen, die veilig samenwerken met mensen, spelen een
sleutelrol in de toekomst van industriële automatisering. Dit is een uitdagende onderneming
vanuit zowel een industrieel als academisch perspectief, en het heeft het werk in deze thesis
geïnspireerd. In overeenkomst met deze perspectieven, bestaat deze thesis uit twee delen.

In het eerste deel stellen we methodes en frameworks voor die effectief gebruik maken
van “open source” implementaties van “configuration space planners”, om flexibele en
robuuste oplossingen voor “bin picking” te realiseren. Hiertoe hebben we drie bijdragen
geleverd, via samenwerkingen met meerdere onderzoeksgroepen.

Allereerst presenteren we een framework dat gebruikt maakt van “model-based” al-
goritme configuratie, om voor een bepaalde toepassing de beste keuze voor een motion
planning algoritme te maken. Dit framework abstraheert de complexe interactie tussen
de parameters voor implementatie van het algoritme en de bijbehorende prestaties als een
“blackbox tuning” proces. De voordelen van een dergelijk proces zijn gedemonstreerd op
drie verschillende toepassingen van motion planning voor industriële robots. Het gepresen-
teerde framework speelt een sleutelrol voor een eindgebruiker die een open source motion
planner wil gaan gebruiken. De gebruiker hoeft zich alleen te richten op het specificeren
van prestatie-indicatoren zoals planningstijden, weglengtes, enzovoort, om uiteindelijk een
geïnformeerd besluit te kunnen nemen over welk planning algoritme te gebruiken.

Als tweede bijdrage presenteren we een motion planning module, als deel van een
geïntegreerd software framework, dat gebruikt is in het robotische systeem dat in 2016 de
“Amazon Picking Challenge” heeft gewonnen. De boodschap hiervan is dat open source
motion planning frameworks effectieve instrumenten zijn voor het modelleren en optimali-
seren van het ontwerp van een robotisch systeem voor een gegeven toepassing. Een aantal
belangrijke ontwerpvragen kunnen beantwoord worden, zonder te hoeven investeren in
daadwerkelijke hardware. Bijvoorbeeld: wat voor robotarm is het meest geschikt voor de
gewenste toepassing? Hoe kan flexibiliteit in het systeem gebruikt worden om hergebruik te
bevorderen? Dit is een interessant vooruitzicht voor Midden- en Klein Bedrijven (MKBs)
die op zoek zijn naar economisch haalbare automatiseringsoplossingen.

ix

x SAMENVATTING

Als derde bijdrage presenteren we een reactief botsingpreventie framework in een
collaboratief bin picking scenario. Het hoofddoel van deze bijdrage is het beantwoorden
van de volgende vraag: Wat is de grootste uitdaging in het realiseren van “plug-and-work”
oplossingen voor MKBs, vanuit een motion planning perspectief? We hebben gezien dat de
grootste uitdaging voortkomt uit twee tegengestelde eisen voor het halen van betrouwbaar
en robuust reactief gedrag. Aan de ene kant moet een plug-and-work robot gemakkelijk,
en bij voorkeur goedkoop, te installeren en opnieuw te configureren zijn. Dit stuurt aan op
opstellingen met kleine robots. Aan de andere kant vertrouwen reactieve motion planning
principes op de beschikbaarheid van overvloedige informatie vanuit het robotische systeem,
om reactieve bewegingen te kunnen genereren. Dit stuurt aan op complexere, grotere
en duurdere robots. Middels gedeelde inspanning van meerdere onderzoeksinstellingen
in Europa, is een prototype van een robotisch systeem gerealiseerd dat gemakkelijk te
installeren en opnieuw te configureren is.

Een fundamentele beperking van plannen in configuration space is dat het onmogelijk
is om veelzijdige bewegingen te maken, terwijl een nauwkeurige tipsnelheid gewenst is.
Deze beperking kan worden aangepakt door te plannen in state space, waarin impliciet
rekening wordt gehouden met natuurwetten die de beweging van een robot bepalen. Echter,
sampling-gebaseerd plannen in state space (ook wel kinodynamic plannen genoemd) vereist
veel rekenkracht en is uitdagend om in de praktijk te realiseren. Dit heeft het tweede deel
van deze thesis geïnspireerd, waarin wordt gefocust op ontwikkeling van methodes om
sampling-gebaseerde motion planning in state space sneller te maken.

In het tweede deel van deze thesis is het doel het beantwoorden van de vraag: Is het
mogelijk om motion planning in state space even snel te maken als planning in configuration
space? We streven ernaar dit doel te bereiken via de Rapidly exploring Random Tree (RRT)
planner in state space. We hebben twee bijdrages die de rekentijd in de twee volgende
stappen van RRTs significant verbeteren: (i) het kiezen van de state die het dichtste bij
de willekeurig gesampelde state ligt, en (ii) het sturen van deze state naar de willekeurig
gesampelde state.

In de eerste bijdrage presenteren we een kader om de (pseudo)afstandsmaat in state space
te benaderen via “supervised learning”. We zien dat betrouwbare benaderingen mogelijk
zijn met rekensnelheden tot drie maal sneller ten opzichte van het expliciet oplossen van de
afstandsmaat. Tevens zien we dat de grootste beperking van deze bijdrage is dat de “optimal
control” formulering gebruikt voor het berekenen van de afstandsmaat geen parametrering
van de sturende inputs heeft die geleerd kan worden. Deze beperking heeft de volgende
bijdrage geïnspireerd.

Het belangrijkste idee van de tweede bijdrage is het gebruik van indirecte optimal
control principes, die resulteren in een formulering van sturende input in de vorm van
een (niet-lineaire) functie of generaliseerbare parameters die we “co-states” noemen. Dit
maakt uitbreiding met het supervised-learning idee mogelijk, zodat ook deze parameters, en
daarmee de sturende input, benaderd kunnen worden. We zien dat het leren van sturende
inputs de planningstijden met een ordegrootte versnelt ten opzichte van de eerdere resultaten.
We laten zien dat met aannames zoals “small time reachability” en “well bounded costs”, de
voorgestelde “learning-based RRT” benadering probabilistisch compleet is.

SAMENVATTING xi

De 2-dimensionale state space van een simpele slinger wordt gebruikt voor het proof of
concept van de bovenstaande bijdrages. Een planningstijd van ∼2.4 s is gehaald voor het
plannen van een opzwaaiende beweging van de slinger. Dit lijkt langzaam in vergelijking
met de planningssnelheid van configuration space planners, die binnen een tiende seconde
plannen genereren in een 7−8 dimensionale planningsruimte. Echter, de behaalde resultaten
zijn sneller dan de huidige state-of-the-art oplossingen voor motion planning in state space
met vergelijkbare dimensionaliteit. Dus, het halen van planningstijden gelijk aan of beter
dan wat te halen is in configuration space blijft een moeilijk te bereiken doel. Desalniettemin,
de behaalde resultaten moedigen aan onderzoek in deze richting te blijven nastreven.

CONTENTS

Summary vii

Samenvatting ix

1 Introduction 1
1.1 Planning spaces . 2
1.2 Combinatorial vs Sampling-based planning 2
1.3 Randomized sampling-based planning 4

1.3.1 Rapidly exploring Random Tree (RRT) 5
1.4 Motivation - Part I . 5

1.4.1 Sampling-based planning in configuration space 6
1.4.2 Relevant literature . 6
1.4.3 Problem statement - Part I . 8

1.5 Motivation - Part II . 8
1.5.1 Sampling-based motion planning in state space 10
1.5.2 Relevant Literature . 11
1.5.3 Problem statement - Part II . 12

1.6 Contributions and Thesis Structure . 12

I Sampling-based planning in Configuration Space 15

2 Tuning path planning algorithms 17
2.1 Tuning of Path Planning Algorithms . 18
2.2 Related Research . 19
2.3 Problem Statement . 20
2.4 Method. 20

2.4.1 Formulating the problem instance I 21
2.4.2 Formulating the performance measure c 21

2.5 Results . 21
2.5.1 UR5 simple pick-and-place problem 23
2.5.2 UR5 difficult pick-and-place problem. 24
2.5.3 KUKA LBR iiwa 7 problem . 25

2.6 Discussion . 26
2.7 Conclusions and Future Work. 28

3 Amazon Robotics Challenge 2016 29
3.1 Manipulation in the Amazon Robotics Challenge 31

3.1.1 The Amazon Robotics Challenge 2016 31
3.1.2 Manipulation in unstructured environments 32

xiii

xiv CONTENTS

3.2 Levels of automation . 32
3.3 Robotic System Overview . 33

3.3.1 System Requirements. 34
3.3.2 Robot Concept . 34
3.3.3 Vision-based Perception . 36
3.3.4 Grasping . 39
3.3.5 Robot Motion . 40
3.3.6 Failure management . 41

3.4 Discussion . 41
3.4.1 Evaluation . 42
3.4.2 Lessons Learned . 45

3.5 Conclusion . 46

4 Dynamic Collision Avoidance 47
4.1 Dynamic Obstacle Avoidance solution for collaborative manipulation 48
4.2 Robot Motion Control using Proximity Sensing 49

4.2.1 Reactive Path-Planning . 50
4.3 Results . 51

4.3.1 Individual Components . 52
4.3.2 Integrated evaluation . 52

4.4 Concluding remarks . 54

II Sampling-based planning in State Space 57

5 Distance metric approximation in State-Space 59
5.1 Kinodynamic Planning . 60

5.1.1 Relevant Background. 62
5.2 Problem Description . 63

5.2.1 Iterative Linear Quadratic Regulator (iLQR) 63
5.2.2 Locally Weighted Projection Regression (LWPR) 65

5.3 Method. 66
5.3.1 Learning the optimal cost function 66
5.3.2 Using the learned distance metric for RRT 66

5.4 Experimental Results . 67
5.5 Discussion and Future Work . 70
5.6 Conclusions . 71

6 Control input approximation in State-Space 73
6.1 Learning-based RRT . 75
6.2 Data generation . 77
6.3 Dataset cleaning . 79
6.4 Probabilistic completeness considerations. 81

6.4.1 Bounding the chance of picking the right input 81
6.4.2 Bounding the chance of picking the right node 82

6.5 Experiments and results . 83
6.6 Discussion . 86
6.7 Conclusion . 87

CONTENTS xv

Thesis conclusions 89

7 Discussion and Conclusions 91
7.1 Motion planning in configuration space 91

7.1.1 Tuning of planning algorithm parameters 91
7.1.2 Functional system integration. 92

7.2 Motion planning in state space . 92
7.2.1 Distance metric approximation in state space 93
7.2.2 Steering input approximation in state space 93

7.3 Discussion . 94
7.3.1 Functional system integration with configuration space planning . . 94
7.3.2 Supervised learning for motion planning in state space 96

7.4 Conclusions . 98
7.5 Further research directions . 98

References 101

A ARC Motion module 111
A.1 Robotic system selection . 111
A.2 Motion module design . 112
A.3 Coarse Motions . 113
A.4 Fine Motions . 114

A.4.1 Grasp strategy . 114
A.4.2 Motion segment generation . 114

A.5 Motion stitching and execution . 115
A.5.1 Input-Output (I/O) handling . 115

B RRT-CoLearn: Scalability considerations 117
B.1 System dynamics for indirect optimal control 117
B.2 State space coverage . 120
B.3 Machine learning improvements . 120

C Chapters with shared authorships 121

Acknowledgements 123

List of Publications 127

About the Author 129

1
INTRODUCTION

1

1

2 1. INTRODUCTION

M OTION PLANNING has been an integral part of robotics in realizing autonomous
behaviors in unstructured and unknown environments. Enabling a robotic system to

autonomously plan feasible motions from a given starting configuration to a desired goal
configuration is the subject matter of motion planning. Providing strong or weak notions of
guarantees of finding such a plan and obtaining a plan as quickly as possible are two of the
fundamental challenges in motion planning. These challenges have inspired a large volume
of motion planning research since the early 1970s. The initial works focused primarily on
the first challenge and the last two decades have seen a focus shift towards addressing the
second challenge. A foundational concept that is common to practically all methods that
address these challenges is the idea of planning spaces.

1.1. PLANNING SPACES
A key component in the development of motion planning algorithms is the transformation of
a real world motion planning problem into a representation understandable by a computer.
This transformation involves identifying a set of independent variables that represent a robot
in the context of its working environment. The orthogonal vector space spanned by these
independent variables is called a planning space. There are two commonly used planning
spaces namely, the configuration space and the state space. The configuration space is
defined by a set of generalized coordinates encoding positional information of a robot in its
environment. Similarly, the state space is defined by the set of generalized coordinates that
encode both positions and velocities of a robot in its environment.

Typically the configuration space is represented with C and the state space is represented
with X . The planning space consisting of robot configurations or states that do not collide
with obstacles in the environment is represented with Cfree ⊆C and Xfree ⊆X respectively.
Similarly, configurations or states that involve a collision with an obstacle are represented
with Cobs ⊆C and Xobs ⊆X . In the state space, an additional representation is considered,
Xric ⊆ X . Xric represents the region of inevitable collisions where the state of a robot is
such that a collision with an obstacle is unavoidable.

The concept of a planning space enables the representation of a robot as a point in a
higher dimensional space. Subsequently, a graph structure can be created in the planning
space with the nodes of the graph being robot configurations or states and the edges of the
graph being feasible paths or trajectories taken by the robot. This idea, first introduced in
the seminal work of [86], forms a crucial entry point to the research and development of
motion planning algorithms to the present day. Graph structure representation of the motion
planning problem creates an infrastructure to use a computer to query for a solution using
graph search methods such as A*[48] and Dijkstra’s algorithm [32].

1.2. COMBINATORIAL VS SAMPLING-BASED PLANNING
Transforming a motion planning problem to a graph structure representation in the plan-
ning space is certainly desirable. In fact, the creation of the graph structure is one of the
fundamental subjects of motion planning research. The process of how the graph structure
is constructed forms the basis for broadly classifying motion planning algorithms in two
categories namely, Combinatorial methods and Sampling-based methods.

1.2. COMBINATORIAL VS SAMPLING-BASED PLANNING

1

3

Typically C or X are continuous spaces as they represent the real world. However,
an appropriate discretization is required to construct the graph structure. Combinatorial
methods discretize the planning space without loss of information about the real world
problem that is being represented. Such discretizations are called exact representations of a
real world motion planning problem and consequently these methods exclusively address the
challenge of providing strong guarantees on finding a motion planning solution to a given
problem, if one exists. In other words, the existence or non-existence of a solution to a given
motion planning problem will always be correctly reported by combinatorial methods. In
motion planning literature [119, 73, 78], such guarantees are called completeness guarantees.
Elegant and optimal solutions to classes of motion planning problems involving robots that
translate in a 2D environment with polygonal obstacles have been realized with combinatorial
methods including upper bounds on planning times [119]. However, constructing exact
representations of planning spaces, particularly Cobs and/or Xobs is a complex problem [78].

Consider for example a pick and place problem for a 7-degrees of freedom industrial
manipulator, fixed to a platform on the ground, operating in a 3D space with static rigid
obstacles. It is perhaps possible (with an adequately fine discretization) to construct an exact
representation of Cfree or Xfree. With computers getting ever faster, performing a sub-optimal
search in a 7-dimensional search space could also be realistic. However, constructing an
exact representation of Cobs and/or Xobs is impractical due to the fundamental limitation
imposed by the underlying one-to-many mapping between a real-world obstacle and the
obstacle representation in a planning space. While exact representations are idealistic, one
might accept a relaxed form of this requirement to work with convex approximations of
obstacle topologies. This has also been shown to be a difficult problem to solve within prac-
tical time bounds (see Section 4.3 in [78]). It is important to note that exact representations
of C or X is a necessary pre-requisite to use combinatorial methods. Recollecting the two
fundamental challenges of motion planning, it is evident from the above that combinatorial
methods strive to address the first challenge of providing strong guarantees on finding a
motion planning solution, if one exists. However, this comes at the cost of synthesizing
complex representations of obstacle topologies and also planning times that are practically
unacceptable for planning problems in high dimensional planning spaces. While combinat-
orial methods certainly open the gateways toward algorithmic pursuits in a theoretical sense,
they are not promising directions to pursue when viewed from the perspective of deploying
autonomous robotic systems in the real world as highlighted in [73, 78].

What if non-exact representations of planning spaces and the consequent weaker notions
of completeness are admitted and more focus is laid on the challenge of planning time?
What if the complexity of constructing exact representations of Cobs and/or Xobs can be
worked around using a collision checking module that tests if a given robot configuration
or state is in collision with an obstacle using forward kinematics? These questions have
inspired an alternative, but an extremely effective field of motion planning algorithms
called Sampling-based methods and they provide the following benefits over combinatorial
methods:

• Exact representations of the configuration space C or the state space X (and the
associated subspaces) is not required.

• Discretization is achieved by sampling directly from Cfree and Xfree.

1

4 1. INTRODUCTION

• The problem of obstacle space representation is bypassed with the use of a collision
checking module consequently opening up realistic possibilities of planning in high
dimensional spaces.

The primary benefit of sampling-based methods is that exact planning space represent-
ations are not used. Typically, exact representations [18, 59, 73] are constructed based on
the geometry of the robot and the environment it is operating in. As a result, changing
geometries such as re-organization of robot work cells or moving obstacles require a recon-
struction of the exact representations. In higher dimensional planning spaces, this can be
a tedious process. As sampling-based methods do not require such representations, they
can adapt to changing geometries and thus provide a great deal of flexibility. The second
benefit comes from the indirect manner of discretization of the planning space achieved via
random [65, 79, 72], deterministic or informed sampling [39, 58] of the planning space. This
allows one to address different qualitative goals such as exploration of a planning space,
greedy strategies to achieve a fast but sub-optimal solution or a weighted choice between
exploration and greedy strategies [130, 147]. The final benefit comes from the use of a
stand alone collision checking module that bypasses the complexity of constructing obstacle
representations, particularly when working with high dimensional planning spaces where
unique mappings between obstacles and robot configurations or states do not exist. This
enables one to explicitly focus on planning in Cfree and Xfree and eventually use the collision
checking module as a form of quality control to ensure feasibility of solutions. This benefit
is further exploited to defer the collision checking process until absolutely necessary [15,
49].

1.3. RANDOMIZED SAMPLING-BASED PLANNING
The virtues of sampling-based methods seem to outweigh the need for absolute completeness
guarantees. This is evidenced by the massive advances of literature in the past two decades
that build on one of the two fundamental sampling-based methods namely, Probabilistic Road
Maps (PRM) [65] and Rapidly exploring Random Trees (RRT) [79]. Both methods build
a graph structure by (uniform) random sampling of the planning space with the difference
being the type of the graph structure that results from each approach. The PRM approach
constructs a roadmap which is a graph structure that can have cycles. In other words, there
could potentially be multiple paths from a given start and goal nodes in a roadmap. In
the RRT approach, a tree graph structure is built where no cycles are allowed and thus a
start and a goal node in a tree can be connected by one path. A key property common
to both PRM and RRT approaches is the probability of finding such a path if one exists
approaches 1 as the number of samples approaches infinity. This is called probabilistic
completeness. Compared to the absolute completeness guarantees that are provided by
combinatorial methods, probabilistic completeness is a weaker notion of guarantee that a
motion planning solution will be found for a given problem. However, various works in
literature (see Section 1.4.2) have shown that the notion of probabilistic completeness is
sufficient for several practical problems in motion planning.

From an algorithmic perspective, the PRM approach is composed of two stages namely
a construction phase and a query phase. As the names imply, the construction phase is the
process of building the graph structure and the query phase is the process of finding a path

1.4. MOTIVATION - PART I

1

5

through the graph. The two step approach enables the possibility to query for solutions for
multiple start-goal pairs after a single construction phase. In [131], the authors also provide
a general condition to gracefully terminate the construction phase depending on the achieved
coverage of the free configuration space. However, a common drawback of PRM-based
methods is that the construction phase has to be repeated if the working environment of the
robot changes. The RRT approach however, constructs the graph structure while actively
processing a query for a path and the graph structure growth typically stops after the goal has
been reached. Accordingly, PRM (based) methods are classified under multi query planning
and RRT (based) methods under single query planning in motion planning literature. The
term node is commonly used in planning literature to refer to a configuration or state within
a graph structure. The research in this thesis is centered around the RRT approach as it
offers the potential to also work with changing environments. Furthermore, the solutions
and methods devised in this thesis are directly extendable to the PRM based approaches.
Therefore, in the rest of this thesis, the focus will solely be on the RRT (based) approaches.

1.3.1. RAPIDLY EXPLORING RANDOM TREE (RRT)
The concept of a Rapidly exploring Random Tree (RRT) was proposed by Steven Lavalle
as a new tool for path planning in [79]. Given a start-goal pair, the RRT iterates over the
following steps to build a tree graph structure after initializing the tree with the starting node
(also called sometimes as root node):

I Randomly sample a node from Cfree or Xfree.

II Determine the node in the graph that is nearest to the random sample based on a
chosen distance metric.

III Extend the graph structure by steering from the nearest node to the randomly sampled
node.

IV Terminate if the goal node is reached or the maximum number of iterations have been
achieved.

The resulting graph structure and its consequent influence on finding a solution to a motion
planning query is critically defined by steps II and III. These steps together enable the RRT
to quickly cover unexplored regions of a planning space while attempting only the most
likely connections. As noted in [79], the RRT is constructed using a simple set of steps but
devising methods that accurately perform these steps is not straight forward. These steps are
particularly challenging in the context of motion planning in state space which we elaborate
further in Section 1.5.1 and Section 1.5.2.

1.4. MOTIVATION - PART I
The different benefits offered by sampling-based methods combined with the generic repres-
entation infrastructure they are based on makes them promising candidates to study further
in the pursuit of realizing and deploying autonomous robotic systems in the real world. A
robotic system in the real world is a broad and an abstract concept. In this thesis, we focus on
sampling-based motion planning for fixed serial link manipulators in industrial and academic

1

6 1. INTRODUCTION

applications. Particularly, we study two related, yet contrasting aspects in the field of motion
planning for manipulators namely, sampling-based motion planning in configuration and
state spaces.

The research conducted in this thesis is presented in two parts: industrial applications
with sampling-based motion planning in the configuration space and academic applications
with sampling-based motion planning in the state space. The first part of this thesis is motiv-
ated by the quest for realizing plug and work robots for Small and Medium Scale Enterprises
(SMEs) as a part of the EU project Factory-in-a-Day [145]: focused on developing and
deploying reusable open source software components. The second part of this thesis is
motivated by the quest for speeding up planning times of sampling-based motion planners in
state space: focused on development of new methods using supervised learning as a tool
to enable the generation of fast and dynamically feasible motion planning solutions. These
topics will be further elaborated in the following sections.

1.4.1. SAMPLING-BASED PLANNING IN CONFIGURATION SPACE
Sampling-based motion planning in the configuration space of manipulators has long been
an active topic of research. In addition to the research, recent efforts from the open source
robotics community1 have enabled these methods to take shape as off-the-shelf software
components. These components could prove to be attractive tools for Small and Medium
Scale Enterprises (SMEs) focused on developing robotic solutions where a standard produc-
tion line with one or multiple robots in a cage is impractical from an economic perspective.
This motivates the work in the first part of this thesis, the industrial application of bin picking
is studied with configuration space planning as an important functional component.

1.4.2. RELEVANT LITERATURE
Development of different configuration space planners based on the RRT approach has seen
a steady progress since the basic RRT [79] was first proposed in the late 90s. Perhaps the
simplest yet the most significant improvement of the basic RRT , the RRT-Connect [72] was
subsequently proposed where two trees were seeded, one at the start and the other at the
goal node that grew towards each other. This variant lead to an exponential reduction in
planning time and remains as one of the most commonly used configuration space planner
in many practical applications to date. Subsequent development of RRT-based approaches
predominantly focused on leveraging different heuristics to guide the growth of the tree
in desired directions of Cfree depending on the problem being solved [141]. One of the
significant developments in this direction, the Transition-based RRT (T-RRT) proposed the
idea of combining costmap heuristics [69] to guide RRT exploration only along directions
that would eventually lead to low cost paths. Yet another idea that received quite a significant
research attention was the enhancement of the sampling-process by augmenting robot or
environment specific information [103, 40]. Parallel to the development of these variants, an
important line of research that focused on reasoning about the optimality of the generated
paths based on a certain measure, was pioneered by the work of Karaman and Frazzoli [62].
The associated algorithm, called RRT* and developments that build on RRT* [40, 58] are
commonly referred as asymptotically optimal planners which guarantee the optimality of the

1www.ros.org, www.osrfoundation.org, www.rosindustrial.org

1.4. MOTIVATION - PART I

1

7

solution returned for a given instance of the tree. They further guarantee that the returned
solution will be globally optimal as the number of samples tends to infinity. For further
details and a comprehensive overview of sampling-based motion planning methods, the
reader is referred to the work by Tsianos et. al [139].

Given the immediate practical relevance of RRT (and PRM) variants to robotic applica-
tions, they took shape as open source software components with the seminal developments
in [135, 133]. Open source software has also been complemented with notable commercial
implementations of motion planning algorithms such as the Kineo-CAM planning tools
[74]. While such off-the-shelf software components are certainly beneficial to the robot-
ics community, their complete potential is realized when they are used in the context of
integrated robotic applications such as bin picking, autonomous navigation and so on. The
solutions generated by the class of above mentioned algorithms are categorized as global
solutions which are typically composed of short path segments (edges of the graph structure).
However, global solutions alone are insufficient when practical robotic applications are
considered. Especially, if the environment around the robot is changing (due to moving
obstacles or people), the feasibility of a motion plan needs to be frequently evaluated over
the various path segments as some segments might become invalid due to collisions. Motion
planning methods that address this problem are categorized as local planning methods.

Local planners focus on the process of modifying or replacing the smaller segments of
a global path to ensure the resulting path is feasible (typically collision free). Typically,
some form of environment sensing such as a camera or a proximity sensor mounted on the
robot is used in local planners. One of the first contributions in this area, namely Artificial
Potential Fields (APF) [66] was proposed with the fundamental idea of repelling the robot
from obstacles and attracting the robot towards the goal. While the native method in [66] had
the limitation of getting stuck in local minima caused by the nullification of equal attractive
and repulsive effects, the idea opened up the avenue for realizing reactive robot behavior.
For example, Barraquand and Latombe [7] proposed the idea of using randomization to
escape local minima. Their work also proposed a method to extend these principles also to
the global planning problem. The APF-based approaches provided an effective framework
for realizing collision avoidance behaviors using sensory information. However, they were
also limited by the fact that, the framework was suited for realizing only one qualitative
behavior. This limitation inspired the development and extension of the operational space
task function formalism [66, 125] with multi-objective optimization tools to incorporate
multiple qualitative requirements, such as maintaining a certain pose or posture of the robot
while maintaining a certain distance from obstacles. The central idea being the inclusion
of multiple tasks (with an optional prioritization) in accordance with the desired qualitative
requirements and eventually solving the local motion segment (re) generation problem as an
optimization problem. This idea has received a wide level of acceptance in the humanoid
and quadrupedal robotics community as whole body control and the work in [76] provides an
overview of the associated fundamental challenges. Such systems typically require several
tasks to be performed at the same time to maintain a stable posture [128, 116]. Efforts from
different research groups have also enabled the creation of off-the-shelf software components
such as the Stack of Tasks (SOT) framework [88] and the eTaSL/eTC task specification
language and controller framework [2].

1

8 1. INTRODUCTION

While these methods have not been actively used with traditional industrial manipulators,
they certainly have created the pathway for specification and realization of multiple qualit-
ative tasks involving industrial manipulators. This is particularly interesting in the current
efforts towards realizing applications where a collaborative behavior is desired between a
human being and a robotic manipulator. For example, it is pertinent that a certain pick or
a place task is accomplished, while accounting for motion speed reduction if a human is
detected in the vicinity or a modification of the path if a previously unaccounted obstacle is
blocking the robot path.

1.4.3. PROBLEM STATEMENT - PART I
A primary benefit of an off-the-shelf software component that provides motion planning
functionality (or any other relevant functionality such as computer vision, grasp synthesis
and so on) is the ability to build flexible robotic solutions for bin picking applications in
SMEs. This would enable SMEs to deal with seasonal products in a working environment
that is frequently modified depending on the product. Additionally, it is common to have
humans in the vicinity of the robot and even working collaboratively. In such a scenario, a
one (robotic) solution fits all approach will become difficult to synthesize and with strict time
constraints (for example, a supermarket promoting a pack of noodles with spring flavours or
a new formula cold cream for the winter), there is limited (re) installation time for adapting
a current robotic solution to a new product.

Flexibility in robotic solutions is an attractive benefit. However, do the current infra-
structures support the development of software modules that can be quickly ported across
different applications? Can these off-the-shelf components function reliably and robustly as
demanded by industrial applications? In this context, the first part of this thesis will study
the use of open source software components for configuration space planning. In particular
we focus on the following practical questions: Given an off-the-shelf configuration space
planning software infrastructure and the associated dependencies,

1. How can we choose what is the best configuration space planner for a given bin
picking scenario? (Chapter 2)

2. What are the important challenges in integrating motion planning software compon-
ents with other relevant components to realize a reliably functioning bin picking
application? (Chapters 3 and 4)

Along the journey to answer these questions, two important milestones have been reached.
The first being the development of a motion planning module for the world championship
winning robotic system for the Amazon Picking Challenge 2016. The second being the
realization of a motion module with reactive behavior for a collaborative robotic system for
bin picking.

1.5. MOTIVATION - PART II
The configuration space of robotic manipulators serves as an attractive abstraction for the
creation of the graph structures to solve motion planning problems. Well defined metrics
such as the Euclidean distance, Manhattan distance and Mahalanobis distance are available
to accurately quantify the relation between different nodes of the graph structure. The

1.5. MOTIVATION - PART II

1

9

existence of such metrics is a critical factor in reasoning about the quality of the solutions
generated by motion planning algorithms. For example, using the Euclidean distance as
a metric gives a reliable indication of how much the joints of a manipulator must move
relative to their previous positions and a summation of all such movements over the entire
path is a reasonable estimate of the total distance from start to goal in the configuration
space. Creation of configuration space paths alone is an inadequate specification for path
execution on a robot manipulator. A path in the configuration space is a sequence of
way points (robot configurations) that only encode spatial information between the desired
start and goal configurations. Timing information is later appended via a process called
time parameterization where velocities and accelerations are computed (using cubic or
quintic splines [113] for instance) between way points resulting in a trajectory that can be
commanded to the robot’s motors for execution.

However, as highlighted in [21], all such time parameterizations do not necessarily
result in a trajectory that is efficient or feasible to follow for a robotic system. This is
because the motion of a robotic system is also governed by the underlying physical laws that
express the evolution of motion over time. In motion planning literature, these effects are
termed as differential constraints on the planning problem [78, 21, 139]. Additionally, the
infeasibility could also arise due to actuator limitations that cannot meet the desired velocity
and acceleration variations along the resulting trajectory. Therefore extra care has to be
taken while parameterizing configuration space paths such that differential constraints and
actuator limitations are accounted for. Recently, there has been a rising interest in this area
and it is an active topic of research, also popularly called trajectory generation. The initial
works in this area took inspiration from the works of [14, 129, 106] that propose methods
to parameterize an arbitrary path such that the resulting trajectory is time optimal. The
authors of [64] propose a method to generate incremental time optimal parameterizations of
a path that account for robot dynamics and actuator constraints. In [107, 108], the authors
propose the use of dynamically feasible time optimal parameterizations of paths generated by
sampling-based planners in configuration space. The key challenge in this class of methods
is to ensure admissible parameterizations of all path segments is produced so that the entire
trajectory is feasible for execution.

Due to the lack of velocity information in the sampled configurations, the velocity asso-
ciated with each configuration along a plan is arbitrarily decided based on the underlying
time parameterization. This is a fundamental limitation for applications where it is not only
required to attain a goal configuration but also do so with a certain desired velocity. Consider
for example, the problem of picking up objects using a robot from a moving conveyor
belt in an industrial production line. The motion planning problem would involve a goal
specification with a certain velocity to account for the moving object at the time of pick
up. This could consequently speed up the overall cycle time. Another example could be
the task of a robotic goal keeper that is tasked with throwing the ball to players located at
different distances. This problem requires a planning solution such that the arm of the goal
keeper attains different and precise velocities at the release point of the ball depending on the
player that the ball is destined for. Perhaps a similar futuristic example would be a robot arm
tasked with the problem of throwing and stacking light weight objects. Sampling such goal
specifications is impossible in the configuration space and is thus a fundamental limitation
of configuration space planners.

1

10 1. INTRODUCTION

Planning in the state space allows one to address these limitations by providing an elegant
and implicit manner to incorporate velocities in the planning space. Also, there is no explicit
requirement of time parameterization because the resulting solutions from a motion planning
query in state space will be a trajectory encoding both position and velocity information.
The resulting solution could thus be potentially transmitted as a sequence of commands to
the robot for execution. These aspects inspire the work in the second part of this thesis that
is centered around sampling-based motion planning in state space.

1.5.1. SAMPLING-BASED MOTION PLANNING IN STATE SPACE
State space provides an infrastructure to generate motions that can effectively utilize robot
dynamics. Typically, robot dynamics are represented with (a set of) differential equations
and a solution to these differential equations represents the evolution of state variables over
time. In the context of motion planning in state space such solutions could be viewed as
potential segments of a global trajectory from a start state to a goal state. A motion planning
problem in state space is generally formulated as an optimal control problem where a certain
cost is minimized with the system dynamics, the start and the goal states as constraints. As
a result, planning in state space opens up avenues to address requirements such as effort
minimization, time optimality and so on. Simple cost function formulations would suffice if
the focus is purely on factors such as effort or time minimization. Consider a cost function
that is quadratic in the torque input to the robot, where the squared value of the applied torque
is integrated over the entire trajectory. However, incorporating environmental information
about static or dynamic obstacles into the optimization would become increasingly complex
[33, 78, 148, 118, 61]. As elaborated in Section 1.2 and Section 1.3, sampling-based
motion planning methods provide a framework where generating feasible trajectories and
incorporating environmental information can be separately addressed. That is, given a state
pair, a dynamically feasible trajectory could be generated with a simpler optimal control
problem (as in, without having to account for obstacles while formulating the cost function)
and the resulting trajectory can then be checked for collisions with an independent collision
checker that also accounts for the environmental information.

The possibility to implicitly incorporate differential constraints to a motion planning
problem by choosing to plan in state space presents an interesting set of challenges when
viewed from the perspective of sampling-based planning. The ideal distance metric in
state space is the optimal cost-to-go between state pairs [20] and thus is a solution of the
aforementioned optimal control formulation. Additionally, an optimal control formulation
also yields a (locally) optimal trajectory between the start and goal states as a byproduct.
However, such formulations are categorized as Two-Point Boundary Valued Problems which
are known to be NP-hard (see Section 14.1 in [78], [57]). Furthermore, the authors in
[21, 75] also highlight that except for simple 1-D and 2-D systems, it is hard to reason
about the existence of exact solutions to such formulations. These aspects critically impact
sampling-based methods in state space. This is because of the mechanics of sampling-based
methods that incrementally construct a graph representation of the state space as elaborated
in Section 1.3. The states of the system constitute the nodes and the trajectories between
state pairs constitute the edges of the graph structure.

1.5. MOTIVATION - PART II

1

11

For the purpose of clarity, two of the critical steps from Section 1.3 are repeated here in
the context of state space:

• Computing a reliable distance (pseudo) metric to select a nearest state in the graph to
connect to.

• Computing the control inputs and hence the trajectories that connect a newly sampled
state to the nearest state.

Both steps translate to solving one or more optimal control problems, as the notion of
distance in state space is the optimal cost-to-go between two states. Hence, the number of
optimal control problems to solve exponentially increases with the size of the graph. Once a
nearest state is determined, the corresponding optimal control inputs are used to generate
the trajectory to connect to the randomly sampled state. Collectively, this leads to planning
times that are prohibitively large, making sampling-based planning in state space practically
challenging to use even in simulation experiments. Therefore, current research on motion
planning in state space is focused on devising methods that can significantly reduce planning
times in state space.

1.5.2. RELEVANT LITERATURE
The general problem of motion planning in state space was already an active topic of research
before the inception of sampling-based methods. In the early 90s, Donald and Xavier [33]
proposed an exact solution for time optimal motion planning in the state space of a point
mass system governed by Newtonian Mechanics. This marked the first departure from
planning in configuration space to planning in state space. Apart from being one of the first
works in this domain, their work provided some key insights into the underlying complexity
of the motion planning problem in state space when the dimensionality of the planning
space is increased. The success of sampling-based methods in dealing with motion planning
problems in higher dimensional configuration spaces inspired the works on sampling-based
methods in state space [80, 51]. Since then, a majority of research efforts have focused on
tackling the aforementioned challenges posed by the state space infrastructure.

The authors of [80] proposed a weighted Euclidean distance as a metric for the RRT
approach in state space but were also critical about the choice, as Euclidean distance fails
to adequately represent the (optimal) cost-to-go between state pairs. In their analysis and
propositions of alternative metrics, they make a key remark that a reasonable approximation
of the optimal cost-to-go could greatly improve the performance of RRT in state space. Since
then, there has been a steady progress in the development of methods that present different
ways to reliably approximate the distance metric in state space. As highlighted in [44, 57]
these contributions can be roughly classified in two categories: (i) methods that propose
different ways to account for system dynamics in metric computation, (ii) methods that limit
the effect of a poor metric by using extrinsic qualitative information.

The first category of methods take inspiration from (linear) control theoretic principles
to reduce the complexity of solving for the cost-to-go measure. For example, the authors in
[68, 90] use the property of differential flatness in certain class of non-holonomic systems to
transform the differential equations of motion to a set of polynomials in states and inputs.
In [44, 105, 121, 143], the authors propose a distance heuristic in state space based on the

1

12 1. INTRODUCTION

principles of linear optimal control where a linear or an affine quadratic regulator is used
to compute the cost-to-go between state pairs. In [130], the authors propose a method to
initially compute a local reachable set approximation of node(s) in the RRT and subsequently
use Euclidean distance to choose the appropriate node to expand the tree.

The second category of methods focus on indirectly tackling the sensitivity of RRT
growth to the distance metric. The main idea of these approaches is to collect qualitative
information such as overlapping edges in the graph caused by poor selection of nodes and
gradually reduce the chance of such nodes being selected [20]. In [19], collision information
is used to prevent the selection of nodes that lead to expansions that are unusable. In [57],
the authors propose a combination of both categories of methods by using system dynamics
as well as environmental information.

It is pertinent to recall that fast and reliable approximation of the true distance metric
in state space is the core motivation for the methods developed thus far. This is achieved
via linearized or polynomial approximations of the actual (nonlinear) dynamics. However,
as the authors of [44] point out, the benefits of such approximations drop off as the system
complexities and nonlinearities increase. Thus, in the pursuit of speed, these methods
compromise on reliability and as a consequence, further exploration of the potentials of
planning in state space is hindered. Therefore, in the second part of this thesis, we focus on
the development of a generic infrastructure where fast and accurate approximations of the
true distance metric is possible without approximating the actual dynamics.

1.5.3. PROBLEM STATEMENT - PART II
In order to combine the benefits of sampling-based planning with optimal control so that
motion planning in state space can be realized for practical applications, the following
research questions are formulated:

3. How can we alleviate the computational demands of the distance metric computation
for motion planning in state space? (Chapter 5)

4. How can we formulate the optimal control problem to quickly generate control inputs
without compromising on the dynamical constraints? (Chapter 6)

The field of sampling-based motion planning in the state space is an active research topic
and many current results (including those in this thesis) are on academic applications (simple
pendulum swing-up). There is still quite some research to be done in this area in order to be
able to make the step towards real-world industrial applications.

1.6. CONTRIBUTIONS AND THESIS STRUCTURE
The contributions in this thesis related to sampling-based motion planning in the configura-
tion space are centered around the development of motion modules by making effective use
of off-the-shelf open source software components. Below, the contributions from the first
part of this thesis are briefly presented:

• Parameter tuning of path planning algorithms: With so many implementations avail-
able for path planning algorithms, it is a daunting task to make an appropriate choice
of a planner and the corresponding implementation to be used for a specific problem.

1.6. CONTRIBUTIONS AND THESIS STRUCTURE

1

13

We present a framework in this thesis to automatically tune the parameters of several
path planning algorithms where a user can specify the desired performance metrics
from a planning software framework. These results are presented in Chapter 2.

• Motion module design for industrial bin picking: Bin picking is a commonly en-
countered industrial application where different objects located in a certain environ-
ment are manipulated as a part of an order picking task. We present a framework for
the design of a motion planning module using off-the-shelf software components so
that the designed functionality is modular and reusable in similar applications. The
module presented in this thesis was one of the components of the world championship
winning robotic system at the Amazon Picking Challenge 20162. The details of the
motion module and the complete software framework of the entire robotic system
constitute the contents of Chapter 3.

• Reactive collision avoidance for Cobots: Collaborative robots (or Cobots) are systems
that can safely interact and closely work with human beings and are viewed as essential
components in the Industries of the future. Motion modules that not only perform
motion tasks (such as pick and place) but also ensure safety of humans in the vicinity
are critical to the realization of such collaborative systems. To address this challenge, a
framework was developed as a collective effort between various research organizations
participating in the European Union Project Factory in a Day. The work involved in
extending and integrating the previous contribution to this framework is presented in
Chapter 4.

The second part of this thesis focuses on the challenges of motion planning in state space.
Particularly, the critical steps of approximating a reliable (pseudo)metric and a fast steering
function for the RRT in state space. We hypothesize that the principles of supervised learning
could serve as tools to reliably approximate solutions to optimal control problems. The
consequent gain in computation speed would thus enable the application of sampling-based
motion planning in state space for practical applications involving manipulator motions. The
contributions made in this direction are presented below:

• Distance metric approximation with supervised learning: A supervised learning-based
approach to approximate (locally) optimal cost-to-go between state pairs is presented
in Chapter 5. The core idea is to use an offline training phase to solve optimal control
problems between several state pairs to a create a dataset that stores the state pairs and
the corresponding costs. This dataset is subsequently used by a supervised learning
algorithm to learn the mapping between state pairs and cost. The mapping is later
used to predict costs during the actual run of the RRT algorithm. The results of the
approach on the problem of pendulum swing up is presented including a speed up of
up to 3 orders of magnitude relative to solving an optimal control problem at each
incremental step of the RRT. While the results are on a simple system, the approach
itself is generic and the results of using the approach on higher dimensional problems
is also presented.

2http://www.robocup2016.org/en/events/amazon-picking-challenge/

1

14 1. INTRODUCTION

• Steering input approximation with supervised learning: A fast approximation of the
distance (pseudo)metric only solves the problem of determining the nearest neighbor
in the RRT. Once a choice is made, there is a need to solve an optimal control problem
to generate a trajectory between the nearest neighbor and the random state and this
does contribute significantly to the overall planning time. An approach that builds on
the previous contribution is presented in Chapter 6 to approximate the steering input
to connect random state pairs which results in an order of magnitude speed up over
state of the art approaches for motion planning in state space.

Finally, the thesis is concluded in Chapter 7 with a discussion on the contributions of this
thesis and potential directions for future work.

I
SAMPLING-BASED PLANNING IN

CONFIGURATION SPACE

15

2
AUTOMATED TUNING OF PATH

PLANNING ALGORITHMS

A large number of novel path planning methods for a wide range of problems have been
described in literature over the past few decades. These algorithms can often be configured
using a set of parameters that greatly influence their performance. In a typical use case, these
parameters are only very slightly tuned or even left untouched. Systematic approaches to
tune parameters of path planning algorithms have been largely unexplored. At the same time,
there is a rising interest in the planning and robotics communities regarding the real world
application of these theoretically developed and simulation-tested planning algorithms. In
this chapter, we propose the use of Sequential Model-based Algorithm Configuration (SMAC)
tools to address these concerns. We show that it is possible to improve the performance of
a planning algorithm for a specific problem without the need of in-depth knowledge of the
algorithm itself. We compare five planners that see a lot of practical usage on three typical
industrial pick-and-place tasks to demonstrate the effectiveness of the method.

Note: In this chapter, the word configuration has two meanings. The first being a
configuration which is a vector used to specify a robot configuration. The second being a set
of parameters used to specify an algorithm configuration. These differences are explicitly
clarified in the relevant portions of the text.

The contents of this chapter have been slightly modified from the paper:
Ruben Burger, Mukunda Bharatheesha, Marc van Eert and Robert Babuška, Automated Tuning of Path Planning
Algorithms, 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4371-4376. The
modifications are primarily to maintain consistency with the notations and symbols used in this thesis.

17

2

18 2. TUNING PATH PLANNING ALGORITHMS

R ECENTLY there has been a growing interest in the use of robotics software. With the
increasing popularity of tools like ROS [115], MoveIt! [133], Open Motion Planning

Library (OMPL) [135] and OpenRave [30], even hobbyists have now ventured into robotics.
These tools have also played a major role in enabling end-users to leverage state-of-the art
for real world applications.

2.1. TUNING OF PATH PLANNING ALGORITHMS
Development of novel planning methods with high theoretical merit makes up a large body
of research within the motion planning community. Many of these methods are designed to
solve a certain set of problems that have some specific characteristic. Consider Transition-
based RRT (T-RRT) [56], which combines the exploration strength of RRTs with cost-map
methods in order to guide the algorithms to paths that are low cost according to a specified
cost metric. T-RRT manages to efficiently solve the posed problem, but how it translates to a
different domain is unclear and difficult to estimate without a significant effort. A second
example can be found in the set of informed planners like Informed-RRT and BIT* [40][39].
These planners work very well for scenarios in which the obstacles take a certain shape in the
configuration space, but it is unclear how they can be leveraged for other classes of problems.
They also have a number of configurable parameters that are difficult to understand without
significant background knowledge. Another set of planners that use heuristics to guide the
search are Kinodynamic Planning by Interior-Exterior Cell Exploration (KPIECE) methods
[134]. These planners show good practical performance, but they use a discretization
grid that makes it difficult to understand how the planning performance is affected by the
configuration of the planning algorithm.

When presented with the problem of selecting a suitable planner for a given real-world
problem, one faces a myriad of options. With several different available planning libraries
and approaches like OMPL [135], SBPL [22] , CHOMP [118] and STOMP [61], it requires
significant knowledge to determine which planning algorithms are suitable for each particular
application. Choosing a good configuration for each planning algorithm is even more difficult.
A configuration includes both categorical (for setting up the planner) and the numerical (for
tuning) parameters of the planner. The number of parameters ranges for different planning
algorithms from just one for RRTConnect [72] to twelve for RRT*, all of which may or may
not have a significant impact on the performance. Especially the frequent use of heuristics
make it very difficult to predict the behavior of an algorithm as the heuristics interact with
each other in unpredictable ways. This makes manual configuration very difficult. In the case
of OMPL, some of the parameters are calculated using the characteristics of the environment.
While this is indeed beneficial, a larger improvement can be expected with a more rigorous
tuning approach.

Typically, end users of motion planning software libraries adhere to ad-hoc heuristics to
tune parameters of planning algorithms. The end result of such tuning would indeed result in
a satisfactory solution, but there is no indication or feedback to the user if a better solution
is possible. This limitation can be addressed with a structured and pragmatic approach to
configure the planner. Ideally, it should be possible for an end-user to provide a geometric
description of the manipulator and the scene, along with a set of typical problems to let an
automated tuning algorithm provide the optimal configuration for each planner. Our work
focuses on providing a basic framework to achieve this goal. We focus on the use of motion

2.2. RELATED RESEARCH

2

19

planning software [135, 133] for robotic manipulators. Despite using a specific class of
motion planning software to present our results, our approach itself is generic and is not
limited by our choice. The following section provides a brief review of relevant research
focusing on parameter tuning for planning algorithms.

2.2. RELATED RESEARCH
A general approach to algorithm tuning can be found in automatic algorithm configuration
methods. These methods are optimization methods that are specifically designed to find the
best performing algorithm configuration for a specific problem instance. They often do so
by running the algorithm with a certain starting configuration and repeatedly selecting a
better configuration based on the previous results. Historically, the problem of algorithm
configuration can be abstracted to the Design of Experiments (DOE) approach [122], where
a sequence of experiments are conducted to understand the relationship between (physical)
experimental parameters and the associated outcomes. Typically, these relationships are
established as regression models described by a probability distribution function mostly
because, random errors, which are an integral part of physical experiments are well covered
by probability distributions of different kinds. Further, related methods such as Design and
Analysis of Computer Experiments (DACE) [124] are mentioned in [52] and the references
therein. Here, the effort is more focused on computer-based (simulation) experiments which
are mostly free of random physical errors. In this sense, methods such as in [124] are much
closely related to our work in comparison to the DOE-based methods.

Algorithm configuration can be broadly classified in two main categories, local methods
and model-based methods. Examples of methods that use a local search are ParamILS
[55] and F-RACE [13]. For Sequential Model Based Optimization (SMBO) methods, a
regression model is used to predict the performance of the algorithm in previously unseen
regions. Gaussian process (GP) models are a common choice as a non-parametric regression
model [52]. One disadvantage of GP models is that they do not deal with categorical input
data such as boolean parameters. This is also a drawback with the aforementioned classical
methods in [122, 124]. In [54] a method is introduced that uses a different model class for the
regression named Sequential Model-based Algorithm Configuration (SMAC). SMAC uses
random forests in order to handle categorical parameters. Random forests are collections of
regression trees, which are known to offer good performance for categorical input data [54].
Furthermore, SMAC has been shown to deliver promising performance on a diverse set of
expensive black-box problems [53].

These methods have been applied to a wide variety of problems, most notably to the
tuning of solvers for computationally hard problems. These solvers are typically based on
local or tree search, often have many tuning parameters that are very difficult to tune by hand.
As an example; the mixed integer programming solver IBM CPLEX has 76 parameters
relating to its search strategy [54].

More similar to our proposed application, automatic configuration methods have been
applied to classical planning problems. An approach that is similar to our method can be
found in [127], where SMAC was used to automatically tune the Fast Downward planning
system. In [35], ParamILS was used to tune the topology, transition rules and parameter
values of control software for a robot swarm. In [9], constrained Bayesian optimization is
proposed as an optimization method that can be used to tune certain target parameters. Using

2

20 2. TUNING PATH PLANNING ALGORITHMS

constraints on the optimization, it is ensured that the tested configuration does not lead to
safety-critical system failures. In [67] a model-free optimization is used to find optimal PID
parameters.

Configuration and tuning of configuration space path planning algorithms in particular
seems to be a less highlighted area of research. In [95], an infrastructure that can be used
for benchmarking different configurations was introduced, but the problem of how to select
competing configurations for each planner is left unexplored.

Typically, many parameters of planning algorithms that we consider in this work are
categorical. Therefore, we choose SMAC as algorithm configuration and parameter tuning
method.

2.3. PROBLEM STATEMENT
Let C ∈ Rn be the complete configuration space of a robotic manipulator. Denote by
Cobs ⊆ C the obstacle space, which consists of all configurations of the robot that are
invalidated by collisions with either itself or the environment. Let Cfree ⊆C , the complement
of Cobs, be the set of all valid configurations in the planning space.

Define Qstart ⊆Cfree and Qgoal ⊆Cfree to be a set of configurations representative of the
planning problem complexity. For example, in a pick-and-place application, Qstart would
consist of pick configurations, and Qgoal would be place configurations. A planning query
ψ is then defined by a configuration pair, consisting of a start configuration and a goal
configuration:

ψ= {qstart ∈Qstart, qgoal ∈Qgoal}

The outcome of a planning query is a path which is a sequence of configurations.
The set of all possible queries derived from Qstart and Qgoal is denoted by Ψ. Let c ∈R+

denote a user defined measure that indicates the performance of a planning algorithm on
the entire set Ψ. For k start configurations and m goal configurations, Ψ will consist of
k ×m pairs of configurations. Denote by P , a target planning algorithm with i configurable
parameters. The parameter settings for P is then denoted by a set of i-tuple:

Φ= {φ0, . . . ,φi−1}

where φi is used to denote the parameter value.
Finally, a planner parameter tuning request where planner P , with parameter settings Φ,

is required to solve a planning query ψ such that the resulting path stays in Cfree can then be
written as:

P (C ,Φ,ψ)

The problem is to find the parameter setting Φ that maximizes the performance c of
planner P on the complete set of planning queries Ψ.

2.4. METHOD
To translate the planner configuration problem into a format that SMAC can tune, we specify
three ingredients: The algorithm A, the performance measure c and the problem instance I.

SMAC starts by evaluating the default configuration of A on I, and returns a performance
measure after evaluating c. Subsequently, the current configuration and corresponding

2.5. RESULTS

2

21

performance measure are used to update SMAC’s internal model using:

SMAC.FitModel()

Next, SMAC will select a new configuration to be tested. This operation is denoted by:

SMAC.SelectConfigurations()

SMAC uses the random forests model to formulate an Expected Improvement function and
uses a local optimization to find the configuration that maximizes this function.

After the most promising configuration has been selected, it is evaluated on the problem
instance I . Whenever a result has a cost lower than the current best performing configuration
the corresponding configuration will be stored as the incumbent configuration. Finally, after
the runtime exceeds the AllowedRuntime, the incumbent configuration and the corresponding
parameter values are returned.

The main challenge with using SMAC to configure a configuration space planner is
how to formulate the problem instance I and set up the performance measure c so that the
performance of the resulting configuration also improves the performance over the complete
set of problems Ψ. This will be discussed in the following sections.

2.4.1. FORMULATING THE PROBLEM INSTANCE I
In order for SMAC to optimize towards a meaningful configuration, care should be taken
in formulating the problem instance I as a function of the configuration space C and the
complete problem set Ψ.

The full problem set Ψ was split into a tuning, Ψt , and validation set Ψv . Due to the
random nature of the planners, it is not feasible to use the individual problems of the set
as the problem instance. SMAC will not be able to fit an accurate model due to the high
variance. By using the full tuning set as the problem instance I , the variance of the resulting
cost is minimized. Furthermore, the whole set will be evaluated several times to further
decrease the variance. In choosing the number of repetitions, a trade-off has to be made
between decreasing the variance of the planning algorithm and allowing SMAC to quickly
test new configurations.

2.4.2. FORMULATING THE PERFORMANCE MEASURE c
The performance measure c is another key element. The goal of the performance measure
is to transform the output of a single problem query into a quantitative measure that can
be minimized by SMAC. In many practical scenarios, the aim of tuning is to improve
the solving percentage and decreasing the planning time. Focusing on these goals, a very
effective performance measure was found to be the average computation time.

In order to limit SMAC spending too much time on poorly performing configurations, a
planning timeout is configured for each planner. Whenever this timeout value is reached, a
penalty value is used so that the regression model can still learn from the evaluation. The
complete method is shown in Algorithm 1.

2.5. RESULTS
In order to validate our tuning method, it was tested on three different environments with
two different robots: two environments for the 6-DoF Universal Robots UR5, and one for

2

22 2. TUNING PATH PLANNING ALGORITHMS

Algorithm 1 SMAC Tuning

1: Input : Planner P , Tuning set Ψt with N queries,
2: Configuration space C , Iterations n,
3: default configuration Φ0.
4: Output : Incumbent configuration Φi nc

5: Φ=Φ0

6: best=∞
7: while SMAC.Runtime<AllowedRuntime do
8: result= 0
9: for i = 0, . . . , N −1 do

10: ψ=Ψ(i)
11: for 0, . . . ,n −1 do
12: Timer.start()
13: P (C ,Φ,ψ)
14: result += Timer.stop()
15: if result< best then
16: Φi nc =Φ
17: best= result
18: SMAC.FitModel(result,Φ)
19: Φ= SMAC.SelectConfigurations()
20: return Incumbent

the 7-DoF KUKA LBR iiwa 7 R800. The following planners were selected to be tuned:

• KPIECE This algorithm uses several heuristics in order to guide the search. These
heuristics make it hard to predict its performance and make it an ideal candidate for
automated configuration.

• BKPIECE For much of the same reasons, the bi-directional variant of KPIECE will
also be considered.

• BIT While BIT* is actually an optimal planner, it can easily be configured to only
calculate the first solution. As this eliminates all optimal properties of BIT*, this
planner will be denoted as BIT (without the asterisk). With several configurable
parameters, BIT is another interesting candidate for using the SMAC tools for tuning
the parameters to a given problem requirement.

• RRTConnect As RRTConnect only has a single parameter, it is not expected to gain
much from tuning. However, it is worthwhile including RRTConnect as it is a widely
adopted planner in more practical applications, known for short computation times
and high solving percentages.

• BiTRRT Although very similar to RRTConnect, it is interesting to see whether
the extra parameters that can be tuned for BiTRRT have a greater impact on its
performance.

2.5. RESULTS

2

23

The experiments were conducted on a PC with a Intel i5-3470 CPU at 3.20 GHz and
8GB of RAM running Ubuntu 14.04. To model the environment ROS Indigo was used in
combination with Moveit!. The planners that have been tested are part of the OMPL planning
library.

2.5.1. UR5 SIMPLE PICK-AND-PLACE PROBLEM
The first UR5 problem represents a pick-and-place scenario where the robot is to rearrange
objects on a table. For these experiments,Ψt consisted of 20 problems that were each iterated
5 times for a total of 100 queries. The planning time was selected to be 1 s and SMAC was
allowed 30 min to find the best configuration. The validation results were obtained by testing
on a distinct validation set Ψv . Figure 2.1 shows a photo of the environment of the UR5.

With the start close to the surface on the lower corner of the table, and the goal states
on the far corner, this can be considered a relatively easy problem with the movement of
the UR5 mostly unobstructed. This allowed for SMAC to make several hundred calls to the
planning algorithm, especially for faster planners.

Figure 2.1: Photo of the first target problem environment for the UR5 manipulator.

Table 2.1 shows the averaged total results for the complete validation set. The path
length is represented as the average 2-norm in the configuration space of the manipulator
and is included to serve as an indicator for the planning algorithms ability to find short paths.

As expected, RRTConnect and BiTRRT have not improved much. For KPIECE,
BKPIECE and BIT, the results are more striking. With computation times significantly
improved and finding shorter paths, it is safe to conclude that the tuned configuration shows
better performance than the default.

For BIT, the percentage of solved problems was increased from 92 % to 99 %. Closer
inspection of the results shows that BIT was struggling with one of the problems in particular,
only managing to solve about 40 % within the allocated time. After tuning, BIT managed to
solve this problem in over 95 % of the cases.

2

24 2. TUNING PATH PLANNING ALGORITHMS

Table 2.1: SMAC results for the first UR5 problem

Planner Runtime Solved Path length
[ms] [%] [2-norm]

RRTConnect 36.3 100 7.3
RRTConnect - SMAC 36.0 100 7.2
BiTRRT 46.8 100 7.1
BiTRRT - SMAC 45.8 99 7.2
BKPIECE 254 99 7.8
BKPIECE - SMAC 108 99 7.4
KPIECE 95.7 100 7.8
KPIECE - SMAC 40.3 100 7.5
BIT 102 92 9.0
BIT - SMAC 52.2 99 8.9

2.5.2. UR5 DIFFICULT PICK-AND-PLACE PROBLEM
The second scenario for the UR5 is a more difficult one. Aside from being in a constrained
environment, the UR5 is fitted with a 20 cm long vacuum tool. The problem scenario is
depicted in Figure 2.2.

With significantly longer planning times, SMAC could do fewer iterations in the allocated
time of 30 min. Instead of 5 iterations of 20 problems, this scenario was tuned on 4 iterations
of 25 problems. The start and goal states were selected as realistic picking and placing states,
with the tip of the vacuum tool well inside the stow bin that can be seen on the right.

Figure 2.2: Model of the second, more complex problem environment for the UR5 manipulator.

2.5. RESULTS

2

25

Table 2.2: SMAC results for the second UR5 problem.

Planner Runtime Solved Path length
[ms] [%] [2-norm]

RRTConnect 165 95 10.9
RRTConnect - SMAC 146 96 10.2
BiTRRT 183 96 10.6
BiTRRT - SMAC 172 96 10.3
BKPIECE 751 45 12.6
BKPIECE - SMAC 450 94 10.6
KPIECE 443 79 11.8
KPIECE - SMAC 337 90 10.6
BIT 286 80 9.7
BIT - SMAC 266 81 9.2

Consider Table 2.2 for the results of tuning on the second scenario. As with the first
scenario, the improvement of RRTConnect and BiTRRT is rather small. An impressive
tuning result can be seen when considering BKPIECE, whose solving rate was increased
from just 45 % to 95 %.

2.5.3. KUKA LBR IIWA 7 PROBLEM
A problem was designed for the KUKA LBR iiwa 7 manipulator that requires maneuvering
to and from different poses inside a cabinet. The problem scenario is shown in Figure 2.3.
With an extra degree of freedom and several start and goal states that are difficult to reach,
this presents a more challenging problem than the previous two.

Figure 2.3: Model of the environment for the KUKA problem.

2

26 2. TUNING PATH PLANNING ALGORITHMS

In order for SMAC to be able to test a configuration within reasonable time, the number
of iterations were decreased and the planning timeout increased to 2 s. See Table 2.3 for the
benchmark results after tuning.

Table 2.3: SMAC results for the KUKA problem

Planner Runtime Solved Path length
[ms] [%] [2-norm]

RRTConnect 725 100 6.5
RRTConnect - SMAC 687 100 6.6
BiTRRT 851 99 6.7
BiTRRT - SMAC 807 99 6.9
BKPIECE 1868 17 18.3
BKPIECE - SMAC 1930 18 16.2
KPIECE 1399 68 7.2
KPIECE - SMAC 613 99 6.0
BIT 1239 54 8.5
BIT - SMAC 871 84 6.8

Comparing the results of this scene with the UR5 scenes, it is obvious that all planners
require more time to find a feasible plan but some (BIT and BKPIECE) seem to suffer more
from the extra degree of freedom. The fact that BKPIECE even got worse (in terms of
runtime) than before tuning, is related to the planning timeout and discussed in Section 2.6.
As with the previous scenarios, a significant improvement can be observed for KPIECE and
BIT.

2.6. DISCUSSION
A running theme in the previous section that is substantiated with the tabulated results is
that automated tuning and configuration is beneficial for all the presented algorithms. In this
section, we highlight some of the important aspects from the obtained results. A comparison
of planner parameter values before and after SMAC tuning for three planners which showed
significant improvement in performance on all three experimental setups is shown in Table
2.4. Consider for example, the KPIECE planner. We can clearly see that along with the
goal_bias parameter (which is a common candidate for ad-hoc tuning), the use of SMAC
tuning also ensures the rest of the parameters are tuned. As a consequence, these parameters
collectively lead to the improved performance seen in the experimental results. However, an
interesting analysis would be to also study the impact of each parameter individually and
use the corresponding information to formulate better performance measures.

It is important to note that the performance improvement is not necessarily uniform over
all the problems considered. Complex problems typically take longer to be solved and as
there is no scaling between problems in the test set, configurations that improve on these
more difficult problems are prioritized. With the BIT* algorithm, we have observed a number
of problem queries that could not be solved even after tuning. While tuning improved the
performance on the other problems of the set, these specific problems remained either very

2.6. DISCUSSION

2

27

Table 2.4: Comparison of planner parameters before and after tuning

Before After
RRTConnect
range default‡ 3.33

BKPIECE
range default‡ 0.3

border_fraction 0.9 0.47
failed_expansion_score_factor 0.5 0.24

min_valid_path_fraction 0.5 0.31

KPIECE
range default‡ 4.12

goal_bias 0.05 0.2
border_fraction 0.9 0.96

failed_expansion_score_factor 0.5 0.71
min_valid_path_fraction 0.5 0.7

‡ default indicates the value computed by MoveIt! for a given problem
instance.

difficult or outright unsolvable to BIT. A SMAC performance measure that puts a bigger
penalty on unsolved queries can potentially be used to seek for configurations that do manage
to solve all queries, but this is a topic for further research.

In the SMAC manual, it is advised to allow SMAC at least 300 to 400 attempts at finding
a good configuration. In addition, the best results are achieved when SMAC is run several
times with different starting configurations. However, in the 30 min of allowed planning time
that was used in the experiments, SMAC often only had time for about 100 configuration
tests. As SMAC is often used for algorithms with many more parameters than these planning
algorithms, perhaps these requirements can be relaxed somewhat, but further research into
the configuration of SMAC and the problem instance is encouraged.

It is pertinent to note the importance of correctly specifying the performance measure
and planning timeout. For the KUKA scenario, BKPIECE only managed to solve 17 % of
the queries when the timeout was set for 2 s.

Running SMAC with a 2 s timeout means that for each query that goes over the average
even very slightly, a planning time of 2 s is reported. This means that SMAC gathers very
little information on the actual performance of a configuration, and is not able to construct a
good model. See Table 2.5 for different tuning results.

Lastly, the combination of MoveIt! and OMPL has been chosen specifically because
of the seamless integration between the two software packages and the relative ease with
which the combination allows one to use different planners for a given planning problem.
However, we would like to reiterate that our approach itself is not limited to this specific
software combination.

2

28 2. TUNING PATH PLANNING ALGORITHMS

Table 2.5: BKPIECE tuning results with a variable planning time
Benchmark was run with 2 s timeout

Planner Runtime Solved Path length
[ms] [%] [2-norm]

untuned 1868 17 18.3
2 s tuning 1930 18 16.2
4 s tuning 1699 64 8.9

2.7. CONCLUSIONS AND FUTURE WORK
Our goal was to come up with a tool to enable easy tuning of planning algorithms for
a given problem. To this end, we present the SMAC-based tuning method in our work
and substantiate the achieved performance improvement in three realistic scenarios using
industrial manipulators. Our primary goal with this work is to minimize the amount of
background knowledge required to use planning algorithms, particularly in industrial robotic
applications. Our long term goal is to further develop this approach in an extensive manner
to include any dynamic parameters as well. Eventually, we would like to enable robotics
end-users to transition from teaching task specific motions to robots to using planning
algorithms to perform task specific motions.

3
LESSONS LEARNED FROM

WINNING THE AMAZON
ROBOTICS CHALLENGE 2016

What drew me towards team sport were the camaraderie and friendship. The chance to
celebrate victory and success with a group of other people is something I have enjoyed

doing.

Rahul S. Dravid

This chapter describes Team Delft’s robot winning the Amazon Robotics Challenge 2016. The
competition involves automating pick and place operations in semi-structured environments,
specifically the shelves in an Amazon warehouse. Team Delft’s entry demonstrated that
current robot technology can already address most of the challenges in product handling:
object recognition, grasping, motion, or task planning; under broad yet bounded conditions.
The system combines an industrial robot arm, 3D cameras and a custom gripper. The
robot’s software is based on the Robot Operating System to implement solutions based on
deep learning and other state-of-the-art artificial intelligence techniques, and to integrate
them with off-the-shelf components. From the experience developing the robotic system it is
concluded that: 1) the specific task conditions should guide the selection of the solution for
each capability required, 2) understanding the characteristics of the individual solutions
and the assumptions they embed is critical to integrate a performing system from them, and
3) this characterization can be based on ‘levels of robot automation’.

The contents of this chapter have been slightly modified from the paper:
Carlos Hernández Corbato, Mukunda Bharatheesha, Jeff van Egmond, Jihong Ju and Martijn Wisse, Integrating
Different Levels of Automation: Lessons from Winning the Amazon Robotics Challenge 2016, Accepted for
publication in IEEE Transactions on Industrial Informatics - Special Issue on Recent Trends and Developments in
Industry 4.0 Motivated Robotics Solutions, 2018.

29

3

30 3. AMAZON ROBOTICS CHALLENGE 2016

T HE Amazon Robotic Challenge (ARC) [5, 25], was launched by Amazon Robotics
in 2015 to promote research into unstructured warehouse automation and specifically

robotic manipulation for picking and stocking of products. Low volume, high-mix pro-
ductions require flexibility to cope with an unstructured environment, and adaptability to
quickly and cost-effectively reconfigure the system to different tasks. Current commercial
solutions have mainly focused on automating the transport inside the warehouse, whereas
only few solutions exist for the individual handling of the products [1], and are usually
limited to one product type at a time 1. Flexible robotics solutions are needed that benefit
from current advances in artificial intelligence and integrate them with more dexterous and
reliable mechanical designs for grippers and manipulators.

The integration of these robot technologies into an agile and robust solution, capable
of performing on the factory floor, is itself a challenge. During a robot application’s
development design decisions need to be made, e.g. about feedback control vs. planning,
that entail trade-offs between flexibility and performance. For example, in the first ARC
edition in 2015, the winning robot used a feedback approach with visual servoing, achieving
a robust pick execution that outperformed the competitors. However, the public media was
disappointed about the general speed performance of the robots [96]. The average pick time
for the winner was above one minute (∼ 30 sorts per hour), while industry demands the
∼ 400 sorts per hour achieved by humans [25].

There were two key ideas guiding Team Delft’s approach to building the ARC 2016
robot: 1) reuse available solutions whenever possible, and 2) develop solutions to automate
the system to the level required by the different challenges in the competition, making useful
assumptions based on the structure present in the tasks.

To reuse available off-the-shelf solutions, Team Delft robot was based on an industrial
manipulator and 3D cameras, and the robot software was based on the Robot Operating
System (ROS) [115]. ROS provides tools and infrastructure to develop complex robotic sys-
tems, runtime communications middleware, and the ROS open-source community provides
off-the-shelf components for many robot capabilities.

There is a variety of aspects that have been identified useful to characterize robotic
systems [34]: modularity vs. integration, computation vs. embodiment, planning vs.
feedback, or generality vs. assumptions. The dichotomy planning vs. feedback in robotics
represents only two (important) classes in the spectrum of solutions. These range from open-
loop solutions that exploit assumptions and knowledge about the task and the workspace at
design time, to feedback strategies that use runtime information to drive robot’s behavior
and deal with uncertainties. After analysis and reflection on the ARC robot development
experience, different levels of robot automation are proposed in this chapter to characterize
the design solutions. In Team Delft’s robot design, the different solutions were chosen to
automate every part of the robotic system to the level required. Different automation solutions
render different system properties in terms of flexibility, performance, and adaptability.

Section 3.1 discusses the requirements posed by the ARC 2016 competition scenario,
and analyses the challenges it poses to robot perception, manipulation and task planning. In
Section 3.2 the levels of robot automation are presented, and used to explain Team Delft’s
robot concept in Section 3.3. The performance of the system is discussed in view of the levels

1e.g. see work of Profactor GmbH. at https://www.profactor.at/en/solutions/flexible-robotic/handling/

3.1. MANIPULATION IN THE AMAZON ROBOTICS CHALLENGE

3

31

of automation in Section 3.4, and some lessons learned are reported. Finally Section 3.5
provides concluding remarks.

3.1. MANIPULATION IN THE AMAZON ROBOTICS CHAL-
LENGE

The Amazon Robotics Challenge (ARC) stems from a broader and fundamental research
field of robotic manipulation in unstructured environments. The two tasks for the 2016
challenge [4] involved manipulating diverse, small sized products to pick and place them
from an Amazon shelving unit (the shelf) structured in twelve bins, to a temporary container
(the tote), as is illustrated in Figure 3.1. We begin this section by providing further technical
details of the challenge followed by a comparative analysis of the challenge to relevant
scientific problems.

Figure 3.1: The products in the Amazon Picking Challenge 2016 in the tote and in the bins of the shelf, from [4].

3.1.1. THE AMAZON ROBOTICS CHALLENGE 2016
The challenge for the year 2016 was titled Amazon Picking Challenge and consisted of two
tasks to be autonomously performed by a robotic system: The Picking Task consisted of
moving 12 products from a partially filled shelf, into the tote. Some target products could be
partially occluded or in contact with other products, but no product would be fully occluded.
Each of the 12 bins contains exactly one target product as well as any number of non-target
products and every target product is only present in a single bin. The tote is initially empty
in this task.
The Stowing Task was the inverse: stow the contents of the tote (12 products) into the bins
of the partially filled shelf. The products in the tote could be partially or completely occluded
below other products. There is no target location for the products in the tote, but different
score for stowing them into more cluttered bins.

In both tasks the robot had 15 min to fulfill the order, which is specified by a task file,
and report the final location of all the products in an analogous output file. The task file
contained information of what products were located in which bin or tote and it identified
the target products. The task file did not contain information about the physical location
of products within their respective container. The target products could be handled in any
order and all the product could be moved to any bin, as long as the final contents of each
bin and the tote were correctly reported in the output file. The performance of the robot

3

32 3. AMAZON ROBOTICS CHALLENGE 2016

is evaluated by giving points for correctly placed items and subtracting penalty points for
dropping, damaging or misplacing items. Here misplacing an item is defined as incorrectly
reporting its location in the output file. The amount of points for a specific operation would
depend on the difficulty of the object and the cluttering of the bin. The time to accomplish
the first successful operation would be the tiebreaker.

3.1.2. MANIPULATION IN UNSTRUCTURED ENVIRONMENTS
The ARC scenario is representative of the challenges in handling applications in a warehouse
or the factory floor. The robot has to perform a few simple tasks in a closed environment, but
it is only semi-structured. Unlike dynamic, open environments where autonomous robots
have to cope with unbounded levels of uncertainty, here it is limited. However, uncertainty
is still present, in the target products characteristics, their position and orientation, and the
workspace conditions.

The set of 39 product types used in the competition includes books, cubic boxes, clothing,
soft objects, and irregularly shaped objects. They were chosen to be representative of the
products handled on a daily basis at an Amazon warehouse. They presented realistic
challenges for perception, grasping and manipulation: reflective packaging, wide range of
dimensions, and weight or deformable shapes.

The products are stored mixed in any position and orientation inside the shelf’s bins,
partially occluding each other, sometimes placed at the back. Bins could be too cluttered
even for a human hand to easily pick the target item. The shelf construction with metal
parts and cardboard divisions resulted in wide tolerances and asymmetries. Besides, the
narrow opening of the bins (21 cm × 28 cm) compared to their depth (43 cm) limited the
maneuverability inside, and caused difficult dark lighting conditions. The highly reflective
metal floor of the bins contributed to the challenges for any vision system. In addition, the
position of the entire shelf had ± 3 cm tolerance.

The variety of shapes, sizes and weights of the objects also posed an interesting challenge
for object manipulation. This variety entailed studying and applying different grasp synthesis
methods such as pinch grasping [104, 26] and suction grasping, successfully used in the
previous edition of ARC [34]. The limited space for manipulation discarded cage grasping
strategies. Regarding grasp synthesizing, despite the extended literature on grasping of
unknown objects [114], the fact that the products were known well in advance made fine-
tunned heuristics promise much better performance, as early tests demonstrated.

3.2. LEVELS OF AUTOMATION
The performance and flexibility of a robotic application depends on the assumptions and
design decisions made to address uncertainty. A proper understanding of these decisions
is specially important in robots that perform more traditional automation tasks, but with
challenging flexibility in not so-well structured environments, such as the ARC. For this
a characterization of the solutions in levels of robot automation is proposed, based on
the experience gained developing Team Delft’s robot. Our model is inspired by that of
Parasuraman et al. [102]. While that framework supports decisions about which functions
to automate, and to what extent, with a focus on the human interaction factor, the model
presented here applies to the case of full automation of a function. It provides a basis

3.3. ROBOTIC SYSTEM OVERVIEW

3

33

for deciding how to automate those functions, in view of the uncertainty present and the
reliability required. The main criteria to differentiate automation solutions is the timing of
the information used to drive the behavior of the system. Assumptions are prior information
that is used at design time to determine a certain behavior, reducing the flexibility of the
system, but generally optimizing its performance. On the other hand, closed control loops
in a robotic system use runtime information to adapt the system behavior to the actual
circumstances on-the-fly.

In traditional automation, the environment and the task are fixed and assumed perfectly
modeled. This allows to fix at design time the sequence of operations and open-loop robot
motions. Uncertainty is reduced to minor allowed deviations on product placement and
geometry, which are accommodated for by robust and compliant hardware designs. This

‘level 0’ automation allows to maximize the motion’s speed leading to very high performance.
However, it has no flexibility: the robot’s behavior is fixed during design, no runtime
information is used to adapt to deviations.

Open-loop automation solutions typically include error handling mechanisms, so that
the robotic system can accommodate for foreseeable events during its design. These ‘level
1’ solutions introduce sensing capabilities in the system to verify a posteriori the result of
actions. For example in suction-based object handling the pressure in the suction cup can be
checked to confirm a successful grasp or to detect dropping the object.

In ‘level 2’ of robot automation, more advanced and rich perception is used to drive the
robot behavior at runtime, following the so called sense-plan-act paradigm. The complete
sequence of control actions is computed based on a predefined model of the world and initial
run-time sensor information that accommodates any run-time uncertainty. A typical example
is a vision-based solution that locates target objects. The limitations of this approach are
well known in robotics and artificial intelligence fields [16].

In feedback control (‘level 3’), action is dynamically computed at a certain frequency
using runtime sensor information. Often, the target variables cannot been sensed at the
desired frequency, or they are not directly accessible at all. In these cases, an estimation is
used to close a feedback loop at runtime. The controller of a robot manipulator, closing a
control loop for its joint state, is an example of ‘level’ present in Team Delft robot.

Finally, a ‘level 4’ solution uses predictions in addition to the current sensor information
to optimize its response to an uncertain environment. This is the case in systems that use
any flavor of model predictive control [17], in which a more or less complex model of the
system dynamics is used to optimize the control action based on the predicted evolution.

The selection of the level of automation for each specific problem in a robot manipulation
application implies a trade-off between flexibility, performance, and resources. In the
following sections the Team Delft robot for the ARC 2016 is discussed, explaining the
rationale for the different technological approaches chosen following the model of ‘levels of
automation’.

3.3. ROBOTIC SYSTEM OVERVIEW
Based on the analysis of previous experiences in the ARC [34, 25], Team Delft’s solution
targeted three key performance objectives to maximize scoring in the competition: be able
to complete all the tasks, robustness and speed. The design approach to address them was to
develop the robot automation level more efficient considering the uncertainty challenges in

3

34 3. AMAZON ROBOTICS CHALLENGE 2016

Figure 3.2: Team Delft robot setup in the APC workcell.

the tasks, and to reuse existing hardware and software components.

3.3.1. SYSTEM REQUIREMENTS
The performance objectives were decomposed into specific system requirements for robot
manipulation. Completing the picking and stowing tasks requires the robot to handle all the
products in any position in the shelf and the tote. This entails the following requirements:

Req. 1: to recognize and locate any of the products in any place inside the shelf or the
tote.

Req. 2: to reach any location inside the bins with enough maneuverability.

Req. 3: to achieve and hold a firm grasp on all different products.

Robustness is a must in real-world applications that need to perform with almost no downtime.
In the competition only one attempt2 was allowed for each task, so any failure leading to the
robot stopping or crashing is fatal. Speed is also critical for production systems. In Team
Delft’s strategy, speed allows the robot to perform several attempts to pick a target difficult
to grasp, and also move other objects for clearance, during the 15 min allowed for each task.
This simplifies the manipulation actions needed, leading to a more robust system.

3.3.2. ROBOT CONCEPT
Team Delft’s robotic system is shown in Figure 3.2. It is based on an industrial manipulator
mounting a 3D camera to scan the contents of the shelf’s bins and a custom, hybrid gripper
featuring a suction cup and a pinch mechanism. An additional fixed camera allows scanning
the tote contents. The selection of this hardware will be justified together the explanation of
the main robot functionality each device supports, in subsections 3.3.3, 3.3.4 and 3.3.5.

The ARC competition requires the robot to operate autonomously to complete tasks
defined in a computer file that defines the current inventory of the shelf and the tote, and, for

2A reset was allowed: the task could be restarted from the beginning but with a penalty [4].

3.3. ROBOTIC SYSTEM OVERVIEW

3

35

the pick task, the target product in each bin to be placed in the tote. Team Delft’s solution for
the picking and the stowing tasks is to decompose them into a plan of pick&place operations
that is sequentially executed by the robot arm.

TASK PLANNING

For the Picking Task, the picking order of each target is computed to maximize scoring and
minimize risk, considering i) the points for each product, and ii) system’s confidence to
handle each product, from experimental results, and iii) the need to move occluding objects
(see rightmost flow in Figure 3.3). This way the plan of pick&place operation for all targets
in the task is created. The plan is updated at the end of each operation according to its
success or any fallback triggered (see failures in the right side of 3.3), as will be explained in
section 3.3.6. For the stowing task, a simple heuristic selects as a target the detected product
that is closer to the tote opening, since all the contents in the tote have to be stowed.

PICK&PLACE

The pick&place operations required to handle the products in the competition have a fixed
structure in a closed, semi-structured environment: pick target (X) that is located in bin Y or
the tote, and place it on the tote or bin Y’. Therefore a ‘level 2’ robot control solution was
designed, consisting of a sequence of actions that follows the sense-plan-act paradigm. The
general steps and the main actions depicted in Figure 3.3 are as follows:

Sense
The system uses the 3D camera information of the target’s container (bin or tote) to: i) detect
and estimate the 6D pose of the item, and ii) obtain collision information of the container to
later plan the motions, in the form of a filtered Point Cloud of the cluttering of the container.
In the Pick Task scenario, the robot has to previously move to obtain the camera information
for the target bin. Additionally, the actual position of the bin is also estimated, for a more
detailed collision model of the environment. In the Stow task, a Point Cloud model of the
tote is used, since its pose is perfectly known.

Plan
Using the estimated pose of the target item and its known characteristics, the system computes
the grasping strategy and a grasp candidate (a pose for the gripper to pick the object). The
sensed PCL collision information is integrated in an octomap with the known environment
geometry, stored in the Universal Robot Description Format (URDF) to generate collision-
free plan to approach the grasp candidate pose, pick the product and retreat from the shelf.

Act
The previous motion plan is executed as feedforward action, including gripper configuration
and activation on the way to pick the item. Pick success is confirmed if possible with the
pressure in the suction cup. If so, the robot moves to drop the item in the tote using offline
generated trajectories.

Thanks to the structure of the environment, to place the products a robot automation
‘level 0’ solution was designed that uses pre-defined motions to drop them either in the tote
or the shelf’s bins in a safe manner to comply with the competition rules3. In the case of
placing the items in the tote, it is divided in 6 predefined drop locations, and the task planner

3The other award-winning entries exploited the rules by dragging products out of the shelf to fall into a tote
strategically located below it. This resulted in targets ’successfully’ handled, but fewer points due to penalties.

3

36 3. AMAZON ROBOTICS CHALLENGE 2016

Act

Path Execution

ap
pr

oa
ch

co
nt

ac
t

re
tr

ea
t

m
ov

e
to

 p
la

ce

Sense

Plan

workspace
URDF

acquire camera
images

RGB imgae

PointCloud

Object
detection

(Faster R-CNN) Target pose
estimation

(Super4 PCS)

Grasp
Synthetising

training
dataset products's

PointCloud
models

target's
pose

estimation

Manipulation
Planning

grasp
candidates

grasp
strategy

Collision checking
(octomap)

Filter
PointCloud

bin
PointCloud

model

Path Generation complete motion plan

main flow
data input

main run-time data

main input and output

offline
trajectories

target's
PointCloud

bin contents's
PointCloud

failure:
target not found

move to
scan pose

failure:
no confident
pose estimation

failure:
no feasible
manipulation plan

failure:
object dropped

push target to
end of queue

all camera
poses tried?

no

yes

register product
in tote

failure:
object dropped

failure fallback flow

Bin pose
estimation

(Super4 PCS)

bin pose
estimation Detect

occlusions
failure:
occluding object

manipulation
plan

collision-free
motion plan

collision

product's
labelled

bounding
boxes

offline task
knowledge

target X
in bin Y

lif
t

push move
to queue

Task manager:
create move
operation of
occluding
object

Figure 3.3: Schema of Team Delft’s sense-plan-act workflow for picking a product X from the shelf’s bin Y.
The sense step consists of: a) detection of the target item and estimation of its 6d pose, and b) obtain collision
information inside the bin, in the form of a PointCloud.

logic makes sure that: i) no heavy products are dropped where fragile items have been placed
and ii) no more than 3 products are dropped in the same location, so that the objects do not
protrude from the tote. In the case of moving occluding items to another bin, the task planner
logic selects the lest cluttered bin from those that no longer need to be accessed (to keep
the environment static). The robot moves to a fixed location in that bin, making use of the
assumption that thanks to gravity any cluttering is in the lower part, and any standing items
will be toppled inwards.

Sections 3.3.3 to 3.3.5 describe the solutions designed for all the robot capabilities
required for the previous actions, grouped into object detection and pose estimation, grasping
and robot motion, including the main hardware and software components involved.

3.3.3. VISION-BASED PERCEPTION
To address Req. 1, the robot needs to recognize and locate the objects captured by the
camera, knowing what the object is and where it locates in the image.

CAMERAS

To scan the bin an industrial camera system is mounted on the gripper. It includes an Ensenso
N35 3D camera that provides low noise point cloud data, and an IDS UI-5240CP-C-HQ
high-definition camera that provides RGB images. An array of LEDs improves robustness to
lighting conditions. A similar system is fixed on a pole to scan the tote.

OBJECT DETECTION

The object detection module takes RGB images as input and returns a list of the object
proposals. Each proposal contains the label and the location, determined by a bounding box

3.3. ROBOTIC SYSTEM OVERVIEW

3

37

enclosing the object. The proposals are ranked in descending order based on the confidences,
varying from 0 to 1. The proposal with the highest confidence for the expected item was
counted as the detected object.

One of the main difficulties for object detection is that each instance varies significantly
regarding size, shape, appearance, poses, etc. The object detection module should be able to
recognize and locate the objects regardless of how objects from one category differ visually.
A model that has high capacity and can learn from large-scale data is required. Deep Neural
Networks are renowned for it high capacity, especially the Convolution Neural Networks
(CNN) have recently shown its ability to learn large-scale data efficiently, improving the
benchmark performance of large scale visual recognition problems significantly since 2012
[123].

Ross et. al. [43] adopted the Convolutional Networks for classification and selective
search [140] for region proposal in their framework, region-based Convolutional Networks
(R-CNN), achieving a performance improvement by a large margin. One of the limitations
of their work is that it took about 47 s4 to create the region proposals and predict the object
categories, for each image. The following studies [42, 120] accelerated the processing cycle
time to 198 ms by applying the CNN more efficiently, including extracting convolutional
features for the whole image and sharing CNN for region proposal and classification. The
resulting method is referred to as Faster R-CNN [120].

The significant processing speed acceleration of the Faster R-CNN consolidates the basis
of nearly real-time object detection in robotic applications. This is the reason Faster R-CNN
was adopted in Team Delft’s solution to detect objects in both the shelf and the tote of the
ARC.

In the ARC setup, objects were placed in two different scenes, either in a dark shelf
bin or a red tote. Therefore, two different models were trained to detect objects in the two
different scenes. A total of three sets of RGB labeled images, were used for training:

Base Images of all the products were recorded automatically. Objects were put on a
rotating plate against a monochrome background, and a camera was attached to a
robot arm, taking images from different angles. Annotations were generated after
automated object segmentation by thresholding. Images were augmented by replacing
the monochrome background with random pictures after creating labels. This set
contains in total 20K images.

Bin Images were taken for objects randomly placed in the bin. Annotations were created
manually. This set includes 672 images.

Tote Images were taken for objects randomly placed in the tote. Annotations were created
manually. This set contains 459 images.

The pre-trained weights of the VGG net [132] were used as initialization for the convolu-
tional filters while the other filters were initialized with small random values drawn from a
Gaussian distribution [45].

Given the three different sets of labeled images, five models were trained in a two-step
strategy:

4All process timings run on one Nvidia K40 GPU overclocked to 875 MHz as provided in papers [42, 120].

3

38 3. AMAZON ROBOTICS CHALLENGE 2016

Table 3.1: Evaluation of the Convolutional Neural Networks

Network Bin test mAP Tote test mAP

Base Model 16.1 % 7.9 %
Bin Model (bin data only) 82.9 % -
Bin Model 85.7 % -
Tote Model (tote data only) - 90.0 %
Tote Model - 92.5 %

Step 1 Trained the initialized model with all the images from the Base set, obtaining a Base
model.

Step 2 Fine-tuning the Base model with scene-specific images, the Bin set and the Tote set,
obtaining scene-specific models, a Bin model and a Tote model.

The first model is the Base model. For both the Bin and Tote models, two different models
were trained. One model uses only the data from the respective environment (omitting step 1
of the two-step strategy), whereas the second model is obtained by refining the Base model
with the environment specific training set; applying both steps.

The trained models were tested using 10 % of the Bin set, and Tote set, respectively, as
two test sets. The test sets were excluded from the training procedure. An object proposal
was counted as correct if it had more than 50 % of the area overlapped with the corresponding
annotation. Average Precision (AP) were used to evaluate the ranked list of object proposals
for each item category, and the mean over the 39 categories, known as Mean Average
Precision (mAP), were used as the performance measure of the models. The Mean Average
Precision varies from 0 to 1, and higher mAP indicates that the predictions match better with
the annotations.

The result of this evaluation can be seen in Table 3.1. From this it is observed that the
best results are obtained by refining the generic Base model with environment specific data.
The Bin model was used in the ARC 2016 for the picking task and the Tote model was used
for the stowing task.

OBJECT POSE ESTIMATION

While object detection localizes objects in 2D, handling the target objects requires knowing
the 3D pose of the object with respect to the robot. The chosen approach separates pose
estimation in two stages: global pose estimation and a local refinement step.

Global pose estimation was done using Super 4PCS [89]. Since this method compares a
small subset of both a model point cloud and the measured point cloud for congruency, it
can obtain a good global estimation of the object pose. This global estimation is then used
as an initial guess in applying Iterative Closest Point (ICP) [10] for a close approximation.

For these methods, point clouds without color information were used. While it has
been suggested [89] that using color information is possible in Super 4PCS, no analysis
of its effect on the pose estimation performance was reported in that study. Furthermore it
would have required obtaining accurate colored point cloud models of the objects, while for

3.3. ROBOTIC SYSTEM OVERVIEW

3

39

most objects a simple primitive shape can be used to generate a point cloud model if color
information is ignored. For some more elaborately shaped objects (a pair of dog bones and a
utility brush for instance), a 3D scan without color information has been used as a model.

It should be noted that the Super 4PCS method inherently uses the 3D structure to obtain
a pose estimation. Lack of such structure in the observed point cloud leads to suboptimal
results. For example, observing only one face of a cuboid object could lead to the wrong
face of the model being matched to the observation.

3.3.4. GRASPING
Team Delft’s approach to grasping and manipulation is to simplify the problem to a minimum
set of action primitives, relying on the following additional requirements:
Req. 4: a suitable grasp surface is always directly accessible from the bin opening that
allows to grasp and retreat holding the product, and no complex manipulation inside the bin
or the tote is needed. This way the ‘level 2’ assumption of environment invariance holds.
Req. 5: the system should be able to find a collision-free path to grasp the product, and a
retreat path holding the product.
Req. 6: the gripper is able to pick and robustly hold any of the 39 product types, compensating
for small deviations, minor collisions of the held product, inertia and gravity effects on grasp
stability.

GRIPPER

Figure 3.4: Team Delft gripper.

A custom hybrid gripper (Figure 3.4) was tailored to handle all items in the competition
(Req. 6). It includes a suction cup based on low vacuum and high volume for robustness,
and a pinch mechanism for the two products difficult to grasp with suction: a 3 pound
dumbbell and a pencil holder made out of wire mesh. The gripper’s 40 cm length allows to
reach all the way inside the bins without the bulky robot wrist entering, and its lean design
facilitates maneuverability inside the reduced space. The suction cup features a 90° rotation
to provide an extra degree of freedom. This allows using the front surface of the object
facing the robot for grasping, facilitating Req. 4. All the moving mechanisms on the gripper
are controlled via pneumatic actuations using the digital I/O pins of the robot controller.

3

40 3. AMAZON ROBOTICS CHALLENGE 2016

(b) Front suction (d) Pinch(a) Top suction (c) Side suction

Figure 3.5: The different grasp strategies possible with Team Delft’s custom gripper.

This design strategy ensured two important aspects from a practical perspective. The gripper
can be quickly dismantled and reassembled from the rest of the robot and the need to use
delicate electronic control equipment that are vulnerable to transportation is eliminated.

GRASP STRATEGIES
The grasping strategy is chosen based on the type of product, its pose and the surrounding
cluttering, from these primitives: front suction, side or top suction, and pinch (see Figure 3.5).
The chosen primitive is parametrized to the target product by computing the grasp candidate
pose and an associated manipulation plan, using a priori knowledge and runtime information.

GRASP SYNTHESIZING
The grasp candidate is a pose that if reached by its end-effector allows the robot to grasp the
product activating the gripper according to the chosen primitive (by generating suction or
the pinch mechanism). For non-deformable products the grasp candidate is generated using
heuristics for the different product types based on geometric primitives and the structure of
the workspace, as detailed in [50]. Since a 3D pose estimation is not possible for deformable
products, grasp candidates are obtained using the surface normals of the detected object’s
point cloud, and ranked according to their distance to its centroid.

3.3.5. ROBOT MOTION
The motion motion module is responsible for moving the end-effector to all the poses needed
along the sense-plan-act behavior, fulfilling Req. 2 for reachability, Req. 5 for grasping and
the requirement for speed.

CHOICE OF ROBOT
To chose a robot manipulator that could execute all required motions, a workspace reachabil-
ity analysis using MoveIt! [133] was conducted. The robotic system designed consists of a 7
degrees of freedom SIA20F Motoman industrial manipulator mounted on a rail perpendicular
to the front side of the shelf. The resulting 8 degrees of freedom allows to reach all the bins
with enough maneuverability.

The motion problem was simplified using two assumptions about the workspace uncer-
tainty:

1. outside the shelf, the environment is static and known, and the task involves a finite
set of poses to scan the bins and the tote, and to access them, so motions can be
pre-planned offline (‘level 0’ solution).

3.4. DISCUSSION

3

41

2. inside the shelf and the tote the environment is also static but unknown. However, it
has some structure due to: the walls, the given condition of products not laying on
top of each other, gravity, and in the case of the shelf the assumption of one surface
accessible from the bin opening.

MOTIONS OUTSIDE THE SHELF AND TOTE
Using assumption 1, a ‘level 0’ solution was implemented to implement the motions needed
outside the shelf and tote. Around 30 end-effector poses were pre-defined, and collision-free
trajectories between all of them were planned offline.

MANIPULATION PLANNING
Using the second assumption, the manipulation strategy was designed from a motion per-
spective as a combination of linear segments to approach, contact, lift and retreat. These
segments are computed online from the grasp candidate poses using cartesian planning.
Collisions are accounted for using the shelf’s or tote’s 3D model and online information of
the surroundings by generating an occupancy octomap from the scanned point cloud.

PATH GENERATION AND EXECUTION
Finally, the offline trajectories and the manipulation segments are stitched into a complete
time parameterized motion plan. This process optimizes the timely execution of the motions.
It allows for custom velocity scaling to adapt the motions to safely handle the heavier
products. This process also synchronizes along the trajectory the timely configuration (to
the desired strategy), and later activation of the gripper to pick the target product, and the
verification of the pressure sensor in the gripper after retreat. Finally, the resulting trajectory
is executed by the robot manipulator, also controlling the gripper5.

3.3.6. FAILURE MANAGEMENT
Special focus was given to the overall reliability of the robotic system. The system can detect
a set of failures during the sense, plan and act phases and trigger fallbacks to prevent a stall.
For example, if the target product cannot be located, or estimate its pose, different camera
poses are tried. If the problem persists it will postpone that target and move to the next one.
A failed suction grasp is detected by checking the vacuum sealing after execution of the
complete grasp and retreat action. In that case, it is assumed that the item dropped inside the
bin and retries the pick later. If the vacuum seal is broken during the placement in the tote,
the item is reported to be in the tote, since it can actually be the case, and there is no gain for
reporting dropped items. For a pinch grasp, the system could only validate the complete pick
and place operation by checking the presence of the picked item in the image from the tote.

3.4. DISCUSSION
The Amazon Robotics Challenge is a valuable benchmark for robot manipulation solutions.
It provides interesting indicators to measure the advantages and limitations of the different
robotic solutions. Following we discuss the performance of Team Delft robot using the
automation levels framework presented in section 3.2 and analyzing the different trade-offs
of using run-time feedback or design assumptions to address the uncertain conditions.
5For additional design and implementation details of the motion planning module, please refer to Appendix A.

3

42 3. AMAZON ROBOTICS CHALLENGE 2016

3.4.1. EVALUATION
Table 3.2 summarizes the results of Team Delft’s robot in the competition to win both
challenge tasks [50]. The detailed analysis of performance in Table 3.3 shows that the
design achieved the system requirements targeted in speed and reliability while addressing
the uncertainty conditions presented in section 3.1.2. However, the system presented some
limitations that affected its performance specially in the picking task.

Table 3.2: Result summary of the ARC 2016 Finals.

Picking Task

Team
Total
score

successful
targets

misplaced
items

Team Delft 105 9 3
PFN 105 9 1
NimbRo Picking 97 10 4
MIT 67 6 2

Stowing Task
Team Delft 214 11 1
NimbRo Picking 186 11 2
MIT 164 9 0
PFN 161 10 3

DETECT AND LOCATE ALL THE PRODUCTS

The solution for object detection based on deep learning proved highly reliable and fast (avg.
150 ms). It is a ‘level 1’ solution that takes additional images from fixed viewpoints on the
fly if needed. The solution is robust to varying light conditions, including the dark locations
at the back of the bins and the reflections at the front due to products packaging and the
metal floor, at the cost of requiring large amounts of training data. On the other hand, it
is highly reconfigurable: training the model for a new product requires only a few dozens
of images and a few hours. This makes this approach very attractive for tasks where the
arrangement of the products is unknown, but sample information can be easily generated.

The pose estimation of the target based on Super 4PCS is less reliable, and its speed had
higher variance, due to which a time limit to 4 s was added to trigger fallback mechanisms.
Speed could be improved with a GPU implementation of the Super 4PCS algorithm. The
main problem for the open-loop solution implemented was the scarce point cloud information
obtained for certain situations, strongly affected by lighting conditions and packaging
reflections. The ‘level 1’ fallback mechanism to take additional images from fixed locations
was not an improvement. A possible improved ‘level 2’ design would use the information
from an initial pose estimation to plan a new camera pose. However, in many cases the pose
estimation error considered the target in impossible or unreasonable orientations. A more
promising enhancement is then to use more application heuristics during design, for example
assuming that gravity limits the possible orientations of an object.

3.4. DISCUSSION

3

43

STABLE GRASP FOR ALL PRODUCTS AND ORIENTATIONS

Team Delft’s grasping solution was able to pick all 39 items in the 2016 competition, in most
orientations and bin locations. The ‘level 1’ solution to grasping and product handling, based
on a custom gripper, achieved a robust and fast performance for most of the products. The
high-flow, low-vacuum combined with a compliant suction cup proved robust to different
product surfaces and misalignments (90 % success rate). Additionally, it embedded grasp
success sensing, providing an interesting standalone ‘level 1’ solution. The main problems
of the suction mechanism were: inadvertently grasping two objects, and the stability of
the grasp for large, heavy products. The first problem could be improved by verifying
the grasped products with the tote camera. The second problem is partially addressed by
manipulation planning with custom heuristics to orient the product after grasping.

The pinch mechanism is less reliable (50 % success rate for the dumbbell). Its lack of
compliance demanded a higher accuracy than that provided by the pose estimation module.
Additionally, it is a ‘level 0’ standalone solution with no feedback on the success of the
operation.

REACH AND MANEUVER ALL LOCATIONS

Robot motion is critical in manipulation applications in relation to speed and collisions.
Regarding speed, the overall ‘level 2’ solution designed allowed to optimize the robot
motions during design, achieving a high performance only limited by the grasp stability and
safety6. As an indicator, Team Delft robot achieved an average cycle time of 35 s, compared
to more than a minute for the feedback-based winning solution in 2015 [34].

In relation to reliability, Team Delft solution combined offline information in the 3D
models of the workspace and the runtime point cloud information from the 3D cameras
to avoid collisions. Avoiding collisions guarantees not modifying the structure of the
environment, thus facilitating the application of an open-loop ‘level 2’ solution. However,
it is more limited for handling cluttered situations, where it can be unavoidable to touch
objects next to the target. Additionally, it is more sensitive to perception errors and scarcity
of data, as is the case of the shelf, where a limited range of viewpoints is possible.

OVERALL SOLUTION

The overall ‘level 2’ sense-plan-act solution achieves a high-performance when the core
assumption of an accessible grasp surface holds. This is the case in the stowing task, a
standard bin picking application, thanks to gravity and task conditions (workspace geometry
and product characteristics).

Bin cluttering presented the main difficulty to the ‘level 2’ approach, making the collision-
free requirement hard to address. Avoiding it by moving items around posed the disadvantage
that an unknown number of pick and place actions could be needed to remove all the objects
occluding the grasp of the target item. On the other hand, the simplification to a ‘level 2’
system using only two primitive actions allowed us to optimize the required robot motions
for speed, by exploiting the structure of task and environment as described in section 3.3.5.

6Due to the competition setup the robot speed limits were set to a safe 0.5 factor of its nominal maximum joint
speed.

3

44 3. AMAZON ROBOTICS CHALLENGE 2016

Table 3.3: System performance summary

44 pick & place operations attempted in the Picking and Stowing finals.
38 operations on target items, and 6 to move occluding items.

Successful 25
11.35 s (avg) sense&plan
22.41 s (avg) act (robot motions)
33.76 s (avg) total pick&place execution time

Failed
recovered

3 target not detected or pose not estimated
10 no motion plan found
6 target dropped after grasp

penalties 1 target dropped outside the bin
1 non-target shoved outside the bin

System fatal errors Stall condition due to no more feasible targets.
Emergency stop due to gripper crushing object.

Another disadvantage of our ‘level 2’ approach was the limited compliance with runtime
uncertainty and its need for accuracy. The localization of the target products has to be precise
to 5 mm, as well as the collision information. The hardware selection regarding the cameras
and the gripper design proved that it is critical to simplify the control solution.

In relation to workspace uncertainty, the solution proved robust to deviations in the
shelf’s geometry, they being due to construction or to the 3 cm displacements allowed by
the competition rules. These uncertainties were compensated for by the bin pose estimation
procedure performed during the sense cycle. This approach turned out to be a significant
factor in reducing the overall cycle time for the first pick which also was the tiebreaker to
decide the winner if teams tied on points.

FAILURE MANAGEMENT

The possible failures of the system are: i) the product cannot be picked ii) product is dropped,
iii) critical collision leading to equipment or product damage. These failures could arise
from any of the core modules of the Team Delft-APC system namely Vision, Grasping or
Motion. While exhaustive testing of all failure modes on the final system was difficult to
perform due to practical reasons, some of the failures observed while testing and the actual
run in the final competition are listed in Table 3.3.

The nature of the failures caused by the core module Vision were fairly consistent
in the products and the situation that caused them. However, the failures caused by the
core modules Grasping and Motion were difficult to reproduce as they were caused by IK
solutions that would put the last few joints of the robot in a singular configuration while
performing specific grasps (such as Bubble mailer leaning on the side walls of the top left or
right corner bins). This was mainly caused by the numerical optimization based TRAC-IK
solver used for the grasp motion planning. This non-determinism could have perhaps been
reduced by using a fixed seed for the TRAC-IK solver, but, we did not have the time to
implement and test this solution before the challenge.

3.4. DISCUSSION

3

45

The error handling mechanisms described in 3.3.6 provided for reliability when the
product cannot be picked, by either retrying it under different conditions (new camera
images), or postponing that target. When the product is dropped, appropriate action or
reporting was coded using favorable assumptions about the result of the action. ‘Level 1’
mechanisms for error handling specific to the application are unavoidable. However, general
methods and tools that allow to capture them in a scalable and maintainable way are critical,
such as the state-machine tool SMACH used by Team Delft.

3.4.2. LESSONS LEARNED
Overall Team Delft’s approach to design the level of automation required for each prob-
lem proved to be successful, outperforming concurring and previous editions’ entries in
the Amazon Robotics Challenge. The main lessons learned relate to the value of open-
loop solutions, how deep learning can contribute to them, and the need for collisions in
manipulation.

In semi-structured, closed environments, the proper combination of open-loop solutions
and hardware tailoring based on adequate assumptions provides the best performance. An
exemplary case that proves that exploring simplifying hypothesis with open-loop solutions
is worthy are the deformable products in the Amazon competition. Initially, they seemed to
pose problems to locate, given the lack of a 3D model for them, and even more difficulties
to manipulation planning. However, detection worked flawlessly with enough training
data, and the compliant and powerful suction gripper made precise localization and careful
manipulation unnecessary.

To address the limited flexibility and corner cases, Team Delft integrated two different
solutions that exploit application knowledge at design time to tackle runtime uncertainty. For
grasping, manipulation, and error handling, heuristics were programmed. They provide a
simple and powerful solution easy to implement and inspect. However, their practical imple-
mentation presents important problems. First, they require intensive work by experts. They
are hardly reusable. Finally, they do not scale: in complex applications such as the Amazon
Robotics Challenge, where there are many robot technologies and components connected,
modifying or adding new task-level heuristics in the design becomes unmanageable. The
challenge remains to find practical ways to systematically encode knowledge, something the
AI and cognitive robotics communities have been targeting for decades.

Deep learning techniques are a very promising solution to automate the generation
of application-specific solutions embedding task-knowledge. Despite being an open-loop
solution, automated training allows to easily accommodate for variations (bounded uncertain-
ties), as well as to easily adapt it to new products or environments. In Team Delft’s design,
deep learning proved a very reliable and performing solution for object detection. Another
successful entry in 2016 competition7, as well as other results [82] suggest that it can be
applied to grasping. However, the generation of training data in this case is very resource
consuming. An intermediate, more feasible solution could be applying it to pose estimation.

Grasping from the bin poses more difficulties for Team Delft’s open-loop solution. with
many grasps being rejected due to collisions despite some of them being harmless or actually
useful to grasp an object. Many results suggest that grasping and manipulation require to
allow for contact, using techniques that incorporate force/torque information [34]. Feedback

7https://www.preferred-networks.jp/en/news/amazon-picking-challenge_result

https://www.preferred-networks.jp/en/news/amazon-picking-challenge_result

3

46 3. AMAZON ROBOTICS CHALLENGE 2016

solutions seem unavoidable for successful manipulation in cluttered environments. However,
for improved performance it is desirable to limit their scope in the robot control by combining
them with the better performing planning solutions. Current robot motion planning based on
joint configuration space presents problems with grasp stability and does not allow for more
flexible online planning based on force/torque feedback. Kinodynamic motion planning can
overcome these limitations, but more research is needed for it to become a practical and
feasible solution.

3.5. CONCLUSION
This chapter provides a practical discussion on the challenges for industrial robot manipula-
tion for product handling, based on the experience of the authors developing the winning
solution in the Amazon Robotics Challenge 2016. From this experience, we conclude:
1) the specific task conditions should guide the selection of the robotic solutions for an
application, 2) understanding the characteristics of the solutions chosen and their relation to
the task’s conditions, embedded in multiple design decisions and assumptions, is critical for
the performance of the overall system integrated from them, and 3) this characterization can
be done according to ‘robot automation levels’, based on the use of information to address
the task uncertainties during the development and runtime of the robotic system.

4
DYNAMIC COLLISION

AVOIDANCE FOR
COLLABORATIVE ROBOT

APPLICATIONS

Current collaborative robot arms enable the creation of more flexible work cells. That is,
they create the possibility to safely collaborate with human operators and thus augmenting
productivity in tasks difficult for traditional automation. However, current solutions for safe
interactions imply stopping the robot motion when a collision is detected. This reduces
the productivity in an operational setup in which unintended, safe collisions can happen
often. Active contact evasion by the robot arm is desirable so that the production process
continues despite regular interferences and path obstructions. As a part of the European
Union project Factory in a day (FiaD), multiple technologies have been developed such
as, a proximity-sensing robot skin, a motion control framework based on proximity-sensing
and a reactive path-planning solution. These technologies have been integrated into a
dynamic-obstacle avoidance framework and successfully tested in simulation and laboratory
set-ups. This chapter presents the obstacle avoidance solution that is realized with this
framework for a collaborative pick and place application prototype. This prototype has also
been successfully presented at two public events: RoboBusiness Europe 2017 and at the
European Innovation Summit 2017 and at the final demonstration of the FiaD project.

The contents of this chapter have been derived from the paper:
Mukunda Bharatheesha, Nirmal Giftsun, Carlos Hernández Corbato, Gautier Dumonteil and Martijn Wisse,
Dynamic Collision Avoidance for Collaborative Robot Applications, IC3-Industry of the future: Collaborative,
Connected, Cognitive, Workshop at the International Conference on Robotics and Automation (ICRA), 2017.
The main difference to the paper is the inclusion of the completed results as opposed to the preliminary results
mentioned in the paper.

47

4

48 4. DYNAMIC COLLISION AVOIDANCE

T HE desire for robotic solutions, particularly in the Small and Medium scale Enterprises
(SMEs) is becoming increasingly prominent. Automation and robotics promise to

deliver reduction on production costs and increase in productivity. However, traditional
automation implies an investment prohibitive for SMEs, whose activities mainly involve
small batches of production and high variety of products, for example, due to a seasonal
nature of their operations. Concretely, tasks such as assembly, machine filling or packaging,
can be automated with a robot in the work cell. However economic feasibility requires a
reduction in robotization costs. The FiaD project [145] aims to achieve this by reducing
system integration costs and installation time. The key idea is that the robot solution is
flexible so that it can be quickly re-installed and configured to another temporary product
line.

To achieve this flexibility and maintain acceptable levels of productivity, in the FiaD
approach we propose to automate the easy 80 % of the tasks and leave the hard 20 % for
human co-workers. Robot manipulators provide power, repeatability and extended work-
space while the human operators provide flexibility and problem solving capacity. In
addition, fenceless collaborative robots save space and installation cost. However, this
approach requires a very high level of safety and agility; the robots should be aware of
any obstacle, including dynamic obstacles such as its human co-workers, and be able to
move to avoid contact. Whereas current co-bots guarantee safe contacts, they degrade the
performance of the work cell because of stopping the production. In this chapter, we present
one of the breakthrough innovations of the FiaD project: robot arms that are aware of all
(dynamic) obstacles in their environment, and that respond by moving around these obstacles
while still continuing their work.

The chapter is organized as follows. Section 4.1 describes the solution for dynamic
obstacle avoidance that makes use of a proximity-sensing robot skin. In Section 4.2 the robot
motion control architecture to incorporate the collision information as safety constraints to
dynamically adapt the trajectory is presented. Section 4.3 presents the experimental results
obtained in two different robot setups, one in simulation and one on a hardware prototype.
Finally, in Section 4.4 we present our concluding remarks.

4.1. DYNAMIC OBSTACLE AVOIDANCE SOLUTION FOR COL-
LABORATIVE MANIPULATION

Current collaborative robot solutions guarantee safety, but they use obstacle detection to
stop moving. Our dynamic obstacle avoidance solution is that of using obstacle detection to
respond by moving around the obstacles while continuing to accomplish the desired tasks.
The obstacles are detected by a proximity-sensing robot skin. Additionally, an integrated
dynamic motion planning approach creates motion plans that fulfill various task specific
constraints for typical industrial applications. For example the work cell 3D model is used
to create a consistent model of the work environment, so that collision free trajectories are
flexibly generated for different operations. The automatic consideration of these constraints
drastically simplifies and speeds up the deployment of the robot.

The solution presented in this chapter relies on the innovative proximity-sensing Artificial
Robot Skin (ARS) developed by the Institute of Cognitive Systems Systems in the Technical
University of Munich [92]. This modular skin consist of identical ‘cells’ physically connected

4.2. ROBOT MOTION CONTROL USING PROXIMITY SENSING

4

49

forming skin ‘patches’. These patches can be applied to cover the robot’s links and joints,
while being electronically connected to work as a single, modular robot skin. Each cell
in the skin produces 4 modalities of perception: 3D acceleration, force, temperature, and
distance. The multi-modal signals from the Artificial Robot Skin can be used to control the
dynamic behavior of an industrial robot , for example to achieve compliant motions in a
non- compliant robot manipulator [27]. These multi-modal signals can also be exploited to
generate semantic representations [60] for teaching new task to the robot [31]. The ARS
also features auto-calibration that allows to determine the kinematic chain of each cell to the
robot base frame [91]. In this work, we use the distance provided by the optical proximity
sensor in the skin, which is used to detect the obstacles around the robot.

An artist’s illustration of our dynamic obstacle avoidance solution is shown in Figure 4.1.
The robot motion control component generates appropriate motion commands for the robot
controller to follow the trajectories required for a given task. The proximity-sensing skin
that covers the links and joints of the manipulator, produces information regarding potential
collisions. This information is used by the robot motion control module to adapt the robot
motions on the fly to fulfill both constraints: following the current trajectory (with a certain
tolerance) and avoid collisions. If the collision is unavoidable with local deformations of the
current trajectory, the robot motion control module requests a (global) re-planning, which is
performed on the fly by the reactive path-planner. The motion control then takes the end
effector to the final goal pose using the alternative trajectory. The main functional modules
of the system are discussed in the following sections of the chapter.

Figure 4.1: An artist’s schematization of the FiaD Dynamic obstacle avoidance concept is illustrated on the left
side. On the right, an overview of the main components of the solution.

4.2. ROBOT MOTION CONTROL USING PROXIMITY SENS-
ING

The motion control is achieved using the Stack of Tasks (SoT) controller framework
[88]. SoT employs a hierarchical jacobian control strategy eliminating the analytical inverse
kinematics computation, thus making it a generic controller for all robot platforms. The
controller’s hierarchical nature allows the robot to handle multiple kinematic tasks simultan-
eously exploiting the kinematic redundancy of the robot. The controller’s real time capability
comes from the high computational speed of the state of the art Hierarchical Quadratic
Programming (HQP) solver backing it.

4

50 4. DYNAMIC COLLISION AVOIDANCE

A task basically is a control law that achieves a specific objective which can be a free-
space task or just an inequality constraint that narrows down the workspace of the robot. The
task function formalism is very well discussed in [125]. In the context of our work, tasks
generally include robot joint posture task, collision avoidance task, joint limits task and so
on. The SoT framework handles the task priorities hierarchically in real time to ensure there
are no conflicts among tasks which is used to achieve dynamic obstacle avoidance without
compromising on the main goal.

For example, let us consider a pick and place application in a collaborative environment.
The primary goal for this application is to enable a robot to move to a (set of) desired pick and
place locations repetitively. The pick and place locations can be defined as posture tasks in
SoT. However, a higher priority task considering the collaborative nature of the environment
is to avoid collisions with obstacles that could be humans, for instance. Typically such a
task is modeled as an “Inequality task” and an eventual feasible solution (if one exists) is
computed by the solver by exploiting the kinematic redundancy of the robot. In the jargon of
motion planning and control, this behavior is similar to a local planner. However, it is likely
that a feasible solution is not found due to the solver converging to a local minima1. In such
a scenario, SoT can also be used to leverage the services of a global planner (see Section
4.2.1) from the current robot state to the goal so that an entirely new path is obtained which
is free from collisions and consequently allowing all the specified tasks to be achieved in the
order of their priorities. In Section 4.3, we present the experimental results of using the SoT
controller on a practical setup and in simulation. The SoT controller has also been configured
to work with the ROS-control interface. In all these setups, the proximity information from
the artificial robot skin is used as an input to the collision avoidance task. In the following
part, we briefly present the global path planner software framework that is used when the
SoT controller hits a local minima.
4.2.1. REACTIVE PATH-PLANNING
The reactive path planning software framework is based on the industry grade Kineo-
Works™2 [74] path planning library from Siemens in order to provide fast and reliable robot
paths. This framework has also been seamlessly integrated into the ROS-ecosystem via a
ROS package called kws_ros_interface which provides the planner implementations
of KineoWorks as shared objects that are readily usable in ROS-based software via the
kws_ros_planner ROS node.

Robot kinematic models are provided to KineoWorks in the Unified Robot Description
Format (URDF) which is a ROS standard. Furthermore, KineoWorks also accepts the
standard ROS representation of a PointCloud3 for creating collision models of dynamic
obstacles in the environment. In our work, point clouds are generated in two ways. In one
scenario the point clouds are generated by a standard Kinect 3D camera that is observing the
immediate environment of the robot. In the other scenario, the point clouds are generated
from the proximity data obtained from the Artificial Skin. Finally, the collision detection
for dynamic obstacle avoidance is performed using the Kineo™Collision Detector (KCD)4.

1This is caused by the use of task jacobians and non-availiability of redundant degrees of freedom in the robot. For
further details, please see [88].

2See http://www.plm.automation.siemens.com/en_us/products/open/kineo/kineoworks/index.shtml
3See http://wiki.ros.org/pcl
4See http://www.plm.automation.siemens.com/en_us/products/open/kineo/collision-detector/index.shtml

4.3. RESULTS

4

51

KCD performs 3D collision detection and minimal distance analysis between triangular
mesh surfaces in assembly environments. KCD has been designed specifically to minimize
memory usage and take advantage of parallel processing. The complete software architecture
used in this work for the Dynamic Collision Avoidance functionality is shown in Figure 4.2.

Figure 4.2: Dynamic collision avoidance software architecture for the simulated robotic setup in Figure 4.4.

In the following sections we present simulation and hardware results that have been
obtained using the different functionalities described.

4.3. RESULTS

The results of evaluating the different functionalities are presented in two main categories.
The first category includes results from individual evaluation of the different functional
components on practical applications. The second category involves simulation and practical
results of integrated evaluation of the functional components.

4

52 4. DYNAMIC COLLISION AVOIDANCE

Figure 4.3: Robot setup showing Artificial Skin Cells being activated (with red LEDs) by obstacles (<= 6cm).

4.3.1. INDIVIDUAL COMPONENTS
The Artificial Robot Skin (ARS) has been successfully deployed on a Universal Robots
UR5 robot (see Figure 4.3). The ARS has been configured to provide proximity information
related to obstacles in the immediate surroundings of the robot.The Stack of Tasks (SoT)
controller has also been deployed and tested for achieving different postures on the setup in
Figure 4.3.

4.3.2. INTEGRATED EVALUATION
The integration of all the components described earlier has been evaluated on a simulation
of the orange sorting by Dean et al [28, 29] as shown in Figure 4.4.

Figure 4.4: Orange sorting scenario in simulation.The red point cloud is a simulated obstacle.

The evaluation is done in a ROS based gazebo environment with the skin sensors
simulated using the flexible collision library to project the distance between objects to sensor
range measurements.These measurements are mapped to signals compatible in dynamic
graph framework using a bridge component to allow its use in the SoT controller.

4.3. RESULTS

4

53

The collision avoidance component computes the point distance and jacobian of each
and every skin cell configured essential to feed as an inequality constraint to the solver which
backs the SoT controller. The planning component having the capability to plan with point
cloud data has a MoveIt! [133] python interface to query motion plan requests. The response
is a set of way points which is then linearly interpolated to instantaneous joint position
commands to a path tracking task in the SoT. The SoT controller also has a python interface
which makes it easy to design application scenarios. The combined use of a reactive motion
planner and a hierarchical reactive SoT controller with skin data makes it a good candidate
for dynamic obstacle avoidance applications in factory environments5.

Figure 4.5: Collision avoidance task - The robot modifies its posture when an obstacle comes closer than 6 cm. L
to R top row: As an obstacle (human hand) approaches closer to the skin cells on the forearm, the SoT controller
computes commands such that the elbow joint moves in such a way that the desired distance is maintained. L
to R bottom row: In this case, the base joint of the robot moves such that the desired distance to an obstacle is
maintained.

The components have also been tested on a hardware prototype (Figure 4.5). As described
in Section 4.2, the collision avoidance constraint is specified as an inequality task. In this
context, the task stack is composed of two tasks in the order of their priorities: an inequality
task for ensuring the generated control commands are within the specified joint limits and
an inequality task for maintaining a distance of 6 cm or higher from any obstacle. In the
SoT framework, this is specified by using a selection of skin cells located on the forearm
of the UR5 robot, and each cell constitutes an inequality task with a priority just below the
joint limits task. The number of such cells is required to be selected in advance. This is
because, the SoT framework is currently limited to work with (task) jacobians of a fixed
dimensions. Therefore, online modification in the size of the task stack for the HQP solver
leads to numerical instabilities.

Once the basic collision avoidance behavior was realized, the trajectory following task
was added to the task stack and it was assigned a priority lower than the collision avoidance
task and naturally, the joint limits task. One of the practical issues we faced was that the
proximity data beyond a distance of 6 cm was noisy and inconsistent for practical use. This
impacted the possibility of using the KineoWorks™planner in the hardware setup. This
was because, most of the valid proximity data (~6 cm) from the skin sensor was filtered
out as self collisions by the reactive path planner and actual information about the robot
surroundings could not be reliably obtained. Without the availability of any other sensor
modality to acquire information about the surroundings of the robot, an alternative path was
impossible to plan when the SoT controller was stuck in a local minima (see Figure 4.6).

5A video of this result is available in: https://youtu.be/uLStjR7mpOI

4

54 4. DYNAMIC COLLISION AVOIDANCE

Figure 4.6: Collision avoidance task - Illustration of the local minima situation. L to R top row: An obstacle is
introduced in the workspace close to the final joint configuration on the robot trajectory. However, the trajectory
is not completely executed as the higher priority collision avoidance constraint cannot be satisfied at the desired
final configuration. Without the availability of other sensing modalities to find alternative paths the robot is stuck
in a local minima close to the final configuration. L to R bottom row: As the obstacle is removed, the collision
avoidance constraint is satisfied and the robot completes the trajectory execution.

While the local minima situation is not desirable in an industrial scenario, the goal was to
show a proof of concept of a possible solution. Therefore, these behaviors were integrated as
a prototype application in a bin picking scenario. The reactive collision avoidance behavior
achieved with this setup while performing a pick and place task is shown in Figure 4.7.

Figure 4.7: Collision avoidance task - Illustration of a successful alternate path generation behavior. L to R top
row: After the robot has picked up an object, an obstacle is introduced along the robot trajectory to the object
drop off location. L to R bottom row: The SoT controller computes an alternative path avoiding the obstacle while
respecting the collision avoidance constraint and the trajectory execution task is successfully completed thereafter.

This prototype has been presented at multiple public events such as RoboBusiness Europe
2017 (RBE17), the final demonstration of the FiaD project and at the European Innovation
Summit (EIS) at the European Parliament (see Figure 4.8).

4.4. CONCLUDING REMARKS
This chapter has presented the technologies that have been developed in the FiaD project
to augment collaborative robot manipulators with dynamic obstacle avoidance. All these
technologies: a proximity-sensing robot skin, a reactive path planning solution and a robot
motion control strategy, have been validated in laboratory prototypes. Also, a preliminary
prototype of an integrated solution based on these technologies has been tested in simulation
and on real hardware. These results provide promising directions for making the next step
towards deployment of collaborative robotic solutions for SMEs.

4.4. CONCLUDING REMARKS

4

55

Figure 4.8: Hardware prototype for demonstrating the reactive collision avoidance behavior.

The integration and installation of advanced functionalities such as the dynamic obstacle
avoidance solution presented poses three main challenges from the software point of view.
The first is the integration of different components such as the skin driver, path planner and
robot motion control. We address this challenge by adhering to the software development
paradigm of the ROS-Industrial initiative. All the components discussed in this chapter have
been successfully integrated with ROS.

A second challenge is the quality assurance and robustness of the integrated robot soft-
ware. This is crucial in production environments, and is specially important in collaborative
applications, where safety needs to be guaranteed. For this purpose an Automated testing
Framework (ATF) has been developed [144] as a part of the FiaD project, which allows for
the systematic testing of robot software components, which includes unit testing, simulation-
in-the-loop testing and eventually hardware-in-the-loop testing. The tests can be automated
and integrated in a centralized continuous integration system. Preliminary test have already
been conducted with the components of the robot software system of this work, and the
integrated prototype applications will be tested with ATF.

Finally, the third challenge is the deployment of the software. One of the main barriers
to transfer solutions based on robot frameworks such as ROS to industry, and specially
SMEs, is how cumbersome it is to deploy. As a part of the FiaD project, a Robot deployment
toolbox has been developed [87], based on ROS, which can also be integrated with ATF.
Due to time constraints, the testing of the deployment tools has not been performed on the
robotic application presented in this chapter.

NOTES
- The hardware and software deployment of the Artificial Robot Skin on the robot setup used
was done by Katharina Bulla and Florian Bergner with the support of Dr. Emmanuel Dean
and Prof. Dr. Gordon Cheng from the Institute of Cognitive Systems, Technical University
of Munich.

4

56 4. DYNAMIC COLLISION AVOIDANCE

- The realization of the reactive controller on the robot hardware was achieved with strong
support from Nirmal Giftsun and Florent Lamiraux from LAAS-CNRS, Toulouse, France.

II
SAMPLING-BASED PLANNING IN

STATE SPACE

57

5
DISTANCE METRIC

APPROXIMATION FOR STATE
SPACE RRTS USING

SUPERVISED LEARNING

Science is the art of the appropriate approximation. While the flat earth model is usually
spoken of with derision it is still widely used. Flat maps, either in atlases or road maps, use

the flat earth model as an approximation to the more complicated shape.

Byron K. Jennings

The dynamic feasibility of solutions to motion planning problems using Rapidly Exploring
Random Trees depends strongly on the choice of the distance metric used while planning. The
ideal distance metric is the optimal cost-to-go between two states in state space. However,
it is computationally intensive to find the optimal cost while planning. In this chapter, we
propose a novel approach to overcome this barrier by using a supervised learning algorithm
that learns a nonlinear function which is an estimate of the optimal cost, via offline training.
We use the Iterative Linear Quadratic Regulator approach for computing a (locally) optimal
cost and learn this cost using Locally Weighted Projection Regression. We show that the
learned function approximates the original cost with a reasonable tolerance and more
importantly, gives a tremendous speed-up of a factor of 1000 over the actual computation
time. The effectiveness of our approach is shown on a pendulum swing up planning problem.

The contents of this chapter have been derived from the paper:
Mukunda Bharatheesha, Wouter Caarls, Wouter Wolfslag and Martijn Wisse, IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2014, pg. 252-257. The main difference to the paper is the inclusion of
additional results at the end of the chapter to further substantiate the validity of the proposed method. These results,
although available at the time of writing the paper, were left out due to space limitations.

59

5

60 5. DISTANCE METRIC APPROXIMATION IN STATE-SPACE

S AMPLING-BASED approaches for kinodynamic planning [80] have been an active subject
of research in the past two decades. A commonality that lays beneath the myriad of

approaches that have been proposed is the tree graph structure. Depending on how the
nodes of a tree are chosen for further expansion, two specific research directions have
emerged; choosing a node to expand based on distance to a randomly sampled node from
the state-space [80] and choosing a node based on the density of nodes in a specific region
of the state-space [51]. The former addresses the key question of formulating an appropriate
distance metric while the latter focuses on appropriate methods to quickly estimate coverage
densities. Typically, these approaches are well suited for offline kinodynamic planning. Due
to the inherent exploration feature that is embedded in these approaches, these approaches
solve the planning problem at a global level and thus guarantee goal reachability and avoid
local minima.

5.1. KINODYNAMIC PLANNING

K INODYNAMIC motion planning has been a subject of extensive research in the past two
decades and addresses the problem of finding a motion plan for a robotic system that

adheres to the kinematic and dynamic constraints. Often, the state space of the system is
the chosen candidate for kinodynamic planning as it naturally allows for accounting for the
dynamical constraints of the system. However, a well known difficulty is that this problem is
PSPACE-hard [78]. Hence, several practical solutions rely on the idea of sampling-based
planning. Sampling-based approaches rely on constructing a tree graph structure with the
states of the system as the tree nodes and the trajectories of the system between two states
as the tree edges. Two approaches that have been extensively researched in this area are
the Rapidly Exploring Random Trees (RRT) [80] and Probabilistic Road Maps (PRM) [51].
One of the main difference between the RRT and PRM approaches is the way in which an
existing node in the tree is chosen for further expansion. In an RRT, the node to expand
from is chosen based on the notion of a distance to a randomly sampled node in the state
space. On the contrary, PRM-based approaches typically choose a node to expand based on
a probabilistic weighting of the density of nodes in different regions of the state space. In
our work, we focus on the RRT-based approaches. The RRT approach is briefly outlined
in Algorithm 2. In the RRT algorithm mentioned above, N indicates the number of tree

Algorithm 2 RRT ((V, E), N)

for j = 1,. . . N do
xrand ←Sample
xnearest ←Nearest (V , xrand)
(costxnew, xnew) ←Steer (xrand, xnew)
X ← X ∪ {xnew}
E ← E ∪ {(xnearest, xnew, costxnew)}

return G = (V , E)

nodes to be generated, V is the vertex set and E is the edge set of the tree graph. The
Sample procedure samples a random node from the state space. The Nearest procedure
determines the nearest neighbor in the tree to the randomly sampled node based on an

5.1. KINODYNAMIC PLANNING

5

61

a b>>
pcarpcarp1 p2

vcarv1 v2

v

p

xcar
x2x1

d=f(x3, x4) f(x3, x4)

x3x4

Learn

Figure 5.1: Simple depiction of the problem of distance metric in state space. While driving a car forward, it is
generally easier to reach a point ahead of the car rather than reaching a point behind the car. The tree structures
indicate a candidate solution that could be found by RRT.

appropriate distance metric. The Steer procedure attempts to connect the nearest neighbor
to the randomly sampled node and also gives the corresponding cost to connect the two
nodes. Typically, this is accomplished by forward simulation of system dynamics for a
specified duration. If this attempt is successful, the randomly sampled node is added as the
new node to the set of tree nodes. Otherwise, the state that is eventually reached by the
Steer procedure is added as the new node to the set of tree nodes.

We explain the importance of distance metric in the state space with a simple example
depicted in Figure 5.1. The position and velocity of the car are its states. Let us consider the
state at time instant t0 as (pcar , vcar). Let t1 denote the time at which the state is (p1, v1),
which is 10 m ahead of the car. For simplicity, we assume, v1 = vcar . Similarly, let (p2, v2)
indicate the state of the car at t2, which is 10 m behind the car. In the context of state space,
we consider (p1, v1) is nearer to (pcar , vcar) as the car is already moving forward and hence
less work is needed. On the other hand, to reach (p2, v2) with vcar = v2, we first reduce
the car speed during which we move forward, come to a halt, drive backwards beyond p2,
again halt and then arrive at p2 with velocity v2. Hence, (p2, v2) is considered to be farther
from (pcar , vcar) when compared to (p1, v1). In this sense, the distance in state space has
the notion of a cost-to-go between two states. Furthermore, the optimal cost-to-go between
two states is considered as the ideal distance metric in state space [80]. In fact, solving this
problem exactly would eventually solve the overall motion planning problem [80].

In the simple car example described earlier, we can exactly solve for the optimal cost-
to-go between states (denoted by a and b in Figure 5.1) in very short time and thus have
a perfect distance metric. However, in systems with pronounced (and possibly non-linear)
dynamical effects, computing the optimal cost takes a very large amount of time. This factor
limits the possibility of using RRTs for online planning problems. It is also argued in [80]
that approximations of these costs can significantly improve the feasibility of plans generated
by RRT-based approaches. It is also well documented that the feasibility of the solution
generated by state space RRTs is highly sensitive to the distance metric used [77, 44].

5

62 5. DISTANCE METRIC APPROXIMATION IN STATE-SPACE

5.1.1. RELEVANT BACKGROUND
In literature, the choice of the distance metric has evolved significantly ever since the basic
RRT implementation in [80] used the Euclidean distance. In fact, Euclidean distance is
used in an indirect sense in [130] to assess the proximity of the randomly sampled node to
the reachable set of a node in the tree and subsequently make the appropriate choice. In
a subsequent work, Glassman and Tedrake [44] propose a metric based on the theory of
Linear Quadratic Regulators (LQR) and affine dynamics of a non-linear system around a
linearization point. They refer to their approach as the Affine Quadratic Regulator (AQR)
design. While the work on AQR primarily focuses on the distance metric alone, the authors
of [105] use the LQR theory not only to estimate the metric but also to use the resulting
optimal policy for propagating the tree further. They also use the asymptotically optimal
version of the RRT algorithm, namely RRT*, and hence establish the asymptotic optimality
of the resulting plans from their approach.

A primary reason for the choice of LQR-based approaches for approximating the cost-
to-go metric is the ease and speed with which they can be numerically computed. These
approaches have shown to work with reasonable efficiency in [44, 105, 121]. The strategy of
linearizing around sampled random points with either zero inputs or zero velocities or both is
however, not a good approximation of the cost-to-go. In principle, such an approach would
completely diminish the possibility of utilizing natural system dynamics. This problem
is discussed in greater detail in Section 5.2.1. The authors in [44] discuss the situation
of linearizing about points with non-zero inputs and velocities too, but mention that the
performance of their approach drops off as nonlinear dynamics become prominent.

A solution to address this problem has been proposed in Li and Todorov [83], where
nonlinear dynamics are linearized around a nominal trajectory instead of a point and an
optimal cost-to-go is obtained iteratively by solving a modified LQR problem (iLQR). One of
the primary reasons that this approach has not been popular in the sampling-based planning
domain is the time needed to converge to the optimal cost. We defer further details on this
approach to Section 5.2.1.

We recall from the car example in Section 5.1, that the nature of the distance metric in
state space is nonlinear. In a mathematical sense, the distance metric is a nonlinear mapping
ρ : X ×X → R+. The iLQR approach discussed earlier can also be considered one such
mapping. Existing literature in the area of supervised learning indicates the possibility
of approximating nonlinear functions. Our main contribution is showing that the cost
calculated by iLQR can be accurately and efficiently approximated using supervised learning
techniques. We use Locally Weighted Projection Regression (LWPR) [142], which allows
for approximating nonlinear functions in high-dimensional spaces by using locally linear
models. After off-line training on a dataset generated with iLQR, the on-line planning stage
only requires a single evaluation of this model to approximate the distance between two
points. In this way, we enable the RRT-based planning to avail the benefits of the iLQR
approach without the increase in computation time. We substantiate the choice of LWPR
learning over other supervised learning methods such as neural networks or SVM regression
in Section 5.2.2.

The rest of the chapter is structured as follows. In Section 5.2, we formally present our
problem along with a brief description of iLQR and LWPR algorithms. We follow it up
with our proposed solution to combine the two approaches in Section 5.3. In Section 5.4, we

5.2. PROBLEM DESCRIPTION

5

63

present the experimental results and highlight the resulting benefits. We briefly discuss our
results in Section 5.5 and finally conclude in Section 5.6.

5.2. PROBLEM DESCRIPTION
Let us consider a robotic system with the following nonlinear dynamics:

ẋ = f (x,u) (5.1)

where x is the state vector of the system and u is the input vector. Given the dynamics
described by Eq. 5.1, the Rapidly Exploring Random Tree (RRT) algorithm allows for finding
a motion plan to steer the system from an initial state xi to a final state x f . A main ingredient
for generating a feasible plan via the RRT approach is the distance metric ρ : X ×X →R+.
The distance metric is called at every iteration of an RRT. As described earlier, computing
the metric in state space requires a significant amount of CPU time.

Our work proposes a solution that significantly reduces the distance metric computation
time. We use a combination of the optimal control approach Iterative Linear Quadratic
Regulator (iLQR) and a supervised learning approach called Locally Weighted Projection
Regression (LWPR) to achieve the reduction in computation time. We briefly describe the
two approaches in the following.

5.2.1. ITERATIVE LINEAR QUADRATIC REGULATOR (ILQR)

Position

V
e

lo
ci

ty

xNEAREST

xRAND

DIRECTION OF NATURAL MOTION

Figure 5.2: Influence of Linearization.

Typically, approaches in literature that aim to obtain an estimate of the distance metric
in state space, use the concept of linearization of a nonlinear system around a point in the
state space with zero velocity and/or zero inputs. This has been shown to work reasonably
well in [44, 105]. However, these methods are only a good approximation of the nonlinear
dynamics provided the point chosen for linearization is an equilibrium point. If this is not
the case, the approximation is inaccurate.

This problem is illustrated in Figure 5.2, where, a typical scenario that arises during
every iteration of an RRT. The direction of evolution of the natural system dynamics is

5

64 5. DISTANCE METRIC APPROXIMATION IN STATE-SPACE

also shown. With a linearization approach such as in [105], the linearized model would be
deprived of the velocity information at xrand and hence, the cost-to-go to xrand from xnearest
would yield a certain input value which eventually influences the cost. However, in reality,
this input may not be needed or a very small input might be needed to steer the system to
xrand. Thus, approaches that use linearization around an equilibrium point could yield an
inaccurate estimate of the actual cost-to-go.

As a consequence, approaches such as the LQR-RRT [105] would need a sufficiently
large number of nodes before which a motion plan to the goal can be found. In case of
simple nonlinear systems such as a pendulum, the effect might not be very evident. With
more complex nonlinear dynamics such as in [83], the resulting increase in the number of
nodes due to approximations inaccuracies leads to a significantly large amount of time for
the LQR-RRT approach to converge to a solution.

In our work, we use the iLQR approach proposed in [83] for the approximation of the
nonlinear dynamics. In this approach, linearization is carried out along a nominal trajectory
instead of just a point in the state space. In doing so, a better approximation of the nonlinear
dynamics can be achieved. The iLQR approach is presented here as a simple procedure in
Algorithm 3. We limit the complete mathematical details due to space restrictions and those
that are provided here are directly taken from [83].

Let us consider the discretized version of the system dynamics of Eq. 5.1:

xk+1 = f (xk ,uk) (5.2)

with, the cost function is defined as,

J0 = 1

2

(
xN −x∗

)T Q f (xN −x∗)+
1

2

N−1∑
k=0

(
xT

k Qxk +uT
k Ruk

) (5.3)

where,

• xN describes the final state after each execution of the input uk .

• x∗ is the given target state.

• Q and Q f are the state cost weighting matrices.

• R is the control-cost weighting matrix.

Using Eq. 5.2 and Eq. 5.3, the iLQR approach proceeds iteratively by obtaining a nominal
open loop trajectory xk by applying an input uk . With an initial input sequence uk = 0,
each iteration produces an improved uk by linearizing the system dynamics around the
sequence (xk , uk) and solving a modified LQR problem. The iterations continue until a cost
convergence is achieved.

In Algorithm 3, the ILQRCost procedure, computes the cost of the nominal trajectory
using Eq. 5.3. The ILQRIterate implements the linearization procedure mentioned earlier.
Eventually, once the cost converges, the ILQR procedure returns the optimal cost-to-go
between the states xi and x f .

5.2. PROBLEM DESCRIPTION

5

65

Algorithm 3 ILQR (uk, xi, xf, Qf, Q, R, dt, nIter)

costcurr ←ILQRCost
(
uk , xi , x f , Q f , Q, R, d t

)
for j = 1,. . . nIter do
δu ←ILQRIterate

(
uk , xi , x f , Q f , Q, R, d t

)
u

′
k ← uk +αδuk

costnew ←ILQRCost
(
u

′
k , xi , x f , Q f , Q, R, d t

)
if costnew − costcurr < costthreshold then
TerminateIteration

costcurr ← costnew
uk ← u

′
k

return
(
uopt

k , cost opt
)

Although iLQR is a reasonably good method to find the cost-to-go, it is not fast enough
for use in planning. Therefore we will use Locally Weighted Projection Regression (LWPR)
as a supervised learning technique to decrease the computation time of the cost-to-go, by
initially incorporating a learning phase.

5.2.2. LOCALLY WEIGHTED PROJECTION REGRESSION (LWPR)
Locally Weighted Projection Regression (LWPR) is a supervised learning approach that
has the potential to approximate nonlinear functions in high dimensional spaces [142]. It is
a non-parametric and a fast learning approach. The nonlinear function is learned as a set
of locally linear regression models along particular input dimensions. The linear models
are eventually blended using a weighting function based on the area of validity of the local
models to obtain the approximation of the nonlinear function.

Formally, given a data set in the form of input-output pairs (x,y), the LWPR method
involves iterating the following function:

f (x) = 1

W (x)

K∑
k=1

wk (x)ψk (x) (5.4)

where,

•

W (x) =
K∑

k=1
wk (x) (5.5)

• ψk (x) are the local linear models.

• wk (x) is a weighting factor depending on the area of validity of the local linear models.

It is particularly highlighted in [70] that the strength of LWPR learning lies in its ability
to incrementally learn from training samples rather than learning from a collected set of
samples. We however use the latter approach in this chapter. We undertake this approach
only for simplicity and the incremental approach remains the main motivating factor for

5

66 5. DISTANCE METRIC APPROXIMATION IN STATE-SPACE

our choice of LWPR learning over other supervised learning approaches such as Artificial
Neural Networks. In fact, our eventual goal is to be able to learn the distance metric while
constructing the RRT and this work is a first step in that direction.

In the following section, we combine the iLQR and the LWPR approaches that results in
a novel method to approximate the distance metric function in the state space.

5.3. METHOD
In this section, we describe our novel approach in two parts. In the first part, we explain
the creation of the training samples for the LWPR algorithm and the consequent learning of
the distance metric function. In the second part, we explain the use of the learned distance
metric function as a part of the RRT building process.

5.3.1. LEARNING THE OPTIMAL COST FUNCTION
Like for all supervised learning algorithms, providing an adequate amount of training samples
is integral to LWPR learning to make a good approximation of the underlying function. A
training sample consists of arguments to the function to be learned and the corresponding
function value. In the context of our work, the function to be learned is the optimal cost-to-go
between two states of a nonlinear dynamical system, given by the iLQR algorithm. The
arguments to this function are two states in the state space. The procedure we use to learn
the optimal cost function is shown in Algorithm 4.

Algorithm 4 LearnMetric (nSamples, (dt, nIter))

for j = 1,. . . nSamples do
xi ←Sample
x f ←Sample
costoptimal ←ILQR

(
xi , x f , nI ter, d t

)
X tr (j) ← [

xi ; x f
]

Ytr (j) ← costoptimal
return ρlearn =LWPRlearnmetric (X tr , Ytr)

There are two main aspects of the LearnMetric procedure. The first is in the lines
where the initial state xi and desired final state x f are sampled. In order to ensure an
unbiased learning, these states are sampled randomly. Furthermore, the random sampling
procedure also maintains the essence of the sampling used in RRT-based approaches where
each incremental step involves a random sampling of a state from the state space.

The second aspect is in the last line of the procedure where the distance metric function
ρlearn is learned using the LWPRlearnmetric procedure. This is done by initially dividing
the obtained samples into a training set and a test set. LWPR uses these two sets for evaluating
the quality of the learned function.

5.3.2. USING THE LEARNED DISTANCE METRIC FOR RRT
Here, we describe the following step after learning the distance metric function. That is,
using the learned distance metric ρlearn while constructing the RRT. The procedure for RRT
construction with the learned metric, RRTLearn is illustrated in Algorithm 5.

5.4. EXPERIMENTAL RESULTS

5

67

Algorithm 5 RRTLearn ((V, E), N)

for j = 1,. . . N do
xrand ←Sample
xnearest ← ρlearn (V , xrand)
[costxnew, xnew] ←iLQR (xnearest, xrand)
X ← X ∪ {xnew}
E ← E ∪ {(xnearest, xnew)}

return G = (V , E)

We verify the correctness of the approximated function in two steps. First, the iLQR
procedure attempts to connect the random state with the nearest state xnearest. The resulting
new state xnew and the corresponding optimal cost, costxnew are compared to the predicted
cost between xnearest and xnew using ρlearn. The cost prediction error, costerror is determined
as follows:

costerror =
(
ρlear n(xnearest, xnew)− costxnew

)2 (5.6)

The performance of our algorithm is compared against the LQR-RRT approach in [105]
in terms of the number of nodes required to find a solution. We now proceed by presenting
the experimental results from our work.

5.4. EXPERIMENTAL RESULTS

θ ω

(m
, l)g

Figure 5.3: The pendulum setup considered for RRTLearn.

We consider the simple pendulum swing up problem (see Figure 5.3) to evaluate the
RRTLearn algorithm. The physical parameters and the linearization approach are considered
in accordance with [83]. We consider a pendulum with bob mass m = 1kg, length l = 1m
and a damping of bd = 0.01kgs−1 at the mounting joint. We assess the performance based
on three factors; correctness of the learned metric, state space coverage and using the metric
to perform planning. Our work has been implemented in MATLAB using the available
resources for LWPR in [70] and for iLQR in [85]. For the RRT implementations, the Robotic
Toolbox [24] has been used and adapted to our requirements.

5

68 5. DISTANCE METRIC APPROXIMATION IN STATE-SPACE

We begin with the verification of the learned metric with the actual iLQR cost based
on different number of training samples used for LWPR learning. We use Eq. 5.6 for this
purpose.

0 20 40 60 80 100 120 140 160 180 200
−15

−10

−5

0

5

10

15

20

25

Number of Tree Nodes

Lo
ga

rit
hm

 o
f S

qu
ar

ed
 C

os
t E

rro
r

2000 samples
1000 samples
500 samples

Figure 5.4: Logarithm of the squared cost error over all tree nodes.

It is clear from Figure 5.4 that the squared error is small for a majority of the nodes
and those with large values are the inevitable outliers which are bound to be present when
learning approaches are used. It is pertinent to note that the accuracy of the prediction drops
considerably if the number of training samples is reduced.

−3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

θ (rad)

ω
 (

ra
d
/s

)

Figure 5.5: The edges of the tree are indicative of the natural evolution of the system dynamics of the pendulum. A
similar observation is also identified in [44] to reason about the correctness of their distance metric approximation.

The correctness of learning is also further validated from the nature of the tree generated
by RRTLearn. See Figure 5.5 for instance. The edges of the tree are indicative of the natural

5.4. EXPERIMENTAL RESULTS

5

69

evolution of the system dynamics. In other words, the neighbor selected for expansion is
indeed the closest in state space to the randomly sampled state.

The main advantage of the RRTLearn approach is the speed-up achieved in computing
the optimal cost-to-go between two states in the state space due to the use of learning. This
is presented in Table 5.1 for different number of nodes considered for selecting the node to
expand from. The resulting speedup from learning is evident from Table 5.1. It is important
to note that as the number of nodes increase, the distance computation time using the learned
approximation is higher in comparison to the LQR approach. This aspect is discussed in
further detail in Section 5.5.

Table 5.1: Time for computing state space distance (Averaged over 20 runs).

iLQR Metric learned iLQR Metric LQR Metric
1 Node 0.4127 s 0.00016 s 0.0045 s

100 Nodes 41.18 s 0.0075 s 0.0057 s
500 Nodes 205.2 s 0.037 s 0.0081 s

-4 -3 -2 -1 0 1 2 3 4
-5

-4

-3

-2

-1

0

1

2

3

4

ω
 (

ra
d
/s

)

θ (rad)

Figure 5.6: A candidate swingup solution found after a single run of RRTLearn.

We complement our earlier initial claim related to better state space coverage with our
metric in comparison to existing approaches based on the number of tree nodes to reach
a goal state. We believe that this is a reasonably good measure of state space coverage
as it implies the existence of good node connectivity in the regions which represent the
system dynamics in state space. This is different from the approach used in [44], where
a discretization of the state space is used and number of nodes per discretized region is
evaluated. We also compare our approach with the LQR-RRT approach. In all cases, we
assume a goal region tolerance of

[
0.1rad, 0.1rads−1

]T . This is a region around the goal
state, which when reached, indicates a solution has been found. In practice, the actual goal
state would be reached by using a linear feedback controller once the goal region is reached.
A candidate solution generated after one of the runs of RRTLearn is shown in Figure 5.6.

5

70 5. DISTANCE METRIC APPROXIMATION IN STATE-SPACE

Table 5.2: Comparison of RRTLearn and LQR-RRT (Avg. Nodes).

iLQR Steering LQR Steering
Using RRTLearn 44.15 ± 9.52 167.05 ± 53.1
Using LQR-RRT 68.54 ± 16.05 208.7 ± 33.98

For evaluating the application of our metric to planning, we study four different cases
based on the choice of the distance metric and the steering function. The results are presented
in Table 5.2.

Table 5.3: Comparison of RRTLearn and LQR-RRT (Avg. Time).

iLQR Steering LQR Steering
Using RRTLearn 21.46s 12.5s
Using LQR-RRT 33.64s 9s

The first column of Table 5.2 indicates the distance metric used, and the first row
indicates the choice of steering function. Each numerical entry in the table corresponds to a
combination of the respective entry in the first column and first row and its associated 95 %
confidence interval. The average number of nodes to find an initial solution1 are computed
over 20 runs of each choice. We note that the average number of nodes needed to find a plan
to a goal position by RRTLearn using both iLQR and LQR steering is significantly less than
the average number of nodes needed by the LQR metric (p < 0.01).

The LQR-RRT algorithm needs a higher average number of node evaluations to reach the
goal region and this is a direct consequence of the linearization problem. However, it scores
much better on the execution time (shown in Table 5.3) in comparison to RRTLearn for two
reasons. In the simple case of pendulum, the linearization works well for most situations
and hence the LQR metric is more or less reliable consequently allowing for reaching the
goal region. Furthermore, the computation time of the LQR cost does not scale up with the
number of tree nodes, which is the case with ρl ear n computation. However, it remains to be
studied as to how this effect varies for systems with more pronounced nonlinear dynamical
effects. Before we conclude, we present a brief discussion of our results and propose possible
directions for future work.

5.5. DISCUSSION AND FUTURE WORK
From a kinodynamic planning perspective, we believe, RRTLearn with iLQR steering
potentially yields better feasible plans compared to the LQR-RRT approach by virtue of the
more appropriate linearization technique used. As a consequence, we expect RRTLearn to

1Swing up in our case is different to the common case considered, for example, in Reinforcement Learning problems
where a policy consisting of back and forth motions is generated to achieve the desired goal. Our goal is to show
that supervised learning can approximate the distance metric in state space and therefore enable RRTLearn to
select the most relevant neighbor in the process of finding a solution.

5.6. CONCLUSIONS

5

71

provide better solutions over the LQR-based approaches for systems with stronger nonlinear
dynamics. With our current results, we are limited to this benefit alone and further work is
necessary to ascertain the possible benefits for online kinodynamic planning.

An inherent limitation with learning approaches such as the LWPR is the read out time
increase with the number of input arguments. In the context of this work, as the number of
nodes in the tree increases, the distance read out time also increases and as a consequence
could nullify the speed-up achieved. However, by restricting the number of nodes to be
evaluated, for example, by using efficient nearest neighbor search [147], this problem can be
avoided. Another way to overcome this could be to use supervised learning techniques that
are more efficient to read out, such as artificial neural networks. However, we plan to learn
the distance metric while building the tree, focusing the learning in the most relevant states,
and this requires an incremental method. Furthermore, in an online planning situation such
as obstacle avoidance, a potential online kinodynamic solution could be to construct a new
tree around the obstacle. In such a scenario, the number of nodes would certainly be a small
number as the new tree would be rooted at the current state of the system. From an offline
planning perspective though, our approach could potentially yield better plans (in terms of
feasibility) because the nonlinear dynamics are better approximated by the iLQR approach
in comparison to the standard LQR approach. Another benefit with the learning approach is
that, the dynamical information is embedded in the learned function once during training
and the same metric can be used multiple times, for instance, during re-planning.

As per our knowledge, our approach is one of the first in the literature that uses learning
to approximate the optimal cost-to-go between states for RRT-based planning. In the future,
we propose to evaluate the benefits of our approach on larger state-spaces by studying the
feasibility of the generated plans and the amount of post processing needed to execute those
plans on real robots. Additionally, constraints such as limits on the control inputs can be
accounted for, while learning, by imposing cost penalties for constraint violations. An
important aspect in our approach is the fact that the learned approximations are strongly
dependent on the environment used for learning. However, the influence of discontinuities
on the learning created by situations such as state limits or new obstacles remains to be
studied in further detail.

5.6. CONCLUSIONS
Appropriate choice of distance metric for RRT-based approaches holds the key to successful
planning in state space. Typically, this metric is the optimal cost-to-go between two states in
the state space. However, obtaining this cost is computationally intensive for systems with
nonlinear dynamics. In our work, we address this issue by decomposing the problem in two
levels. We initially estimate the cost-to-go based on the Iterative Linear Quadratic Regulator
(iLQR) principle proposed in [83] over a random state space distribution. This is followed
by learning a nonlinear function that approximates this cost using a supervised learning
technique called Locally Weighted Projection Regression (LWPR) [142]. We experimentally
verify the correctness of the learned function and subsequently use this function to compute
distances in state space while planning with RRT. Thus our approach provides the benefit
of using a closer approximation of the optimal cost at high speeds. Our experiments have
shown a speed-up in the distance metric computation of up to a factor of 1000.

6
RRT-COLEARN: TOWARDS

KINODYNAMIC PLANNING
WITHOUT NUMERICAL

TRAJECTORY OPTIMIZATION

When we ask advice, we are usually looking for an accomplice.

Joseph-Louis Lagrange

Sampling-based kinodynamic planners, such as Rapidly-exploring Random Trees (RRTs),
pose two fundamental challenges: computing a reliable (pseudo-)metric for the distance
between two random nodes, and computing a steering input to connect the nodes. The
core of these challenges is a Two Point Boundary Value Problem, known to be NP-hard.
In the previous chapter, we presented the idea of approximating the distance metric using
supervised learning, reducing computation time drastically. However, the steering input was
still computed online. Also, the principles of direct optimal control were used to generate the
data for supervised learning. This chapter proposes to use indirect optimal control instead,
because it provides two benefits: it reduces the computational effort to generate the data,
and it provides a low dimensional parametrization of the action space. The latter allows
us to learn both the distance metric and the steering input. This eliminates the need for a
local planner in learning RRTs. Experimental results on a pendulum swing up show 10-fold
speed-up in both the offline data generation and the online planning time.

The contents of this chapter have been derived from the paper:
Wouter Wolfslag, Mukunda Bharatheesha, Thomas Moerland and Martijn Wisse, RRT-CoLearn: towards kinody-
namic planning without numerical trajectory optimization, IEEE Robotics and Automation Letters (RA-L), 2018.
The main difference to the paper is the inclusion of a section on the probabilistic completeness considerations of
the proposed RRT-CoLearn algorithm.

73

6

74 6. CONTROL INPUT APPROXIMATION IN STATE-SPACE

Optimal Control
Data Generation

{x0, x1, j ,u}

Machine Learning
Function approximation

ĵ = fψ(x0, x1)
û = fγ(x0, x1)

RRT
Sampling-based planning

(V ,E)

Figure 6.1: Schematic of the Learning-RRT architecture. First, optimal control generates a dataset that specifies the
local steering cost j and control input u for a given start state x0 and end state x1, Subsequently, machine learning
predicts the steering cost and input given a start and goal node. These first two (computationally intensive) phases
happen offline. Subsequently, the RRT handles online planning. The function approximators provide the RRT with
quick cost and input prediction without online optimization.

F OR motion planning of robotic manipulators, kinodynamic planning and sampling-
based planning are getting increasingly popular. Kinodynamic planning, i.e., planning

in state space rather than configuration space, improves robustness, speed and energy
efficiency of robots [23, 146, 109]. Combining configuration-space planning with post-
processing in state-space is often successful [108], but cannot solve all challenging dynamical
problems. Sampling based planning has been shown to be the most viable way to handle
high dimensional spaces and obstacles [51, 80]. Therefore, this chapter will consider how
to apply Rapidly-exploring Random Trees (RRTs) [80], the most popular sampling-based
single-query planning algorithm, directly to state space planning for deterministic, fully
modeled systems.

RRT builds a tree graph structure with the states of the system as nodes and the trajectories
of the system between two states as edges. The algorithm selects a node to expand from
based on a distance to a randomly sampled node in the state space, i.e., it selects the nearest
node in the current tree. That node is then expanded by means of a local planner that aims
to reach the randomly-sampled node. These steps happen online, so computation time is
crucial. Unfortunately, in state-space, both local planning and distance computation are
computationally expensive [80].

In literature, the main approach to reduce the computational burden is to approximate
the true distance function by a heuristic [44, 105, 63, 130]. Two frequently used heuristics
are the Euclidean distance and the optimal steering cost for a linear approximation to the
system. The convergence of RRT variants using the Euclidean distance heuristic, and random
steering inputs, was extensively analyzed in [84]. For promising results for the linearizing
heuristic see [47, 143, 126]. However, these heuristics only minimally utilize the dynamical
properties of the system, and therefore typically require more nodes to solve a given problem
using RRT.

Recent literature proposes a promising different approach, which we call Learning-
RRT [12, 100, 3]. Learning-RRT involves an offline machine learning phase that learns the
distance and steering function in RRT (Figure 6.1). An optimal control algorithm provides a
database of optimal trajectories, which is the input for a supervised learning algorithm. This
algorithm learns to approximate the functions the RRT requires. Note that trajectories found
by RRTs are in general not optimal, even if the segments in the database are. Using optimal
segments in the database provides a meaningful steering-cost metric and similarly shaped
trajectories for connecting similar points in state space, which helps the learning algorithm.
Supervised learning provides two benefits: 1) generalization over state-space and 2) fast
online predictions. Thereby, the trajectory optimization does not have to be repeated for new
situations, and is shifted offline.

6.1. LEARNING-BASED RRT

6

75

In this chapter, we propose a method that helps to overcome the two remaining challenges
of Learning-RRT:

1. Local planning: In literature on learning-RRT [12, 100], only the distance function
is approximated by machine learning. Supervised learning of the steering function
is hard due to the large number of parameters typically required to describe optimal
input signals. Therefore, previous Learning-RRTs resort to computationally expensive
optimizations for their steering function [12].

2. Dataset generation: The dataset for the supervised learning algorithm consists of
many optimal trajectories. As optimizing a single trajectory already is a significant
computational burden, generating a full dataset is very computationally demanding.

The main idea of this chapter is the use of indirect optimal control to generate the
dataset. This allows us to solve both the problems mentioned above, thereby decreasing the
computational burden by up to two orders of magnitude, both in the offline and the online
phase of the learning RRT planning. However, the dataset generated by this method contains
a bias, which is problematic for the learning algorithm. It turns out we can efficiently remove
this bias through a simple dataset cleaning algorithm.

The focus of this chapter is the introduced method and its implementation details. Our
experiments provide proof of concept by evaluating our method on a pendulum swing-up, as
was done in Chapter 5. While simple, this task allows us to demonstrate and compare the
validity of our method. To our knowledge, we are the first to demonstrate learning of the
control input in a kinodynamic sampling-based planner.

This chapter is structured as follows. Section 6.1 describes the Learning-RRT algorithm.
This algorithm is applicable to any data generation method, and intended to structure all
Learning-RRT components. The subsequent sections combine to introduce RRT-CoLearn,
which is a Learning-RRT. The main contribution comes in Section 6.2, which tackles the
problems of local planning and dataset generation via indirect optimal control. The class of
systems for which this approach is valid can be found in that section as well. Section 6.3
discusses how to remove the dataset bias introduced by optimal control. In Section 6.4, we
discuss how the learned steering-cost metric affects the convergence of the RRT algorithm.
Section 6.5 presents experimental validation of our algorithm. Finally, Sections 6.6 and 6.7
contain discussion and conclusions.

6.1. LEARNING-BASED RRT
Learning-based RRTs leverage (supervised) learning to speed up the computationally expens-
ive modules of a kinodynamic RRT. The Learning-RRT algorithm is presented in Algorithm
6. Here we present the standard, forward search RRT version of the algorithm as used in the
experiments. Enhancements are briefly discussed in Section 6.6.

The first step in the algorithm is to create a dataset of optimal trajectories through the
state-space of the system (X). This step disregards obstacles, as they can be handled at
a later stage by an independent collision checker. The dataset D = {bi }N

i=1, has entries
bi = {xi

0, xi
1, j i ,ui } that consists of an initial state x0 ∈ X , a final state x1 ∈ X , a distance

metric/local steering cost j ∈R+, and a set of parameters u ∈U , that describe the optimal
input leading the system from state x0 to state x1.

6

76 6. CONTROL INPUT APPROXIMATION IN STATE-SPACE

Algorithm 6 Learning RRT ((V, E), N)

D̂ ←generate_data(N) // Section 6.2
D ←clean_data(D̂) // Section 6.3
Ĵ ←fit_cost(D)
Û ←fit_input(D)
V̂ ←fit_valid(D) // Section 6.4
(X ,E) ← (xinitial,;)
solutionfound ← False
while NOT(solutionfound) do

xtarget ←sample()
if AN Y (V̂ (x, xtarget))∀x ∈ X then

xnearest ← argminx∈X Ĵ (x, xtarget)
(c, x,u) ←simulate(xnearest,Û (xnearest, xtarget))
if not collision(xnearest, x) then

X ← X ∪ {x}
E ← E ∪ {(xnearest, x, c)}

return X ,E

Note that U can take many forms, depending on the discretization used. For example, it
can be the coefficients of a polynomial or the values at the switch times of a piecewise-linear
function.

The optimal trajectories are generally found using a numerical algorithm searching for
local optima, which poses a challenge for the supervised learning algorithm. If two solutions
are nearby in x0 and x1, but hail from a different local optimum, a deterministic supervised
learning algorithm (for example trained on mean-squared error) will predict the average over
the two solutions. This not only makes the cost prediction inaccurate, but most importantly
it ruins the steering input prediction: the average of the two steering inputs in the data
could lead to a completely different state than the target state. This local-optimum bias
requires us to create the dataset D in two stages. The first stage creates a dataset D̂ of
size N which contains local-optimum-bias, and is indicated in Algorithm 6 by the function
generate_data. The second stage clean_data removes the local-optimum-bias to
create the desired dataset D.

The second step is to use a supervised learning algorithm on D to approximate the two
functions that define the optimal control solution: 1. the function Ĵ : (X , X) →R+, which
maps from an initial and a final state to a steering cost, 2. the function Û : (X , X) → U ,
mapping the initial and final state to the required input parameters.

For both function approximators we implement k-nearest neighbours [37], a standard
non-parametric function approximator with robust performance in smaller state-spaces. For
a test point x, we identify the k nearest neighbors in our dataset D . The predicted value (e.g.
for cost j) for the test point is the average value of these neighbors. We cover extensions to
other learning techniques in Section 6.6.

The next step, fit_valid, addresses an inherent limitation of supervised learning and
is treated in Section 6.4.

The fourth stage of the Learning-RRT algorithm, the online RRT stage, handles long-
term planning and obstacles. First, it samples a point and tests for a valid connection from

6.2. DATA GENERATION

6

77

any node in the tree to the sampled point. If that exists, it expands the node that is nearest to
the sampled point according to the function Ĵ . The expansion will use the learned steering
function Û , which likely makes a small error. The new node is therefore not exactly at the
sampled state. The trajectory to the new state is checked for collisions. If collision free,
the new node is added to the tree. The algorithm iterates these steps until it connects to the
desired region in state-space. As standard in RRTs, the sampling of new nodes is biased
towards the goal by intermittently replacing the sampled state with a desired end-state.

6.2. DATA GENERATION
The dataset for the function approximator is generated from a set of optimal trajectories.
The most common approach to find these trajectories are the so-called direct optimal control
approaches [111, 137]. In these approaches the state equations and cost function are
approximated by a discretized system, which is then numerically optimized.

An alternative to direct optimal control is the much older indirect approach [117, 110],
which first optimizes and then discretizes. For many applications, direct approaches replaced
the indirect approach due to better numerical stability at long planning distances. However, it
turns out indirect optimal control is ideally suited for the RRT scenario. First, the numerical
instability poses no problem for the short segments that are required for RRT. Furthermore,
indirect optimal control brings two important benefits. First, it parametrizes the control input
in a low dimensional space, which allowing it to be learned. Second, it removes the need
for optimization in the sampling process, which speeds up data generation. Both benefits
are further explained at the end of this section, after the indirect optimal control method is
described. At that point, we will also explain the remaining downside of the indirect optimal
control approach: a more biased dataset.

INDIRECT OPTIMAL CONTROL
Here the indirect optimal control procedure is used to derive the optimal equations of motion
for a pendulum swing-up. The procedure can be applied to other systems, with small
differences. For more details and proofs see [99].

Indirect optimal control finds the functions x(t) and u(t) from time t ∈R to state x ∈Rn

and input u ∈Rm , that minimizes a cost function of the following form:

J (x(t),u(t)) =
∫ tf

0
C (x(t),u(t))dt (6.1)

Subject to: ẋ(t) = f (x(t),u(t)) ∀t ∈ (0, tf),

x(0) = xinitial, x(tf) = xfinal (6.2)

where xinitial and xfinal are fixed initial and goal states, and the final time t f is optimized
along with x(t) and u(t). We will often drop the explicit dependency on the time t .

For the pendulum we get f (x,u) = (ω, sin(θ)+u), with x = (θ,ω), θ and ω the (angular)
position and velocity respectively, and u the torque. The cost integrand C = 1+u2/2, which
takes into account both the time it takes to reach the goal-state as the control effort to do so.

The first step in the indirect optimal control approach is to define the Hamiltonian H ,
the sum of the integrand C and the inner product of the state derivatives with a vector of

6

78 6. CONTROL INPUT APPROXIMATION IN STATE-SPACE

Lagrange multipliers, also called the costate. With (λθ ,λω) as costate, we obtain:

H (x,λ,u) = 1+ 1/2 u2 +λθω+λω(sin(θ)+u) (6.3)

The second step is finding an optimal input u∗, by minimizing the Hamiltonian with
respect to the input:

u∗ = argmin
u

H =−λω (6.4)

The third step takes partial derivatives of the optimal Hamiltonian, which is created by
replacing the input with the optimal input: H ∗(x,λ) = 1+λθω+λω sin(θ)−1/2λ2

ω. Note that
this equation only depends on the state and costate. The partial derivatives form a system
of ordinary differential equations (ODEs) specifying the evolution of the optimal state and
costate over time:

θ̇ = ∂H ∗

∂λθ
=ω ω̇= ∂H ∗

∂λω
= sin(θ)−λω (6.5)

− λ̇θ =
∂H ∗

∂θ
=λω cos(θ) − λ̇ω = ∂H ∗

∂ω
=λθ (6.6)

The last step is to use the Eqs. 6.5-6.6 to find the optimal trajectory towards a desired
state. For a given costate, the above equations are (numerically) integrated, which results
in a locally optimal state trajectory. This trajectory depends on the choice of initial costate
and the time duration of the integration. The initial costate and final time are tuned to
find a locally optimal state trajectory that reaches the desired state. This tuning requires a
numerical method that minimizes the difference between final state and desired state. Later
we show that this tuning can be avoided when generating the database.

Optimal control problems solved for Learning-RRTs typically have a free final time and
a cost integrand C that does not explicitly depend on time. On this type of problem, the
constraint that sets the final time can be rewritten as a constraint on the initial costate [99]:

H ∗(x(0),λ(0)) = 0 (6.7)

The main reason why indirect optimal control is largely replaced by direct methods, such
as multiple shooting, is that the resulting differential equations are unstable, and therefore
difficult to numerically solve reliably. However, because a learning-RRT database only
requires short trajectories, this instability is not as important.

BENEFITS OF USING INDIRECT OPTIMAL CONTROL
There are two major advantages to using indirect optimal control for Learning-RRTs. First,
the input directly follows from the costates; in principle, there is a map U (xinitial, xfinal) →
(λθ(0),λω(0), tf), from initial and final state to a set of only three parameters that describe the
input function. This set is small, and will only grow linearly with the size of the state space
(and is independent of the number of inputs). In contrast, direct optimal control approaches
require to parametrize inputs as functions over time, which results in much larger spaces
of parameters. The reduction in the number of parameters means the input function can be
learned efficiently, thereby solving the problem of local planning in RRTs as identified in
the introduction.

6.3. DATASET CLEANING

6

79

Algorithm 7 generate_data(N ,Tfinal,rbound)

Optimal_ODEs ← Eqs. 6.1-6.6
D̂ ← empty()
for n = 1 : N do

xinitial ← random_State()
λinitial ← random_Costate() s.t. Eq. 6.7
Tfinal ← random_Time()
xfinal, J ← integrate(Optimal_ODEs,xinitial ,λinitial,Tfinal)
append(D̂,{xinitial,xfinal,J ,λinitial})

return D̂

To see the second major advantage, look at how the whole dataset is created. In current
learning RRTs [12, 100], the dataset is generated by sampling from the (xinitial, xfinal)-space,
and then, find an optimal trajectory and cost for each sample. Note that every combination
of initial state, initial costate and final time produces an optimal trajectory for a certain final
state. So, if we sample from the allowed initial states, initial costates and final times, we
effectively sample over all initial state - final state combinations. Thus, we can eliminate the
need for numerical optimization by sampling the costate, meaning the data are generated
much faster.

The data generation procedure is outlined in Algorithm 7. The functions random_State,
random_Costate, and random_Time sample random states, costates and final times depending
on the problem domain and constraint Eq. 6.7. The function integrate numerically integrates
the optimal control equations until the final time (Tfinal) or until the distance from the initial
state reaches a reachability bound (rbound). To optimize the efficiency of the data generation
we add the intermediate integration results to the dataset, causing dependencies between
the data-points. We observed that the learning algorithm performed well despite these
dependencies.

In this section, we outlined the indirect optimal control approach to data generation in
learning RRTs. Because the optimal control algorithm incorporates costates, we name the
overall algorithm RRT-CoLearn. Its two major advantages are: learning optimal steering
inputs (online speed) and generating data without optimizing (offline speed).

6.3. DATASET CLEANING
The dataset generated by Algorithm 7 originates from a search for local optima, and can
therefore include a bias that interferes with learning performance. The problem is illustrated
with an artificial dataset in Figure 6.2 (top), where in the middle input region we have the
global optimum at the bottom, but there are local optima above it. A standard function
approximator (with squared loss) for a given point input (independent variable) predicts the
conditional expectation of the dependent variable, shown in green. Note that the predicted
function deteriorates in the middle segment, where the average is predicted instead of the
optimal cost.

This is problematic for predicting the cost function and especially harmful for predicting
the control parameters. Averaging over two locally optimal control inputs by no means
guarantees that we end up anywhere close to the target. As an intuitive example, consider

6

80 6. CONTROL INPUT APPROXIMATION IN STATE-SPACE

Original data

Overcleaned

function

datapoints

fit

Undercleaned

Goldilock

Figure 6.2: The data-bias problem and the effect of the d parameter in the data cleaning algorithm. The top figure
shows an imaginary dataset, which has a problem with bias in the middle of its domain. The fitted function is a poor
approximation of the least cost part of the datapoints. In the second figure d was chosen too large: the bias is gone,
but there is not enough resolution left to accurately fit the function. In the third figure, d is too small: not all bias is
removed. The bottom figure shows a proper choice for d : the bias is removed, and enough resolution remains.

the Dubins vehicle, which can be seen as a model of a non-holonomic car. The vehicle can
reach a goal behind it by either steering left or right, but will fail to reach the target when
taking the average (straight ahead). To counteract this issue, we need a dataset cleaning
algorithm, i.e., a procedure that somehow eliminates conflicting (non-optimal) datapoints.
In literature, there are resampling methods for dataset imbalance, most noteworthy class
label imbalance in classification tasks [38]. However, our dataset is not imbalanced, but
rather contains a systematic bias. It turns out we can leverage that structure to come up with
a simple resampling/cleaning algorithm.

For each point in input space, we are interested in retaining the lower bound of the
cost of the generated datapoints. First note that we prefer to remove points in high-density
regions, as in low-density regions there is little to throw away, and we may only hope that
our data are accurate. We implicitly remove from high density regions by first uniformly
sampling a point from our dataset. We then search for its nearest neighbor in the dataset
based on Euclidean distance. If this neighbor is within a distance d from our sampled point,
we remove the node of the two with the highest cost, frequently removing a biased data-point
while retaining a good one. Otherwise, we retain both points, which will happen in low
density regions. This process is repeated until no points are removed for km consecutive
steps, after which we return the cleaned dataset. The procedure is outlined in Algorithm 8.

The main parameter in this algorithm, d , can be interpreted as a neighborhood size.
Figure 6.2 shows shows it has an optimal setting that depends on the dataset and which
has to be found empirically. To evaluate it d , we fix it, run the cleaning, fit the function
predictors, and then sample new datapoints to assess the error in cost and co-state parameters
on the predictions. This evaluation is not ideal, but the ideal metric (RRT performance) is
too expensive to compute.

6.4. PROBABILISTIC COMPLETENESS CONSIDERATIONS

6

81

Algorithm 8 clean_data(D̂ ,d ,kmax)

D ← D̂
k ← 0
while k < kmax do

psample ← selectRandom(D)
pneigh ← nearestNeighbor(psample,D)
if distance(p1, p2) < d then

k ← 0
phigh ← argminp∈{psample,pneigh} Cost(p)

remove(D, phigh)
else

k ← k +1
return D

6.4. PROBABILISTIC COMPLETENESS CONSIDERATIONS
The machine learning approximations in RRT-CoLearn might intuitively interfere with its
completeness properties. Therefore, we establish probabilistic completeness of our algorithm,
by modifying the proof for the original RRT [80]. We have not tried to make the proof
outlined here as general or rigorous as possible. The framework from [84] might aid in that
effort, as might the ideas from [62].

We assume that there exists a solution to our planning problem which is built out of a
finite number of shorter trajectories resulting from a finite set of inputs. That is, the solution
has n waypoints X = {x0, x1, . . . , xn}. The inputs between those waypoints are given by
U = {u0, . . . ,un−1}. Later on, we will give one additional assumption on the set of possible
inputs. We will show that given that this solution exists, RRT-CoLearn will eventually find
it.

Consider that xi is the most advanced waypoint of the solution that is already in the tree.
The chance of reaching the next waypoint in the solution is factored as:

P (reach xi+1) = P (ui |expand xi)P (expand xi) (6.8)

Now if we can guarantee both factors are strictly positive, i.e., P (expand xi) > 0 and
P (ui |expand xi) > 0, we get: P (reach xi+1) > 0. This means the chance of getting to the next
node of the solution is larger than zero, so at some point the algorithm will get to the next
node, and the next one, and so on. Therefore the algorithm will eventually find the solution.

6.4.1. BOUNDING THE CHANCE OF PICKING THE RIGHT INPUT
The chance of picking the right input at the current waypoint, xi is ensured if
P (ui |expand xi) > 0. One way to do this relies on an additional assumption: that each
ui comes from a known finite set. As a consequence, each possible input can be given a
non-zero probability. In our experiments, this finite set is constructed as a linearly spaced
grid of initial costates with a stepsize of 0.01. We believe that a proof of completeness exists
without this discreteness assumption, but we leave finding it for future work.

Note that our inputs are generated based on a prediction of the costate from the function
approximator. If the input is constructed directly based on this prediction, the rest of

6

82 6. CONTROL INPUT APPROXIMATION IN STATE-SPACE

the inputs will have no chance of being selected which is not desirable. Therefore, a
sufficient condition is to ensure that input resulting from the prediction is generated based
on a probability distribution that associates a high probability of choosing a value close
to the prediction, but also gives some probability for all other possible inputs. In our
experiments, the control parameters are samples from truncated normals, with the bounds
for each parameter specified by its sampled domain. The means are the value predicted by
the learned model. The standard deviation σ of the (non-truncated)-normal is a parameter of
the algorithm. The sampled inputs are projected on to the discrete input space.

Experiments showed that inaccurate prediction makes selecting the right input difficult
when the problem requires the RRT to very precisely reach a small region in state space, as
happens when near the goal region. Therefore, when the target in an RRT step involves the
goal region, we increase the standard deviation of the input distribution. This empirically
improved performance.

6.4.2. BOUNDING THE CHANCE OF PICKING THE RIGHT NODE
The chance of expanding from xi , the most advanced of the set of solution nodes currently in
the tree (V), is the volume of the state space for which that node is the nearest node divided
by the total volume of the free state-space:

P (xi) = Vol({x ∈X |d(xi , x) < d(xe , x),∀xe ∈ V \xi })

Vol(X)
(6.9)

Note that, the entire state space X is considered in Eq. 6.9, instead of Xfree. This is important
because of the following. The fact that xi is the most advanced node in the solution implies
xi ∈Xfree. In state space, this means two things: i) xi is not a collision state and ii) xi is also
outside the region of inevitable collisions of any potential obstacles in the state space. The
second part is crucial because it guarantees the existence of an ε-vicinity of xi that always
has some non-zero volume. As a consequence, there is always a chance of sampling some x
that would still be in Xfree and also nearest to xi . The same will hold for all future nodes
in the solution. In other words, our proof only holds under the condition that a different
problem setting will still ensure the regions of inevitable collisions for the solution nodes
remain intact.

Given this condition, we proceed further as follows. Since the volume of X is fixed and
finite for a given sampling range and always larger than the volume encompassing xi and its
nearest neighbor, we only need to make sure the numerator is non-zero. This should be done
while taking into account that the local steering cost function is piecewise continuous, with a
discontinuity at 0.

The first step is to impose that the distance function must always be larger than some
positive constant times the Euclidean distance:

d(x, y) ≥ clb||x − y ||2 clb > 0 ∀x, y (6.10)

This lower bound ensures that the distance to a given node can not remain low over a large
region of state space, causing the algorithm to always choose that node for expansion.

The distance should also have an upper bound for at least some volume of the state-space.
We use the set G (x), the largest connected set containing x with points for which the distance

6.5. EXPERIMENTS AND RESULTS

6

83

to x is bounded by cub times the Euclidean distance:

G (x) = argmaxVol(S) s.t. S ⊆ {y |d(x, y) ≤ cub||x − y ||2},

x ∈S , S is connected

For the upper bound condition: Vol(G (x)) > cv ∀x (6.11)

Note that these conditions are not met in two frequently studied cases: 1. when the cost
function is the integral of the squared input, 2. when the system is not small time locally
accessible, as happens for instance in underactuated systems.

Take the largest ball Bρ(xi) centered around point xi , such that cub||xi − y || ≤ clb||x− y ||
for all y in the ball, and all nodes x in the tree. Based on simple Euclidean geometry, ρ > 0.
Also, by construction, the intersection Bρ(xi)∩G (xi) has positive volume, and all points
in that intersection are closer (by measure d) to node xi than to any other node in the tree.
Together this shows P (expand xi) > 0.

If we had access to the true distance function, or an approximation of it that meets the
conditions specified above, this would conclude the proof of convergence. However, learning
algorithms are intended to generalize using interpolation, so may make large errors when
extrapolating. This is especially true for Learning RRTs, for which this problem has not been
identified in literature yet. In RRTs we uniformly sample state-space, while we have confined
our dataset to only contain short motion segments. Therefore, sampled combinations (x0, x1)
are often outside the dataset, where function approximation may make large errors, which
might cause conditions 6.10 and 6.11 to be violated. Particularly, the approximated distance
metric might greatly underestimate the steering cost from a certain node, causing that node
to be incorrectly chosen for expansion.

This issue can be solved by a binary classifier that decides whether a query would yield
a valid prediction, i.e., whether the dataset D covers the queried point. The implemented
classifier V̂ : (X ,X) → v, with v ∈ [true, false], simply computes the summed distance
to the nearest neighbors of the queried point to the points in the dataset, and rejects the query
point if this sum becomes too large. An alternative approach, explored in [130], relies on
reachability: the notion that the dataset contains only short segments, meaning the final
states should be reachable within a short period of time. To avoid violating conditions 6.10
and 6.11 by small approximation errors in the learned function, the predicted steering cost is
clipped at 10±5. This clipping has negligible effect on the computation.

6.5. EXPERIMENTS AND RESULTS
To test our approach, we perform experiments on the pendulum described in Section 6.2.
The task is to move the pendulum from its stable equilibrium (θ,ω) = (−π,0) to its unstable
equilibrium (0,0).

This experiment does not require obstacle handling; we do not explicitly focus on
collision checking or obstacles in our work, as our focus is on the RRT itself and we assume
the collision checking is handled by an external algorithm.

Data were generated and cleaned for separate epochs, with 300 runs of the RRT algorithm
per epoch. The data for each epoch consist of 40000 simulations, which ended when the
local cost exceeds 2 or when the norm of the state difference with the initial state (rbound)
exceeds 1.5. Integration was done by the 4th order Runge-Kutta algorithm with a time step of

6

84 6. CONTROL INPUT APPROXIMATION IN STATE-SPACE

− 6 − 4 − 2 0 2
Angular Posit ion (rad)

− 3

− 2

− 1

0

1

2

3

A
n

g
u

la
r

V
e

lo
ci

ty
 (

ra
d

/s
)

Generated Tree for a successful query

Figure 6.3: The state-space coordinates of the tree-nodes of a successful run of the algorithm. The edges are shown
as straight lines, with those connecting the initial point to the goal being highlighted.

0.01 s. The initial position was uniformly sampled from (−3π/2,π/2)rad, the initial velocity
from (−π,π)rads−1, and the initial costate sampled as described below. The data cleaning
resolution d equals 0.05. The data cleaning stopping parameter kmax is set to 5000. The
nearest neighbor fitting algorithm during the RRT takes m = 3 nearest neighbors. Finally,
the standard deviation of the sampling distribution σ = π/4 normally, and π/2 when the
query involves the goal state. The experiments ran on a MacBook with Intel(R) Core(TM)
i5-3210M 2.50 GHz CPU and 8GB of RAM, running Ubuntu Linux 14.04 and code in
Python, MATLAB and Julia.

To avoid projecting on the costate constraint (Eq. 6.7), which is computationally
expensive for larger systems, the constraint is solved explicitly by uniformly sampling
the parameter φ ∈ (−π/2,3π/2) that sets the initial costate as follows: λθ = tan(φ) and
λω =−sin(θ)+ sign(cos(φ))

√
sin(θ)2 +2+ tan(φ)ω. If λω has an imaginary part, the simu-

lation is disregarded.
Figure 6.3 shows a typical run of the algorithm. Three important points can be seen

from this figure. First, the algorithm neatly expands through state-space. While it favours
expanding along the circular paths that correspond to low input trajectories, it expands nodes
in all feasible directions. This indicates that the distance metric works properly, and contrasts
with trees that are grown without appropriate distance metric, which tend to have many
nodes clustered. Secondly, the figure highlights the approximation errors that still exists;
the edges that lead to the border of the figure all had target nodes inside the figure. As these
nodes are outside the figure, the target was not reached exactly. Finally, the algorithm has
tried to reach the goal-state a number of times from the same node. This shows the effect
of the increased randomness; because the attempts are spread out sufficiently, the goal is
eventually reached.

Figure 6.4 shows the computation times for 10 epochs. The planning time has the same
variation in each epoch, indicating that data generation and cleaning are performed robustly.
The median time to reach the target over all samples was 2.43 s, over 10 times faster than [12]

6.5. EXPERIMENTS AND RESULTS

6

85

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Epochs

P
la

n
n

in
g

 t
im

e
 (

s)

Figure 6.4: Boxplot of planning times for ten epochs.

on the same hardware. Data generation and cleaning took ∼25 min per epoch, an order of
magnitude faster than in [12]1. The performance of the learned steering function is assessed
by the mean squared error between the target state and the final state attained by using the
predicted costate. The median of this error over all epochs is 0.11.

The quality of the combined machine learning is assessed using the number of nodes
needed to reach the target. For the results in Figure 6.4, the median over all runs is 84 nodes.
About 30 % smaller (better) than in [12], this result is best interpreted as a roughly equal
performance, as the problem here does not require the pendulum to swing back and forth to
reach its goal. Equal performance indicates the learned steering function approximates the
online optimization well.

500

1000

1500

2000

2500

0.3 0.69 1.07 1.46 1.84 2.23 2.61 3.0
0

50

100

150

200

250

300

350

400

Reachability bound

N
u

m
b

e
r

o
f

tr
e

e
 n

o
d

e
s

Figure 6.5: The number of nodes required to find a solution using different settings of the reachability bound.

Figure 6.5 shows the effect of the reachability bound on the number of nodes needed

1The cited paper does not report the offline computation time. However, due to overlapping authors we know offline
computation took nearly a week.

6

86 6. CONTROL INPUT APPROXIMATION IN STATE-SPACE

to reach the goal position. This investigates how the length of the simulation in the dataset
influences the performances of the algorithm. When the simulations are too short, the online
algorithm is forced to use many segments, hindering convergence. When simulations are
too long, the coverage of all possible trajectories becomes sparse, causing poorer learning
performance.

Figure 6.6 shows the number of nodes needed to reach the goal position with various parts
of the algorithm removed or replaced. This allows us to identify the important aspects of the
algorithm, and to compare the algorithm to the state-of-the-art. The last four algorithms have
the validity check turned off and perform worst. Note that [12] does not use such a check, but
instead implements an online trajectory optimization to avoid the poor performance without
validity check shown here. The figure also shows that the difference between learned and
Euclidean distance is small when using a validity check, confirming the intuition from [130].
The algorithm in that paper is very close to the ∆__-settings in Figure 6.6. Finally, we see
that learning the actions makes the algorithm perform better than using random costate
selection.

500

1000

1500

2000

2500

∆ ΓΛ ∆ Γ_ ∆ _Λ ∆ __ _ΓΛ _Γ_ __Λ ___
0

50

100

150

200

250

300

RRTCoLearn configurat ion

N
u

m
b

e
r

o
f

tr
e

e
 n

o
d

e
s

Figure 6.6: The number of tree nodes required to find a solution for different configuration settings for RRTCoLearn
algorithm. The horizontal axis is labeled with three symbols, which can be turned on or off. In the first position, the
∆ signifies the validity check being turned on. Similarly, the Γ switches between learned and Euclidean distance,
and the Λ between learned and random costate (action) selection.

6.6. DISCUSSION
The algorithm introduced in this paper allows learning of not only the distance metric, but
also the steering input. As proof of concept, we tested our algorithm on a basic pendulum
swing up problem. It reduces the time spent both in the offline learning and in the online-
computation by a factor of more than 10, a large step towards sampling based kinodynamic
planning in a practical setting.

The main direction for future research is to support higher degree of freedom systems.
Such systems will require more sample efficient data generation and learning. To improve the
efficiency of data generation, new simulations might be selected based on already obtained

6.7. CONCLUSION

6

87

data, and the partially learned cost and steering functions, similar to what has been done for
reinforcement learning [81]. (Deep) generative models could provide more efficient learning.
These models allow sampling from complex, high-dimensional probability distributions,
meaning we could retain all data points without averaging over solutions [46, 93].

A secondary direction for future research is to support input bounds. We have taken a
preliminary step in this direction by implementing RRT CoLearn on a time optimal pendulum
swing up with the torque bound set to 0.5, and all other constants as in Eq. 6.3. The resulting
optimal equations of motion are invariant to the norm of the costate vector. Therefore the
constraint of Eq. 6.7 is satisfied by setting the norm of the costate to 1. For 50 runs of
CoLearn, the solution was always found within 2000 nodes, using a median planning time
of 12.32 s, and median number of 195 nodes. These results compare favorably with those
reported by the state-of-the-art in kinodynamic planning [108, 130].

Unfortunately, the input constraints can cause an exact overlap between trajectories
starting from different costates, at least for a finite time. Such overlapping trajectories
are difficult for the learning and cleaning algorithms we used. Therefore, a larger dataset
was required, severely slowing down the RRT. Extending the machine learning aspects of
CoLearn, such that they can cope with overlapping trajectories is an important theoretical
and practical issue.

The third direction for future research is the combination of the CoLearn algorithm
with other (non-learning) enhancements of the basic RRT algorithm, such as [72, 71]. RRT-
Connect [72] would be the most prominent addition. It grows two trees: one forwards from
the initial state, and one backwards from a goal state. A new model based on backwards
integrated data must be learned for creating the backwards-searching tree. As the system of
differential equations (Eqs. 6.5-6.6) is unstable in both forward and backward direction [99],
the learning challenges remain similar.

Finally, note that RRTs, and therefore learning RRTs, are suited to finding novel motions
for deterministic systems for which an accurate model is available. When planning for
non-deterministic or uncertain systems, funnel based approaches are more appropriate than
trajectories [138]. If the system has to perform similar motions repeatedly, multi query
methods such as probabilistic roadmaps [41] or motion libraries can be more effective [8].
For the last problem, learning has already been used to find similarity between obstacle
locations between planning instances [136]. It is interesting to investigate if using indirect
optimal control similar to this chapter could be beneficial for those settings.

6.7. CONCLUSION

Optimal Control Machine Learning RRT

+ Distance computation Generalization High dimensional
Optimal local planner Fast online prediction Obstacle avoidance

- Costly computation6.2 Needs large dataset6.2 Needs distance metric
Local optima→bias6.3 Needs unbiased data6.3 Needs local planner6.2

Bad extrapolation6.4

Table 6.1: Benefits and challenges of components of Learning-RRTs

6

88 6. CONTROL INPUT APPROXIMATION IN STATE-SPACE

This chapter first described a general Learning RRT algorithm. Table 6.1 shows the
benefits and challenges of its components: Optimal Control, Machine Learning and RRT.
The superscripts in the table refer to the sections in which the challenges are addressed.

RRT CoLearn, an instance of a learning-RRT, was proposed. CoLearn generates data
faster and allows learning of the steering function, both by using indirect optimal con-
trol. It also uses a newly proposed data-cleaning algorithm for more accurate function
approximation.

RRT CoLearn was successfully used on a pendulum swing up both with and without
input constraints. The main results are on the system without input constraints and show that
RRT CoLearn is 10 times faster than a state-of-the-art learning RRT [12].

NOTES
- The source code for RRT-CoLearn has been implemented using Python, MATLAB and
Julia and is available at:
https://bitbucket.org/mbharatheesha/learning-optimal-control-for-rrt-matlab.
- A few topics concerning the scalability aspects of RRT-CoLearn to higher dimensional state
spaces are presented in Appendix B.

THESIS CONCLUSIONS

89

7
DISCUSSION AND CONCLUSIONS

This thesis work presented a study into two relevant, yet contrasting aspects of robot motion
planning. The first part focused on the use of sampling-based configuration space motion
planners in industrial robotic applications and the second part focused on the challenges in
sampling-based motion planning in state space. Before discussing the contributions of the
two parts, we will briefly revisit the different challenges that were addressed in this thesis.

7.1. MOTION PLANNING IN CONFIGURATION SPACE
Use of sampling-based motion planning algorithms in the context of industrial applications
(bin picking) was the focus of the first part of this thesis. Here, we worked on two practical
challenges associated with realizing a fully functional bin picking application.

7.1.1. TUNING OF PLANNING ALGORITHM PARAMETERS
Software implementations of sampling-based algorithms in configuration space always
involve one or more parameters that influence the success rate of planning queries. The
primary function of these parameters is to limit the amount of programming required to
adapt the implementation across different scenarios. However, manual tuning of these
parameters for different scenarios is not desirable from a practical view point because it is
cumbersome and more importantly, requires background knowledge of the algorithms to be
able to extract the best performance from the planners. With a large diversity of planning
algorithm implementations available, the tuning process only gets tedious. In this regard, we
formulated the following research question:

How can we choose what is the best configuration space planner for a given bin picking
scenario?

Chapter 2 presented an automatic framework to tune parameters of different configuration
space planners in the Open Motion Planning Library (OMPL) for three different planning
problems using industrial robots. The framework was built using an open source tool called
Sequential Model based Algorithm Configuration (SMAC) [54]. The effect of the tuning

91

7

92 7. DISCUSSION AND CONCLUSIONS

process on different planning algorithms was assessed using performance measures such
as the number of planning queries successfully solved, the time required to find a solution
and the path length of the resulting solutions. It was observed that for planners which had
multiple parameters, the performance improved significantly. For example, the number
of successfully solved planning queries doubled (∼108 % improvement) for the BKPIECE
planner which has 4 tuning parameters.

7.1.2. FUNCTIONAL SYSTEM INTEGRATION
Integrating a complete robotic solution for a bin picking application is a challenging task.
This challenge is further compounded when the application changes from time to time such
as in Small and Medium Scale Enterprises (SMEs) processing seasonal products. With bin
picking tasks, the working environment of a robot is typically unstructured and often involves
picking objects from a cluttered location. A motion planning module in such a scenario is
required to quickly and reliably interact with other modules such as environment perception
and act in a desired manner. While multiple open source software components addressing
the motion planning requirements are available, realizing a fully functional industrial robotic
system is still a complicated task. To this end, we formulated the following question:

What are the important challenges in integrating motion planning software components with
other relevant components to realize a reliably functioning bin picking application?

Chapter 3 and Chapter 4 presented two cases of functional system integration. It was
identified that robustness in performance, fast cycle times and reusability are the key chal-
lenges in the development of flexible and functional robotic solutions that can be used in
SMEs. In Chapter 3 a software framework that used an off the shelf open source motion
planning software as one of the components was presented. This motion planning component
was subsequently fine tuned for maximizing robustness and minimizing cycle times for the
bin picking tasks. Together with other fine tuned software components for environment
perception, it was shown that a world championship winning bin picking robotic system for
warehouse automation is achievable using current open source motion planning frameworks.
The main contributor to the cycle times from a motion planning perspective was observed to
be the collision checking process which ranged between 1−4 s per object.

The motion planning module was also designed with a generic division of subtasks so that
the same can be reused in a different application and thus minimizing the development and
installation time. This proved highly effective in the initial development of the robotic system
presented in Chapter 4. It was possible to reconfigure the motion module to meet the new
application requirements in less than 3-days. However, the introduction and integration of the
reactive collision avoidance behavior in the software framework was the most challenging
task for this robotic system and approximately required about 6 weeks of software system
integration work.

7.2. MOTION PLANNING IN STATE SPACE
Sampling-based motion planning in state space was the subject matter of the second part
of this thesis. Here, we addressed two critical challenges that currently limit the possibility
of using sampling-based motion planning methods in state space: computing the distance

7.2. MOTION PLANNING IN STATE SPACE

7

93

metric and computing the steering input. In the following, the two challenges and our
approaches are outlined.

7.2.1. DISTANCE METRIC APPROXIMATION IN STATE SPACE
The distance (pseudo) metric plays a crucial role in being able to successfully find a motion
plan using a sampling-based planner in state space. The notion of distance in state space is
the optimal cost-to-go between a pair of states. However, computing the optimal cost-to-go
is time intensive in the context of (online) planning and leads to very large planning times to
be used in practice. With a goal to eventually be able to utilize the benefits of sampling-based
motion planning in state space, the following research question was formulated:

How can we alleviate the computational demands of the distance metric computation for
motion planning in state space?

In Chapter 5, we proposed a supervised learning-based approach, RRTLearn to address
this problem for the Rapidly exploring Random Tree (RRT) algorithm in state space. Our
approach involves an offline data generation phase where an optimal control problem is
solved between several randomly chosen state pairs to create a dataset containing state pairs
and the corresponding cost. The iterative Linear Quadratic Regulator (iLQR) [83] is used as
the optimal controller. The generated dataset is subsequently used in an offline supervised
learning framework to learn an approximation of the cost-to-go across different regions
in the state space. Locally Weighted Projection Regression (LWPR) [142] is used as the
learning algorithm. Finally, the learned approximation is used in an online setting in the
actual run of an RRT algorithm to solve a motion planning query. Our approach is verified
on a simple pendulum swingup simulation problem. The proposed approach is shown to
reliably approximate the state space distance metric with a speedup of about 3 orders of
magnitude relative to solving one or more optimal control problems at each iteration of an
RRT.

7.2.2. STEERING INPUT APPROXIMATION IN STATE SPACE
Approximating the optimal cost-to-go in a state space RRT contributes significantly to
the reduction of the overall planning time. However, that reduction is still not enough
when viewed from the perspective of using such methods in an online setting in practical
applications. This is because, one optimal control problem per state pair still should be
solved to generate a (possibly locally optimal) trajectory that connects the nearest state
to the randomly sampled. Therefore, over an entire planning query, the solution times to
these optimal control problems add up to the planning time. In pursuit of achieving further
reductions in planning times in state space, the following research question was formulated:

How can we formulate the optimal control problem to quickly generate control inputs
without compromising on the dynamical constraints?

The RRT-CoLearn algorithm is proposed in Chapter 6 as a promising approach to address
this fundamental challenge. This algorithm is based on a combination of learning-based
approximation and the principles of indirect optimal control. The key working idea of the
RRT-CoLearn approach is that indirect optimal control formulation enables a parametrization
of the control (or steering) input that is locally generalizable in different regions of state space,

7

94 7. DISCUSSION AND CONCLUSIONS

as long as the desired trajectories are for a short duration. Similar to the aforementioned
approach to approximate the distance metric, an offline data generation phase is utilized to
create a dataset of state pairs, the corresponding costs and control input parameterization.
Subsequently, the dataset is used to train a k-Nearest Neighbor (kNN) learning model to
approximate the cost and the control input parameters. The learned model is eventually
utilized in the actual run of the RRT algorithm to predict both the cost and control input
parameters between the state pairs in an RRT iteration. Thus, the RRT-CoLearn approach
eliminates the need to solve another optimal control problem to connect the nearest state to a
randomly sampled state in an RRT. This approach is also tested on the problem of pendulum
swingup in simulation. A further speed up of a factor of 10 is observed in the planning times
relative to the previous experiment where only distance metric is approximated during the
run of an RRT.

7.3. DISCUSSION
The rest of this chapter reflects on the different contributions from this thesis where the
strengths and limitations of the proposed methods are highlighted. Subsequently, we present
a few general conclusions and propose a few directions for further research.

7.3.1. FUNCTIONAL SYSTEM INTEGRATION WITH CONFIGURATION SPACE
PLANNING

Planning in the configuration space of robotic manipulators is highly effective in solving
motion planning problems where a robot needs to move between static start and end con-
figurations. The principles of sampling-based planning have made it possible to generate
fast planning solutions in high dimensional configuration spaces. For example, the planning
solutions for the different bin picking scenarios presented in this thesis ranged between
(0.1−0.3 s) including the time parameterization process. The possibility of achieving such
high speeds and the availability of open source software implementations make them at-
tractive avenues for SMEs from an economical perspective. The first part of this thesis
(Chapters 2 through 4) explored this potential in the context of industrial bin picking using
the ROS-based MoveIt! [133] motion planning framework. Reliable and functional robotic
systems were realized in the process.

One of the important observations from the first part of this thesis is that open source
frameworks serve as a highly effective platform for quick modeling of the working envir-
onments and conduct simulation tests. This provides a tremendous advantage in making
some preliminary design decisions on the robotic system hardware. For example, the ROS-
Industrial Consortium1 provides a large repository of various (software) models of industrial
robots. In combination with motion planning frameworks such as MoveIt!, one can answer
important design questions such as: Can a given robot perform the desired task effectively?
Are additional components such as a rail or a second robot needed to meet certain cycle time
requirements? All this is possible, before having to invest in actual robot hardware. This
stands out as a key benefit for SMEs. On the flip side, an equally important aspect emerges
from the perspective of user-friendliness of such frameworks for an industrial practitioner.
In its current state, there is still a significant level of domain knowledge needed to build

1https://rosindustrial.org/

7.3. DISCUSSION

7

95

functional robotic systems. That is, a reasonable understanding of the planning algorithms
and the software frameworks is required to reach the reliability levels desired from robotic
systems at the industrial level. The framework presented in Chapter 2 attempts to minimize
the requirement of motion planning domain knowledge to a certain extent by creating a
blackbox algorithm tuning module. However, we are still quite far from abstracting these
functionalities such that they can be integrated into the GUIs on teach pendants of industrial
robots.

A second important observation is in the context of achieving reactive collision avoidance
behaviors for bin picking applications in the context of SMEs. Collaborative robotic systems
(also popular as Cobots) could serve as a strong alternative for SMEs processing seasonal
products where setting up a full fledged production line is impractical. The central idea
here is to create robotic systems that can co-exist with humans. This can be achieved by
integrating basic sensory modalities with a robotic system such that information regarding its
immediate vicinity is available. One such system is presented in Chapter 4 which was built
to study to what extent one could seamlessly introduce a robotic system in an environment
with humans. Two collision avoidance behaviors were realized when a human/obstacle gets
too close to the robot (< 6 cm): i) stopping and continuing on the desired motion paths after
there is sufficient clearance from the obstacle (ii) moving away from a potential collision by
online modification of a motion path. Both behaviors have been successfully demonstrated
at multiple public events to study their reliability in working environments with human
presence. The latter behavior is desirable considering that there is no stopping involved
which eventually influences the cycle times. However, the lack of global information (world
model) is a key limitation of the system presented in Chapter 4. Some measures such as
indirectly accounting for global information using constraints on the usable joint ranges
of the robot are taken but they proved insufficient as there were situations where the robot
would collide with its mounting while taking evasive actions. Yet another limitation of this
system is the non-availability of redundant degrees of freedom to plan alternative motions
around a desired motion path that is blocked by an obstacle. For example, there are only
few alternatives to achieve/maintain a 3D end-effector pose (position and orientation) with a
robot that has only 6 degrees of freedom. This further compounds the problem of finding
alternate paths particularly when global information is unavailable. Therefore, it is desirable
to have at least some form of redundancy so that reactive behaviors are effectively realized.

A final observation is regarding the benefits that the Robot Operating System (ROS)
component based software framework offers in the context of robotic system integration.
The results presented in Chapter 4 are achieved via collaborative software development
across different research organizations. The component based software idea provided an
elegant infrastructure for functional separation and interface standardization. ROS, being a
middleware, provides an additional benefit by abstracting lower level software details such as
message handling and communication with hardware. This enabled the possibility to focus
solely on software behavioral and functional design aspects. However, one has to take extra
care in using ROS-based components in applications with hard real-time requirements. For
example, jerky robotic motions were observed when the software module communicating
with the robot hardware was run in a non real-time mode and in the presence of other
modules that had strong demands on processor times.

7

96 7. DISCUSSION AND CONCLUSIONS

Thus a common observation from the first part of the thesis is that ROS-based open
source software tools provide promising avenues for functional system integration for robotic
bin picking. In the following a brief discussion on the second part of this thesis is presented.

7.3.2. SUPERVISED LEARNING FOR MOTION PLANNING IN STATE SPACE
The second part of this thesis focused on reducing planning times for sampling-based motion
planning in state space. We proposed a framework using supervised learning tools to achieve
this goal in the context of the RRT planner. In the process of designing these methods,
multiple choices were made to develop this framework. Here, we present a discussion on
these choices and their effects on the achieved results.

We started with the hypothesis that supervised learning is a potential tool to reliably
approximate the optimal cost-to-go between a pair of states in state space. The main idea
behind this hypothesis evolved as follows. Sampling-based planners provide a motion
planning solution that is composed out of short trajectory segments between state pairs. Typ-
ically, the underlying dynamics in these trajectory segments exhibit locally linear properties.
Further, similar state-pairs have approximately similar (locally) optimal costs between them.
Therefore, it is likely that there exists a locally linear mapping between the trajectory space
and the corresponding costs. Hence, we could possibly use supervised learning algorithms
that are shown to be good at capturing and generalizing such (locally) linear relationships.

For supervised learning, an incremental learning algorithm, Locally Weighted Projection
Regression (LWPR) was preferred over Artificial Neural Networks (ANN). The motivating
factor for this choice was the possibility of incrementally improving the learning-based
approximation model for the distance metric over each iteration of an RRT. However, there
were two associated problems that hindered the utilization of the incremental learning
capabilities. First, it was observed that at least 2000 state pairs were required to obtain a
reliable approximation model for the 2-dimensional state space of the simple pendulum.
In the days of big data, this number seems negligible. However, this translates to solving
2000 instances of an optimal control problem with each instance costing about 0.5 s of
computation time. This means for the first run of a state space RRT where the learned
model is not available, one has to wait at least 16 min before a learned model is available
and probably a few seconds longer until a motion planning solution is found. This delay is
perhaps still acceptable considering that the proposed offline training phase would exactly
take the same time and subsequent runs of RRT will have faster planning times. However,
the incremental approach with the RRT lead to a second, more important problem from a
machine learning perspective. This problem is caused by the fact that the data used to learn
the incremental models has a bias towards the nodes that are already in the RRT: one of
the states in the state pairs used for computing the optimal costs will always be a part of
the tree. This is a fundamental limitation as there is no guarantee that there is an adequate
representation of data points from all regions of the state space. This typically leads to poor
generalizations from the learned models. But, this is not the case with the offline training
phase, as the state pairs are uniformly randomly sampled from the entire feasible range of
the state space. Therefore it was decided to follow the approach as presented in Chapter 5.

The iLQR optimal control approach was used in Chapter 5 to compute the costs between
state pairs. This choice was motivated by the requirement to better account for system
dynamics while computing the (locally) optimal controller (and the associated costs) between

7.3. DISCUSSION

7

97

state pairs. However, the lack of a generalizable input parameterization in the iLQR approach
meant that the dataset consisted of only state pairs and cost. As a result, solving one optimal
control problem during the steering step of an RRT was still required and the speedup from
learning was only limited to distance metric approximation. This limitation inspired the
proposal to use the indirect optimal control approach in Chapter 6 where a generalizable
control input formulation was possible using the concept of costates. The resulting approach,
RRT-CoLearn, was evaluated on the simple pendulum swingup problem. However, it was
observed that this approach does not yet directly scale well to higher dimensional state spaces.
This is because, the idea of similar states leading to similar costs does not directly extend
when control inputs are considered. Typically, the cost is a strictly positive real number.
Therefore, commonly used machine learning approximations such as weighted averaging
or interpolation during the prediction process provide a meaningful approximation of the
real cost [11]. However, the same does not hold for control inputs as they are not necessarily
strictly positive real numbers. As a result similar datapoints strongly interfere with each other
and an averaging or interpolation operation would simply produce incorrect approximations.
The proposed data cleaning process in Chapter 6 is a simple way to eliminate such interfering
data points. However, it used a heuristic to identify and remove similar datapoints. The
tuning of this heuristic is non-intuitive when the state dimensionality increases and could
become a tedious process to arrive at an appropriate value.

Another fundamental challenge was observed while performing preliminary studies
in extending the RRT-CoLearn to higher dimensional state spaces. The choice of the
combination of costates that satisfy the initial conditions on the optimal hamiltonian (see Eq.
6.7 in Chapter 6) significantly impact the coverage of the different regions of the state space.
For the two dimensional state space with a Lagrangian formulation of the system dynamics,
the initial condition was a relatively simple quadratic equation in the two costates. An
assumption on one of the costates was possible and hence created the possibility to uniformly
cover the entire range of the other costate to have a good coverage of datapoints for the
learning process. However, this simplicity does not prevail as the dimensionality increases.
To begin with, the initial condition becomes a higher order polynomial (the polynomial
order is the same as the dimensionality of the state space) in the costates. With only one
equation in multiple variables, it is difficult to guarantee that the complete range for all the
costates is covered. Secondly, the complexity of the equation increases making it difficult
to use factorization techniques to uniformly cover the solution space of the equation. In
summary, the RRTCoLearn seems to be a very promising direction towards making the next
step towards realizing planning times in state space motion planning that are practical to
use. However, there are some important fundamental problems that need to be addressed
to realize its full potential. A few potential directions to address these problems with some
preliminary results are presented in Appendix B.

Sampling-based motion planning in state space is an active topic of research. The
results from this thesis and also other relevant results such as in [3] point towards promising
avenues that can be explored further to eventually realize state space motion planning in
practice. However, achieving planning times equivalent to or faster than what is possible in
the configuration space is still a significant amount of work.

7

98 7. DISCUSSION AND CONCLUSIONS

7.4. CONCLUSIONS
Based on the different aspects discussed before and the results from the different chapters,
the main conclusions of this thesis are:

• Off the shelf open source software components for configuration space motion plan-
ning can definitely be configured quickly in the context of flexible robotic system
integration for SMEs. However, further effort is necessary to make a full step towards
use in industry from the perspective of user-experience and software architecture
standardization.

• Supervised learning can successfully approximate the cost-to-go between state pairs in
a state space without discontinuities. As a consequence, a significant speed up in the
nearest neighbor determination phase of sampling-based algorithms can be achieved.

• Supervised learning in combination with indirect optimal control and adequate data
processing can also approximate the steering input to connect state pairs in a given state
space. Thus, a further speed up results in the total planning time for sampling-based
planning algorithms in state space.

• In general, a combination of the principles of supervised learning and optimal control
theory provides interesting and promising avenues to explore the domain of sampling-
based motion planning in state space

7.5. FURTHER RESEARCH DIRECTIONS
This thesis presented a study into the field of sampling-based motion planning in config-
uration and state spaces. Industrial and academic systems were considered as examples to
establish different results. Here, we present some pointers for further research.

A specific focus on software architecture design for typical industrial applications such
as bin picking could help bridging the current gap between academia and industry in using
off the shelf open source software components. In particular, inclusion of aspects related to
robust and reliable performance such as failure mode handling, basic and advanced behavior
design and synthesis can be interesting avenues to explore in the context of collaborative
robot applications. Personnel in industries are typically skeptical of open source software
components as there is no explicit software quality assessment or maintenance from a
qualified company or an individual such as from a standards organization. The ROS-
Industrial consortium and the recently funded European Union Project ROSIN2 are aimed at
taking steps in these directions.

The methods proposed in this thesis in the context of motion planning in state space were
focused on establishing the proof of concept of the use of supervised learning tools to speed
up the generation of planning solutions. While the concept has been shown to work, several
interesting avenues could be explored such as the use of faster and sophisticated learning
tools that can deal with the data bias problem. One such avenue could be the utilization of
deep generative models such as the Conditional Variational Autoencoder (CVAE) [46, 94].

Short trajectory segments with a fixed and finite simulation duration were used in this
thesis to generate the data points for learning. This works well when control input constraints
2www.rosin-project.eu

7.5. FURTHER RESEARCH DIRECTIONS

7

99

are not considered or if the system is underactuated. Therefore it would be interesting to
investigate the effect of introducing input constraints on the proposed methods. Perhaps
a potential further research direction is to use variable times for trajectory generation and
also incorporate this information into the learning process (see [97]). In the context of
input constrained systems, learning this information could be useful to generate planning
solutions with energy pumping motions. In general, accounting for input bounds is especially
challenging in the context of using learning-based predictions. Extra care has to be exercised
to account for the effect of extrapolation where the predicted control inputs could potentially
exceed the desired bounds. This is also an interesting prospect for further research.

REFERENCES

[1] E. Ackerman. German Warehouse Robots Tackle Picking Tasks. 2016. URL: https:
//spectrum.ieee.org/automaton/robotics/industrial-robots/
german-warehouse-robots-tackle-picking-tasks (Accessed on:
10 June 2018).

[2] E. Aertbeliën and J. De Schutter. ‘eTaSL/eTC: A constraint-based task specification
language and robot controller using expression graphs’. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2014, pp. 1540–1546.

[3] R. Allen and M.Pavone. ‘A Real-Time Framework for Kinodynamic Planning with
Application to Quadrotor Obstacle Avoidance’. In: AIAA Guidance, Navigation, and
Control Conference. 2016, pp. 5021–5028.

[4] Amazon Robotics Challenge 2016. URL: https://www.amazonrobotics.
com/#/roboticschallenge/past-challenges (Accessed on: 9 Septem-
ber 2016).

[5] Amazon Robotics Challenge 2017. URL: https://www.amazonrobotics.
com/#/roboticschallenge (Accessed on: 30 May 2017).

[6] V. I. Arnol’d. Mathematical Methods of Classical Mechanics. 2nd Edition. Springer,
1989.

[7] J. Barraquand and J-C. Latombe. ‘A Monte-Carlo algorithm for path planning with
many degrees of freedom’. In: IEEE International Conference on Robotics and
Automation (ICRA). 1990, pp. 1712–1717.

[8] D. Berenson, P. Abbeel and K. Goldberg. ‘A robot path planning framework that
learns from experience’. In: IEEE International Conference on Robotics and Auto-
mation (ICRA). 2012, pp. 3671 –3678.

[9] F. Berkenkamp, A. Krause and A. Schoellig. ‘Bayesian Optimization with Safety
Constraints: Safe and Automatic Parameter Tuning in Robotics’. In: arXiv preprint
arXiv:1602.04450 (2016).

[10] P. J. Besl and N. D. McKay. ‘A method for registration of 3-D shapes’. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 14.2 (1992), pp. 239–
256.

[11] M. Bharatheesha and M. Wisse. ‘Supervised Learning: A potential tool for motion
planning in state-space.’ In: Workshop on Beyond Geometric Constraints: Planning
for Solving Complex Tasks, Reducing Uncertainty, and Generating Informative Paths
and Policies. 2015.

[12] M. Bharatheesha et al. ‘Distance metric approximation for state-space RRTs using
supervised learning’. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2014, pp. 252–257.

101

https://spectrum.ieee.org/automaton/robotics/industrial-robots/german-warehouse-robots-tackle-picking-tasks
https://spectrum.ieee.org/automaton/robotics/industrial-robots/german-warehouse-robots-tackle-picking-tasks
https://spectrum.ieee.org/automaton/robotics/industrial-robots/german-warehouse-robots-tackle-picking-tasks
https://www.amazonrobotics.com/#/roboticschallenge/past-challenges
https://www.amazonrobotics.com/#/roboticschallenge/past-challenges
https://www.amazonrobotics.com/#/roboticschallenge
https://www.amazonrobotics.com/#/roboticschallenge

102 REFERENCES

[13] M. Birattari et al. ‘F-Race and iterated F-Race: An overview’. In: Experimental
methods for the analysis of optimization algorithms (Chapter 13) (2010).

[14] J. E. Bobrow, S. Dubowsky and J. S. Gibson. ‘Time-optimal control of robotic
manipulators along specified paths’. In: The International Journal of Robotics
Research 4.3 (1985), pp. 3–17.

[15] R. Bohlin and L. E. Kavraki. ‘Path planning using lazy PRM’. In: IEEE International
Conference on Robotics and Automation (ICRA). 2000, pp. 521–528.

[16] R.A. Brooks. ‘Intelligence without representation’. In: Artificial intelligence 47.1-3
(1991), pp. 139–159.

[17] E. F. Camacho and C. B. Alba. Model predictive control. Springer Science & Busi-
ness Media, 2013.

[18] B. Chazelle. Approximation and Decomposition of Shapes. Princeton University
Press, 1987.

[19] P. Cheng. ‘Sampling-based motion planning with differential Constraints’. PhD
thesis. University of Illinois at Urbana-Champaign, 2005.

[20] P. Cheng and S. M. LaValle. ‘Reducing metric sensitivity in randomized trajectory
design’. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2001, pp. 43–48.

[21] P. Cheng, G. Pappas and V. Kumar. ‘Decidability of Motion Planning with Differen-
tial Constraints’. In: IEEE International Conference on Robotics and Automation
(ICRA). 2007, pp. 1826–1831.

[22] B. Cohen and M. Likhachev. The Search Based Planning Library (SBPL). 2009.
URL: http://www.ros.org/wiki/sbpl (Accessed on: 10 June 2018).

[23] S. H. Collins et al. ‘Efficienct bipedal robots based on passive-dynamic walkers’. In:
Science 307 (2005), pp. 1082–1085.

[24] P. I. Corke. Robotics, Vision & Control: Fundamental Algorithms in Matlab. Springer,
2011.

[25] N. Correll et al. ‘Analysis and Observations From the First Amazon Picking Chal-
lenge’. In: IEEE Transactions on Automation Science and Engineering 15.1 (2017),
pp. 1–17.

[26] A. Weiss D. Fischinger and M. Vincze. ‘Learning grasps with topographic features’.
In: The International Journal of Robotics Research 34.9 (2015), pp. 1167–1194.

[27] E. Dean-Leon et al. ‘From multi-modal tactile signals to a compliant control’. In:
IEEE-RAS 16th International Conference on Humanoid Robots. 2016, pp. 892–898.

[28] E. Dean-Leon et al. ‘Robotic technologies for fast deployment of industrial robot
systems’. In: 42nd Annual Conference of the IEEE Industrial Electronics Society
(IECON). 2016, pp. 6900–6907.

[29] E. Dean-Leon et al. ‘TOMM: Tactile Omnidirectional Mobile Manipulator’. In: IEEE
International Conference on Robotics and Automation (ICRA). 2017, pp. 2441–2447.

http://www.ros.org/wiki/sbpl

REFERENCES 103

[30] R. Diankov. ‘Automated construction of robotic manipulation programs’. PhD thesis.
Carnegie Mellon University, Robotics Institute, 2010.

[31] I. Dianov et al. ‘Extracting general task structures to accelerate the learning of
new tasks’. In: IEEE-RAS International Conference on Humanoid Robots. 2016,
pp. 802–807.

[32] E. W. Dijkstra. ‘A note on two problems in connexion with graphs.’ In: Numerische
Mathematik (1959).

[33] B. Donald et al. ‘Kinodynamic Motion Planning’. In: Journal of the Association for
Computing Machinery 40.5 (1993), pp. 1048–1066.

[34] C. Eppner et al. ‘Lessons from the Amazon Picking Challenge: Four Aspects of
Building Robotic Systems’. In: Robotics: Science and Systems XII. 2016.

[35] G. Francesca et al. ‘AutoMoDe: A novel approach to the automatic design of control
software for robot swarms’. In: Swarm Intelligence 8.2 (2014), pp. 89–112.

[36] B. Friedland. Control System Design: An Introduction to State Space Methods. Dover
Publications Incorporated, 2005.

[37] J. Friedman, T. Hastie and R. Tibshirani. The elements of statistical learning. Vol. 1.
Springer series in statistics Springer, Berlin, 2001.

[38] M. Galar et al. ‘A review on ensembles for the class imbalance problem: bagging-,
boosting-, and hybrid-based approaches’. In: IEEE Transactions on Systems, Man,
and Cybernetics 42.4 (2012), pp. 463–484.

[39] J. D. Gammell, S. S. Srinivasa and T. D. Barfoot. ‘Batch Informed Trees (BIT*):
Sampling-based optimal motion planning via the heuristically guided search of
implicit random geometric graphs’. In: International Conference on Robotics and
Automation (ICRA). 2015, pp. 3067–3074.

[40] J. D. Gammell, S. S. Srinivasa and T. D. Barfoot. ‘Informed RRT*: Optimal sampling-
based path planning focused via direct sampling of an admissible ellipsoidal heur-
istic’. In: IEEE International Conference on Intelligent Robots and Systems (IROS).
2014, pp. 2997–3004.

[41] R. Geraerts and M. H. Overmars. ‘A comparative study of probabilistic roadmap
planners’. In: Algorithmic Foundations of Robotics V. Springer, 2004, pp. 43–57.

[42] R. Girshick. ‘Fast r-cnn’. In: Proceedings of the IEEE International Conference on
Computer Vision. 2015, pp. 1440–1448.

[43] R. Girshick et al. ‘Rich feature hierarchies for accurate object detection and semantic
segmentation’. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2014, pp. 580–587.

[44] E. Glassman and R. Tedrake. ‘A Quadratic Regulator-Based Heuristic for Rap-
idly Exploring State Space’. In: IEEE International Conference on Robotics and
Automation (ICRA). 2010, pp. 5021–5028.

[45] X. Glorot and Y. Bengio. ‘Understanding the difficulty of training deep feedforward
neural networks.’ In: Aistats. Vol. 9. 2010, pp. 249–256.

104 REFERENCES

[46] I. Goodfellow. ‘NIPS 2016 tutorial: Generative adversarial networks’. In: arXiv
preprint arXiv:1701.00160 (2016).

[47] G. Goretkin et al. ‘Optimal sampling-based planning for linear-quadratic kinody-
namic systems’. In: IEEE International Conference on Robotics and Automation
(ICRA). 2013, pp. 2429–2436.

[48] P. E. Hart, N. J. Nilsson and B. Raphael. ‘A formal basis for the heuristic determ-
ination of minimum cost paths.’ In: IEEE Transactions on Systems Science and
Cybernetics 4.2 (1968), pp. 100–107.

[49] K. Hauser. ‘Lazy Collision Checking in Asymptotically-Optimal Motion Planning’.
In: IEEE International Conference on Robotics and Automation (ICRA). 2015,
pp. 2951–2957.

[50] C. Hernandez et al. ‘Team Delft’s Robot Winner of the Amazon Picking Challenge
2016’. In: CoRR abs/1610.05514 (2016).

[51] D. Hsu et al. ‘Randomized Kinodynamic Motion Planning with Moving Obstacles’.
In: The International Journal of Robotics Research 21.3 (2002), pp. 233–255.

[52] F. Hutter. ‘Automated configuration of algorithms for solving hard computational
problems’. PhD thesis. University of British Columbia, 2009.

[53] F. Hutter, H. Hoos and K. Leyton-Brown. ‘An evaluation of sequential model-based
optimization for expensive blackbox functions’. In: Proceedings of the 15th annual
conference companion on Genetic and evolutionary computation. 2013.

[54] F. Hutter, H. Hoos and K. Leyton-Brown. ‘Sequential model-based optimization for
general algorithm configuration’. In: Learning and Intelligent Optimization (2011),
pp. 507–523.

[55] F. Hutter et al. ‘ParamILS: An automatic algorithm configuration framework’. In:
Journal of Artificial Intelligence Research 36.1 (2009), pp. 267–306.

[56] L. Jaillet, J. Cortés and T. Siméon. ‘Sampling-based path planning on configuration-
space costmaps’. In: IEEE Transactions on Robotics 26.4 (2010), pp. 635–646.

[57] L. Jaillet et al. ‘EG-RRT: Environment-Guided Random Trees for Kinodynamic
Motion Planning with Uncertainty and Obstacles’. In: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). 2011, pp. 2646 –2652.

[58] L. Janson et al. ‘Fast Marching Tree: A fast marching sampling-based method for
optimal motion planning in many dimensions.’ In: The International Journal of
Robotics Research 34.7 (2015), pp. 883–921.

[59] Jörg-Rüdiger and Jorge Urrutia. Handbook of Computational Geometry. Elsevier,
1999.

[60] K. Ramirez-Amaro et al. ‘General Recognition Models Capable of Integrating
Multiple Sensors for Different Domains’. In: IEEE-RAS International Conference
on Humanoid Robots. 2016, pp. 306 –311.

[61] M. Kalakrishnan et al. ‘STOMP: Stochastic trajectory optimization for motion
planning’. In: IEEE International Conference on Robotics and Automation (ICRA).
2011, pp. 4569–4574.

REFERENCES 105

[62] S. Karaman and E. Frazzoli. ‘Sampling-based algorithms for optimal motion plan-
ning’. In: The International Journal of Robotics Research 30.7 (2011), pp. 846–
894.

[63] S. Karaman and E. Frazzoli. ‘Sampling-Based Optimal Motion Planning for Non-
holonomic Dynamical Systems’. In: IEEE International Conference on Robotics
and Automation (ICRA). 2013, pp. 5041–5047.

[64] R. Katzschmann et al. ‘Towards online trajectory generation considering robot
dynamics and torque limits’. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2013, pp. 5644 –5651.

[65] L. E. Kavraki et al. ‘Probabilistic Roadmaps for Path Planning in High-Dimensional
Configuration Spaces’. In: IEEE Transactions on Robotics and Automation 12 (1996),
pp. 566–580.

[66] O. Khatib. ‘The Potential Field Approach and Opertational Space Formulation in
Robot Control’. In: Adaptive and Learning Systems (1986), pp. 367–377.

[67] N. Killingsworth, J. Nick and M. Krstić. ‘PID tuning using extremum seeking: online,
model-free performance optimization’. In: Control Systems 26.1 (2006), pp. 70–79.

[68] J. Kim, J. Keller and V. Kumar. ‘Design and verification of controllers for airships’.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
2003, pp. 54 –60.

[69] J. King and M. Likhachev. ‘Efficient Cost Computation in Cost Map Planning for
Non-Circular Robots’. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2009, pp. 3924 –3930.

[70] S. Klanke, S. Vijayakumar and S. Schaal. ‘A library for Locally Weighted Projection
Regression’. In: Journal of Machine Learning Research 9 (2008), pp. 623–626.

[71] R. A. Knepper, S. S. Srinivasa and M. T. Mason. ‘Toward a deeper understanding
of motion alternatives via an equivalence relation on local paths’. In: International
Journal of Robotics Research 31.2 (2012), pp. 167–186.

[72] J. J. Kuffner-Jr and S. M. LaValle. ‘RRT-Connect: An Efficient Approach to Single-
Query Path Planning’. In: IEEE International Conference on Robotics and Automa-
tion (ICRA). 2000, pp. 995 –1001.

[73] J-C. Latombe. Robot Motion Planning. Kluver Academic Publishers, 1991.

[74] J-P. Laumond. ‘Kineo CAM: A success story of motion planning algorithms’. In:
IEEE Robotics and Automation Magazine 13.2 (2006), pp. 90–93.

[75] J-P. Laumond, N. Mansard and J-B. Lasserre. ‘Optimality in Robot Motion: Optimal
versus Optimized Motion’. In: Communications of the Association for Computing
Machinery (ACM) 57.9 (2014), pp. 82–89.

[76] J-P. Laumond, N. Mansard and J-B. Lasserre. ‘Optimization as Motion Selection
Principle in Robot Action’. In: Communications of the Association for Computing
Machinery (ACM) 58.5 (2015), pp. 64–74.

[77] S. M. LaValle. From dynamic programming to RRTs: Algorithmic design of feasible
trajectories. Springer Tracts in Advanced Robotics, 2003, pp. 19–37.

106 REFERENCES

[78] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[79] S. M. LaValle. Rapidly Exploring Random Trees - A New Tool for Path Planning.
Tech. rep. Department of Computer Science, Iowa State University, 1998.

[80] S. M. LaValle and J. J. Kuffner-Jr. ‘Randomized Kinodynamic Planning’. In: The
International Journal of Robotics Research 20 (2001), pp. 378–400.

[81] S. Levine and V. Koltun. ‘Guided Policy Search’. In: 30th International Conference
on Machine Learning. 2013, pp. 1–9.

[82] S. Levine et al. ‘Learning Hand-Eye Coordination for Robotic Grasping with Deep
Learning and Large-Scale Data Collection’. In: CoRR abs/1603.02199 (2016).

[83] W. W. Li and E. Todorov. ‘Iterative linear quadratic regulator design for nonlin-
ear biological movement systems’. In: International Conference on Informatics in
Control, Automation and Robotics. 2004, pp. 222–229.

[84] Y. Li, Z. Littlefield and K. Bekris. ‘Asymptotically optimal sampling-based kino-
dynamic planning’. In: International Journal of Robotics Research 35.5 (2016),
pp. 528–564.

[85] T. Lillicrap. A MATLAB Implementation of the Iterative Linear Quadratic Regu-
lator (iLQR). Google DeepMind. URL: http://contrastiveconvergence.
net/~timothylillicrap/projects.php (Accessed on: 10 June 2018).

[86] T. Lozano-Perez. ‘Spatial planning: A configuration space approach.’ In: IEEE
Transactions on Computing C-32.2 (1983), pp. 108–120.

[87] M. Lüdtke. Integration Platform and Deployment Environment. 2017. URL: https:
//github.com/ipa-mdl/ipde_utils (Accessed on: 10 June 2018).

[88] N. Mansard et al. ‘A versatile Generalized Inverted Kinematics implementation
for collaborative working humanoid robots: The Stack Of Tasks’. In: International
Conference on Advanced Robotics. 2009, pp. 1–6.

[89] N. Mellado, D. Aiger and N. J. Mitra. ‘Super 4PCS Fast Global Pointcloud Regis-
tration via Smart Indexing’. In: Computer Graphics Forum 33.5 (2014), pp. 205–
215.

[90] D. Mellinger and V. Kumar. ‘Minimum snap trajectory generation for quadrotors’. In:
IEEE International Conference on Robotics and Automation (ICRA). 2011, pp. 2520
–2525.

[91] P. Mittendorfer and G. Cheng. ‘3D surface reconstruction for robotic body parts with
artificial skins’. In: 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2012, pp. 4505–4510.

[92] P. Mittendorfer, E. Yoshida and G. Cheng. ‘Realizing whole-body tactile interactions
with a self-organizing, multi-modal artificial skin on a humanoid robot.’ In: Advanced
Robotics 29.1 (2015), pp. 51–67.

[93] T. M. Moerland, J. Broekens and C. M. Jonker. ‘Learning Multimodal Trans-
ition Dynamics for Model-Based Reinforcement Learning’. In: arXiv preprint
arXiv:1705.00470 (2017).

http://contrastiveconvergence.net/~timothylillicrap/projects.php
http://contrastiveconvergence.net/~timothylillicrap/projects.php
https://github.com/ipa-mdl/ipde_utils
https://github.com/ipa-mdl/ipde_utils

REFERENCES 107

[94] T. M. Moerland, W. J. Wolfslag and M. Bharatheesha. A dataset bias problem for
learning-RRT, with two potential solutions. Delft University of Technology. 2017.
URL: http://thomasmoerland.nl/wp-content/uploads/2017/
10/2017_DWRL_BharatheeshaWolfslagMoerland.pdf (Accessed on:
10 June 2018).

[95] M. Moll, I. Şucan and L. Kavraki. ‘Benchmarking Motion Planning Algorithms:
An Extensible Infrastructure for Analysis and Visualization’. In: IEEE Robotics &
Automation Magazine 22.3 (2015), pp. 96–102.

[96] M. Moon. Amazon crowns winner of first warehouse robot challenge. 2015. URL:
https://www.engadget.com/2015/06/01/amazon- picking-
challenge-winner/ (Accessed on: 10 June 2018).

[97] S. Moring. ‘Kinodynamic steering using Supervised Learning in RRT’. Master of
Science Thesis. Delft University of Technology, 2018.

[98] R. M. Murray, Z. Li and S. S. Sastry. A Mathematical Introduction to Robotic
Manipulation. CRC Press, 1994.

[99] D. S. Naidu. Optimal Control Systems. CRC Press, 2002.

[100] L. Palmieri and K. O. Arras. ‘Distance metric learning for RRT-based motion plan-
ning with constant-time inference’. In: IEEE International Conference on Robotics
and Automation (ICRA). 2015, pp. 637 –643.

[101] D. Paramkusam. ‘Comparison of Optimal Control Techniques for Learning-based
RRT’. Master of Science Thesis. Delft University of Technology, 2018.

[102] R. Parasuraman, T. B. Sheridan and C. D. Wickens. ‘A model for types and levels of
human interaction with automation’. In: IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans 30.3 (2000), pp. 286–297.

[103] C. Park, J. Pan and D. Manocha. ‘Poisson-RRT’. In: IEEE International Confernce
on Robotics and Automation (ICRA). 2014, pp. 4667 –4673.

[104] A. ten Pas and R. Platt. ‘Using Geometry to Detect Grasp Poses in 3D Point Clouds’.
In: Proceedings of the International Symposium on Robotics Research (ISRR). 2015.

[105] A. Perez et al. ‘LQR-RRT*: Optimal Sampling-Based Motion Planning with Auto-
matically Derived Extension Heuristics’. In: IEEE International Conference on
Robotics and Automation (ICRA). 2012, pp. 2537–2542.

[106] F. Pfeiffer and R. Johanni. ‘A concept for manipulator trajectory planning’. In: IEEE
International Conference on Robotics and Automation (ICRA). 1986, pp. 1399 –
1405.

[107] Q-C. Pham, S. Caron and Y. Nakamura. ‘Kinodynamic Planning in the Configuration
Space via Velocity Interval Propagation’. In: Robotics: Science and Systems. 2013.

[108] Q-C. Pham et al. ‘Admissible velocity propagation: Beyond quasi-static path plan-
ning for high-dimensional robots’. In: International Journal of Robotics Research
36.1 (2016), pp. 44–67.

http://thomasmoerland.nl/wp-content/uploads/2017/10/2017_DWRL_BharatheeshaWolfslagMoerland.pdf
http://thomasmoerland.nl/wp-content/uploads/2017/10/2017_DWRL_BharatheeshaWolfslagMoerland.pdf
https://www.engadget.com/2015/06/01/amazon-picking-challenge-winner/
https://www.engadget.com/2015/06/01/amazon-picking-challenge-winner/

108 REFERENCES

[109] M. C. Plooij, H. Vallery and M. Wisse. ‘Reducing the energy consumption of robots
using the Bi-directional Clutched Parallel Elastic Actuator’. In: IEEE Transactions
on Robotics 32.6 (2016), pp. 1512–1523.

[110] L. S. Pontryagin. Mathematical theory of optimal processes. CRC Press, 1987.

[111] M. Posa, C. Cantu and R. Tedrake. ‘A direct method for trajectory optimization of
rigid bodies through contact’. In: The International Journal of Robotics Research
33.1 (2014), pp. 69–81.

[112] M. Prats et al. MoveIt! Workspace Analysis Tools. URL: http://moveit.
ros.org/assets/pdfs/2013/icra2013tutorial/ICRATutorial-
Workspace.pdf (Accessed on: 10 June 2018).

[113] H. Prautzsch, Wolfgang Boehm and Marco Paluszny. Bézier and B-Spline Techniques.
Springer, 2002.

[114] J. Meijer Q. Lei and M. Wisse. ‘A survey of unknown object grasping and our fast
grasping algorithm C-shape grasping’. In: Proceedings of the IEEE International
Conference on Control, Automation and Robotics (ICCAR). 2017, pp. 150–157.

[115] M. Quigley et al. ‘ROS: An open-source Robot Operating System’. In: ICRA Work-
shop on Open Source Software (2009).

[116] O. E. Ramos et al. ‘Dynamic Whole Body Motion Generation for the Dance of
a Humanoid Robot’. In: IEEE Robotics and Automation Magazine 22.4 (2015),
pp. 16–26.

[117] A. V Rao. ‘A survey of numerical methods for optimal control’. In: Advances in the
Astronautical Sciences 135.1 (2009), pp. 497–528.

[118] N. Ratliff et al. ‘CHOMP: Gradient optimization techniques for efficient motion
planning’. In: IEEE International Conference on Robotics and Automation (ICRA).
2009, pp. 489–494.

[119] J. H. Reif. ‘Complexity of the mover’s problem and generalizations’. In: IEEE
Symposium on Foundations of Computer Science. 1979, pp. 421 –427.

[120] S. Ren et al. ‘Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks’. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 39.6 (2017), pp. 1137–1149.

[121] N. Rikovitch and I. Sharf. ‘Kinodynamic Motion Planning for UAVs: A Minimum
Energy Approach’. In: AIAA Guidance, Navigation and Control (GNC) Conference
(2013).

[122] H. Robbins. ‘Some aspects of the sequential design of experiments’. In: Bulletin of
the American Mathematical Society 58 (1952), pp. 527–535.

[123] O. Russakovsky et al. ‘ImageNet Large Scale Visual Recognition Challenge’. In:
International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252.

[124] J. Sacks et al. ‘Design and Analysis of Computer Experiments’. In: Statistical
Science 4 (1989), pp. 409–423.

[125] C. Samson, M. Le Borgne and B. Espiau. Robot Control: the Task Function Approach.
Clarendon Press, Oxford, United Kingdom, 1991.

http://moveit.ros.org/assets/pdfs/2013/icra2013tutorial/ICRATutorial-Workspace.pdf
http://moveit.ros.org/assets/pdfs/2013/icra2013tutorial/ICRATutorial-Workspace.pdf
http://moveit.ros.org/assets/pdfs/2013/icra2013tutorial/ICRATutorial-Workspace.pdf

REFERENCES 109

[126] E. Schmerling, L Janson and M. Pavone. ‘Optimal sampling-based motion planning
under differential constraints: the drift case with linear affine dynamics’. In: IEEE
Conference on Decision and Control. 2015, pp. 2574 –2581.

[127] J. Seipp et al. ‘Automatic Configuration of Sequential Planning Portfolios’. In: AAAI
(2015), pp. 3364–3370.

[128] L. Sentis and O. Khatib. ‘Synthesis of whole-body behaviors through hierarchical
control of behavioral primitives’. In: International Journal of Humanoid Robotics
2.4 (2005), pp. 505–518.

[129] K. G. Shin and N. D. McKay. ‘Minimum-time control of robotic manipulators with
geometric path constraints’. In: IEEE Transactions on Robotics 30.6 (1985), pp. 531
–541.

[130] A. Shkolink, M. Walter and R. Tedrake. ‘Reachability-guided sampling for planning
under differential constraints’. In: IEEE International Conference on Robotics and
Automation (ICRA). 2009, pp. 2859–2865.

[131] T. Siméon, J-P. Laumond and C. Nissoux. ‘Visibility based probabilistic roadmaps
for motion planning’. In: Advanced Robotics 14.6 (2000), pp. 477–493.

[132] K. Simonyan and A. Zisserman. ‘Very deep convolutional networks for large-scale
image recognition’. In: arXiv preprint arXiv:1409.1556 (2014).

[133] I. A. Şucan and S. Chitta. MoveIt! Motion Planning Framework. URL: http:
//moveit.ros.org (Accessed on: 10 June 2018).

[134] I. A. Şucan and L. E. Kavraki. ‘Kinodynamic motion planning by interior-exterior
cell exploration’. In: Algorithmic Foundation of Robotics VIII (2009), pp. 449–464.

[135] I. A. Şucan, M. Moll and L. E. Kavraki. ‘The Open Motion Planning Library’. In:
IEEE Robotics & Automation Magazine 19.4 (2012), pp. 72–82.

[136] A. Tallavajhula et al. ‘List prediction applied to motion planning’. In: IEEE Interna-
tional Conference On Robotics and Automation (ICRA). 2016, pp. 213 –220.

[137] Y. Tassa, T. Erez and E. Todorov. ‘Synthesis and Stabilization of Complex Beha-
viors through Online Trajectory Optimization’. In: 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2012, pp. 4906–4913.

[138] R. Tedrake et al. ‘LQR-trees: Feedback motion planning via sums-of-squares veri-
fication’. In: International Journal of Robotics Research 29.8 (2010), pp. 1038–
1052.

[139] Tsianos, K. I. and Şucan, I. A. and L. E. Kavraki. ‘Sampling-Based Robot Motion
Planning: Towards Realistic Applications’. In: Computer Science Review 1.1 (2007),
pp. 2–11.

[140] J. R. R Uijlings et al. ‘Selective search for object recognition’. In: International
journal of computer vision 104.2 (2013), pp. 154–171.

[141] C. Urmson and R. Simmons. ‘Approaches for Heuristically Biasing RRT Growth’.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
2003, pp. 1178 –1183.

http://moveit.ros.org
http://moveit.ros.org

110 REFERENCES

[142] S. Vijayakumar and S. Schaal. ‘Incremental Online Learning in High Dimensions’.
In: Neural Computation 17 (2005), pp. 2602–2634.

[143] D. J. Webb and J. van den Berg. ‘Kinodynamic RRT*: Asymptotically Optimal Mo-
tion Planning for Robots with Linear Dynamics’. In: IEEE International Conference
on Robotics and Automation (ICRA). 2013, pp. 5054 –5061.

[144] F. Weisshardt and F. Koehler. ‘Automatic Testing Framework for Benchmarking Ap-
plications’. In: Proceedings of ISR 2016: 47st International Symposium on Robotics.
2016, pp. 1–6.

[145] M. Wisse. Factory in a Day Project (FiaD). 2013. URL: http://www.factory-
in-a-day.eu/ (Accessed on: 10 June 2018).

[146] W. J. Wolfslag et al. ‘Learning robustly stable open-loop motions for robotic manip-
ulation’. In: Robotics and Autonomous Systems 66 (2015).

[147] A. Yershova and S. M. LaValle. ‘Improving Motion Planning Algorithms by Efficient
Nearest-Neighbor Searching’. In: IEEE Transactions on Robotics 23 (2007), pp. 151–
157.

[148] M. Zucker. Approximating State-Space Obstacles for Non-Holonomic Motion Plan-
ning. Tech. rep. Robotics Institute, Carnegie Mellon University, 2006.

http://www.factory-in-a-day.eu/
http://www.factory-in-a-day.eu/

A
MOTION MODULE FOR THE

AMAZON ROBOTICS
CHALLENGE 2016 - TEAM

DELFT

T HE Team Delft motion module for Amazon Robotics Challenge (ARC) 2016 was
designed to ensure our robot could move to all commanded locations to accomplish

both the picking and stowing tasks in the challenge. In this appendix, the design and
implementation details of the motion module are further elaborated as supporting material to
the contents in Chapter 3. Some of the key observations from the design process and some
of the limitations of the (software) design assumptions are also presented. It is assumed in
this text that the reader has a basic understanding of the Robot Operating System (ROS)
software framework1 and the MoveIt! motion planning tool [133].

As highlighted in Section 3.3.5 in Chapter 3, the robotic system was designed by a
systematic consideration of the different requirements of the challenge. From a motion
planning perspective, the key requirement was to guarantee maximum reachability within the
operational workspace with adequate maneuverability within the bins for object manipulation.
In the following section, we explain the procedure that was followed to arrive at the eventual
robotic system configuration.

A.1. ROBOTIC SYSTEM SELECTION
We considered multiple robotic system configurations as indicated in Figure A.1 keeping in
mind the rules of the challenge for building the robot cell. We subsequently evaluated each
system’s workspace reachability using the MoveIt! workspace analysis tools [112].

1https://wiki.ros.org/

111

112 A. ARC MOTION MODULE

(a) Robot mounted on a fixed
pedestal.

(b) Robot mounted on an upward
translating rail.

(c) Robot mounted on an inward
translating rail.

Figure A.1: A few robot system configurations considered for evaluation before deciding on the robot hardware.

Figure A.2: Reachability Analysis results of the selected robotic system configuration. The color of the marker in
the figure indicates the number of IK solutions available to reach the corresponding cartesian location in the robot
cell. Red markers are for locations that have very few IK solutions.

It was observed that the configuration shown in Figure A.1c would ensure that we can
reach all bins with adequate maneuverability. The reachability analysis results on this robot
system configuration is presented in Figure A.2.

An important aspect that can be observed in the workspace analysis is that some of
the deep corners of the bins have no markers indicating those regions are not accessible
with this system configuration. This limitation was compensated by slightly increasing the
length of the suction tool (represented by the fictitious solid gray block in Figure A.1c). A
further increase in the size of the reachable region was achieved with the help of a pneumatic
mechanism to extend the suction cup. Although, the main purpose of this mechanism was to
achieve different orientations of the suction cup to ensure a stable grasp.

A.2. MOTION MODULE DESIGN
The ARC 2016 consisted of two main tasks. The picking task required the grasping of a
target object in the presence of other objects in the bin and placing the grasped object into a
tote. The stowing task comprised of moving a target object in the tote to one of the bins in
the shelf. To fulfill these tasks, the motion module was built on two fundamental motion
primitives namely, coarse motions and fine motions.

A.3. COARSE MOTIONS 113

Figure A.3: Coarse motion as a trail from “Bin D” to “Home”.

Coarse motions were essentially offline generated trajectories between pre-defined start
and goal positions in the operational workspace of our system. On the other hand, fine
motions involved online (cartesian) path planning for performing object manipulation in the
bins or the tote. In the following sections, these two primitives will be explained in further
detail.

A.3. COARSE MOTIONS

The functional robot workspace for the ARC was static. This formed the basis for the coarse
motion primitive. In other words, there were no dynamic obstacles that would obstruct the
path of the robot after the robot had started moving. Thus, we defined a coarse motion
primitive as a trajectory that can be computed offline between a predefined start and goal
location.

Subsequently, we implemented a trajectory cache2 which is populated with trajectories
between around 250 different start and goal configurations for the robot. We call these
configurations as Master Pose Descriptors. In principle, these are robot joint states set at
appropriate values in front of each bin of the shelf. Our choice of having the camera mounted
on the manipulation tool entailed that we have two master pose descriptors per bin, namely,
the camera master pose descriptor and bin master pose descriptor. Similar master pose
descriptors were also defined for the tote drop-off locations. All trajectories that were used
during APC 2016 were generated using RRT-Connect randomized path planner via MoveIt!
The other planner option we tried was RRT-star which did not have any significant benefit
over RRT-Connect in the given planning environment. An example of a coarse motion trail
from one of the bins to the home position of our setup is shown in Figure A.3.

2The use of cache is a misnomer because in the current implementation, we do not compute a coarse motion online,
if a requested coarse motion does not exist in the cache. A trajectory database would have been a better name, in
hindsight.

114 A. ARC MOTION MODULE

A.4. FINE MOTIONS
Fine motions were the only part of the APC motion module that involved online (cartesian)
path planning. The idea of fine motions is a simplified implementation of the approach in the
standard pick and place pipeline of MoveIt!, where cartesian path planning is used during
the pre-grasp approach and the post-grasp retreat stage of the pipeline. The simplification
is the fact that we remove the evaluation of the reachable and valid pose filter stage of the
standard pick and place pipeline.

This process of finding and evaluating reachable and valid poses are done in a two-step
filtering. The first filtering step is done in the grasp synthesizer module where impossible
grasps are eliminated heuristically. The second filtering step consists of multiple MoveGroup
API calls to computeCartesianPath after some key cartesian waypoints are evaluated
for collisions using the getPositionIK service. Further details on this step will be more
coherent to read once the background information concerning our grasp strategy is explained.
It is important to highlight that, there is a serious limitation with our approach when we
consider object manipulation inside a bin in general. This is because, we disallow any kind
of collision with neighboring objects inside a bin (or tote) and also end up in situations
where no valid grasp candidates are found. However, allowing for useful collisions with
other objects in a bin is certainly something we would consider in the future.

A.4.1. GRASP STRATEGY

From a motion perspective, the grasp strategy for all objects in APC 2016 consisted of a
combination of linear segments. We call these segments as Approach, Contact, Lift and
Retreat. The segment names are indicative of the corresponding motions that those segments
are meant for. Once the cartesian pose of the object of interest (for both pick and stow
tasks), in the object reference frame is estimated by the pose estimation algorithm, the grasp
synthesizer uses this pose to generate a set of key waypoints for the start and end of each
segment and in some cases more than just a pair of waypoints to limit any possibility of
configuration changes while manipulating the object in the bin. These cartesian waypoints
form an important input to the second step of grasp pose filtering and the fine motion
generation.

A.4.2. MOTION SEGMENT GENERATION

The key waypoints corresponding to Approach, Contact, Lift and Retreat along with a
potential grasp candidate are all input to the motion generation module where the following
checks are conducted to generate the complete sequence of motions:

1. The grasp candidate, and the key waypoints are sequentially checked for collision
using the getPositionIK service call. If any one of them is in collision, the
corresponding grasp pose and the key waypoints are all discarded due to collision(s).

2. Once all the key waypoints are collision free, each linear motion segment is computed
using the MoveGroup API, computeCartesianPath with collision checking
enabled. Similar action is taken if any of these segments are in collision.

A.5. MOTION STITCHING AND EXECUTION 115

3. If all the linear motion segments are collision free, a final planning call is done using
the MoveGroup API, plan3. This is required because, the final joint configuration at
the end of the Retreat segment resulting from the call to computeCartesianPath
need not necessarily match the starting joint configuration in front of the bin or tote
from where the coarse motions start. This is natural because of the redundancy in the
system. The call to plan is precisely to ensure that such a mismatch does not exist
which would otherwise lead to a motion safety violation 4.

These steps ensure that all the desired motion segments for manipulating the object of
interest are generated as required and are collision free. These segments are now stitched
together before being executed on the robot. The stitching module is explained in the
following section.

A.5. MOTION STITCHING AND EXECUTION
The motion stitching module accepts all the motion segments that are generated as explained
in the previous section. Additionally, the coarse motion trajectories from the corresponding
bin to the tote drop-off location (or vice-versa for stowing) are also input to the stitching
module. The stitching process, in principle, is the process of combining the joint state
configurations from each segment into one single motion plan and time parameterizing it so
that it results in a executable trajectory for the robot. We use the computeTimeStamps
from the TrajectoryProcessing API for this purpose. This also allowed us to use object
specific velocity scaling (for instance, moving at low speeds when carrying heavy objects
such as the dumbbell, socks and paper towels). An additional advantage of stitching multiple
motion segments was that we could get rid of overheads such as goal tolerance checks at the
end of each segment execution. This indeed provided us quite a significant time gain while
executing the motions. Finally, the time parameterized trajectories were executed using the
MoveGroup API, execute.

The final and a critical component of our motion module is the I/O handling to ensure
the end effector (suction or pinch) is actuated at the right times along the trajectory.

A.5.1. INPUT-OUTPUT (I/O) HANDLING
In the ARC setting, it was critical to ensure the I/O was activated accurately and in a timely
manner. For instance, the vacuum pump needed a couple of seconds before full suction power
was realized. However, turning the suction on too early could pose significant problems
while approaching certain objects which have a loose plastic covering. Basically, such
objects would get suctioned in way too early before the approach was completed leading
to either an unstable or a failed grasp. In order to address this, we built a custom trajectory
tracking module based on the /joint_states topic which provided continuous joint
state information.

The trajectory tracking module used a gradient descent based approach to detect events
along the trajectory based on distance to key joint state waypoints. These events and
waypoints have a direct association to the key waypoints of the motion segments that we

3RRT-Connect is used here as the planner configuration due to fast solution times.
4A motion safety violation is triggered whenever the starting configuration of the robot does not match the starting
configuration in the trajectory that is about to be executed.

116 A. ARC MOTION MODULE

described earlier. As a matter of fact, these events are created exactly at the same point in
the code where the key waypoints are created for the motion segments. The term “event”
is used to emphasize that they are actual events along the trajectory such as beginning of
approach segment, beginning of contact segment, end of retreat segment and so on. All these
events also are used as feedback to evaluate the success or failure of a grasp. For instance,
the vacuum sensor is read at the end of the retreat from the bin (or tote) to determine whether
the grasp succeeded.

A commonly used alternative for I/O handling in MoveIt! is the definition of I/O as
joints with minimal displacement and providing them target joint values at appropriate times
via regular planning calls. We do not use this approach as it does not guarantee adequate
synchronization with the events that we define along the trajectory. Another note of caution
is that the implementation of the trajectory tracking module was not completely straight-
forward due to the choice of using a service based sequential software architecture instead
of the asynchronous action based architecture for the motion module. The main reason for
using a sequential architecture was to avoid any potential race conditions that could occur in
asynchronous designs and thus impact robustness.

NOTES
- The open source software repository hosting the code for the motion module and the rest of
the ARC 2016 software is available at:
https://github.com/warehouse-picking-automation-challenges/team_delft
- The documentation for the various APIs referred in this text can be accessed via:
http://moveit.ros.org/code-api/

B
RRT-COLEARN: SCALABILITY

CONSIDERATIONS

In Chapter 6, we presented the RRT-CoLearn algorithm to approximate both the optimal
cost and a control parameterization to connect state-pairs. The effectiveness of the ap-
proach was shown on the 2-dimensional state space of the simple pendulum system. In
this appendix, we present some preliminary directions that have been explored in order to
extend the applicability of RRT-CoLearn to planning in higher dimensional state spaces.
Three important perspectives are presented here: (i) formulation of the system dynamics for
indirect optimal control, (ii) state space coverage and (iii) better machine learning. For this
purpose, we consider a planar manipulator with two degrees of freedom (see Figure B.1) and
consequently, a 4-dimensional state space and an 8-dimensional learning space.

B.1. SYSTEM DYNAMICS FOR INDIRECT OPTIMAL CONTROL
In this section, we will discuss the relation between the formulation of system dynamics
and the resulting parameterization of the control input. The equations of motion for the

θ1

θ2

(m1, l1)

(m
2
,
l2

)

Figure B.1: Schematic of planar a two link manipulator.

117

118 B. RRT-COLEARN: SCALABILITY CONSIDERATIONS

simple pendulum system used in Chapter 6 were derived with the well known Lagrangian
formulation [36]. The same principle will be used here to derive the equations of motions
of the two link manipulator using the angles and angular velocities as the generalized
coordinates.

The first step is to formulate the Lagrangian L which is the difference between the
kinetic and potential energies of a system:

L = T (q, q̇)−V (q) = 1

2
q̇M(q)q̇−V (q) (B.1)

where T is the kinetic energy, V is the potential energy, q and q̇ indicate the generalized
positions and velocity vectors respectively. Subsequently, the equations of motions are found
using:

d

d t

∂L

∂q̇i
− ∂L

∂qi
= 0 (B.2)

Following the steps in [98] and assuming motor torques τ1 and τ2 being applied at each
joint, the equations of motion for the two link manipulator are found as:

θ̇1

θ̇2

θ̈1

θ̈2

=

 θ̇1

θ̇2

M−1(q)u−M−1(q)B(q, q̇)[θ̇1 θ̇2]T)

 (B.3)

where, M(q) and B(q, q̇) are matrices containing information about the physical properties of
the manipulator and u = [τ1τ2]T represents the control input vector. Let x = [θ1, θ2, θ̇1, θ̇2]
be the state vector and the cost function J defined as in Chapter 6:

J (x(t),u(t)) =
∫ tf

0
C (x(t),u(t))dt (B.4)

Let λ= [λq ; λq̇] be the costate vector with λq = [λθ1 λθ2]T and λq̇ = [λθ̇1
λθ̇2

]T . The optimal
control Hamiltonian can thus be defined as:

H (x, λ, u) =C +λq
T q̇+λq̇

T q̈ (B.5)

Substituting Eq. B.3 in Eq. B.5, we get:

H =C +λq
T q̇+λq̇

T (
M−1(q)u−M−1(q)B(q, q̇)[θ̇1 θ̇2]T)

)
(B.6)

Finally, with C = 1+ 1
2 uT u the optimal input u∗ can be solved for as follows:

∂H

∂u
= u∗+λq̇

T (
M−1(q)u−M−1(q)B(q, q̇)[θ̇1 θ̇2]T)

)= 0 (B.7)

u∗ =−λq̇
T (

M−1(q)
)

(B.8)

Following similar steps as detailed in Chapter 6, the data generation, learning and the
planning steps of RRT-CoLearn can be completed. A key point to note here is in the equation
for the optimal control input u∗ in Eq. B.8. As opposed to the case with the single pendulum,

B.1. SYSTEM DYNAMICS FOR INDIRECT OPTIMAL CONTROL 119

the expression for u∗ is not only a function of the co-states but also has a dependency on
the configuration of the manipulator. This state dependency is to be expected due to the
dynamical coupling between the links. However, since we only learn a mapping between a
state pair and the corresponding co-states, this state dependency could hinder the ability of
the learned model to generalize and consequently lead to poor performance in the steering
phase of RRT-CoLearn. Preliminary studies in this direction are available in [101]. Further
research is necessary to clearly understand how this dependency would impact learning.

Interestingly, this dependency does not appear if the Hamiltonian1 formalism is used
instead of the Lagrangian formalism to derive the equations of motion. In the Hamiltonian
formalism, generalized momenta are used in place of generalized velocities to represent
the evolution of system dynamics. The space of positions and momenta is some times also
referred to as phase space. Further, the system Hamiltonian can be derived from the system
Lagrangian in Eq. B.1 using the Legendre transformation [6] as follows:

Hsystem =∑
i

q̇i
∂L

∂q̇i
−L (B.9)

Let p denote the generalized momenta. According to [6], the relation between the generalized
momenta and the generalized velocities is given by p = ∂L

∂q̇i
=⇒ q̇ = M−1(q)p. With this

relation, the evolution of the generalized positions and momenta are given by the following
equations [6]:

q̇ = ∂Hsystem

∂p
(B.10)

ṗ =−∂Hsystem

∂q
+u (B.11)

Let the costates corresponding to the generalized momenta be represented by λp = [λp1 λp2]T .
Together with λp from above, the control Hamiltonian can be defined as:

H =C +λq
T q̇−λp

T ∂Hsystem

∂q
+λp

T u (B.12)

Following the same procedure as earlier the optimal control input u∗ is computed as:

∂H

∂u
= ∂C

∂u
+λp

T = 0 (B.13)

From the above equation, it is clear that u∗ = −λp. In other words, the optimal control
input is parameterized by the costates corresponding to the generalized momenta. This is
certainly desirable compared to Eq. B.8 as the parameterization is state independent. The
benefits of the Hamiltonian formalism and its effects on the learning performance could
be an interesting avenue to investigate further in the context of scaling up RRT-CoLearn to
higher dimensional state spaces.

1This Hamiltonian is different from the control Hamiltonian. We will refer to this as the system Hamiltonian to
avoid confusions.

120 B. RRT-COLEARN: SCALABILITY CONSIDERATIONS

B.2. STATE SPACE COVERAGE
In this section, we briefly discuss another aspect that could influence the coverage of the
state space during data generation when we apply RRT-CoLearn to higher dimensional state
spaces. In Chapter 6, it was highlighted that a crucial constraint arises from the nature of the
optimal control problem in RRT-CoLearn, i.e.:

H ∗ (x(0),λ(0)) = 0 (B.14)

In the two dimensional state space of the pendulum, we could exclusively solve for the
roots of this equation and hence ensure the complete range of the costates is covered. This
is important because, the initial costates characterize the (locally) optimal trajectories that
we learn from. However, when we consider the 4-dimensional state space of the two link
manipulator, the solution to this constraint equation is non-trivial.

Basically, the optimal H ∗ is a function of the state and the costate variables. In case
of the 4-dimensional state space of the two link manipulator, we are left with 4 free costate
variables to choose from to ensure the constraint is satisfied. This can be addressed by
uniformly randomly sampling three of the four costate variables and solving for the last one
using a numerical solver. However, there is no implicit guarantee on the uniformity of the
distribution of this costate when a numerical solution is used. This could in turn impact
the coverage of the state space and hence localize the learning to only those regions that
happened to be created from the numerical solutions. Coming up with implicit ways to
address this problem (via factorization of H ∗ for instance) could be a potential direction to
pursue further.

Another relevant aspect related to state space coverage arises from the short-time reach-
ability assumption for RRT-CoLearn.Therefore, more effort is needed to establish the applic-
ability of RRT-CoLearn for underactuated systems. For a preliminary study in this direction,
see [97].

B.3. MACHINE LEARNING IMPROVEMENTS
A simple learning algorithm (k-Nearest Neighbor (kNN)) was used for learning the mapping
between cost and costates for the RRT-CoLearn on the simple pendulum system. While,
this was sufficient to establish the proof of concept, this only worked after the data was
explicitly processed to remove the bias caused by similar samples. This process of data bias
removal involved the tuning of a non-intuitive heuristic and the process itself was also quite
time consuming. Additionally, another heuristic (the reachability heuristic) was also used to
ensure we avoid erroneous predictions due to interpolation or extrapolation.

For the problem of bias removal, recent machine learning techniques such as deep
generative models could be considered. The benefit of such methods is that instead of
removing the bias, the underlying distribution in the data is learned (given a certain prior). In
a crude sense, the many-to-one mapping between costates and a given state pair can also be
learned. This could potentially be useful when considering functionalities such as (online)
collision avoidance when a certain predicted low-cost steering could get invalidated due to
collisions. A primary work in this direction has been pursued in [93].

C
CHAPTERS WITH SHARED

AUTHORSHIPS

The work done and the results presented in Chapter 2, Chapter 3 and Chapter 6 are outcomes
of close collaborations with different authors. Here, the contributions to each of these
chapters from the author of this dissertation is mentioned briefly.

CHAPTER 2: TUNING OF PATH PLANNERS
The idea of this contribution was a result of a discussion between Ruben Burger, Mukunda
Bharatheesha and Robert Babuška during the time when Ruben Burger was conducting his
MSc thesis research. Ruben Burger implemented the framework of connecting the SMAC
tools to the library of different planners in MoveIt! Mukunda Bharatheesha contributed to
different parts of this chapter such as relevant literature, problem formulation, the relevant
inputs to the SMAC tools for the UR5 difficult pick and place problem and discussion and
tabulation of the results.

CHAPTER 3: AMAZON PICKING CHALLENGE 2016
The authors of this chapter were all a part of Team Delft that won the Amazon Pick-
ing Challenge 2016. Mukunda Bharatheesha lead the motion planning team and contrib-
uted to the development of multiple software modules (such as motion_executor,
manipulation_planner, trajectory_cache) that were a part of the entire mo-
tion module of the robotic system. The motion planning module is further elaborated in
Appendix A.

CHAPTER 6: LEARNING INDIRECT OPTIMAL CONTROL
The main idea of for this chapter emerged as an outcome of a discussion between Wouter
Wolfslag and Mukunda Bharatheesha. While exploring avenues of extending the ideas
of Chapter 5 to also approximate the steering inputs for a state space RRT, Wouter Wolf-

121

122 C. CHAPTERS WITH SHARED AUTHORSHIPS

slag suggested the possibility of using Indirect Optimal Control to generate the data for
RRTLearn. Wouter Wolfslag worked on the data generation and the initial completeness
considerations for RRT-CoLearn and Thomas Moerland contributed to the dataset cleaning
section of the chapter in collaboration with Wouter Wolfslag. Mukunda Bharatheesha con-
tributed to the RRT part of the chapter together with conducting the different experiments.
Mukunda Bharatheesha also contributed towards the probabilistic completeness aspects that
are presented in this chapter.

ACKNOWLEDGEMENTS

It is a humbling feeling as I take the opportunity to thank several people that have enabled
and supported me to reach this stage of my academic life. All of you adorn the various facets
of a PhD process that make this journey a truly fulfilling experience.

First and foremost, I am grateful to my promotor Prof. Dr. Ir. Martijn Wisse for providing
me with the opportunity to pursue this research. Martijn, you believed in me and have been
a constant source of encouragement. The exciting and engaging discussions we had enabled
me to learn and explore various fundamental topics in motion planning. The constructive
criticism and feedback you gave about my work always inspired me to do better. Your
outright practicality in suggesting solutions to some problems and honesty were sometimes
bewildering to me. I learned some life lessons nonetheless. Also, you provided me with an
opportunity to be a part of two fantastic projects in Factory in a Day (FiaD) and Amazon
Robotics Challenge (ARC). Contributing to these projects was a lot of fun and resulted in
some very good memories with amazing people. I will cherish them for years to come! Also,
I am immensely thankful to you for the faith you showed in me while I was going through
some tough personal times. Your words of advice and supportive actions have played a
major role in me successfully getting to this point in life, professionally and personally.

Next, I express my thanks to all the revered members of my PhD thesis committee who
took the time and effort to review my work and provide feedback for improvement.

I also extend my thanks to Prof. Dr. Robert Babuška and Dr. Wouter Caarls for the
interesting discussions and remarks in the early stages of this research. Particularly, the
discussions during the RAP meetings helped me refine my research focus and gain insights
into topics such as machine learning and optimal control methods. Robert, despite your busy
schedules and interactions with so many students, you were regularly in touch with my work.
Thank you for taking time to point out some relevant papers you would come across related
to motion planning research. Wouter, thank you for always being available to help with all
sorts of beginner level questions on Linux, ROS and CMake. Prof. Dr. Pieter Jonker, thanks
for your inputs and discussions during the first year of my PhD.

The results achieved in this thesis would not have been possible without collaboration
with two wonderful colleagues, Ir. Wouter Wolfslag and Ir. Gijs van der Hoorn. I have
learned and continue to learn a lot from you guys. Wouter, we have had many enjoyable
discussions during tea, lunch and foosball meetings. Optimal control, machine learning,
beautiful math tricks, meticulously planning work out exercises at the gym with an associated
diet, nerd humor, sports, life, universe and the list of topics we spoke about is practically
endless! Thank you for not only being a colleague but also a good friend to me all these
years.

Gijs, every time I have talked to you, I have been enriched with some new software tools
and knowledge (particularly related to ROS). It has always astonished me how you quickly
recall and point to the most relevant tool from your oceans of software knowledge! Thank
you for the time and patience in explaining so many different software development concepts

123

124 ACKNOWLEDGEMENTS

on how things are supposed to be done and politely pointing out my non-compliance to it.
Also, thank you very much for bailing me out when I messed up my Linux installations at
critical times! You have been a great example of how to selflessly contribute to the growth
and success of various individuals and projects. I aspire to emulate these qualities in my life
as well.

My thanks also to Ruben Burger, Carlos Hernández Corbato and Thomas Moerland for
their valuable help in realization of the results presented in some of the chapters in this thesis.
I also thank Maryam Sharify for her support and help with making the cover design for this
thesis.

I thank Dr. Florent Lamiraux, LAAS-CNRS, Toulouse for hosting me at the Gepetto
group for six months. Florent, the opportunity to work with the HPP path planner and
its state space extensions helped me understand the intricacies of a generic path planning
framework development. Along with this, the feedback I received from you, Dr. Nicolas
Mansard, Dr. Michel Taïx and Dr. Jean-Paul Laumond about improvements on my research
was highly valuable. Although brief, the insightful discussions with Dr. Quang-Cuong Pham
about alternative methods for kinodynamic planning broadened my view of the research
field. My subsequent interaction with Nirmal Giftsun was equally insightful. Nirmal, your
patience and persistence served as motivating factors during the long evenings solving
various challenges we faced in realizing robot demonstrations. Thank you buddy. The first
few weeks in Toulouse progressed smoothly thanks to Dr. Joseph Mirabel. Joseph, thank
you for helping me figure out basic necessities to settle down in Toulouse. I have met a
few vim fanatics but I haven’t yet met someone who is as plugged in to vim as you are.
My stay in Toulouse was also made enjoyable by a big group of friends and colleagues -
Andreas, Andrea, Christian, Nemanja, Daniel, Brigita, Renaud, Harmish, Ganesh, Mathieu,
Maximilian, Olivier, Mehdi, Ixchel, Naoko, Justin, Myléne, Anguéron and Típhain. Merci á
tous!.

Reflecting back on the beginning of this journey at the Delft Biorobotics Laboratory
(DBL), I am deeply thankful to the unwavering trust and belief shown by Maja Rudinac.
Maja, without your support and encouragement, I don’t think I would have even started this
journey. Starting off as a research assistant, I enjoyed every moment of working for the
RoboCup@Home team with Aswin, Machiel, Susana, Floris and Guus. Thanks to all of you
for the great memories!

Contributing to different projects during the course of my PhD also lead to a great
camaraderie with several people associated with these projects. At first, I would like to
thank the FiaD project partners that I actively collaborated with. Katharina, Florian, Dr.
Emmanuel Dean and Prof. Dr. Gordon Cheng (TUM), your support in the hardware and
software deployment of the Cellular Skin on the robot arm used in this thesis was invaluable.
You were always available for help related to both the skin hardware and software, be it in
person or remotely. Then, I would like to thank Luca (PAL Robotics) and Robert (UR) for
their helpful pointers on the real-time aspects of using the UR robot with ROS. I also thank
Mirko Bordignon and Felix Meßmer (Fraunhofer IPA) and Willem Verleysen (Materialise)
for integration support at different phases in the project. Most importantly, thank you Wibke
and Dunja for taking care of the organizational and management aspects of such a large
project.

ACKNOWLEDGEMENTS 125

Jan and Bas, your expertise in hardware design, prototyping and production was instru-
mental in the timely realization of various interim and final goals of the Amazon Robotics
Challenge. Your support was so reliable that I could practically forget about hardware and
just focus on the motion planning software interfaces. And once the hardware was ready, it
was plug and play! Thanks for all the fun times during the vacuum suction tests, tolerating
all the bloopers that lead to hardware damage and also great company. A shout out to all the
fantastic members of the ARC team - Ruben, Carlos, Jethro, Wilson, Maarten, Jeff, Hans,
Mihai, Xander, Jihong, Kanter and Ronald, you guys were awesome to work with. The
entire journey from the start to the end of the challenge is a truly vivid memory!

Complementing the research activities during this thesis were also the different opportun-
ities I got to interact with students at TU Delft. Martijn, thank you once again for the teaching
opportunity in the Humanoid Robots Course. It was an enjoyable and fun experience to
interact with a large group of motivated MSc students. Besides, I also enjoyed supervising
multiple MSc theses in the past years - Ruben, Stefan, Deepak, Hugo and Wouter, it was a
pleasure to work with all of you.

A special thanks goes out to the administration personnel of our department and the
graduate school. Diones, Sabrina, Hanneke, Mirjam and Karin, thank you for your super
quick processing of all my (sometimes complicated) travel and administration requests
and your ever smiling and enthusiastic presence at the secretariat. Thanks also to Mascha
Toppenberg and Erica Radelaar for their untiring efforts in organizing activities and courses
for enhancing social interactions between PhD students from different groups.

I have been lucky to experience a friendly atmosphere at DBL, thanks to some fabulous
colleagues. Jeff, Joost, Michiel, Wouter, Carlos, Ruben, Martin, Patricia, Saher, Heike,
Ivan, Daniel, Andy, Maryam and Christian, thank you all for decorating this journey with
your heartening interactions. Friday evening drinks, board games, foosball, kubbs, cricket,
bowling, karting, paint ball - I thoroughly enjoyed all these activities and these memories
always cheer me up. Bedankt, lieve mensen! A special thanks also to former colleagues
Berk, Qujiang, Boris, Xin and Jun for the warm conversations.

Life outside the university has also been equally delightful thanks to some wonderful
friends. My roommates for the first two and a half years - Subbu, Susana and Anna, thank
you for being like a second family. Subbu-san, our sincerity towards preparing authentic
Indian cuisine (every evening) and consuming it without any traces of it for the next day
still amazes me. Add to that some good humor and philosophical discussions, it was a
great way to ease off the stress of the daily grind. Thank you very much for some splendid
culinary experiences! Susana, thanks to you too for joining our culinary bandwagon with
your Spanish delicacies. Vijay, its nice to have known you for more than 8 years now in Delft.
There is always a feeling of calmness when I speak to you and your astronomical levels of
patience continues to baffle me! Jeff and Amanda, thank you guys for inviting me for the
curry evenings at your house and I am glad I could share some of my cooking experiences
with you. Its always a pleasant feeling to recollect these memories. I also would like to thank
my friends and acquaintances at Badminton Club DropShot in The Hague. Particularly, Max
Umeh, Anwar Orie, Mark Speckens and Martijn van Leuven, you guys made the badminton
playing experience so much fun. Also, my Dutch skills improved significantly during my
time playing for DropShot. I also thank Aswin for the running evenings and the discussions
about effectively finding peace of mind.

126 ACKNOWLEDGEMENTS

I would like to thank teachers and mentors from my previous education in India. Particu-
larly, Mr. M. Gururaja, Mr. C. S. Sampangiram, Mrs. R. K. Karunavathi and Mr. Sudhindra
Haldodderi. I have had the opportunity to learn from all of you and you ignited the spark
in me to pursue further education after my Bachelor’s degree. I am also thankful to my
mentors at Robert Bosch India who helped me hone my technical abilities in a professional
environment, develop good communication skills and professional ethics.

I express my thanks also to my closest friends who have been an integral part of my
social life. NP, PC, Bala and Prabha, thanks to all of you for making this journey of life so
beautiful with your evergreen friendships.

A PhD journey is a long process and always involves good and difficult times. Words
cannot express how thankful I am to have had people who helped me through some tough
times. Paula, Maureen, Martijn, Suhas, Karthik, Michiel, Ineke and Sangeetha, I am indebted
to you for everything you did for me during these times. The strength to get this far wouldn’t
have been there without you!

Getting to Delft and pursuing my Master’s and PhD studies wouldn’t have been possible
without the boundless support, motivation and love of my family. My beloved parents,
Smt. Sujatha and Shri. H. R. Bharatheesha, first of all, I want to thank you for all the
efforts you put through several years in the past so that this journey was even practically
possible. You gave me the beautiful gift of education and helped me grow up as a responsible
individual. You gave me the freedom to explore and guided me when I was lost. I am
eternally thankful to you for your patience, love and belief in me. My brother Suhas, thank
you for all the care and practical advice you have given over the past years when some
aspects of life got too much to process for me. My sincere thanks also to Smt. Shanthabai,
Shri. C. H. Sreenivasamurthy and Smt. R. Sarojamma (my grandparents), Smt. Anuradha,
Smt. Chandrika, Smt. Meenakshi, Smt. Sowbhagya (aunts), Shri. H. R. Sheshagiri, Shri.
S. Sudheendranath, Shri. H. R. Anantharam, Shri. Badari Prasad and Late Shri. H. R.
Vyasaraja (uncles), and my cousin brothers and sisters who have continually encouraged me
in various ways through the different stages of my academic journey so far.

I also thank the family of my in-laws, Smt. Dakshayani, Shri. Nagesh Sastry, Mamatha,
Saikrishna and Vaibhav for their trust and moral support through this journey. Finally, I
thank my wife Sangeetha. Sangeetha, the past few years have been an intense roller-coaster
ride. Thank you for your undeterred love, trust and belief in us that has helped us keep
steady through this beautiful journey of life on the pale blue dot!

Mukunda Bharatheesha
Delft, June 2018

LIST OF PUBLICATIONS

JOURNAL PAPERS
W. J. Wolfslag, M. Bharatheesha, T. M. Moerland and M. Wisse
RRT-CoLearn: towards kinodynamic planning without numerical trajectory optimization,
IEEE Robotics and Automation Letters (RA-L): Accepted, (2018).

C. H. Corbato, M. Bharatheesha, J. A. van Egmond, J. Ju and M. Wisse
Integrating Different Levels of Automation: Lessons from Winning the Amazon Robotics Chal-
lenge 2016,
IEEE Transactions on Industrial Informatics: Special Issue on Recent Trends and Developments
in Industry 4.0 Motivated Robotic Solutions, 2018.

CONFERENCE AND WORKSHOP PAPERS
R. B. Burger, M. Bharatheesha, M. van Eert and R. Babuška
Automated tuning and configuration of path planning algorithms,
2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4371-4376
(2017).

M. Bharatheesha, N. Giftsun, C. H. Corbato, G. Dumonteil and M. Wisse
Dynamic Collision Avoidance for Collaborative Robot Applications,
IC3-Industry of the future: Collaborative, Connected, Cognitive, Workshop at the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), (2017).

M. Bharatheesha, and M. Wisse
Supervised Learning: A potential tool for feasible motion planning in State Space,
Beyond Geometric Constraints: Planning for Solving Complex Tasks, Reducing Uncertainty
and Generating Informative Paths & policies: Workshop at the IEEE International Conference
on Robotics and Automation (ICRA), (2015).

M. Bharatheesha, W. Caarls, W. J. Wolfslag and M. Wisse
Distance metric approximation for state-space RRTs using supervised learning,
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 252-
257 (2014).

TECHNICAL REPORT
M. Bharatheesha, R. B. Burger, M. de Vries, W. Ko and J. Tan
Motion Module for the Amazon Picking Challenge 2016 - Team Delft, RosCon 2016.

See Appendix C for information on author contributions in chapters with shared authorships.

127

10.1109/LRA.2018.2801470
10.1109/TII.2018.2800744
10.1109/TII.2018.2800744
10.1109/ICRA.2017.7989504
10.1109/ICRA.2017.7989504
http://people.csail.mit.edu/jingjin/ICRA15/A-11.pdf
http://people.csail.mit.edu/jingjin/ICRA15/A-11.pdf
http://people.csail.mit.edu/jingjin/ICRA15/A-11.pdf
10.1109/IROS.2014.6942569
10.1109/IROS.2014.6942569
http://moveit.ros.org/assets/pdfs/2016/team_delft_apc_motion_module.pdf

ABOUT THE AUTHOR

Mukunda Bharatheesha was born in Bengaluru, India,
on 10th October 1984. He obtained a Bachelor of En-
gineering (B.E.) degree in the field of Electronics and
Communications from Visveswaraya Technological Uni-
versity, Karnataka, India, in the year 2006. Subsequently,
he worked for a period of 3 years in the field of embed-
ded control software development for commercial and
off-highway vehicles at Robert Bosch Engineering and
Business Solutions Ltd., Bengaluru, India.

He then moved to The Netherlands in August 2009 to pursue his Master’s education in
Embedded Systems at Technische Universiteit Delft. He obtained his Master of Science
(M.Sc) degree in August 2011. He conducted his M.Sc. thesis on the topic of Optimal Path
Planning for Hopper Dredgers at IHC Systems B.V., The Netherlands. He was supervised by
Prof. Dr. Ir. Robert Babuška. Following his M.Sc. graduation, he was a research assistant at
the Delft Biorobotics Lab (DBL) for a period of 1 year where he worked on the autonomous
navigation module for a custom designed differentially driven mobile robot, Robby, for the
RoboCup@Home team of Delft.

He started his doctoral studies in October 2012 at the Delft Robotics Institute, TU Delft, in
the field of sampling-based motion planning for robot manipulators. He was supervised by
Prof. Dr. Ir. Martijn Wisse from the Robot Dynamics group. A part of his doctoral study
involved the development and integration of motion planning modules for collaborative ro-
botic systems in the EU project Factory in a Day. Between May and November 2014, he was
a visiting researcher at LAAS-CNRS, Toulouse, France, where he worked with Dr. Florent
Lamiraux of the Gepetto team. During the course of his doctoral studies he has supervised
multiple B.Sc and M.Sc theses projects and also assisted in teaching activities for the M.Sc
course Humanoid Robots. He also lead the development of the motion planning module for
the double world championship winning Team Delft at the Amazon Robotics Challenge 2016.

His current research activities involve the study of effectively combining supervised learning
and optimal control for dynamically constrained motion planning with sampling-based
planners. He is also currently leading the development of a Massive Open Online Course
(MOOC) on the fundamentals of Robot Operating System (ROS) scheduled to start from
September 2018 on the edX online education platform.

129

Propositions

accompanying the dissertation

SAMPLING-BASED MOTION PLANNING IN CONFIGURATION AND STATE
SPACES

USING SUPERVISED LEARNING TOOLS

by

Mukunda BHARATHEESHA

1. Of all the existing motion planners, RRT-Connect with (random) short-cutting has
the best chance of making it to an industrial robot teach pendant.

2. Translational redundancy in a bin picking robotic system significantly reduces the
randomness of solutions from randomized planners. (Chapter 3)

3. It is rather euphemistic to call a robot collaborative if it only stops moving after
colliding with a human. (Chapter 4)

4. Supervised learning-based approximations of the optimal cost-to-go in state space
is about three orders of magnitude faster than solving for it. (Chapter 5)

5. Learning-based RRTs outperform state space RRTs using LQR heuristics in gener-
ating motions that effectively utilize natural dynamics.

6. An end-user usually decides on the quality of a motion planning algorithm based
on the default parameter settings of its software implementation.

7. If all users of open source robotics software contribute back to its betterment, ro-
botics research will see tremendous progress.

8. The apprehensions about robot cognition will prevent its actual realization.

9. Governments should reserve a portion of the revenue from robotization for socio-
economic welfare.

10. Honesty and integrity are nodes and edges of the graph of happy life and we actu-
ally learn the costs of those edges along the way.

These propositions are regarded as opposable and defendable, and have been approved
as such by the supervisor prof. dr. ir. M. Wisse.

Stellingen

behorende bij het proefschrift

SAMPLING-BASED MOTION PLANNING IN CONFIGURATION AND STATE
SPACES

USING SUPERVISED LEARNING TOOLS

door

Mukunda BHARATHEESHA

1. RRT-Connect met “random shortcutting” heeft van alle beschikbare padplanningsal-
goritmen de hoogste kans om ooit te verschijnen op het bedieningspaneel van in-
dustriële robots.

2. Een redundante lineaire bewegingsvrijheid in een “bin picking” applicatie vermin-
dert de willekeurigheid van oplossingen van randomized planners.

3. Een robot collaboratief noemen indien deze slechts stopt nádat er een botsing
plaatsgevonden heeft is nogal eufemistisch.

4. De benaderingen van het “optimal cost-to-go”-probleem in state space waarmee
een “supervised learning”-aanpak aankomt zijn ongeveer drie ordes van grootte
sneller dan werkelijke oplossingen voor dit probleem.

5. Lerende RRTs genereren betere paden dan state space RRTs wanneer de eersten
LQR heuristieken bevatten die gebruik kunnen maken van natuurlijke dynamiek.

6. De meeste eindgebruikers beoordelen padplanningsalgorithmen enkel op de re-
sultaten die deze algoritmen behalen bij gebruik van de standaardinstellingen.

7. De ontwikkeling van open-source roboticasoftware zou significant sneller gaan als
al haar gebruikers hieraan zouden bijdragen.

8. Werkelijk cognitieve robots zullen door de angst hiervoor (zeer waarschijnlijk) nooit
gerealiseerd worden.

9. Een deel van de inkomsten verworven met commerciële robotica-activiteiten zou
door overheden aangewend moeten worden voor het onderhouden van het soci-
ale stelsel.

10. Eerlijkheid en integriteit zijn de knopen en zijden van de graaf van een gelukkig
leven en ervaring laat ons de gewichten aan deze zijden gedurende ons leven toe-
kennen.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotor prof. dr. ir. M. Wisse.

	dissertation
	Summary
	Samenvatting
	Introduction
	Planning spaces
	Combinatorial vs Sampling-based planning
	Randomized sampling-based planning
	Rapidly exploring Random Tree (RRT)

	Motivation - Part I
	Sampling-based planning in configuration space
	Relevant literature
	Problem statement - Part I

	Motivation - Part II
	Sampling-based motion planning in state space
	Relevant Literature
	Problem statement - Part II

	Contributions and Thesis Structure

	I Sampling-based planning in Configuration Space
	Tuning path planning algorithms
	Tuning of Path Planning Algorithms
	Related Research
	Problem Statement
	Method
	Formulating the problem instance I
	Formulating the performance measure c

	Results
	UR5 simple pick-and-place problem
	UR5 difficult pick-and-place problem
	KUKA LBR iiwa 7 problem

	Discussion
	Conclusions and Future Work

	Amazon Robotics Challenge 2016
	Manipulation in the Amazon Robotics Challenge
	The Amazon Robotics Challenge 2016
	Manipulation in unstructured environments

	Levels of automation
	Robotic System Overview
	System Requirements
	Robot Concept
	Vision-based Perception
	Grasping
	Robot Motion
	Failure management

	Discussion
	Evaluation
	Lessons Learned

	Conclusion

	Dynamic Collision Avoidance
	Dynamic Obstacle Avoidance solution for collaborative manipulation
	Robot Motion Control using Proximity Sensing
	Reactive Path-Planning

	Results
	Individual Components
	Integrated evaluation

	Concluding remarks

	II Sampling-based planning in State Space
	Distance metric approximation in State-Space
	Kinodynamic Planning
	Relevant Background

	Problem Description
	Iterative Linear Quadratic Regulator (iLQR)
	Locally Weighted Projection Regression (LWPR)

	Method
	Learning the optimal cost function
	Using the learned distance metric for RRT

	Experimental Results
	Discussion and Future Work
	Conclusions

	Control input approximation in State-Space
	Learning-based RRT
	Data generation
	Dataset cleaning
	Probabilistic completeness considerations
	Bounding the chance of picking the right input
	Bounding the chance of picking the right node

	Experiments and results
	Discussion
	Conclusion

	Thesis conclusions
	Discussion and Conclusions
	Motion planning in configuration space
	Tuning of planning algorithm parameters
	Functional system integration

	Motion planning in state space
	Distance metric approximation in state space
	Steering input approximation in state space

	Discussion
	Functional system integration with configuration space planning
	Supervised learning for motion planning in state space

	Conclusions
	Further research directions

	References
	ARC Motion module
	Robotic system selection
	Motion module design
	Coarse Motions
	Fine Motions
	Grasp strategy
	Motion segment generation

	Motion stitching and execution
	Input-Output (I/O) handling

	RRT-CoLearn: Scalability considerations
	System dynamics for indirect optimal control
	State space coverage
	Machine learning improvements

	Chapters with shared authorships
	Acknowledgements
	List of Publications
	About the Author

	propositions_print_v1_MBharatheesha

