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Test-Fixture Design Flow for Broadband Validation
of CMOS Device Models up to (sub)mm-Waves

Carmine De Martino, Member, IEEE, Ciro Esposito , Student Member, IEEE,
Eduard Satoshi Malotaux , Member, IEEE, Steffen Lehmann, Zhixing Zhao, Sven Mothes,

Claudia Kretzschmar , Ehsan Shokrolahzade , Student Member, IEEE, Michael Schröter, Senior Member, IEEE,
and Marco Spirito , Member, IEEE

Abstract—This work presents a structured, CAD-assisted
design flow to realize broadband on-wafer calibration structures,
validated in the prefabrication phase, and extract the intrinsic
device response up to (sub)mm-waves. The strict requirements
imposed by the design rule checks (DRCs) of 22 nm CMOS
technology are incorporated during the design phase of the fixture
by using a scripted connectable tile elements approach. The min-
imum dimension of a critical feature of the fixture is then iden-
tified using a newly defined metric based on the correspondence
between the EM field distribution in the fixture versus a non-
perturbed case of the same standard (STD) artifact. A simulation
test bench environment, augmented with experimental data, is
then used to add the uncertainties arising from three main error
contributors: vector network analyzer (VNA) receiver noise,
probe placement error, and calibration residual errors. Including
these errors allows for the generation of pre-silicon numerical
uncertainty bounds, which are benchmarked with experimental
data using calibration quality metrics and device-level param-
eters. Measurement results ranging from 1 to 325 GHz are
presented to demonstrate the validity of the proposed approach
to establish the quality of on-wafer calibration approaches inte-
grated in the back-end of line of Si-based technologies and to val-
idate the compact model of CMOS devices up to (sub)mm-waves.
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I. INTRODUCTION

AN INCREASING number of commercial applications,
from beyond 5G communication to the next generation

of automotive radar systems [1], [2], are targeting mm- and
sub-mm-wave frequencies to go beyond current system per-
formances. This frequency upscaling has generated a strong
need from technology foundries to validate the accuracy of
their active device models [i.e., active components included
in the process design kit (PDK)] at the frequencies targeted
by these applications. This need is reinforced by the fact that
the experimental data used to extract the model parameters
are often limited to frequencies below 100 GHz. Similar
frequency ranges for parameter extraction are also employed
when considering technologies with fT / fmax above 300 GHz,
relying on the fact that the (advanced) compact model structure
will account for the device behavior across the entire frequency
range. Accurate transistor-level measurements need to be car-
ried out to validate those claims. Here, the challenge lies in
the need to employ data referred to the intrinsic device plane
(or at the first metal layer plane in some cases), i.e., the device
model plane. This requirement implies that the systematic
errors provided by the measurement test bench (i.e., network
analyzer up to the wafer probes) as well as the parasitic loading
introduced by the fixture, interfacing the device under test
(DUT) with the probing environment, need to be removed.
The first step, i.e., removing the systematic errors the test
bench provides, is achieved through a first-tier calibration.
Traditionally, off-wafer impedance standard (STD) substrates
(ISSs) provided by various commercial vendors have been
employed to perform probe tip-level first-tier calibration.
More recently, multiple papers reported the limitations of the
ISS-based approach in achieving single-mode propagation, due
to the electrically thick substrates, and the increased error in
calibration transfer to the on-wafer environment in the higher
mm-wave frequency range [3], [4], [5], [6].

These limitations are most prominent when attempting
device characterization above 67 GHz, as was reported in [7],
where a worst case difference larger than 0.5 in measurements
corrected by SOLT on ISS was reported.

Afterward, several papers [7], [8], [9] have reported how to
achieve accurate vector network analyzer (VNA) calibrations
up to sub-mm-wave frequencies employing partially known
calibration algorithms such as thru-reflect-line (TRL) or
multiline TRL [10], [11] in the same DUT environment.

Despite this, the de facto standard approach in model
extraction for foundries’ PDKs [12] is to use commercial,
ISS-based substrates. This approach provides a fixed distance
(probe-to-probe) measurement environment and enables
broadband capabilities when calibration algorithms, such as
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART

short-open-load-thru/reciprocal (SOLT/SOLR) or line-reflect-
match (LRM/LRRM), are used [13], [14]. Among the reasons
for this choice is also the complexity of designing and
validating the accuracy of a custom-built first-tier calibration
kit that can be embedded in the same DUT environment, and
finding solutions that can enable high accuracy at (sub)mm-
wave while also providing low-frequency capabilities.

After the (first-tier) VNA-based test bench calibration, a
second step is required to reach the intrinsic device plane. This
is obtained by the removal of the device fixture parasitic ele-
ments, and is often termed de-embedding. This step is realized
by measuring a set of dummies of the test fixture or part of it,
excluding the DUT, and often assuming idealized terminations
such as open and short. This step is done to realize a lumped
equivalent of the fixture, which can then be used to remove
the fixture loading from the DUT measurements [15], [16].
Over the years, the complexity of the test fixture models has
gradually increased, mainly to provide an increased model-to-
hardware correlation in the higher frequency bands. This has
been achieved at the expense of a larger number of required
dummy elements [17], [18], [19]. It is important to mention
that the minimum dimension of the fixture is constrained
by mechanical requirements such as: the landing pad area
(fixed by the probe tip dimensions, which do not generally
scale with frequency) and the input to output probe distance
(limited by the probe-to-probe crosstalk effect [20]). For the
above reasons, current fixture dimensions have reached the
practical lower limit; the increased fixture model complexity
is a direct result of the lumped approximation starting to
fail when the propagation delay over the considered structure
becomes comparable to the rise time of the signal.

To enable a simple open-short de-embedding, without
trading off model accuracy, and at the same time benefitting
from a consistent calibration/measurement environment
employing low-dispersion transmission line components,
Galatro et al. [21] and Fregonese et al. [22] proposed the
concept of shifting the primary calibration plane in close
proximity to the intrinsic device. The residual fixture parasitic
can then be removed by employing a simple open-short
de-embedding, providing high model-to-hardware correlation
up to frequencies above 200 GHz, as was shown in [23].
Nevertheless, the mentioned works using TRL and/or
multiline line TRL fail to cover the low-frequency part of
the band, often required to enable accurate comparison in the
frequency ranges where current model parameters are being

extracted. A comparison with the state of the art is provided
in Table I, where the 95% confidence in [7] and the worst
case error bound (WCEB) in [22] have been extracted from
data reported in the manuscripts.

In this work, we introduce and discuss in detail.
1) A design/simulation and validation flow to realize metal

1 (M1) direct calibration/de-embedding approaches for
broadband device model validation starting from 1 GHz
up to sub-mm-wave frequencies, compliant with the
stringent CMOS design rule checks (DRCs).

2) A procedure, based on a quantifiable metric, to design
minimum-size device fixtures to minimize fabrication
costs.

3) An advanced test bench to provide numerical uncertainty
bounds of calibration quality metrics and key device
parameters, during the prefabrication phase.

The work concludes by presenting measured data up to
325 GHz for small signal operation of key device-level param-
eters, to validate the quality of the proposed broadband M1
test fixture. The extracted data are compared with the results
of the PDK device model, including the numerical uncertainty
bounds.

II. CMOS BROADBAND M1 TEST-FIXTURE

For decades, chemical-mechanical polishing (CMP) of
interlevel dielectrics [24] has been employed in CMOS tech-
nologies to improve global planarization and overall yield.
Nevertheless, since CMP processes are sensitive to the metal
densities, procedures to comply with metal-fill design rules
have become an integral part of the layout process. The electri-
cal impact of the metal-fill dummies has been recognized from
the early years [25], at first accounting mostly for the increased
capacitance of those layers, and more recently recognizing
and modeling the complete electromagnetic behavior of layers
containing the metal fills, by employing equivalent anisotropic
dielectric layers [26]. Aside from the modeling challenges,
the current inclusion of dummy fills in the design flow (i.e.,
via automatic fill algorithms) is prone to inconsistencies. To
provide a qualitative example of this statement, in Fig. 1(a)
the outline of a generic fixture is shown. In the center element
of the fixture, the DUT and the dummies (open and short)
are placed. When the various fixtures are placed in a design
(i.e., often forming a matrix pattern), the number and posi-
tion of the floating inclusions [depicted as small squares in
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Fig. 1. Simplified example showing. (a) Outline of a generic fixture to
implement open/short de-embedding. (b) Difference in relative position and
number of the fill tiles’ inclusion under the (dashed) frame of the fixture,
leading to inconsistencies in the de-embedding approach. Yellow highlight
for a single tile to better identify the relative change with respect to the same
fixture position.

Fig. 2. 3-D drawing of the basic element which guarantees DRC compliant
for a metal layer (i.e., M1) (a) subsequent layer (i.e., M2), (b) which can
be easily interconnected through vias at the corners and in the center, and
(c) basic unit resulting from the combination of basic elements to generate
larger drawn areas.

Fig. 1(b)] may vary under the fixture location [sketched in red
dashed line in Fig. 1(b)]. These relative changes provide small
variations in the equivalent inductance and capacitance across
the fixture, thus creating an error in the final de-embedded
results. This effect is mostly relevant when sub-mm-wave
frequencies are considered, given the reduced dimensions and
parasitic loading of the fixture.

To overcome this error, we employ a scripted hierarchi-
cal construction of the basic unit shapes, which are then
parametrized by their (metal density) fill factor. These unit
cells can then be made compliant with fabrication require-
ments, thus completely avoiding the problem shown in
Fig. 1.

A. Basic Element/Units and Blocks

Basic elements realize the lowest level in the hierarchy,
see Fig. 2(a) and (b), which can be drawn in a parametrized
fashion using a scripting language, i.e., Skill [27].

Subsequently, the basic elements can be combined into
larger sections, thus realizing a basic unit. Various basic units
employing different sets of metal layers can then be realized
to provide the designer with a large library that can be used
to draw any shape or structure. It is important to note that,
thanks to the parametric nature of the scripts, all the derived
structures can be made DRC compliant to both local and global
densities.

The basic units are then combined into building blocks, see
Fig. 3.

Fig. 3. Building blocks, composed of the basic units of Fig. 2(a) and (b) to
realize connectable tile elements units (a) with four cardinal points, (b) three
cardinal points, i.e., to be used at an edge, and (c) two cardinal points, i.e.,
to be used at a corner of the structure.

Fig. 4. Description of the various sections of the test fixture realized from
different basic blocks; highlight of the dimension of the 1 unit quantization
value used to simplify the cascading (i.e., connectable tile elements) approach.

B. Fixture Subsections

The various building blocks described in Fig. 3 are then
combined to create the various subsections of the device
fixture, see Fig. 4. In this work, the fixture approach to realize
direct calibration/de-embedding presented in [21] is employed.
The fixture topology employs capacitively loaded inverted
CPWs (CL-ICPWs) to realize a metal 1 (M1) calibration ref-
erence plane, i.e., placing the (first-tier) calibration reference
plane in close proximity to the device to be modeled. In
this work, the fixture is created with the scripting approach
previously introduced, and each section is realized by an
integer number of sections. The DUT/STD section is realized
with a single unit to minimize the parasitic addition from the
calibration reference planes (1 unit, see Fig. 4).

The usage of unit cells is done to simplify the entire die
floor plan when aiming at a large number of devices to be
modeled/characterized.

The requirements and optimization steps of each of the test
fixture sections are summarized below.

1) GSG Pad Section: The probe landing section of the
fixture is designed to accommodate different probe
pitches, given the broadband requirements of the mod-
eling/validation measurements. The fixture implemented
for this work supports probe pitches from 100 µm
down to 50 µm. The pad area is made of a continuous
aluminum layer to allow low-resistance contact with the
probe tips, often termed Alu cap.

2) Vertical Transition Section: This section interfaces the
(top metal) pads with the CL-ICPW placed at M1. The
inverse pyramidal shape from [21] is also employed here
to minimize (impedance) discontinuities and interface
the larger top metal lines with the narrow M1 section.
The electrostatic discharge (ESD)/antenna protection

Authorized licensed use limited to: TU Delft Library. Downloaded on December 22,2025 at 11:24:16 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE II
CST MICROWAVE STUDIO SIMULATION SETTINGS

diodes are also included in this section. It is important
to mention that in ultrascaled CMOS nodes, those pro-
tection diodes are strictly required even when dealing
only with R&D test structures. Given the fact that these
protection diodes are now embedded in the calibration
path, they need to provide full “transparency” (i.e., no
measurable variation) in the entire bias characterization
window of the DUT. When full “transparency” is not
achieved (i.e., due to the limited stacking capability
of the protection diodes) within the characterization
window, an error split box procedure, as demonstrated in
[28], should be applied. The antenna (triple) diode stack
employed for the fixture reported in this work provided
“transparent” behavior up to 1 V.

3) Offset Line Section: The offset line allows the setting
of the reference plane of the (first-tier) calibration “far
enough” from the vertical transition, to reach an area
where the line only exhibits a mono-modal quasi-TEM
propagation mode, as required by the TRL algorithm.
A detailed analysis of the complex tradeoffs that occur
in the offset line design is given in Section III.

4) DUT/STD Section: This single-unit section allows for
embedding the different STDs to enable the various
calibration algorithms (i.e., SOLR and TRL) as well
as the various DUTs to be measured for testing and
modeling. Within the scripting approach, this allows for
the layout of the various fixtures by employing a simple
case statement.

III. OFFSET LINE ANALYSIS

Given the high cost of wafer area in advanced CMOS nodes,
an accurate and quantifiable procedure is needed to define
the minimum distance from the vertical transition required to
reach mono-modal quasi-TEM propagation.

The minimum distance is numerically analyzed in this
section employing a 3-D FEM solver.

The simulations described in this section have been carried
out with CST Microwave Studio from Dassault Systèmes; the
solver parameter settings are summarized in Table II.

The first step is to compute the field inside a uniform
CL-ICPW line where no discontinuities are present. To extract
this field, the line is excited by waveguide ports, see Fig. 5(a),
and the field is selected on a 2-D cross section inside the
structure, i.e., at the center of the line, see Fig. 5(b).

This field is then assumed as the single-mode quasi-TEM
field supported by the CL-ICPW line. Afterward, the entire

Fig. 5. (a) Standalone section of the M1 line excited using waveguide ports to
analyze the nonperturbed field. (b) Non-perturbed field extracted at the center
of the standalone section of the M1 line.

Fig. 6. Highlight of the 3-D volume of the field inside the structure extracted
from the CST simulation. The inset provides details on the CPW configuration
of the probe side contacting the pads.

Fig. 7. Field distribution on the cross-sectional area along the M1 transmission
line, for (a) uniform line, i.e., waveguide port fed, and (b) inside the fixture,
i.e., where the vertical transition discontinuity is included.

fixture is excited by a realistic model of the wafer probe tip
to mimic, with good accuracy, the field disturbances at the
probe-pad transition. The 3-D volume inside the CL-ICPW
section of the fixture is then considered and exported for
further analysis, as shown in Fig. 6. The inset of Fig. 6
details the CPW configuration of the probe side contacting
the pads. It is worth noting that given the presence only of the
probe tip (no accurate probe body is mapped in the proposed
simulation), this work, differently from [29], does not provide
specific information on crosstalk reduction strategies.

The 2-D field of the uniform line [see Fig. 7(a)] can then
be compared to the field inside the fixture [Fig. 7(b)] at
different offset distances from the vertical transition, using the
metrics introduced in (1), where the superscript TF identifies
the Test Fixture, while REF identifies the uniform line. The
metric represents the mean absolute error between the field
distribution of the propagation mode over the sample grid
within the test fixture (at a given y location, see Fig. 8 axis)
and the mono-modal case

Field Error =
1
n

nX
i=1

�
ETF

i − EREF
i

�2
. (1)
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Fig. 8. (a) Cross section of the line used for the analysis, with reference
dimensions, (b) error computed using (1) along the M1 line for various
frequencies.

The result of this analysis is then presented in Fig. 8. Here,
we can observe that moving 20 µm from the vertical transition,
the error becomes independent of the distance to the transition.
This region can then be identified as the single-mode quasi-
TEM zone. The quick decay of the error and the (almost)
independence from the frequency can be explained by the fact
that nonpropagating reactive fields (also known as evanescent)
present a decay length which is only weakly dependent on the
frequency.

To minimize the chip area, an offset line length of 30 µm
was chosen for the fixtures realized in this work.

IV. SIMULATION OF BROADBAND STDS

To allow for accurate characterization in the frequency
range below 67 GHz, where the parameters of compact device
models are usually extracted, the proposed test fixture needs
to include broadband STDs, i.e., open, short, and load. The
measurement of these STDs in conjunction with the TRL
enables the usage of broadband calibration algorithms such
as SOLR [13], which can be used to extract the device’s
lower frequency response, i.e., below 67 GHz. This allows
a reduction of the maximum line length required to 150 µm
(WR10 band), as mentioned in Table I.

The nominal responses of the STDs are then extracted via
3D-EM simulations of the (1 unit, see Fig. 4) STD section.

For consistency, the reference plane of the SOLR is located
in the same plane set by the TRL, i.e., the center of zero length
through.

Following the analysis presented in III, setting the location
of the SOL STDs at the center of the thru line suggests that the
field computed by the waveguide port, see Fig. 9, will be an
accurate representation of the response of the STD termination,
which will then be used in the calibration process.

Reducing the 3-D simulation to the volume of the 1-unit
section (see Fig. 4) allows for the inclusion of most of the
artifacts that will be embedded in the DRC clean layout.

The inclusion of several of the structure features together
with a localized increased mesh density, see Fig. 10, allows
for an accurate extraction of the STD response.

Fig. 9. 3-D view in CST of the open structure for the STD definition, (inset)
zoomed-in view of the center of the port where the short line section is created
to provide continuity with the M1 line environment at the port section.

Fig. 10. Mesh details highlighting the local, i.e., layer-dependent, increased
mesh density.

The reflect STDs, i.e., open and short employing only metals
of the back end of line, will be subject to very limited changes
in their response due to process variation. The reason for this is
easily explained by the fact that lateral and vertical dimensions
in advanced CMOS nodes are very strictly controlled to reach
the target process yield.

The load STD, on the other hand, often employs doped
layers, as the polylayer in CMOS technology. These layers
can present a higher spread to nominal values, which would
result in a deviation in the load EM computed response. To
minimize this error, a technique based on a dc load extraction
and a parametrized EM model, as the one presented in [30],
can be used.

V. PRESILICON SIMULATION TEST BENCH

To incorporate the simulated data, based on the PDK (i.e.,
synthetic data), the expected measurement errors, to provide
realistic uncertainty bounds on device-level metrics, we
consider, in this article, an extension of the work described
in [31]. Three main sources of errors are included:

1) The VNA impedance-dependent trace noise,
2) The M1 on-wafer calibration residual errors, and
3) The probe placement errors.
The Keysight ADS simulation environment is used to

include and propagate these error sources through the calibra-
tion and data manipulation equations. As presented in [31], the
VNA receiver noise is included using a MonteCarlo simulation
to generate a stochastic variable, which introduces a noise
voltage on the waves sampled by the VNA, as sketched in
Fig. 11.

The VNA error term block is used to map the error
term of the test bench, which will be physically used in
the characterization step. This inclusion allows for accurate
scaling of the analyzer’s noise through the calibration process.
The EM simulation of the entire fixture, including the various
STDs, allows for estimating the calibration residual errors.
This is done by comparing the corrected synthetic data of the
fixture to a known device, i.e., a 150 µm line. The calibration
residuals are then expressed using the WCEB metric from [33],
described in (2), as shown in Fig. 12

WCEB ( f ) = max
ˇ̌
S ′i j ( f ) − S i j ( f )

ˇ̌
∀i, j ∈ [1, 2] (2)
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Fig. 11. Circuit schematic representing the input/output section of the source
and receiver circuit, including the receiver noise sources, the VNA error-terms
(S -parameter block), and the parametrized EM model of the on-wafer test-
fixture (S LUT).

Fig. 12. WCEB computed from 3-D EM data of the test fixture employing
the TRL calibration algorithm and a nonperturbed CPWG line of 150 µm
length as a reference device.

where S ′ is the reference scattering matrix of the verification
line (i.e., 3-D simulated S-parameters), S ( f ) is the frequency-
dependent scattering matrix resulting from the entire fixture
calibration.

Different from [31], the probe placement error included in
this work is obtained by employing a full 3-D parametric
simulation of the displacement of the probe tip on the pad
structure, as shown in Fig. 13(a). The generated look-up table
(LUT) from CST Microwave Studio is then included in the
test bench via a parametrized S-parameter LUT, based on the
x and y placement errors. Note that the proposed approach
enables proper accounting of the probe shadow and the tip
coupling to the BEOL, which is an important aspect in the
simulation accuracy, as was discussed in [32].

The proposed approach allows a considerable reduction in
simulation time since only the probe tip, the pad section, the
vertical transition, and the offset line section [see Fig. 13(b)]
are included in the two-port parametric simulation. The probe
landing point is varied over x and y (i.e., longitudinal and
transversal) to generate an S-parameter database, which can be
subsequently interpolated [gray grid in Fig. 13(b)] during the
MonteCarlo analysis carried out in ADS. The 3-D simulation
is carried out in CST Microwave Studio [red points on the
grid shown in Fig. 13(b)].

The value to be applied to the x and y perturbation
was extracted from visual inspection of the landmarks on
the pad structure using the TU Delft piezo station (see
Section VI). A σ of ±3.5 µm on the longitudinal and of 2.5 µm
on the transversal dimension was used, in the MonteCarlo
simulation.

The ADS test bench can then be used to propagate
the numerical uncertainty to the WCEB across the various

Fig. 13. (a) lateral and vertical view of the probe pad structure, highlighting
the x shift movement. (b) 3-D view of the probe and the half fixture section,
with the inset representing the simulation grid and the ADS interpolated data.

Fig. 14. Different WCEB, computed with the ADS test bench via the
MonteCarlo simulation, including the VNA receiver noise and the probe
placement error from Fig. 13, gray lines assuming placement errors (x =
±3.5 µm and y = ±2.5 µm), black line presenting the max bound from
this set, light red lines assuming placement errors (x, y = ±5 µm), red line
presenting the max bound from this set.

characterization bands, as can be seen in Fig. 14. It is
worth noting that the jumps occurring at the band edges
at WR10 in the synthetic data shown in Fig. 14 are to be
attributed to the limited number of MonteCarlo iterations
(i.e., 51). The large swing around 220 GHz is attributed to
a large probe misplacement value in the MonteCarlo iteration,
still compatible with the given distribution (σx of ±3.5 µm
σy 2.5 µm).

VI. EXPERIMENTAL SETUP

The measurement setup used in this work covers the fre-
quency range from 1 to 325 GHz, employing one four-port
VNA, namely the N5227A 67 GHz PNA, and four different
mm-wave extender units.

1) TU Delft custom WR10 VNA extender modules (i.e.,
operating from 67 to 110 GHz) based on VDI AMC
multipliers.

2) VDI WR6.5 VNA extender modules (i.e., operating from
110 to 170 GHz).

3) VDI WR5 VNA extender modules (i.e., operating from
140 to 220 GHz).

4) OML Inc. WR3 VNA extender modules (i.e., operating
from 220 to 325 GHz).
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Fig. 15. TU Delft/VSL custom-developed probe station with high-resolution
Newport piezo actuators.

A TU Delft VSL jointly developed probe station, see
Fig. 15, based on a Cascade Microtech Summit 9000 and
employing four piezo actuators (for x, y, z, and tilt control)
from Newport, for each manipulator, enabling a step resolution
of ∼20 nm [34], [35]. The station allows for remotely con-
trolled alignment and landing procedures, thus minimizing the
vibration arising from operator contact with the probe station.

The RF probes used are form factor infinity probe 100 µm
pitch for the coaxial band, WR10, WR6, and WR5 band, and
GGB 75 µm pitch for the WR3 band. The measurements have
been carried out using the Vertigo MMW-STUDIO software,
allowing a probe tip power control of −25 dBm, which
guarantees small signal operation of the characterized nMOS
device.

VII. EXPERIMENTAL MODEL VALIDATION

The test fixture discussed in Section II was implemented
in the CMOS 22 nm FD-SOI process from GF to realize the
SOLR and TRL M1 calibrations for covering the frequency
range from 1 to 325 GHz.

By employing the ADS test bench presented in Section V,
we can incorporate the uncertainties introduced by the probe
placement error and the VNA noise on the WCEB metric.
This is obtained by propagating the perturbations realized by
the MonteCarlo simulation (see Fig. 12) onto the calibration
residual errors evaluated from the EM approach (see Fig. 14).
This expanded error metric can then be compared with the
experimental results over the various characterization bands,
as shown in Fig. 16.

Two numerical WCEB are included, one with gray color
considering the probe placement errors, the values obtained
employing the probe station with piezo actuators available
at TU Delft, the second with light red color assuming a
placement error of 5 µm in both x- and y-directions. The
continuous increase in the WECB reinforces the importance of
striving to minimize the probe placement error when targeting
accurate sub-THz calibrated measurements.

Moreover, from the figure, it can be seen that the pro-
posed presilicon numerical uncertainty bound provides a very
realistic indication of the measurement quality that will be
achieved in the measurement phase. The experimental WCEB
(see Fig. 16, black line) is computed using the nonper-
turbed (i.e., waveguide-fed response) 150 µm M1 line as a
reference.

The proposed method was then applied to the device
metrics to validate the PDK model provided by the foundry.
A 16-finger 18 nm gate length and 500 nm gate width nMOS
was embedded in the M1 test fixture shown in Fig. 17. To
increase the correlation between the measurement data and

Fig. 16. Nominal calibration residual WCEB (blue trace), region defined by
including the results from the MonteCarlo simulation shown in Fig. 14 on the
nominal WCEB (red area/gray area), WCEB computed from measurement
(black line) on M1 on-wafer calibration kit integrated in GF 22 nm FD-SOI
technology.

Fig. 17. Microphotograph of the realized chip in the GF 22 nm FD-SOI
technology, with highlights on the set of structures to realize the SOLR and
TRL calibration. Zoom-in of one of the structures where the characterized
DUT discussed in Section VII is embedded.

the PDK model, an extra open short de-embedding step after
the M1 calibration plane was added, as discussed in [23].

Different key device metrics were measured over the fre-
quency range discussed in Section VI and compared with the
foundry PDK model in Fig. 18(a)–(e).

It is important to note that different frequency-banded
probes, different calibration kit artifacts (i.e., using structures
from different dies), and thus different transistors have been
used in the measurement campaign.

As was mentioned in [35], this can lead to disconti-
nuities at measurement bands’ edges. It is then important
to note that these discontinuities can be attributed to both
calibration uncertainties and process variations. The pro-
posed approach can then be used to incorporate process
spread.

VIII. DISCUSSION

The proposed presilicon numerical uncertainty bound pro-
vides a very realistic perturbation on the synthetic data,
giving an accurate prediction of the accuracy with which
the metrics can be ultimately measured. When examining the
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Fig. 18. (dashed line) PDK model response, (black line) measured data after
M1 calibration and open-short de-embedding, (red area) 3 sigma numerical
error bound extracted following the procedure described in Section V for
different device model parameters (a) input capacitance (C11), (b) input resis-
tance (Rin), (c) gate–drain capacitance (Cgd), (d) maximum transit frequency
(Ft), and (e) unilateral power gain.

correlation between the measurement and the PDK model-
based simulation, we can appreciate the consistency of the

de-embedding approach used in this work with the one used
for model parameters extraction, thus resulting in a similar
intrinsic device-level plane. In the higher frequency bands,
i.e., above 110 GHz, the residual positive reactance leading
to a small decrease of the input and gate–drain capacitance
is tracked by both the model and measurements. The nonfre-
quency dependent input resistance is accurately extracted by
the measurements and follows closely the model response. It
is worth noting the large expansion of the uncertainty bounds
in the lower bands, which is mostly due to the extremely
high reflection coefficient of the unmatched transistor at
these frequencies. Both the trend of the computed cutoff
frequency (Ft) and the frequency at which the unilateral gain
goes to 1 are properly tracked in the measurement model
comparison. The capability of measuring device metrics at
their limit frequency provides an important tool for model
verification regarding distributed and special high-frequency
effects. Finally, it is worth to note that a larger deviation of the
gate–drain capacitance from the predicted bound is attributed
to both the extremely low value of the parameter as well as
to the impact of probe crosstalk effects which need to be
accounted for these type of metrics (i.e., based on port 1 to
port 2 transfer) as discussed in [36].

IX. CONCLUSION

In this article, we presented a structured design flow, based
on commercially available CAD tools, to design and validate
on-wafer broadband calibration kits to be integrated in the
back-end of line of advanced CMOS technologies.

Special emphasis was placed on how to incorporate the
stringent design rules constraints into a parametrized con-
nectable tile element set of basic blocks to allow quick
optimization of the layout during the different phases of the
flow. A structured analysis with a novel introduced metric
was presented to define the minimum offset line length to
achieve a monomodal TEM propagation at the calibration ref-
erence plane. Furthermore, a measurement-based augmented
simulation test bench was introduced to identify during
the prefabrication phase the expected uncertainties that are
expected during the experimental phase. Finally, the approach
as well as the prediction of the numerical uncertainty bounds
was validated for the calibration quality as well as key device
model parameters up to 325 GHz.

The final results show the accurate prediction capability
of the approach and the capability of the designed fixture
to provide device-level metrics over the intended broadband
frequency range.

ACKNOWLEDGMENT

The authors would like to acknowledge Juan Bueno from
the Delft University of Technology for the fruitful discussion
and help in managing the experimental test benches.

REFERENCES

[1] Y. Zhang, W. Liang, C. Esposito, X. Jin, P. Sakalas, and M. Schröter,
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