
 
 

Delft University of Technology

Classical and Quantised Resolvent Algebras for the Cylinder

van Nuland, T. D.H.; Stienstra, R.

DOI
10.1007/s00023-024-01434-1
Publication date
2024
Document Version
Final published version
Published in
Annales Henri Poincare

Citation (APA)
van Nuland, T. D. H., & Stienstra, R. (2024). Classical and Quantised Resolvent Algebras for the Cylinder.
Annales Henri Poincare, 26(2), 479-526. https://doi.org/10.1007/s00023-024-01434-1

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s00023-024-01434-1
https://doi.org/10.1007/s00023-024-01434-1


Ann. Henri Poincaré Online First
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Classical and Quantised Resolvent Algebras
for the Cylinder

T. D. H. van Nuland and R. Stienstra

Abstract. Buchholz and Grundling (Commun Math Phys 272:699–750,
2007) introduced a C∗-algebra called the resolvent algebra as a canonical
quantisation of a symplectic vector space and demonstrated that this alge-
bra has several desirable features. We define an analogue of their resolvent
algebra on the cotangent bundle T ∗

T
n of an n-torus by first generalising

the classical analogue of the resolvent algebra defined by the first author
of this paper in earlier work (van Nuland in J Funct Anal 277:2815–2838,
2019) and subsequently applying Weyl quantisation. We prove that this
quantisation is almost strict in the sense of Rieffel and show that our re-
solvent algebra shares many features with the original resolvent algebra.
We demonstrate that both our classical and quantised algebras are closed
under the time evolutions corresponding to large classes of potentials.
Finally, we discuss their relevance to lattice gauge theory.

1. Introduction

Much of modern physics concerns the search for and examination of quantum
versions of known classical theories. Examples include quantum statistical me-
chanics, quantum field theory, and quantum gravity. Showing that a classical
theory is indeed the limit of the quantum theory at hand can be done at various
levels of rigour. The most precise way to establish this limit is by strict defor-
mation quantisation, where one ‘quantises’ a classical (commutative) Poisson
algebra into a quantum (noncommutative) C*-algebra [15,23] (cf. [12, p. 5] for
an overview of various definitions in the literature).

Only few pairs of a classical and a quantum C*-algebra are known to
connect in this rigorous fashion [2,15,24,25], and each has its merits and
drawbacks. In particular, when taking the torus as a configuration space, we
found the known examples too limited in certain respects. Hence, in this pa-
per, we define a quantum observable algebra on the torus, i.e. a C*-algebra
A� ⊆ B(L2(Tn)), which satisfies the following properties:
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P1 : The algebra A� has a classical counterpart A0 and can be obtained from
this commutative algebra through (strict) quantisation.

P2 : The algebra A� is closed under the time evolution associated with the
potential V for each V ∈ C(Tn). The classical analogue A0 satisfies a
similar condition.

P3 : The classical and quantum algebras associated with a given system
are both sufficiently large to accommodate natural embeddings of the
respective algebras corresponding to their subsystems.

P4 : The algebras A0 and A� contain the algebra C0(T ∗
T

n) and its quanti-
sation K(L2(Tn)), respectively, without being larger than necessary.

An observable algebra satisfying only P1, P2 and P4 has long been known,
namely K(L2(Tn)), the compact operators on L2(Tn), with C0(T ∗

T
n) as its

classical limit (cf. [15], in particular sections II.3.4, III.3.6 and III.3.11). We
now sketch how the need for P3 arises in quantum lattice gauge theory. Al-
though a significant portion of this introduction is dedicated to this argument,
it is presented here in condensed form; more details are found in [29, Sect. 5.1].
Lattice Gauge Theory. In the Hamiltonian lattice gauge theory by Kogut and
Susskind [14], one approximates a time slice of spacetime by a finite ‘lattice’,
or more accurately, an oriented graph Λ. The elements of the set of vertices
Λ0 are points in the time slice, while the set of oriented edges Λ1 are paths
between these points. A gauge field corresponding to some connection on a
principal fibre bundle over spacetime with structure group some Lie group G
is approximated by the parallel transport maps along the edges of Λ. After
choosing a trivialisation of the restriction of the principal fibre bundle to Λ0,
the set of all possible parallel transporters can be identified with GΛ1

; this is
the configuration space of the Hamiltonian lattice gauge theory, and it carries a
natural action of GΛ0

(endowed with the obvious group structure). This group
is the analogue of the set of gauge transformations.

Let us take a brief moment to comment on the choice of the structure
group G of the gauge theory. Lattice gauge theory was originally introduced
by Wilson [33] to explain the phenomenon of quark confinement in the context
of the gauge theory known as quantum chromodynamics (QCD). The underly-
ing structure group of QCD is SU(3); hence, the corresponding configuration
space is evidently not a torus, and therefore, lattice QCD is outside of the
scope of this article. However, it is worth noting that the structure group of
electromagnetism is T, so the results in this paper may be applied to corre-
sponding lattice gauge theories or perhaps serve as a stepping stone towards
an analogous construction that can be applied to lattice QCD.

We now return to the argument. The Hilbert space of the correspond-
ing quantum lattice gauge theory is H = L2(GΛ1

), where GΛ1
is endowed

with the normalised Haar measure. The field algebra of the system is some
C∗-algebra AΛ that is represented on H, from which the observable algebra
can be obtained by applying a reduction procedure with respect to the gauge
group (cf. [13,30]). The observable algebra is accordingly represented on the
set of elements of H that are invariant under gauge transformations. Since the
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distinction between field and observable algebras is irrelevant with regard to
the issue that motivates the present investigation—the embedding maps take
the same form in both cases—we will continue to refer to AΛ as the observable
algebra in what follows.

In the context of lattice gauge theory, one is interested in constructing an
algebra of the continuum system from the above algebras AΛ. This is done by
considering direct systems of lattices, and we are naturally led to consider the
following situation. Suppose that Λ1 and Λ2 are both lattices approximating
a time slice and that Λ2 is a better approximation than Λ1, i.e. Λ0

1 ⊆ Λ0
2, the

graph Λ2 contains more paths than Λ1, and each edge in Λ1 can be written
as a concatenation of paths in Λ2; for a precise definition, we refer to [1]. We
should then be able to find a corresponding embedding map AΛ1 ↪→ AΛ2 . The
embedding map takes a simple form if Λ2 is obtained from Λ1 by only adding
edges: in that case, we have H2 = H1⊗̂Hc

1, where Hc
1 = L2(GΛ1

2\Λ1
1), and the

embedding is given by the restriction of the map

B(H1) → B(H2) ∼= B(H1)⊗̂B(Hc
1) , a �→ a ⊗ 1 ,

to AΛ1 , where 1 denotes the identity on Hc
1, and ⊗̂ denotes the von Neumann

algebraic tensor product.
A first guess for the observable algebras of the two quantum systems

could be K(H1) and K(H2), the algebras of compacts. However, except in
trivial cases, the Hilbert space Hc

1 will be infinite-dimensional, which means
that a ⊗ 1 will not be a compact operator. Thus, the algebra K(H2) is too
small to accommodate these embeddings. This problem was already noticed
by Stottmeister and Thiemann in [31]. In an earlier paper [1] on Hamiltonian
lattice gauge theory coauthored by one of the authors of the present article,
the above problem was not encountered since different embedding maps were
used. There are nevertheless good reasons to believe that the embedding maps
used in [31] are the correct ones, though we will not elaborate on them here,
and refer to [29, Chapter 8] instead. The argument presented there is not
specific to lattice gauge theory, but can be made for any physical system that
is comprised of smaller subsystems.

Another guess for the observable algebra of the composite system could
be the one generated by the embedded algebras of all subgraphs, as is done
in [11]. However, this raises questions about regulator independence of this
procedure in situations where one takes limits corresponding to an infinite
volume or continuum limit of a collection of systems parametrised by a cutoff.
As this problem is beyond the scope of the present article, we will refer the
reader to the discussion in [29, Sect. 5.1]. The main point is that there is ample
reason to try to solve the problem through an appropriate choice of algebras,
i.e. algebras that satisfy P3.

The Resolvent Algebra on. R
n In the case where the configuration space is

R
n, there already exists an algebra satisfying P1, P2, P3 and P4, namely the

resolvent algebra R(R2n, σn). The resolvent algebra R(X,σ) on a symplectic
vector space (X,σ) is a C∗-algebra that was originally introduced by Buchholz
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and Grundling in [8], and subsequently studied in greater detail in [9] and [5]
by the same authors. Before we adapt this algebra to the case of T ∗

T
n instead

of R
2n as its underlying phase space, let us recall the main idea behind the

construction of the resolvent algebra.
The resolvent algebra is constructed as the completion of a ∗-algebra with

respect to a certain C∗-seminorm [9, Definition 3.4]; the ∗-algebra is defined
in terms of generators and relations. To each pair (λ, f) ∈ (R\{0}) × X, a
generator R(λ, f) is associated. Such a generator is thought of as the resolvent
(depending on λ) corresponding to some unbounded operator φ(f) associated
with the vector f , where φ denotes a linear map from X to a space of operators
on a dense subspace of a Hilbert space on which R(X,σ) can be represented
faithfully.

For example, suppose that (X,σ) is R
2 endowed with the standard sym-

plectic form. Then R(X,σ) admits a faithful representation on L2(R) such
that the unbounded operators corresponding to the vectors (1, 0) and (0, 1)
are the standard position and momentum operators, respectively (up to a fac-
tor of � in the latter case), see [9, Corollary 4.4 and Theorem 4.10]. Both of
these unbounded operators can be defined on the (invariant) dense subspace
C∞

c (R), on which they are essentially self-adjoint.
For each f ∈ X, the generator R(λ, f) is mapped to the bounded op-

erator (iλ1 − φ(f))−1; in particular, taking f = 0, we see that R(X,σ) is
unital. The relations defining the ∗-algebra from which the resolvent algebra is
constructed serve to encode the fact that R(λ, f) behaves like the resolvent of
the unbounded operator φ(f), as well as the linearity of φ. Last but not least,
the canonical commutation relations (CCR) are introduced by the defining
relations of R(X,σ) in which the symplectic form appears, thereby justifying
the term “canonical quantum systems” in the title of [9].

The resolvent algebra is not the only approach to the reformulation of the
CCR in a framework based on bounded operators; another is obtained through
exponentiation of the unbounded operators of interest, leading to the Weyl
form of the CCR and the Weyl algebra. There is a bijection between certain
classes of representations of these two algebras [9, Corollary 4.4]. In particular,
generators of the resolvent algebras can be expressed in terms of generators
of the Weyl algebra by means of the Laplace transform, as is done in [8]. By
changing the representation in that definition to the usual representation on
L2(R) of the Weyl algebra on R

2, one obtains the representation mentioned
earlier.

Buchholz and Grundling note that their resolvent algebra has some de-
sirable qualities not shared by the Weyl algebra, such as the presence of
observables corresponding to bounded functions in regular representations.
Furthermore—and this is particularly relevant for this paper—the resolvent
algebra associated with R

2 endowed with the standard symplectic form is
closed under (quantum) time evolution for a much larger class of Hamiltoni-
ans than the Weyl algebra (cf. [9, Proposition 6.1]). The authors explain this
as a consequence of the fact that their resolvent algebra contains resolvents of
many Hamiltonians. Moreover, Buchholz has shown that the resolvent algebra
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is stable under dynamics in the context of oscillating lattice systems [6] and
nonrelativistic Bose fields [7].

According to [9, Theorem 5.1], for any symplectic vector space (X,σ) and
any decomposition S ⊕ S⊥ of X into subspaces that are nondegenerate with
respect to σ (and where S⊥ denotes the complement of S with respect to σ),
the resolvent algebra R(X,σ) naturally contains a copy of R(S, σ)⊗̂R(S⊥, σ);
with respect to corresponding faithful representations of these three resolvent
algebras, the embeddings of R(S, σ) and R(S⊥, σ) are given by the analogues of
the aforementioned embedding map for lattice gauge theory. Here, ⊗̂ denotes
any C*-tensor product (nuclearity of the resolvent algebra is shown in [5]),
and σ by abuse of notation denotes the symplectic form on X, as well as its
restrictions to S and S⊥.
We have seen how properties P3 and P2 were shown by Buchholz and Grundling
to hold for the resolvent algebra. Now for P1 the question is whether it arises
as the strict quantisation of an algebra that can be considered the observable
algebra of a classical system in the sense of Landsman, i.e. the C∗-algebra
generated by the image of a dense Poisson subalgebra of the classical algebra
under a quantisation map [15]. This question was answered affirmatively by
one of the authors of this paper in [19], where it is shown that in the case
where (X,σ) is R

2n endowed with the standard symplectic form, there is a
corresponding commutative C∗-algebra CR(R2n), which is the C∗-subalgebra
of Cb(R2n) generated by functions of the form

x �→ (iλ − x · v)−1, λ ∈ R\{0}, v ∈ R
2n,

where · denotes the standard inner product. Similar to the way in which the
algebra C0(R2n) may be quantised into the compact operators on L2(Rn) by
considering the dense Poisson subalgebra S(R2n) of Schwartz functions and
defining Weyl or Berezin quantisation on them, an analogue of the space of
Schwartz functions for CR(R2n) is identified as follows. First, for every linear
subspace V ⊆ R

2n, let PV denote the orthogonal projection onto V . Then the
space

SR(R2n) := span
C
{g ◦ PV : V ⊆ R

2n is a subspace, g ∈ S(V )} ,

is defined. It is readily seen that this is a dense Poisson subalgebra of CR(R2n)
that is closed under the ∗-operation of complex conjugation. The Weyl quanti-
sation of g ◦ PV is defined using the Fourier transform of g as a function on V
[19, Sect. 3.2], but is otherwise equal to the definition of the Weyl quantisation
of ordinary Schwartz functions on R

2n. It is then argued that the Weyl quan-
tisation map admits a (unique) linear extension to SR(R2n). Furthermore, it
is shown that the images of SR(R2n) under Weyl and Berezin quantisation are
both dense subspaces of R(R2n, σ). The resulting algebra CR(R2n) is accord-
ingly referred to as the classical resolvent algebra on R

2n. As is shown in [19],
these definitions are easily extended to spaces of functions whose domain is an
inner product space of infinite dimension.

In addition to being the classical counterpart of the resolvent algebra as
defined by Buchholz and Grundling, the classical resolvent algebra offers an
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interesting perspective on our earlier discussion on embeddings of observable
algebras. In some sense, CR(R2n) is the smallest C∗-subalgebra of Cb(R2n) that
contains C0(R2n), whilst also containing its analogues associated with linear
subspaces of R

2n. This may be formalised as follows. Consider the category
whose objects are finite-dimensional real vector spaces and whose morphisms
consist of projections of a vector space onto one of its subspaces. Then there
is a contravariant functor Cb from this category to the category of C∗-algebras
that maps an object V to the space Cb(V ) and that maps morphisms to their
pullbacks between these spaces. It is now consistent with the definition of the
classical resolvent algebra to define CR as the smallest subfunctor of Cb with
the property that the image of every object V contains C0(V ). Note that this
implies that CR(R2n) is unital, as it contains the embedding of C0({0}). This
makes precise in which sense P4 holds for the resolvent algebras on R

2n.

Resolvent Algebras on the Cylinder. In this paper, we define an analogue of
the resolvent algebra for the cotangent bundle T ∗

T
n ∼= T

n ×R
n of the n-torus

T
n. Our approach differs significantly from that of Buchholz and Grundling,

in that we do not define it in terms of generators and relations. Rather, we
first identify a classical resolvent algebra CR(T ∗

T
n) using ideas from [19] and

indicate how this definition may be generalised. We then give a concrete char-
acterisation of CR(T ∗

T
n). Namely, identifying T ∗

T
n with T

n × R
n, we prove

that CR(T ∗
T

n) equals C(Tn)⊗̂W0
R(Rn), where W0

R(Rn) is the C*-algebra gen-
erated by the functions

x �→ 1/(i + x · v) and x �→ eix·v , for all v ∈ R
n . (1)

In addition, we identify a dense ∗-subalgebra SR(T ∗
T

n) ⊆ CR(T ∗
T

n) carrying
a natural Poisson structure. The algebra is spanned by functions of the form
ek ⊗ h, where ek[x] := e2πik·x, and h is a smooth function that is a product of
an element of SR(Rn) and a function of the form x �→ eiξ·x for some ξ ∈ R

n.
(Here, SR(Rn) is defined analogously to the definition of SR(R2n) above.)

To define a quantum counterpart, we apply Weyl quantisation, making P1
integral to the definition of the (quantum) resolvent algebra on T ∗

T
n. Our

Weyl quantisation map QW
�

: SR(T ∗
T

n) → B(L2(Tn)) is defined with an
integral formula inspired by [25]. When writing CR(T ∗

T
n) as a tensor product

as above, QW
�

can be characterised by the formula

QW
�

(ek ⊗ h)ψl = h(π�(k + 2l))ψk+l , (2)

where ek ⊗ h ∈ SR(T ∗
T

n), and ψk is ek viewed as an element of L2(Rn) for
each k ∈ Z

n. The above formula is consistent with the usual Weyl quantisation
on (a Poisson *-subalgebra of) the smaller classical algebra C0(T ∗

T
n), see e.g.

[15, Sect. II.3.4], as T
n is in particular a Riemannian manifold with its cor-

responding Levi-Civita connection. Although this consistency already justifies
(2) as a reasonable extension of Weyl quantisation, we start Sect. 4 with a
systematic way to arrive at (2). Thereafter, we define the (quantum) resolvent
algebra on the torus as

A� := C∗(QW
�

(SR(T ∗
T

n))) ⊆ B(L2(Tn)),
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before remarking that A�
∼= A�′ for all �, �′ ∈ (0,∞). We check P3 by using

this explicit description of QW
�

and the fact that P3 holds for CR(T ∗
T

n),
which is readily seen. P4 is satisfied by definition of CR(T ∗

T
n). In addition,

we show that an analogue of P2 holds for our algebras, both the classical and
the quantum one, in the following very strong sense: our classical resolvent
algebra CR(T ∗

T
n) is closed under the classical time evolution associated with

the potential V for each V ∈ C1(Tn) with Lipschitz continuous derivative.
Our quantum resolvent algebra is closed under the quantum time evolution
associated with the potential V for each V ∈ C(Tn). (In both cases, the free
part of the Hamiltonian is the usual one.) Unlike the analogous result in [9] in
which a similar result is established only for R

2n with n = 1, we give proofs of
these statements for arbitrary n ∈ N.
The paper is structured as follows. In Sect. 2, we first give a well-motivated def-
inition of the classical resolvent algebra CR(T ∗

T
n). We proceed by analysing

its structure, culminating in an alternative, more practical characterisation of
CR(T ∗

T
n), namely as the tensor product C(Tn)⊗̂W0

R(Rn). Furthermore, we
identify a dense Poisson ∗-subalgebra that serves the same purpose as SR(Rn)
in [19].

Section 3 proves the fact that CR(T ∗
T

n) is closed under the classical time
evolution as mentioned above.

In Sect. 4, we adapt Weyl quantisation to functions on T ∗
T

n, proving an
explicit formula for generators of CR(T ∗

T
n) in the process. This formula is

then used to show that Weyl quantisation is almost a strict quantisation in the
sense of Landsman. We say ‘almost’, because we explicitly show that its norm
fails to be continuous with respect to � for � > 0. However, the quantisation
map is continuous in a weaker sense.

In Sect. 5, we show that our quantised resolvent algebra is closed under
the quantum time evolution.

2. Definition and Basic Results

On the phase space R
2n, we already have a commutative C*-algebra that sat-

isfies P2, P3 and P4 mentioned in the introduction and forms the classical part
of a strict deformation quantisation, namely the commutative resolvent alge-
bra CR(R2n) defined in [19]. We begin this section by adapting its definition
to T ∗

T
n. As mentioned in introduction, we identify T ∗

T
n with T

n × R
n and

note that the latter space carries a natural left action of R
2n = R

n × R
n by

translation.

Definition 1. For each (v, w) ∈ R
n × R

n = R
2n, let (Tn × R

n)/{(v, w)}⊥ be
the space of orbits of the restriction of the action of R

2n to the linear subspace
{(v, w)}⊥ := {x ∈ R

2n | x · (v, w) = 0} of R
2n, and let

π(v,w) : T
n × R

n → (Tn × R
n)/{(v, w)}⊥

be the corresponding canonical projection. We then define the commutative
resolvent algebra CR(T ∗

T
n) as the smallest C∗-subalgebra of Cb(Tn × R

n)
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generated by the set of functions
{
f ◦ π(v,w)

∣
∣ (v, w) ∈ R

2n, f ∈ C0((Tn × R
n)/{(v, w)}⊥)

}
,

that is, the set of continuous functions invariant under the action of {(v, w)}⊥ ⊆
R

2n for which the induced map on (Tn × R
n)/{(v, w)}⊥ vanishes at infinity.

To establish the link with the definition of CR(Rn) given in [19], note that
there is a straightforward generalisation of the above definition to arbitrary
topological spaces M carrying a left action of R

m for some m ∈ N. Taking
M = R

n and m = n then yields the definition of CR(Rn). Unfortunately, T ∗G
does not have an appropriate action of R

2n for a nonabelian Lie group G that
would enable us to unambiguously generalise this construction.

The definition of the classical resolvent algebra CR(T ∗
T

n) is clearly mo-
tivated, but very unwieldy in practice. Our first task is therefore to find an
alternative, more elementary characterisation of CR(T ∗

T
n). To this end, we

will use the following elementary facts about the action of R
n on T

n. Through-
out the rest of the text, we let [x] ∈ T

n = R
n/Z

n denote the quotient class of
x ∈ R

n.

Lemma 2. Let v ∈ R
n\{0}.

(1) Exactly one of the following two statements holds true:
(i) The map R → T

n, t �→ [tv] is periodic.
(ii) The set H := {[x] ∈ T

n : x ∈ R
n, v · x = 0} is dense in T

n.
(2) Suppose now that t �→ [tv] is periodic, with period T . Furthermore, let

πv : T
n → T

n/H be the quotient map. Then H is a closed subgroup of
T

n, and
ϕ : T

n/H → T, πv([x]) �→ [Tv · x] ,

is a well-defined isomorphism of topological groups.

Proof.
(1) We show that at least one of the two statements is true; we postpone the

proof that the two statements are mutually exclusive to the proof of the
second part of this lemma. The case n = 1 is trivial, and the case n = 2 is
the well-known result that a line in T

2 is dense iff it has irrational slope.
We therefore assume that n > 2, and we will reduce the problem to the
known two-dimensional case.
Suppose that (ii) is false for n > 2, and let U ⊆ T

n\H be a non-empty
open subset. Without loss of generality, we may assume that U = [y]+U
for all y ⊥ v. As v �= 0 by assumption, we may choose j such that vj �= 0.
Now suppose k is a different index with vk �= 0. Define

T2 := {[x] ∈ T
n : x ∈ R

n, xi = 0 for all i /∈ {j, k}} ⊆ T
n,

which is a subgroup of T
n isomorphic to T

2. Note that

U ∩ T2 ⊆ T2 \ {[x] ∈ T2 : x ∈ R
n, vjxj + vkxk = 0}.

To see that U ∩ T2 is non-empty, let us pick [x] ∈ U . Because vj �= 0,
there exists a y ⊥ v such that [y + x] ∈ T2 (for instance y = v·x

vj
δj − x,
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where δj is the jth standard basis vector). Since [y +x] ∈ [y] +U = U we
have [y + x] ∈ U ∩ T2 �= ∅. Applying the result for n = 2, one finds that
[t(vj , vk)] is periodic in t. Since k (such that vk �= 0) was arbitrary, every
component vk is a rational multiple of the nonzero component vj ; hence,
[tv] is periodic in t.

(2) We first note that the map ϕ is induced (in two steps) by the continuous
group homomorphism

R
n → T , x �→ [Tv · x] .

Since Tv ∈ Z
n, this map factors through T

n, thereby inducing a continuous
group homomorphism ϕ0 : T

n → T. It is readily seen that H is a subgroup of
T

n that is a subset of ker ϕ0, so ϕ0 factors through the quotient T
n/H, thereby

inducing the continuous group homomorphism ϕ.
Next, we argue that ϕ is in fact a homeomorphism. We prove this by

showing that the map

T → T
n/H , [t] �→ πv

([
tv

T ‖v‖2

])

,

is a well-defined inverse; we will tentatively refer to this map as ϕ−1 in what
follows.

First we show that ϕ−1 is well defined. This amounts to showing that
v

T ‖v‖2 · Z ⊆ {a + x : a ∈ Z
n, x ∈ {v}⊥} ,

which is the case exactly when v/(T ‖v‖2) is an element of the set on the
right-hand side of the inclusion. Note that the components of the vector Tv
are coprime; otherwise, T/m would be the period of t �→ [tv] for some natural
number m > 1. By the higher-dimensional Bézout identity, there exists a tuple
a ∈ Z

n such that Tv · a = 1. Now observe that

v

T ‖v‖2 =
v · a

‖v‖2
v = a +

(
v · a

‖v‖2
v − a

)
,

and note that the first and second terms on the right-hand side of this equation
are contained in Z

n and {v}⊥, respectively. Thus, ϕ−1 is well defined. It is
straightforward to check that ϕ−1 is both a left- and a right-inverse of ϕ, so
ϕ−1 is indeed the inverse of ϕ. It is readily seen that ϕ−1 is continuous, so ϕ
is both a group isomorphism and a homeomorphism.

To see that ϕ is in fact an isomorphism of topological groups, note that
H = ker ϕ0 by injectivity of ϕ, so H is a closed subgroup of T

n, and the
quotient T

n/H naturally inherits the structure of a topological group from
T

n; in particular, the quotient is Hausdorff. This concludes the proof of part
(2).

Finishing up the proof of part (1), we note that in case (i), the quotient
T

n/H is homeomorphic to T, whereas in case (ii), the quotient is an indiscrete
space. Thus, the two cases are mutually exclusive. �
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Remark 3. In case (i), H is a Lie subgroup of the Lie group T
n by the closed

subgroup theorem. In fact, ϕ is an isomorphism of Lie groups from T
n/H to T

endowed with their respective canonical Lie group structures. See [29, Lemma
5.4] for a Lie-theoretic version of the previous lemma.

Before we characterise CR(T ∗
T

n), we must introduce another algebra,
for which it is in turn useful to recall that the algebra of almost periodic
functions on R

n is the C∗-subalgebra of Cb(Rn) generated by functions of the
form x �→ eiξ·x, where ξ ∈ R

n is arbitrary. Almost periodic functions were
originally introduced by H. Bohr in [3] for n = 1 using a different definition,
whose equivalence with the one mentioned above he proved in [4]. This algebra
will be denoted by W0(Rn).

Definition 4. Let n ∈ N. We define the algebra W0
R(Rn) as the C∗-subalgebra

of Cb(Rn) generated by the classical resolvent algebra CR(Rn) and the algebra
of almost periodic functions W0(Rn) on R

n.

Next up is the main result of this section, which unveils CR(T ∗
T

n) as
a tensor product of two algebras. We regard the algebraic tensor product of
two C*-algebras A ⊆ Cb(X) and B ⊆ Cb(Y ) as a subset of Cb(X × Y ) via
(f ⊗ g)(x, y) = f(x)g(y) and denote its corresponding completion by A⊗̂B.
Since commutative C∗-algebras are nuclear (cf. [18, Theorem 6.4.15]), this is
equivalent to any other C*-algebraic tensor product.

Theorem 5. For each n ∈ N, we have

CR(T ∗
T

n) = C(Tn)⊗̂W0
R(Rn) .

Proof. The statement is trivial for n = 0, so suppose n ≥ 1. We first prove
the inclusion CR(T ∗

T
n) ⊆ C(Tn)⊗̂W0

R(Rn) by showing that the generators
of CR(T ∗

T
n) are contained in the right-hand side. Let (v, w) ∈ R

n × R
n, and

let f = g ◦ π(v,w) be one of the generators of CR(T ∗
T

n). As in Lemma 2,
let H be the image of {v}⊥ under the canonical projection map R

n → T
n.

Moreover, let H ′ be the image of {(v, w)}⊥ under the canonical projection
map R

n × R
n → T

n × R
n.

By part (1) of Lemma 2, we may distinguish between the following three
cases. In each of these cases, we obtain the general form of f by first giving a
characterisation of the quotient space (Tn × R

n)/H ′:
(i) v = 0: in this case, we have H ′ = T

n × {w}⊥; in particular, it is a closed
subgroup of T

n × R
n, and the map

(Tn × R
n)/H ′ → R · w , π(v,w)([x], p) �→ (w · p)w ,

is an isomorphism of topological groups. It follows that f is the pullback
of a function in C0(R · w) along the above map, from which it is readily
seen that

f ∈ C1Tn⊗̂CR(Rn) ⊆ C(Tn)⊗̂W0
R(Rn) ;

In particular, note that f is constant iff w = 0.
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To handle the remaining two cases in which v �= 0, we introduce the map

θ : (Tn × R
n)/H ′ → T

n/H ,

π(v,w)([x], p) �→ πv

([
v · x + w · p

‖v‖2
v

])
= πv

([
x +

w · p

‖v‖2
v

])
,

and show that it is a well-defined group isomorphism and a homeomorphism.
To see that it is a well-defined continuous group homomorphism, note that it
is induced by a continuous group homomorphism

θ0 : T
n × R

n → T
n/H ,

which is defined using a similar formula, and whose kernel contains the sub-
group H ′. To see that θ is a group isomorphism and a homeomorphism, we
note that the map

T
n/H → (Tn × R

n)/H ′ , πv([x]) �→ π(v,w)([x], 0) ,

is a well-defined continuous group homomorphism (by a similar argument as
for θ) that can be checked to be the inverse of θ. In particular, H ′ = ker θ0. As
we will see below, θ need not be an isomorphism of topological groups if we
require such groups to be Hausdorff spaces. We proceed with the remaining
two cases:
(ii) v �= 0 and H is dense in T

n: in this case, the quotient topology on
T

n/H is the indiscrete topology; hence, (Tn × R
n)/H ′ is also indiscrete

by our discussion above. It follows that the function f is constant, so
f ∈ C(Tn)⊗̂W0

R(Rn).
(iii) v �= 0 and the curve t �→ [tv] on T

n is periodic: then the map θ0 defined
above is a continuous surjective group homomorphism; hence, its kernel
H ′ is a closed subgroup of T

n × R
n, and the map θ is an isomorphism

of topological groups. Composing θ with the map ϕ from part (2) of
Lemma 2, we obtain the isomorphism of topological groups

ϕ ◦ θ : (Tn × R
n)/H ′ → T , π(v,w)([x], p) �→ [T (v · x + w · p)] ,

with T as defined in Lemma 2. Then f = g ◦ ϕ ◦ θ ◦ π(v,w) for some
g ∈ C(T); let us first assume that g = ek for some k ∈ Z. Then

f([x], p) = exp (2πikT (v · x + w · p))

= exp (2πikTv · x) · exp (2πikTw · p) ,

which shows that f ∈ C(Tn)⊗̂W0
R(Rn). Since the family of exponential

functions (ek)k∈Z generate C(T), and since pullback along the map

ϕ ◦ θ ◦ π(v,w) : T
n × R

n → T ,

is a homomorphism of C∗-algebras, it follows that

f = g ◦ ϕ ◦ θ ◦ π(v,w) ∈ C(Tn)⊗̂W0
R(Rn) ,

for arbitrary g ∈ C(T).
This establishes the inclusion CR(T ∗

T
n) ⊆ C(Tn)⊗̂W0

R(Rn). The reverse in-
clusion is a consequence of the following three observations:
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• From case (i) in the previous part of this proof, we readily obtain
C1Tn⊗̂CR(Rn) ⊆ CR(T ∗

T
n).

• From case (iii), setting w = 0 and taking v to be a standard basis vector
of R

n, we obtain C(Tn)⊗̂C1Rn ⊆ CR(T ∗
T

n).
• Finally, by considering case (iii) again, but now with v the first stan-

dard basis vector and w ∈ R
n arbitrary, we see that CR(T ∗

T
n) contains

functions of the form

([x], p) �→ exp(2πikx1) exp(iξ · p) ,

where k ∈ Z\{0}, and ξ ∈ R
n is arbitrary. The previous point now implies

that functions of the form

([x], p) �→ exp(iξ · p) ,

are elements of the resolvent algebra, so C1Tn⊗̂W0(Rn) ⊆ CR(T ∗
T

n).
�

We identify a broad class of embeddings between the classical algebras.

Corollary 6. Let n1, n2 ∈ N with n1 ≤ n2. For any surjective continuous map
ϕ : T

n2 → T
n1 and any surjective linear map L : R

n2 → R
n1 , define the sur-

jection

M := ϕ × L : T
n2 × R

n2 → T
n1 × R

n1 , ([x], p) �→ (ϕ([x]), L(p)).

Then the pull-back M∗ : f �→ f ◦ M restricts to a map CR(T ∗
T

n1) →
CR(T ∗

T
n2), and the restriction is an embedding in the sense of C∗-algebras.

Proof. As M is surjective and continuous, M∗ : Cb(Tn1×R
n1) → Cb(Tn2×R

n2)
is automatically an injective ∗-homomorphism, and therefore an embedding.
We note that ϕ∗ sends C(Tn1) to C(Tn2) and L∗ sends W0

R(Rn1) to W0
R(Rn2).

Hence, M∗ sends elementary tensors in CR(T ∗
T

n1) = C(Tn1)⊗̂W0
R(Rn1) into

CR(T ∗
T

n2) = C(Tn2)⊗̂W0
R(Rn2). By linearity and continuity of M∗, the state-

ment follows. �

We finish this section by defining the analogue of the space of Schwartz
functions of CR(T ∗

T
n). This allows us to introduce the notation hU,ξ,g for the

generators of W0
R(Rn), which is used in Sect. 4.

Definition 7. For each k ∈ Z
n, let

ek : T
n → C, [x] �→ e2πik·x .

For each subspace U ⊆ R
n, for each ξ ∈ U⊥, and for each Schwartz function

g ∈ S(U), let
hU,ξ,g : R

n → C, p �→ eiξ·pg(PU (p)) ,

where PU : R
n → U denotes the orthogonal projection onto U . We define the

space SR(T ∗
T

n) as the span of functions of the form ek ⊗hU,ξ,g : T
n×R

n → C.

Proposition 8.

(1) The space span{hU,ξ,g : U ⊆ R
n linear, ξ ∈ U⊥, g ∈ S(U)} is a norm-

dense ∗-subalgebra of W0
R(Rn) that is closed under partial differentiation.
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(2) The space SR(T ∗
T

n) is a *-subalgebra of CR(T ∗
T

n) that is closed un-
der partial differentiation, and is consequently a Poisson subalgebra of
C∞(T ∗

T
n). Moreover, SR(T ∗

T
n) is norm-dense in CR(T ∗

T
n).

Proof.
(1) Denote B := span{hU,ξ,g} ⊂ W0

R(Rn). For any hU,ξ,g as in Definition 7,

h∗
U,ξ,g = hU,ξ,g = hU,−ξ,g ∈ B ,

hence B is closed under the ∗-operation.
Assume for the moment that B is closed under multiplication. To see

that B is invariant under partial differentiation, it suffices to show that partial
derivatives of functions of the form hU,ξ,g are elements of B. Any partial deriv-
ative can be written as a sum of two directional derivatives; one in a direction
lying in U , and one in a direction lying in U⊥. It is readily seen that both of
these directional derivatives are elements of B, hence so is their sum.

To show that B is closed under multiplication, it suffices to show that
the product of two functions hU1,ξ1,g1 and hU2,ξ2,g2 as in Definition 7, is an
element of B. Let

U := U1 + U2 ,

ξ := ξ1 + ξ2 − PU (ξ1 + ξ2) ∈ U⊥ ,

g̃ := (g1 ◦ PU1)(g2 ◦ PU2) .

Note that the restrictions of g̃ to U and U⊥ are Schwartz and constant, re-
spectively. Setting

g : U → C , p �→ eiPU (ξ1+ξ2)·pg̃|U ◦ PU (p) = ei(ξ1+ξ2)·pg̃|U ◦ PU (p) ,

we see that hU1,ξ1,g1 ·hU2,ξ2,g2 = hU,ξ,g, which establishes that B is closed under
multiplication.

Thus, B is a ∗-subalgebra of W0
R(Rn). In addition to this fact, the ele-

ments of the form h{0},ξ,1 generate W0(Rn), while the elements of the form
hU,0,g generate CR(Rn); hence, B generates W0

R(Rn) as a C∗-algebra. We infer
that W0

R(Rn) is the closure of B.
(2) For each k ∈ Z

n, define ek as in Definition 7. It is a trivial matter to
check that the linear span of {ek : k ∈ Z} is a ∗-subalgebra of C(Tn) that
is closed with respect to partial differentiation, and it is a result from
Fourier analysis that this linear subspace is dense in C(Tn). Using these
facts in conjunction with part (1) of this proposition and Theorem 5, it
is readily seen that all of the assertions are true.

�

3. Classical Time Evolution

In this section, we prove that CR(T ∗
T

n) is preserved under the (time) flow
induced by the Hamiltonian

H(q, p) = 1
2p2 + V (q),
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for each potential V ∈ C1(Tn)R such that ∇V is Lipschitz continuous. This
is arguably the most natural assumption on V ; the Picard–Lindelöf theorem
then ensures that the Hamilton equations have unique solutions.

Precisely stated, for every (q0, p0) ∈ T
n×R

n, there exist unique functions
q : R → T

n and p : R → R
n that satisfy

{
(q̇(t), ṗ(t)) = (p(t),−∇V (q(t))) t ∈ R ,

(q(0), p(0)) = (q0, p0) .
(3)

Note that the expression on the right-hand side of the first line of equation (3)
is the Hamiltonian vector field XH corresponding to H evaluated at (q(t), p(t)).
For each t ∈ R, the time evolution of the system after time t is the map

Φt
V : T

n × R
n → T

n × R
n, (q0, p0) �→ (q(t), p(t)),

which is the flow corresponding to XH evaluated at time t; it is well known to
be a homeomorphism.

Note that we have already made the notation of the flow less cumbersome
by writing Φt

V instead of Φt
XH

. In what follows, we restrict our attention to
the case t = 1, further simplifying the notation by defining ΦV := Φ1

V . The
following lemma shows that we may do so without loss of generality:

Lemma 9. The algebra CR(T ∗
T

n) is preserved under the pullback of ΦV for
each V if and only if it is preserved under the pullback of Φt

V for each V , for
each t ∈ R.

Proof. For any t �= 0 (as t = 0 is trivial), we make the following transformation
on phase space

φ(q, p) := (q, tp).

Because the momentum part of φ is linear, its pullback preserves the commu-
tative resolvent algebra. Given an integral curve (q(t), p(t)) of the vector field
XH corresponding to the potential V , i.e. a solution of equation (3), one can
easily check that s �→ φ(q(ts), p(ts)) is an integral curve corresponding to the
potential t2V . We therefore conclude that

Φt
V (q0, p0) = φ−1 ◦ Φ1

t2V ◦ φ(q0, p0),

which implies the claim. �
We prove our main theorem in three steps: taking V = 0; taking V

trigonometric; and finally taking general V . In the second and third step we
will need the following consequence of Gronwall’s inequality. Let d denote the
canonical distance function on T

n as well as on T
n × R

n. (Note that these
distance functions are the ones induced by the canonical Riemannian metrics
on T

n and T ∗
T

n ∼= T
n × R

n, respectively.)

Lemma 10. Let f, g : T
n × R

n → R
2n be Lipschitz continuous functions, let c

be the Lipschitz constant of f , and let y, z : [0, 1] → T
n × R

n be curves that
satisfy ẏ(t) = f(y(t)) and ż(t) = g(z(t)) for each t ∈ [0, 1]. Finally, suppose
that ε > 0 is a number such that ‖f − g‖∞ ≤ ε. Then we have

d(y(t), z(t)) ≤ (d(y(0), z(0)) + tε)etc.
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Proof. By translation invariance of the metric on T
n × R

n, we have

d(y(t), z(t)) ≤ d((y(t) − y(0)) − (z(t) − z(0)), 0) + d(y(0), z(0))

≤
∫ t

0

‖f(y(s)) − g(z(s))‖ ds + d(y(0), z(0))

≤ c

∫ t

0

d(y(s), z(s)) ds + tε + d(y(0), z(0)) .

With the integral version of Gronwall’s inequality, this implies the lemma. �

3.1. Free Time Evolution

For each pair (q0, p0) ∈ T
n × R

n, we have q(t) = q0 + tp0 and p(t) = p0,
denoting the usual action of R

n on T
n by +. The latter notation, explicitly

written as [x] + p = [x + p] for x, p ∈ R
n, will be used in the remainder of

this section. We find that Φ0(q0, p0) = (q0 + p0, p0), and obtain the following
preliminary result. Let ∗ denote the pullback.

Lemma 11. Free time evolution preserves the commutative resolvent algebra,
i.e.

Φ∗
0(CR(T ∗

T
n)) ⊆ CR(T ∗

T
n).

Proof. We have

Φ∗
0(ek ⊗ hU,ξ,g)(q0, p0) = ek(q0)e2πik·p0eiξ·p0g(PU (p0)).

Defining g̃ ∈ C0(U) by g̃(p) := e2πiPU (k)·pg(p), and ξ̃ := ξ + 2πPU⊥(k), we
obtain

Φ∗
0(ek ⊗ hU,ξ,g) = ek ⊗ hU,ξ̃,g̃.

Thus, the generators of CR(T ∗
T

n) are mapped into CR(T ∗
T

n) by Φ∗
0, and

since this map is a ∗-homomorphism, the lemma follows. �

3.2. Trigonometric Potentials

We say that V is a trigonometric potential if it is real-valued and of the form
V =

∑
k∈N akek, for some coefficients ak ∈ C and a finite subset N ⊆ Z

n. The
main trick used to establish time invariance of the classical resolvent algebra
is to use induction on the size of N . The induction basis, N = ∅, corresponds
to free time evolution. In order to carry out the induction step we fix a vector
k ∈ N , and compare the dynamics corresponding to V with the dynamics
corresponding to V − Vk, where

Vk := akek + a−ke−k.

Similar to the already defined curves q : [0, 1] → T
n and p : [0, 1] → R

n, the
dynamics corresponding to V − Vk of the point (q0, p0) is incapsulated by the
curves q̃ : [0, 1] → T

n and p̃ : [0, 1] → R
n satisfying

{
( ˙̃q(t), ˙̃p(t)) = (p̃(t),−∇(V − Vk)(q̃(t))) t ∈ R ,

(q̃(0), p̃(0)) = (q0, p0) .
(4)

We compare the two dynamics in the following proposition.
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Figure 1. The position functions qj ,γj and q̃j . Sloping lines
correspond to V −Vk, whereas the horizontal line that depicts
q corresponds to V

Proposition 12. Let k ∈ Z
n and δ > 0. There exists a Dk > 0 such that for

each (q0, p0) ∈ T
n × R

n satisfying |k · p0| > Dk, we have

d (ΦV (q0, p0),ΦV −Vk
(q0, p0)) < δ.

Proof. Note that the statement is vacuously true for any Dk > 0 if k = 0. We
therefore fix a nonzero k ∈ Z

n. Throughout the proof, we use a variation in
big O notation, expanding in the variable Δt := |k · p0|−1, uniformly in q0.
That is, we write f(q0, p0) = O(Δtd) if there exist N,C > 0 such that for all
q0, p0 with |k · p0| > N we have |f(q0, p0)| ≤ C|k · p0|−d. Therefore, to prove
the proposition, it suffices to show that

d

((
q(1)
p(1)

)
,

(
q̃(1)
p̃(1)

))
= O(Δt) . (5)

Assume that Δt ∈ (0, 1). We divide the time interval [0, 1] into m intervals of
length Δt, where m := � 1

Δt�, and a final interval of length 1 − mΔt. For each
t ∈ [0,Δt] and each j ∈ {0, . . . , m} (these will be the assumptions on t and j
throughout the rest of the proof), let

qj(t) := q(jΔt + t) , pj(t) := p(jΔt + t) ,

and define the curves q̃j and p̃j analogously. Note that (qj , pj) and (q̃j , p̃j)
satisfy the differential equations (3) and (4), respectively, but with different
initial conditions. Furthermore, for every j, we define the curve γj : [0,Δt] →
T

n as the unique solution to the initial value problem
{

(γ̇j(t), γ̈j(t)) = (γ̇j(t),−∇(V − Vk)(γj(t))) t ∈ R ,

(γj(0), γ̇j(0)) = (qj(0), pj(0)) .
(6)

where on the first line, we have emphasised the similarity of this equation with
the equations (3) and (4) by including γ̇j(t). We do not introduce any special
notation for γ̇j , however.
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As depicted in Fig. 1, the curve γj : [0,Δt] → T
n plays a key rôle in comparing

qj with q̃j ; the curve (γj , γ̇j) is an integral curve along the same Hamiltonian
vector field as (q̃j , p̃j), but with the same initial conditions as (qj , pj).

We now expand our expressions in orders of Δt. Using equation (3) and
the fundamental theorem of calculus, we obtain

∥
∥pj(t) − pj(0)

∥
∥ ≤

∫ Δt

0

∥
∥∇V (qj(s))

∥
∥ ds ≤ ‖∇V ‖∞ Δt = O(Δt) . (7)

In particular, taking t = Δt, we get
∥
∥pj+1(0) − pj(0)

∥
∥ = O(Δt), and therefore

by induction
∥
∥pj(0) − p0

∥
∥ = O(1) , (8)

for every 0 ≤ j ≤ m. Equations (7) and (8) give us

d(qj(t), qj(0) + tp0) ≤
∥
∥
∥
∥

∫ t

0

(pj(s) − p0) ds

∥
∥
∥
∥

≤
∫ Δt

0

∥
∥pj(s) − pj(0)

∥
∥ +

∥
∥pj(0) − p0

∥
∥ ds

= O(Δt) . (9)

A result similar to (7) exists for γ̇j instead of pj , and hence,
∥
∥pj(t) − γ̇j(t)

∥
∥ = O(Δt) , (10)

which implies

d(qj(t), γj(t)) = O(Δt2) . (11)

Using the definitions of Vk and Δt, we show that the distance between pj(Δt)
and γ̇j(Δt) is in fact of order Δt2. We first note that

∥
∥pj(Δt) − γ̇j(Δt)

∥
∥ =

∥
∥
∥
∥
∥

∫ Δt

0

(∇V (qj(s)) − ∇(V − Vk)(γj(s))) ds

∥
∥
∥
∥
∥

≤
∫ Δt

0

∥
∥∇(V − Vk)(qj(s)) − ∇(V − Vk)(γj(s))

∥
∥ ds

+

∥
∥
∥
∥
∥

∫ Δt

0

∇Vk(qj(s)) ds

∥
∥
∥
∥
∥

.

By (11), the first term is O(Δt3). For the second term we can use (9) and the
observation that

∫ Δt

0

∇Vk(qj(0) + sp0) ds = 0.

Hence, the second term is O(Δt2). All in all, we obtain the estimate
∥
∥pj(Δt) − γ̇j(Δt)

∥
∥ = O(Δt2) .

This estimate, together with (11), implies

d

((
γj+1(0)
γ̇j+1(0)

)
,

(
γj(Δt)
γ̇j(Δt)

))
= d

((
qj(Δt)
pj(Δt)

)
,

(
γj(Δt)
γ̇j(Δt)

))
= O(Δt2) . (12)
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Since γj and q̃j satisfy the same differential equation, say with associated
Lipschitz constant c, Lemma 10 (with f = g : (q, p) �→ (p,−∇(V − Vk)(q)))
implies that

d

((
γj(t)
γ̇j(t)

)
,

(
q̃j(t)
p̃j(t)

))
≤ ectd

((
γj(0)
γ̇j(0)

)
,

(
q̃j(0)
p̃j(0)

))
. (13)

Taking t = Δt, we by definition have

d

((
γj(Δt)
γ̇j(Δt)

)
,

(
q̃j+1(0)
p̃j+1(0)

))
≤ ecΔtd

((
γj(0)
γ̇j(0)

)
,

(
q̃j(0)
p̃j(0)

))
. (14)

Combining (12) and (14), we find that

d

((
γj+1(0)
γ̇j+1(0)

)
,

(
q̃j+1(0)
p̃j+1(0)

))
≤ ecΔtd

((
γj(0)
γ̇j(0)

)
,

(
q̃j(0)
p̃j(0)

))
+ O(Δt2) .

Because ejcΔt = O(1), repeated use of the above equation gives

d

((
γm(0)
γ̇m(0)

)
,

(
q̃m(0)
p̃m(0)

))
= O(Δt) . (15)

Let t := 1 − mΔt. Using (13), we find

d

((
q(1)
p(1)

)
,

(
q̃(1)
p̃(1)

))
≤ d

((
q(1)
p(1)

)
,

(
γm(t)
γ̇m(t)

))
+ d

((
γm(t)
γ̇m(t)

)
,

(
q̃(1)
p̃(1)

))

≤ d (q(1), γm(t)) + ‖p(1) − γ̇m(t)‖

+ ectd

((
γm(0)
γ̇m(0)

)
,

(
q̃m(0)
p̃m(0)

))
.

The first term is O(Δt2) by (11), the second is O(Δt) by (10), and the last
term is O(Δt) by (15). This implies (5), and thereby the proposition. �

Proposition 12 expresses a property of the classical time evolution asso-
ciated with a trigonometric potential in terms of points in phase space. To
translate this result to the world of observables, we fix ε > 0 and notice that
any g ∈ CR(T ∗

T
n) is uniformly continuous. Hence, for every k ∈ N we may

fix a Dk such that

sup
x∈Uk

|Φ∗
V g(x) − Φ∗

V −Vk
g(x)| ≤ ε , (16)

where

Uk := T
n × {x ∈ R

n : |k · x| > Dk}.

We also define the opens

Wk := T
n × {x ∈ R

n : |k · x| > 2Dk} ;

U∞ := T
n × {x ∈ R

n : |k · x| < 4Dk for all k ∈ N} ;

W∞ := T
n × {x ∈ R

n : |k · x| < 3Dk for all k ∈ N} ,

and remark that {Ui}i∈I and {Wi}i∈I are open covers satisfying Wi ⊆ Ui for
all i ∈ I := N ∪{∞}. Since we already know how Φ∗

V g approximately behaves
on

⋃
k∈N Uk, let us see how it behaves on U∞.
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Lemma 13. There exists an f∞ ∈ CR(T ∗
T

n) that equals Φ∗
V g on U∞.

Proof. Let S := span
R

N . We write our phase space as a product of topological
spaces

T
n × R

n = (Tn × S) × S⊥,

and note that

C0(Tn × S)⊗̂W0
R(S⊥),

is an ideal in CR(T ∗
T

n). On the other hand, regarding our phase space as a
coproduct of abelian Lie groups

T
n × R

n = (Tn × S) ⊕ S⊥,

we define φt as the restriction of Φt
V to T

n × S for each t ∈ R. Because
∇V ⊥ S⊥, we have ṗ(t) ⊥ S⊥, and hence,

φt : T
n × S → T

n × S

is a well-defined homeomorphism. Moreover, we find the equation

Φt
V (q, p‖ + p⊥) = φt(q, p‖) + (tp⊥, p⊥) , for all p‖ ∈ S, p⊥ ∈ S⊥ ,

because its two sides solve the same differential equation. Using the above
relation in a straightforward calculation on generators, one can show that

Φ∗
V (C0(Tn × S) ⊗ W0

R(S⊥)) ⊆ C0(Tn × S) ⊗ W0
R(S⊥).

Actually, the same holds for Φ−1
V , which implies that Φ∗

V is a *-automorphism
of the ideal C0(Tn × S) ⊗ W0

R(S⊥). Now note that U∞ is of the form K × S⊥

for some compact subset K ⊆ T
n × S. By Urysohn’s lemma, we may choose a

function g̃ ∈ C0(Tn ×S)⊗W0
R(S⊥) that is 1 on U∞, and define f∞ := g̃ ·Φ∗

V g.
We then find that

f∞ = ((g̃ ◦ Φ−1
V ) · g) ◦ ΦV ∈ C0(Tn × S) ⊗ W0

R(S⊥),

and therefore f∞ ∈ CR(T ∗
T

n). �

We can finally prove that our classical resolvent algebra is invariant under
any time evolution corresponding to a trigonometric potential.

Proposition 14. For every trigonometric potential V : T
n → R and g ∈

CR(T ∗
T

n) we have Φ∗
V g ∈ CR(T ∗

T
n).

Proof. We use induction on the size of N in V =
∑

k∈N akek (while assuming
that N is chosen minimally). The induction base is precisely Lemma 11.

We now carry out the induction step. The induction hypothesis says that
time evolution with respect to V − Vk preserves CR(T ∗

T
n), for each k ∈ N .

Therefore, writing fk := Φ∗
V −Vk

g, we have fk ∈ CR(T ∗
T

n). Fixing f∞ as in
Lemma 13, we have fi ∈ CR(T ∗

T
n), and equation (16) implies that

‖fi|Ui
− Φ∗

V g|Ui
‖∞ < ε , (17)

for each i ∈ I = N ∪ {∞}. We now construct a partition of unity {ηi} subor-
dinate to the open cover {Ui} of T

n ×R
n, to patch together the functions {fi}

and obtain a single function in CR(T ∗
T

n). We start by defining nonnegative
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functions ζi ∈ CR(T ∗
T

n) that are 1 on Wi and 0 outside of Ui. Explicitly,
for each k ∈ N , we take ζk := 1Tn ⊗ (gk ◦ Pspan(k)) for some bump function
gk on span(k), and we take ζ∞ := 1Tn ⊗ (g∞ ◦ PS) for some bump function
g∞ on S. Because {Wi} is a cover of T

n × R
n, the sum

∑
i ζi ∈ CR(T ∗

T
n) is

bounded from below by 1; hence, it is invertible in CR(T ∗
T

n), and therefore
every function

ηi :=
ζi∑
j ζj

,

also lies in CR(T ∗
T

n). Now (17) gives us
∥
∥
∥
∥
∥
Φ∗

V g −
∑

i

fiηi

∥
∥
∥
∥
∥

∞
< ε.

Since ε > 0 was arbitrary and CR(T ∗
T

n) is norm-closed, the assertion
follows. �

3.3. Arbitrary Potentials

Having covered the trigonometric case, we now wish to tackle the general
case. The following lemma provides the required approximation of a generic
potential by trigonometric ones.

Lemma 15. Let V ∈ C1(Tn). Then there exists a sequence (Vm)m of trigono-
metric polynomials such that (∇Vm)m converges uniformly to ∇V . Further-
more, if V is real-valued, then every Vm can be chosen to be real-valued as
well.

Proof. We construct the sequence (Vm) by taking the convolution of V with
the n-dimensional analogues of the family of Fejér kernels. We first recall that
for each m ≥ 1, the m-th Fejér kernel is given by

F1,m : T → R , q = [x] �→ 1
m

m−1∑

k=0

k∑

j=−k

e2πijx =
1
m

sin2(πmx)
sin2(πx)

,

where the most right expression in this definition is understood to be equal to
m for x = 0. The sequence (F1,m)m≥1 is an approximation to the identity, i.e.
for every continuous function f on T, the sequence (F1,m ∗ f)m≥1 converges
uniformly to f , where ∗ denotes the operation of convolution of functions [28,
Sects. 2.4 and 2.5.2].

Next, we define the n-dimensional analogues of these functions:

Fn,m : T
n → R , q = (q1, . . . , qn) �→

n∏

l=1

F1,m(ql) .

Using the corresponding fact for one-dimensional kernels, it is elementary to
show that the sequence (Fn,m)m≥1 is an approximation to the identity.

We now define
Vm := Fn,m ∗ V ,
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for each m ≥ 1. Because every Fn,m is trigonometric, and ek ∗ f = f̂(k)ek for
every f ∈ C(Tn) and k ∈ Z

n, the sequence (Vm)m≥1 consists of trigonometric
polynomials. Moreover, by a general property of convolutions, we have

∂Vm

∂ql
=

∂

∂ql
(Fn,m ∗ V ) = Fn,m ∗ ∂V

∂ql
,

and since (Fn,m)m≥1 is an approximation to the identity, the right-hand side
converges uniformly to ∂V

∂ql
as m → ∞, for l = 1, . . . , n. It follows that

(∇Vm)m≥1 converges uniformly to ∇V . The final assertion is a consequence
of the fact that the family of Fejér kernels (as well as its higher-dimensional
analogues) consists of real-valued functions. �

We now extend Proposition 14 to general V , thereby arriving at our final
result.

Theorem 16. Let V ∈ C1(Tn)R, and suppose that ∇V is Lipschitz continuous.
Then we have

(Φt
V )∗(CR(T ∗

T
n)) = CR(T ∗

T
n),

for every t ∈ R.

Proof. It suffices to show that (Φt
V )∗(CR(T ∗

T
n)) ⊆ CR(T ∗

T
n); we can replace

t by −t and note that (Φ−t
V )∗ is the inverse of (Φt

V )∗ to obtain the reverse
inclusion. By Lemma 9, we may assume without loss of generality that t = 1.

Let g ∈ CR(T ∗
T

n). By Lemma 15, there exists a sequence of trigono-
metric potentials (Vm) on T

n such that (∇Vm) converges uniformly to ∇V .
We show that this implies that (Φ∗

Vm
(g)) converges uniformly to Φ∗

V (g); since
Φ∗

Vm
(g) ∈ CR(T ∗

T
n) by Proposition 14 and since CR(T ∗

T
n) is norm-closed,

the theorem will follow from this.
Let ε > 0, and let c be the Lipschitz constant of (q, p) �→ (p,−∇V (q)).

Since g is uniformly continuous, there exists δ > 0 such that |g(x) − g(y)| < ε
for each x, y ∈ T

n×R
n with d(x, y) < δ. By assumption, there exists an N ∈ N

such that for each m ≥ N , we have ‖∇V − ∇Vm‖∞ < δe−c. It follows from
Lemma 10 that d(ΦV (x),ΦVm

(x)) < δ for each x ∈ T
n × R

n and each m ≥ N ;
hence, ‖Φ∗

V (g)−Φ∗
Vm

(g)‖∞ ≤ ε. Thus (Φ∗
Vm

(g)) converges uniformly to Φ∗
V (g),

as desired. �

4. Quantisation of the Resolvent Algebra

Having shown the nice properties of CR(T ∗
T

n), we now ask whether there
exists a quantum version of this algebra. What complicates matters is that,
contrary to the resolvent algebra R(R2n, σ) of Buchholz and Grundling, on the
cylinder it is hard, if not impossible, to define an algebra in terms of generators
and relations implementing canonical commutation relations. Thus, we must
take a different approach.

We will define our quantisation of the algebra CR(T ∗
T

n) as an algebra
represented on L2(Tn), using a version of Weyl quantisation similar to the
definition of Landsman [15, Sect. II.3.4] for general Riemannian manifolds.
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By contrast, Rieffel’s algebras on cylinders in [25], apart from being quan-
tisations of Cu(T ∗

T
n) and subalgebras thereof, are in some sense universal

objects from which a physical quantum system is obtained as the image of
one of its irreducible representations, and it is not always clear which repre-
sentation corresponds to the physical system that one wishes to model. These
algebras have many inequivalent irreducible representations due to the fact
that T is not simply connected, see e.g. [25, Example 10.6] and the discussion
in [16, Sect. 7.7]. By no means do we intend to discount such universal objects,
however; we will return to this point in the outlook of this paper. The main
advantage of quantising CR(T ∗

T
n) as an algebra of operators on L2(Tn) lies

in the explicit formula for the quantisations of the generators of CR(T ∗
T

n)
that we are able to derive.

This section is structured as follows. In Sect. 4.1, we define the Weyl
quantisation map and prove the aforementioned explicit formula. In Sect. 4.2,
we show that, except for continuity of the map � �→ ‖QW

�
(f)‖ at � > 0 for

fixed f ∈ CR(T ∗
T

n), the quantisation is strict.

4.1. Definition of the Quantisation Map

Let us first recall the basics of Weyl quantisation in R
2n, the quantisation

procedure in [32] conceived by Weyl. Given say, a Schwartz function f ∈
S(R2n), one associates an operator QW

�
(f) ∈ B(L2(Rn)) to it as follows. First,

one expresses f in terms of functions of the form

R
2n = R

n × R
n → C, (q, p) �→ ei(a·q+b·p) ,

where a, b ∈ R
n, by considering the Fourier transform of f . One subsequently

substitutes these exponential functions with the operators

ei(a·Q+b·P ) ,

where Q,P are vectors whose components are the essentially self-adjoint op-
erators on S(Rn) ⊆ L2(Rn), defined by Qjψ(x) := xjψ(x) and Pjψ(x) :=
−i� dψ

dxj
(x). Thus, the Weyl quantisation of a function f is informally given by

the expression

(2π)−2n

∫

Rn

∫

Rn

∫

Rn

∫

Rn

f(q, p)eia·(Q−q)+ib·(P−p) dq dp da db

= (2π)−2n

∫

Rn

∫

Rn

∫

Rn

∫

Rn

f(q, p)ei� a·b
2 eia·(Q−q)eib·(P−p) dq dp da db ,

where we take � > 0. To define the above integrals rigorously, we can insert
a function ψ ∈ S(Rn) on the right-hand side of the integrand, and check that
the resulting expression is well defined and that it defines a bounded operator
on S(Rn) viewed as a subspace of L2(Rn). Since S(Rn) is dense in L2(Rn),
the operator has a unique bounded extension to L2(Rn), which we define to
be QW

�
(f). Using standard identities for Fourier transforms of functions, and

performing a number of substitutions, it can be shown that

(QW
�

(f)ψ)(x) = (2π�)−n

∫

Rn

∫

Rn

f
(
x +

y

2
, p

)
e−i y·p

� ψ(x + y) dp dy ,
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for each ψ ∈ S(Rn) and each x ∈ R
n.

We now adapt the Weyl quantisation formula to T ∗
T

n in such a way
that we can quantise elements of CR(T ∗

T
n). We already identified a dense

Poisson algebra of CR(T ∗
T

n) in Sect. 2, namely the space SR(T ∗
T

n) of finite
linear combinations of functions of the form ek ⊗ hU,ξ,g; see Proposition 8.
These are the functions that we will quantise. To handle such functions, we
take inspiration from Rieffel’s work [25], regarding the integrals in the above
formula as oscillatory integrals, and regularising the expression by inserting
a factor in the integrand in the form of a member of a net of functions that
converges pointwise to the constant function 1Rn , as in part (1) of the next
proposition. Part (2) of this proposition is the analogue of [25, Proposition
1.11].

Proposition 17.

(1) Let f ∈ SR(T ∗
T

n), let � > 0, and let ψ ∈ C(Tn). Then for each [x] ∈ T
n,

the limit

lim
δ→0

(2π�)−n

∫

Rn

∫

Rn

f
([

x + 1
2y

]
, p

)
e− δ

2 p2
e−i y·p

� ψ[x + y] dp dy , (18)

exists.
(2) Now assume f = ek ⊗ hU,ξ,g is a function as described in Definition 7.

Then the expression in equation (18) is equal to

(2π�)− dim(U)eπik·�ξe2πik·x
∫

U

∫

U

g (p + π�PU (k)) e−i y·p
� ψ[x + y + �ξ] dp dy .

For each l ∈ Z
n, let ψl be the function

T
n → C, [x] �→ e2πil·x ,

and regard it as an element of L2(Tn).
(3) In addition to the assumptions in the previous part of the proposition,

suppose that ψ = ψl for some l ∈ Z
n. Then the expression in equation

(18) is equal to
hU,ξ,g(π�(k + 2l))ψk+l[x] ,

and the map defined on spanl∈Zn{ψl} sending ψ to the function on T
n

that assigns to a point [x] ∈ T
n the limit in (18) extends in a unique way

to a bounded linear operator on L2(Tn) with norm ≤ ‖g‖∞.

Proof. We first show that for functions f of the form ek ⊗ hU,ξ,g, i.e. f as in
part (2) of the proposition, the limit in equation (18) exists, and is equal to
the formula in part (2) of the proposition. Since SR(T ∗

T
n) is by definition the

linear span of such functions, part (1) will follow from this. Thus, take such
an f , and note that for any δ > 0, we have

(2π�)−n

∫

Rn

∫

Rn

f
(
[x + 1

2y], p
)
e− δ

2p2
e−i y·p

� ψ[x + y] dp dy

= (2π�)−n

∫

Rn

∫

Rn

ei(ξ·p− y·p
� )g ◦ PU (p)e− δ

2 p2
dp e2πik·(x+ y

2 )ψ[x + y] dy
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= (2π�)−n

∫

Rn

∫

Rn

e−i y·p
� g ◦ PU (p)e− δ

2 p2
dp e2πik·(x+ y+�ξ

2 )ψ[x + y + �ξ] dy .

The inner integral over p can be written as a product of two integrals; one over
U and one over U⊥:

∫

Rn

e−i y·p
� g ◦ PU (p)e− δ

2 p2
dp

=
∫

U

g(p1)e− δ
2 p2

1e−i
PU (y)·p1

� dp1 ·
∫

U⊥
e− δ

2 p2
2e−ip2· y−PU (y)

� dp2

=
∫

U

g(p1)e− δ
2 p2

1e−i
PU (y)·p1

� dp1 · (2πδ−1)
dim(U⊥)

2 e− 1
2δ�2 (y−PU (y))2 .

Inserting this back into the previous displayed formula, and splitting the outer
integral in that formula into an integral over U and an integral over U⊥, we
obtain

(2π�)−n

∫

Rn

∫

Rn

f
(
[x + 1

2y], p
)
e− δ

2 p2
e−i y·p

� ψ[x + y] dp dy

= (2π�)− dim(U)

∫

U

h1,δ(y1)
∫

U⊥
h2,δ(y1, y2) dy2 dy1 ,

where

h1,δ : U → C,

y1 �→ e2πik·(x+
y1+�ξ

2 )
∫

U

g(p1)e− δ
2 p2

1e−i
y1·p1

� dp1 ,

and

h2,δ : U × U⊥ → C,

(y1, y2) �→ (2πδ�
2)

− dim(U⊥)
2 e− 1

2δ�2 y2
2 · ψ[x + y1 + y2 + �ξ]eπik·y2 .

Now note that the family of functions

U⊥ → R, y2 �→ (2πδ�
2)

− dim(U⊥)
2 e− 1

2δ�2 y2
2 ,

indexed by δ > 0 is an approximation to the identity for functions on U⊥. By
continuity of ψ, it follows that the functions

h3,δ : U → C, y1 �→
∫

U⊥
h2,δ(y1, y2) dy2 ,

converge pointwise to the function

U → C, y1 �→ ψ[x + y1 + �ξ] ,

as δ → 0. Moreover, they are bounded, with ‖h3,δ‖∞ ≤ ‖ψ‖∞ for each δ > 0. In
addition, by the dominated convergence theorem, the functions h1,δ converge
pointwise to the function

U → C, y1 �→ e2πik·(x+
y1+�ξ

2 )
∫

U

g(p1)e−i
y1·p1

� dp1 ,
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as δ → 0. Indeed, the integrands defining these functions are all dominated by
the integrable function |g|. Furthermore, note that
∫

U

g(p1)e− δ
2 p2

1e−i
y1·p1

� dp1

=
(1 + ‖y1‖2)dim(U)

(1 + ‖y1‖2)dim(U)

∫

U

g(p1)e− δ
2 p2

1e−i
y1·p1

� dp1

=
1

(1 + ‖y1‖2)dim(U)

∫

U

(1 − �
2ΔU )dim(U)(g(p′)e− δ

2 (p′)2)|p′=p1e
−i

y1·p1
� dp1 ,

where ΔU denotes the standard Laplacian on U , and that for the family of the
functions

U → C, p1 �→ (1 − �
2ΔU )dim(U)(g(p′)e− δ

2 (p′)2)|p′=p1 ,

indexed by δ ∈ (0, C], where C is an arbitrary positive real number, there
exists a positive function HC ∈ L1(U) dominating the entire family. It follows
that for each δ ∈ (0, C] and each y1 ∈ U , we have

|h1,δ(y1)| ≤ ‖HC‖1

(1 + ‖y1‖2)dim(U)
.

The (absolute values of the) functions

U → C, y1 �→ h1,δ(y1)
∫

U⊥
h2,δ(y1, y2) dy2 ,

are therefore dominated by the integrable function

y1 �→ ‖HC‖1‖ψ‖∞
(1 + ‖y1‖2)dim(U)

,

so we may again invoke the dominated convergence theorem to find that

lim
δ→0

(2π�)− dim(U)

∫

U

h1,δ(y1)
∫

U⊥
h2,δ(y1, y2) dy2 dy1

= (2π�)− dim(U)

∫

U

(
lim
δ→0

h1,δ(y1)
) (

lim
δ→0

∫

U⊥
h2,δ(y1, y2) dy2

)
dy1

= (2π�)− dim(U)

∫

U

∫

U

g(p1)e−i
y1·p1

� dp1 e2πik·(x+
y1+�ξ

2 )ψ[x + y1 + �ξ] dy1

=
eπik·�ξe2πik·x

(2π�)dim(U)

∫

U

∫

U

g(p1)e−iy1·( p1
�

−πk) dp1 ψ[x + y1 + �ξ] dy1

=
eπik·�ξe2πik·x

(2π�)dim(U)

∫

U

∫

U

g(p1 + π�PU (k))e−i
y1·p1

� dp1 ψ[x + y1 + �ξ] dy1 ,

which completes our proof of part (2).
For part (3), we simply take ψ = ψl ∈ C(Tn) ⊂ L2(Tn), with l ∈ Z

n, and
apply the formula we just found:

(2π�)− dim(U)eπik·�ξe2πik·x
∫

U

∫

U

g(p1 + π�PU (k))e−i
y1·p1

� dp1 e2πil·(x+y1+�ξ) dy1

= (2π�)− dim(U)eπi(k+2l)·�ξe2πi(k+l)·x
∫

U

∫

U

g(p1 + π�PU (k))e−iy1·( p1
�

−2πl) dp1 dy1
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= (2π)− dim(U)eπi(k+2l)·�ξe2πi(k+l)·x
∫

U

∫

U

g(p1 + π�PU (k + 2l))e−iy1·p1 dp1 dy1

= eπi(k+2l)·�ξe2πi(k+l)·xg ◦ PU (π�(k + 2l))

= hU,ξ,g(π�(k + 2l))ψk+l[x] ,

which proves the formula in part (3).
We thus see that the linear map on spanl{ψl} uniquely determined by

ψl �→ hU,ξ,g(π�(k + 2l))ψk+l ,

maps an orthonormal basis to an orthogonal system of vectors in L2(Tn),
and the norm of the image of such a vector ψl is less than or equal to ‖g‖∞ =
‖hU,ξ,g‖∞ = ‖f‖∞. (Note that the suprema defining these sup-norms are taken
over U , R

n and T
n × R

n, respectively.) Because of this and the fact that the
ψl’s densely span L2(Tn), the map extends in a unique way to a bounded
operator on L2(Tn) with norm ≤ ‖g‖∞, which proves the final assertion. �

The proposition justifies the following definitions:

Definition 18. For each � > 0 and each f ∈ SR(T ∗
T

n), we define the Weyl
quantisation QW

�
(f) of f to be the unique bounded linear extension of the

operator on spanl∈Zn{ψl} defined by the formula

(QW
�

(f)ψ)[x] := lim
δ→0

(2π�)−n

∫

Rn

∫

Rn

f
(
[x+ 1

2y], p
)
e− δ

2 p2
e−i y·p

� ψ[x + y] dp dy .

We thus obtain a map, the Weyl quantisation map QW
�

: SR(T ∗
T

n)→B(L2(Tn)),
for each � > 0. We define the quantum resolvent algebra A� on T

n × R
n to be

the C∗-subalgebra of B(L2(Tn)) generated by the image of SR(T∗
T

n) under
QW

�
.

Part (3) of Proposition 17 can now be phrased as an explicit formula for
the Weyl quantisation of a generator ek ⊗ h ∈ SR(T ∗

T
n), namely

QW
�

(ek ⊗ h)ψl = h(π�(k + 2l))ψk+l . (19)

Proposition 19. Let � > 0.

(1) The Weyl quantisation map is linear and *-preserving;
(2) For each �

′ > 0, we have A� = A�′ ;
(3) The image of

span
C
{ek ⊗ g : k ∈ Z

n, g ∈ S(Rn)} ⊆ SR(T ∗
T

n) ∩ C0(T ∗
T

n) ,

under QW
�

is a dense subspace of K(L2(Tn));
(4) Under the canonical embedding

B(L2(Tn)) ↪→ B(L2(Tn+m)) ∼= B(L2(Tn))⊗̂B(L2(Tm)) , a �→ a ⊗ 1 ,

induced by the projection at the level of configuration spaces T
n+m → T

n

onto the first n coordinates, the image of the quantum resolvent algebra
on T ∗

T
n is a subalgebra of the quantum resolvent algebra on T ∗

T
n+m.

(Here, ⊗̂ denotes the von Neumann algebraic tensor product.)
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(5) Let ρ0 be the group representation of T
n on Cb(T ∗

T
n) given by

ρ0[x]f := ( (q, p) �→ f(−x + q, p) ) ,

and let ρ� be the group representation of T
n on B(L2(Tn)) given by

ρ�[x]a := L[x]aL[−x] ,

where L : T
n → U(L2(Tn)) denotes the left regular representation of T

n.
Then both CR(T ∗

T
n) and SR(T ∗

T
n) are invariant under ρ0. Further-

more, the Weyl quantisation map is equivariant with respect to these rep-
resentations.

Remark 20. Because of part (2) of this proposition, we will write A� for the
C∗-algebra generated by QW

�′ (SR(T ∗
T

n)) for any value of �
′ > 0 without

specifying �. Part (3) is the analogue of the first part of [15, Corollary II.2.5.4]
in the present setting, while part (5) is the analogue of [15, Theorem II.2.5.1].

Proof.
(1) Linearity of QW

�
is obvious from the definition. Now let ek ⊗ h be a

generator of SR(T ∗
T

n), and let

F : L2(Tn) → �2(Zn), ψ′ �→ ( a �→ 〈ψa, ψ′〉 ) ,

be the Fourier transform. Here, 〈·, ·〉 denotes the usual inner product on L2(Tn).
We follow the physicists’ convention, taking the inner product to be linear in
its second argument. It follows from (19) that

QW
�

(ek ⊗ h) = F−1SkMh1F ,

where Sk : �2(Zn) → �2(Zn) denotes the shift operator defined by

(Skφ)(l) := φ(l − k) ,

and Mh1 denotes the multiplication operator on �2(Zn) associated with the
function

h1 : Z
n → C, l �→ h(π�(k + 2l)) .

Next, for each l ∈ Z
n, we have

(SkMh1)
∗δl = Mh1

S−kδl = h(π�(k + 2(l − k)))δl−k

= h(π�(−k + 2l))δl−k = S−kMh2δl ,

where h2 is defined as h2(l) := h(π�(−k + 2 l)). Also note that

QW
�

(ek ⊗ h) = QW
�

(e−k ⊗ h) = F−1S−kMh2F ,

so by unitarity of the Fourier transform, we have

QW
�

(ek ⊗ h) = F−1(SkMh1)
∗F = (F−1SkMh1F)∗ = QW

�
(ek ⊗ h)∗ ,

hence QW
�

is indeed compatible with the involutions.
(2) For each � > 0, each f ∈ SR(T ∗

T
n) and each ψ ∈ L, we have

(QW
� (f)ψ)(x) = lim

δ→0
(2π)−n

∫

Rn

∫

Rn

f
(
[x + 1

2y], �p′) e− δ
2 (p

′)2e−iy·p′
ψ[x + y] dp′ dy ,
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where we have made the substitution p = �p′ in the formula defining QW
�

(f)ψ,
and absorbed a factor �

2 in δ. Next, we observe that SR(T ∗
T

n) is closed under
the map

f �→ ( (q, p) �→ f(q, Cp) ),
for each C ∈ R, in particular for C = �

′/� for any �, �′ > 0. It follows that
QW

�
(SR(T ∗

T
n)) = QW

�′ (SR(T ∗
T

n)); hence, A� = A�′ , as desired.
(3) Let B be the left-hand side of the displayed formula in the statement.

Now let k ∈ Z
n, and let g ∈ S(Rn). Using notation from the proof of part

(1) of this proposition, we have

QW
�

(ek ⊗ g) = F−1SkMg1F ,

where g1 denotes the function

Z
n → C, l �→ g(π�(k + 2l)) .

This function vanishes at infinity, so its corresponding multiplication operator
Mg1 is compact. All of the other operators that we compose to obtain QW

�
(ek⊗

g) are bounded; hence, QW
�

(ek ⊗ g) is compact. Since QW
�

is a linear map
and K(L2(Tn)) is a linear subspace of B(L2(Tn)), it follows that QW

�
(B) ⊆

K(L2(Tn)).
To prove the assertion that QW

�
(B) is in fact a dense subspace of

K(L2(Tn)), we note that, given a and b in Z
n, we can fix a g ∈ S(Rn) such

that
g(π�(a − b + 2l)) = δl,b ,

for each l ∈ Z
n. It follows that, in bra-ket notation,

QW
�

(ea−b ⊗ g) = |ψa〉〈ψb| ,
and from the fact that a, b ∈ Z

n were arbitrary and that the family of vectors
(ψl)l∈Zn is an orthonormal basis of L2(Tn), we infer that QW

�
(B) is dense in

K(L2(Tn)).
(4) From Definition 7 one straightforwardly shows that SR(T ∗

T
n)⊗C1Tm×Rm

⊆ SR(T ∗
T

n+m). From formula (19), one obtains QW
�

(f ⊗ 1Tm×Rm)
= QW

�
(f) ⊗ 1 for all f ∈ SR(T ∗

T
n). Therefore,

QW
�

(SR(T ∗
T

n)) ⊗ 1 ⊆ QW
�

(SR(T ∗
T

n+m)),

which implies the same inclusion for the respective generated C*-algebras.
(5) Suppose f is of the form ek ⊗ h. Then it is readily seen that

ρ0[x](ek ⊗ h) = e−2πik·xek ⊗ h ∈ SR(T ∗
T

n) ,

for each [x] ∈ T
n, from which it follows that both CR(T ∗

T
n) and SR(T ∗

T
n)

are invariant subspaces of the representation ρ0. Furthermore, for each l ∈ Z
n,

we have

(ρ�[x](QW
�

(ek ⊗ h)))ψl = L[x]QW
�

(ek ⊗ h)L[−x]ψl

= e2πil·xL[x]QW
�

(ek ⊗ h)ψl

= e2πil·xh(π�(k + 2l))L[x]ψk+l

= e2πil·xe−2πi(k+l)·xh(π�(k + 2l))ψk+l
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= QW
�

(e−2πik·xek ⊗ h)ψl ,

from which we conclude that

ρ�[x](QW
�

(ek ⊗ h)) = QW
�

(ρ0[x](ek ⊗ h)) ,

for each [x] and each generator ek ⊗ h of SR(T ∗
T

n). Since these generators
span SR(T ∗

T
n), and the quantisation map and the maps ρ0[x] and ρ�[x] are

linear, we may substitute for ek ⊗ h any element of SR(T ∗
T

n) in the above
equation. �

4.2. Proof of Strict Quantisation

We now show that Weyl quantisation as defined in the previous section yields
a strict quantisation of the dense Poisson subalgebra SR(T ∗

T
n) of the classi-

cal resolvent algebra CR(T ∗
T

n) on T ∗
T

n ∼= T
n × R

n, see [15, Sect. II.1.1.1]
or Theorem 23. Of these properties, the most difficult one to prove is Rieffel’s
condition, i.e. convergence of the operator norms of QW

�
(f) to the sup-norm

of f ∈ SR(T ∗
T

n), which we discuss separately before showing that the other
conditions hold. To prepare for the proof, we first make the following observa-
tion:

Lemma 21. For K ∈ N\{0} let KZ
n := KZ × · · · × KZ, and let Z

n
K :=

Z
n/KZ

n. For each k ∈ Z
n
K , let Sk

per : �2(Zn
K) → �2(Zn

K) be the operator given
by

φ �→ ( l �→ φ(−k + l) ) .

Then for any f ∈ �∞(Zn
K), we have

∥
∥
∥
∥
∥
∥

∑

k∈Z
n
K

f(k)Sk
per

∥
∥
∥
∥
∥
∥

= max
l∈Z

n
K

∣
∣
∣
∣
∣
∣

∑

k∈Z
n
K

f(k)e2πi
∑n

j=1
kjlj

K

∣
∣
∣
∣
∣
∣

.

Proof. This is readily seen by conjugating the operator
∑

k∈Z
n
K

f(k)Sk
per with

the discrete Fourier transform,

φ �→
⎛

⎝l �→ K− n
2

∑

m∈Z
n
K

φ(m)e−2πi
∑n

j=1
ljmj

K

⎞

⎠ ,

yielding the multiplication operator of which the corresponding function is the
one within absolute value strokes. �

Proposition 22 (Rieffel’s condition). For each f ∈ SR(T ∗
T

n), we have

lim
�→0

‖QW
�

(f)‖ = ‖f‖∞ .

Before we give a precise proof of this proposition, it is instructive to first
give a sketch of the underlying idea. To relate the norm of QW

�
(f) to that of

f , we conjugate the quantised function with the Fourier transform to obtain
an operator on �2(Zn). We visualise Z

n as a lattice of points in R
n, and divide

it into identical boxes. In each of these boxes, we identify a slightly smaller
box such that all of the smaller boxes are translates of each other in the same
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Figure 2. Part of the lattice Z
2 with two larger boxes that

are adjacent, each of which contains a smaller box

way that the larger boxes that contain them are translates of each other. See
Fig. 2.
The difference between the sizes of the small boxes and the sizes of the larger
boxes is determined by the values of the various kj that appear in the function

f =
m∑

j=1

ekj
⊗ hUj ,ξj ,gj

,

of which we consider the quantisation; specifically, the shift Skj
∈ B(�2(Zn))

should always map elements on �2(Zn) supported on points inside the smaller
box to functions supported on points inside the larger box containing the small
one. The size of the larger box is determined by a chosen value of ε > 0 and a
crude estimate of ‖QW

�
(f)‖.

Given a function φ ∈ �2(Zn), we can now estimate the norm of its image
under the conjugated quantised function as follows. First, we consider the
projection of φ onto the subspace of �2(Zn) of elements supported on the set
of points inside one of the smaller boxes, and use the fact that its image under
the operator consists of elements supported on the set of points inside the
larger box. We can then consider a periodic version of the operator, and use
the preceding lemma to get an estimate on its norm and relate it to the norm of
f . Finally, we sum the contributions of all projections of φ onto the subspaces
corresponding to the smaller boxes to obtain an estimate on the difference of
the norm of f and that of the conjugated version of its quantisation. To control
the difference between φ and its projection onto the space corresponding to
the union of all of the smaller boxes, we note that the partition into boxes
can always be offset by some element of Z

n in such a way that the part of φ
supported on the complement of this union is small.

Proof. Fix f ∈ SR(T ∗
T

n) and ε > 0. We first prove the following statement:

(a) There exists an �1 ∈ (0,∞) such that for each � ∈ (0, �1], we have

‖QW
�

(f)‖ < ‖f‖∞ + ε .
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Write f ∈ SR(T ∗
T

n) as f =
∑m

j=1 fj , where

fj = ekj
⊗ hj ,

for kj ∈ Z
n and hj = hUj ,ξj ,gj

for some Uj , ξj and gj (which are not needed in
the proof). Note that by (19), we have a uniform bound on the norms of the
operators (QW

�
(f))�>0, namely

‖QW
�

(f)‖ ≤
m∑

j=1

‖hj‖∞ =
m∑

j=1

‖gj‖∞ =: C .

Since the case C = 0 is trivial, we assume that C > 0 (which also implies
that m > 0). Now define L := max1≤j≤m ‖kj‖∞ and fix K ∈ N\{0} such that
K ≥ 2L and such that

(
1 − 2L

K

)n

> 1 −
( ε

4C

)2

. (20)

Moreover, for j = 1, . . . , m, the function hj is uniformly continuous; hence,
there exists �1 ∈ (0,∞) such that for each � ∈ (0, �1], each a ∈ Z

n and each
b ∈ Z

n with |bl| < K for l = 1, . . . , n, we have

|hj(2π�a) − hj(π�(kj + 2(a + b)))| <
ε

4m
. (21)

Now fix � ∈ (0, �1], fix ψ ∈ L2(Tn) with ‖ψ‖ = 1, and let φ be the image of ψ
under the Fourier transform F : L2(Tn) → �2(Zn), which we already defined
in part (1) of the proof of Proposition 19. Furthermore, we define the set

X := {a ∈ Z
n : L ≤ al < K − L for l = 1, . . . , n} ,

and we define KZ
n and Z

n
K as in the previous lemma. Then, we have

∑

b+KZn∈Z
n
K

∑

a∈X+KZn

|φ(a + b)|2 =
∑

b+KZn∈Z
n
K

∑

a∈X

∑

a′∈KZn

|φ(a + a′ + b)|2

=
∑

a∈X

∑

b+KZn∈Z
n
K

∑

a′∈KZn

|φ(a + a′ + b)|2

=
∑

a∈X

∑

b∈Zn

|φ(a+b)|2 = |X| ·
∑

b∈Zn

|φ(b)|2 = |X| ,

where
|X| = (K − 2L)n ,

is the cardinality of the set X. It follows that there exists a b ∈ Z
n with

0 ≤ bl < K for l = 1, . . . , n such that
∑

a∈X+KZn

|φ(a + b)|2 ≥ |Zn
K |−1(K − 2L)n =

(
1 − 2L

K

)n

> 1 −
( ε

4C

)2

.

Let PX,b be the orthogonal projection of �2(Zn) onto the subspace

{φ′ ∈ �2(Zn) : supp(φ′) ⊆ b + X + KZ
n} ,

so that by the above inequality, we have
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‖QW
�

(f)F−1(1 − PX,b)Fψ‖ ≤ ‖QW
�

(f)‖‖F−1(1 − PX,b)φ‖
≤ C‖(1 − PX,b)φ‖
= C

(
1 − ‖PX,bφ‖2

) 1
2 <

ε

4
. (22)

For each a ∈ KZ
n, let

Pa,b : �2(Zn) → �2(Zn
K), φ′ �→ ( a′ + KZ

n �→ φ′(a + a′ + b) ) ,

where the representative a′ ∈ Z
n has been chosen so that 0 ≤ a′

l < K for
l = 1, . . . , n. Furthermore, for each a ∈ Z

n, we have a corresponding shift
operator

Sa : �2(Zn) → �2(Zn), φ′ �→ ( a′ �→ φ′(−a + a′) ) ,

and for each a + KZ
n ∈ Z

n
K , we define the shift operator Sa+KZ

n

per as in the
previous lemma. Finally, for each a ∈ KZ

n, we define

Aa,b :=
m∑

j=1

hj(2π�(a + b))Skj+KZ
n

per .

Using Lemma 21, we obtain

‖Aa,b‖ = max
a′+KZn∈Z

n
K

∣
∣
∣
∣
∣
∣

m∑

j=1

e2πi
kj ·a′

K hj(2π�(a + b))

∣
∣
∣
∣
∣
∣

≤ sup
[x]∈Tn

∣
∣
∣
∣
∣
∣

m∑

j=1

e2πikj ·xhj(2π�(a + b))

∣
∣
∣
∣
∣
∣

≤ sup
([x],p)∈Tn×Rn

∣
∣
∣
∣
∣
∣

m∑

j=1

e2πikj ·xhj(p)

∣
∣
∣
∣
∣
∣

= ‖f‖∞ . (23)

Moreover, using our explicit formula (19), we find that

Pa,bFQW
�

(f)F−1PX,bφ

= Pa,bFQW
�

(f)F−1PX,b

∑

a′∈Zn

φ(a′)δa′

= Pa,b

∑

a′∈b+X+KZn

m∑

j=1

hj(π�(kj + 2a′))φ(a′)δa′+kj

=
∑

a′∈X

m∑

j=1

hj(π�(kj + 2(a + b + a′)))φ(a + b + a′)δa′+kj+KZn

=
m∑

j=1

Skj+KZ
n

per

∑

a′∈X

hj(π�(kj + 2(a + b + a′)))φ(a + b + a′)δa′+KZn ,
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where in the third step, we have used the fact that a′ + kj ∈ {0, . . . , K − 1}n

for each a′ ∈ X and j = 1, . . . , m. On the other hand, we have

Aa,bPa,bPX,bφ = Aa,bPa,bPX,b

∑

a′∈Zn

φ(a′)δa′ = Aa,b

∑

a′∈X

φ(a + b + a′)δa′+KZn

=
m∑

j=1

Skj+KZ
n

per

∑

a′∈X

hj(2π�(a + b))φ(a + b + a′)δa′+KZn .

Writing
μa′,j := hj(2π�(a + b)) − hj(π�(kj + 2(a + b + a′))) ,

for j = 1, . . . , m and a′ ∈ X, we obtain

‖(Aa,bPa,bPX,b − Pa,bFQW
�

(f)F−1PX,b)φ‖

=

∥
∥
∥
∥
∥
∥

m∑

j=1

Skj+KZ
n

per

∑

a′∈X

μa′,jφ(a + b + a′)δa′+KZn

∥
∥
∥
∥
∥
∥

≤
m∑

j=1

∥
∥
∥
∥
∥

∑

a′∈X

μa′,jφ(a + b + a′)δa′+KZn

∥
∥
∥
∥
∥

=
m∑

j=1

(
∑

a′∈X

|μa′,j |2|φ(a + b + a′)|2
) 1

2

≤ m · max
a′′∈X

|μa′′,j |
(

∑

a′∈X

|φ(a + b + a′)|2
) 1

2

<
ε

4
‖Pa,bPX,bφ‖ , (24)

where we have used equation (21) in the final step. From equations (23) and
(24), we obtain

‖Pa,bFQW
�

(f)F−1PX,bφ‖
≤ ‖Aa,bPa,bPX,bφ‖ + ‖(Aa,bPa,bPX,b − Pa,bFQW

�
(f)F−1PX,b)φ‖

<
(
‖f‖∞ +

ε

4

)
‖Pa,bPX,bφ‖ ,

for each a ∈ KZ
n. It is straightforward to see that for each φ′ ∈ �2(Zn), we

have ∑

a∈KZn

‖Pa,bφ
′‖2 = ‖φ′‖2 ,

so

‖QW
� (f)F−1PX,bφ‖2 = ‖FQW

� (f)F−1PX,bφ‖2 =
∑

a∈KZn

‖Pa,bFQW
� (f)F−1PX,bφ‖2

<
∑

a∈KZn

(
‖f‖∞ +

ε

4

)2

‖Pa,bPX,bφ‖2

=
(
‖f‖∞ +

ε

4

)2

‖PX,bφ‖2 ≤
(
‖f‖∞ +

ε

4

)2

,
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which together with equation (22) implies

‖QW
�

(f)ψ‖ ≤ ‖QW
�

(f)F−1PX,bFψ‖ + ‖QW
�

(f)F−1(1 − PX,b)Fψ‖
< ‖f‖∞ +

ε

4
+

ε

4
= ‖f‖∞ +

ε

2
,

and since ψ ∈ L2(Tn) was an arbitrary vector with norm 1, we obtain

‖QW
�

(f)‖ ≤ ‖f‖∞ +
ε

2
< ‖f‖∞ + ε ,

for each � ∈ (0, �1] which proves (a).
We now turn to the reverse inequality:
(b) There exists an �2 ∈ (0,∞) such that for each � ∈ (0, �2], we have

‖f‖∞ < ‖QW
�

(f)‖ + ε .

Let (x, p) ∈ [0, 1)n × R
n be a point such that

‖f‖∞ < |f([x], p)| +
ε

8
.

By uniform continuity of f , there exists a δ > 0 such that for each (x′, p′) ∈
(−1, 1)n × R

n with
∑n

l=1 |x′
l − xl| + |p′

l − pl| < δ, we have

|f([x], p) − f([x′], p′)| <
ε

8
.

Now fix L ∈ N as in the proof of part (a), and fix K ∈ N\{0} in such a way
that equation (20) holds, and that we have

K > max
(

2L,
2n

δ

)
. (25)

Furthermore, fix �2 > 0 such that equation (21) holds for each � ∈ (0, �2], and
that we have

2π�2K <
δ

2n
. (26)

Now fix such an � ∈ (0, �2]. Next, we note that by equation (26) there exists
an a ∈ KZ

n such that

pl − δ

2n
< 2π�al ≤ pl ,

and that by equation (25), there exists a b ∈ {0, . . . , K − 1}n such that
∣
∣
∣
∣
bl

K
− xl

∣
∣
∣
∣ <

δ

2n
,

for l = 1, . . . , n. Fix such a and b. It follows that
n∑

l=1

∣
∣
∣
∣
bl

K
− xl

∣
∣
∣
∣ + |2π�al − pl| < δ ,

so that ∣
∣
∣
∣
∣
∣

m∑

j=1

e2πi
kj ·b

K hj(2π�a) − f([x], p)

∣
∣
∣
∣
∣
∣
<

ε

8
,
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and therefore, by the triangle inequality and our choice of ([x], p),
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

m∑

j=1

e2πi
kj ·b

K hj(2π�a)

∣
∣
∣
∣
∣
∣
− ‖f‖∞

∣
∣
∣
∣
∣
∣
<

ε

4
.

Now define φ ∈ �2(Zn) by

φ(a′) :=

{
K− n

2 e−2πi a′·b
K if 0 ≤ a′

l − al < K for l = 1, . . . , n,
0 otherwise,

and let ψ := F−1φ ∈ L2(Tn). Then ‖ψ‖ = ‖φ‖ = 1, and

Aa,0Pa,0φ =
m∑

j=1

e2πi
kj ·b

K hj(2π�a)Pa,0φ ,

with Aa,b and Pa,b as defined in part (a). Since ‖Pa,0φ‖ = 1, we have

‖Aa,0Pa,0φ‖ =

∣
∣
∣
∣
∣
∣

m∑

j=1

e2πi
kj ·b

K hj(2π�a)

∣
∣
∣
∣
∣
∣
> ‖f‖∞ − ε

4
.

Defining X in the same way as we did in the proof part (a), it follows that

‖Aa,0Pa,0PX,0φ‖ ≥ ‖Aa,0Pa,0φ‖ − ‖Aa,0‖‖(1 − PX,0)φ‖
> ‖f‖∞ − ε

4
− ε

4
= ‖f‖∞ − ε

2
.

Next, we note that the function FQW
�

(f)F−1PX,0φ : Z
n → C is supported in

the set of a′ ∈ Z
n satisfying al ≤ a′

l < al + K for l = 1, . . . , n. Combining this
observation with the estimate just obtained and equation (24) yields

‖FQW
�

(f)F−1PX,0φ‖ = ‖Pa,0FQW
�

(f)F−1PX,0φ‖
≥ ‖Aa,0Pa,0PX,0φ‖

− ‖(Aa,0Pa,0PX,0 − Pa,0FQW
�

(f)F−1PX,0)φ‖
> ‖f‖∞ − ε

2
− ε

4
= ‖f‖∞ − 3ε

4
.

We use this together with equation (22) to obtain

‖QW
�

(f)ψ‖ = ‖FQW
�

(f)ψ‖
≥ ‖FQW

�
(f)F−1PX,0φ‖ − ‖QW

�
(f)F−1(1 − PX,0)Fψ‖

> ‖f‖∞ − 3ε

4
− ε

4
= ‖f‖∞ − ε .

Since ‖ψ‖ = 1, this establishes (b).
Finishing up the proof, taking �0 := min(�1, �2), we infer that for each � ∈
(0, �0], we have |‖QW

�
(f)‖ − ‖f‖∞| < ε; hence, lim�→0 ‖QW

�
(f)‖ = ‖f‖∞, as

desired. �

We are now ready to prove the main result of this subsection. Let QW
0 :=

IdSR(T ∗Tn), let A0 be the C∗-algebra CR(T ∗
T

n). In the following theorem, it
should be understood that ‖QW

�
(f)‖ := ‖f‖∞ for � = 0.
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Theorem 23. Let I ⊂ [0,∞) be a subset containing 0 as an accumulation point.
Then, except for continuity at � > 0, the triple

(I, (A�)�∈I , (QW
�

: SR(T ∗
T

n) → A�)�∈I) ,

is a strict quantisation of the Poisson algebra SR(T ∗
T

n), i.e. it satisfies
(1) Rieffel’s condition at � = 0: for each f ∈ SR(T ∗

T
n), the function � �→

‖QW
�

(f)‖ is continuous at 0.
(2) Von Neumann’s condition: for each f, g ∈ SR(T ∗

T
n), we have

lim
�→0
�∈I

‖QW
�

(f)QW
�

(g) − QW
�

(fg)‖ = 0 .

(3) Dirac’s condition: for each f, g ∈ SR(T ∗
T

n), we have

lim
�→0
�∈I

‖(−i�)−1[QW
�

(f),QW
�

(g)] − QW
�

({f, g})‖ = 0 .

(4) Completeness: for each � ∈ I, the set QW
�

(SR(T ∗
T

n)) is dense in A�.

Proof.
(1) This was shown in Proposition 22.
(2) First suppose that fj is a generator ekj

⊗ hUj ,ξj ,gj
of SR(T ∗

T
n) for j =

1, 2. As in Proposition 22, we will write hj instead of hUj ,ξj ,gj
. Let k :=

k1 + k2. Then

f1 · f2 = (ek1 ⊗ h1) · (ek2 ⊗ h2) = ek ⊗ (h1 · h2) .

Applying part (3) of Proposition 17 yields

QW
�

(f1f2)ψa = (h1 · h2)(π�(k + 2a))ψk+a .

for each a ∈ Z
n. On the other hand, we have

QW
�

(f1)QW
�

(f2)ψa = h2(π�(k2 + 2a))QW
�

(f1)ψk2+a

= h1(π�(k1 + 2(k2 + a)))h2(π�(k2 + 2a))ψk+a

= h1(π�(k + k2 + 2a)) · h2(π�(k − k1 + 2a)) · ψk+a ,

(27)

so

(QW
� (f1)QW

� (f2) − QW
� (f1f2))ψa = (h1(π�(k + k2 + 2a)) · h2(π�(k − k1 + 2a)))

−(h1 · h2)(π�(k + 2a))) ψk+a ,

for each a ∈ Z
n. Now let c

(1)
a,� be the scalar in front of ψk+a on the right-hand

side of the last equation. It is not hard to see from this equation that

‖QW
�

(f1)QW
�

(f2) − QW
�

(f1f2)‖ ≤ sup
a∈Zn

|c(1)
a,�| ,

for each � > 0. Now note for j = 1, 2, all derivatives of hj ∈ W0
R(Rn) are

bounded, and so hj is Lipschitz continuous. This implies that

h1(π�(k + k2 + 2a)) = h1(π�(k + 2a)) + O(�) ,

h2(π�(k − k1 + 2a)) = h2(π�(k + 2a)) + O(�) ,
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where big O notation signifies a limit of � → 0, uniformly in a, analogous to
the notation in §3.2. When plugging the above formulas into the definition of
c
(1)
a,� and using the fact that h1 and h2 are bounded functions, we find that

c
(1)
a,� = O(�),

and therefore
lim
�→0
�∈I

‖QW
�

(f1)QW
�

(f2) − QW
�

(f1f2)‖ = 0 .

By bilinearity, this result extends to arbitrary f1, f2 ∈ SR(T ∗
T

n).

(3) As in the previous part of the proof, we prove the statement for fj =
ekj

⊗ hj , from which the general case readily follows. We have

{f1, f2} =
n∑

l=1

(
∂f1

∂pl

∂f2

∂ql
− ∂f1

∂ql

∂f2

∂pl

)

=
n∑

l=1

(
ek1 ⊗ ∂h1

∂pl

)
·
(

∂ek2

∂ql
⊗ h2

)
−

(
∂ek1

∂ql
⊗ h1

)
·
(

ek2 ⊗ ∂h2

∂pl

)

= 2πiek ⊗ ((∇k2h1)h2 − h1∇k1h2) ,

where k = k1 + k2, as in part (2) of this theorem, and ∇vh is the directional
derivative of h in the direction of v. Applying part (3) of Proposition 17 yields

QW
�

({f1, f2})ψa = 2πi ((∇k2h1)h2 − h1∇k1h2) (π�(k + 2a))ψk+a ,

while equation (27) yields

[QW
�

(f1),QW
�

(f2)]ψa = (h1(π�(k + k2 + 2a)) · h2(π�(k − k1 + 2a))

− h1(π�(k − k2 + 2a)) · h2(π�(k + k1 + 2a))) ψk+a .

It follows that
(
(−i�)−1[QW

�
(f1),QW

�
(f2)] − QW

�
({f1, f2})

)
ψa = c

(2)
a,�ψk+a ,

where for each a ∈ Z
n and each � > 0, we define

c
(2)
a,� := (−i�)−1 (h1(π�(k + k2 + 2a)) · h2(π�(k − k1 + 2a))

−h1(π�(k − k2 + 2a)) · h2(π�(k + k1 + 2a)))

− 2πi ((∇k2h1)h2 − h1∇k1h2) (π�(k + 2a)) .

It is readily seen that
∥
∥(−i�)−1[QW

�
(f1),QW

�
(f2)] − QW

�
({f1, f2})

∥
∥ ≤ sup

a∈Zn

|c(2)
a,�| .

We claim that the right-hand side of this inequality converges to 0 as � ∈ I
goes to 0; evidently, this will show that Dirac’s condition holds.

Because the second order derivatives of hj are bounded, Taylor’s theorem
gives

hj(π�(k + v + 2a)) − hj(π�(k + 2a)) − π�∇vhj(π�(k + 2a)) = O(�2) , (28)



T. D. H. van Nuland and R. Stienstra Ann. Henri Poincaré

for each v ∈ R
n and j = 1, 2. Dividing the expression on the left-hand side of

(28) by −i� yields

(−i�)−1(hj(π�(k + v + 2a)) − hj(π�(k + 2a))) − πi∇vhj(π�(k + 2a)) = O(�) .

This can be used to show that c
(2)
a,� → 0 uniformly in a ∈ Z

n as � → 0, which
proves the claim.
(4) According to part (2) of Proposition 8, the space SR(T ∗

T
n) is a ∗-

subalgebra of CR(T ∗
T

n). According to part (1) of Proposition 19 the
Weyl quantisation map is linear and compatible with the involutions on
the algebras involved. Moreover, it is readily seen from our computa-
tion of QW

�
(f1)QW

�
(f2) in the proof of part (2) of this theorem that

QW
�

(SR(T ∗
T

n)) is closed under multiplication. Thus QW
�

(SR(T ∗
T

n)) is
a ∗-algebra. It follows that A�, which is by definition the smallest C∗-
algebra that contains QW

�
(SR(T ∗

T
n)), is the closure of QW

�
(SR(T ∗

T
n)).

�

Remark 24. The statement that for arbitrary f ∈ SR(T ∗
T

n), the map

[0,∞) → [0,∞) , � �→ ‖QW
�

(f)‖ ,

is continuous at points other than � = 0 is false. As a counterexample, let
�0 > 0 be arbitrary, and consider the function f = e0 ⊗ h, where the function
h is defined as follows:

h : R
n → R, p = (p1, p2, . . . , pn) �→ sin

(
p1

�0

)
.

Note that h can be written as the sum of two generators of W0(Rn) ⊆ W0
R(Rn),

so f ∈ SR(T ∗
T

n). Furthermore, h vanishes at each point in 2π�0 · Z
n; hence,

QW
�0

(f) = 0 by the explicit formula (19), or equivalently, ‖QW
�0

(f)‖ = 0. On
the other hand, for each N ∈ N\{0}, let

�N := �0

(
1 +

1
4N

)
.

Then ‖QW
�N

(f)‖ = 1; indeed, we have ‖QW
�N

(f)‖ ≤ ‖h‖∞ = 1, and equality
holds since

QW
�N

(f)ψ(N,0,0,...,0) = ψ(N,0,0,...,0) .

Thus, while limN→∞ �N = �0, we also have

lim
N→∞

‖QW
�N

(f)‖ = 1 �= 0 = ‖QW
�0

(f)‖ ,

so the function � → ‖QW
�

(f)‖ fails to be continuous at �0.
The issue of continuity of the norm of the quantisation of a given function

at points � �= 0 is often sidestepped in the literature for reasons related to
geometric quantisation, which imposes the condition that � be of the form
�0/m, m ∈ N\{0} for some fixed �0 > 0 (cf. [12] for a discussion of this
point, and also a nice overview of various notions of quantisation throughout
the literature). In such cases the set I\{0} in the above theorem is a discrete
subset of (0,∞), so the restriction of � → ‖QW

�
(f)‖ to I is trivially continuous
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at all points outside of 0, and the family of quantisation maps constitutes an
actual strict quantisation.

Injectivity is the second and last property barring our quantisation map
from being a strict deformation quantisation in the sense of [15, Definition
II.1.1.2]. Injectivity fails precisely because (19) depends only on the values of
h at π�Z

n ⊆ R
n. A solution to both problems is proposed in [20], as discussed

in the outlook: Sect. 6.
Moreover, despite the fact that the norm of the quantisation of a function

is not continuous for � > 0, we still have continuity of quantisation in another
way:

Proposition 25. Let f ∈ SR(T ∗
T

n). Then the map

(0,∞) → A� ⊆ B(L2(Tn)) , � �→ QW
�

(f) ,

is continuous with respect to the strong operator topology on the codomain.

Proof. By linearity of the quantisation map and the fact that SR(T ∗
T

n) is
the linear span of generators of CR(T ∗

T
n), we may assume without loss of

generality that there exists a k ∈ Z
n and a generator h of W0

R(Rn) such that
f = ek ⊗ h. Then, by our explicit formula (19), we find

∥
∥QW

�
(f)ψl − QW

�0
(f)ψl

∥
∥ = |h(π�(k + 2l)) − h(π�0(k + 2l))| → 0,

whenever � → �0 in (0,∞). This convergence also holds when we replace ψl

by a vector in spanl{ψl}. Furthermore, in part (3) of Proposition 17, we have
seen that

∥
∥QW

�
(f)

∥
∥ ≤ ‖h‖∞ .

Now let ψ ∈ L2(Tn) be arbitrary. Fix ε > 0. Since spanl{ψl} is dense in
L2(Tn), there exists ψ̃ ∈ spanl{ψl} such that ‖ψ̃ − ψ‖ < ε/(4(‖h‖∞ + 1)). By
the discussion above, there exists δ > 0 such that

∥
∥
∥QW

�
(f)ψ̃ − QW

�0
(f)ψ̃

∥
∥
∥ < ε/2

whenever � > 0 satisfies |� − �0| < δ. Then for any such �, we have
∥
∥QW

�
(f)ψ − QW

�0
(f)ψ

∥
∥

≤
∥
∥
∥QW

�
(f)(ψ − ψ̃)

∥
∥
∥ +

∥
∥
∥QW

�
(f)ψ̃ − QW

�0
(f)ψ̃

∥
∥
∥ +

∥
∥
∥QW

�0
(f)(ψ̃ − ψ)

∥
∥
∥

≤ 2 ‖h‖∞
∥
∥
∥ψ̃ − ψ

∥
∥
∥ +

∥
∥
∥QW

�
(f)ψ̃ − QW

�0
(f)ψ̃

∥
∥
∥ < ε ,

which concludes the proof of the proposition. �

5. Quantum Time Evolution

Our next task is to show that A� = C∗(QW
�

(SR(T ∗
T

n))
)

is invariant under
time evolution for each Hamiltonian with potential V ∈ C(Tn). The general
proof strategy resembles that of Buchholz and Grundling in [9, Proposition
6.1]. However, the present setting differs from theirs in two important ways,
each of which introduces its own technical problems. First of all, our con-
figuration space is T

n rather than R
n. Secondly, we consider the problem of
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invariance under time evolution for arbitrary n ∈ N, whereas Buchholz and
Grundling only discuss the case n = 1. We start with the simplest type of time
evolution:

Lemma 26. Let � > 0. The algebra A� is closed under the quantum time
evolution corresponding to the free Hamiltonian H0 that is the unique self-
adjoint extension of the essentially self-adjoint operator −�

2

2

∑
d2

dx2
j

with do-

main C∞(Tn).

Remark 27. The fact that for any compact Riemannian manifold M the
Laplace–Beltrami operator on C∞(M) has a unique self-adjoint extension is
due to Gaffney [10].

Proof. We show that the quantum time evolution corresponding to H0 maps
the set of quantisations of the generators ek ⊗ hU,ξ,g of CR(T ∗

T
n) into itself;

since the time evolution consists of a family of automorphisms of C∗-algebras,
the lemma will follow from this.

Let ek ⊗ hU,ξ,g be such a generator. Note that for each a ∈ Z
n, we have

e− itH0
� ψa = e−2π2it�‖a‖2

ψa . (29)

Using part (3) of Proposition 17, we obtain

e
itH0

� QW
�

(ek ⊗ hU,ξ,g) e− itH0
� ψa

= e2π2it�(‖a+k‖2−‖a‖2)eπ�i(k+2a)·ξg ◦ PU (π�(k + 2a))ψk+a

= eπi�(k+2a)·(ξ+2πtk)g ◦ PU (π�(k + 2a))ψk+a

= QW
�

(
ek ⊗ hU,ξ̃,g̃

)
ψa ,

for each a ∈ Z
n, where

ξ̃ := ξ + 2πtPU⊥(k) ∈ U⊥ ,

and
g̃ : U → C , p �→ e2πitPU (k)·pg(p) ,

is again a Schwartz function on U , so ek ⊗ hU,ξ̃,g̃ is a generator of CR(T ∗
T

n).
It follows that the set of generators of A� is indeed invariant under the free
quantum time evolution. �

Remark 28. Comparing the proof of Lemma 26 with the proof of the analogous
Lemma 11, we see that (for t = 1) ξ̃ and g̃ are both the same. Indeed, one can
easily obtain

QW
�

◦ (Φt
0)

∗ = τ0
t ◦ QW

�
,

which is analogous to a known result for Weyl quantisation on R
2n (proved in

higher generality in [15, Theorem II.2.5.1]). There is generally no such result
for non-free time evolution.
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In order to deal with the general quantum time evolution, we recall some
basic theory about lattices that we need due to the appearance of the lattice
Z

n in T
n = R

n/Z
n. A set of linearly independent vectors v1, . . . , vl in a lattice

Λ is called primitive in Λ if span
Z
(v1, . . . , vl) = span

R
(v1, . . . , vl) ∩ Λ. For

instance, every Z-basis of a lattice Λ is primitive in Λ. Furthermore, we have
the following result:

Lemma 29. Let Λ ⊂ R
m be a lattice. Every primitive set v1, . . . , vl in Λ can be

extended to a Z-basis v1, . . . , vl, vl+1, . . . , vm of Λ.

Proof. This is exactly [17, §1.3, Theorem 5]. �
This will help us prove the main theorem of this section:

Theorem 30. Let V ∈ C(Tn). Then the operator H = −�
2

2

∑
d2

dx2
j

+ M(V )

with domain domH0 (see Lemma 26) is self-adjoint. Let
(
e

−itH
�

)
t∈R

be the cor-
responding one-parameter group implementing the quantum mechanical time
evolution on L2(Tn), and let (τt)t∈R be the associated one-parameter group of
automorphisms on B(L2(Tn)). Then (τt)t∈R preserves A�.

Proof. Self-adjointness of H is a consequence of the Kato–Rellich theorem. We
claim that for each t ∈ R, we have

e
itH0

� e
−itH

� ∈ A� .

Suppose for the moment that this claim holds true. Then for each a ∈ A� and
each t ∈ R, we have

τt(a) = e
itH

� ae
−itH

� =
(
e

itH0
� e

−itH
�

)∗
τ0
t (a)

(
e

itH0
� e

−itH
�

)
.

By assumption, the first and the third factors within parentheses are elements
of A�, and the second factor is an element of A� by Lemma 26. It then follows
that τt(a) ∈ A�.

Thus, it remains to prove the claim. As in the proof of [9, Proposition
6.1], we use the fact that the product of two of the elements of different one-
parameter groups can be written as a norm-convergent Dyson series, i.e.

e
itH0

� e
−itH

� =
∞∑

m=0

(i�)−m

∫ t

0

∫ t1

0

. . .

∫ tm−1

0

τ0
t1(M(V )) · · · τ0

tm
(M(V ))dtm · · · dt2dt1.

(30)
The integrals in the above expression can be defined in the following way. First,
observe that the function

R → B(L2(Tn)) , t �→ τ0
t (M(V )) ,

is bounded and strongly continuous. It follows that the function

R
m → B(L2(Tn)) , (t1, . . . , tm) �→ τ0

t1(M(V )) · · · τ0
tm

(M(V )) ,

is bounded and strongly continuous. For each ψ ∈ L2(Tn), one can therefore
define the integral

∫ t

0

∫ t1

0

. . .

∫ tm−1

0

τ0
t1(M(V )) · · · τ0

tm
(M(V ))ψ dtm · · · dt2 dt1 , (31)
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using Bochner integration, and it is easy to check that the norm of the corre-
sponding operator is less than or equal to (m!)−1|t|m‖V ‖m

∞, so that the Dyson
series is indeed norm-convergent. As in [9], because (31) is continuous in V it
suffices to prove the claim for potentials V that lie in a dense subset of C(Tn).
If we assume that V is in the span of {ek : k ∈ Z

n}, we can write (31) as a
sum of relatively explicit expressions. Thus, we are left to show that for each
t ∈ R and each k1, . . . , km ∈ Z

n, the operator

a :=
∫ t

0

∫ t1

0

. . .

∫ tm−1

0

τ0
t1(M(ek1)) · · · τ0

tm
(M(ekm

)) dtm · · · dt1 ,

lies in A�. A quick computation using (29) gives us

τ0
t (M(ek))ψa = M(ek)e2π2it�(‖a+k‖2−‖a‖2)ψa

= M(ek)e2π2it�‖k‖2
e4π2it�k·aψa ,

which shows that, for any ψ ∈ L2(Tn) and [x] ∈ T
n, we have

(τ0
t (M(ek))ψ)[x] = e2πix·ke2π2i�t‖k‖2

ψ [x + 2π�tk] .

Applying this formula many times, we find a function f0 ∈ Cb(Rm) that takes
values on the unit circle such that

τ0
t1
(M(ek1)) · · · τ0

tm
(M(ekm

))ψ[x] = e2πix·∑ kif0(t1, . . . , tm)ψ
[
x + 2π�

∑
tiki

]
.

The operator a looks like an integral operator, in the sense that we perform
an integral over the variables ti that appear as

∑
tiki in the argument of ψ.

However, the ki’s may both fail to constitute a linearly independent and a
complete set of vectors in R

n. Still, we can relate a to an integral operator,
which will be the subject of the rest of the proof.

We use a special case of Lemma 29 (extending an empty primitive set)
to find a Z-basis v1, . . . , vl of span

R
(k1, . . . , km) ∩ Z

n. Because the ki’s are
integral, this is also an R-basis of span

R
(k1, . . . , km). Expressing the ki’s in

terms of vj ’s as

ki =
l∑

j=1

cijvj ,

we obtain

ψ

[
x + 2π�

m∑

i=1

tiki

]
= ψ

[
x + 2π�

l∑

j=1

m∑

i=1

ticijvj

]

= ψ

[
x + 2π�

l∑

j=1

T0(t1, . . . , tm)jvj

]
,

for a unique surjective linear map T0 : R
m → R

l. By surjectivity, the map T0

admits a lift to an invertible linear map T : R
m → R

m with respect to the
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projection R
m → R

l onto the first l coordinates. Fix such a T , and perform a
change of variables, replacing (t1, . . . , tm) with T−1(s). We get

aψ[x] = e2πix·∑ ki |det T |−1
∫

K

f0

(
T−1s

)
ψ

[
x + 2π�

l∑

j=1

sjvj

]
ds ,

for some compact subset K ⊆ R
m. Let K ′ be the image of K under the projec-

tion R
k → R

l onto the first l coordinates, and define the function f1 : R
l → C

by

f1 : s(1) �→ |det T |−1
∫

Rm−l

1K(s(1) ⊕ s(2))f0

(
T−1(s(1) ⊕ s(2))

)
ds(2) .

One easily finds that f1 ∈ L∞(Rl). We are now left with the integral

aψ[x] = e2πix·∑ ki

∫

K′
f1(s)ψ

[
x + 2π�

l∑

j=1

sjvj

]
ds .

We want to relate the above integral to an integral over the first l components
in T

n. For this purpose, we apply Lemma 29 once more to extend v1, . . . , vl

to a Z-basis v1, . . . , vn of Z
n, and let S be the matrix whose columns are the

vectors v1, . . . , vn. Since S and its inverse are matrices in GLn(Z), we find that
det S = ±1. Moreover, S induces the group automorphism [x] �→ [Sx] of T

n,
which we can pull back to the unitary map

U : L2(Tn) → L2(Tn), Uψ[x] := ψ[Sx],

for which it is straightforward to check (on generators of A�) that U−1A�U ⊆
A�. For ϕ = ϕ1 ⊗ ϕ2 ∈ L2(Tl) ⊗ L2(Tn−l) we have, denoting k :=

∑
i ki,

UM(e−k)aU−1ϕ[x] =
∫

K′
f1(s)U−1ϕ

[
S(x) + 2π�

l∑

j=1

sjS(ej)
]

ds

=
∫

K′
f1(s)ϕ [x + 2π�(s ⊕ 0)] ds

=
∫

K′
f1(s)ϕ1

(
x(1) + 2π�s + Z

l
)
ϕ2

(
x(2) + Z

n−l
)

ds

=
∫

Tl

f2

(
x(1) + Z

l, s
)
ϕ1(s) ds ϕ2

(
x(2) + Z

n−l
)

,

where x = x(1) ⊕x(2) and f2 ∈ L∞(Tl ×T
l) ⊆ L2(Tl ×T

l) denotes the function

f2(r, s) :=
∑

M∈Zl

f1

(
ι(s − r) + M

2π�

)
,

where ι denotes the canonical map T
l → [0, 1)l. Note that the above sum has

only finitely many nonzero terms since f1 is compactly supported.
In conclusion, we have proved that

a = M(ek)U−1(F ⊗ 1)U ,
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for an integral operator F ∈ L2(L2(Tl)). By part (3) of Proposition 19, any
compact operator, like F , is inside the quantum resolvent algebra on T

l × R
l.

By part (4) of Proposition 19, this implies that F ⊗ 1 ∈ A�, and hence,
U−1(F ⊗ 1)U ∈ A�. As M(ek) is the quantisation of ek ⊗ 1Rn , we find a ∈
A�. As we have seen, linearity and continuity of the Dyson series imply that
e

itH0
� e

−itH
� ∈ A�, and this implies the theorem itself. �

6. Discussion and Outlook

We have constructed C*-algebras that extend, respectively, the commutative
resolvent algebra and the Buchholz–Grundling resolvent algebra to the case
that the phase space is the cotangent bundle of the torus. Here we will show
that our algebras have the properties P1–P4 stated in the introduction, briefly
reiterating the main results of this paper.

With regard to P1, on quantisation, the respective algebras are the clas-
sical and quantum resolvent algebras of the cylinder, A0 := CR(T ∗

T
n) and

A� := C∗(QW
�

(SR(T ∗
T

n))). We stress that the latter is a C*-subalgebra of
B(L2(Tn)) that is independent of � (cf. Proposition 19), and can easily be
defined without reference to the quantisation map. Thus, one is allowed to
view the quantisation map as merely a tool to help one guess an appropriate
quantum algebra, with the added bonus that one quite directly obtains the
correct classical limit. How well this classical limit behaves is indicated by the
properties that the quantisation map satisfies.

P2, closure under time evolution, is satisfied because of Theorem 16 (clas-
sical time evolution) and Theorem 30 (quantum time evolution).

P3, or closure under embedding of algebras corresponding to subsystems,
is satisfied in the classical case by Corollary 6, and, in the quantum case, in
the sense of Proposition 19(4). In particular, the nice behavior with respect to
‘tensoring with the identity’ allows one to define a thermodynamic limit; the
associated inductive limit of C*-algebras commutes with quantisation.

The final property P4 on the ‘size’ of the algebras, requires on the one
hand that the C∗-algebras are sufficiently large, in the sense that C0(T ∗

T
n) ⊆

CR(T ∗
T

n) and K(L2(Tn)) ⊆ A�, which follows from Theorem 5 and Proposi-
tion 19(3), in addition to them satisfying P3. On the other hand, the classical
algebra has been constructed with the goal of minimality in mind, namely as
the smallest C*-algebra containing the canonical embedding of each algebra of
C0-functions on the quotient of T ∗

T
n by hyperplanes of the acting group R

2n.
Accepting that these embeddings are ‘necessary’ with regard to P3, the classi-
cal algebra fulfills P4. Considering also the Weyl quantisation map as a given,
this implies that the quantum algebras are no larger than necessary either, and
it is in this sense that P4 is fulfilled. It is, however, an open problem whether
the given algebras are minimal with respect to satisfying the aforementioned
inclusions, as well as properties P1–P3.
While this paper was under review, two papers were written that may be
considered follow-up papers, which demonstrate that the methods of this paper
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have at least two promising applications, and which offer specific suggestions
for future research. Let us briefly compare the results of these papers with
the present article. The first [20] deals with the continuum limit in lattice
gauge theory, both classically and quantum mechanically. On the quantum
side, the limit is constructed through a direct system of operator systems rather
than C∗-algebras, temporarily loosening the conditions on multiplicativity of
embedding maps in P3. The limit object, however, is naturally closed under
multiplication. Furthermore, the quantisation map between the limit algebras
is a strict deformation quantisation in the sense of [15, Definition II.1.1.2],
meaning it has better properties than the one in the current paper, specifically:

• The norm of the quantisation map depends continuously on � for values
greater than or equal to 0, rather than only at 0;

• The quantisation map is nondegenerate, i.e. for fixed �, the map is injec-
tive;

The second paper [21] deals with the thermodynamic limit of classical inter-
acting particle systems and contains results on closure under time evolution,
demonstrating another variant of P2.
It would be good to compare our approach with the one initiated by Rieffel
[25]. As the manifold T ∗

T
n has a canonical action of R

2n, there is an as-
sociated strict deformation quantisation of Cu(T ∗

T
n) as defined in [25] and

extended in [2]. These algebras also behave very well under embeddings, see
[26, Theorem 1.4 and Proposition 1.5]. The fact that Cu(T ∗

T
n) contains more

observables than CR(T ∗
T

n) may be considered beneficial, but may at the same
time complicate discussions of representations, states, etc. Due to the multiply-
connectedness of the torus, the strict deformation quantisation of Rieffel has
many inequivalent irreducible representations, and it is unclear how each of
them naturally corresponds to a quantum system that is realised in nature.
We conclude that, to relate the work in this paper to that of Rieffel, a bet-
ter understanding of the irreducible representations of his algebras, preferably
in relation to some natural faithful representation on some Hilbert space, is
desirable.
Finally, we would like to generalise the theory to that of compact, connected
Lie groups G, with the case G = SU(3) and powers thereof being of particular
interest because of its application to QCD, as stated in the introduction. Let
us sketch three possible directions for generalisations based on this paper:

• a geometric approach, similar to our original definition of the classical
resolvent algebra CR(T ∗

T
n) on the torus based on functions that are

constant on orbits of some action. It is, however, not so clear what this
action should be in the case of more general Lie groups;

• an algebraic approach, relying on the characterisation of the resolvent
algebra from Theorem 5, for instance replacing C(Tn)⊗̂W0

R(Rn) with
C(G)⊗̂W0

R(g∗). A reasonable guess for the quantisations of the functions
(q, p) �→ eip·ξ would be the operators that pull back by left translations
g �→ exp(�ξ)g. However, it could very well be that the momentum part
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of the algebra, W0
R(g∗), must be replaced with something else in order

to satisfy P1–P4.
• a categorical approach, expanding on the idea of looking for the smallest

subfunctor of Cb that accommodates embeddings of algebras that arise
as pullbacks of surjective maps between phase spaces, as alluded to in
the introduction. It is unclear though how to define such maps between
phase spaces in a way that their pullbacks restricted to the corresponding
spaces of Schwartz functions both remain physically interesting, and are
Poisson with respect to the canonical Poisson structure on C∞(T ∗Gn)
for non-abelian G (cf. [31, Theorem 2.9]). It also leaves the most work in
terms of characterisation of the resulting algebras like the one provided
for the torus in Theorem 5;

Inspiration might be taken from other sources as well, such as [22], possibly
adapting the Fedosov construction and the star product constructed in that
paper to the C∗-algebraic setting to obtain a strict deformation quantisation.
For an example of passing from formal to strict deformation quantisation, the
reader can consult [27], of which the introduction contains a nice overview of
various approaches to deformation quantisation.

One might also consider postponing the non-abelian generalisation, given
that the torus T is the structure group of quantum electrodynamics (QED),
of which a mathematically rigorous description is still lacking. We express the
hope that the results in this paper may contribute to the development of such
a theory.
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