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a b s t r a c t

Despite extensive research on computational geomechanics and fluid dynamics, accurately simulating
convection-diffusion (CD) processes in complex fractured systems remains a significant challenge. This
study develops a 3D numerical framework for modelling CD processes in fractured geological media. The
framework integrates Darcy's law and Fick's law, considering flux interactions between the matrix and
fractures. The meshing strategy generates high-quality grids even in scenarios involving intersecting
fractures. Then, a unified numerical scheme for solving the CD system is proposed. The novelties of this
work include: (1) The proposed framework enables effective simulation of 3D fractured media, including
more complex fractured vuggy media; (2) The numerical method precisely discretizes the CD terms in
governing equations; (3) A Non-Orthogonal Correction (NOC) method, combined with an adaptive time
integration scheme, is proposed for eliminating errors induced by skewed grids; and (4) The effects of
fracture patterns and heterogeneity on flow are thoroughly analysed. The proposed method is validated
through benchmark tests, demonstrating the superiority of the NOC method compared to classical
methods. Further analysis reveals the evolution characteristics of pressure and concentration, offering
insights into the effects of fracture patterns and heterogeneity on flow and diffusion processes.
© 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Understanding fluid flow and mass transport in fractured media
is paramount in a variety of geotechnical engineering and geo-
science, including groundwater flow, tunnel engineering, energy
exploration, and reservoir engineering (Berkowitz, 2002; Chenet al.,
2021; Tan et al., 2021). Natural fractures in the real-world introduce
complexities that significantly affect the behaviour of fluid flowand
solute transport, making accurate modelling and simulation crucial
for reliable prediction and assessment (Kolditz et al., 2012a,b; de
Borst, 2017). Convection-diffusion processes are fundamental in
characterising the hydraulic properties of geological media. The
coupling between convection and diffusion governs the spread of
contaminants and the transport of nutrients in subsurface envi-
ronments (Kolditz et al., 2012a,b; Royer, 2019; Zhouet al., 2023). This
ang), wzchen@whrsm.ac.cn

s, Chinese Academy of Sciences. Pu
process involves the combined effects of convection (fluid flow) and
diffusion (molecular spreading) in transporting substances like heat
or solutes within fluids. Convection carries the substance with fluid
flow, while diffusion spreads it from areas of higher to lower con-
centration (Todd and Mays, 2004; Royer, 2019). The intricate inter-
play in fractured media necessitates sophisticated modelling
approaches for accurate analyses. To address the issue, this study
focuses on developing a comprehensive approach to simulate
convection-diffusion processes in 3D fractured media.

While numerous 2D simulation methods have been employed
to simulate fluid flow and transport in fractured systems, the
evolving demands of practical applications necessitate a change
towards 3D problems. Numerical methods for 2D fractured media
have showed significant development. However, extending these
methods to 3D problems introduces new challenges. In 3D models,
fractures are characterised by spatial planes for flat fractures (Boon
et al., 2018; Hu and Rutqvist, 2020; Wang et al., 2022a; Wong and
Cui, 2023) or irregular surfaces for curved fractures (Zheng et al.,
2015; Karimi-Fard and Durlofsky, 2016; Li and Zhang, 2021; Wang
and Yin, 2023). Additionally, numerical treatment of multiple
blished by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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Fig. 1. Schematic of 3D computational models: (a) FPM, and (b) FVPM.
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intersecting 3D fractures remains difficult. In geological contexts,
the presence of discontinues, typically discrete fractures and vugs
(also known as inclusions), further complicates meshing of the
computational domain. This issue has become an obstacle in 3D
simulation.

In numerical simulations, fractured media can be basically
modelled through two different approaches: the implicit and
explicit representations of fractures. Among the numerous existing
models, the equivalent continuum model (ECM) and the discrete
fracture model (DFM) serve as two representative approaches. The
ECM, utilizing an upscaling approach, is an efficient model to cap-
ture the hydraulic properties of fractured media by using the
equivalent permeability tensor (Aguilar-L�opez et al., 2020; Wang
et al., 2022b). This attractive feature obviates the need for explic-
itly representing fractures. However, its accuracy depends on the
proper calculation of the equivalent tensors. Notably, ECM lacks the
explicit expression of fractures, resulting in an implicit description
of flux connections of between fractures and matrix. An improved
modelling method, DFM, has been developed, which enables
consideration of flux connections between the rock matrix and
fractures (Karimi-Fard et al., 2004; Martin et al., 2005; Wang et al.,
2022b). The concept of DFM has also been widely applied in the
mechanical analysis of rock masses (Kolditz et al., 2012a,b; Zhou
et al., 2023). Remarkably, this model allows high-contrast hydrau-
lic properties between fractures and rockmatrix, a capability that is
not addressed in the ECM.

Although the DFM has demonstrated success in various geo-
science applications, there are still unexplored issues that deserve
in-depth analysis (Kolditz et al., 2012a,b; de Borst, 2017; Chen et al.,
2021). To clarify this, we categorize these issues into three main
aspects: (1) modelling and meshing of 3D complex geometries; (2)
flux interaction of fractures-matrix; (3) numerical stability and
accuracy. The challenges outlined in the first aspect have been
extensively explored in the existing literature (Hyman et al., 2014;
Karimi-Fard and Durlofsky, 2016; Zidane and Firoozabadi, 2018;
Fumagalli et al., 2019), and we do not intend to allocate additional
space to further elaborate on it. In the second issue, fracturedmedia
differs from porous media (without fractures), primarily due to the
necessity of accounting for the interaction between fractures and
rock matrix (Wang et al., 2022a,c). Moreover, this challenge is
intricately related to the mesh quality addressed in the first aspect.
The conforming and non-conforming grids stand out as two typical
solutions to address this matter. Many researchers have studied the
point in detail (Karimi-Fard and Durlofsky, 2016; Zidane and
Firoozabadi, 2018; Fumagalli et al., 2019). The concern mentioned
in the third aspect also depends on the mesh quality and is influ-
enced by the numerical treatment of fractures-matrix interaction.
The implicit time integration requires the construction of the Ja-
cobian matrices at each iteration, which consists of huge amount
(even hundreds of thousands) of matrix elements (Jiang and
Tchelepi, 2019; Wang and Yin, 2023). Moreover, skewed grids
often lead to numerical instability and reduced accuracy. Although
several correction approaches have been developed to migrate er-
ror from distorted grids, they have been predominantly applied
within the field of computational fluid dynamics community (Jasak,
1996; Jasak and Tukovic, 2006; Demird�zi�c, 2015). These methods in
geotechnical engineering remains limited, particularly in dealing
with intricate problems like convection-diffusion in 3D fractured
media. This gap highlights the necessity for further development of
tailored numerical techniques that can handle the unique chal-
lenges in geotechnical simulations. Expanding the use of grid
correction methods to this field could improve the accuracy and
reliability of numerical models.

Considering the aforementioned challenges, this study aims to
develop a robust modelling and simulation approach for
6294
convection-diffusion phenomena in 3D fractured media, with an
emphasis on capturing the intricate behaviours of flow and trans-
port. Our primary focus is on the following questions: (1) estab-
lishing an effective modelling framework for 3D complex fractured
geological media; (2) developing an accurate numerical dis-
cretization method for the convection and diffusion terms in the
governing equations; (3) proposing an approach to correct errors
induced by skewed grids; and (4) investigating the effects of frac-
ture patterns and material heterogeneity on convection-diffusion
process.

This paper is structured as follows. In Section 2, a formulation
for convection-diffusion phenomena in 3D fractured media is
proposed, with consideration of flux interactions of matrix-
fractures. Section 3 presents the numerical formulation, which
combines an effective meshing strategy, the Non-Orthogonal
Correction (NOC) method, and adaptive implicit time integration
scheme. The model setup is outlined in Section 4. Section 5 pro-
vides numerical examples investigating the effects of fracture
patterns and heterogeneity on convection-diffusion process.
2. Model formulation

This section presents the formulation of the convection-
diffusion process in fractured media. First, a hybrid-dimensional
model is introduced to describe fractured media configuration.
Then, the convection-diffusion equation, incorporating Darcy's law
and Fick's law, is applied to fractures and rock matrix by consid-
ering the flux interaction of matrix-fractures.
2.1. The hybrid-dimensional model of 3D fractured media

Fractures and vugs are two basic types of discontinuities
commonly observed in geological formations. Depending on the
characteristics of these discontinuities, two representative models
can be established: fractured porous media (FPM) (Hoteit and
Firoozabadi, 2018; Wang et al., 2023) and fractured vuggy porous
media (FVPM) (Golfier et al., 2015; Wang et al., 2022b).

As depicted in Fig. 1a, the FPM comprises two primary constit-
uents: the discrete fractures denoted as Uf , and the bulk region,
often referred to as the rock matrix, denoted by Um. The number of
fractures is Nf , so the entire medium U is given by

U¼Uf ∪Um (1a)

Uf ¼∪Nf
i¼1uf ;i (1b)

where uf ;i is the domain of an individual fracture labelled by
subscript i. A constraint, Uf∩Um ¼ ∅, is required to prevent
overlaps.
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The hybrid-dimensional modelling technique is a widely adop-
ted approach for characterising fractured media (Wang et al.,
2022c, 2023). It implies that the dimension of the matrix compo-
nent Um is higher than that of the fractures Uf , expressed as

Um 3Rd;Uf3Rd�1; d ¼ 2;3 (2)

where Rd represents the d-dimensional Euclidean space.
A more complex configuration is the FVPM, where the vugs

represent an additional type of discontinuities (Wang et al., 2022b),
as illustrated in Fig. 1b. Description of FVPM does not pose any
substantial difficulties compared to FPM. These vugs, denoted as
Uv, can be modelled as spheres embedded inside the matrix. Eq. (2)
remains applicable in FVPM with an additional relation:

Um ¼Uv ∪Ub (3a)

Uv ¼∪Nv
i¼1uv;i (3b)

where Nv is the number of vugs, uv;i is the domain of an individual
vug labelled by subscript i. The constraint, Ub ¼ UmnUv (or Uv∩
Ub ¼ ∅), must be satisfied.

The vugs Uv represent sub-regions within the matrix Um. The
distinction between Uv and Ub lies in their properties that govern
convection-diffusion process, such as permeability and diffusion
coefficients. To clarify this, those properties are denoted as ci for a
material point xi; ði ¼ f ;v;mÞ. The subscript indicates whether this
point belongs to Uf , Uv or Uv, expressed by

xiðciÞ2Ui; ði¼ f ;mÞ or ði¼ f ; v;bÞ (4)

where i ¼ f ;m and i ¼ f ; v;b are applicable to FPM and FVPM,
respectively.
2.2. Law of mass conservation for convection-diffusion process

In a convection-diffusion process, convection function trans-
ports substances (solutes) with the fluid flow driven by pressure
gradients, while diffusion disperses these solutes by concentration
gradients (Todd and Mays, 2004; Royer, 2019). The governing
equations on U can be formulated as follows. The mass conserva-
tion for a scalar quantity Cðx; tÞ reads (LeVeque, 1992; Wang et al.,
2023):

vCðx; tÞ
vt

þV,Fðx; tÞ ¼ Sðx; tÞ (5)

where Fðx; tÞ is the flux vector, Sðx; tÞ is the source term, and ðx; tÞ is
a spatial-temporal point.

The phenomenon is a non-reacting flow, and the fluid is
composed of two components, denoted as a and b, which respec-
tively correspond to the solute and solvent. The fractions of mass
concentration, ca and cb, satisfy the relation ca þ cb ¼ 1 (Todd and
Mays, 2004; Bear and Cheng, 2010).

Therefore, the law of mass conservation corresponding to each
of the components can be derived. The scalar terms, Cðx; tÞ and Sðx;
tÞ, and the vector term Fðx; tÞ are formulated as

Fðx; tÞ ¼ rciu� rDVci
Cðx; tÞ ¼ frci
Sðx; tÞ ¼ Qci

ði¼a;bÞ
9=
; (6)

where f is the porosity of themedium, r is the fluid density,Q is the
flux rate. The flux term F consists of convection- and diffusion-
parts, which are determined by Darcy's law and Fick's law,
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respectively, and are expressed as (Cussler, 2009; Bear and Cheng,
2010):

u ¼ �k
m
ðVp� rgÞ

Ji ¼ �rDVci

9>=
>; (7)

where u is the Darcy's velocity, J i is the diffusion flux vector, g is the
gravity acceleration, m is the dynamic viscosity, and p is the fluid
pressure. D and k are the diffusion coefficient and the permeability
tensor, respectively.

By combining Eqs. (5)e(7), one obtains the convection-diffusion
equation across the computational domain:

vðfrciÞ
vt

þV,ðrciuÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Convection

þ V,Ji|ffl{zffl}
Diffusion

¼ cirq on U (8)

where Q is replaced by rq, and q is the volumetric flux rate.
By summing Eq. (8) over components a and b, combined with

relation ca þ cb ¼ 1, the total mass transport equation is derived:

vðfrÞ
vt

þV,ðruÞ ¼ rq on U (9)

2.3. Governing equations considering flux interaction of matrix-
fractures

As discussed in Section 2.1, the following framework is formu-
lated for FPM but remains valid for FVPM by replacing Um with
Uv∪Ub. Considering the conditions outlined by Eqs. (2) and (4),
when applying Eqs. (8) and (9) to matrix and fractures, some
modifications are necessary if the flux interaction of matrix-
fracture is taken into account.

In this study, we focus on pure fluid dynamics, assuming the
solid skeleton is incompressible. The total mass transport equation
(Eq. (9)) and Darcy's velocity (Eq. (7)) for fluid flow in the matrix
part are formulated as

vðfrÞ
vt

þ V,ðrumÞ ¼ Qm

um ¼ �km

m
ðVpm � rgÞ

on Um

9>>>=
>>>;

(10)

where the flux rate can be written as Qm ¼ rqm.
For the fracture component, we have:

vðfrÞ
vt

þ V,
�
ruf

�
¼ �r

�
qmf,nf

�

uf ¼ �kf
m

�
Vpf � rg

� on Uf

9>>>=
>>>;

(11)

where nf is the unit normal vector at the interface of
fractureematrix, and pointing towards the matrix, as depicted in
Fig. 2. qmf is the volumetric flux rate that captures the flux inter-
action. Note that the subscripts "m" and "f" represent the matrix
and fracture, respectively.

Additionally, mass conservation is satisfied at the interface
(denoted Gmf ) between the matrix and the fracture:

rqm ¼ r
�
qmf ,nf

�
on Gmf (12)

This equation captures fluid channels within fractured media.



Fig. 2. Flux interaction of matrix-fracture. The flux exchange is calculated in the di-
rection of the unit vector normal nf to the matrix-fracture interface, pointing toward
the matrix.
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The flux rate can be further expressed as (Kong, 2020; Hyman et al.,
2022):

Qm ¼ rqm ¼ rac
pf � pm

2
on Gmf (13)

where the fluid channel coefficient ac is calculated by ac ¼ 2kf=
ðmaf Þ (Martin et al., 2005; Hyman et al., 2022). af and kf are aperture
and isotropic permeability of the fracture, respectively.

Subsequently, taking into account the flux interaction, the
convection-diffusion equation (Eq. (8)) for matrix and fracture
parts is formulated for components i, expressed as

v
�
frcm;i

�
vt

þV ,
�
rcm;i um

�þV , Jm;i ¼ cm;i Qm on Um (14a)

v
�
frcf ;i

�
vt

þV ,
�
rcf ;i uf

�
þV , Jf ;i ¼ � cf ;i r

�
qmf ,nf

�
on Uf

(14b)

where the subscript i represents component a or b. Consequently,
the initial boundary value problem (IBVP) is formulated as follows.
2.4. IBVP for convection-diffusion process in fractured media

In a convection-diffusion process, there are two basic types of
boundary conditions. On the Dirichlet-type boundary GD; one can
prescribe the values of p or ca, whereas on the Neumann-type
boundary GN, the gradient of these variables normal to the
boundary is specified:

p¼p on GD (15a)

�k
m
ðVpÞ,n ¼ q

�DVca,n ¼ m

on GN

9>=
>; (15b)

Since pressure p is a global variable and concentration ca is a
time-dependent variable, ca is predefined at the initial time t0:

ca ¼ ca at t ¼ t0 (16)

where p and q are the prescribed pressure and volumetric flux, and
ca and m are the prescribed concentration and mass density.

The preceding analysis yields a well-posed formulation of the
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convection-diffusion system (Eqs. (10), (11) and (14)) for incom-
pressible flow:

V,um ¼ qm on Um

V,uf ¼ �qmf,nf on Uf

f
vcm;a

vt
þ V,

�
cm;aum

�� V,
�
DVcm;a

� ¼ cm;a qm on Um

f
vcf ;a
vt

þ V,
�
cf ;auf

�
� V,

�
DVcf ;a

�
¼ �cf ;a

�
qmf,nf

�
on Uf

9>>>>>>>>>=
>>>>>>>>>;
(17)

where the primary unknowns are pressure (pm and pf ) and con-
centration (cm;a and cf ;a) for fluid component a, while cb can be
calculated by 1� ca. The convection-diffusion process is coupled
with Darcy flow and Fickian diffusion through the convection term
V,ðcauÞ and the diffusion term V,ðDVcaÞ, respectively.
3. Numerical method

In this section, a strategy is introduced for grid generation on a
3D complex medium. The convection and diffusion terms are dis-
cretized in a unified formulation. A correction approach is proposed
to eliminate the undesirable flux induced by skewed grid cells.
Then, an implicit time integration with adaptive time stepping is
presented to solve the nonlinear system.
3.1. Meshing strategy and grid notations

The topological structure of a 3D fractured medium is complex,
attributed to numerous intersecting fractures embeddedwithin the
matrix. Unstructured grids are generated using the Delaunay al-
gorithm (Hyman et al., 2014; Zidane and Firoozabadi, 2018). It
follows a conforming scheme, where the high-dimensional matrix
cells ue

m are confined by the lower-dimensional fracture cells ue
f .

The matrix part is partitioned by the tetrahedrons, denoted as

Um ¼ ∪Ne
m

i ue
m;i, while the fracture part is partitioned by triangles,

denoted as Uf ¼ ∪Ne
f

i ue
f ;i. Mesh partition on the entire fractured

matrix can be expressed as

U¼
�
∪Ne

m
i ue

m;i

�
∪
�
∪Ne

f
i ue

f ;i

�
(18)

where Ne
f and Ne

m are numbers of fracture and matrix cells,
respectively.

Particularly, dealing with the intersection of fractures in-
troduces specific complexities. ue

m;k should align with the inter-

secting line formed by two crossing fractures (ue
f ;i and ue

f ;j). Failing

to achieve this might lead to unphysical overlaps of grid cells. The
meshing strategy outlined in study (Wang et al., 2022a) is utilized,
and additional details can be found in (Hyman et al., 2014; Karimi-
Fard and Durlofsky, 2016; Zidane and Firoozabadi, 2018; Fumagalli
et al., 2019).
3.2. Discretization of the convection term

The coupled system Eq. (17) is discretized using an accurate
numerical scheme on the basis of the finite volume method (FVM)
(Jasak, 1996; Eymard et al., 2000). To address this, temporal-spatial
integrals are applied over a time interval Dt and a control volume
u*;P ð*¼ f ;mÞ (in short VP) with a centered point P:
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ð
VP

V,umdV ¼
ð
VP

qmdV

ð
VP

V,uf dV ¼
ð
VP

�qmf,nf dV

ð
Dt

ð
VP

	
f
vcm;a

vt
þ V,

�
cm;aum

�� V,
�
DVcm;a

� 

dVdt

¼
ð
Dt

ð
VP

cm;a qmdVdt

ð
Dt

ð
VP

	
f
vcf ;a
vt

þ V,
�
cf ;auf

�
� V,

�
DVcf ;a

� 

dVdt

¼
ð
Dt

ð
VP

� cf ;a
�
qmf,nf

�
dVdt

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(19)

Discretization of the governing equations involves both spatial
and temporal aspects. The former deals with the convection and
diffusion terms, while the later refers to time integration. First, the
convection terms in Eq. (19) are V,ðc*;au*Þ and V, u*. Then the
general form reads

Tcov ¼V,ðk u*Þ
�
k¼1 or c*;a

�
(20)

Then, it can be discretized as follows:

ð
VP

TcovdV ¼
I
vVP

dA , ðk u*Þ¼
XNP

S

�
AS ,

�
kS u*;S

��
(21)

where the subscript S represents the quantities related to surface
(S). The volumetric flux induced by convection across surface S can
be defined using Eq. (21):

Fcov;S ¼AS,
�
kS u*;S

�
(22)

where the operator
H
indicates an enclosed surface integral, NP is

the number of surfaces that enclose the control volume VP , and AS is
the face area vector associated with surface S with the direction
normal to S, as illustrated in Fig. 3a. Consequently, the discretized
convection term reads
Fig. 3. Illustration of cells and parameters used in numerical discretization: (a) A pair
of neighbouring cells, and (b) Upwind difference scheme.
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ð
VP

V , ðk u*ÞdV ¼
XNP

S

Fcov;S (23)

As defined in Eq. (20), the situation is straightforward when k ¼
1 compared to the case when k ¼ c*;a. The value of k across surface
S can be obtained through the upwind difference scheme (Wang
et al., 2022b):

kS ¼


kP if Fcov;S � 0
kK if Fcov;S <0 (24)

where P and K are the central points of the control volumes VP and
VK , respectively, which share the common surface S, as depicted in
Fig. 3b.
3.3. An accurate scheme for the diffusion term

The diffusion term in Eq. (19) can be generally expressed as

Tdiff ¼V,ðDVhÞ
�
h¼ cm;a; cf ;a

�
(25)

It can be discretized as follows:

ð
VP

Tdiff dV ¼
I
vVP

dA , ðDVhÞ¼
XNP

S

AS ,
�
DðVhÞS

�
(26)

where ðVhÞS denotes the gradient of h across surface S. Note that the
diffusion coefficient is often treated as a scalar and expressed as
D ¼ DI, where I is the identify tensor.

The volumetric flux induced by diffusion across surface S is
expressed as

Fdiff ;S ¼AS,
�
DðVhÞS

�
(27)

Consequently, the discretized diffusion term of Eq. (25) is rewritten
as

ð
VP

V , ðDVhÞdV ¼
XNP

S

Fdiff ;S (28)

Notably, as shown in Fig. 4b, skewed grid cells, are more com-
mon than regular grid cells, wherein non-orthogonal grids might
reduce the accuracy of the discretization method compared to the
orthogonal case. The area vector AS is decomposed into two area

vectors, AS ¼ AS
0 þ AS

00
. Eq. (27) can then be reformulated as:
Fig. 4. Illustration of the correction approach for correcting the deviation resulting
from the non-orthogonal grids: (a) Orthogonal grids and parameters, and (b) Non-
orthogonal grids (skewed grids).
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Fdiff ;S ¼A0
S,
�
DðVhÞS

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Orthogonal

þA
00
S,
�
DðVhÞS

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Non�orthogonal

(29)

The two terms on the right-hand side of Eq. (29) are the
orthogonal and non-orthogonal parts, respectively. To improve the
accuracy, we introduce an approach for correcting the non-
orthogonal part (Jasak, 1996). The approach suggests that the area
vectors are calculated as follows (Jasak, 1996; Demird�zi�c, 2015):

AS
0 ¼ LPf

LPf,AS
jASj2 (30a)

A
00
S ¼AS � AS

0 (30b)

where LPf is the distance vector pointing from point P to the central
point of surface S, as illustrated in Fig. 4a.

Since AS
0 and LPf are parallel, Eq. (29) is rewritten as

AS ,
�
DðVhÞS

�¼ jAS
0j D hK � hP���LPf

��� þ A
00
S,
�
DðVhÞS

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Correction part

(31)

where the correction part can not be directly derived because A
00
S

and LPf are not parallel. As suggested by Jasak (1996) and Jasak and
Tukovic (2006) the gradient in the correction part can be obtained
through interpolation:

ðVhÞS ¼ rf ðVhÞP þ
�
1� rf

�
ðVhÞK (32)

where rf is the interpolation factor, defined as rf ¼ lSK= lPK , and lSK
and lPK are the distances of S-K and P-K , as illustrated in Fig. 4a.
ðVhÞP is computed by a volume gradient formula:

ðVhÞP ¼
1
Vp

XNP

S

AS hS (33)

It is also applicable to ðVhÞK . The surface value hS is determined
using the upwind scheme (Wang et al., 2022b):

hS ¼


hP if Fcov;S � 0
hK if Fcov;S <0 (34)

Alternatively, hS can be calculated by the central difference,
expressed by hS ¼ rf hP þ ð1 � rf ÞhK .
3.4. Implicit time integration with adaptive time-stepping

The coupled systemwill be solved using an implicit strategy. To
this end, the time-dependent term in Eq. (19) is discretized as

ð
Dt

ð
VP

f
vh

vt
dVdt¼f

hnþ1 � hn

Dt
DVPDt

�
h¼ cm;a; cf ;a

�
(35)

where n and nþ 1 represent the time steps of the previous and
updated time levels, respectively.

For the convection and diffusion terms corresponding to Eqs.

(23) and (28), the time integration is expressed as
PNP

S Fcov;SDt andPNP
S Fdiff ;SDt. Consequently, the discretization of the system of

governing equations (Eq. (19)) can take various forms for thematrix
and fracture parts. For each of the matrix cells, we have
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XNP

S

�
AS,u

nþ1
m;S

�
¼ DVP

kf
m

�
pnþ1
f � pnþ1

m

�
af

fDVP
cnþ1
m;a � cnm;a

Dt
þ
XNP

S

AS,
�
cm;a um;S

�nþ1

�
XNP

S

AS,
�
D
�
Vcm;a

�
S

�nþ1 ¼ cnþ1
m;a DVP

kf
m

�
pnþ1
f � pnþ1

m

�
af

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;
(36)

For each of the fracture cells:

XNP

S

�
AS,u

nþ1
f ;S

�
¼ L2f ;P

kf
m

�
pnþ1
m � pnþ1

f

�

f af Lf ;P
cnþ1
f ;a � cnf ;a

Dt
þ
XNP

S

AS,
h
cf ;a uf ;S

inþ1

�
XNP

S

AS,
h
D
�
Vcf ;a

�
S

inþ1 ¼ cnþ1
f ;a L2f ;P

kf
m

�
pnþ1
m � pnþ1

f

�

9>>>>>>>>>>>>=
>>>>>>>>>>>>;
(37)

where Lf ;P is the characteristic length of the fracture cell VP . The
meanings of other notations have been introduced in the preceding
sections. The velocities um;S and uf ;S in the matrix and fractures are
calculated from Darcy's law (Eqs. (10) and (11)).

The Newton-Raphson method (Nithiarasu et al., 2016; Jiang and
Tchelepi, 2019; Wang et al., 2022b) is used to iteratively solve the
nonlinear equations (Eqs. (36) and (37)). The residual vector of pri-
mary unknowns (pressure p and concentration ca) is defined for the

matrix and fracture cells, R ¼ ½Rp;m Rp;f Rc;m Rc;f �T. As an
example, a component labelledwith i inRc;m,denotedas ½Rc;m�i, reads

�
Rc;m

�
i ¼ cnþ1

m;a DVP
kf
m

�
pnþ1
f � pnþ1

m

�
af

� fDVP
cnþ1
m;a � cnm;a

Dt

�
XNP

S

AS,
�
cm;a um;S

�nþ1 þ
XNP

S

AS,
�
D
�
Vcm;a

�
S

�nþ1

(38)

During each iteration step n, the Jacobian is formed through
the derivative of residual vector with respect to the unknown
vector (Jiang and Tchelepi, 2019; Wang et al., 2022b, 2023) denoted
as J ¼ vR=vx, where x is the unknown vector, x ¼h
pm pf cm;a cf ;a

iT
.

The incremental vector dxnþ1 of unknowns at the updated iter-
ation step (nþ 1) is calculated from the algebraic system derived
from the Newton-Raphson method, Jndxnþ1 ¼ � Rn, which can be
written in the matrix form:

2
6666666664

Jmm
p;m Jmf

p;m Jmm
p;m Jmf

p;m

Jfmp;f Jffp;f Jfmp;f Jffp;f

Jmm
c;m Jmf

c;m Jmm
c;m Jmf

c;m

Jfmc;f Jffc;f Jfmc;f Jffc;f

3
7777777775

n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Jn

2
666666664

dpm

dpf

dcm;a

dcf ;a

3
777777775

nþ1

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
dxnþ1

¼ �

2
666666664

Rp;m

Rp;f

Rc;m

Rc;f

3
777777775

n

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Rn

(39)



Fig. 5. Flowchart of the solution strategy.
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where the sub-Jacobi matrix Jmf
p;m characterises the flux interaction

between fracture cells (f) and matrix cells (m), contributed by
pressure (p) of the matrix cells (m). Similar explanations apply to
other sub-Jacobi matrices.

Therefore, the updated unknown vector xnþ1 can be obtained as
the sum of xnþ1 ¼ xn þ dxnþ1. The iteration Eq. (39) will be termi-
nated upon reaching the convergence criterion:

���Rnþ1
���
2
< e (40)

where the tolerance e is user defined and typically lies within the
magnitude of � 10�6. Eq. (39) represents a large algebraic system
that requires iterative solvers for solution, such as BICGSTAB,
GMRES, and PCG, combined with stabilized techniques (Vuik et al.,
1999; Vuik, 2023). In our program, we utilize Eigen (Guennebaud
and Jacob, 2010) to solve this system.

Commonly, Dt is a constant value defined at the initial time.
Nevertheless, this approach can occasionally lead to convergence
challenges and a decrease in computational efficiency (Shepherd
et al., 2019; Wang and Yin, 2023). To address this concern, an
adaptive iteration approach is formulated, which allows for the
dynamic adjustment of Dt. Then, Dt is determined based on the
following condition:

Dt¼

8>><
>>:

r1 � Dt0 if
���Rnþ1

���
2
< rc � e

r2 � Dt0 if
���Rnþ1

���
2
> e

Dt0 Otherwise

(41)

where the parameters rc, r1 and r2 are assigned values within the
range of 0< rc <1 , 0< r2 <1 and r1 >1, and Dt0 is the time incre-
ment at the previous step. A flowchart illustrating the implicit time
integration with adaptive time-stepping (I-ATS) is presented in
Fig. 5, where the procedure for adaptive time control is determined
by Eq. (41).
4. Model setup and material parameters

This section provides the methodology for generating 3D frac-
tures, accompanied by visualisation examples of the model and
grids. Then, the model parameters used in simulations are given.
Fig. 6. Grids and model visualisation of a fractured porous medium containing mul-
tiple fractures: (a) Model configuration, (b), (c) and (d) display the meshes with
different grid resolutions h.
4.1. Generation and visualisation of 3D fractures

To construct the FPM and FVPM presented in Section 2, the
geometrical parameters of each fracture should be defined. The
parameters characterising a 3D fracture are: coordinates of the
central point of the fracture ðxfi ; yfi ; zfi Þ, the radius (Rfi ), and two

angles related to fracture orientation (qi and qi
0) (Berkowitz, 2002;

Chen et al., 2021; Wang et al., 2022a). These values are generated
through a random number generator:

Rand
�
xfi ; y

f
i ; z

f
i ;R

f
i ; qi; qi

0� �
i¼1�Nf

�
(42)

It can also follow various statistical laws, such as power law,
normal or logarithmic normal distributions (de Dreuzy et al., 2012;
Hyman et al., 2019). In this study, we utilize the 3D fracture
modelling and meshing approach developed in existing literature
(Hyman et al., 2014; Karimi-Fard and Durlofsky, 2016; Wang et al.,
2022a). Herein, the key aspects of this approach are summarized as
follows:
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(1) The meshing strategy employs a conforming generation
method for unstructured grids based on the Delaunay
algorithm.

(2) Delaunay tetrahedrons and triangles are used to partition the
rock matrix and fractures, respectively, with matrix cells
(higher-dimensional objects) assigned alongside fracture
cells (lower-dimensional objects).

(3) At fracture intersection positions, cells are aligned along the
intersected lines of fractures, as depicted in the inset of
Fig. 6b. More details on the treatment of intersecting frac-
tures and the interaction between vugs and fractures can be
found in our previous study (Wang et al., 2022a; Karimi-Fard
and Durlofsky, 2016).

As an illustration, Fig. 6 provides some visualisation examples
of grids and models, demonstrating that the proposed approach
can effectively generate high-quality meshes with different grid
resolutions, denoted as h. The total numbers of grids
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corresponding to h ¼ 0.1, 0.2, and 0.3 are approximately 26, 9.6,
and 3:2�104, respectively.

4.2. Model parameters

The physical properties of the fractured media are summarized
in Table 1. Note that these parameters used in our simulations are
configured as follows, unless otherwise specified. Without loss of
generality, the molecular diffusion coefficient in Fick's law (Eq. (7))
is assumed to be isotropic, given by D ¼ DI. We set D ¼ 2:6� 10�5

m2s�1 as suggested in reference (Cussler, 2009). In this context, the
solute and solvent correspond to water and air, respectively. Simi-
larly, we consider the permeabilities km and kf in Darcy's law (Eqs.
(10) and (11)) to be isotropic as well.

Numerous models have been proposed to determine kf ,
including some grounded in statistical theory, such as the corre-
lated power law (Hyman et al., 2016). In the present simulation, we
assume that the isotropic permeability of fracture kf depends on
the fracture aperture af , following the classical cubic law
(Dippenaar and Van Rooy, 2016; Wang et al., 2024):

kf ¼
a2f
12

(43)

where the aperture af can be assigned either randomly distributed
values or constant for each fracture, as studied by Bisdom et al.
(2016) and Huang et al. (2019).

5. Numerical examples: Results and discussion

In this section, we begin by validating the proposed method
through a benchmark study with a comparison of different
Table 1
Physical properties of the fractured media.

Properties Values Units

Porosity f 0.2
Fluid density r 1000 kg=m3

Dynamic viscosity m 8:9�10�4 Pa s
Diffusion coefficient D 2:6�10�5 m2=s
Rock permeability km 1�10�18 � 1�10�13 m2

Fracture aperture af 0.05e0.5 mm
Aperture-dependent fracture permeability kf 2�10�12 �2�10�7 m2

Remarks: (1) Sources of parameters: Cussler (2009); Kong (2020); Mavko et al.
(2020); Wang and Zhang (2024). (2) kf is determined by Eq. (43).

Fig. 7. Verification by comparing with solutions obtained by existing methods: Pressu
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methods. Then, the effect of fracture patterns on convection-
diffusion processes is explored. The analysis extends to examining
the role of heterogeneity within both the fracturedmedium and the
fractured vuggy medium.
5.1. Comparison with different methods

Before applying the proposed method to investigate more
complex processes, we validate it through a benchmark study. This
benchmark test is widely employed for the verification of numer-
ical methods (Zielke et al., 1991; Berre et al., 2021). The modelling
approach and numerical discretization method follow the formu-
lation given in the preceding sections.

The benchmark model consists of a single-inclined fracture
within a square shape, with dimension of 5 m� 5 m, and oriented
at an angle 45+ to the x-y plane. The size of the cubic computational
domain is 10 m� 10 m� 10 m. The fracture is located at the center
of the domain, as shown in the inset in Fig. 7. The boundary con-
dition is specified with prescribed pressures, with the inlet and
outlet set to 4 MPa and 6 MPa, respectively. Permeabilities of the
matrix and fracture parts are km ¼ 10�15 m2 and kf ¼ 10�10 m2,
respectively. Obviously, kf is significantly larger than km,making it a
preferential channel for fluid flow. The pressure distribution is
obtained until the flow reaches a steady state. In Fig. 7, the results
calculated by our proposed method are compared with two exist-
ing methods: the embedded discrete fracture model (EDFM) (Ţene
et al., 2017) and the method developed by Wang and Yin (2023).
The simulation results demonstrate a good agreement among these
methods.

To further analyse the convergence performance of the method,
the variations of error and residual are required to be evaluated
during the iteration process. The relative error is defined as

εh ¼
XNnode

i¼1

��~xi � xhi
��
2

k~xik2
(44)

where ~xi is the reference solution of node i, xhi is the results ob-
tained by the proposed method with different grid resolutions h.
The relative error εh can be defined for both pressure and con-
centration, denoted as εph and ε

c
h. Fig. 8 shows the convergence of εph

with increasing grid resolution across various permeability ratios
km=kf in the range of 10�5 � 102 m2. The performance of the im-
plicit adaptive time-steeping (I-ATS) developed in Section 3.4 is
evaluated and illustrated in Fig. 9. The results demonstrate that the
re distribution along (a) the diagonal and (b) the vertical direction of the model.



Fig. 8. Grid convergence of the proposed method applied to different material prop-
erties. km and kf represent the permeabilities of rock matrix and fractures (unit: m2),
respectively. The scale of y-axis denotes log10ð ,Þ.

Fig. 10. Illustrations of (a) the skewed grids with poor properties (requiring correction
by the NOC) and (b) the regular grids with desirable properties.
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I-ATS improves the speed of convergence compared to the case
without ATS. In addition, with the adaptive strategy, the time
increment at each iteration step is updated, rapidly decreasing to a
small value. In contrast, without ATS, the time increment remains
constant, resulting in slower convergence compared to the ATS
method.
5.2. Effect of the NOC method on accuracy

To further examine the performance of the proposedmethod, an
analytical model (Etori, 1992; Bodin, 2015) of convention-diffusion
is used to explore the evolution of concentration ca. The compu-
tational model is the same as the above benchmark model. To
demonstrate the efficiency of the proposed NOC method, two
different grid systems are established for simulating the same tests.
The majority of cells in the skewed grid system (Fig. 10a) consist of
distorted cells with poor properties, which may induce significant
errors compared the regular grid system (Fig. 10b).

To align the model settings with the conditions required by the
analytical solution, some assumptions are adopted as follows. First,
the domain should be a homogeneousmedium, achieved by setting
km ¼ kf . Second, at the inlet boundary, a line source is assigned
with ca ¼ 1 along the y-axis, following the analytical model, which
is a 2D model with a point source (Etori, 1992; Bodin, 2015). Then,
Fig. 9. Error convergence of the proposed method using implicit time integration with ATS
log10ð ,Þ), and (b) Variation of time increment during iteration, determined by Eq. (41).
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we compare the numerical results (obtained from a 2D slice cut
along the y-axis) with the analytical solution, as displayed in
Fig. 11a. Two representative points are chosen to illustrate the
evolution of concentration over time. Points PA and PB are located at
the center and on the boundary of the domain, with coordinates of
(5,5,5) and (0,5,5), respectively.

The effect of the NOC method, developed in Section 3.3, on
numerical accuracy is illustrated in Fig. 11. The results are obtained
using the proposed method, with the option to either apply or omit
the correction term based on the NOC method, denoted as "NOC"
and "no NOC" on these curves. For comparison, the x-axis repre-
sents the normalized time throughout the convection-diffusion
process. It shows a gradual decrease in the rate of concentration
increase as time progresses. In this simulation, the deviation be-
tween NOC and no-NOC is not pronounced, given the high-quality
meshes. However, a significant disparity will be more pronounced
in conditions of lower mesh quality.

The convergence curves of the NOC method are displayed in
Fig. 12. The relative error εch in concentration calculation decreases
with the increasing grid resolution. As shown in Fig. 12a, the NOC
method exhibits faster convergence compared to the case without
NOC. These results demonstrate the superiority of NOC in handling
skewed grids. In Fig. 12b, the number of iterations required to
achieve a small value of residual log10kRk2 is smaller for the ho-
mogeneous material case (km=kf ¼ 1) compared to the heteroge-
neous case (km=kf ¼ 102). This indicates that the permeabilities of
fractures (kf ) and rock matrix (km) significantly affect the conver-
gence performance. One potential factor that might affect the
performance of the NOC method is its computational efficiency.
Unlike the method without NOC, the NOC method requires addi-
tional effort to calculate the correction term in numerical dis-
cretization. This limitation can be mitigated by ATS. Fig. 13
demonstrates that both the NOC and ATS methods are capable of
and without ATS: (a) Variation of the L2-norm of residual (the scale of y-axis denotes



Fig. 11. Comparison between the results obtained from the existing solution (Bodin, 2015) and the proposed method with or without the NOC method.

Fig. 12. Error convergence of the proposed method: (a) Variation of the error induced by concentration calculation, and (b) Variation of the L2-norm of residual with or without
NOC.
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improving computational efficiency, as reflected by reductions in
the total number of iterations. A reason is that the NOC method
reduces errors in simulations, while the ATS dynamically adjusts
the time increment to accelerate convergence.
Fig. 13. Variation of the total number of iterations in simulations. A: NOC (km=kf ¼ 1);
B: no NOC (km=kf ¼ 1); C: NOC (km=kf ¼ 102); D: no NOC (km=kf ¼ 102).
5.3. Convection-diffusion process in 3D fractured media

Following the validations in Sections 5.1 and 5.2, this section
presents the simulation results for convection-diffusion in complex
3D fractured media, considering patterns with 40 fractures, 100
fractures, and fractures-vugs. We assume that the vugs are filled
with geological materials, and fluid flow follows Darcy's law. In
more complex situations, such as vugs filled with fluid, Brinkman
equation should be employed.

The computational domain is a cuboid with dimensions of
100 m� 100 m� 50 m. Numerous discrete fractures and vugs are
randomly distributed within the domain. As depicted in Fig. 14, the
pressure boundaries at the inlet and outlet are specified as 2 MPa
and 5 MPa, respectively. The flow direction is aligned with the y-
axis. Permeabilities km and kf are set to 10�15 m2 and 10�10 m2,
respectively. Other properties are listed in Table 1.

Given the model settings described above, the distributions of
pressure and concentration in the fractured media (comprising
only fractures) are illustrated in Figs. 14 and 15. The corresponding
illustration for fractured vuggy media (comprising fractures-vugs)
is provided in Fig. 16. The radius of the discrete fractures is 8 �
15 m. In the situation of a fractured vuggy medium, we assign the
permeabilities to the matrix, fractures and vugs as km ¼ 10�15 m2

and kf ¼ kv ¼ 10�10 m2. Therefore, both fractures and vugs act as
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preferential channels for fluid compared to the rock matrix.
Fig. 14 provides a slice view of the computational domain,

illustrating the connectivity between the matrix cells and fractures.
Evidently, the pressure distribution aligns with the direction of the
pressure gradient, following the y-axis. This observation is consis-
tent with intuitive perception. Besides, the evolution of concen-
tration is illustrated in Fig. 15. In the scenario of 100 days, it
becomes evident that the fracture network possesses a property of
highly conductive channel for flow. The concentration migrating to
the left-hand side of the fracture network occurs at a faster rate
than in the matrix part. It reveals the fact that the presence of



Fig. 14. Pressure distribution of fractured media with different fracture numbers: (a) 40 fractures, and (b) 100 fractures.

Fig. 15. Concentration evolution of fractured media with different fracture numbers: (a) 40 fractures, and (b) 100 fractures.

Fig. 16. Simulation results of a fractured vuggy porous medium: (a) Distributions of pressure and velocity vector arrows, and (b) Concentration evolution. Two colour bars in (a) are
used for representing different quantities.
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fracture network accelerates the propagation of concentration.
Furthermore, through a comparison of Fig. 15a and b, it is evident
that an increase in the number of fractures amplifies this effect. A
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large number of fractures may increase the possibility of con-
structing the connected-fractures, which demonstrate superior
conductivity compared to the non-connected fractures.



Fig. 17. Pressure distribution in the fractured media with different patterns (fractured
or fractured-vuggy).

Fig. 19. Permeability distribution in a heterogeneous medium (unit: m2): (a) Rock
matrix part, and (b) Fracture part.
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To further explore the characteristics of pressure distribution,
Fig. 17 illustrates the variations in pressure distribution within a
fractured medium exhibiting different patterns. The monitoring
line layouts extend along the flow direction aligned with the y-axis.
It illustrates that the presence of fractures alters the pressure dis-
tribution at specific local positions where they intersect, leading to
distortion in the pressure curves. Those distortions are related to
the geometry of fractures and vugs. For instance, the curves of
pressure and concentration for 40 fractures appear relatively
smoother compared to the other two cases. The concentration
evolution along the diagonal of the model is presented in Fig. 18.
The simulation results reveal that the concentration will ultimately
approach 1. As illustrated in Fig. 18c, the concentration in approx-
imately half of the region along the arc length (about 0 � 75 m)
reaches 1. This observation implies the domain is gradually satu-
rated over time.
5.4. The role of permeability heterogeneity

In this study, model heterogeneity is characterised by gener-
ating a random distribution of permeabilities for both the rock
matrix and fractures. We apply an approach for generating random
permeabilities similar to that developed in (Wang et al., 2022c). To
achieve this, the quantity ci in Eq. (4) is represented in terms of km
and kf . We then use the method described by Eq. (42) to generate
fracture parameters, wherein the generator Randð ,Þ follows the
normal distribution without loss of generality. Note that the
Fig. 18. Concentration evolution in the fractured media with different patterns
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aperture af can be adjusted to different values to reflect the het-
erogeneity in permeability. The results are illustrated in Fig. 19,
with a more detailed depiction provided in Fig. 20. It demonstrates
that the distribution aligns with the bell-shaped curve of the
probability density function.

Convection-diffusion simulation is conducted for both hetero-
geneous and homogeneous cases in fractured media. The simula-
tion results are displayed in Figs. 21 and 22. The impact of
heterogeneity on pressure distribution is given in Fig. 21. The figure
reveals that the existence of heterogeneous permeability results in
a slight fluctuation in the pressure curve. Nonetheless, the trends in
pressure variation in both heterogeneous and homogeneous sce-
narios are remarkably similar. Furthermore, the effect of hetero-
geneity on the flow rate is evident, as shown in Fig. 22. Note that
the flow rate, denoted as qr, is defined as the product of velocity and
the sectional area of the outlet boundary. The flow rate ratio,
denoted as qr, is a normalized quantity expressed as qr ¼ qr=qr;m,
where qr;m is the maximum flow rate at the outlet. The simulation
results show that the heterogeneity in permeability marginally
increases the flow rate, while the overall characteristics remain
similar to those in the homogeneous situation. The extent of the
flow rate improvement depends on the value of permeability as
well as its distribution characteristics.
6. Conclusions and implications

In this work, we developed a three-dimensional numerical
framework for modelling convection-diffusion phenomena in
fractured geological media containing multiple fractures. The main
conclusions and implications are summarized as follows:
(fractured or fractured-vuggy): (a) 50 days, (b) 100 days, and (c) 150 days.



Fig. 21. Comparison between homogeneous and heterogeneous media, corresponding to Fig. 17: (a) 40 fractures, (b) 100 fractures, and (c) Fractures-vugs.

Fig. 22. The effect of permeability heterogeneity on flow rate during convection-
diffusion process.

Fig. 20. Heterogeneous field generated by random permeabilities km and kf for (a) the matrix part and (b) the fracture part, respectively. Note that the scale of x-axis represents
log10ð ,Þ.
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(1) The proposed method efficiently simulates both fractured
porous media and complex fractured vuggy porous media.
The meshing strategy generates high-quality grids even in
scenarios involving complex intersecting fractures.

(2) The convection-diffusion equation is used to capture coupled
processes in fractured media by incorporating flux in-
teractions between fractures and the rock matrix. The
formulation integrates Fickian diffusion and Darcy's law to
establish a coupled nonlinear system.
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(3) An accurate numerical discretization method is proposed for
handling the convection and diffusion terms in a unifiedway.
The NOC method is proposed to eliminate undesirable fluxes
resulting from the skewed (non-orthogonal) grids. An
adaptive implicit time integration scheme is used to effi-
ciently solve the convection-diffusion system. Numerical
tests demonstrate the superiority of the NOC method
compared to classical methods.

(4) The proposed method was verified through benchmark tests,
comparing the simulation results with those obtained from
existing methods. The analysis includes a thorough exami-
nation of pressure distribution and concentration evolution
in fractured media. Further analyses reveal the effects of
fracture patterns and material heterogeneity on convection-
diffusion process.

Some limitations of this study highlight areas for future
research. On the one hand, a fully coupled numerical formulation is
needed to simulate hydro-mechanical coupling in rock fractures,
integrating displacement and fluid pressure within a single system.
On the other hand, integrating contact constitutive laws into the
presented formulation is essential to accurately describe closure,
slip, stick, and shear failure of fracture surfaces, as well as for
achieving stress-dependent apertures in hydro-mechanical
coupling.
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