

Delft University of Technology

Feature Engineering Framework based on Secure Multi-Party Computation in Federated
Learning

Sun, Litong; Du, Runmeng; He, Daojing; Zhu, Shanshan; Wang, Rui; Chan, Sammy

DOI
10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00088
Publication date
2022
Document Version
Final published version
Published in
2021 IEEE 23rd International Conference on High Performance Computing and Communications, 7th
International Conference on Data Science and Systems, 19th International Conference on Smart City and
7th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Applications,
HPCC-DSS-SmartCity-DependSys 2021

Citation (APA)
Sun, L., Du, R., He, D., Zhu, S., Wang, R., & Chan, S. (2022). Feature Engineering Framework based on
Secure Multi-Party Computation in Federated Learning. In 2021 IEEE 23rd International Conference on
High Performance Computing and Communications, 7th International Conference on Data Science and
Systems, 19th International Conference on Smart City and 7th International Conference on Dependability in
Sensor, Cloud and Big Data Systems and Applications, HPCC-DSS-SmartCity-DependSys 2021 (pp. 487-
494). IEEE. https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00088
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00088
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00088

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Feature Engineering Framework based on Secure
Multi-Party Computation in Federated Learning

1st Litong Sun
dept. School of Software Engineering

East China Normal University

Shanghai, China

2nd Runmeng Du
dept. School of Software Engineering

East China Normal University

Shanghai, China

3rd Daojing He
dept. School of Software Engineering

East China Normal University

Shanghai, China

4th Shanshan Zhu
dept. School of Software Engineering

East China Normal University

Shanghai, China

5th Rui Wang
Technische Universiteit Delft

Delft, Netherlands

6th Sammy Chan
City University of Hong Kong

Hong Kong, China

Abstract—Data and features often determine the upper limit
of results, so that feature engineering is an important stage
of federated learning. The existing research schemes all carry
out feature engineering based on publicly sharing data. One is
plaintext data sharing, the other is ciphertext data sharing, but
both types of sharing bring security and efficiency problems.
To address these challenges, we propose a feature engineering
framework based on Secure Multi-party Computation, which
supports multi-party participation in feature engineering and
confines feature data locally to ensure data security. Moreover, the
computational efficiency of the core algorithm of the framework
is also improved compared with the existing methods.

Keywords—Feature Engineering; Federated Learning; Secure
Multi-party Computation; Privacy Protection

I. INTRODUCTION

Data is the foundation of all business, and many joint mod-

eling for machine learning (ML) can achieve better effect. The

vigorous development of ML is because of availability of large

amounts of data [1], [2]. Despite recent technological advances

that have made big data storage, processing and computation

more efficient, combining data from different sources remains

a major challenge [3], [4]. Competitive advantage, privacy

issues, regulations, as well as the question of sovereignty and

jurisdiction over data have hindered many organizations on

publicly sharing data [5], [6].

Secure multi-party computation (MPC), proposed by Yao,

refers to the secure computation jointly carried out by two

or more participants. After the computation, each participant

gets the given output without any leakage of its own input

information [7]. As a result, MPC technique is used in

federated learning research. At present, the whole process of

federated learning includes data collection, feature engineer-

ing, federated model training and so on, among which feature

engineering is the most important part of machine learning

[8].

There are a lot of research about feature engineering in

federated learning. In this process, the party with label data

needs to assist the party with only feature data in feature

preprocessing under the condition that feature data and label

data are not leaked [9], [10]. In the following, the party that

has only the feature data matrix and lacks the label matrix is

referred to as the data provider and the party who has both

the feature data matrix and the label matrix is referred to as

the data application party.

For most of the existing feature engineering frameworks, the

data user usually encrypts the label matrix with the public key

to meet the privacy protection requirements, and then sends the

ciphertext matrix to the data provider, who in turn computes

binning according to class ciphertext matrix [11]. However, in

large scale data collection, this approach can obviously result

in significant resource depletion and performance degradation.

There is also direct transfer of desensitization data for feature

engineering processing [12], but this cannot protect data

privacy and does not conform to legal norms.

The proposed solution to the federated engineering problem

is a good response to the inadequacy of existing solutions. The

main contributions of this paper are as follows:

• We propose a feature engineering framework called

FEFL. Compared with other frameworks, it supports

multi-party participation and confines the feature data in

locally, improving the safety and efficiency of the feature

engineering in federated learning.

• Based on the FEFL framework, we propose a new chi-

square binning method. Compared with direct encryption

of feature data, this method marks the group category of

feature data after grouping, and then encrypts the group

category, which greatly reduces the amount of encryption

and improves the computing efficiency.

• Based on the FEFL framework, we propose a new method

to compute the maximal information coefficient. We

discretize the feature data through the meshing schema,

record the region of the feature data. Compared with other

methods that encrypt the feature data and send it directly

to the data application, this method does not send the

actual data and has stronger security.

The rest of this paper is organized as follows. Section II

487

2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th
Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application

978-1-6654-9457-1/21/$31.00 ©2021 IEEE
DOI 10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00088

20
21

 IE
EE

 2
3r

d
In

t C
on

f o
n

Hi
gh

 P
er

fo
rm

an
ce

 C
om

pu
tin

g
&

 C
om

m
un

ic
at

io
ns

; 7
th

 In
t C

on
f o

n
Da

ta
 S

ci
en

ce
 &

 S
ys

te
m

s;
 1

9t
h

In
t C

on
f o

n
Sm

ar
t C

ity
; 7

th
 In

t C
on

f o
n

De
pe

nd
ab

ili
ty

 in
 S

en
so

r,
Cl

ou
d

&
 B

ig
 D

at
a

Sy
st

em
s &

 A
pp

lic
at

io
n

(H
PC

C/
DS

S/
Sm

ar
tC

ity
/D

ep
en

dS
ys

) |
 9

78
-1

-6
65

4-
94

57
-1

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

HP
CC

-D
SS

-S
M

AR
TC

IT
Y-

DE
PE

N
DS

YS
53

88
4.

20
21

.0
00

88

Authorized licensed use limited to: TU Delft Library. Downloaded on February 20,2025 at 15:16:31 UTC from IEEE Xplore. Restrictions apply.

discusses some related works. Section III provides some

background knowledges. Section IV introduces the relevant

algorithms in the framework FEFL. Section V provides ex-

perimental results of FEFL. Section VI concludes this paper.

II. RELATED WORK

Since data is the foundation of everything, feature engineer-

ing for federated learning has been studied in recent years.

Fang et al. [11] have introduced a framework to conduct

privacy-preserving and communication-preserving multi-party

feature transformations. But the data from the data provider

is sent to the server and the data application, and the data

can be easily leaked. Li et al. [8] have introduced an efficient

feature scoring protocol. However, in their scheme, the feature

data and label matrix are encrypted by secret sharing and sent

to the data application, so the security of the data cannot be

guaranteed when the data is sent out locally, and the efficiency

is very low when the score is computed under ciphertext. Sei

et al. [13] have introduced a novel anonymization method

(RandChiDist), which anonymizes Chi-square value testing for

small samples relying mainly on the differential privacy. The

data processed in the feature engineering stage is complex and

irregular, and the differential privacy has too many restrictions

on the input data, and a large amount of randomization is

added into the output results, resulting in a sharp decline in

the availability of data. Sometimes the randomization results

almost cover the real results. Zhang and Chen [14] proposed

the Chi-square binning method, which encrypts the label data

and sends it to other participants. The label data will leave

the local environment and may be leaked. In addition, a large

number of encryptions leads to low computing efficiency.

The authors mainly solved the privacy protection problem by

desensitizing the data, but at the same time data loss is caused

and the accuracy is sacrificed.

III. PRELIMINARIES

A. Security models

1) Ideal model: Assuming that there are participants

Pi, i ∈ [0,m − 1] have a privacy data (x1,· · ·, xn)
respectively. They securely compute f(x1,· · ·, xn) =
(f1(x1,· · ·, xn),· · ·, fn(x1,· · ·, xn)) without compromising the

privacy data. The simplest and safest approach is to adopt

the secure multi-party computation protocol under the ideal

model. The ideal model assumes that there is an absolutely

credible third party who will not disclose anything that should

not be disclosed under any circumstances. In this assumption,

the process of secure multi-party computation is as follows.

Each party sends its private data (x1,· · ·, xn) to a trusted third

party, who computes f(x1,· · ·, xn), and sends fi(x1,· · ·, xn)
to Pi.

2) Semi-honest model: Semi-honest model is an impor-

tant secure multi-party computation model in which every

participant behavior is consistent with the requirements of

the protocol. However, it will retain information about the

computation process and try to use this information to obtain

more private information about other participants after the

execution of the protocol.

3) Threat model: The primary issue is that recording and

storing raw, sensitive data can expose unwanted insights about

a specific individual or party [15]. Considering that there will

be a lot of sensitive data communication in the federated

learning multi-party joint computing process, we need to

explore all possibilities before designing any algorithm for

attack mitigation. In this paper, we keep the private data of

each party locally to resist the threat model attack.

B. Paillier cryptosystem

Paillier cryptosystem is a probabilistic cryptosystem and the

specific process is as follows [16].

Key generation First select two prime numbers p, q, where

n = p×q, λ =lcm(p−1, q−1) is least common multiple of p−1
and q−1. Select at random g∈Z∗n that makes gcd(L(gλmod

n2),n)=1, where L(x)=
x−1

N
. The public key is (g, n) and

the private key is λ.
Encryption For plaintext messages m, select a random num-
ber r, r < n and compute

Enc(m) = gmrn mod n2
(1)

Decryption For ciphertext Enc(m), compute

Dec(m) =
L(cλ mod n2)

L(gλ mod n2)
mod n2

(2)

Homomorphism Direct verification shows that the Paillier
cryptosystem has additive homomorphism.

Enc(m1)Enc(m2) = gm1rN1 gm2rn2 mod n2

= gm1+m2(r1r2)
N mod n2

= Enc(m1 +m2)

(3)

C. Feature Engineering in Federated Learning

Feature selection is an important step in feature engineering,

and Chi-square binning is often carried out in the process of

feature selection [17]. In order to improve the modeling effect,

federated learning needs to evaluate the correlation between

variables by Maximal Information Coefficient in the feature

engineering stage [18].

1) Chi-square binning: There is a bottom-up method of

binning in supervised learning called Chi-square binning that

relies on the Chi-square test. The Chi-square test is defined

as the merging of contiguous intervals with the smallest Chi-

square value until a deterministic stopping criterion is met.

Thus, two adjacent intervals can be merged if they have

very similar class distributions, otherwise, they should remain

separate [19], [20].

2) Maximal Information Coefficient: The maximal infor-

mation coefficient (MIC) is used to measure the linear or

nonlinear strength of two variables X and Y. MIC can not

only find the linear functional relationship between variables,

but also can find the nonlinear functional relationship [21].

488

Authorized licensed use limited to: TU Delft Library. Downloaded on February 20,2025 at 15:16:31 UTC from IEEE Xplore. Restrictions apply.

IV. FEATURE ENGINEERING FRAMEWORK IN FEDERATED

LEARNING

In this section, we present the framework of Feature En-

gineering for Federated Learning (FEFL), which involves the

optimization and implementation steps of several important

algorithms.

A. The framework of FEFL

FEFL enables participants to do feature engineering, without

having to share feature data publicly or encrypted. Compared

to other frameworks, it provides a more secure data processing

environment for data owners. The framework focuses on the

improvement of data privacy protection and computation over-

head, and the improvement is very obvious. The framework

entity relationship is shown in Figure 1 below:

Figure 1. Framework entity relationship

As shown in Figure 1, we set the participants information

and feature data information in advance. There are data

providers Pi, i ∈ [0,m − 1], holding feature data, where

Fi = {X0, · · · , Xz}, k ∈ [0, z−1] is used to represent the fea-

ture set of feature data Xk = {x0, · · · , xn−1}, Xk ∈ Mn×1.

Here, we require that feature set Fi has no intersection, namely

Fp ∩ Fq = ∅, p �= q ∈ [0,m − 1]. The data application P0

holds the label data Y = {y0, · · · , yn−1} ∈ Mn×1, where

id = {0, 1, 2, . . . , n − 1} ∈ Mn×1 is used to represent the

row index of feature data Fi and lable data Y . In this paper,

all participants have implemented sample alignment before

algorithms executed.

B. Chi-square binning

In [14], the data application party encrypts all the label

data Y and sends it to the data provider. The problem of

[14] is that encrypting all label data Y will consume a lot

of resources and reduce the computing efficiency. In addition,

the data application party send the label data Y to the data

provider, which may expose the label data.

Compared with [14], Algorithm 1 to be presented below

is better. First, the data provider groups the feature data X ,

mixes an appropriate amount of false groups, uses 0,1 markers

respectively to distinguish the true group from the false group,

and then encrypts the group markers. With the same amount

of data, the number of grouping markers is far less than the

number of lable data Y , and the number of encryption is

as little as half of that in [14], which greatly improves the

computing efficiency. Secondly, the data application in [14]

encrypts the label data and sends it to the data provider, and

the label data leaves the local environment. In Algorithm 1, the

label data and feature data do not leave the local environment,

which is more secure.
1) Algorithm design: The specific steps of federated chi-

square binning algorithm combined with homomorphic en-

cryption scheme are referred to as Algorithm 1, which is

executed by the data prividers. Algorithm 2 is a child of

Algorithm 1, which is executed by the data application.

Algorithm 1 requires the data prividers Pi execution

Input: Pi holds Fi={X0,· · ·, Xz}, k ∈ [0, z − 1],
Xk={x0,· · ·, xn−1}, id = {0, 1, 2,· · ·, n− 1}.
Output: Chi-square binning result BinsFi , i ∈ [1,m− 1]

1: for i = 1 to m− 1 do
2: Initializes the grouping matrix GroupFi = ∅ ∈M0×0

3: for k = 0 to z − 1 do
4: tk ← Grouping(Xk), tk ∈ id
5: vk ← RandomGrouping(Xk), vk ∈ id
6: Grouptk(tk, Enctk)←

HorizontalConnect(tk, Enc(1))
7: Groupvk

(vk, Encvk
)←

HorizontalConnect(vk, Enc(0))
8: GroupXk

(xk, Encxk
)←

V erticalConnect(Grouptk , Groupvk
)

9: end for
10: GroupFi ←

Disrupt(HorizontalConnect(GroupXk−1
, GroupXk

))
11: Pi sends GroupFi

to P0

12: end for
13: InfFi

← Algorithm2
14: for i = 1 to m− 1 do
15: for k = 0 to z − 1 do
16: Binstk ← InfXk

← InfFi

17: end for
18: BinsFi

← HorizontalConnect(Binstk−1
, Binstk)

19: end for

First, the data provider Pi needs to group the feature

data Fi by the steps 1-11 of Algorithm 1. Pi initializes

a grouping matrix GroupFi
∈ M0×0. Pi groups feature

data Xk by category through function Grouping() to get

the true group tk. The tk is obtained by putting the row

index of Xk of the same category into an array. Pi uses

paillier encryption (1) to encrypt the group tag 1,0 to obtain

Enctk = Enc(1),Encvk
= Enc(0). Pi uses the horizontal

connection function HorizontalConnect() to connect tk and

Enctk to get the true group information of feature data

Grouptk(tk, Enctk).
The data provider Pi uses the random grouping func-

tion RandomGrouping() to get random indexes from ar-

489

Authorized licensed use limited to: TU Delft Library. Downloaded on February 20,2025 at 15:16:31 UTC from IEEE Xplore. Restrictions apply.

ray id to obtain false group vk. Pi uses the function

HorizontalConnect() to connect vk and Enc(vk) to get

the false group information Groupvk
(vk, Encvk

). Then,

Pi verticaly connects the Grouptk , Groupvk
by the func-

tion V erticalConnect() to obtain the GroupXk
. Pi hor-

izontaly connects GroupXk−1
, GroupXk

by the function

HorizontalConnect() and uses the funcation Disrupt() to

scramble the order of groups to obtain the grouping informa-

tion GroupFi . Pi sends GroupFi to data application party P0.

The step 13 of Algorithm 1 requires the data application party

execute the Algorithm 2.

Algorithm 2 requires the data application P0 execution

Input: P0 holds Y = {y0,· · ·, yn−1}, id = {0,· · ·, n− 1}.
Output: The number of response and non-response after

feature data grouping InfFi , i ∈ [1,m− 1]

1: for i = 0 to m− 1 do
2: Get GroupFi by the steps[1-12] of Algorithm 1

3: for k = 0 to z − 1 do
4: GroupXk

(xk, Encxk
)← GroupFi

5: Yxk
←Map(xk, Encxk

, Y)
6: Infxk

(Groupy, Groups, Groupn, Encxk
)← Yxk

7: end for
8: InfFi ← HorizontalConnect(Infxk−1

, Infxk
)

9: P0 sends InfFi
to Pi

10: end for

According to Algorithm 2, P0 got the grouping information

GroupFi
from Pi. Function Map is used to map the grouping

information xk, xk ∈ id array to the label data Y to obtain the

label values Yxk
, the elements of xk is the index of lable data

Y . For example, the grouping interval xk = [0, 2] corresponds

to the values of the label data Yxk
= [y0, y2]. The binary

classification problems in machine learning, the sample with

lable value of 1 represents the response sample, and the label

value of 0 indicates the non-response sample. Therefore, the

number of response samples Groupy in this group can be

calculated according to the lable value corresponding to the

grouping information.

TABLE I
THE NUMBER OF RESPONSE SAMPLES

index Groupy(j) Groupn(j + 1) Ri(Groups)

i sum(Y
(i)
xk

) Group
(i)
s −Group

(i)
y len(x

(i)
k)

i+ 1 sum(Y
(i+1)
xk

) Group
(i+1)
s −Group

(i+1)
y len(x

(i+1)
k)

Cj sum(Groupy) sum(Groupn) sum(Groups)

As shown in Table I, xk represents the set of group,

assuming xk contains s groups,then i ∈ [0, s − 1]. The

number of response samples in the ith group Groupy is the

sum of lable values corresponding to the group Group(i)y =

sum(Y (i)
xk

). The total samples of the ith group is the number

of elements in the group Group(i)s = len(x
(i)
k), the function

len() finds the number of elements in an array, and the non-

response samples in ith group is computed by Group(i)n =

Group(i)s − Group(i)y . According to the Algorithm 2, P0

gets the Infxk
(Groupy, Groups, Groupn), and horizontaly

connects the Infxk
and Infxk−1

to get the InfFi . P0 sends

InfFi
to Pi.

Pi obtains InfFi
from P0, according to steps 14-19 of

Algorithm 1, it can compute the chi-square value χ2, the

adjacent groups with the smallest chi-square value are merged

until the group limit is reached. Then Pi can obtain the result

of chi-square binning BinsFi
.

2) Correctness analysis of Algorithm 1: The correctness

of Algorithm 1 and Algorithm 2 can be guaranteed by the

basic principle of chi-square binning and the special coding

method used in this paper. Then we give the Theorem 1 as

follows:

Theorem 1. Algorithms 1 and 2 can compute the Chi-square
binning correctly.

Proof: Algorithm 2 is a sub algorithm of Algorithm 1, and

we directly prove the correctness of Algorithm 1. According

to the steps 1-13 of Algorithm 1, Pi obtains the InfFi
, then

can compute the chi-square binning. Pi decrypts the Encxk

to abtain the samples information of true groups Inftk , where

the Dec(Enc(xk)) = 1. According to the number of response

samples and the number of non-response samples in the ith

true groups, the expected frequency Eij can be obtained. The

calculation process is as follows:

Eij =
Ri × Cj

N
=

len(x
(i)
k)× sum(Groupy)

sum(Groups)
(4)

Equation (4), N is the total number of samples, Ri is the

numbers of samples for the group i, Cj is the proportion of

the sample of class j in the whole.

χ2 =
2∑

i=1

2∑
j=1

(Aij − Eij)
2

Eij

=

2∑
i=1

2∑
j=1

(Group
(ij)
y − Ri×Cj

N)2

Ri×Cj

N

(5)

Equation (5), Aij denotes the number of instances of class

j from interval i, Eij denotes the expected frequency of Aij .

According to the number of sample Aij , expected frequency

Eij , Pi can calculate the Chi-square value χ2 of adjacent

groups, and the groups with the lowest Chi-square value can

be combined until the group number limit is reached.

Pi uses the private key in the Paillier encryption system

to decrypt the Enc(xk) to obtain the Dec(Enc(xk)). The

decryption function Dec() is given by (2) in Section III. Pi can

filter the false group in the process of compution the chi-square

value when calculating the ith group by Encxk
. Pi decrypts

the Chi-square value of false group is Dec(Enc(0)) = 0.

Thus, the real Chi-square binning BinsFi
is obtained.

3) Security analysis of Algorithm 1: During the binning

process,the data provider Pi mixes the group information into

the false group with the same amount as the real group.

490

Authorized licensed use limited to: TU Delft Library. Downloaded on February 20,2025 at 15:16:31 UTC from IEEE Xplore. Restrictions apply.

Pi marks the real group as Enc(1) and the false group as

Enc(0). Then, Pi verticaly connects the real group with the

false group, disrupts the order and sends to the data application

P0. Honest but curious participants hope to infer the feature

data from the grouping information. However, in Algorithm 1,

these participants do not have the private key of P0, and the

grouping order is also disrupted, so as to avoid the disclosure

of private information. In addition, we construct an emulator,

and have the following theorem:

Theorem 2. Algorithms 1 and 2 can safely compute the chi-
square binning in federated learning.

Proof: Algorithm 2 is a sub algorithm of Algorithm

1. We use the simulation example to prove the Theorem 2

strictly. We first prove the security of the P0 label data. Since

the participants Pi, i ∈ [1,m− 1] are all equal, we only need

to prove that Algorithm 1 is safe for the set of conspirators

I = {P1,· · ·, Pm−1}. For the set of conspirators composed

of m − 1 participants in I , the corresponding simulator S
needs to be constructed. S first applies the Paillier public key

system, and the public key is set as pk, and the corresponding

private key is sk. The emulator S runs as follows:

(i). Simulator S receives the input (I,FI , fI(F0,· · ·, Fm−1)),
randomly selects F ′0 = (f ′0,· · ·, f ′k), such that

fI(F0, · · · , Fm−1)=fI(F
′
0, · · · , Fm−1)),F ′0

c≡F0.

(ii). Simulator S performs steps 2-21 of Algorithm 1 to

compute binnings Bins′={BinsF ′0 ,· · ·, BinsFm−1
}.

(iii). In the execution of the Algorithm 1,

Bins={BinsF0 ,· · ·, BinsFm−1}, the conspirators I to obtain

the information view: viewπ
I (F1,· · ·,Fm−1,fI(F0,· · ·,Fm−1)) =

{F1,· · ·,Fm−1,Bins,fI(F0,· · ·,Fm−1)}, and

then let S(F1,· · ·,Fm−1,fI(F0,· · ·,Fm−1)) =
{F1,· · ·,Fm−1,Bins′,fI(F ′0,· · ·,Fm−1)}.

It can be concluded from the above formula that

the conspirators I did not receive any data information

of the non-conspirators during the execution of

the algorithm, even encrypted messages. Finally,

{BinsF0
,· · ·,BinsFm−1} = {BinsF ′0,· · ·,BinsFm−1},BinsF ′0

c≡
BinsF0 , therefore {viewπ

I (F1,· · ·,Fm−1, fI(F0,· · ·,Fm−1)} c≡
{S(F1,· · ·,Fm−1, fI(F0,· · ·,Fm−1)}.

Secondly, we need to prove the security of the feature data

Pi, i ∈ [1,m − 1]. Since the status of participant Pi, i ∈
[1,m− 1] is all equal, we only need to prove that Algorithm

2 is safe for participant I ′ = P0. For the participant I ′, the

corresponding simulator S′ needs to be constructed. S′ first

applies the Paillier public key system. Let its public key be pk′,
and the corresponding private key be sk′. The Simulator S′

mode is similar to the steps in the above Simulator operation,

but step (i) is different. Step (i) is changed to the following

(i’), and the rest of the steps remain the same.

(i’)Simulator S′ receives the input (I ′,F0,fI′(F0,· · ·,Fm−1)),
randomly selects F ′i, i ∈ [1,m − 1], such that

fI′(F0,· · ·,Fi,· · ·,Fm−1)=fI′(F0,· · ·,F ′i ,· · ·, F ′m−1),Fi
c≡F ′i .

In the execution of Algorithm 2, the conspirators I ′ to

obtain the information view: viewπ
0 (F0,f0(F0,· · ·, Fm−1)) =

{F0,BinsFi ,fI′(F0,· · ·, Fm−1)}, and then let

S′(F0, fI′(F0, ..., Fm−1))= {F0, BinsF ′i , fI′(F0, . . . , F
′
m−1)}.

It can be seen from the above equation that I ′ only receives

the binning information BinsF ′i of Pi during the execution

of the Algorithm 2. P0 has no private key sk′, so the

binnings cannot be decrypted, and the feature data cannot

be inferred. So BinsF ′i and BinsFi
are computationally

indistinguishable. Finally, {viewπ
0 (F0, fI′(F0,· · ·, Fm−1))} c≡

{S′(F0, fI′(F0,· · ·, F ′m−1)}. In summary, the Algorithm 1 and

2 are safe.

In the implementation Algorithms 1 and 2, the data provider

Pi does not send any actual feature data to the data application

and the data application P0 does not send the lable data to the

data provider to ensure that the data of both parties are not out

of the local. Secondly, Pi only encrypts the categories of the

true and false groups, compared with encrypting the feature

data and sending to the data application party, Algorithms 1

and 2 not only ensure the security of data privacy, but also

greatly improve the computational efficiency.

C. Maximal information coefficient

Most of the current methods focus on the application of the

maximal information coefficient. In [22], maximal information

coefficient is used to improve the calculation of Pearson

coefficient, and in [23], k-means algorithm is improved. The

objective of our method is to protect the privacy of the data

in the calculation of the maximal information coefficient for

federated learning, so that the data can not go out of the local.

1) Algorithm design: The specific steps of maximal in-

formation coefficient algorithm combined with homomorphic

encryption scheme are Algorithm 3, which is executed by the

data prividers. Algorithm 4 is a child of Algorithm 3, which

is executed by the data application.

In Algorithm 3, the current region is meshed by the meshing

function line ∈ numpy.linspace(2, smax, s + 1), where

s, s ∈ [2, smax + 1] is the index of line in the x direction,

and the y direction is meshed by the meshing function line ∈
numpy.linspace(2, rmax, r+1), where r, r ∈ [2, rmax+1] is

the index of the line line in the y direction, and a region can

be formed between two adjacent lines in the x and y directions.

The numpy.linspace() method of Numpy library in Python

is used to divide the boundary in the direction of x axes. The

funcation numpy.linspace(2, smax, s+1) returns data evenly

spaced between 2 and smax with s+1. line is a line parallel

to x and y axis.

The feature data Fi is discretized into these meshing re-

gions. The maximal information coefficient requires that the

number of meshes does not exceed smax · rmax = n0.6,

so the number of meshes does not exceed smax = n0.3 in

the x direction and the number of meshes does not exceed

rmax = n0.3 in the y direction. From this, we can get a total

of smax · rmax meshing schemes, calculate the information

coefficient of each meshing schemes MIC[Fi;Y], and then

get the maximal information coefficient.

491

Authorized licensed use limited to: TU Delft Library. Downloaded on February 20,2025 at 15:16:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 Algorithm 3 requires the data providers Pi

execution

Input: Pi holds Fi={X0,· · ·, Xz}, k ∈ [0, z − 1],
Xk={x0,· · ·, xn−1}, id = {0, 1, 2,· · ·, n− 1}.
Output: Maximum information coefficient MIC[Fi;Y].

1: for i = 0 to m− 1 do
2: for k = 0 to z − 1 do
3: smax = n0.3, s ∈ [2, smax + 1]
4: line ∈ numpy.linspace(2, smax, s+ 1)
5: for s = 2 to smax + 1 do
6: for id = 0 to n− 1 do
7: if (line[s]) � xid < line[s+ 1] then
8: regioni[id][s : s+ 1] = Enc(1)
9: regioni[id][:s], regioni[id][s+1:]=Enc(0)

10: end if
11: end for
12: end for
13: end for
14: Pi sends the matrix regioni to P0

15: Pi obtain the S[Fi;Y] by the step[17] of Algorithm 4

16: Pi decrypts the S[Fi;Y] to obtain the number of each

region, and initializes falling frequency p
17: p(Fi, Y), p(Fi), p(Y)← Dec(S[Fi;Y]), n
18: MIC[Fi;Y]← p(Fi, Y), p(Fi), p(Y)
19: end for

Pi holds Fi = {X0,· · ·, Xz}, k ∈ [0, z − 1], Xk =
{x0,· · ·, xn−1}, id = {0, 1, 2,· · ·, n − 1} to calculate the

correlation between feature data Fi and the lable data Y . Pi

uses s to traverse the meshing scheme in the x direction, where

s belongs to [2, smax +1]. The region matrix regioni is used

to record the fall of feature data Fi into the region. The row

coordinate of the region matrix is the index of feature data and

the columns of the matrix represent all regions, the number of

columns in the region is (smax + 1)× (rmax + 1).
Next, Pi determines whether the value of the feature data

x falls between the two underscore line[s] and line[s+ 1] in

the steps 7-11 of Algorithm 3, and if it falls between this

interval, the id-th row, the s to s + 1 columns of region

matrix regioni[id][s : s + 1] is marked as Enc(1). Enc(1)
is obtained by encrypting 1 using the (1). The other columns

of region matrix regioni is marked as Enc(0) as the steps

9-10 of Algorithm 3. For the current region, different s and r

will generate different meshing schemes, Pi computes the all

meshing schemes, and sends the region matrix regioni to the

data application party P0.

In Algorithm 4, P0 obtains the region matrix regioni by the

step 17 of Algorithm 3. P0 determines whether the value of the

data points Y falls between the two lines line[r] and line[r+1]
in the steps 7-9 of Algorithm 4, and if it falls between this

interval, the id-th row, the [r : r+1] columns of region matrix

areai[id][r : r + 1] is equal the regioni[id][r : r + 1], where

id ∈ [0, n − 1]. The purpose of this step 8 of Algorithm 4

is to intersect the region corresponding to (Fi, Y) data points

Algorithm 4 Algorithm 4 requires the data application P0

execution

Input: P0 holds Y = {y0,· · ·, yn−1}, id = {0,· · ·, n− 1}.
Output: Falling number of data points in per region

S[Fi;Y].

1: for i = 0 to m− 1 do
2: P0 obtain the regioni by the step[17] of Algorithm 3

3: rmax = n0.3, r ∈ [2, rmax + 1]
4: line ∈ numpy.linspace(2, rmax, r + 1)
5: for r = 2 to rmax + 1 do
6: for id = 0 to n− 1 do
7: if (line[r]) � yid < line[r + 1] then
8: areai[id][r : r + 1] = regioni[id][r : r + 1]
9: end if

10: end for
11: end for
12: for k = 0 to z − 1 do
13: for v = 0 to (smax + 1)× (rmax + 1) do
14: S[Xk;Y][v] = sum(areai[: , v]), Xk ∈ Fi

15: end for
16: end for
17: P0 sends the S[Fi;Y] to Pi

18: end for

to get the exact position. Then, P0 uses Pailliar’s addition

homomorphism to calculate the sum of each column of the

matrix areai to get the falling number of data points in each

region, the falling number of data points in each region is

recorded in S[Fi;Y]. P0 sends the S[Fi;Y] to Pi.
2) Correctness analysis of Algorithms 3 and 4: The

correctness of Algorithms 3 and 4 can be guranteed by the

basic principle of Maximal information coefficient and the

special coding method used in this paper.

Theorem 3. Algorithms 3 and 4 can correctly compute the
value of Maximal information coefficient.

Proof: Pi initializes the matrix of falling frequency of

data points in each region p. According to the step 8 of

Algorithm 3, the region of data points is marked as Enc(1),
and the number of data points for each region is counted using

the addition homomorphism of Paillier.

Pi decrypts S[Fi;Y] to obtain the number of data points for

each region Dec(S[Fi;Y]) by (2), such as Dec(S[Xk;Y]) =
[count0, count1, · · · , count(s×r)], Xk ∈ Fi . According to the

number Dec(S[Fi;Y]) and the number of all data points n,

Pi computes the falling frequency p. For example, the joint

probability of region 0 is:

p0(Xk, Y) =
count0

n
=

count0
len(Xk)

(6)

Then calculate the joint probability p(Xk, Y), p(Xk), p(Y),
calculate the mutual information value I[Xk;Y] through prob-

ability p(Xk, Y), p(Xk), p(Y) as follows:

I[Xk;Y] =
∑
Xk,Y

p(Xk, Y)log2
p(Xk, Y)

p(Xk)p(Y)
(7)

492

Authorized licensed use limited to: TU Delft Library. Downloaded on February 20,2025 at 15:16:31 UTC from IEEE Xplore. Restrictions apply.

and calculate MIC[Xk;Y] according to the mutual informa-

tion value I[Xk;Y] and p(Xk, Y), p(Xk), p(Y) as follows:

MIC[Xk;Y] = max
s·r<(smax·rmax)

(
I(Xk;Y)

log2(min(s, r))

)
(8)

where max() is the function that evaluates the maximum

value, returning the maximum value in the array and min is

the function that evaluates the minimum value, returning the

minimum value in the array. smax, rmax is generally taken

to the power of 0.6 or 0.55 of the total data n. It can be

calculated as smax × rmax = n0.6. Due to paillier’s addi-

tive homomorphism, according to S[Fi;Y], Pi aggregates all

the MIC[Xk;Y] to get the Maximal information coefficient

MIC[Fi;Y].

3) Security analysis of Algorithms 3 and 4: Firstly, it is

proved that the label matrix Y of P0 is safe. In Algorithm

3, the status of all participants Pi, i ∈ [1,m − 1] is equal,

and if any m− 1 participants conspire, no information of the

unconspirators region matrix can be obtained. Secondly, it is

necessary to prove the security of the feature data Fi of the

data provider Pi. According to the distribution region of its

feature data, the participant Pi uses the Enc(1) encrypted by

the public key encryption of the Paillier scheme to mark the

distribution region. In Algorithm 4, although P0 received the

region matrix of feature data in the calculation process, P0 did

not have the corresponding private key and cannot decrypt the

region distribution of feature data Fi.

In step 14 of Algorithm 4, S[Xk;Y] is calculated by sum-

ming the mark Enc(1) corresponding to all data points in the

region aerai using the additive homomorphism of paillier by

(3). Since Enc(1) is encrypted, P0 cannot get any information

of Pi from the encryption matrix areai. In the step 17 of

Algorithm 3, all participants Pi decrypts the number of data

points in per region, and only Pi knows the decryption result.

Therefore, the maximal information coefficient MIC[Fi; y] of

Pi is also safe.

Theorem 4. Algorithms 3 and 4 can safely compute the
maximal information coefficient in federated learning.

In Algorithms 3 and 4, we can get the maximal information

coefficient to evaluate the feature correlation. In step 15 of

Algorithm 3, the data provider Pi does not send any real

feature data values to the data application but the ciphertext of

region code Enc(1), and the step 17 of Algorithm 4, instead of

sending a label matrix Y , P0 sends ciphertext matrix S[Fi;Y],
which is the number of data points in each region. From the

above analysis, we have the following Theorem IV-C3, the

strict proof of which is similar to the definition, omitted here.

V. EXPERIMENT

We have implementated the framework FEFL. The frame-

work focuses on the improvement of data privacy protection

and computation overhead.Experimental equipment include six

PCs based on x64 processor with 16.0 GB RAM (15.4GB

available), Windows10 64-bit operating system and AMD

Ryzen 5 5500U with Radeon Graphics 2.10 GHz. The frame-

work is implemented using Python language and communicate

using the Flask framework. We have selected the MNIST and

Spamtest datasets.

A. Analysis of experimental data of Algorithms 1 and 2
In terms of computing cost, compared with [14], our

computation cost is greatly reduced, we only encrypt group

information, and group number is far less than the feature

data. The comparison results of runtime and communication

are shown in Figure 2:

(a) runtime (b) communication

Figure 2. Runtime and communication of two parties in Algorithms 1 and 2

Figure 2 shows the two parties experimental results of

Algorithms 1 and 2. In Figure 2(a), the abscissa is the size of

MNIST dataset. The vertical coordinate is the running time.

In Figure 2(b), the abscissa is the size of MNIST dataset,

the vertical coordinate is the communication cost. It can be

seen that the running time and communication cost of FEFL

are significantly less than that of [14].

(a) runtime (b) communication

Figure 3. Runtime and communication of multi-party in Algorithms 1 and 2

Figure 3 shows the multi-party experimental results of

Algorithms 1 and 2. In Figure 3(a), the abscissa is the number

of the data providers. The vertical coordinate is the running

time of the data providers and data applications. In Figure

3(b), the abscissa is the number of the data providers. Because

multiple data providers are computing in parallel, the running

time of the data provider does not vary much.

B. Analysis of experimental data of Algorithms 3 and 4
Figure 4 shows the two parties experimental results of

Algorithms 3 and 4. In Figure 4(a), the abscissa is the size of

Spamtest dataset. The vertical coordinate is the running time.

In Figure 3(b), the abscissa is the size of Spamtest dataset.

The vertical coordinate is communication cost. Figure 3(b)

shows different communication cost of different grid schemes

in Algorithm 3.

493

Authorized licensed use limited to: TU Delft Library. Downloaded on February 20,2025 at 15:16:31 UTC from IEEE Xplore. Restrictions apply.

(a) runtime (b) communication

Figure 4. Runtime and communication of two parties in Algorithms 3 and 4

VI. CONCLUSION

In this paper, we have proposed and implemented a feature

engineering framework called FEFL. Compared with other

frameworks, it confines the feature data in locally, improving

the safety and efficiency of the feature engineering in federated

learning. Based on the FEFL framework, we have proposed

new methods to compute Chi-square binning and the maximal

information coefficient, which does not send the actual data

and has stronger security.

VII. ACKNOWLEDGMENT

This research is supported by the National Natural Science

Foundation of China (Grants: U1936120, U1636216), the

National Key R&D Program of China (2017YFB0802805 and

2017YFB0801701), the Fok Ying Tung Education Foundation

of China (Grant 171058), the European Union’s Horizon 2020

research and innovation programme under grant agreement

No. 952697 (ASSURED) and No. 101021727 (IRIS), and the

Basic Research Program of State Grid Shanghai Municipal

Electric Power Company (52094019007F). Daojing He is the

corresponding author of this article.

REFERENCES

[1] A. Kjamilji, E. Savas, and A. Levi, “Efficient secure building blocks
with application to privacy preserving machine learning algorithms,”
IEEE Access, vol. 9, pp. 8324–8353, 2021. [Online]. Available:
https://doi.org/10.1109/ACCESS.2021.3049216

[2] Y. Liu, J. J. Q. Yu, J. Kang, D. Niyato, and S. Zhang, “Privacy-preserving
traffic flow prediction: A federated learning approach,” IEEE Internet of
Things Journal, vol. 7, no. 8, pp. 7751–7763, 2020.

[3] X. Liu, H. Li, G. Xu, R. Lu, and M. He, “Adaptive privacy-preserving
federated learning,” Peer-to-Peer Networking and Applications, vol. 13,
pp. 2356–2366, 2020.

[4] M. Song, Z. Wang, Z. Zhang, Y. Song, Q. Wang, J. Ren, and H. Qi,
“Analyzing user-level privacy attack against federated learning,” IEEE
Journal on Selected Areas in Communications, vol. 38, no. 10, pp. 2430–
2444, 2020.

[5] A. Deac, “Regulation (eu) 2016/679 of the european parliament and of
the council on the protection of individuals with regard to the processing
of personal data and the free movement of these data,” Perspectives of
Law and Public Administration, vol. 7, 2018.

[6] H. Zhu, R. S. M. Goh, and W. K. Ng, “Privacy-preserving
weighted federated learning within the secret sharing framework,”
IEEE Access, vol. 8, pp. 198 275–198 284, 2020. [Online]. Available:
https://doi.org/10.1109/ACCESS.2020.3034602

[7] A. C. Yao, “Protocols for secure computations (extended abstract),” in
23rd Annual Symposium on Foundations of Computer Science, Chicago,
Illinois, USA, 3-5 November 1982. IEEE Computer Society, 1982, pp.
160–164. [Online]. Available: https://doi.org/10.1109/SFCS.1982.38

[8] X. Li, R. Dowsley, and M. D. Cock, “Privacy-preserving feature selec-
tion with secure multiparty computation,” CoRR, vol. abs/2102.03517,
2021. [Online]. Available: https://arxiv.org/abs/2102.03517

[9] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang,
and Y. Zhou, “A hybrid approach to privacy-preserving federated
learning,” in Proceedings of the 12th ACM Workshop on Artificial
Intelligence and Security, ser. AISec’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 1–11. [Online].
Available: https://doi.org/10.1145/3338501.3357370

[10] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, Jan. 2019. [Online]. Available: https://doi.org/10.1145/3298981

[11] P. Fang, Z. Cai, H. Chen, and Q. Shi, “FLFE: A communication-
efficient and privacy-preserving federated feature engineering
framework,” CoRR, vol. abs/2009.02557, 2020. [Online]. Available:
https://arxiv.org/abs/2009.02557

[12] H. Zhang, Y. Chen, L. Xiang, H. Ma, J. Shi, and Q. Zhang, “Deep
quaternion features for privacy protection,” CoRR, vol. abs/2003.08365,
2020. [Online]. Available: https://arxiv.org/abs/2003.08365

[13] Y. Sei and A. Ohsuga, “Privacy-preserving chi-squared test of
independence for small samples,” BioData Min., vol. 14, no. 1, p. 6,
2021. [Online]. Available: https://doi.org/10.1186/s13040-021-00238-x

[14] Y. Zhang and Z. Chen, “methods and devices for federated feature
engineering data processing(in chinese),” 2020.

[15] K. Prabhu, B. Jun, P. Hu, Z. Asgar, S. Katti, and P. Warden, “Privacy-
preserving inference on the edge: Mitigating a new threat model,” in
Research Symposium on Tiny Machine Learning, 2020.

[16] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Advances in Cryptology - EUROCRYPT
’99, International Conference on the Theory and Application of
Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999,
Proceeding, ser. Lecture Notes in Computer Science, J. Stern,
Ed., vol. 1592. Springer, 1999, pp. 223–238. [Online]. Available:
https://doi.org/10.1007/3-540-48910-X 16

[17] I. Moulinier, “Feature selection: A useful preprocessing step,” in 19th
Annual BCS-IRSG Colloquium on IR Aberdeen, UK. 8th-9th April
1997, ser. Workshops in Computing. BCS, 1997. [Online]. Available:
http://ewic.bcs.org/content/ConWebDoc/4839

[18] T. Gu, J. Guo, Z. Li, and S. Mao, “Detecting associations
based on the multi-variable maximum information coefficient,”
IEEE Access, vol. 9, pp. 54 912–54 922, 2021. [Online]. Available:
https://doi.org/10.1109/ACCESS.2021.3070925

[19] J. Acharya, C. L. Canonne, and H. Tyagi, “Inference under information
constraints I: lower bounds from chi-square contraction,” IEEE Trans.
Inf. Theory, vol. 66, no. 12, pp. 7835–7855, 2020. [Online]. Available:
https://doi.org/10.1109/TIT.2020.3028440

[20] H. Kang, G. Liu, Z. Wu, Y. Tian, and L. Zhang, “A modified flowdroid
based on chi-square test of permissions,” Entropy, vol. 23, no. 2, p.
174, 2021. [Online]. Available: https://doi.org/10.3390/e23020174

[21] G. Sun, J. Li, J. Dai, Z. Song, and F. Lang, “Feature selection
for iot based on maximal information coefficient,” Future Gener.
Comput. Syst., vol. 89, pp. 606–616, 2018. [Online]. Available:
https://doi.org/10.1016/j.future.2018.05.060

[22] Y. Tian, H. Zhang, P. Li, and Y. Li, “A complementary method of pcc
for the construction of scalp resting-state eeg connectome: Maximum
information coefficient,” IEEE Access, vol. 7, pp. 27 146–27 154, 2019.

[23] R. Wang and H. Li, “Mic-kmeans: A maximum information coefficient
based high-dimensional clustering algorithm,” R. Silhavy, Ed. Cham:
Springer International Publishing, 2019, pp. 208–218.

494

Authorized licensed use limited to: TU Delft Library. Downloaded on February 20,2025 at 15:16:31 UTC from IEEE Xplore. Restrictions apply.

