

Delft University of Technology

Collective Decision Making through Self-regulation
Mechanisms and Algorithms for Self-regulation in Decision-Theoretic Planning
Scharpff, J.C.D.

DOI
10.4233/uuid:63d60259-e0bf-4852-b38b-c1157c390b0d
Publication date
2020
Document Version
Final published version
Citation (APA)
Scharpff, J. C. D. (2020). Collective Decision Making through Self-regulation: Mechanisms and Algorithms
for Self-regulation in Decision-Theoretic Planning. [Dissertation (TU Delft), Delft University of Technology].
TRAIL Research School. https://doi.org/10.4233/uuid:63d60259-e0bf-4852-b38b-c1157c390b0d

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:63d60259-e0bf-4852-b38b-c1157c390b0d
https://doi.org/10.4233/uuid:63d60259-e0bf-4852-b38b-c1157c390b0d

Collective Decision Making through
Self-regulation

Mechanisms and Algorithms for Self-regulation
in Decision-Theoretic Planning

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus Prof. dr. ir. T.H.J.J. van der Hagen;
Chair of the Board for Doctorates

to be defended publicly on

Friday 20 November 2020 at 12:30 o’clock

by

Joris Carl Derk SCHARPFF

Master of Science in Computer Science, Delft University of Technology, the
Netherlands

born in Leiden, the Netherlands

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Dr. M.M. de Weerdt, Delft University of Technology, promotor
Dr. M.T.J. Spaan, Delft University of Technology, promotor

Independent members:
Prof. dr. ir. A.R.M. Wolfert, Delft University of Technology
Prof. dr. R.R. Negenborn, Delft University of Technology
Prof. dr. M.H.M. Winands, Maastricht University
Dr. E.H. Gerding, University of Southampton

Other members:
Dr. A.W. Stam, Almende B.V.

This research is supported by NGInfra and Almende BV (03.21.ALM “Dynamic Contracting in Infrastructures”),

NWO DTC-NCAP (#612.001.109) and NWO VENI (#639.021.336).

Keywords: Self-regulation, decision-theoretic planning under uncertainty, dynamic mechanism
design, serious gaming

Printed by: Haveka BV, the Netherlands

Front & back: Sjoerd van der Vlugt

TRAIL Thesis Series no. T2020/17, the Netherlands TRAIL Research School

TRAIL
P.O. Box 5017
2600 GA Delft
The Netherlands
E-mail: info@rsTrail.nl

ISBN: 978-90-5584-274-2

Copyright c© 2020 by J.C.D. Scharpff

All rights reserved. No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying, recording or
by any information storage and retrieval system, without written permission from the author.

An electronic version of this dissertation is available at http://repository.tudelft.nl/.

info@rsTrail.nl
http://repository.tudelft.nl/

Summary

Over the two last decades, performance-based contracting has become the prevalent
approach in tenders for service delivery in public-private partnerships, changing the way
in which public organisations outsource their operations. Whereas traditional regulatory
contracts exhaustively stipulate the work, performance-based contracts state only the
desired output and the payment mechanism that is used. Under such an agreement
the service providers are free to plan and execute the work when and how they see fit,
while their reward (or fine) depends on their (negative) contribution to the contracted
objective. In other words: their performance. This approach to contracting offers
many promising advantages over complete governance such as increased flexibility,
preservation of autonomy and authority, stimulation of performance and innovation,
shared responsibility, less demand on governmental resources and, as a consequence,
better use of public funding.

The practical successes, however, have so far been limited to bilateral agreements.
It is currently not clear how to realise these results in group contracts with compe-
titive service providers. In an endeavour to transfer the aforementioned advantages
to multilateral agreements, both industry and academics now shift their attention to
the potential of performance-based contracting in group tenders. Of particular interest
is the use of monetary incentives to not only maximise performance but also instill
self-regulation, that is, achieving “an organization regulating itself without interven-
tion from external bodies”1. If applied well, self-regulation implements the key ideas of
performance-based contracting, i.e. letting the service providers ‘do what they do best’
and account them for their performance, while additionally stimulating them to coor-
dinate their operations amongst themselves. Nonetheless, the limited control over the
group decision-making process and the self-interest of service providers lead to greater
uncertainty regarding the outcomes thereof, an increased potential for opportunistic
behaviour, a misalignment of (societal) objectives and an overall greater complexity
experienced by group members and current planning algorithms. The central challenge
for this thesis is to overcome these obstacles that prevent a transfer of the benefits
and successes of bilateral performance-based contracting into group tenders. This is
formulated in the main research question as “Can algorithmic techniques be employed
to efficiently coordinate planning in self-regulating contracts and ensure successful out-
comes while preserving the autonomy and interests of the agents?”.

1 Self-regulation, Oxford Dictionary.

i

This thesis approaches the main challenge from a computer science perspective,
using a combination of the fields of decision-theoretic planning, game theory and serious
gaming. In particular, the challenge is addressed in two parts: 1) the design of incentives
that instill self-regulation and counter opportunistic behaviour by aligning interests,
and 2) solving the decision-coordination problem that service providers face when these
incentives are implemented in group contracts. As motivating example, a characteristic
problem from the domain of infrastructural maintenance planning is used. This problem
models the scheduling of maintenance activities for a highway network by a team
of service providers and highlights the tension between the objectives of maximising
individual profit and minimising the traffic hindrance. The latter objective results in
fines for the service providers relative to the traffic hindrance they jointly cause, thereby
creating a dependency between service providers and making it in their best interest to
coordinate their decisions. This problem is formulated as a multi-agent optimisation
problem, the maintenance planning problem (mpp), and used in the chapters
throughout this thesis to demonstrate the algorithms and techniques contributed by
this work.

Chapters 3 to 5 address the coordination of the service providers, assuming the
existence of a performance-based incentive mechanism. The focus in these chapters
is on producing decision policies during a preliminary planning phase that, if followed
during execution, in expectation optimise the total value realised from the execution of
contracted work. Chapter 3 presents a mathematical formulation of the maintenance
planning problem and demonstrates how it can be encoded as a sequential decision-
making problem in the Markov Decision Process (MDP) model. This encoding enables
a vast range of existing techniques to produce optimal decision policies for mpp. Ad-
ditionally, an approximate Monte-Carlo Tree Search approach is discussed to produce
decision policies more efficiently, albeit at the loss of quality. That is, these decision
policies are not guaranteed to maximise the overall expected value when implemen-
ted but they can be developed significantly faster. Chapter 4 resumes the pursuit of
optimal decision policies and presents a more efficient approach that exploits the struc-
ture of self-regulating planning problems such as mpp. More specifically, by grouping
result-equivalent decision sequences, the structure of the reward function in problems
such as mpp can be represented more compactly. This in turn allows for a more effi-
cient policy search algorithm, which is the heart of the Conditional Return Policy

Search (CoRe) solver. This novel multi-agent MDP solver outperforms the current
state-of-the-art on mpp problems and enables finding optimal decision policies for in-
stances that were previously deemed impossible to solve.

Thereafter Chapter 5 addresses the multi-objective nature that is inherent to mpp.
While Chapters 3 and 4 implicitly assumed that the objectives of maximising revenue
and minimising traffic hindrance can be operationalised into a single monetary value,
Chapter 5 models these goals as two distinct optimisation criteria that need to be balan-
ced explicitly through a linear scalarisation function. This function captures the relative
importance of both objectives and allows decision makers to specify (and alter) the ob-
jective weights during the execution of the decision policy. This flexibility is paired with
a substantial increase in computational complexity, however, because it requires finding
a set of decision policies that optimises the total reward for every possible combination

ii

of objective weights. While restricting to only linear scalarisation functions significantly
reduces the weight combinations that need to be considered, the computational effort
required to produce an optimal Convex Coverage Set (CSS) is still prohibitively large for
problems such as mpp. Therefore Chapter 5 proposes two algorithms to approximate
this set, the Approximate Optimistic Linear Support (AOLS) and Scalarised

Sample-based Iterative Improvement (SSII). The former is an approximate ver-
sion of the existing OLS algorithm that can use any approximate ε−MDP solver to
produce a solution set with a value that is guaranteed to be at least (1− ε) times the
value of the optimal CCS. SSII employs sampling to iteratively improve its approxi-
mation of the optimal CCS in particular areas of the search space, thus often leading
to better approximations within a specific region of focus albeit without theoretical
guarantees.

Chapters 6 and 7 shift their attention from decision coordination to the self-
interested nature of agents. As opposed to earlier chapters, these chapters assume
that the coordination of decisions is performed by the agents themselves and focus on
approaches that address the self-interested and autonomous nature of agents. Chap-
ter 6 presents two methods to overcome different hurdles of self-interest. The first, the
Dynamic Maintenance Mechanism, uses incentives to in expectation maximise the value
of contracted work and prevent opportunistic behaviour, i.e. manipulation of the me-
chanism to increase personal gain. This mechanism provides the strongest guarantees
but also has steep requirements: it must compute optimal decision policies many times
during its execution and demands from agents that they disclose their exact decision-
making model. The former condition is hard to satisfy due to the complexity of mpp
and the second due to the sensitive nature of this information. Hence a second ap-
proach is proposed based on best-response planning. In this approach service providers
iteratively submit their own decision policy as a response to the current joint decision
policy of other agents until the joint policy is acceptable to all. Computing single-agent
decision policies is less demanding, only requires sharing the decision themselves and
not the underlying information, and opportunistic behaviour can be mitigated by res-
ponding with a countermanding policy in the next iteration. The trade-off is that this
mechanism only guarantees that eventually the agents will settle on a joint policy, but
the quality thereof may be arbitrarily poor.

Chapter 7 evaluates the concept of self-regulation in a setting with human decision
makers through the use of a serious game. The “Road Maintenance Game” simulates
the maintenance planning problem in a self-regulating group contract based on
monetary incentives and lets human players play as service providers that need to plan
their maintenance work and coordinate with other players to optimise their profits.
Then, by analysing the decision made by the players and comparing them to their a
priori preference, the effectiveness of monetary incentives to influence behaviour and
the role of social relationship on this influence are investigated. The observations and
measurements made over the course of seven gaming sessions show that incentives are
an effective means to influence decision making but sometimes leads to unintended
behaviour of the players and can result in undesirable competition within the group.
When social relations between players are stronger, however, the same incentives do
successfully incite self-regulation. Although these results are not yet sufficient to con-

iii

clude that self-regulation always ensures satisfactory outcomes in group tenders, they
provide strong evidence for its potential in particularly collaborative settings such as
strategic partnerships or alliances. Moreover, the experiments once more confirm the
paramount role of relationships in partnerships and suggest the social dimension as a
key enabler for self-regulation.

The conclusion that follows from Chapters 3 to 7, and hence the answer to the main
research question, is that no one-size-fits-all method exists to implement self-regulation
in contracts that simultaneously satisfies all conditions. Further research is certainly
needed to bring the tools, techniques and learnings contributed by this thesis into real-
world contracts and should be complemented by counselling from other disciplines such
as contracting theory, (public) network management, legal studies, behavioural psycho-
logy and social sciences. Notwithstanding, this thesis lays the mathematical founda-
tion for the implementation of self-regulation in contracts through monetary incentives,
guides the design of incentive mechanisms to realise self-regulation, contributes coor-
dination methods to optimise the value of self-regulating contracts and demonstrates
the potential of monetary incentives to incite self-regulation in human decision makers.
Concurrently, the decision coordination algorithms presented here advance the current
state-of-the-art in sequential decision making, solving instances of planning problems
that have so far been considered intractable, and offer new angles for future research.
Promising next steps are applying the encoding and ‘flattening’ of multi-agent MDPs
to other problems and developing efficient representations, extending the potential of
Conditional Return Policy Search to a broader model and incorporate pruning,
heuristic or approximate techniques, a hybrid algorithm for approximate multi-objective
planning and approximate mechanism design to counter strategic behaviour in complex
sequential multi-agent decision-making problems. In parallel, the serious game offers
an empirical framework to researchers and professionals for further (automated) explo-
ration of agent strategies, opportunistic behaviour and contracting mechanisms with
the ultimate goal of bringing self-regulation into real-world group tenders.

iv

Samenvatting

Dit proefschrift onderzoekt het samenwerken van meerdere partijen op basis van zelf-
regulering, een aanpak die recentelijk zeer relevant is geworden in de context van pres-
tatiegericht contracteren met meerdere partijen. De populariteit van prestatiegericht
contracteren is in de laatste twee decennia zodanig gegroeid dat het tegenwoordig geldt
als voorkeursmethode bij de aanbesteding van diensten in (met name) publiek-private
samenwerkingen. Anders dan traditionele, gereguleerde contracten waarin de werk-
zaamheden volledig worden voorgeschreven, beschrijven prestatiegerichte contracten
alleen de gewenste eindresultaten en het betalingsmechanisme dat gehanteerd wordt.
Binnen een dergelijk contract zijn de dienstverleners vrij om het werk naar eigen in-
zicht te plannen en uit te voeren, maar de vergoeding die ze voor het werk ontvangen
wordt bepaald aan de hand van hun (negatieve) bijdrage aan het gecontracteerde doel.
Met andere woorden, hun prestaties. Door dienstverleners af te rekenen op hun pres-
taties bieden dergelijke contracten substantiële voordelen ten opzichte van volledig
gereguleerde contracten aan beide partijen. Dienstverleners ervaren een hoge mate
van autonomie, flexibiliteit en eigen verantwoordelijkheid, waardoor ze efficiënt te werk
kunnen gaan om het gecontracteerde doel te realiseren op hun eigen wijze. Innova-
tief werken wordt zodanig impliciet gestimuleerd: een dienstverlener kan immers meer
verdienen door op een slimme manier het gestelde doel te realiseren, wat typisch ook
weer voordelig is voor de contracterende partij. Daarnaast kan de contracterende partij
zich volledig op de gewenste uitkomst concentreren zonder de exacte invulling van de
werkzaamheden te bepalen, plannen en besturen. Daardoor hoeft de contracterende
partij niet meer over specialistische kennis te beschikken en wordt de verantwoorde-
lijkheid voor het resultaat grotendeels verlegd naar de uitvoerende partij. Onder meer
deze wenselijke eigenschappen van prestatiegericht contracteren hebben geleid tot een
veelvoudige en succesvolle inzet van prestatiegerichte contracten in de praktijk.

Echter, tot dusver zijn de successen van prestatiegericht contracteren voornamelijk
gelimiteerd tot bilaterale contracten tussen de aanbesteder en een enkele dienstver-
lener. De belangrijkste open vraag op dit moment is dan ook hoe prestatiegerichte
contracten succesvol ingezet kunnen worden in aanbestedingen met meerdere dienst-
verleners. De interesse gaat daarbij met name uit naar het gebruik van financiële stimuli
om niet alleen prestaties te maximaliseren maar ook zelfregulering te realiseren, d.w.z.
het bewerkstelligen van “een organisatie die zichzelf reguleert zonder bëınvloeding van

v

buitenaf”2. Een goede implementatie van zelfregulering binnen een contract realiseert
de kernideeën van prestatiegericht contracteren, oftewel de dienstverleners laten doen
waar ze goed in zijn en ze afrekenen op basis van hun prestatie, en stimuleert bovendien
de dienstverleners om hun werkzaamheden onderling af te stemmen. Dit laatste kan
gerealiseerd worden door dienstverleners te belonen of beboeten op basis van hun ge-
zamenlijke prestaties, maar een dergelijke aanpak is niet zonder obstakels. Het verlies
van controle over het beslisproces van de groep, de dynamiek van de interacties tus-
sen meerdere partijen en het eigenbelang van dienstverleners brengen uitdagingen met
zich mee die nieuw zijn ten opzichte van bilaterale contracten. Wanneer er meerdere
partijen betrokken zijn neemt de onzekerheid wat betreft de uitkomst van een aanbe-
steding sterk toe. Daarnaast zijn de belangen van de partijen zelden gelijk waardoor
mogelijk andere doelen nagestreefd worden dan gewenst. In het slechtste geval kan dit
zich uiten in opportunistisch gedrag van de dienstverleners waarbij ze hun eigen winst
proberen te vergroten ten koste van de aanbesteder, het gecontracteerde doel of andere
dienstverleners. Tenslotte is de dynamiek tussen de partijen zeer complex voor zowel
menselijke actoren als ook huidige planningsalgoritmen waardoor het optimaliseren van
de waarde van een aanbesteding een bijna onmogelijke opgave is. De belangrijkste
uitdaging voor dit proefschrift is derhalve het overwinnen van deze obstakels die het
nu onmogelijk maken om de successen van bilaterale prestatiegerichte contracten over
te brengen naar aanbestedingen met meerdere partijen. In het bijzonder wordt on-
derzocht hoe technieken en ideeën uit de informatica gebruikt kunnen worden om de
voorgenoemde obstakels te adresseren. Dit is geformuleerd in de hoofdvraag als “kun-
nen algoritmische technieken worden ingezet om planningen efficiënt te coördineren in
contracten met zelfregulering en verzekeren dat uitkomsten succesvol zijn waarbij de
autonomie en de belangen van agenten behouden blijven?”.

Dit proefschrift benadert de hoofdvraag vanuit een informaticaperspectief, waarbij
gebruik wordt gemaakt van een combinatie van besliskundig plannen, speltheorie en se-
rious gaming. Dit wordt gedaan in twee delen: 1) het ontwerpen van financiële stimuli
die leiden tot zelfregulering en opportunistisch gedrag ontmoedigen door belangen te
verenigen, en 2) het oplossen van het coördinatie probleem waar de dienstverleners mee
te maken krijgen als stimulatiemechanismen worden gëımplementeerd in groepscontrac-
ten. Bij het presenteren van de bijdragen in beide delen wordt gebruik gemaakt van
een karakteristiek probleem uit het domein van infrastructureel onderhoud, het main-
tenance planning problem (mpp) ofwel het “onderhoud planningsprobleem”. Dit
probleem modelleert het plannen van onderhoudswerkzaamheden aan een wegennet-
werk door een team van dienstverleners waarbij het conflict tussen het maximaliseren
van individuele winst en minimalisatie van gezamenlijke verkeershinder centraal staat.
Verkeershinder resulteert in dit model tot boetes voor de dienstverleners waarvan de
hoogte wordt bepaald door de mate van hinder die ze gezamenlijk veroorzaken, m.a.w.
hun gezamenlijke prestaties. Door dit boetemechanisme wordt het afstemmen van
planningen onderling in het eigenbelang van de dienstverleners omdat ze individueel
meer kunnen verdienen door gezamenlijke overlast te minimaliseren. Het mpp wordt
geformuleerd als een wiskundig optimalisatieprobleem met meerdere agenten in hoofd-

2 ’Self-regulation’, Oxford Dictonary, vertaald uit het Engels.

vi

stuk 3 en wordt vervolgens in alle hoofstukken gebruikt om de algoritmen en technieken
te demonstreren die door dit proefschrift worden bijgedragen.

Het eerste deel van het onderzoek, bestaande uit hoofdstukken 3 tot en met 5, richt
zich op het tweede deel van de hoofdvraag: de coördinatie tussen de (planningen van)
dienstverleners. In dit deel wordt dus nog niet onderzocht hoe betalingsmechanismen te
ontwerpen, maar hoe de waarde van een aanbesteding gemaximaliseerd kan worden als
een dergelijk betalingsmechanisme gebruikt wordt. In andere woorden, deze hoofdstuk-
ken behandelen planningsalgoritmen die het doel hebben een plan te produceren dat
in verwachting de waarde van een aanbesteding optimaliseert zodanig dat er rekening
wordt gehouden met de prestatieboetes en -beloningen. Hoofdstuk 3 presenteert een
wiskundige formulering van het maintenance planning problem en demonstreert
hoe dit probleem kan worden getransformeerd tot een sequentieel beslisprobleem in
het Markov Decision Process (MDP) model. Deze modellering maakt het mogelijk
om gebruik te maken van een breed scala aan bestaande technieken te gebruiken om
optimale plannen produceren voor mpp. Tevens wordt er een benaderingsaanpak be-
sproken op basis van Monte-Carlo Tree Search om plannen efficiënter te vinden, ten
koste van de kwaliteit van de oplossing. Dat wil zeggen, van deze plannen kan niet
worden gegarandeerd dat ze de waarde van een aanbesteding maximaliseren maar ze
kunnen wel significant sneller worden gevonden.

Hoofdstuk 4 vervolgt de lijn van optimale planning en introduceert een efficiëntere
aanpak die gebruik maakt van de structuur van zelfregulerende planningsproblemen
zoals mpp. Door beslispaden die tot gelijke beloningen leiden te groeperen, kan de
structuur van de beloningsfunctie van problemen zoals mpp compacter worden opge-
slagen. Op haar beurt kan deze compacte structuur worden gebruikt als basis voor een
efficiënter algoritme voor het vinden van plannen, dat de kern vormt van Conditional

Return Policy Search (CoRe). Dit nieuwe multiagent MDP zoekalgoritme presteert
beter dan bestaande algoritmen op mpp problemen en maakt het mogelijk plannen te
ontwikkelen voor instanties die voorheen niet opgelost konden worden.

Vervolgens gaat hoofdstuk 5 in op de multidimensionale aard van mpp. In eer-
dere hoofdstukken was (impliciet) aangenomen dat het maximaliseren van de winst
en minimaliseren van de overlast samen uit te drukken zijn in één enkel totaalbedrag.
In hoofdstuk 5 wordt deze aanname opgeheven en worden beide criteria gemodelleerd
als twee separate doelen die expliciet afgewogen moeten worden middels een lineaire
wegingsfunctie. Deze functie beschrijft het relatieve belang van beide doelen en maakt
het mogelijk voor planners om gewichten toe te kennen aan doelen en deze aan te
passen tijdens de uitvoering van het plan. Deze extra flexibiliteit gaat echter gepaard
met een substantiële toename van de computationele complexiteit aangezien nu een
oplossing gezocht wordt welke voor alle combinaties van gewichten een plan bevat
dat de waarde van de aanbesteding maximaliseert. De toename in complexiteit kan
gedeeltelijk worden beperkt door het limiteren tot alleen lineaire wegingsfuncties. Dit
type functie wordt veelvuldig gebruikt in de praktijk en omschrijft afwegingen zoals
een prijs per stuk of relatieve belangen tussen criteria. Door te beperken tot deze
set functies wordt het aantal gewichtscombinaties dat moet worden beschouwd signi-
ficant kleiner, maar het produceren van een optimale verzameling van plannen voor
deze subset van problemen, bekend als de Convex Coverage Set (CSS), blijft ook met

vii

de extra restrictie ondoenlijk voor complexe problemen zoals mpp. Om deze reden
worden in hoofdstuk 5 twee approximatiealgoritmen gëıntroduceerd die deze verzame-
ling benaderen: Approximate Optimistic Linear Support (AOLS) en Scalarised

Sample-based Iterative Improvement (SSII). De eerste is een benaderingsvariant
van het bestaande OLS algoritme dat gebruik kan maken van elk ε−MDP algoritme
om een CCS te produceren waarvan de waarde tenminste (1− ε) maal de waarde van
de optimale CSS heeft. Hierdoor is gegarandeerd dat het gevonden plan maximaal een
factor ε minder waarde realiseert ten opzichte van het optimale plan. Het tweede algo-
ritme, SSII, maakt gebruik van monsters om iteratief de benadering van de optimale
CCS te verbeteren in vooraf bepaalde regionen van de zoekruimte. Dit algoritme biedt
geen theoretische garanties maar resulteert in praktijk vaak tot betere benaderingen
in het specifieke interessegebied. Dit algoritme is te prefereren in situaties waarin bij-
voorbeeld vooraf bekend is wat de waarden van de gewichten ongeveer zullen zijn of
wanneer deze maar een beperkte bandbreedte hebben.

Vanaf hoofdstuk 6 verandert de focus van coördinatietechnieken naar het ontwerp
van de financiële stimuli om zelfregulering te realiseren, ofwel het eerste deel van de
hoofdvraag. In dit hoofdstuk worden twee methoden gëıntroduceerd die ieder ver-
schillende aspecten van eigenbelang behandelen. De eerste methode, het Dynamic
Maintenance Mechanism, maakt gebruik van financiële stimuli om de waarde van de
aanbesteding in verwachting te maximaliseren en opportunistisch gedrag te voorko-
men. Dat wil zeggen, dit mechanisme ontmoedigt het manipuleren van de uitkomsten
voor persoonlijk gewin door dit ongunstig te maken voor de manipulator. Dit mecha-
nisme biedt de beste theoretische garanties maar stelt ook flinke eisen: het moet vele
optimale plannen berekenen tijdens gebruik en het vergt van de agenten dat ze hun
volledige beslismodel kenbaar maken. Aan de eerste conditie is moeilijk te voldoen
vanwege de complexiteit van mpp, aan de tweede vanwege de gevoeligheid van de
informatie die moet worden prijsgegeven. Om deze redenen wordt in dit hoofdstuk een
tweede aanpak voorgesteld op basis van best-response planning. In deze methode stel-
len dienstverleners iteratief een plan op voor hun eigen beslissingen als reactie op het
huidige gezamenlijke plan. Anders gesteld, om de beurt krijgt elke agent de mogelijk-
heid een nieuw plan in te dienen voor zijn werkzaamheden, welke wordt gëıntegreerd in
het gezamenlijke plan. Het resulterende plan met de nieuwe planning voor de activitei-
ten van de laatstgenoemde agent wordt vervolgens aan de volgende agent voorgelegd,
waarop deze de mogelijkheid krijgt om te reageren op het nieuwe plan. Dit proces gaat
door totdat het samengestelde plan acceptabel is voor alle deelnemers. Het opstellen
van een plan voor één enkele agent is minder belastend, vergt alleen het delen van de
planningskeuzes en niet de informatie op basis waarvan deze tot stand is gekomen, en
eventueel opportunistisch gedrag kan tegen worden gegaan door te reageren met een
mitigerend plan in een volgende iteratie. De afweging is dat dit mechanisme alleen
kan garanderen dat uiteindelijk de agenten het eens worden over een gezamenlijk plan.
Over de maximale waarde die behaald kan worden aan de hand van het resulterende
gezamenlijke plan kan vooraf niets gezegd worden.

Hoofdstuk 7 evalueert het concept van zelfregulering wanneer het wordt gecon-
fronteerd met menselijke actoren door middel van een serious game (educatief spel).
Het “Road Maintenance Game” simuleert het maintenance planning problem

viii

binnen een groepscontract en laat mensen spelen in de rol van dienstverleners. De
spelers krijgen de opdracht hun onderhoudswerk naar eigen inzicht te plannen, waarbij
ze de mogelijkheid hebben om te coördineren met andere spelers om hun opbrengsten
te optimaliseren. Het coördineren wordt echter niet verplicht of gefaciliteerd door het
spel verder dan het geven van inzicht in de verwachte consequenties. Integendeel,
coördinatie zou vanuit de groep zelf moeten ontstaan als gevolg van de financiële sti-
muli van het contract. Met andere woorden, er wordt onderzocht of de stimuli effectief
zijn in het uitlokken van zelfregulering. Hierbij wordt extra aandacht besteed aan de
invloed van relaties tussen de spelers omdat eerdere onderzoeken uit wijzen dat deze
een grote rol speelt in het succes van samenwerkingsverbanden. De observaties en me-
tingen aan de hand van zeven gespeelde sessies laten zien dat het gebruik van financiële
stimuli een effectief middel is om beslissingen te bëınvloeden maar dat deze aanpak
soms leidt tot onbedoelde gedragswijzigingen. Dit kan resulteren in een ongewenste
competitie binnen de groep wat weer kan leiden tot onverwachte of ongewilde uitkom-
sten. In groepen met sterke sociale relaties tussen de spelers leidden dezelfde stimuli
in de experimenten wel tot de beoogde zelfregulering. Ondanks dat deze resultaten
nog niet voldoende zijn om te kunnen concluderen dat zelfregulering altijd leidt tot
tevredenheid over de uitkomsten in groepsaanbestedingen vormen ze een sterk bewijs
van de potentie van zelfregulering in met name coöperatieve samenwerkingsverbanden
zoals strategische partnerschappen en allianties. Daarnaast bevestigen de experimen-
tele resultaten nogmaals het enorme belang van relaties in samenwerkingsverbanden en
tonen ze dat de sociale dimensie een onmiskenbare factor is van zelfregulering.

De conclusie die volgt uit hoofdstukken 3 tot en met 7, en daarmee het antwoord op
de hoofdvraag, is dat er geen alomvattende methode bestaat om zelfregulering te imple-
menteren in contracten zodat aan alle gestelde criteria tegelijk voldaan wordt. Verder
onderzoek is noodzakelijk om de gereedschappen, methodes en lessen die worden bijge-
dragen door dit proefschrift toe te passen in groepsaanbestedingen in de praktijk. Dit
verdere onderzoek zou gepaard moeten gaan met advies vanuit andere disciplines zo-
als contracttheorie, (publiek) netwerk management, wetgeving en gedragspsychologie
en sociale wetenschappen. Desondanks legt dit proefschrift een wiskundige basis voor
de implementatie van zelfregulering in contracten door middel van financiële stimuli
gelegd, begeleidt dit werk het ontwerpen van zelfregulerende, prestatiegerichte mecha-
nismen en draagt het coördinatietechnieken bij ten behoeve van het maximaliseren van
de waarde van aanbestedingen of vergelijkbare problemen. Daarnaast demonstreert dit
werk het potentieel van financiële stimuli om zelfregulering te bewerkstelligen bij men-
selijke actoren. De algoritmen van dit proefschrift brengen de huidige ’state-of-the-art’
in sequentiële beslisproblemen een stap verder, waardoor oplossingen gevonden kun-
nen worden voor problemen die werden beschouwd als ondoenlijk. Ook suggereren ze
nieuwe invalshoeken voor volgende onderzoeken, zoals het toepassen van een slimme
MDP codering op bekende complexe problemen of het uitbreiden van Conditional

Return Policy Search naar andere problemen en domeinen. Parallel hieraan biedt
het educatieve spel een empirisch platform aan onderzoekers en professionals dat ge-
bruikt kan worden voor de verdere (geautomatiseerde) verkenning van agent strategieën,
opportunistisch gedrag en contractmechanismen met het einddoel zelfregulering over
te brengen naar actuele groepsaanbestedingen.

ix

Preface

Finally, after a long period of almost 10 years I can truthfully say that I am very close
to completing my PhD, a statement that I have made many times over the last years
but only now has become a reality. Indeed it has been an incredible journey for me. In
my opinion there is no other professional position with a similar degree of freedom in
the work, nor one that provides so many opportunities for personal growth, to expand
boundaries both literally and figuratively, and to come in touch with so many inspiring
people, ideas and environments. I have very much enjoyed my time as PhD student
everywhere: as a young researcher in the Almende office in Rotterdam, as a member of
the Algorithmics group at the University of Delft and even as a presenter at international
conferences a few times. Perhaps I have enjoyed my time as a PhD student – and the
activities typical to one of such stature – slightly too much, causing my journey to last
a bit longer than your average PhD3 and making it necessary to take up a position in
industry in 2015 while the thesis was not completed yet.

Now whereas a switch from full-time student to part-time researcher working from
home and part-time software architect at Divider BV is not really beneficial to the pace
of writing a dissertation, working as a full-time manager of a software development
department that grows from 3 to 20 developers in the middle of a take-over by KPN,
two relocations and several reorganisations while maintaining a social life is certainly
detrimental to its progress. Still, having ‘two jobs’ concurrently gave me the opportunity
to experience both sides, i.e. academics and industry, and draw interesting parallels
between theory and practice. For instance, I have observed that many interactions in
a corporate environment such as that of KPN follow game-theoretical models or that
my style of management much resembles that of self-regulation (and that this should
in my opinion be the preferred style of all management). On the other hand, working
in industry has given me a result-driven attitude that certainly helped me to complete
this thesis. It must also be said that while doing a PhD might sometimes feel stressful,
especially when paper-deadlines are due, I have experienced it as a walk in the park
compared to the pace of a competitive business environment. But then again, that
may be why I took slightly longer.

Although there has not been a single moment in which I really considered quitting,
I do have a piece of first-hand advice for those just starting out. If you are reading this

3 Ten years is not much longer than the average 8.2 years according to the New York Times, see
https: // www. nytimes. com/ 2007/ 10/ 03/ education/ 03education. html .

xi

https://www.nytimes.com/2007/10/03/education/03education.html

and thinking about doing a PhD yourself or if you are currently at the start of your
own amazing journey, I can definitely recommend finishing your PhD before starting
a new job. I am certain that while I have (tried to) put in a lot of effort during the
evenings and weekends, the effective work produced thereby during the last five years
could have been done in approximately 2 or 3 months of consecutive writing, if that
time would have been available. It is hard to keep up the writing pace with just a
couple of hours per week. A large part of these hours is ‘wasted’ on catching up or
go unused entirely after intensive days at work. Moreover, the nagging feeling of guilt
that you have when deciding to spend time on things other than writing the thesis is
definitely one I am not going to miss. Handing in this thesis after almost ten years will
be paired with an enormous feeling of relief, that is for sure.

Regardless of the total duration and hardships it has been a wonderful experience,
one that has been made possible by a lot of people that I would like to thank here.
Foremost my gratitude goes out to my promotors at the TU Delft, Mathijs and Matthijs,
and my former promotor Cees for all the fruitful discussions we have had, your ever
critical but always constructive feedback and your patience and continued belief. I
would like to thank my counsellors Andries and Hans from Almende who helped me
to keep in mind the practical side and relevance of the research and gave me the
opportunity to work in an inspiring environment of young researchers and professionals
(and fusball). Also I am very grateful for the extension of the deadline by 5 months
that you have made possible. Even though I was not able to complete the thesis in
this extra time, it allowed me to get sufficiently far as to not give up when I had to
combine the PhD with my new job at Divider. Speaking of which, I want to thank
also the people at Divider – and later KPN – that have been very supportive in my
efforts to complete ‘the last mile’, in particular Arno, Pieter and especially Kim who
convinced me to request leave and get it over with and who made me promise her that
she would know the moment I submitted my final version. Of course, my gratitude
also goes out to all the other beautiful colleagues I have met in all three of my working
environments.

A special thanks I would like to extend to my co-authors who have been paramount
in getting the ideas of this thesis published. Leentje and Daan for our combined work
on the dynamic contracting framework and the serious game, Diederik for the many
interesting sparring sessions on decision-theoretic planning that culminated into two
excellent papers, and the many others that contributed their exceptional knowledge
and experience to this academic endeavour of which I would like to name a few: Frans
Oliehoek, Shimon Whiteson, Paulien Herder, Martin de Jong and Monica Altamirano.
Additionally, my appreciation goes out to all the members of the User Advisory Board
who have brought into this research many of the practical considerations and lead to
the conception of the serious game. Your contributions have been essential in the
development and validation of the serious game. Equally I want to thank all of the
participants of the serious gaming sessions and associated questionnaires who have
provided us with so much valuable data.

Finally my very personal thanks goes out to three people in particular, the first two
of which are my parents who have always supported me to make the most out of all my
opportunities and be the best version of myself I can be. While my mother taught me

xii

the virtues of working hard, caring for people and staying humble and compassionate,
my father has been my principal inspiration to intellectually challenge myself and to
pursue the highest possible level of education, amongst many other things. Last but
not least is of course my own Laura, to whom I own both my colossal gratitude as well
as an extensive apology for the many hours that we could not spend together because
of this dissertation. I want you to know that without your continuous support and
understanding I would not have been able to complete this thesis and I am happy to
say that I told you I would finish it before marrying you.

Joris Scharpff

Zoeterwoude, 30 December 2019

xiii

Table of Contents

Summary i

Samenvatting v

Preface xi

1 Decision Coordination through Self-regulation 1
1.1 Road Maintenance Planning . 5
1.2 Implementing Self-regulation: Dynamic Contracting 11
1.3 The Challenges of Self-regulation in Contracts 15
1.4 Outline and Contributions . 23

2 Stochastic Planning using Markov Decision Processes 27
2.1 Markov Decision Processes . 27
2.2 Finding Optimal Policies . 33
2.3 Factored MDPs . 35
2.4 Partial Observability . 37
2.5 Planning with Multiple Agents . 43
2.6 Gaining Traction on Dec-POMDPs . 50
2.7 Planning with Multiple Objectives . 58

3 Solving the Maintenance Planning Problem 65
3.1 The Maintenance Planning Problem 67
3.2 Solving MPP with Dynamic Programming 77
3.3 Maintenance Planning as a Markov Decision Process 78
3.4 Approximation of Maintenance Plans 89
3.5 Empirical Evaluation of MPP . 93
3.6 Further Discussion . 97

4 Maintenance Planning with Multiple Agents 99
4.1 Returns in MDP . 102
4.2 Conditional Return Graphs . 105
4.3 Policy Search based on Returns . 114
4.4 Experimental Evaluation of CoRe . 120
4.5 Further Discussion . 123

xiv

5 Maintenance Planning with Multiple Objectives 127
5.1 Multi-objective Planning with Unknown Weights 130
5.2 Approximate Optimistic Linear Support 134
5.3 Scalarised Sample-based Iterative Improvement 138
5.4 Comparison of Multi-objective Algorithms 142
5.5 Further Discussion . 147

6 Maintenance Planning with Self-interested Agents 149
6.1 A Dynamic Mechanism Approach to Maintenance Planning 150
6.2 Selfish Best-response Maintenance Planning 165
6.3 Further Discussion . 171

7 The Game of Maintenance Planning 173
7.1 The Road Maintenance Game . 175
7.2 Gaming Results . 183
7.3 Evaluation of Gaming Results . 189
7.4 Further Discussion . 191

8 Discussion and Conclusions 193
8.1 The Challenges of Self-regulation . 194
8.2 Conclusion . 197
8.3 Implications and Next Steps . 198

Bibliography 205

Publications and Supplementary Material 226

TRAIL Thesis Series 228

Appendices 231
A Proofs . 232
B Computing Game Scores . 243
C Game Session Outcomes . 250
D Computational Complexity Theory . 259
E Game Theory and Mechanism Design 262

xv

Chapter 1

Decision Coordination through
Self-regulation

Central to this thesis is the conflict of interest that is typical to many group decision-
making problems: the misalignment between the goals of the individual group members
and that of the group as a whole. In many day-to-day situations, people are grouped
together to complete complex tasks that can not or may not be completed by any
of them individually, or these tasks are simply not in their best interest. Examples
thereof are students doing a group assignment, colleagues combining skills to complete
a project or competing construction companies cooperating to realise a real-estate
project. Although the group members share a common goal of completing or optimising
a complex task, they are typically autonomous, self-interested entities that strive to
maximise their personal gain from participating. Oftentimes the group members are
not really interested in performing the joint task the best they can; they are contracted
to participate and only the compensation for their contribution is what motivates them
to do the work. For example, the students are primarily interested in their own grade
and will put most of their effort in the parts they will be accounted for personally.
The same may apply to the team of colleagues: they are likely to focus most on the
work that is demanded or monitored by their line manager, which is not necessarily in
the best interest of completing their joint project. In the scenario of the construction
companies, they will likely plan their activities to maximise their own profit without
regard for other contractors or the overall project schedule.

Naturally, it is not uncommon for group members to be self-interested. On the con-
trary, most models of decision making consider agents such as the students, colleagues
and companies as autonomous, rational entities with personal goals and interests that
they seek to optimise. In particular decision theory and game theory, two of the ma-
jor strands of research on decision making, are both founded upon the model of an
agent choosing its actions to maximise its expected utility, i.e. the gain it expects to
obtain based upon its knowledge of the current and anticipated future states of the
environment. This model is known as rational decision making. While in practice
the assumption of agent rationality is typically too strong, it does approximate the

1

CHAPTER 1. DECISION COORDINATION THROUGH SELF-REGULATION

decision-making process of a single agent and is therefore used as theoretical basis
in most multi-agent decision-making research focusing on decision-making strategies.
Indeed, the model of rational decision making can be used to optimise the goal(s) of
a single agent by computing the maximal expected gain over all possible decisions and
consequential futures within the model. If a group of such agents has to solve a common
task, however, optimising the utility of all agents simultaneously is impossible unless
their interests align, their personal goals are irrelevant or they are non-autonomous.
In some situations this is inherently the case: an alliance of taxi companies jointly
scheduling trips (aligned interests), a team of firefighters seeking to exterminate all
fires as fast as possible (no personal interest) or factory robots jointly planning their
operations to maximise total production output (no autonomy). In many other group
decision-making situations, however, autonomy and misalignment need to be addressed
if the aim is to optimise a global goal. This thesis focuses on problems in which agents
are requested to solve a common task but the interests of agents do not align.

In particular, this thesis addresses sequential decision-making processes in which
groups of autonomous agents have to make multiple decisions over time with poten-
tially uncertain outcomes to optimise a global goal, known as collaborative multi-agent
planning under uncertainty or simply collaborative planning. A practical example of col-
laborative planning is joint maintenance of the national highway network in the domain
of infrastructural maintenance, the motivating domain at the origin of this research.
But the problem of planning in the presence of conflicting interests is certainly not lim-
ited to this domain. Occurrences can be found in a multitude of settings: scheduling
the loading and unloading of vessels in the harbour with the global goal of optimising
the transfer of goods [82], optimisation of a supply chain where parts of the chain are
controlled locally [136] and dial-a-ride coordination where individual taxi drivers seek to
maximise their fares but serve customers collectively to get more jobs with less mileage
[260]. Indeed, collaborative planning with a misalignment of interests occurs in many
domains and settings, and therefore it is of great academic and industrial interest.

Currently the most prevalent approach to align the goals of group members is
through governance, also known as (complete) regulation. In this approach a coor-
dinator or director is appointed to coordinate the decisions of the group members,
typically by the party that defined the group goal, in order to prevent individual inter-
ests from harming the group goals. Reconsidering the examples of conflicting interests
given at the beginning of this chapter, in the case of the students this director could
be the teacher that forces students to work together in order to succeed in their as-
signment. The co-workers may decide to elect a coordinator/manager to lead their
project team and coordinate tasks between team members. In the situation of partner-
ing construction companies, the contracting party that procured the maintenance may
choose to act as a coordinator and impose a joint maintenance plan. The companies
must then adhere to this schedule, otherwise they will be fined or even disqualified
from further participation.

Although regulation can overcome the misalignment of objectives through enforce-
ment of (joint) decisions, it is paired with significant effort and responsibility on the
behalf of the director. First of all, complete regulation requires the director to fully
understand the decision-making model of the agents to produce a coordinated schedule

2

1
that optimises the group goal. This implies that the director has to know the capa-
bilities and skills of all group members and match their level of expertise in order to
understand the choices available to the agents. Consequentially, the director is solely
responsible for dealing with aspects like risk-management, liability, planning robust-
ness, inter-agent communication and coordination. For the agents similar arguments
can be made against complete regulation. Agents are required to fully disclose private
information regarding for instance costs, resources, material, risks, preferences, etc. to
the director; something that especially commercial contractors are unwilling to share
because it might undermine their competitive position. The agents will have to com-
pletely submit their autonomy to the joint schedule imposed by the director. Finally,
even if a complete model of all agents would be available to the director, finding a
high-quality joint schedule poses a non-trivial computational challenge to automated
planning support tools (as becomes clear in Chapter 3).

For these reasons significant attention has recently gone towards performance-based
approaches that do not seek to control the decision-making process of the group mem-
bers, but instead allow the agents to make their own planning decisions while accounting
them for their (negative) contribution to the global goals [41, 45, 218]. The key idea
is that through e.g. monetary performance incentives, the agents are rewarded exactly
when they contribute to the global goals thus aligning both interests. Put differently,
a successful performance-based incentive scheme ensures that the agents profit most
when the global goal is achieved. Of particular interest and true to the core ideas of
performance-based methods are approaches that strive to incite self-regulation within
the group [75, 124, 255], i.e. achieving “an organization regulating itself without in-
tervention from external bodies” [2]. The main idea of such approaches is that if a
group is self-regulating, group members will actively seek to coordinate their decision
making to achieve the global goal without the support or interference of any director.
The key to successful implementation of self-regulation is hence to provide the right
incentives to the agents, based upon their performance as a group, so that it becomes
in their own best interest to both optimise the global goal as well as coordinate their
joint efforts internally.

Revisiting the previous examples one last time, self-regulation in the case of the
school project can be based upon individual contributions towards the success of the
project. The less effort a student puts in the project – arguably the interest of most
students – the lower its grade will be. However, if the final grade of the group members
is set to the lowest in the team they can be stimulated to work together and motivate
each other to do a (better) job as it is in the interest of the entire group to make the
lowest grade as high as possible. To get the team of co-workers to collaborate better
and complete a project faster, a financial bonus could be given to all co-workers but
only when the entire project is completed before the deadline so they are incited to
ensure a swift joint completion. For the construction alliance a penalty can be given
to all team members for every day the construction project continues past the due
date, even if they have completed their part already. Note that these are just examples
of incentive schemes; many other self-regulation mechanisms may be employed by a
contracting party to achieve their desired results.

3

CHAPTER 1. DECISION COORDINATION THROUGH SELF-REGULATION

If applied well, self-regulation preserves the autonomy of the agents and lets them
‘do what they do best’, making the most out of their skills, capabilities, resources
and expertise, while implicitly optimising the global goal. However, the limited control
over the group decision-making process may lead to greater uncertainty regarding the
outcomes thereof, an increased potential for opportunistic and self-interested behaviour,
a misalignment of (societal) objectives and an overall greater complexity experienced
by the group members. Even though the first cautious applications of self-regulation
are being seen in contracts [34, 43, 57, 76]4, still much is unknown regarding the exact
opportunities, risks and outcomes associated with this novel approach to contracting.
As of now, no guidelines have yet been proposed on how to implement self-regulation
within contracts and no guarantees can be given with respect to the outcomes of
such a contracting approach. The concept of self-regulation is promising but neither
does there exist a theoretical framework for its implementation nor is it feasible to
experiment with these ideas in real-world contracts due to the high risks and costs
associated with typical multi-agent service delivery projects. In other words, how to
successfully implement self-regulation in contracts is currently unknown.

This thesis addresses this problem through theory and techniques from computer
science, with a focus on the domain of road maintenance planning ; a practical and
intuitive example domain in which self-regulation is being investigated for its potential
[73, 115, 197]. More specifically, the literature of game theory is applied to model the
execution of road maintenance contracts as a game that can be analysed mathemati-
cally. Given such a game, techniques from mechanism design are employed to design
incentive structures that will ensure desired outcomes when implemented in the game.
That is, mechanism design provides the guidelines on how to implement incentives that
achieve self-regulation and guarantee successful delivery of road maintenance projects.
Complementary to the design of incentives, algorithmic techniques from the domain
of multi-agent decision making are employed to coordinate planning decisions while
accounting for the incentives. Automated planning methods help both the director as
well as the agents to manage the complexity of the decisions in this domain and max-
imise their obtained value from the contracted work. Finally, serious gaming offers the
toolbox to build a simulated environment of road maintenance planning and experiment
with self-regulation contracts without the risks and costs of real-world implementation.

In summary, this thesis employs algorithmic techniques from aforementioned fields
to support the implementation of self-regulation within contracts by contributing tools
for the design, implementation and validation of self-regulating incentives in the con-
text of road maintenance planning. The next section introduces the road maintenance
domain and focuses in particular on the exemplifying problem of this thesis, the main-
tenance planning problem. In this problem a group of service providers is re-
sponsible for the scheduling of their maintenance activities while their payments are
relative to their joint impact on traffic, thus making their rewards interdependent and
hence necessitating coordination amongst the service providers if they are to optimise
their gain. In Section 1.2 it is discussed how innovative contracts could be employed

4 Albeit that most current contracts assume collaborative parties with joint decision coordination, not
the self-interested and fully autonomous parties that makes self-regulation different from strategic
alliances.

4

1

1.1. ROAD MAINTENANCE PLANNING

to maximise the gains in tenders for such problems, building upon ideas of previous
work in the fields of contract management, (public) network management5, decision-
theoretic planning and mechanism design. This section also identifies several gaps in
the current literature that will have to be addressed before self-regulation can be suc-
cessfully employed in realistic tenders, which are presented in Section 1.3. The chapter
is concluded with an overview of the contributions of this work and a reading guide in
Section 1.4.

1.1 Road Maintenance Planning

The source of inspiration for the research performed and presented in this thesis orig-
inates mainly from the domain of infrastructural maintenance and, in particular, the
challenges that arise when trying to plan road maintenance operations optimally. The
elegance of planning problems from the domain of infrastructure is that while it is rel-
atively easy to formulate interesting and intuitive problems, they typically involve com-
plicated interactions and dependencies between self-interested agents, complex tasks
with uncertain outcomes and long project durations. Furthermore, the autonomy of
agents advocates decentralised approaches in the sense that every agent should be able
to make its own planning decisions independently, adding to the problem difficulty. All
these ingredients combined makes infrastructural maintenance planning very hard to
optimise, even despite the availability of automated planning tools. On the other hand,
many people experience or have experienced the effects of (poor) road maintenance
planning at some point – some even on a daily basis – and can therefore easily relate
to the problem as well as its economical, societal and personal impact.

By no means is the topic of infrastructural maintenance or in particular its impact
on society a new one. However, over the last decade the nature of infrastructural
maintenance projects has changed significantly for both public institutions as well as
private companies. At the origin of this change is the combination of an increase in
network usage, thus (further) stressing the capacity of the network and increasing the
impact of maintenance, with a funding that does not scale accordingly [10]. Considering
the case of the Dutch national highways, traffic intensity has grown from 2,089 in 2011
to 2,261 vehicles per hour on average in 2017 on the same highway segments [3], car
ownership has increased from 10.8M in 2015 to 11.5M cars owned in 2019 [4], and
the total distance travelled on the national highway network has risen from 128.3B in
2011 to 137.1B KM in 2018 [5]. In contrast, the budget that is allocated to the Dutch
national road authority Rijkswaterstaat has barely increased in the recent years [1] and
will not expand in the near future [6]. This matches the current trend of road authorities
reporting that their budget is no longer sufficient to achieve satisfactory maintenance
levels over all parts of the infrastructure [10]. Hence innovative approaches to road
maintenance planning are being sought that make better use of the limited resources
and funds that is available.

5 The field of network management is concerned with how to manage a group of (contracted) agents,
not the actual management of an infrastructural network (see Remark 7.1).

5

CHAPTER 1. DECISION COORDINATION THROUGH SELF-REGULATION

One approach that has become exceptionally popular since the turn of the century
is performance-based contracting [41, 45, 113, 218, 268], also referred to as value-
driven or best-value contracting [239, 246], especially in the context of public-private
partnerships (PPP) [75, 200] that characterise the relation between road authority
and service providers in the infrastructural maintenance domain. Performance-based
contracts change the way maintenance works are tendered from an exhaustive project
specification into an output-driven agreement. Whereas traditional contracts describe
every element of the work, including prices, resources and planning, a performance-
based contract simply specifies the desired result and an associated pricing scheme
and leaves the planning and execution of work to the service providers. This pric-
ing scheme or incentive mechanism rewards contractors for positive contribution to
the goals and/or penalises them when performance is not adequate. Hence, the road
authority does no longer have to govern maintenance work, instead it monitors perfor-
mance and rewards or fines service providers accordingly. The service providers, on the
other hand, experience more freedom in implementing the contract in the best way they
see fit and will not be ‘held back’ by the resources or expertise of the road authority.
Overall, performance-based contracting offers many promising advantages over com-
plete governance: increased flexibility, preservation of autonomy and authority, better
use of expertise and skill, more innovation, higher level of performance of each individ-
ual participant and, consequentially, better use of public funding [7, 47, 141, 152, 233].
Furthermore, by transferring control and responsibility to the contractors, asset man-
agement can be outsourced [156, 100] and the burden on governmental resources can
be greatly reduced [75, 124].

Performance-based contracting has recently proven itself as a successful approach
in practice. Incentive mechanisms are a valuable tool in achieving favourable outcomes
[41, 45, 218] and have demonstrated their worth in actual tenders [43, 62, 268]. These
successes, however, are currently limited to bilateral agreements, i.e. partnerships be-
tween the road authority and a single service provider. While this is without a doubt
an accomplishment in the domain, it fails to incorporate the characteristic ‘network
aspect’ of road maintenance planning. That is, typically in road maintenance multiple
works are being performed concurrently by multiple of service providers on the same
infrastructure, leading to dependencies and interactions between them. Coordination
of these works is essential to minimise the impact of maintenance on the network
throughput [115, 197, 236]. Of course, this network-level coordination could be per-
formed by the road authority but that implies a regression to traditional governance
models. Therefore, road authorities have recently begun to explore the potential of
performance-based contracts to group tenders with a particular interest to instill self-
regulation on the network level. The key idea is simple: by incorporating the network-
level dependencies in the incentive mechanisms of performance-based contracts, service
providers are inherently motivated to coordinate their activities. The design and im-
plementation of such a network-level incentive scheme, however, is not. Without the
complete control offered by governance, the benefits promised by performance-based
contracting are accompanied by more complexity, greater uncertainty, increased poten-
tial for opportunistic, self-interested behaviour and possible misalignment of (societal)
objectives [11], and may thus result in sub-optimal network performance or even total

6

1

1.1. ROAD MAINTENANCE PLANNING

failure when not properly implemented [109, 125]. Given that the annual maintenance
budget of the Dutch national highway authority approximates 1 billion euro every year
[6], the cost of failure in this domain can be substantial. Recent practical applications
of these new approaches show that information asymmetry, lack of transparency and
distrust result in parties falling back to traditional control-oriented relationship between
road authority and service providers [239], resulting in costly governmental interven-
tions [90, 100]. Naturally this problem is not limited to the Dutch road authority, or
the domain of infrastructural maintenance, many related and similar domains face the
same challenge with multilateral agreements. Examples can be found in large-scale
maintenance projects [83, 235], the construction sector [121], manufacturing industry
[122], the energy sector [74], system-support engineering [174] and pollution control
initiatives [123]. The main question is common to all these domains: how to implement
the benefits of performance-based contracting in a group contract while avoiding the
potential pitfalls thereof?

This thesis approaches that question from an algorithmic point of view, using a
mathematical formulation of a road maintenance planning problem that exemplifies the
core of this question. This problem, called the maintenance planning problem
(mpp), is a decision-theoretic formulation that models the planning of maintenance
work and incorporates the network-level dependencies between service providers. The
maintenance planning problem was part of the work of Altamirano et al. [9] (al-
though no name was given to the decision problem) to study opportunistic behaviour of
contractors in a road maintenance planning game called “Road Roles”. This problem is
by no means a complete model of the real world, neither does it encompass every aspect
or challenge from the domain; it is however an illustrative and accessible formulation
of a planning problem that captures the characteristic complexities of the infrastruc-
tural domain and is representative for many similar collaborative planning problems.
Furthermore, its mathematical formulation enables reasoning about (joint) strategies
to optimally achieve planning goals, i.e. the coordination of maintenance work. But
that is the subject of subsequent chapters, here the problem of maintenance planning,
with its challenges, is illustrated by example.

At the core of road maintenance planning is the infrastructure itself, which is com-
prised of a collection of assets such as road segments, traffic signs, bridges, tunnels,
etc. The assets are generally owned by a public institution, often a national or fed-
eral government, and managed by another, like the national highway authority or local
government. These two are commonly referred to as the asset owner and the asset
manager (AM) respectively, where the latter is responsible for the upkeep of the assets
owned by the former. Therefore the role of the AM is to identify the components
of the infrastructure that require maintenance, formulate corresponding maintenance
projects and ensure successful completion of these projects, taking into account the
demands of the asset owner and the users it represents. As such, the asset manager
has a responsibility towards society (the asset user) not only to maintain a high-quality
network, but also to prevent or minimise other negative impact like project delays,
environmental harm and traffic hindrance as a result of performing maintenance.

Although the AM is responsible for the outcomes of aforementioned projects, the
actual maintenance is rarely performed by the asset manager itself. More commonly

7

CHAPTER 1. DECISION COORDINATION THROUGH SELF-REGULATION

this is outsourced to service providers (SPs), commercial companies that are contracted
to perform the maintenance projects identified by the asset manager. Their best inter-
est, however, is not necessarily similar to that of the AM: the service providers focus
primarily on maximising their profits and are not inherently motivated to consider the
other goals of the asset manager, i.e. low hindrance or environmental impact.6 This
misalignment in objectives may lead to undesirable outcomes of maintenance projects
with potentially severe economic impact to society, in particular when dealing with a
group of such self-interested SPs. This is illustrated through the following example of
road maintenance planning in the context of a realistic highway network.

(a) (b)

Figure 1.1 An example of a complex road network is shown in (a), inspired by a real-world
road network. The assignments of highways over the SPs is illustrated in (b), where each SP
is identified by a unique colour.

Figure 1.1a shows a complex network of highways (the assets). Although the net-
work in this example is fictitious, it is modelled based upon the primary roads of a
real-world traffic network. It is composed of 12 different highways that have, in this
example, been divided into 61 arbitrarily chosen named segments. After performing a
quality assessment, the asset manager has identified that next year the highways A80,
A82, A83, A86 and A101 are most in need of service. Therefore the AM designs and
procures five maintenance projects corresponding to the previously identified highways.
For each project a “classical” contract is drafted in which the goal is to service all of the
segments of a single highway, so that they meet the quality demands required by the
AM, within the period of one year for a fixed price per segment. The SPs themselves
are responsible for planning the work and they are rewarded each time they have suc-
cessfully completed the maintenance of a segment. For uncompleted or unsatisfactory
maintenance of segments, service providers will receive no payment. After a procure-
ment phase with several rounds of negotiation and bidding, five service providers are
elected as winners and each SP is made responsible for a single maintenance project.
The assignment of highway projects that resulted from procurement is shown in Fig-

6 In reality continuation, reputation gain or ‘getting a foot in the door’ are also very valid reasons
for a service provider to compete for a tender. The simplistic view taken here, which is oftentimes
close to reality, is that they are mostly concerned with maximising their profits.

8

1

1.1. ROAD MAINTENANCE PLANNING

ure 1.1b. Now the execution phase starts and the service providers need to plan and
perform their maintenance operations.

(a) (b)

Figure 1.2 (a) The A101 region in which 4 service providers are active. The normal traffic
intensity within this area is illustrated in (b), expressed as average sum of hours of traffic time
lost per month.

To clearly demonstrate the impact of goal misalignment on the outcome of the
process, this example focuses on the planning and execution of maintenance work
within a smaller area of this network. Consider the region around the A101 depicted in
Figure 1.2a. In this region there are four highways due for maintenance, each serviced
by a different SP. In order to quantify the impact that maintenance has on the network
throughput, the asset manager monitors the traffic time lost for every month of the
contract period. The traffic time lost, or ttl for short, captures the additional travel
time (in hours) summed over all network users such as commuters, transport carriers
and recreational traffic as an effect of the reduced capacity of the network compared
to network at full capacity. That is, it operationalises the increase in traffic due to
network disruptions caused by e.g. maintenance, accidents or major events.

For the A101 area, Figure 1.2b shows the ‘regular‘ traffic time losses for this area
based upon historical measurements, i.e. when the network is not full capacity due
to for instance accidents or events. For instance, the graph of Figure 1.2b shows
that under regular conditions, the traffic in March leads to a median traffic time lost of
approximately 2,750 hours due to delays within this area but monthly traffic time losses
of over 3,000 hours are not uncommon.7 When performing maintenance operations
these traffic time lost figures typically increase significantly. Many operations require
at least a partial closure of segments, but occasionally all lanes in one or even both
directions of a highway need to be closed entirely for service. Blocking roads is a
necessary evil that has to be endured to improve the network quality but inherently
paired with a (major) increase of ttl. Given that the value of time for commuters is
estimated around 20 euro per hour lost [153], the economic impact of additional ttl
due to maintenance can be considerable.

7 While the figures of this example are fictitious, they are not completely unrealistic. Rijkswaterstaat,
the Dutch road authority and asset manager, has performed quarterly monitoring of traffic intensity
on the Dutch road network between 2008 and 2012, and reported several segments where the
monthly average ttl is of the magnitude of multiple thousand of hours. See for example Brandt [42].

9

CHAPTER 1. DECISION COORDINATION THROUGH SELF-REGULATION

Even though ttl increases cannot be avoided, the negative impact of maintenance on
the network throughput can be limited by the service providers through careful planning
and applying less intrusive (but possibly more costly) maintenance approaches. An
SP could for instance temporarily hire extra workers to decrease lead times, thereby
reducing the duration of a road closure, or plan its work during ‘quiet hours’ in the
night. However, even though the SP can limit the negative impact of its own work, it
has no control over all maintenance operations. As in the example of Figure 1.2b it
may be that multiple SPs act within the same area and therefore the planning decisions
of other SPs influence the network throughput as well. In particular, given that the
capacity of the network is limited, concurrent maintenance of two or more segments
within a close proximity is likely to cause a super-linear increase of ttl, with potentially
disastrous travel times for the network user. This is illustrated in the traffic density map
of Figure 1.3b, with the regular network traffic shown in Figure 1.3a. On the other
hand, in some cases it may not matter whether maintenance is performed concurrently
(Figure 1.3c) or simultaneous maintenance, with heavy but brief hindrance, may be
less intrusive than having two sequential road closures (Figure 1.3d).

(a) (b) (c) (d)

Figure 1.3 Various maintenance scenarios: (a) normal traffic conditions in the absence of
maintenance, (b) many SPs working simultaneously, (c) concurrent work with minimal increase
in ttl compared to sequential execution, and (d) concurrent maintenance of adjacent segments
that only requires a single road closure.

Obviously it is in the best interest of the road user – and therefore of the asset
manager that represents it – that situations like that of Figure 1.3b are prevented while
coordination of maintenance operations as in Figure 1.3d is encouraged. The problem is
however that the actual planning and execution of work is done by the service providers
that have a different goal than the AM. Because they are primarily focused on profits
they will not actively seek to minimise their impact on ttl. Instead they try to minimise
cost and maximise their revenue. Even stronger, the misalignment of their objectives
is more likely to result in scenario (b) than (d). This can be a consequence of (shared)
external factors such as holidays or weather conditions but also simply due to the fact
that the coordination required to achieve the latter situation requires substantial (and
costly) effort and is not in the interest of SPs. It is much easier for every SP to plan
work individually without regard for other goals, quickly resulting in the situation of
scenario (b). For any road maintenance planning approach to be successful, the asset
manager first needs to resolve this misalignment.

The above example is an informal illustration of the maintenance planning
problem (mpp), one of the many decision-making problems in which the individual
interests of agents do not align with the global goal. This is considered the key problem

10

1

1.2. IMPLEMENTING SELF-REGULATION: DYNAMIC CONTRACTING

of this thesis for it is both a highly relevant practical problem as well as an intuitive
and characteristic example of a planning problem that is preferably optimised through
self-regulation. The next section discusses a novel contracting approach to overcome
the misalignment of interests in problems such as mpp through self-regulation, drawing
ideas from multiple fields such as contracting, network management and mechanism
design.

1.2 Implementing Self-regulation: Dynamic
Contracting

Overcoming the misalignment of objectives between contracting parties while achieving
maximum output of tenders has gained a substantial increase of attention in recent re-
search. Particularly performance-based contracting with incentive schemes has become
popular and understood quite well [41, 45, 218, 268]. Performance-based contract-
ing offers many promising advantages over complete governance: increased flexibility,
preservation of autonomy and authority, better use of expertise and skill, more innova-
tion, higher level of performance of each individual participant as well as the group on
the whole and, consequentially, better use of public funding [7, 141, 233, 47]. The con-
cept of self-regulation however, i.e. self-enforcement of performance objectives within
a group of contractors, is a relatively new and unexplored territory. The main obstacle
that prevents applying self-regulation approaches in current contracts stems from this
uncertainty with respect to the outcomes of such a procedure. Self-regulation involves
a shift into unfamiliar roles and responsibilities for both the AM and the SPs, and their
experience with this way of partnering is limited [112, 246]. Furthermore, there is no
general guideline for the design of incentive structures that successfully implement the
AM’s objectives, such as minimising ttl and maximising quality, let alone ones that
incite the SPs to perform maximally as a group. Even though some cautious appli-
cations are being seen in contracted work, like the congestion-based payment model
used in the reconstruction of an intersection on a national road segment [43], they
are handcrafted case-by-case [268]. A generic, theoretical framework to implement
self-regulation within contracts is still missing, thus keeping its application tedious and
limited to a handful of carefully designed projects [144, 205].

In previous work several researchers identified the aforementioned challenges in the
particular domain of infrastructural maintenance planning and signalled the failure of
traditional regulative approaches due to their inability to adapt to changing conditions,
incorporate the network aspect and stimulate service providers to maximise their per-
formance [11, 233, 235, 254]. Intent to overcome these challenges, Altamirano et al.
proposed to employ an innovative long-term, performance-based contracting procedure
to cope with especially the dynamic nature of such projects and the autonomy and
associated opportunistic behaviour of agents [9]. Drawing upon these ideas, Volker
et al. went a step further by proposing a two-phase framework for these innovative
contracts, linking the planning of operations in the execution phase (simulated by the
“Road Roles” game of Altamirano et al.) to the preliminary procurement phase in which

11

CHAPTER 1. DECISION COORDINATION THROUGH SELF-REGULATION

the operational boundaries are established in the form of a master agreement [254].
This Dynamic Contracting procedure is illustrated in Figure 1.4.

P2

Procurement Execution

Invitation

Tendering

Asset Manager
Goals, Demands,
Duration

Service Providers
Offers

P1 Px

Plans Plans Plans

Monitoring &
payments

Monitoring &
payments

Monitoring &
payments

Evaluation

Result

Contract period

Service Providers
Final payments,
evaluation

Tenders

Asset Manager
Performance
assessment, new goal
& demand analysis

Figure 1.4 Schematic overview of the Dynamic Contracting procedure.

The dynamic contracting procedure, at first glance, resembles traditional contract-
ing. Projects are drafted and a request for tender is sent to service providers, resulting
in contracted work for the SPs with the winning bids. At the end of the contract the
outcomes and performance are evaluated. Traditional contracts however are typically
fixed, bilateral agreements between the AM and SP in which the execution phase of a
single project is specified exhaustively, following a typical waterfall-style of project man-
agement. Instead, dynamic contracting relies on establishing a master agreement for
the entire group with a payment mechanism that aligns their objectives, while leaving
the actual implementation of planning and performing maintenance in the execution
phase to the service providers themselves. During the execution, SPs are monitored
and rewarded based upon the observed performance in short cycles. If the payment
mechanism is designed correctly, the service providers will maximise their profit exactly
when they optimise the goals of the AM, e.g. minimise ttl. Under such a mechanism,
the work of the SPs is coordinated implicitly : causing less ttl results in more profit
to them, i.e. rewards are based upon their performance with respect to the contracted
objectives. Moreover, as their revenue depends upon the ttl that is affected by other
SPs as well, they will actively seek to collaborate and minimise ttl by coordinating their
plans. Hence such a payment mechanism incites self-regulation. Finally, the existence
of an incentive mechanism in combination with short planning and execution cycles
allow for fast and dynamic interactions without the need for renegotiation, making it
more suitable in dynamic environments than traditional contracting [83, 235, 236].

Indeed, dynamic contracts offer solutions to many issues of long-term group projects
that cannot be adequately addressed in traditional contracts such as changing condi-
tions within the contract period, rewards based upon group performance, decentralised
coordination of work and shared responsibility [254]. The success of this approach, how-
ever, relies first upon the correct design of the contract framework with performance-
based incentives that will make the self-interested SPs achieve the AM’s goals in a
self-regulating fashion. Secondly, for the incentives to achieve their desired effect, the

12

1

1.2. IMPLEMENTING SELF-REGULATION: DYNAMIC CONTRACTING

SPs must be able to coordinate their (interacting) decisions effectively and efficiently. A
well-designed incentive scheme may result in unsatisfactory outcomes if SPs are unable
or unwilling to coordinate their actions.

In related literature, much attention has gone towards network management strate-
gies, i.e. how to establish a (public-private) partnership and structure its interac-
tions [7, 233], trust in partnerships [150, 254] and individual performance-based in-
centives [9, 62, 157]. Many authors recognise the need for a standardised approach
to implement performance-based incentives in contracts that lead to self-regulation
and, implicitly, the successful achievement of contract goals [10, 144, 205, 218, 268].
Only a limited amount of work, however, addresses the link between joint strategy
and outcome, let alone propose methods to ensure successful self-regulation in such
partnerships. For example, both Bower et al. [41] and Rose and Manley [218] ad-
vocate the effectiveness of incentives within single-party contracts but conclude that
it is yet unclear how to implement similar schemes in group contracts for equivalent
results. Case studies as performed by Choi et al. [62], Kenley et al. [135], Nalbantian
and Schotter [185] and Zenger and Marshall [267] show promising results, however the
generalisation thereof into a generic design of dynamic contracts is not apparent. The
closest to a generic framework for group contracts is the proposal of Volker et al. [254],
but the model is only high level and does not offer guidelines on how to design incentives
and coordinate decisions to maximise the team output in contracted projects.

In addressing this challenge, the literature of game theory and mechanism design
offers promising techniques and tools to design team incentives within contracts that
do provide guarantees on the quality of the outcome [67, 72, 168, 188]. In close re-
lation to this work, Van der Krogt et al. [148] address the application of mechanism
design in multi-agent planning to deal with the self-interested nature of the participat-
ing contractors. Practical examples can also be found in the literature. For instance,
Gupta et al. [106] use mechanism design to define performance-based contracts for
single highway maintenance projects that effectively stimulate the service provider op-
timise maintenance while preserving its autonomy. Hong et al. [117] employ mechanism
design to determine the set of optimal service contracts for repair and maintenance,
overcoming the asymmetrical information level between SP and customer, and encour-
aging customers to minimise the number of maintenance calls. Additional examples
can be found in the literature [89, 91, 206, 245].

While these results seem encouraging, the effectiveness of mechanism design relies
heavily on the structure of (private) information, known as the agent’s type in mech-
anism design, and the ability to efficiently solve the underlying decision-coordination
problem [72, 204]. As a consequence, existing work almost exclusively focuses on
specific settings such as bilateral contracts, ‘single-shot’ decision problems or ‘online’
settings and these approaches do not scale well to the decision-space complexity of
realistic group contracts. Only recently have researchers begun to focus specifically on
mechanism design in the context of sequential decision-making problems where (pri-
vate) information evolves over time, referred to as dynamic mechanism design. In close
succession, Athey and Segal, Bergemann and Välimäki, and Segal and Toikka pub-
lished several articles that together are considered the pioneering works in this field,
extending core concepts of ‘static’ mechanism design to the dynamic setting. Athey and

13

CHAPTER 1. DECISION COORDINATION THROUGH SELF-REGULATION

Segal [16] and Bergemann and Välimäki [30], independently proposed dynamic variants
of two of the most well-known mechanism classes, respectively d’Aspremont-Gérard-
Varet (AGV) [15] and Vickrey-Clarke-Groves (VCG) [64, 101, 252], thus showing the
potential of dynamic mechanism design. In parallel, Segal and Toikka [234] showed
that the revelation principle can also be extended to the dynamic setting. As a corol-
lary, many of the established theorems for mechanism design can – with some work –
be transferred to the dynamic setting and be used to provide similar guarantees on the
quality of the outcomes. Indeed, these fundamental papers have inspired many others
to pursue dynamic mechanisms to overcome practical challenges [55, 131, 173, 237].

Dynamic mechanism design offers tools to design incentives for long-term group
contracts such that the quality of outcomes is assured, even when multiple decisions
need to be taken over time in a changing or uncertain environment. Nonetheless,
approaches that combine realistic optimal sequential decision-making problems, like
the maintenance planning problem, with mechanism design are nearly non-
existent [29, 204]. Current literature in the field of dynamic mechanism design is
either mostly theoretical [16, 30, 202, 234], focuses on simpler type structures or
decision-making problems [131, 173, 237], or relies upon approximation of the un-
derlying decision-making problem [46, 111, 180]. Optimal multi-agent problem solving
– required to determine exact payoffs and optimal strategies to maximise output – and
complex type structures – required to represent the full richness of the decision prob-
lems of participants – have not received much attention in the dynamic mechanism
setting. Nonetheless, recent work in this field by in particular Cavallo et al. show the
potential of dynamic mechanism design in decision-making settings when individual de-
cision problems can be modelled as a Markov decision process [53, 55, 56]. Although
these works focus on maximising mechanism revenue and the redistribution thereof,
the followed approach inspires research into the application of dynamic mechanisms
in the context of decision making. In particular, these novel ideas merit further re-
search into the dynamic mechanisms as a means to influence decision coordination
and the link between mechanism design and the computational complexity of such
decision-coordination problems.

Nonetheless, even though dynamic mechanism design seems a promising approach
to design tenders, researchers in contracting management and (public) network man-
agement have raised several critical notes on the use of monetary incentives in con-
tracting procedures to stimulate performance and achieve self-regulation. For instance,
Bresnen and Marshall [45] state that there are limitations to the use of incentives as
means of reinforcing collaboration and developing commitment and trust, and conclude
from case studies that cognitive and social dimensions strongly affect the impact of
incentives. A similar finding is also reported by Rose and Manley [218] who conclude
financial incentives to be less important to motivation and performance than relation-
ship enhancement initiatives. According to the survey by Turrini et al. [249], social
integration is a structural characteristic that emerges as a major determinant of the
effectiveness of contracted groups. Klijn et al. [140] and Volker et al. [255] insist that in
particular trust between group members strongly affects the outcomes of the process.
Hence, although dynamic mechanism designs offer the mathematical tools to design

14

1

1.3. THE CHALLENGES OF SELF-REGULATION IN CONTRACTS

the theoretically perfect incentive scheme, its success in a practical setting with human
actors is certainly not guaranteed.

Summarising the current state of the literature on performance-based contracting of
groups, there is a consensus that the use of innovative, performance-based contracts in
partnerships benefit all stakeholders and there are promising developments in theoretical
work on team incentive structures, while at the same time there is much uncertainty
with regards to the design of incentives and their effectiveness to incite self-regulation
in actual tenders. This impasse is strengthened by the absence of any substantial
experimental evidence or real-world successes. Hence, this thesis set out to prove the
concept of self-regulation in performance-based contracts, provide guidance on their
design and contribute techniques to optimise the value of such tenders. The next
section describes the main research question that needs to be answered to achieve this
goal and describes a decomposition thereof into smaller challenges that are addressed
in each of the chapters of this thesis.

1.3 The Challenges of Self-regulation in Contracts

This thesis aims to bring the theory of dynamic contracting closer to implementation
in real-world contracts by combining the literature of contracting and network manage-
ment with the tools and techniques of dynamic mechanism design. In particular, this re-
search focuses on the computational aspect of implicit coordination of decisions through
incentive design in the context of self-regulating contracts with multiple participants.
Using the maintenance planning problem as a characteristic representation of
the problem, this thesis investigates the application of various algorithmic techniques
for the coordination of joint decisions in planning problems with self-regulation and the
design of incentive mechanisms to optimise the outcomes thereof. This is captured in
the main research question:

Main Research Question

Can algorithmic techniques be employed to efficiently coordinate planning
in self-regulating contracts and ensure successful outcomes while preserving
the autonomy and interests of the agents?

This research question is divided into two elements that are later brought together:
efficiently coordinating the decisions of agents in self-regulating contracts and ensuring
successful outcomes through performance-based incentives while preserving the self-
interest and autonomy of agents in the decision-making process. The coordination
aspect is addressed by applying the framework of decision-theoretic planning to model
and solve the planning problem inherent to self-regulating contracts. The incentive
design is tackled through game theory and, in particular, by employing (dynamic)
mechanism design techniques to design performance-based payments that incite self-
regulation while respecting the interests and autonomy of agents.

Both decision-theoretic planning and game theory stem from the same root (deci-
sion theory) and they are tightly related in the setting of planning with self-interested
agents [35, 48, 261]. In addition, the relation between game theory and planning has

15

CHAPTER 1. DECISION COORDINATION THROUGH SELF-REGULATION

been exploited before to achieve cooperation of agents, e.g. by Cavallo et al. [55]
and Van der Krogt et al. [148]. Indeed, the decision-theoretic model that is used to
represent the multi-agent decision-making problem underlying self-regulating contracts
corresponds directly to a representation of a game that describes the actions of agents
and their (joint) outcomes. Nonetheless, while their models to represent decision-
making problems are broadly similar, the respective areas of focus is on completely
different parts of the decision-making process. Whereas decision-theoretic planning
focuses on computing decision strategies that maximise a predefined reward function
for a given decision-making problem, game theory typically considers decision-making
strategies as a given and analyses the potential outcomes of a problem when these
strategies are followed. Mechanism design, a specific strand of game theory sometimes
also referred to as ‘inverse game theory’, adds to game theory the design of incentives
to steer outcomes towards desired ones. This is illustrated by the following high-level
problem formulation of self-regulating planning, the decision-theoretic formulation of
the planning problem underlying self-regulating contracts.

Definition 1.1 Self-regulating Planning (high-level)

Given a model that captures the multi-agent decision-making process and a set
of performance-based payments, the self-regulating planning problem is to find an
optimal strategy that optimises the expected sum of agent rewards and performance-
based payments, or

optimal strategy = arg max
all strategies

E
[

agent rewards + performance payments
]

(1.1)

From the decision-theoretic planning perspective, the goal in self-regulating planning
is equivalent to the formulation in Definition 1.1: find the optimal decision-making
strategy that in expectation maximises the total sum of rewards, e.g. contractual pay-
ments or bonuses, and (potentially negative) performance payments. On the other
hand, the objective in mechanism design is to construct the payments in such a way
that rational, value-maximising strategies – the objective of decision-theoretic planning
– always result in favourable outcomes. Translating this to dynamic contracting, the
latter is fundamental for the design of the dynamic contracts while the former is nec-
essary to successfully implement contracts. Even more strongly, as will be seen in later
chapters, typically the success of mechanism payments depends on the ability of agents
to produce optimal plans. Hence, optimal coordination may even be a requirement for
the incentive structures.

The remainder of this chapter discusses both approaches and the respective sub-
challenges that are to be tackled in order to produce an answer to the main research
question. Section 1.3.1 presents a decision-theoretic formulation of the self-regulating
planning problem and introduces three research questions regarding decision-theoretic
planning. Section 1.3.2 discusses the modelling of self-regulating planning as a game
and two research questions concerning the design of incentives to ensure desired out-
comes of such a game while preserving the interests and autonomy of agents.

16

1

1.3. THE CHALLENGES OF SELF-REGULATION IN CONTRACTS

1.3.1 Coordinating Self-regulating Planning

The coordination element of the main research question is addressed through the frame-
work of decision-theoretic planning. From the algorithmic point of view, decision-
theoretical planning is the reasoning about strategies for agent decision making where
the impact of actions can be expressed in terms of rewards or costs as a consequence
of outcome. If actions involve risks that may result in different outcomes, with dif-
ferent gains or losses depending on the outcome, it is known as stochastic or contin-
gent decision-theoretic planning, or stochastic planning for short. The maintenance
planning problem is an example of such a stochastic planning problem: decisions
regarding the planning of maintenance lead to outcomes with measurable revenues
and (traffic) costs, while it is also stochastic by nature due to the potential delay of
maintenance. But the model applies to self-regulating planning problems in general.

This thesis uses the model of Markov decision processes (MDPs) to represent
the decision-making problem of self-regulating planning in terms of states, actions,
transitions and rewards [28]. Simply put, an agent has to make a decision (perform an
action) in its current situation (its state) such that it maximises its gain or utility (the
reward), after which the situation changes as a consequence of its own decision and
stochastic external influences (it transitions to a new state). This process continues
until a terminal condition has been satisfied, for instance the expiration of a finite
amount of time. In terms of the MDP model, the goal of decision theory to find
optimal decision-making strategies can be reformulated as developing decision policies
(or policies for short) that prescribe an optimal action for every possible state of the
world such that the sequence of transitions that results from following that policy
maximises the expected reward of the agent. These policies can thus be regarded as
contingent plans that describe how to act in each (foreseen) situation.

More formally, the MDP model represents respectively the states, actions, transition
probabilities and transition rewards of the decision problem. In the case of mpp the
states could represent the planning environment conditions such as the segments that
have been serviced, the resources available to the agents and current time step. The
actions correspond to the maintenance activities that need to be performed. The
transition probability function captures the distribution over outcomes in terms of what
state will result after a maintenance operation. For instance the situation in the next
state may depend upon a (random) maintenance delay occurring or not. Finally, the
reward function describes the value gained or lost as a result of a state/action transition.
This reward function is an operationalisation of the objectives of the agent and describes
for instance the price it is paid upon completing a maintenance action, the (state-
dependent) cost of performing work, its resource costs, etc. In this reward formulation
it is implicitly assumed that all objectives can be operationalised into a scalar value,
later it is argued that this is a strong assumption. Given such a model of the decision
problem, the main goal of the agent is to find a decision policy that for every possible
state of the world specifies the action to perform that in expectation maximises its
reward, taking into account transition probabilities. Such a policy that in expectation
maximises the reward of the agent is referred to as an optimal policy.

When multiple agents participate in the decision-making process, the correspond-
ing multi-agent MDP model (MMDP) becomes more complex due to the interactions

17

CHAPTER 1. DECISION COORDINATION THROUGH SELF-REGULATION

between agents. While the actions of agents are often isolated, they share the en-
vironment in which they act. Therefore the states, their transitions and associated
rewards are usually not independent. In other words, the outcomes and rewards of
their decisions depend also on the decisions of other agents. Such true multi-agent
decision-making problems require explicit coordination of agent decisions in the form
of a joint decision policy that in expectation maximises the joint reward, known as the
optimal joint policy. While in self-regulating contracts the individual decision problems
of participants are independent and could be optimised independently, they share a
contracted goal that is enforced through performance-based payments. As these pay-
ments depend on the joint actions they introduce an inter-agent dependency in the
reward function of the MDP model. These (performance-based) payments can either
have positive or negative impact on agent rewards, intended to respectively stimulate
or discourage certain actions. For instance, in mpp these payments charge the total
cost of traffic time lost (ttl) as a result of joint maintenance, making the revenue of a
single service provider dependent on actions of other service providers. That is, when
multiple agents concurrently perform maintenance, they are each charged a portion of
the total costs caused by their combined actions. The ultimate goal of such payments
is to get the agents to consider not only their own interests, because their personal
gain now depends on their performance with respect to a common goal or their impact
on other agents. As a consequence, agents are better off coordinating their decisions
with others, i.e. self-regulate their decision making.

The self-regulating planning problem, and in particular its MDP formulation, is the
basis for developing optimal joint policies using automated planning techniques. In
particular, the first research question is how to capitalise upon the significant body
of decision-theoretical research already available, thereby taking advantage of existing
tools and techniques to solve self-regulating planning problems:

RQ1 Coordinating self-regulating planning with existing techniques

Can the vast body of existing planning literature, with its tools and tech-
niques, be employed to develop joint policies for self-regulating planning
problems?

It will be demonstrated in Chapter 3 of this thesis that self-regulating planning problems
may be encoded as multi-agent MDPs, which in turn may be flattened into single-agent
MDPs. This allows the use of existing multi-agent and single-agent MDP solvers to
optimise self-regulating planning problems, thus giving access to a substantial library
of tools. Nonetheless, almost all methods are either general-purpose solvers, that aim
to support the solving of all types of MDPs, or are dedicated to problems with distinct
characteristics, such as specific sub-class of MDP. The former type of solver does not
leverage the specific structure of self-regulating planning problems, as for instance the
independence between agents in their decisions but not their rewards. The latter type
of solver is not tailored towards self-regulated planning.

In the pursuit for leverage, several authors already identified the potential of ex-
ploiting the decision-independence of agents. For instance, Becker et al. [26], Nair
et al. [184], Varakantham et al. [251], Witwicki and Durfee [264] all investigated de-

18

1

1.3. THE CHALLENGES OF SELF-REGULATION IN CONTRACTS

centralised MDP models that possess an inherent decoupling between agent actions
but not rewards. In centralised models, like MMDP and therefore self-regulating plan-
ning, this is not universally true as agent rewards are potentially defined over the full
state and action space [145]. This has led researchers to examine specific sub-classes
of MMDP that do allow decoupling of actions [25, 179, 193, 251] or resort to ap-
proximating the reward function as an independently factored sum [103, 143, 194].
Given the need for optimal coordination of self-regulating planning in the context of
designing incentives, the latter approach is not applicable to this domain. Hence, the
challenge that remains is to develop more efficient automated planning techniques that
build upon ideas of previous work but target the properties specific to self-regulating
planning:

RQ2 Leverage the structure of self-regulating planning

Can the structural properties of self-regulating planning problems be lever-
aged to produce optimal joint policies significantly more efficient than cur-
rently available methods?

Another challenge that is encountered in realistic examples of self-regulating planning
is the inherent multi-dimensional nature of the agent’s objectives. So far it was implic-
itly assumed that all of the goals of the agents and the performance payments can be
operationalised solely in terms of revenue and cost. Indeed this may be a realistic as-
sumption in many cases, e.g. when all non-monetary objectives can be ‘priced’ as in for
instance the work of Van Moffaert et al. [175], but in many other scenarios such an op-
erationalisation is not directly possible [132, 139, 160]. It may be that such a function
simply is impossible to define, in which case human decision-makers are typically re-
sponsible for trade-offs between objectives. However, more often the pricing criteria or
preferences over the objectives are not known while developing the joint plan [215, 175]
or it is unrealistic to expect that human planners can exactly quantify their preferences
over all objectives on a [0, 1] scale that is typically required by automated planners to
find optimal solutions [187]. The approach taken in such settings, where the objective
preferences or prices are not exactly known when developing policies, is typically to find
all optimal trade-offs between objectives and present them as alternatives to human
decision makers [65].

Mathematically speaking, the reward functions of the agents in a multi-objective
MDP (or MOMDP) are represented through multi-dimensional objective functions.
Examples of objectives in the domain of maintenance planning could be the cost of
maintenance of course, but also traffic time lost, risk aversion, environmental impact,
safety level and other similar goals that are hard to quantify exactly in financial terms
but may be equally important in the decision-making process. To incorporate the multi-
objective nature of decision problems, the MDP model of each agent’s planning problem
will have multi-dimensional rewards (and payments) such that each dimension of the
reward function corresponds to a reward for a specific objective. The operationalisation
of the objectives of the MOMDP, required for automated planning techniques, is then
performed by applying a scalarisation function to the objective value vector paired
with a set of scalarisation weights such that a scalar value can again be computed.

19

CHAPTER 1. DECISION COORDINATION THROUGH SELF-REGULATION

For instance, the scalarisation function may be a price-per-objective function where the
weights define the unit price per objective, or a preference function over objectives such
that the weights express the relative importance of each objective. In the maintenance
planning problem, a scalarisation function is used to trade-off maintenance costs versus
traffic time lost as in Chapter 5, such that decision makers may choose policies from a
set of alternatives instead of specifying exact preference weights beforehand.

The scalarisation function provides a measure for the quality of the trade-offs that
are being made and may therefore be used as optimisation criteria in an automated
planner, even when the actual operationalisation function is unknown when developing
joint policies. That is, the function itself is known beforehand but the weights that
“instantiate” it are unknown at plan time. This does increase the complexity of the
planning problem however. Whereas before a single joint decision policy was sought,
now the purpose is to find a set of trade-off policies so that for each combination of
weights this set contains an optimal decision policy. In part, this additional complexity
can be reduced by restricting the scalarisation function to be a linear combination
of trade-offs, i.e. weighted-sum functions. This is a very natural restriction in many
multi-objective settings that captures typical trade-off functions like the aforementioned
price-per-objective and relative importance of objectives, and introduces a structure into
the optimisation function that can be leveraged during plan development [215]. Still,
even under the assumption of linearity, computing all optimal linear trade-offs poses a
substantial computational challenge for multi-objective planning approaches.

Currently several methods exists to compute the set of optimal policies for any
given objective weight [263, 253, 257, 21]. Nevertheless, all of these approach rely on
the size of the state space to be ‘small enough’ in order to allow exact solutions [215].
Whether these approaches scale in the context of self-regulating planning problems such
as mpp is not known. Instead, the reinforcement-learning approach of [161, 162] that
deals with large, continuous state spaces may be better equipped to solve instances of
mpp, but such a learning approach is not able to guarantee optimality. Finding optimal
policy sets for self-interested planning problems is therefore still an open question for
research:

RQ3 Self-regulating planning with multi-dimensional objectives

Can multi-objective planning methods be applied to self-regulating planning
problems with multi-dimensional objectives to efficiently find an optimal
joint policy for every linear trade-off between objectives?

1.3.2 Designing Incentives for Self-regulation

The previous section focused on the coordination aspect and it was implicitly assumed
that the agents participating in self-regulating planning are fully cooperative. That
is, they are willing to share all their private information truthfully, comply with the
global objective of optimising the sum of all agent rewards and mechanism payments,
and accept that a centralised decision-making algorithm coordinates their actions. In
competitive scenarios such as the setting of dynamic contracting however, agents are
typically not so cooperative or truthful by nature. More commonly, agents strive only
to maximise their personal gain without regard for the interests of other agents or

20

1

1.3. THE CHALLENGES OF SELF-REGULATION IN CONTRACTS

a global goal. More strongly, realistic agents will actively seek to exploit potential
gaps in the contract or increase their gain by misreporting information regarding their
decision-making process. For example, an agent may declare a much higher value for
one of its actions just so that it will be included in the joint plan for sure, even though
actions of other agents would have resulted in a much higher value to the group (and
thus not to the ‘lying’ agent). Moreover, even if agents act truthfully, they are usually
not eager to share their private information regarding profits, costs, resources, etc.,
in the context of a commercial contract, nor to completely surrender their autonomy
to a central planner. Hence, in order for self-regulating contracts to ensure successful
outcomes, it must provide strong incentives to the agent to effectuate truthfulness,
sharing of private information and (partially) submission of autonomy.

Following the line of reasoning of authors in many related works [9, 106, 117,
135, 205, 254], the challenge of designing incentives to incite self-regulation is ad-
dressed using concepts from game theory and mechanism design. Game theory is a
strand of decision theory inspired by economics that “aims to model situations in which
multiple participants interact or affect each other’s outcomes” [188]. In essence, the
self-regulating planning problem underlying the dynamic contracting procedure (Defi-
nition 1.1) can be modelled as a multi-player game with actions and rewards, where
players are autonomous entities that make their own planning decisions in a rational
fashion. With such a game model, the decisions of agents and the impact thereof on
the outcome of the game can be mathematically analysed. Hence it becomes possible
to vary the rules of the game and investigate their impact on the outcomes of the game.
Moreover, if a game-theoretical model is available, mechanism design techniques can
be employed to construct payment structures such as the ‘performance payments’ of
Equation 1.1 that guarantee desired outcomes of such a game (see e.g. the work by
Conitzer and Sandholm [67], Dash et al. [72], Maskin [168] or Nisan et al. [188]).
In effect, these payments reward or penalise agents for their contribution to a global
goal so that it becomes in their personal interest to collaborate, implicitly leading to
self-regulation.

The problem of truthfulness remains however, even if incentives stimulate self-
regulation. Agents may deliberately misinform others to their personal benefit if they
know the payment mechanism that is being used; typically public information in the
context of contracts. To this end, recent studies have drawn inspiration from mecha-
nism design approaches as taken by Cavallo et al. [55], Van der Krogt et al. [148]
or Pathak [206] to design incentives that not only align interests but also stimu-
late truthfulness (“overcome the asymmetric distribution of information”) in contracts
[106, 117, 254]. In other words, these incentives can be used as the basis for the
performance-based payments of Definition 1.1 to both stimulate performance and en-
force truthfulness.

While performance-based rewards can preserve the personal interests of the agents
and prevent opportunistic behaviour, it also introduces a new dilemma for the agents.
On the one hand, their rewards depend on actions taken by or together with others
and it is in their best interest to coordinate their joint decisions. On the other hand,
agents often act in a competitive environment and therefore are reluctant to yield
autonomy or exchange private information regarding e.g. their activities, resources and

21

CHAPTER 1. DECISION COORDINATION THROUGH SELF-REGULATION

costs with their competitors [11, 150]. This problem can be partially alleviated if the
agents accept a neutral (third) party to coordinate the decisions on behalf of all agents,
such as the asset manager in the domain of road maintenance [254, 228, 158]. This
party, commonly referred to as the centre, collects the decision-making processes of
all agents, combines them into a multi-agent model and determines the optimal joint
decision policy.8

Still, although sharing sensitive business information with a neutral centre may be
more acceptable, the submission of autonomy remains a prerequisite of this approach. If
agents do not fully adhere to the joint plan developed by the centre, a successful (joint)
outcome can no longer be assured. Nonetheless, the performance-based payments make
it in the best interest of even these autonomous agents to coordinate their decisions with
others, albeit it on the decision policy level only [115, 197]. In such scenarios, sharing
and iteratively updating full decision policies may be a more acceptable alternative [127,
228]. Dealing with the both the self-interest as well as the autonomy of agents such
that self-regulation between the agents is still encouraged is the first research question
for incentive design:

RQ4 Self-regulating planning with self-interested agents

Can game-theoretical techniques be employed to guarantee optimal joint de-
cision policies for self-regulating planning problems if agents are autonomous
and self-interested?

In other words, the objective is to produce joint policies that optimise the actual reward
of the team of agents and not their reported rewards. This can only be achieved if
agents are honest about their interests. Hence the real challenge the design of incentives
that stimulate agents to be truthful or, vice versa, to discourage agents from cheating
by ensuring that reporting their true information yields them the highest reward.

The final challenge that is addressed in this thesis concerns the implementation of
self-regulation incentives within realistic contracts. Indeed, game theory and mecha-
nism design offer techniques to design incentives such that not only agents are encour-
aged to self-regulate but also willing to disclose private information, act truthfully and
even surrender their autonomy. Nonetheless, the success of these approaches relies on
the assumption that monetary incentives can effectively influence the decision-making
process of agents and incite self-regulation within the group, which is a strong as-
sumption in practice. Although the notion that collaboration could be ‘engineered’
through incentive systems was ventured by Bresnen and Marshall [44], the same au-
thors surveyed that it has mostly led to a multitude of guidelines on partnering and
alliances and “that there are limitations to the use of incentives as means of reinforcing
collaboration” [45]. The same authors note that in particular the cognitive and social
dimensions strongly affect the impact of incentives, a conclusion also drawn by authors
in related studies [76, 140, 218, 249, 255]. Furthermore, the absence of empirical ev-
idence makes it is unclear whether such perfectly engineered incentives achieve their

8 Although such a solution may still suffer from unfairness with respect to the reward of single agents,
e.g. one agent suffers while the overall reward is maximised. This may be countered by compensating
agents for their losses, as in the dynamic maintenance mechanism of Chapter 6.

22

1

1.4. OUTLINE AND CONTRIBUTIONS

intended goals when confronted with real actors [254]. In this context, [218] and [249]
raise a similar concern that despite an overall believe that incentive mechanisms im-
prove value for money during procurement and project performance during execution,
empirical research is scarce.

Therefore, validating the assumption that monetary incentives lead to the self-
regulation – the key assumption underlying the approach proposed in this thesis – is
key to a potential implementation in group contracts. The last challenge hence focuses
on the decision-making process of human decision makers in the presence of monetary
incentives and the emergence of self-regulation as an effect of such incentives to es-
tablish a first proof of concept of the potential for self-regulation in group contracts:

RQ5 Confronting self-regulating planning with the real world

Can the theoretical guarantees of self-regulating incentives be transferred to
real-world group tenders to ensure successful outcomes if planning decision
are made by human decision makers?

These challenges form the research questions for the research performed in this thesis.
Throughout the chapters of this work, the research questions are addressed and con-
tributions are made either in the form of potential solutions or new knowledge. The
contributions per chapter are summarised in the next section.

1.4 Outline and Contributions

Summarising the introduction of this thesis, the main goal is to transfer the advantages
of performance-based contracts into the settings where a team of agents is contracted.
Through the use of monetary incentives, agents should be implicitly stimulated to
contribute to the contracted goal as well as coordinate their joint decisions. That is,
the team of agents becomes self-regulating.

As discussed in Section 1.3, self-regulation is addressed in two separate parts: the
coordination of agent decisions and the design of incentives. The chapters in this
work follow a similar ordering. First the Chapters 2 to 5 deal with the challenges of
coordinating decisions in self-regulating planning problems. The subsequent chapters,
Chapters 6 and 7, focus more on the design of incentives so that self-regulation may be
successful when dealing with actual agents. Chapter 8 recapitulates on both parts and
formulates an answer to the main research question of bringing self-regulating contracts
such as the Dynamic Contracting Framework closer to reality. Below is a more detailed
outline of each chapter and how it contributes to the goals of this research and the
current state of the art in the areas corresponding to the subjects.

Chapter 1 (this chapter) introduces the maintenance planning problem and the dy-
namic contracting approach that together form the basis for the work in this thesis.
This chapter describes the problem, introduces the dynamic contracting procedure and
presents current challenges of bringing dynamic contracting into real-world contracts.
The dynamic contracting framework, its requirements and its design, was initially pub-
lished by Volker et al. [254]. The combination of game theory, mechanism design and

23

CHAPTER 1. DECISION COORDINATION THROUGH SELF-REGULATION

decision theory as the basis for the operational environment was proposed by Scharpff
et al. [228].

Chapter 2 provides an overview of decision-theoretic planning literature that is required
as background knowledge for the work in this thesis and discusses previous work that
inspired the contributions of this thesis.

Chapter 3 formalises mpp of Section 1.1 into a mathematical formulation and illus-
trates that it can be modelled as a Markov Decision Process (MDP). This modelling
allows general MDP solvers to find optimal joint policies for mpp, thus making a first
step towards surmounting RQ 1. Thereafter the chapter proposes also an improve-
ment upon the first but naive encoding that exploits the structure of the MDP to
achieve faster policy searches, hence addressing RQ 2 using generic MDP solvers. In
addition, this chapter presents a first approximation algorithm for mpp based upon
Monte-Carlo Tree Search. The contributions of this chapter have been published by
Scharpff et al. [228] and Roijers et al. [216].

Chapter 4 specifically targets the structure of mpp to produce optimal joint policies
more efficiently. In particular, many self-regulating planning problems such as mpp
exhibit a structure known as transition-independence, i.e. the state/action transitions
of all agents are independent but their rewards are not, and this can be exploited in
joint policy searches. This chapter describes the Condition Return Policy Search

(CoRe) algorithm that uses a specific type of data structure called the Conditional
Return Graph to compactly represent and re-use decision structures and corresponding
rewards. The experimental analysis at the end of the chapter demonstrates that this
novel algorithm is able to leverage the structure of mpp for more efficient searches and
thus addressing RQ 2. The work in this chapter extends the first introduction of CoRe
by Scharpff et al. [229].

Chapter 5 considers the multi-dimensional nature of objectives, in light of RQ 3. In-
stead of methods that produce a single optimal joint policy, this chapter considers
multi-objective planning approaches that find the Convex Coverage Set over all objec-
tives when a specific scalarisation function is known but the scalarisation weights are
not. That is, the aim is to find a set of policies such that for every weight this set will
contain the policy that optimises the scalarised reward. Roijers et al. [217] proposed
the Optimistic Linear Support method (OLS) that can produce such a set but it
requires many optimal policy computations. The experiments of Chapters 3 and 4 show
that one such a computation may require much effort, hence this approach is infeasible
for all but the smallest problems. Instead, Chapter 5 proposes two new methods that
approximate the convex coverage set through approximate policy computations, making
it more feasible in practical settings such as the one considered in this thesis. The first
algorithm is Approximate Optimistic Linear Support, an approximate version of
OLS with bounded quality guarantees, and the second is Scalarised Sample-based

Iterative Improvement, a method that is better when focusing on specific weight
regions, both published Roijers et al. [216].

24

1

1.4. OUTLINE AND CONTRIBUTIONS

Chapter 6 seeks to alleviate the assumption of cooperation that was implicitly made
in all previous chapters to begin research at the planning problem itself. In this chapter
agents are regarded as non-cooperative or selfish, and they will therefore do anything
to increase their profits even when this hurts other agents. Furthermore, the chapter
assumes a private values setting, i.e. all planning information is private to the agents,
and optimal joint policies can only be developed based upon reported information that
may be incomplete, untruthful or both. When agents are willing to reveal all their
(possibly false) planning information to a centre, Chapter 6 shows that the payment
mechanism can be designed as a dynamic maintenance mechanism that ensures that
truthful reporting is actually in the best interest of agents, thus tackling RQ 4 and
establishing the boundary conditions for self-regulation in contracts. If agents are
reluctant to disclose their planning information or submit their autonomy entirely, it is
impossible to guarantee jointly optimal policies. However, in such a setting the planning
problem can still be modelled as a stochastic planning congestion game in which agents
iteratively improve upon a joint plan in a best-response fashion. This game enables
self-regulation even in a setting with autonomous agents. The two approaches were
introduced by Scharpff et al. [228], this chapter extends that work with formal proofs
that the maintenance mechanism is a dynamic mechanism and stochastic planning
congestion games are a special class of congestion games with similar properties.

Chapter 7 makes the first step towards bringing the theory of Chapters 3 to 6 into
practice. Addressing the challenge of RQ 5, three research questions are presented that
focus respectively on the effectiveness of incentives to change the decision-making of
human planners, their potential to incite self-regulation and the role of social relation-
ships in performance-based frameworks. These questions are studied through controlled
experiments using a serious game that simulates the planning and execution of main-
tenance work similar to the maintenance planning problem in the setting of a
performance-based group contract. The experiments show that monetary incentives in-
fluence decision making, but their effect may be opposite to their intended aim and can
lead to undesirable competition between group members. It was, however, also found
that this competitiveness is not shown in groups where members are familiar with each
other. This leads to the conclusion that penalty-based incentive mechanisms probably
interfere with self-regulation and that the social dimension of contractor collaboration
is paramount to the success of performance-based contracting in group tenders. Be-
sides the validation, this work also contributes of a sandbox environment for dynamic
contracting that can be used in related and further research without the enormous costs
typically associated with real-world failures. The work on the design and application
of the serious game is described by Scharpff et al. [232]. A detailed explanation of its
modelling is given by Scharpff et al. [231].

Chapter 8 discusses the implications of the work presented in all the chapters and
reviews their contribution towards the research questions defined in this chapter.

25

CHAPTER 1. DECISION COORDINATION THROUGH SELF-REGULATION

1.4.1 Reading Guide

Naturally, all readers are encouraged to go over all chapters of this dissertation. How-
ever, for those with a specific background or focus of interest the following reading
guide may help to quickly find the topics of interest. The summary, introduction
and discussion chapters are relevant for all readers. They are found on page i and in
Chapters 1 and 8 respectively.

Readers most interested in decision theory and stochastic multi-agent planning are
referred to Chapters 3 to 5. These chapters address respectively maintenance planning
as a multi-agent MDP model, a novel stochastic solving method that exploits the struc-
ture of particularly TI-MMDPs and solving the multi-objective version of maintenance
planning. Chapter 2 and Appendix D may serve as a refresher on stochastic planning
and complexity theory, although the reader knowledgeable in this area may focus on
the more advanced Sections 2.6 and 2.7.

For readers with an emphasis on (algorithmic) game theory and mechanism design,
it is advised to review Chapter 2 and Appendix E as background. Continue with the
maintenance planning problem definition and its MDP formulation in Sections 3.1 to
3.3 before studying the dynamic mechanism proposed in Chapter 6. Furthermore,
Chapter 7 may be of interest as it presents an empirical study into the rationale behind
the human decision-making process in the context of team incentives.

Those mainly interested in self-regulation and contracting theory are advised to
start with Chapter 3.1 to comprehend the decision complexity and challenges of self-
regulating planning. A brief study of Appendix E and Chapter 6 provides the reader
with an understanding of game theory and how mechanisms could be applied to incen-
tivise agents, but also shows that using dynamic mechanisms to optimise performance
and minimise costs are computationally very expensive. A more pragmatic approach
is discussed in Chapter 7 where dynamic contracts with mechanism-design inspired
payments are used in a simulation game to investigate their effect on human decision
makers.

26

Chapter 2

Stochastic Planning using
Markov Decision Processes

In this section all concepts related to self-regulating planning will be reviewed that are
relevant for the work presented in this thesis. Starting from the basics, Section 2.1 will
introduce the Markov decision process, that has proven one of the keystones in stochas-
tic planning, and basic solution methods for this model are discussed in Section 2.2.
From there on the model will be gradually extended to other settings: problems with
states composed of variables (Section 2.3), problems with uncertainty about the current
state (Section 2.4), multi-agent problems (Section 2.5), special cases of the latter two
(Section 2.6) and problems with multiple objectives (Section 2.7). The background
presented in this section has been derived from many sources but a few in particular
that have been used many times are: the book on MDP by Puterman [208], the thesis
of both Cassandra [51] and Kaelbling et al. [129], and the tutorial on multi-agent se-
quential decision making (MSDM) by Spaan et al. [243] presented at the International
Conference on Automated Planning and Scheduling (ICAPS). For completeness, a brief
overview of game theory – the background required in particular for Chapter 6 – can
be found in Appendix E.

2.1 Markov Decision Processes

Over the course of time several frameworks have been proposed to model planning
problems with uncertainty, such as the self-regulating planning problem of Section 1.3.1,
but none has been studied and applied so widely as the Markov decision process (MDP)
framework, introduced by Bellman [28]. Essentially, an MDP describes a Markovian
(‘memoryless’) system of states9, where the dynamics are defined through actions,
transition probabilities and associated rewards. The most common definition of MDPs
is given in Definition 2.1.

9 Although histories can be incorporated as part of the state to serve as memory.

27

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

Definition 2.1 Markov Decision Process (MDP) [28]

A Markov decision process, or MDP, is defined as the tuple 〈S,A, P,R〉 such that

• S is a finite set of states the process can be in, often referred to as the state
space of the MDP,

• A is a finite set of actions that can be performed, also known as the action space,

• P is a transition probability function P : S × A × S 7→ [0, 1] where P (s, a, ŝ)
denotes the probability that the system will end up in state ŝ if action a is taken
in state s, and

• R is a transition reward function R : S × A × S 7→ R where R(s, a, ŝ) is the
reward obtained when state ŝ is reached after taking action a in state s.

Many stochastic planning problems can be modelled quite naturally in the Markov de-
cision process framework. One example of a domain in which MDP can be applied
rather intuitively is path planning for robots, which is used in examples throughout
this chapter. A few of the many others are maintenance planning [228], supply-chain
management [88] and work-flow scheduling [266]. Note that here the most general
definition of a reward function is presented. The reward can alternatively be written
as a state-based or state/action-based function. Both notations can be trivially trans-
formed into the full transition-based rewards presented here: R(s) =

∑
a∈AR(s, a) =∑

a∈A
∑
ŝ∈S P (s, a, ŝ)R(s, a, ŝ). The transition function is sometimes denoted as a

conditional probability P (ŝ|s, a). However, to prevent confusion with probability func-
tions this notation will not be used.

A solution to a stochastic planning problem modelled as an MDP is known as a
contingent plan or, the term that will be used mostly, a decision policy or simply policy.
Informally, a policy π is a set of decision rules that for each state of the problem, and
possibly the history of previously encountered states, prescribes an action to perform.
After a policy has been developed for a stochastic planning problem it can be queried
during the execution phase for the next action given the current state of execution. This
results in a new system state, depending on the transition probabilities, and the process
is repeated until some termination criterion has been achieved (reached the goal, ran
out of time, etc.). Note that a policy needs to be developed before the execution is
performed and this type of planning is therefore referred to as offline planning.

In general, a policy can depend on the entire history of actions and states encoun-
tered so far. If this is the case, the policy is said to be non-stationary. However, when
only the current state is significant or a history can be compactly represented by every
state, i.e. the state is Markovian, it suffices to consider only stationary policies. As
all the problems discussed in this thesis fall in the latter category, the focus will be
on stationary policies and this will no longer be mentioned explicitly when discussing
policies in future sections. The most general definition of a (stationary) policy is given
in Definition 2.2.

28

2

2.1. MARKOV DECISION PROCESSES

Definition 2.2 Policy

A (stationary) policy π is a mapping of states and actions to a probability such
that π(s, a) ∈ [0, 1] specifies the probability of taking action a in state s, and∑
a∈A π(s, a) = 1. If the policy for each state and action assigns 0 or 1 probabilities

such that ∀s ∈ S, ∃a ∈ A: π(s, a) = 1 and π(s, a′) = 0 for all a′ 6= a, it is said
to be deterministic, otherwise it is non-deterministic (multiple actions) or stochastic
(distribution over actions).

This work will restrict itself to only deterministic policies, i.e. policies that always
prescribe the same action for each of the states. Deterministic policies in this sense also
have the Markovian property. In future sections, this will no longer be stated explicitly
when discussing policies. In addition, the common notational shorthand π(s) = a is
used to denote π(s, a) = 1.

Typically in stochastic planning the interest is in finding a ‘good quality’ policy that
is expected to yield a high reward or, in cost minimisation problems, a low cost. This
quality is captured by the value of a policy, which is defined as the expected reward
that is obtained when following the decisions specified by the policy. For problems with
a finite planning horizon, i.e. a fixed maximal number of plan steps, the value of a
policy π is defined as:

V π(s0) = E
[h−1∑
t=0

R(st, π(st), st+1)
]

=

{∑
st+1∈S P (st, π(st), st+1)

(
R(st, π(st), st+1) + V π(st+1)

)
, otherwise

0, t ≥ h
(2.1)

where s0 is the initial state of the planning problem and h the planning horizon length.
When V π is written the initial state is assumed implicitly, i.e. V π = V π(s0). In this
formulation st denotes the state at time t and st+1 are possible successor states that,
depending on the transition probability function, can result from taking the action π(st)
prescribed by the policy.10 The value function can easily be adapted for problems with
an infinite planning horizon (h =∞) by adding a discount factor γ:

V π(s0) = E
[h∑
t=0

γtR(st, π(st), st+1)
]
, γ ∈ [0, 1) (2.2)

Discounting rewards that are further away in time makes it possible to compute the
expected value of a policy even though the number of planning steps is unknown in
advance. The key difference here is that eventually the expected value of an infinite
horizon policy will converge to zero due to this discount factor and thereby making it

10 Accents are used to discern between states within the same time step, e.g. s2 and ŝ2 are two distinct
states at time 2.

29

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

possible to find policies for this type of planning problem. Moreover, as the discount
factor decreases exponentially over time, policies that maximise reward early are likely
favoured; however this depends greatly on the value of the discount factor. A value close
to zero will result in a high preference for short-term reward (greedy-like behaviour)
whereas a value close to one allows for more reasoning about future effects of current
decisions. Keep in mind however that in most solution techniques a high value for the
discount factor will have a negative effect on the computation time as more future
states will still be interesting in terms of reward.

As mentioned before, the value of a policy expresses its quality in terms of expected
future return. Since the realisation of the uncertainties is not known until the policy is
executed, the best one can do is maximise the expected reward of a policy. A policy
that does just this is known as an optimal policy π∗ and is defined for both finite and
infinite problems as:

π∗ = arg max
π∈Π

V π(s0) (2.3)

where s0 is the initial state of the problem and Π the set of all possible policies that
exist for the problem. Note that although the expected optimal value V π

∗
is unique,

there may exists multiple optimal policies that attain this value. Typically in such cases
any of the optimal policies suffices and it is not important which one is chosen as both
achieve the goal objective of maximising expected reward.

Example 2.3 Robot path-planning as Markov decision process

To illustrate the Markov decision process model, this examples shows how robot path-
planning can be represented as an MDP and describes an example policy for this problem.
Figure 2.1a shows a stochastic path-planning example of a robot that needs to find its
way to the exit, marked by the red symbol in the lower left corner of a 4 by 4 grid. This
robot is deployed in a remote area and it is not possible to control it from afar (similar to
e.g. a mars rover). Instead, the robot will be given a contingent routing strategy that is
developed before its deployment such that by following this strategy it is able to respond
to all (anticipated) eventualities that may occur. To develop such a contingent strategy,
or policy in the context of stochastic planning, first a model of the environment in which
the robot is acting must be constructed.

The robot can move horizontally or vertically but cannot move outside if the grid.
When it has reached the exit, it will be awarded a bonus of +100. Every move North,
East, South or West costs energy and therefore costs 1. Finally, with a probability of 10%
(p = 0.1) the robot fails to perform a move, due to e.g. objects in its way or a brief
malfunction. When the robot fails, it will remain at its current location but the cost of the
move will still be charged. Figure 2.1b shows a solution to this problem in the form of a
path, which requires at least four moves but may take more if failures occur.

This path-planning problem can be modelled as an MDP. A state in this problem de-
scribes the exact location of the robot, therefore the state space S contains a state s(i,j)

for every position (i, j) on the grid. As the robot is in location (3, 2) at the start, the initial
state s0 is s(3,2). The robot has four moves – move North, East, South or West – and
the action set A of the MDP has corresponding actions {N, E, S, W}. Transitions capture
the move from one location to another, depending on the direction of the move as well
as its success rate. For example, the transition probability for moving from state s(2,4)

to state s(2,3) when performing action N is captured by P (s(2,4), N, s(2,3)) and is equal to

30

2

2.1. MARKOV DECISION PROCESSES

0.9, because it can fail with 0.1 probability. The possible failure is specified by the tran-
sition P (s(2,4), N, s(2,4)) = 0.1. Together these two transitions are the only ones possible
from a state s(2,4) when action N is taken (their probabilities sum to 1) and every other
transition from s(2,4) with action N has probability 0, meaning that such a transition can
never happen. All other action move transitions are defined analogously. Note that tran-
sitions for illegal moves are not in the transition probability function as there is no state
outside the board that the MDP can transition to.

1

2

3

4

1 2 3 4

(a)

1

2

3

4

1 2 3 4

(b)

Figure 2.1 Example path-planning problem: (a) the robot needs to find its way to the exit
in the lower left corner of the grid by moving North, East, South or West. An example of
such a path is shown in (b). This path requires (at least) four moves and yields the robot
a maximum reward of 100 - 4 = 96.

The reward function corresponding to this example problem is easily defined: for every
(failed) move the robot is penalised by 1 and when it reaches the goal state (s(1,4)) it is
rewarded 100. Thus for every transition from a state s(i,j) ∈ S for every action a ∈ A
to a new state s(i′,j′) 6= s(1,4) ∈ S with non-zero probability, the reward is given by
R(s(i,j), a, s(i′,j′)) = −1. Observe that s(i,j) and s(i′,j′) may be the same state if the
move fails. When the goal state is reached, a different reward is obtained. Every transition
from a state s(i,j) ∈ S to s(1,4) through action a ∈ A has a reward R(s(i,j), a) = 99 (100
- 1 to include the cost of the move).

The robot in the example has to plan a path towards the exit. Naturally, it wants
to find the path that in expectation minimises its energy costs but ultimately reaches the
goal (and its reward). As failures may occur during his moving towards the goal, it is not
sufficient to simply specify a path like 〈S, S, W, W〉: if for instance either of its southward
moves fails, it will end up in location (1, 3) and never reach the goal. Instead, the robot
requires a contingent path in the form of a policy that given its current location specifies
the best way to go. One such a policy can be to first move South until the grid border
is reached, then continue westward until the goal is reached. This can be expressed as a
policy π with two simple rules based on the current state s(i,j) the robot is in:

π(s(i,j)) =

{
S , if j < 4

W , otherwise

and of course, when the robot reaches the goal state, it is done and will no longer consult
its policy what to do.

Now assume that the planning horizon h is 5 or, in other words, the robot is given 5
moves to try and reach its goal. Following the previously described policy, the robot can
end up in any of the states along the path displayed in Figure 2.1b, including its initial

31

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

state, depending on how many out of its five moves have failed. Figure 2.2 shows the
state/action diagram that corresponds to executing this policy for 5 steps.

W

.1

.9

W

.1

.9

S

.1

.9

S

.1

.9

S

.1

.9

S

.1

.9

S

.1

.9

S

.1

.9

W

.1

.9

W

.1

.9

W

.1

.9

S

.1

.9

S

.1

.9

t1 t2 t3 t4 t5 td

.1

.9 .18 .00045

.01 .00001

.81

.729

.6561

.243 .00810

.2916 .07290

.26244

S

3,3

3,4 3,4

2,4

3,23,2 3,2

3,3

2,4

1,4 1,4

2,4

3,4

3,3

3,2

V1 = −5
p1V1 = −0.00005

V2 = −5
p2V2 = −0.00225

V3 = −5
p3V3 = −0.0405

V4 = −5
p4V4 = −0.3645

V5 = 95
p5V5 = 24.9318

V6 = 96
p6V6 = 62.9856

.1

.9
3,3 3,3

3,2 3,2

3,4

.001 .0001

.027 .0036

.0486

.65610

1,4

Figure 2.2 State/action diagram corresponding to the policy first South then West. States
are represented by white circles. Transitions are depicted as a path of edges labelled by the
action taken and the transition probability. The states are labelled above (blue) with the
probability of reaching them.

Initially, the robot starts in state s(3,2) and its only available action is the South move
under the policy, due to its current state being not in the bottom row. The state/action
diagram therefore contains an edge outwards from state s(3,2) labelled with action S. This
action can have two outcomes: either the robot moves to location (3, 3) or it remains
at (3, 2). This is illustrated by the chance node (black triangle) and the two edges after
it, corresponding to both transitions, labelled with the transition probability. For example,
the transition probability P (s(3,2), S, s(3,3)) = 0.9 is represented by the edges labelled S

and 0.9 between the state nodes labelled (3, 2) and (3, 3). The reward of each transition
is shown in blue.

By following the policy the robot can end up in any of the terminal states, shown as
double circles. In these states either the time is up or the goal has been reached, as in the
bottom terminal states (or both in the case of the terminal state 5). Next to each of the
terminal states the figure shows its value and its expected value. The first is obtained by
multiplying transition probabilities of taken transitions, e.g. terminal state 2 can be reached
from the top two states at time t5 and therefore has probability 0.0001× 0.9 (successful
move from the topmost state at time t5) plus 0.0036× 0.1 (a failed move from the state
below) which equals 0.00045. Note that the probabilities of all transitions in a certain time
step must sum to one. The same must be true for the set of terminal states.

The value of a terminal state is computed by summing over the transition rewards, in
this example -1 times the number of moves and +100 if the robot is at goal state s(1,4). If
the robot did not make it, the reward is always −5, otherwise it is +96 or +95, depending
on whether it needed 4 or 5 steps to the goal respectively. Finally, the expected value
of one terminal state is simply its value times the expectation of reaching it, i.e. the
product of transition probabilities to get there. The expected value of the South-West

32

2

2.2. FINDING OPTIMAL POLICIES

policy is
∑
i piVi = 87.5101, which is actually the optimal expected value for this example

(intuitively: no shorter path is possible).

2.2 Finding Optimal Policies

There has been a substantial body of research into solution techniques for MDPs, both
exact and approximate. In this section only the two most influential techniques are
presented that are the basis for many other solutions. For a more thorough study of
available MDP solving methods the book by Puterman [208] is recommended. Here
– and throughout the entire thesis – phrases like ‘solving an MDP’ are used to mean
searching for the optimal policy for that MDP that has the highest expected value.

One of the earliest techniques to find optimal policies for general MDPs is due to
Bellman and is known as Value Iteration [28]. This method is based upon the
observation that the value of the optimal policy can be computed using a recursive
formula, known as the Bellman equation:

V ∗(s) = max
a∈A

∑
ŝ∈S

P (s, a, ŝ)
(
R(s, a, ŝ) + γV ∗(ŝ)

)
(2.4)

Notice that the Bellman equation is almost equal to the previously discussed Equa-
tion 2.1, but for every state now the action that maximises the expected future reward
is always taken. For an optimal policy π∗ that does exactly this, the two are equivalent.
Essentially, the Bellman equation computes the optimal expected value of a MDP by
recursively computing the optimal value from every new state that can be reached from
the current state by trying all available actions and returning for each state the action
that maximises the expected value, until the planning horizon has been reached. In
other words, the optimal value computation for state s is decoupled into |S′| optimal
value computations, where S′ = {ŝ ∈ S | ∃a ∈ A : P (s, a, ŝ) > 0}.

The Bellman equation applies both to finite (γ = 1) as well as infinite horizon
MDPs, although the former case requires an addition of V ∗(s) = 0 for every state s ∈ S
with time t ≥ h (as in Equation 2.1). Once the optimal value has been computed, the
optimal policy can be derived by choosing for each state the action that maximised the
expected reward, i.e.:

π∗(s) = arg max
a∈A

∑
ŝ∈S

P (s, a, ŝ)V ∗(ŝ) (2.5)

The Value Iteration algorithm uses dynamic programming to successively im-
prove an estimate of the Bellman equation (Equation 2.4) following Equation 2.6:

V 0(s) = 0

V k+1(s) = max
a∈A

∑
ŝ∈S

P (s, a, ŝ)
(
R(s, a, ŝ) + γV k(ŝ)

)
(2.6)

In Equation 2.4, V k denotes the value function of iteration k. In each iteration
the value function will more closely resemble the optimal value function as the state

33

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

values will become increasingly accurate. As long as no state is excluded from the value
computation, this algorithm is guaranteed to converge to the optimal value function V ∗.
Once the algorithm has converged, thus V k+1 = V k for all states, the optimal policy
can easily be extracted from the value function by selecting for each state the action that
maximises the state value (Equation 2.5). In practice often a convergence parameter
ε is used such that the algorithm terminates when maxs∈S V

k+1(s)− V k(s) ≤ ε and
hence it can be used as an approximate algorithm that produces policies with a value
of at most ε away from the optimal.

Another well-known solution method for MDPs is the Policy Iteration algo-
rithm due to Howard [119]. Policy Iteration resembles value iteration in that it
is also based on the Bellman equation, but instead of iteratively improving the state
value estimate of Equation 2.6 it performs round-based improvement of an initial (ran-
dom) policy. The algorithm is shown in Algorithm 2.4. In each iteration the algorithm
evaluates the current policy, i.e. V π(s) is computed for all states and current policy π,
and this value is used to check if there are states for which the policy can obtain a
higher value by switching to another action. For all such states, the policy is changed
such that these actions are now preferred and the process is continued until no more
changes occur.

Algorithm 2.4 Policy iteration [119]

1: π0 ← initial (random) policy

2: k ← 0

3: repeat

4: k ← k + 1

5: V k(s) =
∑̂
s∈S

P (s, πk−1(s), ŝ)
(
R(s, πk−1(s), ŝ) + γV k−1(ŝ)

)
. ∀s ∈ S

6: πk(s) = arg max
a∈A

∑̂
s∈S

P (s, a, ŝ)
(
R(s, a, ŝ) + γV k(ŝ)

)
. ∀s ∈ S

7: until V π
k

= V π
k−1

8: return πk

The evaluation step in Policy Iteration (line 5) is commonly done by solving
the set of linear equations that correspond to Equation 2.6 through linear program-
ming [119]. As is the case for value iteration, this algorithm is guaranteed to converge
as long as all states are considered during the search, but in practice it often tends to
do so much faster than Value Iteration [208]. The Modified Policy Iteration

algorithm, introduced by Puterman and Shin [209], replaces the exact linear program-
ming step by a (small) number of successive approximations. This approximate policy
evaluation is often good enough in practice and can be computed significantly faster.

Both Value Iteration and Policy Iteration are algorithms that run in poly-
nomial time.11 The first requires at most |S| rounds of |S|× |A| (trivial) computations.
For the latter algorithm a similar analysis can be made to obtain a worst-case com-
putational complexity of O(|S|3), although in practice it might perform better. Still,
finding optimal policies for real-world instances of Markov decision processes is often

11 A refresher on complexity theory can be found in Appendix D.

34

2

2.3. FACTORED MDPS

very complex as the state space is typically exponential in the number of world features
it models. For this reason, most techniques that are able to solve large MDPs either
focus on approximation or exploit the state space structure.

2.3 Factored MDPs

One rather natural type of structure in Markov decision processes is captured in factored
MDPs [40], where states are composed of several state features also known as factors
or state variables. Most real-world stochastic planning problems exhibit this type of
structure. In the path planning example from before the state of the robot could for
instance consists of only one variable, its location, and the state space is defined by the
values it can take on. Another example is construction planning where states consist of
variables like “plumbing done” or “painting done” that take on values “yes” or “no”,
and the state space is formed by the Cartesian product of the variable domains. The
formal definition of this factorisation, also referred to as a state factored MDP, is given
in Definition 2.5:

Definition 2.5 Factored Markov Decision Process

A (state) factored MDP is a regular MDP 〈S,A, P,R〉 where the state space is com-
posed of factors X =

{
X1, X2, . . . , X|X|

}
such that S = Dom(X1)×Dom(X2)×

. . .×Dom(X|X|). Here Dom(Xi) denotes the domain of state feature Xi.

The factored MDP is almost the same as the regular MDP defined previously in Def-
inition 2.1, however its state space is composed of state features, also referred to as
(state) variables. Each state in a factored MDP corresponds exactly to a unique as-
signment of values to state features X. At first glance this rather natural restriction
on MDPs might not seem very powerful but it enables reasoning about the planning
problem in a symbolic way similar to, for instance, STRIPS [87].

A first advantage of factored MDPs is that they often allow for compact formula-
tions of the transition model and reward structure. By expressing them as functions of
state variables or, in the case of transitions, as a conditional probability table (CPT),
they concisely capture the same information that would otherwise be stored in an ex-
haustive matrix of size |S|2. Secondly, the factored formulation can help to make
(in)dependencies between state features explicit, and exploiting them can offer major
reductions in the computation time required to find policies.

To better visualise and reason about these dependencies, factored MDPs are often
illustrated as a dynamic Bayesian network [39] (DBN). The DBN provides a convenient
graphical representation of interactions between state features, actions and rewards of
the current state and those in the next state (see also Example 2.6 below).

Example 2.6 Factored path planning

The states in the robot path planning example are naturally factored into a horizontal
position Xx and a vertical position Xy such that every state s(i,j) ∈ S is an assignment

35

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

Xx = i and Xy = j. The domains of both features correspond to the number of available
horizontal respectively vertical tiles, e.g. the horizontal position has domain Dom(Xx) =
[1, 4] (and similar for the vertical position). The corresponding DBN is shown in Figure 2.3a.

t t+ 1

E

S

W

N

rm

Xx

Xy

rg

X̂y

X̂x

(a)

X̂y

Xx

N 1 2 3 4

1 0 0 0 0
2 .9 .1 0 0
3 0 .9 .1 0
4 0 0 .9 .1

(b)

Figure 2.3 (a) Dynamic Bayesian network (DBN) of the robot example problem. The two
state features are shown as circles, the four actions as squares and the reward components
(move cost rm and goal reward rg) as diamonds. Arrows between elements indicate a
relation, either in transition (solid) or reward (dotted). For clarity, the reward interactions
have been given a distinctive colour. (b) The conditional probability table (CPT) for
action N.

The DBN of the robot example provides insight into the interactions between state features,
actions and rewards. For instance, the new horizontal position X̂x of the robot depends
on its previous horizontal position and whether action E or W was performed. Moreover,
it shows that the new horizontal position is independent from the vertical position Xy
and actions N and S, which can be exploited when solving the planning problem. Another
independence in this example is between the actions and the goal reward component rg.
Obtaining the goal reward does not depend on what move the robot performs, only its
new horizontal and vertical position (X̂x and X̂y respectively) are relevant to determine
whether or not it has reached its goal. On the other hand, move costs rm are independent
from the actual position of the robot and depend only on the action that is taken. Note
that a decomposition of rewards such as the one in this example is common in factored
planning problems and the total reward can be computed simply by summing all the reward
components.12

In factored MDPs, transitions can also be expressed over state features. An example
thereof is given for the North action in Figure 2.3b. Here a conditional probability table is
shown for the action that expressed the probability of setting X̂y (columns) based on the
value of Xy in the current state (rows). Because only relevant state features are included,
this CPT is typically much more compact than a complete transition table. The latter
would have required Dom(Xx) × Dom(Xy) = 16 rows and 16 columns for this example,
and therefore a total of 256 entries whereas now only 16 are needed. Observe that the top
row of the CPT contains only zeroes as no North move can be made when the robot is in
the top row of the grid.

The rewards of the problem this DBN are represented as components r1 and r2, such
that the total reward R is given by

∑
i ri, and they depend only on subsets of the state

features (e.g. component r1 only depends on features X1 and X2). Such a decomposition
of rewards is often present in factored MDPs and is exploited in policy search.

36

2

2.4. PARTIAL OBSERVABILITY

In the literature of MDP, many researchers have reported the successful use of fac-
tors in MDP as a leverage in finding optimal policies. Boutilier et al. [40] intro-
duced the Structured Policy Iteration algorithm that uses tree structures to
compactly represent factored MDP policies and their values that is able to outperform
Modified Policy Iteration (see Section 2.2) in many domains. Another approach
that exploits factored MDPs is taken by Hoey et al. [116] where they introduce the
Stochastic Planner Using Decision Diagrams (SPUDD). This planner uses alge-
braic decision diagrams (ADDs) to compactly represent the structure of transitions
and their effects in terms of state features, leading to a very acceptable performance
in practice. Other approaches include linear programming for factored MDP [103] that
exploits locality in reward components to approximate the global reward (a distributed
variant is given by Guestrin and Gordon [102]), hierarchical decomposition of state
feature influences [126] and exploiting context-specific independence between state
features, rewards and actions [37, 193].

2.4 Partial Observability

So far is has been assumed that, when dealing with stochastic planning problems,
the only source of uncertainty lies in the execution of actions or more precisely: the
transition that will occur to the next state. Hence when an action is taken in the current
state it is not always known what the new state will be, but after the action is performed
it can be observed with complete certainty. At any given time during the planning and
execution process the current state is known for sure. This type of stochastic planning
problems is only a special case of the more general partially observable Markov decision
process or POMDP framework that includes uncertainty about the current state. This
section will only introduce the basic framework and give a high-level description of
finding policies for partially observable problems. For a more detailed study on POMDP
and additional reading the reader is referred to Monahan [176] or Kaelbling et al. [129].

The definition of the POMDP framework is similar to that of MDPs except that it
introduces an additional uncertainty regarding the current state of the system. Under
this model the current state is not known with certainty. Instead, the system has to
maintain a set of states in which it could be and the associated likelihood of being in
each of those states, known as its belief state. Through feedback signals, referred to
as observations, that are received after performing an action, the belief state can be
updated to reflect the current belief about what state the system is in. These notions
are formalised in this section, starting with the definition of partially observable MDPs:

Definition 2.7 Partially Observable Markov Decision Process (POMDP) [241]

A partially observable Markov decision process, or POMDP, is defined by the tuple
〈S,A, P,Ω, O,R〉 such that:

12 Reward decomposition and independence is exploited in many approaches for factored MDPs, see
Section 2.6.

37

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

• S, A, P and R define the (possibly factored) states, actions, transitions proba-
bilities and transition rewards as in a regular MDP (Definition 2.1),

• Ω is a finite set of possible observations, and

• O defines the observation probability function O : A× Ω× S ∈ [0, 1] such that
O(a, o, ŝ) (alternatively O(o|a, ŝ)) specifies the probability of observing o ∈ Ω
when taking action a ∈ A such that state ŝ ∈ S results. As with the transitions
function it must be that ∀a ∈ A, ŝ ∈ S:

∑
o∈Ω

O(a, o, ŝ) = 1.

From this definition one can see that MDP can be modelled as a special case of POMDP
where the observation for every state/action pair is certain. Put more formally, for all
ŝ ∈ S and a ∈ A there exists exactly one o ∈ Ω such that O(a, o, ŝ) = 1, and hence
zero for other observations by definition.

Similar to regular MDP, the solutions to POMDPs are in the form of policies that
map each state to an action. However, in the context of state uncertainty it is not
sufficient to base decisions upon the current state. Instead, a POMDP policy is a
mapping from possible observation histories ~o t = [o0, o1, . . . , ot] of length t such that
the policy π(~o t) returns the action that should be performed given the sequence of
observations made, i.e. π : Ω∗ 7→ A. For a deterministic, stationary policy this model is
equivalent to the state-based policy as the current state of the system can be deduced
from any sequence of observations.13

Finding optimal policies in a partially observable environment is generally much more
complex as additional reasoning regarding the state of the system is needed. Although
the (belief over) current state from any observation history can be deduced, it is not
known what sequence of observations will be encountered in the future. Therefore a
planner must reason about all such possible future sequences, along with resulting new
states and the probability of their occurrence. An important notion to this end is that
of a belief state that was mentioned briefly earlier:

Definition 2.8 Belief State

The belief state bt(s) for a state s ∈ S in planning step t summarises the probability
of being in state s at time t when the initial state14 was s0:

bt(s) = Pr(st = s|s0, a0, o0, a1, o1, . . . , at−1, ot−1) (2.7)

Simply put, the belief state is a summary of the (un)certainty about being in a state for
every state of the system. During policy search the belief state is typically maintained
for all states and only updated when new information becomes available (action and

13 If the policy is not deterministic, an action/observation history 〈a0, o0, . . . at, ot〉 is required to
determine the current state with certainty. Note that such a sequence also suffices for non-stationary
policies as it describes the entire execution history.

14 If the initial state is uncertain the equation can be adapted to work with an initial belief state b0.

38

2

2.4. PARTIAL OBSERVABILITY

observation). For the update, Bayes’ rule is applied:

bt+1(a, o, ŝ) = Pr(st+1 = ŝ|bt, a, o)

=
Pr(o|a, ŝ)Pr(ŝ|bt, a)

Pr(o|bt, a)
=
O(a, o, ŝ)

∑
s∈S b

t(s)P (s, a, ŝ)

Pr(o|bt, a)
(2.8)

in which the probability Pr(o|bt, a) of observing o when action a is taken given our
belief over the current state bt can be computed as

Pr(o|bt, a) =
∑
ŝ′∈S

Pr(o|bt, a, ŝ′)Pr(ŝ′|bt, a)

=
∑
ŝ′∈S

(
O(a, o, ŝ′)

∑
s∈S

bt(s)P (s, a, ŝ′)
)

(2.9)

Informally, the update rule makes sure the belief about being in a certain state
includes the latest observation and therefore multiplies the probability of that state by
the likelihood of making an observation that leads to that state. The denominator in
this rule normalises the probability to keep it within the [0, 1] range by dividing the
observation probability by the sum of observation probabilities over all transitions that
can yield the observation.

Example 2.9 Partial observability in path-planning

The robot is still trying to find its way to the goal, however its positioning sensor has suffered
some damage and it is having trouble trying to ascertain its position. It does know that it
is in the vicinity of position (3, 2), however due to its malfunctioning sensor it is not sure
whether it is exactly at (3, 2) or in one of its neighbouring grid positions. There is still some
evidence that the sensor is working reasonably well and therefore the robot assigns a 60%
chance of being at (3, 2) and 10% for every position that is adjacent to it. Its current belief
state b is thus given by b(s(3,2)) = 0.6, b(s(2,2)) = b(s(4,2)) = b(s(3,1)) = b(s(3,3)) = 0.1
and b(s) = 0 for every other state. The belief state is visualised in Figure 2.4a.

1

2

3

4

1 2 3 4

0.6

0.1

0.1 0.1

0.1

(a)

1

2

3

4

1 2 3 4

0.550.09 0.09

0.09

0.01

0.01

0.010.15

(b)

Figure 2.4 Illustration of the belief state when the robot is not sure about its position on
the grid: (a) possible positions of the robot with their probabilities based on its confidence
in the location sensor and (b) the new belief state after performing one southward move
and receiving observation os that it succeeded.

To get to the goal, the robot still uses the ‘first South, then West’ strategy as before.
Previously this meant that the robot made its move and, based on the success probability

39

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

of the move, it would end up in a new state or remain in the same state, but it was certain
what the state was after the action was performed. Now its sensor is broken and it cannot
fully trust it to pinpoint its exact location. After the move, the location sensor notifies the
robot whether his move was successful, and this notification is wrong in 20% of the times.

This can be modelled in the POMDP through a set of observations Ω = {os, of},
denoting the move success and failure notifications respectively, such that for every ac-
tion a ∈ A the observation probability of receiving a success notification is 0.8, while
failure is thus observed with probability 0.2. For instance, when moving East and ob-
serving success, the observation probability is given by O(E, os, s(i+1,j)) = 0.8 for every
i ∈ [1, 3] (and of course the corresponding 1− p probability for false notifications).

Now assume the robot performs a South move and receives a success notification os
from its positioning sensor. The robot can now update its belief according to the formula
presented in Equation 2.8. Its new belief b′′ that is now at location (3, 3) after performing
S in s(3,2) is computed as:

b′(a, o, ŝ) =
O(a, o, ŝ)

∑
s∈S b

t(s)P (s, a, ŝ)∑
s(3,3)∈S

(
O(a, o, s(3,3))

∑
s∈S b

t(s)P (s, a, s(3,3))
)

=
O(S, os, ŝ)×

(
b(s(3,2))P (s(3,2), S, ŝ) + b(ŝ)P (ŝ, S, ŝ)

)
∑
s(3,3)∈S

(
O(S, os, s(3,3))

∑
s∈S b

t(s)P (s, S, s(3,3))
)

The new state s(3,3) can only result after a successful move from s(3,2) or a failed move
from s(3,3) itself. For all other combinations of states and action S, either the belief or the
transition probability is zero and therefore the parenthesised term in the numerator contains
only two state/transition combinations. The denominator contains more terms as there are
8 state/transition combinations that could result in observing os with non-zero probability.
When ending in states s(2,2), s(4,2) or s(3,1), success can only be observed if a move has
failed while in states s(2,3), s(4,3) and s(3,4) this is only possible when successfully moving
southward. More involved are the states s(3,2) and s(3,3), of which the latter has been
analysed already. In state s(3,2) it is possible to observe success when either a move has
succeeded from s(3,1) or it failed to move. Together, this results in the following (omitting
leading zeroes):

b′(s(3,3)) =
.6× .9 + .1× .1

3× (.1× .1) + 3× (.1× .9) + (.1× .9 + .6× .1) + (.6× .9 + .1× .1)
= 0.55

where the observation probabilities O(S, os, s(i,j)) have been factored out because they are
equal for all s(i,j) ∈ S. The new belief state computation for all other states is performed
analogously, varying only in the numerator of the fraction, and the final result is shown in
Figure 2.4b. Note that the current position of the robot will be more uncertain after every
move due to the uncertainty in it observing a successful move. In some partial-observable
planning problems this is countered by including a special information-gathering action that
can be used to refine the belief state.

The traditional exact approach to find an optimal policy for a POMDP is by solving a
continuous-state belief MDP (see e.g. the work by Cassandra et al. [52]). This MDP
has a continuous state space, i.e. there are an infinite number of states possible, such
that each of the states equals exactly one belief state of the POMDP:

40

2

2.4. PARTIAL OBSERVABILITY

Definition 2.10 (Continuous-state) Belief MDP

The belief MDP for a POMDP 〈S,A, P,Ω, O,R〉 is a continuous-state MDP such
that the states correspond exactly to the belief states of the POMDP. It is defined
as the tuple 〈B, A′, P ′, R′〉 with:

• B is the set of belief states defined as the space of all probability distributions
over POMDP states S,

• A′ is the action set and is equal to A of the original POMDP,

• P ′ : B × A × B 7→ [0, 1] is the belief transition probability function where
P ′(b, a, b′) denotes the probability of transitioning from belief state b ∈ B to
a new belief state b′ ∈ B when action a ∈ A′ is taken. The belief transition
probability can be computed by summing the observation probabilities of the
POMDP observations that lead to belief state b′, or:

P ′(b, a, b′) =
∑

o∈Ω|b′=bt+1(a,o,b)

Pr(o|b, a) (2.10)

where b′ = bt+1(b, a, o) denotes that belief state b′ results when taking action a
and receiving observation o in the current belief state b, according to the belief
update of Equation 2.8. The probability Pr(o|b, a) of observing o when perform-
ing a in belief state b is computed by Equation 2.9.

• R′ : B×a×B 7→ R is the belief reward function15 and can be computed by sum-
ming over expected rewards obtained in the original POMDP when transitioning
from belief state b ∈ B to b′ ∈ B when taking action a ∈ A′:

R′(b, a, b′) =
∑
s∈S

∑
ŝ∈S

b(s)b′(ŝ)R(s, a, ŝ) (2.11)

Although the belief MDP is a continuous-state MDP, the number of belief states is
finite because there are only a finite number of actions and associated observations. As
a result, there will be a finite amount (although possible very many) unique belief states
in the state space of the belief MDP. Finding the optimal policy for the belief MDP,
and therefore also for the original POMDP, is done using an adapted version of the
Value Iteration algorithm that optimises over the finite amount of belief ranges that
span the continuous belief state space, instead of discrete states. Several well-known
such algorithms are Value Vector Enumeration [176, 241], Linear Support [60]
and the Witness Algorithm [52]. Although the details of these algorithms are not
relevant in the context of this thesis, the shared intuition they are based upon is closely
related to work presented in Chapter 5 and therefore it is discussed here.

Simply put, because there is only a finite number of belief states, there must
also be a finite number of unique optimal values that the expected value function

15 Here the most general reward notation is used to remain consistent with the previous sections, in
almost all of the literature the reward is defined only over the current belief and the action taken.

41

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

(e.g. Equation 2.1) can attain. The optimal expected value of a belief state b its
corresponding value vector b •V ∗(b) are optimal in a region of the belief space. By
taking the supremum of all the value vectors over the entire belief space, a Piece-Wise
Linear Convex (PWLC) function is obtained that states the optimal value for every
possible belief state of the POMDP.16 By storing the actions and observations that
optimise expected value in every belief state, the optimal policy can be derived (similar
to Equation 2.5).

V (b)

b(s1)
0 1

V ∗

Figure 2.5 Example showing the expected policy value of a two-state POMDP where the belief
of being in state s1 is plotted on the horizontal axis. The optimal value vectors for every belief
state are shown as dashed lines and the PWLC optimal value function V ∗ is shown in red.
The coloured dots on the PWLC function illustrate at what belief state the optimal value was
found and the area below it is coloured according to the belief regions in which each of the
optimal values dominates.

A two-state POMDP example is shown in Figure 2.5. For a two-state POMDP,
the belief state space can be visualised as a graph with the belief of being in state s1

on the horizontal axis. Because the belief state is a probability distribution over the
POMDP state space, the probability of being in the other state, state s2, is given by
1 − b(s1). In this example, there are five optimal value vectors that span the entire
belief space. Each of these vectors corresponds to an optimal expected value at a belief
state, visualised by a dot on the PWLC function V ∗. As a consequence, the optimal
policy will contain 5 unique action decisions (or less if multiple belief regions map to
the same decision), one for each of the regions of the belief space in which that decision
leads to the optimal expected value.

Including observational uncertainty in the MDP model is paired naturally with an in-
crease in problem complexity. Finding the optimal policy for a finite horizon POMDP17

has been shown to be pspace-complete whereas solving the problem without state
uncertainty is in p [203]. One thing to remember here is that even though the problem
is in pspace, i.e. the required memory is polynomial in the input size, the input size
itself is typically exponential in the planning variables.

16 In the finite horizon setting, in the infinite horizon case this PWLC function can be approximated
arbitrarily close [241].

17 The infinite horizon setting has been shown to be undecidable in the work by Madani et al. [164].

42

2

2.5. PLANNING WITH MULTIPLE AGENTS

2.5 Planning with Multiple Agents

The framework discussed up until this point was restricted to a single agent. Although
many applications exist for the single-agent model – for example in process controllers,
expert systems or task planning – there are likely even more planning problems involving
multiple agents. A great many scenarios can be found where coordination of actions
between different actors is needed. Some examples of this are house construction
planning that involves agents that have various skills (plumber, mason, etc.) [104],
collaboration of emergency response robots that can only carry a person to safety
when working together [138], and vehicle control in automated warehouses such that
goods are transported with maximum efficiency and without vehicle collisions [159].

Multi-agent planning problems within the Markov decision process literature can
be broadly divided into two categories: problems with free or instantaneous commu-
nication, and problems with no or costly communication. In the former category are
problems in which agents have full knowledge about the states and decisions made by
others during the planning and execution phase. Problems in the latter category are
theoretically more complex as agents can no longer communicate their state or findings
during the execution process, except through observations.18 This requires agents to
reason about possible states and decisions that other agents might visit or perform, and
additionally they need to determine how to react to such before the plan is executed.
For completeness it must be noted that there exists also a model in between the two
categories that explicitly incorporates cost of communication. Solving problems that
use this model requires making trade-offs between requesting information through com-
munication or perform reasoning with the currently known information. This model is
outside the scope of this thesis, nevertheless the interested reader can find more in the
work by Goldman and Zilberstein [98]. The first category, fully observable planning
problems with free communication, are modelled by multi-agent MDPs (MMDPs):

Definition 2.11 Multi-agent Markov Decision Process [36]

A (fully-observable) multi-agent Markov decision process, or MMDP, is defined as
〈N , S,A, P,R〉19:

• N is the finite set of agents, indexed as 1, 2, . . . , n,

• S is the finite state space,

• A = {Ai}i∈N is the collection of action sets where Ai contains the actions only
available to agent i ∈N ,

• P the transition probability function P : S ×A× S 7→ [0, 1],

• R defines the joint reward for every transition, e.g. R : S ×A× S 7→ R.

18 Although in practice solving MMDP can be much harder because of the amount of information that
is globally available, see Chapter 4.

19 The difference in font weight is because S, P and R represent respectively the Cartesian products of
states, the product of transition probabilities and the reward function while N and A are collections.

43

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

Given such a model of a multi-agent planning problems, the optimal joint policy can be
computed through a minor modification of the Bellman equation (Equation 2.4) that
considers joint actions:

V ∗(s) = max
~a∈A

∑
ŝ∈S

P (s,~a, ŝ)
(
R(s,~a, ŝ) + γV ∗(ŝ)

)
(2.12)

The most general extension of the MDP framework that captures both categories
is known as the decentralised Markov decision process (Dec-MDP), sometimes also
referred to as distributed MDP. Analogous to the single-agent setting there exists also
a partially observable variant of this model. As Dec-MDP is a special case of the
partially observable Dec-POMDP model (see Definition 2.13)20, the latter is presented
here in Definition 2.12:

Definition 2.12 Decentralised POMDP [31]

A decentralised, partially observable Markov decision process (Dec-POMDP) is de-
fined by the tuple 〈N , S,A, P,Ω, O,R〉 where:

• N is the finite set of agents, indexed as 1, 2, . . . , n,

• S is the finite state space,

• A = {Ai}i∈N is action set collection where Ai contains the actions only available
to agent i ∈N ,

• P the transition probability function P : S ×A× S 7→ [0, 1],

• Ω = {Ωi}i∈N is the collection of observation sets such that Ωi is the set of
observations that only agent i ∈N can make,

• O : A×Ω× S 7→ [0, 1] specifies the observation probabilities and

• R defines the joint reward for every transition, e.g. R : S ×A× S 7→ R.

The definition of a Dec-POMDP does not differ much from that of the POMDP except
that actions and observations are agent-specific in this model. All other elements are
defined equivalently, although later Section 2.6 shows that the agent-specific aspect of
these can be exploited to obtain more efficient solving procedures. The multi-agent case
has joint actions ~a = 〈a1, a2, . . . an〉 ∈ A, where each ai denotes the action of agent i,
joint observations ~o = 〈o1, o2, . . . , on〉 ∈ Ω, with oi being the observation of agent i,
and a is in the form of a joint policy π = 〈π1, π2, . . . , πn〉 such that each policy πi is
a mapping of local observation histories to a local action decision πi : Ωhi 7→ Ai (as in
POMDP, see Section 2.4).

20 Which is in its turn a special case of partially observable stochastic games (POSG) with identical
payoffs (i.e. a shared reward function for all agents), however this model is outside the scope of this
thesis. More on POSGs can for instance be found in the work by Guo and Lesser [105] and Hansen
et al. [108].

44

2

2.5. PLANNING WITH MULTIPLE AGENTS

As with the single-agent model, the states in a Dec-POMDP (and MMDP) can
also be factored into state features or variables. Additionally, in the multi-agent set-
ting the state space can also be factored per agent (see e.g. the work by Oliehoek
et al. [193]). The state space in an agent-factored Dec-POMDP, occasionally written
as fDec-POMDP, is divided into n disjoint sets of states S1, S2, . . . , Sn that together
they form the joint state space S =

�

i∈n Si. The models discussed in this thesis are
all factorised, both state as well as agent-wise, unless explicitly stated that they are
not.

All models presented so far are related to one another, with Dec-POMDP be-
ing the most general MDP framework. The Dec-POMDP model can capture all of
the previously discussed models, it does not restrict the number of agents, type of
observability, and availability of communication. Obviously, Dec-POMDP reduces to
POMDP when there is only one agent present. When communication is freely avail-
able, the Dec-POMDP reduces to a (centralised) multi-agent POMDP or MPOMDP
which is a special case of POMDP [129]. The reduction to other models follow from
restrictions on the type of observations in the framework, which have been adopted
from Goldman and Zilberstein [97].

The weakest observability restriction is that of joint full observability (JFO). Basi-
cally in a Dec-POMDP that is jointly fully observable the global state of the system
can be determined with certainty by combining the observations of all agents:

Definition 2.13 Joint Full Observability

A Dec-POMDP is said to be jointly fully observable if there exists a mapping J :
Ω 7→ S such that for every ~o ∈ Ω and ~a ∈ A with O(~a, ŝ, ~o) > 0 it holds that
J(~o) = ŝ.

Thus, whenever there is a probability of ending in state ŝ when taking joint action ~a
and receiving joint observation ~o, the next global state can be derived with complete
certainty from the observations. This does not imply that the agents know their own
state with complete certainty, only the global state is known. Therefore any Dec-
POMDP that has the JFO property automatically reduces to a Dec-MDP. A stronger
notion than JFO is that of full observability (FO), where each agent can individually
establish the global state the system is in with complete certainty:

Definition 2.14 Full Observability

A Dec-POMDP is said to be fully observable (FO) if there exists a mapping Fi :
Ωi 7→ S for each agent i ∈N such that whenever O(~a, ŝ, ~o) > 0 then Fi(oi) = ŝ.

Agents in a fully observable Dec-POMDP can observe the global state with complete
certainty from their own observation and therefore this model reduces to a multi-agent
MDP. In between these two observation restrictions is that of local full observability
(LFO). A Dec-POMDP is said to be LFO if the global state cannot be derived with
certainty but the agents know their own state with perfect confidence:

45

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

Definition 2.15 Local Full Observability

An (agent-factored) Dec-POMDP is known as locally fully observable (LFO) if every
state s = {s1, s2, . . . , sn} ∈ S is composed from individual agent states si and
there exists a mapping Li : Ωi 7→ Si for each agent i ∈ N such that whenever
O(~a, ŝ, ~o) > 0 then ∀i ∈N : Li(oi) = ŝi.

In this observation restriction it is assumed that the problem is agent-factored, i.e. the
state space is defined as S =

�

i∈n Si, which is seldom not the case in multi-agent
planning.

Example 2.16 Multi-agent MDP

The robot has successfully repaired its sensor and is fully aware of its position again. On
top of that, its sensors have detected the presence of another robot that is trying to find
a way to its designated exit. The robots are not really interested in each other although
they do want to avoid damage due to collisions and therefore have to coordinate their
movements. When the robots do collide, both will receive a penalty of −20. Figure 2.6
illustrates the two-robot problem on the same grid as before, although now the exits have
been coloured according to the robot that can use it.

1

2

3

4

1 2 3 4

(a)

1

2

3

4

1 2 3 4

(b)

Figure 2.6 Two-agent example of the robot path planning problem: (a) there are two
robots, each trying to reach their designated goal indicated by the colour of the symbol.
When the robots collide, i.e. they are at the same location concurrently, they will be
damaged and therefore this results in a negative reward. (b) Example of two shortest-path
policies that, while individually optimal, can cause collisions when combined into a joint
policy. When the yellow robot switches to the policy illustrated by the lighter path, no
collisions can ever occur while its move costs do not increase.

To avoid collisions and still optimise their path planning, the robots agree to share their
location with one another and develop a jointly optimal policy. Communication between the
robots is relatively cheap because they are both within the same small area and therefore
this problem can be modelled as a (factored) jointly fully-observable Dec-POMDP with
free communication, which is equivalent to a multi-agent MDP (MMDP).

The MMDP for this multi-agent problem resembles the MDP of Example 2.3 from
each robot’s point of view, but additionally it contains dependencies between the robots.
The joint state space S is defined as the combination of two state spaces S1 and S2, for

46

2

2.5. PLANNING WITH MULTIPLE AGENTS

the yellow and blue robot respectively, where each of the individual state spaces is defined
by the combination of two features Xx and Xy as before. One single joint state is thus a
combination of two grid positions at which the robots are located, for example the state
s = {s(1,i,j), s(2,u,v)} says that the yellow robot (robot 1) is at position (i, j) and the blue
robot (robot 2) is at (u, v).

The action space of the MMDP is defined as the collection of both individual action
spaces, i.e. A = {A1, A2}. A single element in this set is a joint action ~a = 〈a1, a2〉, with
a1 ∈ Ai and a2 ∈ A2. For instance the joint action 〈S1, E2〉 specifies that the yellow robot
will perform a South move whereas the blue robot will move towards the East.

Transition probabilities in this problem can also be defined in a factored way. Although
collisions may occur and therefore the reward is determined based on the position of both
robots, the robot’s new position only depends on its own movements. Therefore the
transition probability for agent 1 – the yellow robot – are in the form P1(s(1,i,j), a1, s(1,i′,j′))
(and similarly for the blue robot) such that the joint transition probability is defined as
P (s,~a, ŝ) =

∏
i∈N Pi(s(i,x,y), ai, s(i,x′,y′)). This particular MMDP is actually transition-

independent (formalised later in Definition 2.17) because the robots can not affect each
other‘s state transition directly.

There is a dependency in the joint reward however (otherwise the problem could also
have been solved as two individual single-agent MDPs) because of the collision penalty. In
addition to the move costs and goal rewards, there is a joint penalty of −40 when the robots
are at the same location at the same time. Continuing the component-wise specification
from Example 2.6, there is an additional reward component rc for collisions that is defined
as rc(s,~a, ŝ) = −40 for every state s ∈ S, joint action ~a ∈ A and ŝ = {s(1,i,j), s(2,u,v)}
in which i = u and j = v.

From Figure 2.6b it is easy to see the need for coordination between the two robots:
if the yellow robot used the SW-policy, as it did before, and the blue robot uses a similar
shortest-path policy that continues moving East until the goal has been reached, the robots
will crash into each other if both their moves succeed. Even though both policies were
optimal from each agent’s individual point of view, combining these into a joint policy
results in a solution that is far from optimal. If either of the robots is willing to take
a different route, the penalty of −40 can be prevented, resulting in a better outcome
for both robots. Hence by coordinating their decisions while developing a joint policy
they can both benefit. As the joint state is global knowledge in an MMDP, the yellow
robot can actually detect that blue is in the position South(-West) of its current location
and can therefore choose to perform a West move first whenever a global state of the
form {s(1,i,j), s(2,u,v)} is encountered that has i = u or i = u + 1 and j = v − 1.
Alternatively, in this example, the yellow robot can switch from the SW-policy to a first
West, then South policy without increasing its costs while avoiding collisions altogether,
lifting the need for (further) coordination.

Decentralised coordination In the setting where communication is not freely available, the
best these robots can do is coordinate their actions based on the observations they make
regarding the location of the other robot, after execution of the joint action. While in the
MMDP model it is possibly to observe the global state space, in a Dec-MDP the robots
can only base decisions on their local state and the observed location of the other agent. A
key difference is hence that coordination in a decentralised problem can only be performed
based on the expectation about what the other robot is going to do, given the current
state and last observation, whereas in MMDP it was possible to align actions based on the
globally available joint state. Still, although action decisions during executions are based

47

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

on this local view of the world, it is possible to coordinate action decisions through a joint
policy that is developed centrally before the execution is started. This will be demonstrated
below for a decentralised version of the two-agent problem.

Consider again the two-agent robot path-planning example, but now the robots can
only communicate their position after each (failed) move they have performed. Again
the robots want to reach their goal, preferably without collisions. Each of the robots
could maintain the last-known location of the other robot as part of its current state,
however, as the other robot can be in any of the 4× 4 = 16 locations, this would require
16× 16 = 144 states to capture every combination of locations and leads to a joint state
space of 1442 = 20 736 states for this simple 4 by 4 grid example. Instead, each robot
observes the position of the other robot relative to its current position. Each robot i can
make 9 observations oiC , o

i
SW , o

i
N , . . . (C denoting the center) regarding the position of

the other robot relative to its own in the 3 × 3 grid centered around the robot and oi¬ if
the other robot is not in the vicinity. This is shown in Figure 2.7a.

oNW oN

oW

oSW oS oSE

oE

oNE

(a) (b)

Figure 2.7 Two-robot example in the decentralised setting: (a) the observations each
robot can make regarding the position of the other robot and (b) conditioning its action
decision based on the previous observation prevents the yellow robot from performing a
South move when blue is in either of the shown relative positions.

The observation probabilities are defined such that every observation can be observed with
equal probability (1

10
) whenever the previous observation was that the robot is not in the

vicinity, i.e. the previous observation of robot i was oi¬. When another observation was
previously made, the probability depends on the observation and action. For example, when
previously oiSW was observed it can never observe oiNE in the next state if it performs a
North action.

An example of coordination through a joint policy is shown in Figure 2.7b. The yellow
follows a modified version of the SW-policy such that it will prefer West over South when
it has observed that the blue robot is in either one the two shown positions. During the
search for a joint optimal policy it has been established that it will be jointly better if blue
always moves eastward and yellow avoids possible collisions. After this joint policy has been
developed, both robots can independently execute their own policy and be certain that no
collision occurs because the policy of the yellow robot is conditioned on what it observes
about blue and thus both robots have coordinated their path planning (implicitly).

The relation between the classes of MDPs discussed so far is summarised in Figure 2.8.
Each class is illustrated as a filled oval and contain sub-classes when a reduction is
possible. These reductions are shown by arrows and are labelled with their required
property. The properties in this figure are: identical rewards, free communication
(free comm.), joint full observability (JFO), full observability (FO) and single agent

48

2

2.5. PLANNING WITH MULTIPLE AGENTS

(1Agent). Of course, any problem that is a subclass can be expressed and solved using
the model and solving techniques of its containing super class.

Figure 2.8 Overview of MDP classes discussed so far, all contained within the class of partially
observable stochastic games (POSG). Each of the classes is shown as an ellipse. The arrows
mark a relationship between classes and are labelled with the specific property necessary for
the reduction to the sub-class.

The decentralised POMDP model is more expressive than the previously discussed
POMDP as it captures multi-agent problems and, consequentially, policies for the de-
centralised model are harder to find. Indeed, Bernstein and Givan [31] showed that
solving Dec-POMDP is nexp-complete (see Appendix D) and hence substantially more
complex than its single-agent counterpart. An additional and remarkable result of Bern-
stein and Givan [31] is that restricting the individual observability does not affect the
problem complexity. Finding the optimal policy for any Dec-MDP with at least 2 agents
is nexp-complete. When full observability is satisfied the problem can be reduced to an
MMDP and, because every MMDP can be transformed into a single-agent MDP [36],
p-complete to solve [203].

Even approximation turns out to be hard for general Dec-POMDP: Rabinovich et
al. showed that even deciding whether a policy is arbitrarily close to the optimal one is
a nexp-hard problem [210]. This result implies that no tractable approximation with a
bounded quality guaranty can exist because p is a strict subset of exp which contains
nexp (again, see Appendix D).

These complexity results discourage practical application of the general Dec-POMDP
model. Indeed many researchers have instead focused on special cases that exhibit par-
ticular structural properties. In the next section several of these special cases are
presented with a brief explanation on how their structure can be exploited in policy
search. For complete detail on the presented approaches, the reader is advised to read
the works cited in the text. Here only the key ideas are presented that inspired this
and similar research.

49

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

2.6 Gaining Traction on Dec-POMDPs

The computational complexity result presented in the previous section, solving general
Dec-POMDPs is a nexp-complete problem, gives little hope of ever finding efficient
solution methods for this type of problem. To this end, many researchers have devoted
their efforts into finding special cases that are (more) tractable to solve. Indeed, some
of the approaches that are presented in this section have been able to solve much larger
problems in terms of input size and/or number of agents.

Put coarsely, most approaches focus on the independence between agents in one
way or another. Many authors have considered models where agents have limited or
no influence on other agents such that agents do not have to reason about the im-
pact of other agents’ actions on their state or observation, e.g. Becker et al. [25] and
Nair et al. [183]. Other methods specifically target the locality of interactions between
agents instead of considering all agents at once, for instance Oliehoek et al. [193] and
Varakantham et al. [251]. This section will outline several known MDP subclasses
that use such restrictions on the parts of their model, allowing for more efficient pol-
icy searches. First however three general independence properties are presented that
many of these subclasses make use of: transition, observation and reward indepen-
dence. These properties all require that the Dec-POMDP is factored, hence its states,
actions and observations are separated in disjoint, agent-specific sets. The transition
independence property (TI) holds for any Dec-POMDP in which agents cannot affect
the states of other agents through their actions. Put differently, this property states
that the state transition of an agent only depends on its own current state and action:

Definition 2.17 Transition Independence

In a transition independent Dec-POMDP the global transition probability is the prod-
uct of (independent) local transition probabilities: P (s,~a, s) =

∏
i∈N Pi(si, ai, ŝi).

The main advantage of transition independent problems is that agents do not have
to consider the states and actions of other agents when reasoning about the optimal
transition from a certain state. This can potentially significantly reduce the size of
the search space that needs to be considered in optimal policy search as agents only
have to reason about the impact of their own actions, irrespective of what others
may perform. Note that this property does not fully decouple the agents as they are
typically still dependent through their observations and/or rewards. Similar to transition
independence, agents can also be independent in their observations. This is the case
when the observations an agent can make depends only on its own action.

Definition 2.18 Observation Independence

In an observation independent Dec-POMDP the global observation probability is the
product of the (independent) local observations: O(~a, s, ~o) =

∏
i∈N Oi(ai, ŝi, oi).

50

2

2.6. GAINING TRACTION ON DEC-POMDPS

Again such an independence allows agents to focus only on the impact of their own
decisions, albeit in terms of observations an agent can make. Lastly one can also
identify an independence between agent rewards as in Definition 2.19:

Definition 2.19 Reward Independence

In a reward independent Dec-POMDP the global reward is the sum of (independent)
local agent rewards: R(s,~a, ŝ) =

∑
i∈N Ri(si, ai, ŝi).

In problems with reward independence, the reward of each agent only depends on its
own state and decisions. Typically, reward dependencies occur when agents have sub-
additive or super-additive value for performing certain actions or being in a specific
combination of states concurrently. This is for instance the case in Chapter 4 where
agents have a sub-additive valuation for performing certain combinations of actions
concurrently. It might seem that when reward independence is present, the planning
problems can be decoupled. Nonetheless, the state transition or observations may still
depend on other agents and therefore, indirectly, the expected reward that an agent can
obtain. Consequently, even when RI is present there has to be coordination between
agents to optimise reward.

Example 2.20 Independence in multi-agent problems

The (in)dependencies in the two-agent robot path-planning example can be easily visualised
using again the Dynamic Bayesian Network (DBN, Section 2.3).

t t+ 1

r1
m

X1
x

X1
y

r2
g

W1

N1

rc

r2
m

X2
x

X2
y

r2
g

W2

N2

o1
N

o1
C

X̂1
x

X̂1
y

o2
N

o2
C

X̂2
x

X̂2
y

Figure 2.9 The DBN for the two-robot path-planning problem of Example 2.9, now with
(some of) the observations that both agents can make. The state features, actions, obser-
vations and rewards are grouped per agent, except for the shared collision reward compo-
nent rc. Violation of independencies are shown by the green and red arcs for observation
and reward independencies respectively. Only the observation dependencies of the blue
robot on the yellow robot are displayed to preserve clarity.

51

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

The DBN now contains two agents and the elements corresponding to each of them have
been grouped within the coloured areas, with the yellow robot at the top. First notice
the addition of observations to the DBN (of which only two are shown) that depend on
the new position of the robot as well as that of the other one. Because the probability of
making each of these observations depends on the position of the other robot, this is a
violation of observational independence. In this example there is also a violation of reward
independence: the reward component for collisions, rc, depends also on the new location
of both robots. As the robots can never directly influence the position of another agent
by any of its actions, this problem is transition independent. An example of a change to
this problem that makes it transition dependent can be the addition of a physical collision
effect such that when two robots end up in the same position after a move, they will be
displaced slightly. In such an example, the choice of action in one robot can affect the
state of another, thus violating transition independence.

An important complexity result regarding the independence properties is that when
both transitions and observations are independent, the problem of finding an optimal
policy becomes np-complete [97]. If all three properties are present in a multi-agent
planning problem, it can be decomposed into |N | independent single-agent problems
that can be solved separately.

The remainder of this section will outline a number of subclasses of Dec-POMDP
that use one or more of the independence properties just presented, or weaker variants
thereof, to solve (restricted) planning problems more efficiently. This overview is by no
means a complete overview of all existing subclasses and associated solving techniques,
nor is it presented in full detail. Here the most significant concepts and intuitions of
those approaches are included, both optimal and approximate, that are closely related
to work presented in this thesis, in particular to that of Chapter 4. More details and
references can be found in the papers cited.

2.6.1 Jointly Fully Observable Models

Many of the approaches for more tractable subclasses of decentralised POMDPs con-
sidered the jointly fully observable setting (JFO, Definition 2.13). As explained earlier
in Section 2.4, any POMDP that is JFO can be reduced to an MDP, and a similar
statement holds true for the decentralised case. Although the theoretical worst-case
complexity of Dec-MDP is also nexp-complete, it is often easier to solve than its
partially observable counterpart.

One of the first models that was considered a more tractable subclass was the
transition and observation independent decentralised MDP, or TOI-Dec-MDP. Becker
et al. proposed the Coverage Set Algorithm (CSA) that can be used both as an
optimal as well as an anytime algorithm for this class of problems when joint rewards can
be structured such that interactions can be expressed through events. In the presence
of events, the Dec-MDP can be separated into individual MDPs for every agent, each
MDP with an augmented reward function that captures reward dependence with other
agents. This allows each agent to find a compact set of best responses to all possible
joint policies of all other agents and from these the optimal joint policy over all agents
can be determined. As a result, the efficiency of this algorithm depends predominantly

52

2

2.6. GAINING TRACTION ON DEC-POMDPS

on the ‘locality’ of the agent dependent rewards. The anytime aspect of this algorithm
is due to the fact that it can return the current best joint policy at any time during
the search. Allen et al. [8] developed a bilinear programming approach that speeds-up
the policy search, and in particularly improves the anytime quality of the algorithm.

Another approach that targets TOI-Dec-MDPs is taken by Wu and Durfee [265]
that introduces MILP-HCS, a combination of mixed integer linear programming and
hill climbing search, to solve problems from this class. Their approximation algorithm
is demonstrated empirically to produce high quality solutions in limited time for the
collaborative task execution domain, and performs better than anytime CSA or JESP

(the latter is explained later) in terms of quality versus runtime.

Dibangoye et al. [77] also considered TOI-Dec-MDPs. Their algorithm, termed
Markov Policy Search (MPS), casts a Dec-MDP into a continuous MDP such that
the states thereof correspond to probability distributions (called occupancy distribu-
tions) over the original Dec-MDP. This state space is then explored with a learning
A* algorithm and subsequently policies are derived from the resulting state occupancy.
With this approach, the authors have successfully scaled up solving to much larger
problems of several previously studied domains.

An extension of the model of Becker et al. [26] was presented by the same authors.
Becker et al. [25] considers the event-driven interaction MDP, or EDI-Dec-MDP,
subclass and shows that the CSA algorithm is exponential in the number of event
interactions present in the problem. This particular subclass does not assume full
transition independence, instead it enforces that dependent transitions can be captured
as mutually exclusive events. Although this is still a restriction on the type of transition
interactions, it is less prohibitive than transition independence.

Beynier and Mouaddib [32] also use an approach that has a weakened form of transi-
tion independence but full observation independence. They introduced the opportunity
cost Dec-MDP, or OC-Dec-MDP, that allows for temporal and precedence relations
in transitions. The opportunity costs in this model capture the impact on reward due
to agent dependencies and, using a modified Bellman equation (Equation 2.4) that
includes them, they are exploited to find policies in a decentralised manner while still
coordinating between agents. The authors provide an approximation algorithm that
produces good policies on the problems they consider while taking only polynomial
time in the state space size. Beynier and Mouaddib [33] proposes an improvement
where the algorithm uses expected opportunity costs and an iterative improvement
procedure to produce better joint policies, but both are without formal guarantees.

Closely related to this has been the work by Marecki and Tambe [165] on the
continuous resource decentralised MDP, or CR-Dec-MDP, that was initially compared
to the OC-Dec-MDP algorithm of Beynier and Mouaddib [32]. Under the CR-Dec-MDP
formalism, agents are assigned sets of partially ordered methods that can be executed
only once and at most one at a time. The actual length of execution is however unknown
at planning time and is given by a probability function. This model adheres to the
observational independence but allows for a restricted form of transition dependence in
the form of temporal and precedence constraints between methods, possibly belonging
to different agents. For this type of MDP problems, the authors developed the Value

Function Propagation (VFP) algorithm. This algorithm is similar in structure to the

53

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

one for OC-Dec-MDP as described by Beynier and Mouaddib [32], but it propagates
value functions instead of constant values. This seemingly minor adaption decreases
the overestimation of opportunity costs in many cases. Moreover, passing entire value
functions allows for better pruning during the policy search. Indeed VFP produces faster
and better solutions for the (discrete) problems considered in both articles [165].

Later, Marecki and Tambe [167] targeted the continuous resource setting with their
Multi-agent Dynamic Probability Function Propagation (M-DPFP) algorithm
for the CR-Dec-MDP class. This algorithm is an extension of their earlier work on
the single-agent setting [166] and alleviates the partial ordering restriction required in
VFP. Although the continuous resource model is outside the scope of this thesis, this
algorithm is worth mentioning because it has been benchmarked against the state-of-
the-art SPIDER method (discussed later) and outperformed it in most of the domains
used by Marecki and Tambe [167].

Based on both the event-driven interaction as well as the continuous resource model
is the approach taken by Mostafa and Lesser [179]. They propose the event-driven in-
teraction with complex reward model, or EDI-CR-MDP, a model that combines the
events of the former with structured rewards of the latter in such a way that the two
previous models are a subclass of EDI-CR-Dec-MDPs. Problems in this subclass can
have both transition and reward independence, and therefore are more general, but can
still be solved rather efficiently in practice. They extend the bilinear programming ap-
proach presented by Allen et al. [8] to deal also with transitional dependencies and show
empirically that their method performs well on problems of this subclass. Nevertheless
no formal guarantees can be given by their algorithm.

The last important subclass in the jointly fully observable setting that is discussed
here is the decentralised MDP with sparse interactions, or Dec-SIMDP, proposed by
Melo and Veloso [170] and extended from previous work by Spaan and Melo [242]. The
intuition behind this model is that in many problems the interactions are limited to a
few occasions and only decisions in such moments have to be coordinated. At all other
times, agents may plan their actions completely independent from each other. Thus this
model includes transition, observation and reward independence, but these independen-
cies are context-specific (referred to as agent independence by Melo and Veloso [170]).
This is also the basic intuition behind both the MPSI and LAPSI (respectively Myopic

and Look-ahead Planning for Sparse Interactions) algorithms proposed in this
work. Both methods use a mix of single-agent POMDP and multi-agent MDP solving
for times when planning decisions respectively can and cannot be made without coor-
dination. The MPSI algorithm considers all agents to be self-interested and therefore
plans defensively whereas LAPSI assumes collaborative agents.

2.6.2 Partially Observable Models

All the subclasses so far reviewed all shared the jointly fully observability assumption,
i.e. the global state could be determined with certainty. There have also been several
approaches considering subclasses of the more general partially observable setting. One
of the first of such methods was proposed by Nair et al. [183]. Although their approach
is based on the multi-agent team decision processes model, this model can be translated

54

2

2.6. GAINING TRACTION ON DEC-POMDPS

directly into observation-independent Dec-POMDPs, or OI-Dec-POMDP. For this
class they developed a local search procedure known as Joint Equilibrium Policy

Search (JESP). The essence of this algorithm is very simple: the algorithm fixes the
policy for n−1 agents and find the policy of the n-th agent that optimises the expected
value of the joint policy. This process is continued iteratively, alternating the fixing
over the set of agents, until no agent can improve their policy without decreasing
the expected value of the joint policy. This solution concept is known as a Nash
equilibrium. Again as with most jointly fully observable approaches, JESP does not
provide any quality guarantees but performs fairly well in practice.

This work was extended by Nair et al. [184] to network distributed POMDPs, or
ND-POMDP. Network-distributed POMDPs also satisfy observation independence
but require transition independence in addition.21 When both these properties are sat-
isfied, the reward function can be decomposed into local and shared components and
their modified algorithm, Locally Interacting Distributed JESP (LID-JESP),
uses distributed constraint optimisation to exploit this reward structure. As a result,
the LID-JESP algorithm outperforms the previous JESP on instances of this subclass.
Furthermore, this article presents the exact Global Optimal Algorithm (GOA) for
this type of problems when the reward dependencies are binary. GOA constructs a tree
from the reward dependencies between agents and performs a depth first search over
this tree such that for each policy of a parent node, the child nodes recursively return
an optimal best response. If each node recursively enumerates all possible policies
exhaustively, the algorithm is ensured to return the optimal policy. The main benefit
is that this solves sub-problems decoupled into sets of agents that are not (indirectly)
reward dependent.

Varakantham et al. [250] also targeted the ND-POMDP framework and introduced
the Search for Policies in Distributed Environments, or SPIDER, algorithm.
This approach resembles GOA, in that they also build an agent tree based on reward
dependencies to perform policy search on, but they apply a branch and bound search.
This search uses the current best expected value as a lower bound and finds an upper
bound for each branch in policy search through MDP approximation. By assuming full
observability and a centralised problem, i.e. a standard MDP, the best possible expected
value can be computed within reasonable time as MDP is much easier to solve. This
approach immediately provides two benefits: firstly, the MDP approximation can be
used to prune during the policy search when the upper bound is lower than the current
best expected value. Secondly, because it has both a lower and an upper bound
available, the algorithm is able to bound the quality of the produced policy in terms
of error between the bounds. As a direct result, the algorithm can provide bounded
approximations with only the minor adaptation of adding a tolerance parameter in its
termination criterion.

Dibangoye et al. [78] considered also ND-POMDP problems and they applied their
previous work of solving general Dec-POMDPs through continuous-state MDP to this
class. Their Feature Based Heuristic Search Value Iteration (FB-HSVI) al-

21 ND-POMDP is hence equivalent to TOI-Dec-POMDP, but in the literature the former term is used
predominantly.

55

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

gorithm transforms Dec-POMDP instances into equivalent continuous-state MDPs
such that the states of the latter correspond to belief states and histories of the former.
22 The algorithm exploits reward functions that can be represented compactly, which
is the case in ND-POMDP as Dibangoyea et al. [79] show. In addition to a good
performance in terms of runtime when reward structures are compact, FB-HSVI is able
to bound the quality of the resulting joint policy and can be shown to converge to the
optimal solution eventually.

Contrary to the previous approaches where significant dependency restrictions are
required, there have also been approaches that target the sparsity of interactions. One
such approach is taken by Varakantham et al. [251] where the authors propose the
distributed POMDP with coordination locales, or DPCL. States in DPCL consist only
of execution statuses (e.g. “done” and “not done”) and it requires observation inde-
pendence, however no other assumptions are necessary. The key idea behind problems
in DPCL is that there are typically only a limited number of interactions that need to
be coordinated, known as coordination locales, whereas the rest of the planning can
be performed independently (similar to the work by Melo and Veloso [170] in the JFO
setting). Their algorithm, known as the Team’s Reshaping of Models for Rapid

Execution (TREMOR), resembles the branch and bound method of the previous SPIDER
algorithm. The branch and bound method is used to perform assignment of tasks over
the agents after which a policy is found for the execution of these tasks. It approx-
imates interactions between agents by reward shaping: for each agent a POMDP is
solved where the reward function incorporates the impact of coordination locales.

Another approach that focuses mostly on the interactions itself as opposed to re-
stricting dependencies between agents is that of influence abstraction proposed by
Witwicki and Durfee [264]. Here the authors introduce the transition-decoupled POMDP,
or TD-POMDP. Whereas most methods so far assumed one or more types of inde-
pendence, TD-POMDP does not require any type of strict independence. Instead it
is assumed that the states are factored and can furthermore be decomposed in un-
controllable, local(ly-controlled) and non-local(ly-controlled) features. Uncontrollable
features are global features that are not directly influenced by any agent but can be
observed by the agents. The other two types, local and non-local features, are vari-
ables that are controlled by the agent itself or by others respectively. In addition to
this state decomposition, it is assumed that the global reward is monotonic in the in-
dividual reward functions so that any decrease in reward for any of the agents can not
lead to an increase of global reward and vice versa. Using this model, it is possible to
extract exactly the influences between agents and coordinate just these interactions.
This is implemented in the Optimal Influence Space Search (OIS) algorithm that
performs an exact joint policy search using influence summaries. As does the previous
GOA, OIS generates an agent search tree and traverses this recursively to find the opti-
mal joint policy, generating and propagating influence summaries downwards, returning
best-response policies to each of these influences upwards.

The final subclass discussed in this section requires none of the independence crite-
ria, only that the Dec-POMDP is factored as previously discussed in Section 2.5. The

22 An approach that had already been successfully applied to POMDP and MOMDP.

56

2

2.6. GAINING TRACTION ON DEC-POMDPS

factored Dec-POMDP, or fDec-POMDP, was considered as the framework of choice
in Section 2.5, although factoring was implicitly assumed in all previous models as well.
Oliehoek et al. [193] show how any factored Dec-POMDP can be solved as a series
of collaborative graphical Bayesian games (CGBGs) and introduce the Generalised

Multi-agent A* (GMAA*) that performs an exact policy search using this technique.
By decomposing the independence over time into CGBGs, the algorithm tries to exploit
the locality in agent rewards to perform a more efficient search. Their algorithm has
been demonstrated to solve three-agent Dec-POMDP instances optimally, one of the
few reported successes for general factored Dec-POMDPs.

This section has discussed many of the existing approaches that have been taken
in order to solve at least problems that are modelled by a subclass of the decentralised
partially observable Markov decision process. Table 2.1 summarises all the subclasses
and corresponding solving techniques. This table gives an insight into the type of sub-
classes that have been proposed and what kind of restrictions they require on the input.
Keep in mind that, as stated before, the table presented here includes a substantial part
but not all of the models and approaches that have been dealt with in the literature.
Only those that are (mostly) relevant to the work in Chapter 4 of this thesis have been
included.

Model States Transitions Observations Rewards Solutions

TOI-Dec-MDP Factored Independent JFO, indep. Arbitrary23 CSA [26], MPS [77],
MILP-HCS [265]

EDI-Dec-MDP Factored,
global events

Mutually
exclusive events

JFO, indep. Arbitrary CSA [25]

OC-Dec-MDP Factored Temporal and
precedence
dependencies

JFO, indep. Arbitrary [32], [33], VFP [165]

CR-Dec-MDP Factored Temporal and
precedence
dependencies

JFO, indep. Completion
rewards

VFP [165],
M-DPFP [166]

EDI-CR-MDP Factored Mutually
exclusive events

JFO, indep. Completion
rewards

[179]

Dec-SIMDP Factored Sparse
interactions

JFO, indep. Sparse
interactions

MPSI & LAPSI [170],
IDMG [242]

OI-Dec-POMDP Factored Arbitrary Independent Arbitrary JESP [183]

ND-POMDP Factored Independent Independent Arbitrary FB-HSVI [79],
LID-JESP, GOA [184],
SPIDER [250]

DPCL Factored,
completion
statuses only

Sparse
interactions

Independent Completion
rewards

TREMOR [251]

TD-POMDP Factored,
decomposable

Sparse
interactions

Sparse
interactions

Monotonic
global reward

OIS [264]

fDec-POMDP Factored Arbitrary Arbitrary Arbitrary GMAA* [193]

Table 2.1 Overview of (factored) Dec-POMDP subclasses. The columns of the table, from
left to right, show: the model name, required restrictions on states, transitions, observations
and rewards respectively, and the solution that was proposed in the literature.

23 Although some structure is assumed in them but this follows from the combination of transition
and observation independence, and does not pose any restriction on the model.

57

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

2.7 Planning with Multiple Objectives

The final area of stochastic planning touched upon in this thesis is that of planning
with multiple objectives. There exists many practical planning scenarios where it is
more natural to try and optimise several, possibly conflicting, criteria at once. Some
examples of this are allocation of several, distinct resources [132], energy and comfort
management in buildings [139] and routing transport of hazardous materials [160]. As
before, this section only outlines the concepts of multi-objective planning that are most
relevant for the work presented in the thesis, in particular to Chapter 5. Most of these
concepts have been adopted from the survey by Roijers et al. [215]. Furthermore,
as approaches for the partial observable setting are not significantly different and are
not within the scope of this thesis, a step back is taken in terms of generality. All
significant multi-objective notions are presented only for the fully observable Markov
decision process:

Definition 2.21 Multi-objective Markov Decision Process (MOMDP)

A multi-objective Markov decision process (MOMDP) is defined by a tuple 〈S,A, P,R〉
such that:

• S, A, P are the state space, action set and transition probability function as in
Definition 2.1, and

• R is a collection of reward functions {R1, R2, . . . , Rm}, where m is the number of
objectives, such that each Rk(s, a, ŝ) captures the reward for objective k ∈ [1,m]
when the current state is s, action a is taken and new state ŝ results.

Notice that this definition of multi-objective MDP is presented as a single-agent model.
In Section 2.5 it was mentioned that any multi-agent MDP can be transformed into a
single-agent MDP [36]. The same holds for any multi-objective MMDP and therefore
the focus here is only on the latter model.

For an MOMDP, none of the methods presented in this chapter can be directly used
because the reward can no longer be expressed as a single value. Instead, the expected
value of any (stationary) policy π given initial state s0 is expressed as a vector over all
objectives:

V π(s0) = E
[h−1∑
t=0

R(st, π(st), st+1)
]

(2.13)

and the policy valuation can also be written as
〈
V π1 (s0), V π2 (s0), . . . , V πm(s0)

〉
where

each V πk is the valuation of policy π for objective k ∈ [1,m] as in Equation 2.1.
Because the value of a policy is now given by a vector, it is no longer possible to

distinguish an optimal policy as before. With scalar rewards the value function can be
used to induce a complete ordering of policies and select an optimal policy from it.
However, if the valuation function has multiple dimensions, at most a partial ordering
of policies can be defined. For example there might exist two policies such that one
yields a higher value in the first objective but the other scores better in the second,

58

2

2.7. PLANNING WITH MULTIPLE OBJECTIVES

i.e. ∃π, π′ ∈ Π: V π1 (s) > V π
′

1 (s) and V π2 (s) < V π
′

2 (s) for some s ∈ S, and therefore
there is not one ‘best’ policy. At best, a point-wise comparison can be made between
two different policies whereas previously all policies could be ranked based on their
expected scalar reward. This lack of complete ordering is the reason why the methods
discussed up to this section are not (directly) applicable to MOMDP solving.

Although MOMDPs have multi-dimensional valuations and it is therefore not pos-
sible to define a unique optimal policy, in the end any planning algorithm still needs to
produce one single policy to execute. To this end, multi-objective approaches typically
transform the vector value function into a scalar value using a so-called scalarisation
function:

Definition 2.22 Scalarisation Function

A scalarisation function f is a function that transforms a multi-dimensional value
function V π into a scalar reward for any policy π and initial state s0:

V π,w(s0) = f(V π(s0),w) (2.14)

Here, w is a set of (normalised) objective weights {w1, w2, . . . , wm} ∈ [0, 1]m that
specify the relative importance of each objective.

Observe that if the objective weights are known during the planning process and the
scalarisation function is not too hard to compute, the MOMDP can be transformed
into a single-objective problem and solved through any of the existing MDP techniques
(see Chapter 3). The need for specific multi-objective solving methods arises only when
one of these two assumptions does not apply. Moreover, the type of (intermediate)
result differs for both of the two conditions. When the scalarisation function is effi-
ciently computable (discussed in more detail later) but the weights are unknown during
planning, the MOMDP solving algorithm should return a set of policies for different
weights so that the optimal policy can be retrieved from this set as soon as the weights
become known. This occurs for instance in scenarios where objectives are weighted
by their relative importance or as a price per unit. Examples of such problems are
allocating miners to mines with unknown prices of ore types [217], resource gathering
where trade-offs are made between time and resource value [175] or in decision support
where the relative importance of objectives is chosen by human decision makers when
presented a set of alternative solutions [187].

In this thesis, the focus is only on multi-objective problems where the objectives can
be transformed into a scalar reward using a linear, non-decreasing scalarisation func-
tions. Moreover, these weights are unknown during planning as otherwise the MOMDP
can be transformed into and solved as a standard single-objective MDP, without the
need for multi-objective approaches.24 Formally, linear scalarisation functions are de-

24 For examples in which the scalarisation function is not linear or decreasing, the reader is referred to
the survey of Roijers et al. [215].

59

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

fined as the inner product of the weights and the component-wise valuation functions:

f(V π(s0),w) = w •V π(s0) =
∑

k∈[1,m]

wkV
π
k (s0) (2.15)

The advantage of having a non-decreasing, linear scalarisation function, and the
reason why most approaches assume one, is that it allows for more efficient multi-
objective solution techniques for reasons similar to that of POMDP solving using belief
MDPs (Section 2.4). Recall that the focus here is on MOMDPs where objective weights
are not known a priori and hence a set of policies must be found so that the optimal
policy can be retrieved from it later for any weight vector. Under an arbitrary function f
the scalarised value of a policy can vary enormously with every unique combination of
weights. As the number of unique weight combinations is infinite, finding this policy
set requires probing all (or, in practice, enough) weight vectors and is therefore likely
computationally infeasible. In contrast, when the scalarisation function is linear and
non-decreasing, it is possible to define value vectors w •V π (assuming a common initial
state s0) and keep only those value vectors that maximise the expected scalarised reward
(Equation 2.15) for at least one set of weights w ∈ [0, 1]m. Because there is only a
finite number of states and actions (and observations) in the MDP, there must also
be a finite number of policies and thus a finite number of such value vectors. The
supremum of the set of value vectors therefore defines a Piece-Wise Linear Convex
(PWLC) polytope which constitutes a MOMDP solution, i.e. it contains an optimal
policy for all weights.25

f(V ,w)

w1

f(V ,w)

w1
10 10

Figure 2.10 Illustation of policy values using an arbitrary scalarisation function (left) and a
linear function (right). The horizontal axis displays the priority of weight w1 and the other
weight is given by w2 = 1− w1.

Figure 2.10 shows a typical two-objective example that illustrates an arbitrary scalar-
isation function on the left versus a non-decreasing, linear scalarisation function on the
right. Observe that under this arbitrary scalarisation function there is no detectable
structure in the scalar value as is almost always the case. On the other hand, in the
linear case one can clearly see that all values are contained within the region bounded
by the PWLC function f(V π∗ ,w) in red and the graph axes. In this example, only
five unique policies are sufficient to express all optimal policy values entire weight re-
gion [0, 1]. Consider for instance the left-most blue dot, in the region starting from the

25 Indeed, solving MOMDP with a linear scalarisation function is closely related to POMDP solving
through a belief MDP, as was underlined by White and Kim [263] where the MOMDP is transformed
to a POMDP where the partial-observability models the objective weights.

60

2

2.7. PLANNING WITH MULTIPLE OBJECTIVES

vertical axis until this intersection there exist (at least) one policy that achieves the
highest possible scalarised value. At the intersection and moving to the right, another
policy attains a higher expected scalarised value and therefore optimal for the next
segment. This holds true for at least five policies, although more might exist that yield
the same expected scalarised value over the same weight interval. In particular, the
red line segments in the right graph of Figure 2.10 correspond to the scalar values of
a set of policies known as the convex coverage set:

Definition 2.23 Convex Coverage Set (CCS)

The convex coverage set (CCS) for an MOMDP is a set of policies Ψ ⊆ Π such
that for every set of weights w ∈ [0, 1]m and a non-decreasing, linear scalarisation
function f the set Ψ contains at least one policy π that maximises the scalarised
value f(V π(s0),w), or

Ψ=
{
π∈Π

∣∣∀w ∈ [0, 1]m,∀π′∈Π, f, s0 : f(V π(s0),w) ≥ f(V π′(s0),w)
}

(2.16)

Finding the CCS is a non-trivial problem and there have been several approaches in
the literature of which some are briefly explained here. White and Kim [263] are
arguably the first to target specifically the convex coverage set as a solution to MOMDP.
Based on an observation made earlier by Sondik [241], they developed a procedure that
transforms MOMDPs into a corresponding MDP where the partial observability models
the uncertainty in objective weights. After this conversion finding the CCS becomes
equivalent to finding the set of optimal policies over the belief space and standard
POMDP techniques can be used – Policy Iteration in their work – to solve the
problem.26 Indeed observe the similarity between Figure 2.5, illustrating the optimal
value over the belief space, and the right figure of Figure 2.10, illustrating the optimal
CCS.

A different approach was taken by Barrett and Narayanan [21]. In this work, the
authors propose a variant on Value Iteration (Section 2.2), called Convex Hull

Value Iteration (CHVI), that extends the former algorithm by storing for each
state/action pair also the linear valuation vectors. These valuations are maintained
and propagated during the search to prevent an often substantial number of obsolete
computations in the multi-objective setting. A similar algorithm but with better time
and space bounds was developed by Lizotte et al. [161],[162].

Instead of designing a method dedicated to multi-objective planning problems, Roi-
jers et al. [217] developed an algorithm that can harness the power of any single-
objective MDP solver. Their Optimistic Linear Support (OLS) algorithm inter-
leaves an algorithm that determines the minimal set of objective weights, called corner
points or corner weights, with any existing single-objective MDP solver to compute the
expected policy value at these corner points. The algorithm exploits a theorem due
to Cheng [60] developed for POMDP solving. With a slight change of terminology from
POMDP to MOMDP literature, this theorem states that the maximal error between

26 Although they must not require an initial belief state and can be inefficient on transformed multi-
objective problems [215].

61

CHAPTER 2. STOCHASTIC PLANNING USING MARKOV DECISION PROCESSES

the current known CCS and the optimal one can be found in the corner points. Using
this theorem it can be shown that OLS decreases the error compared to the optimal
CCS in each step and terminates when the optimal set is found. The details of the OLS

algorithm can be found in Chapter 5.

Example 2.24 Multi-objective path planning

The robot is given another mission: it is to extract precious minerals from the area it is
located in. In addition to the exit, there are now also mineral deposits that the robot can
reach for before leaving the area. By moving to such a deposit, the ore can be mined and
the robot obtains additional reward for each ore that is mined. This situation is shown in
Figure 2.11.

1

2

3

4

1 2 3 4

Figure 2.11 Multi-objective example of robot path planning where the robot may collect
minerals for additional reward.

Remember that it costs the robot energy to move around and therefore it is only interesting
for the robot to collect a mineral if it expects to make a profit by obtaining it. This means
that its expected revenue should outweigh the additional cost of getting to and from the
mineral deposit, however the market prices for the mineral vary on a daily basis. It is
possible to estimate the price and develop one single policy, but the revenue obtained
under such a policy may be far from optimal if the estimated prices is not close to the real
ore price. Instead, both objectives are combined using a weighting function such that its
total reward when it has reached the goal is given by 100−we ×#moves−wo ×#ores.
In this reward, we and wo are relative importance weights for the energy and ore objectives
respectively. Both weights are normalised such that they are within the [0, 1] range and,
because they express relative importance, either weight can be expressed in terms of the
other, i.e. we = 1− wo and vice versa.

For ease of exposition it is now assumed that the moves of the robot will always succeed,
later the impact of this assumption is discussed. Regardless of what weights are chosen,
there are only three optimal paths that the robot can follow in this example, varying in
the number of ores the robot will try to collect. These paths are shown in Figure 2.12a.
When focusing primarily on minimisation of energy consumption, i.e. we close to 1 and
wo close to 0, the robot will choose the shortest path, coloured yellow in Figure 2.12a.
This is the case when for example the mineral prices are very low. If both objectives are
equally important, the robot will try to balance both and take the orange path. Finally, if
obtaining the ore is preferred the robot will take the red path.

In Figure 2.12b, an example convex coverage set for this multi-objective problem is
shown. Notice that the line segments of this function and the areas below them correspond
to one of the three optimal paths. For instance, in the yellow region that corresponds to the

62

2

2.7. PLANNING WITH MULTIPLE OBJECTIVES

yellow path the value of the ore weight is relatively low. Because of the linear scalarisation,
every optimal policy for the path-planning found in this region will have a scalarised value
that lies on the blue line. In this example, the optimal policy for a low ore priority was
found at approximately wo = 0.05 but for every weight wo ≤ 0.25, where a corner point of
the optimal scalarised value function f(V π∗ ,w) = w •V π∗ occurs, that policy is optimal.

1

2

3

4

1 2 3 4

(a)

V π,w

wo
0 1

f(V π∗ ,w)

0.25 0.6

(b)

Figure 2.12 (a) Depending on the value of relative weights we and wo, the robot can follow
one of the three optimal policies shown. (b) The scalarised value of the policies plotted for
the ore weight wo, each of the coloured areas corresponds to the (equally coloured) policy
that is optimal for a range of ore weight values. The dots indicate the weights used to find
the optimal policy for the scalarised version of the MOMDP. The upper surface of all value
vectors, coloured blue in this figure, defines the convex coverage set for this problem.

Because of the assumption that moves cannot fail, there are only three unique paths in
this example. When moves can fail again, there exist a large number of different policies
for each of these paths. For instance, for a certain ore weight value the robot might try
to get to the ore to the right of it for an x number of times. Thereafter it is no longer
profitable to obtain the mineral and therefore it will instead move to the exit via the shortest
path. Thus, Figure 2.12b will be similar in structure but with many more line regions and
associated value vectors corresponding to all possible ‘intermediate’ policies.

63

Chapter 3

Solving the Maintenance
Planning Problem

The first chapter of this thesis introduces the class of self-regulating planning prob-
lems, a decision-making problem that is encountered in the planning and execution
phase of innovative contract forms such as the Dynamic Contracting approach of Volker
et al. [254]. In particular, Chapter 1 presents a real-world example of such a multi-
agent decision-making problem from the domain of infrastructural maintenance, the
maintenance planning problem (mpp). In Section 3.1 of this chapter, the main-
tenance planning problem is formalised as a mathematical optimisation problem
of finding a contingent plan that in expectation maximises the total reward of all agents,
or service providers in the case of maintenance planning. Moreover, several approaches
to solve this problem are presented, both optimal as well as approximate, laying the
foundation for the work in subsequent chapters.

In a first attempt to solve mpp, Section 3.2 introduces a dynamic programming
approach that optimises a recursive formulation of the optimisation function of mpp.
Although this algorithm performs an exhaustive search over the (exponential) decision
space, it produces optimal policies and functions as a baseline implementation that
mpp solvers can be validated with and compared against. From there on the next
step is to make use of the vast body of stochastic planning literature and the many
tools and techniques that are readily available in the field, as outlined by Chapter 2.
This is possible by modelling the problem as a Markov Decision Process (MDP), the
most widely used model to represent stochastic decision-making problems in decision-
theoretic planning and acknowledged by many solvers as a standardised format to
express planning problems.

Section 3.3 starts by proposing a multi-agent Markov Decision Process (MMDP)
formulation for mpp, thus enabling the use of any existing MMDP solver to produce
optimal decision policies that correspond to solutions to the problem. Nonetheless,
solving MMDPs still requires a specific type of solver that is equipped to handle multi-
agent decision making and the typically exponential fully observable state space, of
which only a limited number exist [40, 196, 224]. Hence Section 3.3 continues with

65

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

techniques to ‘flatten’ the multi-agent MDP into a single-agent MDP that represents
the decision problem of all agents together. In essence, this flattened MDP ‘encodes’
the joint actions of all agents as if there is only one agent that makes the decision for all
agents. Indeed a naive way to obtain this MDP is to simply enumerate the exponential
number of combinations of action sets and state spaces, which is exactly what the
enumeration encoding entails. However, more elaborate encodings are possible to avoid
an exponential blow-up in both the state and action space. More specifically, MDP
solvers are typically well-equipped to deal with huge state spaces; it is the action set size
that commonly causes scalability issues in terms of computational effort. Section 3.3
therefore concludes with two encoding techniques, agent chaining and activity grouping,
that limit the action set size by transferring some of the decision-making complexity
into the state space.

In addition to the aforementioned techniques to find optimal solutions for mpp,
Section 3.4 presents an approximate algorithm for scenarios in which optimality is not
a requirement. An example of such a setting is decision-support scenario in which an
approximate algorithm supports human decision makers by quickly showing estimates
of the impact of the decisions they make, allowing for a fast comparison of alternatives.
Waiting for an MDP solver to produce an optimal policy is typically not desirable in
such settings, especially since this may take anywhere from several minutes up to
multiple hours or even days for realistically sized instances. The latter is supported by
the results of empirical evaluation of Section 3.5 that investigates the scalability of all
MDP-based approaches presented in this chapter.

Contributions In this chapter a mathematical definition is presented for the mainte-
nance planning problem (mpp) that was first introduced by Altamirano et al. [9]
and formalised as part of a dynamic mechanism design solution by Scharpff et al. [228].
Given the formal definition of mpp, this chapter presents two approaches to develop
optimal contingent plans, i.e. joint decision policies that maximise the expected value.
The first is based upon dynamic programming and optimises a recursive formulation of
the policy value function. This approach is straightforward and provides an excellent
benchmark for more sophisticated methods. The second method encodes the problem
as an MDP so that it can be solved using one of the very many the existing MDP
solvers. Additionally, this chapter shows that by carefully encoding the problem, the
efficiency of policy finding is increased significantly. This is demonstrated using the
state-of-the-art SPUDD [116] solver. The optimal solving algorithms and MDP encod-
ings have been published by Scharpff et al. [228].

Besides optimal solving, this chapter also proposes approximation of joint policies for
mpp based upon Monte-Carlo Tree Search (MTCS). This approach uses an exploration
versus exploitation approach to quickly find joint policies of high quality but it can
only guarantee optimality in the limit, i.e. when all parts of the search tree have been
explored. Nevertheless, the experiments in the end of this chapter demonstrate that
such an approach often produces near-optimal policies quickly and finds the optimal
policy on many occasions, therefore making it a viable candidate for many cases unless
optimal solutions are explicitly required. The MCTS approach was published as part
of the work by Roijers et al. [216] to find approximate convex coverage sets.

66

3

3.1. THE MAINTENANCE PLANNING PROBLEM

3.1 The Maintenance Planning Problem

In this section the maintenance planning problem is formally defined as a computa-
tional problem and a first solution based on dynamic programming is proposed. The
maintenance planning problem is one specific instance of multi-agent problems with
time-dependent action rewards, and has been the main motivation for this research. It
serves as a good example of such a planning problem that can be found in a realistic
setting and it is characteristic for the tension between individual and global goal.

In the maintenance planning problem there is a group of contracted service providers,
the agents N = {1, 2, . . . , n}, responsible for the maintenance of a network consisting
of roads E over a period of h discrete time steps. For convenience, the set of time
steps is denoted T = {1, 2, . . . , h}. Recall from Section 1.1 that the dynamic con-
tracting procedure consists of three phases: procurement, planning and execution. In
the preliminary procurement phase each agent i is assigned a disjoint subset of roads
Ei ⊆ E that it has to service. Furthermore, possible maintenance activities for these
roads are identified in the procurement phase, as they are typically part of a contrac-
tor’s bid. The maintenance activities for each road ek are given as a set Ai. The set of
activities for which an agent i ∈N is responsible, is given by the union of all activities
for each of the roads it is assigned to plus an additional do-nothing activity. This
no-operation or simply no-op, denoted by ◦i, allows the agent to be idle for one unit
of time. Put together, the activity set for agent i is given by Ai =

⋃
k|ek∈Ei

Ak ∪{◦i}
and the collection thereof over all agents is denoted by A = {Ai}i∈N . As the plan-
ning of maintenance activities occurs in the planning phase of the dynamic contracting
procedure, the assignment of roads and the set of agent activities are given as input.

Formally, activities are maintenance operations that can be performed and are
defined as a tuple 〈w, d, p, d′〉. Here w ∈ R is a constant specifying the reward that is
given to the agent upon completion of the activity, d ∈ Z+ is the number of consecutive
time steps minimally required to complete the activity, p ∈ [0, 1] is the probability
of the activity being delayed, due to e.g. accidents, unforeseen conditions, incorrect
assessment of road quality, etc. If an activity is delayed, the additional number of
consecutive time steps needed to complete the activity is given by d′ ∈ Z+. Whether
an activity is delayed or not becomes known after it has been started, as this can only
be assessed correctly once the maintenance work has begun. The no-op is modelled
as an activity ◦i = 〈0, 1, 0, 0〉 – it yields zero revenue, has unit time duration and zero
probability of delay – and can be repeated.

Outcomes and Histories Delay realisations are known as outcomes. For every ac-
tivity ak, the possible outcomes O(ak) are

{
o+
k , o
−
k

}
, denoting that ak did not or did

delay respectively, and the probability of both outcomes is given by Pr(o−k) = pk and
Pr(o+

k) = 1 − pk. For the no-op activity, only the not-delayed outcome is available
and its probability is 1. The realised duration of an activity ak, given its outcome ok,
can be computed using:

d̂(ok) =

{
dk, if ok = o+

k

dk + d′k, if ok = o−k
(3.1)

67

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

In addition to a single activity and its corresponding outcome, it is also convenient
to define similar notions for joint activities and possible outcomes thereof. For a joint
activity ~a = 〈a1, a2, . . . , an〉, the set of potential outcomes is given by the Cartesian
product of all individual activity outcomes, i.e. O(~a) = O(a1)×O(a2)× . . .×O(an).
The probability of one such a joint outcome ~o = 〈o1, o2, . . . , on〉 ∈ O(~a) is defined as
Pr(~o) =

∏
i∈N Pr(oi), such that the outcome probability Pr(oi) for a single activity

is independent of all other activities. Note that the sum of probabilities over all joint
outcomes of a joint activity must always be equal to one.

To keep track of executed activities and their outcomes, a history is maintained
during the execution of maintenance plans. For a specific time point t, the history is
given by Ht : A 7→ T ×O such that for every activity a that has been started before
or at time t, Ht(a) returns the start time and delay realisation (outcome) as a pair
〈ta, oa〉. The notation a ∈ Ht denotes that the history contains an entry for activity a,
i.e. it conveniently denotes a ∈ Dom(Ht), and it has thus been started in this history.
Correspondingly, a /∈ Ht means that the activity has not started yet.27 When referring
to either just the start time or the outcome of an activity, the notations Ht

s(a) and
Ht
o(a) will be used respectively. Furthermore, Ht

A(t′) is used to denote the set of
activities that was being executed at time t′ according to history Ht, i.e.:

Ht
A(t′) =

{
a ∈ A | a ∈ Ht, Ht

s(a) ≤ t′, Ht
s(a) + d̂(Ht

o(a))− 1 ≥ t′
}

(3.2)

Finally, the probability of a certain history occurring can be expressed in terms
of the activities and outcomes that it contains. The probability of any history Ht is
defined as the product over the probabilities of individual outcomes, or

Pr(Ht) =
∏
a∈Ht

Pr(Ht
o(a)) (3.3)

Example 3.1 History

Ht(a1) =
〈
t2, o−a1

〉
Ht(b1) =

〈
t2, o−b1

〉
Ht(a2) =

〈
t1, o+

a2

〉
Ht(b2) =

〈
t4, o−b2

〉
Ht(a3) = ?

(a)

Agent A

Agent B

t1 t2 t3 t4 t5

a2 a1

b1 b2

(b)

Figure 3.1 Example history for a two-agent planning problem. The history is listed as
the start times and outcomes of activities in (a) and visualised in (b). The rectangles
symbolise the activities and the size thereof matches their durations, where the delay
duration is coloured slightly lighter. In this example, a3 has not been started yet. Keep in
mind that although activity a2 does not delay in this example, in another history it may be
delayed (and vice versa for the others).

27 For an activity that has not been started one could for instance return a pair 〈−1, ?〉. The definitions
and algorithms in this thesis assume that membership is tested before querying the history.

68

3

3.1. THE MAINTENANCE PLANNING PROBLEM

In Figure 3.1 an example history is illustrated for a two-agent problem, the left figure shows
its textual form and its graphical interpretation is shown on the right. Observe that the
sets Ht

A(t1) to Ht
A(t5) correspond exactly to the time slots t1 to t5 of Figure 3.1b.

A last remark concerning histories is that the notation used here enables a very compact
representation. Alternatively, one could use the state/action equivalent that is used
in many stochastic planning articles, referred to as execution sequences in this thesis
(see Chapter 4). In this form, the history is written as the sequence of states, actions
and result states that were successively encountered during execution up to time t, e.g.
Ht = [s0, a0, s1, a1, . . . , st] such that each pair of sx and ax denote respectively the
state that was encountered and the action that was taken in that state. Naturally, this
sequence must always end in the current (last) state st.

Value of Maintenance The cost of performing maintenance is known to each agent
through a time-dependent cost function ci : Ai × T 7→ R. Incorporating time into the
cost function allows for example modelling of costs based on the varying number of
resources available to an agent over time, different labour costs during day and night
time, or changing market prices for raw materials. The revenue an agent i obtains for
completing a single activity ak, assuming it starts at time t′ ∈ T and has outcome ok,

is therefore given by wk −
∑t′+d̂(ok)−1
t=t′ ci(ak, t) and its total profit can be computed

by ∑
ak∈Ai

(
wk −

t′+d̂(ok)−1∑
t=t′

ci(ak, t)
)

(3.4)

In this thesis it is assumed that no-ops do not incur any maintenance costs and
therefore ci(◦i, t) = 0 for every agent i and time t. However, in general one could
use this function to model the cost of an agent being idle. Finally, the total cost of
maintenance for a joint activity ~a ∈ A at time t is

c(~a, t) =
∑
i∈N

ci(ai, t) (3.5)

where ai is the activity of agent i in joint activity ~a. Notice that it can always be
assumed that a joint activity contains n elements: idle agents are ‘performing’ a no-op
action.

Besides individual cost functions, there is a network cost function ` such that
`(~a, t) ∈ R describes the (monetary) impact on the network throughput when mainte-
nance operations ~a are concurrently performed at time t. Maintenance requires at least
a partial closure of roads, causing a reduction in network throughput and consequential
delays to the network users. This delay is expressed in terms of hours of traffic time
lost (ttl) and is typically computed as the time lost due to hindrance in the current
situation minus the time that is required under average network conditions. Essentially,
ttl expresses the marginal contribution of network maintenance to the network delays
and the economic impact thereof is computed using a standardised ‘value of time’.28

28 The value of time for most traffic in the Netherlands can be found in the report by Bates [24], in
which also ttl is explained more thoroughly and models for its computation are presented.

69

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

The network cost function can have any source: it could be a system of heuristic rules,
extracted from historical data or derived through simulation.

The throughput of the road network depends greatly on the type of maintenance
that is performed but also on the combination of activities. When multiple mainte-
nance activities are performed concurrently, requiring several parts of the network to
be closed, their impact on the network throughput is typically much worse than when
they would have been performed sequentially. In such cases the network cost function
is super-additive, i.e. there is at least one time step t in which `(〈a1, a2, . . . , an〉 , t) >
`(〈a1〉 , t)+`(〈a2〉 , t)+. . .+`(〈an〉 , t). In general, both super and sub-additive network
rewards are possible.

To compute the total network cost of performing maintenance, the network cost is
summed over all time steps T . Given a complete execution history Hh for a planning
horizon of length h, the total network cost that was incurred can be computed by∑

t∈T
`(Hh

A(t), t) (3.6)

where Hh
A(t) is the set of activities that is concurrently active at time t, as defined by

Equation 3.2. In the future when maintenance or network costs for the joint activity
contained in history Ht at time t are meant, the notational shorthands c(Ht) and
`(Ht) denote respectively c(Ht

A(t), t) and `(Ht
A(t), t).

The goal in the maintenance planning problem is to plan maintenance activities in
such a way that the overall profit, i.e. the sum of agent revenues minus the network
costs, is maximised. However, in the presence of uncertain durations it is not sufficient
to develop a (static) optimal plan, e.g. a one-time assignment of start times to all the
activities. Instead the goal is to find a contingent plan that specifies optimal planning
decisions for every possible realisation of activity delays:

Definition 3.2 Contingent Plan

A contingent plan P : H 7→ A is a plan that for every history Ht ∈ H at time t ∈ T
returns the joint activity ~a ∈ A that should be started at time t.

A contingent plan can be viewed as a reactive plan that can adapt to foreseen eventual-
ities, such as a maintenance activity possibly delaying, in a predefined way. Informally,
it specifies a set of rules that dictate what activities to start given the current history
of activities and their realised outcomes. To produce an (optimal) contingent plan it is
typically necessary to study all possible histories Hh of length h that can be encoun-
tered, which makes it more time consuming to develop than a single plan. However,
as this is done before its actual use in the execution phase of the dynamic contracting
procedure, this is not an issue here. Moreover, the possibility of reacting to eventual-
ities always results in outcomes at least as good but typically better that single-plan
outcomes. Thus when ‘sufficient’ time is available, it is worth to invest it in finding a
contingent plan.

The quality of a contingent plan is expressed in terms of the reward that can be
expected from following it. The expected reward V P over all possible histories Hh ∈

70

3

3.1. THE MAINTENANCE PLANNING PROBLEM

Hh of length h can be specified by combining Equations 3.5 and 3.6:

V P = E
[∑
ak∈Hh

wk −
∑
t∈T

(
c(Ht) + `(Ht)

) ∣∣∣ Ht = Ht−1⊕ P(Ht−1, t)
]

=
∑

Hh∈Hh|P

Pr(Hh)
(∑

ak∈Hh

wk −
∑
t∈T

(
c(Ht) + `(Ht)

))
(3.7)

where Hh|P denotes the set of all possible histories of length h reachable by fol-
lowing contingent plan P, Pr(Hh) is computed using Equation 3.3 and H−1 = ∅.
Recall that c(Ht) is short for c(Ht

A(t), t) (and a similar shorthand is used for `). The
optimal contingent plan is defined as one that maximises this expected reward, or
P∗ = arg maxP V

P . In the maintenance planning problem the focus is typically on
finding an optimal contingent plan, unless explicitly mentioned otherwise.

Notice that in the expected reward of Equation 3.7, the network cost function `
implicitly specifies the degree of coupling between agents and is the main reason why
coordination is required. If there would be no network costs, the expected plan reward
can be factored per agent and, as a consequence, optimised individually. On the other
hand, when every activity of every agent can interact with all other activities, the
agents are fully coupled. And, as finding a contingent plan that optimises the expected
reward requires considering these interactions, coordination of a fully coupled network
is typically much harder. Also, the ratio between individual and network costs indicates
the importance of using a coordinated approach: when network costs are relatively
high, a jointly coordinated approach is much more preferred, whereas comparatively
low network costs may make the (computational) effort typically required by such an
approach not worthwhile.

There are a few restrictions on the set of contingent plans. First, an agent can
only start a maintenance activity if it has enough time left to complete it within the
contracted duration, even if it is delayed. This means that an activity ak has to
be started before h − (dk + d′k), whether it actually delays or not.29 Furthermore,
maintenance activities are non-preemptive and thus have to be executed in their entirety
once they have been started. As maintenance of major road networks involves a lot of
preparation time and heavy equipment, reallocation of the agent’s resources to another
job site is generally considered too costly. And finally, agents are allowed to perform at
most one maintenance activity at a time due to the resources available to an agent.30

The set of feasible contingent plans that comply to these restrictions is denoted by P.
Throughout the remainder of the thesis it will always be assumed implicitly that only
contingent plans from this set will be considered.

Together, all of the aforementioned elements can be summarised into a formal
definition of the maintenance planning problem:

29 Alternatively, one could soften this restriction using late fees.
30 This latter restriction can be circumvented in the case where concurrent maintenance by the same

agent is required. To do so, one can split the agent into several sub-contractors or maintenance
teams, each responsible for a subset of its maintenance activities.

71

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

Definition 3.3 Maintenance Planning Problem (MPP)

An instance of the Maintenance Planning Problem is given by a tuple 〈N ,A, c, `, T 〉
where

• N = {1, 2, . . . , n} is the set of agents.

• A = {Ai}i∈N is the collection of activity sets in which each Ai is the set
of activities available to agent i ∈ N including a no-op ◦i. Every activity ak
specifies a revenue wk, integer duration dk, probability of delay pk and integer
duration of delay d′k. Activities can have two outcomes, delayed (o−k) or not-
delayed (o+

k), with probabilities pk and 1 − pk, and the duration of an activity

given its outcome ok is given by d̂(ok) (Equation 3.1).

• c = {ci}i∈N is a collection of cost functions in which each ci : Ai × T 7→ R is
the cost function of agent i ∈N .

• ` : A × T 7→ R is a network cost function such that for each combination of
activities ~a ∈ A the network cost at time t ∈ T is given by `(~a, t).

• T = {1, 2, . . . , h} is a set of discrete time steps that constitute the planning
period.

Given such an instance 〈N ,A, c, `, T 〉, the maintenance planning problem
is to find an optimal contingent plan P : H 7→ A from the set of feasible contingent
plans P that maximises V P (Equation 3.7) over all possible histories Hh of length h.

Observe that in Definition 3.3 the set of network edges E is not included. This is
because all of the network information required is included implicitly in the activities,
the agent cost functions and the network cost. From an algorithmic point of view it
is irrelevant how the network is composed, only the effects and costs of maintenance
are necessary when developing maintenance plans. Furthermore, it can be shown that
any instance of the maintenance planning problem is in fact a special case of
self-regulating planning that was defined in Section 1.3. This proof is rather involved
and makes use of concepts introduced in subsequent chapters, however the interested
reader is referred to Section A.1.

Further in this chapter several approaches to solve the maintenance planning prob-
lem using existing techniques will be discussed. In the context of the dynamic con-
tracting approach of Section 1.2, it is realistic to assume that once the agents have
been contracted for the procured maintenance operations they are given a substantial
amount of time to plan and coordinate their operations. This makes it feasible, in terms
of effort versus expected gain, to develop optimal contingent plans. In contexts where
the time available for planning is limited, approximate methods might be preferred.
One such a method is briefly reviewed later in Section 3.4.

72

3

3.1. THE MAINTENANCE PLANNING PROBLEM

Remark 3.4 Quality as an Objective

All of the approaches that will be presented in this thesis consider the maintenance
planning problem as formalised in Definition 3.3. However, it is also possible to
extend the problem with quality demands and costs, which was done by Scharpff
et al. [228] in order to more closely resemble the real-world problem. This extension
to mpp emphasises even further on the trade-offs that service providers typically
need to make in planning decisions. Furthermore, it can serve as an interesting
additional objective in the multi-objective setting that is studied in Chapter 5. For
these reasons, adding the quality objective is briefly outlined here.

All roads ek ∈ E have an associated quality level qk ∈ [0, 1] that expresses the
state of the road and a quality degradation function ∆qk : q×T 7→ q that expresses
the degradation of a road given its current state and time. The dependency on
current quality and time in this function enables modeling of many natural aspects,
for instance new roads might degrade less than already damaged roads (or more),
summer and winter seasons cause for a more significant deterioration of roads, or
degradation varies according to amount of network traffic which in turn also varies
over time (e.g. holidays). In addition to a maintenance cost function, each agent
is also given a quality cost function Qi : q× T 7→ R that states the cost of having
a certain quality level for each time step and the sum of all quality cost functions
is included in the contingent plan value of Equation 3.7 in a way similar to the
sum of maintenance cost functions.

Example 3.5 An example problem

During the remainder of this chapter, a guiding example problem is used to aid the expla-
nation of all the presented approaches. The example network, shown in full in Figure 3.2a,
is derived from the German ‘Ruhrgebiet’ and was initially used as the network in the serious
game of Chapter 7. In order to keep the example simple but illustrative, only the small
area inside the box will be considered.

(a) (b)

Figure 3.2 Example road network, shown in full in (a). This example focuses on the
area contained within the rectangle, shown enlarged in (b) on the right. The highway
codes and segments are now coloured corresponding to the agent that is responsible for
their maintenance, and the required maintenance operations are shown as labels on the
segments.

73

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

Within this area, enlarged in Figure 3.2b, three contractors – A, B and C – are hired to per-
form maintenance within a period of 5 weeks and each time point in T = {t1, t2, . . . , t5}
spans one week. Each set of road segments belonging to a contractor is coloured to match
the agent’s colour, e.g. agent B is responsible for the road segments of the A101 of the
network on the left. The road segments are labelled with maintenance activities that need
to be performed on them. For instance, agent A has to service a junction (a1) and a road
segment (a2) and its set of activities is hence defined as AA = {a1, a2}. Table 3.1 specifies
the activity sets for every agent as well as the characteristics of the activities:

Agent Activity Revenue Duration (w) Delay chance Delay dur. (w)

A a1 140 2 25 % 1
A a2 60 1 0 % -
B b1 17 2 30 % 1
B b2 90 1 80 % 1
C c1 205 3 15 % 1

Table 3.1 The activity sets and the properties of each activity, delay durations are in weeks.

A few remarks regarding this table can be made. First of all, activity a2 has no
probability of delay and can therefore never require more time than its regular duration
specifies. Agent B’s activities are very tight: if both his activities delay, all five time steps
are required in order to perform all maintenance.

In addition to the activities, the agents all have maintenance cost functions – cA,
cB and cC respectively – that define the cost of maintenance for each of their activities
and every time slot. These functions are presented in a tabular form in Table 3.2 with
the activities as rows and weeks as columns. Notice that in this cost matrix, agent B is
indifferent when its activity b1 is performed as its maintenance costs do not vary over time.
For its other activity, the costs are increasing over time hence b2 is preferably performed
as early as possible.

Costs t1 t2 t3 t4 t5

a1 18 15 13 14 13
a2 23 18 20 40 25
b1 11 11 11 11 11
b2 7 8 10 14 19
c1 30 25 27 31 24

Table 3.2 Activity maintenance costs per week in matrix form.

The network costs of this example problem are specified using a binary, factor-based
model that specifies the impact on traffic relative to the ‘normal’ traffic distribution. This
model expresses the individual effect of each of the maintenance activities on the traffic
and the interaction between pairs of activities performed concurrently through pair-wise
coefficients (e.g. based on proximity). In later sections, it will be shown that realistic
models can be approximated using this model (Section 7.1.3) while it can be compactly
encoded in for instance MDP or RDDL (as in the experiments of Section 3.5). Therefore
this is the network cost model of choice in this example.

The matrix in Table 3.3a shows the regular traffic time lost (ttl) summed over the
area that is affected by each activity. On the right, Table 3.3b shows the additional cost

74

3

3.1. THE MAINTENANCE PLANNING PROBLEM

factor matrix for every pair of activities that is executed concurrently. In this model, every
unit of ttl has an economic impact of 1 unit. The network cost of a single time step can
be computed by summing the normal ttl times the factor for every pair of concurrently
performed activities, or `(〈ai, aj〉 , t) =

(
ttl(ai, t) + ttl(aj , t)

)
· factor(ai, aj) (see below

for an example). In this model, the normal ttl peaks in time t3 for all roads (the ttl is
correlated) and is the quietest at time t5. The factor for activity pairs depends on the
proximity of the activities, for instance the factor for activities a1 and b2 is relatively high
(1.3) whereas a2 and b1 have only limited interaction (0.2).

TTL t1 t2 t3 t4 t5

a1 20 21 19 16 13
a2 16 16 15 14 10
b1 32 35 33 28 21
b2 26 28 26 23 18
c1 17 18 16 14 11

(a)

Factor a1 a2 b1 b2 c1

a1 - - 1.3 0.8 0.9
a2 - - 0.2 0.7 0.7
b1 1.3 0.2 - - 0.6
b2 0.8 0.7 - - 1.0
c1 0.9 0.7 0.6 1.0 -

(b)

Table 3.3 Factor-based network cost model with (a) the ‘idle’ conditions and (b) the factor
by which concurrent maintenance increases/decreases the ttl.

Agent A

Agent B

t1 t2 t3 t4 t5

a2 a1

b1 b2

Agent C c1

Figure 3.3 Illustration of a possible history after executing a contingent plan.

To illustrate the computation of revenue, maintenance costs and network costs, an example
is shown in Figure 3.3. The figure shows an example history resulted from the execution of a
contingent plan, i.e. the activities have been executed and the delay realisations are known.
In this example, the maintenance cost of agent A’s activities are 15+13+14 = 42 and 23 for
respectively activity a1 and a2. For agent B the total maintenance costs are 11 + 11 = 22
and 14 + 19 = 33 and agent C has a total of 25 + 27 + 31 + 24 = 107. Every agent
has performed all of its activities and therefore the revenues are respectively 200, 265 and
205, leading to a profit of 135, 210 and 93. At time t1, activities a2 and b1 are performed
concurrently and the network cost thereof is `(a2, b1, t1) = (16 + 32)× 0.2 = 9.6. In time
step t2, three activities are performed at the same time (a1, b1 and c1) and the network
cost is summed over every pair. This results in `(a1, b1, t2) = (21 + 35) × 1.3 = 72.8,
`(a1, c1, t2) = (21 + 18) × 0.9 = 35.1 and `(b1, c1, t2) = (35 + 18) × 0.6 = 31.8. The
remainder of the computations can be done likewise to obtain the network costs for every
time step (9.6, 139.7, 31.5, 95.2 and 29 respectively), summing to a total of 305 for the
entire history. The total value of this history is therefore 135 + 210 + 93− 305 = 133.

The expected value of this history can be easily computed as the probability of this
history occurring times its value. Recall from Equation 3.3 that the probability of a history

75

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

is given by the product of individual activity delay probabilities. Given the outcomes of this
history, its probability is

Pr(o−a1)× Pr(o+
a2)× Pr(o+

b1
)× Pr(o−b2)× Pr(o−c1)

= pa1 × (1− pa2)× (1− pb1)× pb2 × pc1
= 0.25× (1− 0)× (1− 0.3)× 0.8× 0.15 = 0.021

or 2.1%. As a consequence, the expected value of this particular history is 0.021× 133 =
2.793. The expected value for this history is low but indeed it is not very likely to be
encountered: both activities a1 and c1 are delayed, even though their delay probabilities
are relatively low.

o+
b1

o−b1

0.7

0.3

0.75

0.25

0.75

0.25

0.2

0.8

Agent A
Agent B

t1 t2
a2

b1

t3

?

A
B

t1 t2 t3
a2

b1

t4

o+
a1

o−a1

A
B

t1 t2 t3 t4
a2 a1

b1

?

A
B

t1 t2 t3
a2

b1

t4 t5
a1 ?

A
B

t1 t2 t3
a2

b1

t4
a1

t5

A
B

t1 t2 t3 t4
a2 a1

b1

t5

b2 ?

o+
b2

o−b2

A
B

t1 t2 t3 t4
a2 a1

b1

t5

b2

A
B

t1 t2 t3
a2

t4 t5

b2b1

A
B

t1 t2 t3
a2

b1

t4
a1

t5

b2 ?

A
B

t1 t2 t3
a2

b1

t4 t5
a1

b2 ?

A
B

t1 t2 t3
a2

b1

t4 t5
a1

b2 ?

A
B

t1 t2 t3
a2

b1

t4
a1

t5

b2

A
B

t1 t2 t3
a2

b1

t4
a1

t5

b2

A
B

t1 t2 t3
a2

t4 t5

b2b1

A
B

t1 t2 t3 t4
a2 a1

b1

t5

b2

a1

A
B
A
B

t1 t2 t3
a2

b1

t4 t5
a1

b2

A
B
A
B

t1 t2 t3
a2

b1

t4 t5
a1

b2

A
B
A
B

t1 t2 t3
a2

b1

t4 t5
a1

b2

A
B
A
B

t1 t2 t3
a2

b1

t4 t5
a1

b2

o−a1

o+
a1

p1 = 0.105
V1 = 263.6
p1V1 = 27.678

a1

p2 = 0.42
V2 = 249.6
p2V2 = 104.832

p3 = 0.035
V3 = 250.4
p3V3 = 8.764

p4 = 0.14
V4 = 231.4
p4V4 = 32.396

p5 = 0.045
V5 = 259.6
p5V5 = 11.682

p7 = 0.015
V7 = 246.6
p7V7 = 3.699

p8 = 0.06
V8 = 202.8
p8V8 = 12.168

p6 = 0.18
V6 = 240.6
p6V6 = 43.308

o−b2

o+
b2

0.2

0.8

o−b2

o+
b2

0.2

0.8

o−b2

o+
b2

0.2

0.8

1.0

1.0

1.0

Figure 3.4 Contingent plan for the activities of agents A and B. Every possible history
that can be encountered during execution is shown with the corresponding decisions (joint
activities, highlighted in each history) and the outcomes thereof (labelled on the arrows).
The transition probabilities are displayed in blue. A total of 8 unique histories of length 5
can be reached, which are shown on the right with their corresponding probability pi, value
Vi and expected value piVi.

Finally, in Figure 3.4 an example contingent plan is visualised for the activities of agents A
and B. It shows the possible unique histories that can be encountered while following the
decisions of the contingent plan. On the far left, the joint activity is shown that is taken
when given the (initially) empty history at time t1, which is 〈a2, b1〉 in this example. At
the time of starting a joint activity, it is not yet known whether activities will be delayed
or not, and this is illustrated by the question mark in the delay duration part of b1. For
this joint activity two outcomes are possible, one in which b1 is not delayed and one in
which it is, resulting in two unique new histories for the next decision step. Observe that
in the next step, the decision depends on history: if b1 does not delay, agent A will start
its activity a1, but if b1 does delay, it will not start any activity (it performs a no-op).

The unique histories for every time step are shown column-wise in this figure. Tran-
sitions between them are shown as one or more arrows, depending on the number of

76

3

3.2. SOLVING MPP WITH DYNAMIC PROGRAMMING

outcomes the joint activity can have. Notice that in this example every history leads to
at most two new histories, based upon the outcome of the action started. This does not
have to be true in general: when multiple activities with delays are started, the number
of outcomes is (exponentially) larger. The probabilities of the outcomes are displayed as
labels on the arrows, e.g. the first transition has outcomes o+

b1
and o−b1 with probabilities

0.7 and 0.3 respectively. On the right, one can find all full-length histories that are reach-
able under this example contingent plan, i.e. these 8 histories are the unique results of
following the contingent plan. This number is equal to 8 because there are 3 activities
with stochastic outcomes (a2 cannot delay), and there are 23 = 8 unique combinations of
delay realisations. For every full-length history, the probability, value and expected value
are shown in this figure and the total expected value of this contingent plan is equal to∑
i piVi = 244.527. The value of every individual history is computed as demonstrated

previously for the example history of Figure 3.3.

3.2 Solving MPP with Dynamic Programming

An initial attempt to find optimal maintenance plans is to formulate a recursive ver-
sion of the expected plan reward (Equation 3.7) that can be solved using dynamic
programming. This approach serves to get an insight into the characteristics that
make mpp a non-trivial problem and gives a result in terms of number of evaluations
that such an algorithm needs to do before finding the value of the optimal contingent
maintenance plan, and therefore provides an intuition of its scalability. The dynamic
programming approach is similar to the well-known value iteration procedure for MDPs
by Bellman [28] (Section 2.2). As with value iteration, the recursive formula only com-
putes the expected reward of a contingent plan and does not return the contingent
plan. However, the latter can be easily constructed using the former by concurrently
maintaining the joint activity that maximises the expected reward during search. This
step is trivially implemented and is not included in the algorithm presented here.

Essentially, the dynamic programming algorithm sums over the expected value of
all possible histories Hh ∈ Hh within the planning period length h. In every step of the
recursion, the current history is extended by all available joint activities and associated
outcomes, written as Ht−1⊕ 〈~a, ~o 〉, and the expected value of every such a possible
extension is computed recursively until the planning horizon has been reached. The
set of available joint activities is denoted by A|Ht−1, which can be interpreted as the
set of joint activities that are still available given execution history Ht−1, and as such
excludes activities that have previously started or cannot be completed anymore in the
remaining time. As a result of each recursion, the algorithm returns the maximum
expected value that can be obtained from the current history forward, i.e. the value
of the history extended with the joint activity ~a that maximises the sum of expected
reward over all its possible outcomes O(~a). Eventually, all recursions will return a value
and thus, at the root of the computation, the maximum expected reward that can be

77

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

obtained is known. This is captured by the recursive formulation:

V P∗ = V (∅, 0)

V (Ht−1, t) =

0, if t = h

max
~a∈A|Ht−1

∑
~o∈O(~a)

Pr(~o) · V ′(Ht−1⊕ 〈~a, ~o 〉 ,~a, t), otherwise (3.8)

s.t.

V ′(Ht,~a, t) =
∑
ak∈~a

wk + c(Ht
A(t), t) + `(Ht

A(t), t) + V (Ht, t+ 1)

The formula includes the base case, V P
∗

= V (∅, 0), and the recursive steps V and
V ′. V returns the maximum of all possible joint activity extensions by summing the
expected reward over all possible joint outcomes (recall that joint activities may include
no-ops at all times). The actual value evaluation is performed in V ′, that computes
the immediate value of the joint activity that is being evaluated and adds to it the
expected future reward of this extension (V (Ht, t+ 1)). Note that the revenue wk is
summed over the joint activity, i.e. the activities that start now, so that it is awarded
only once. The immediate costs, however, are computed over the set of activities that
are concurrently active at time step t, given by Ht

A(t), because activities that started
in an earlier time step might still be in progress (e.g. as in t3 of Figure 3.1b where b2

is started while a1 is being executed).
From Equation 3.8 it is possible to derive a first insight into the runtime required

to solve the maintenance planning problem based upon the number of evaluations that
need to be performed before the optimal expected reward is found. In the worst-case
every agent has α = maxi∈N |Ai| activities and hence there can be αn joint activities
that need to be evaluated. As activities may have two possible outcomes, the number
of evaluations – and hence the number of recursions – of the dynamic programming
algorithm is bounded by O(2α

n · h).31

3.3 Maintenance Planning as a Markov Decision
Process

Arguably the most used framework for stochastic planning problems is that of Markov
Decision Processes (MDPs, see Chapter 2). On the one hand, modelling a planning
problem as an MDP is typically conceptually very simple while on the other hand very
complex problems can be modelled through its states, actions and transitions. This has
made the MDP model a very attractive choice for stochastic planning problems, which
is confirmed by the enormous body of literature considering MDPs. As a consequence of

31 A tighter bound can be made on the number of evaluations by considering also the possibility that all
activities have been completed. Additionally, in the case that all activities must be completed once,
it can be tightened even more by checking if there is enough time left to complete all remaining
activities. Nonetheless, even if both are included still a doubly-exponential number of evaluations
is necessary.

78

3

3.3. MAINTENANCE PLANNING AS A MARKOV DECISION PROCESS

the amount of attention this model has received over a long period of time – MDP was
already introduced in 1957 [28] – there are highly-optimised solvers readily available for
problems formulated as MDPs. In this section, an MDP encoding of the maintenance
planning problem is discussed so that any of existing state-of-the-art MDP techniques
can be used to solve it.

First the single-agent MDP model is discussed from which the multi-agent MDP
(MMDP) can be trivially constructed. Unless using specialised algorithms tailored to
MMDPs (e.g. Chapter 4), solving an MMDP can be done by ‘flattening’ it into a
single-agent joint MDP that models joint states, actions, probabilities and rewards as
a single-agent decision-making process, which in its turn can be solved by any existing
MDP technique. The way in which the MMDP is flattened does however impact
the solving efficiency and hence care must be taken in encoding the problem, as is
discussed in this section and demonstrated through empirical evaluation in Section 3.5.
First, however, the construction of a single-agent MDP is described. Later this will be
extended to the multi-agent setting.

The MDP Mi for a single-agent is defined by the tuple 〈Si, Ai, Pi, Ri〉. The state
of an agent only contains the current time and information regarding the completion
of its maintenance activities. For each of its activities two variables are required to
incorporate the necessary knowledge: only its start and end time need to be recorded.
Alternatively, the combination of start time and the delay realisation of the activity
convey the same information and can be used in the encoding at the same cost in
terms of state space size but, as will become clear later, it is more convenient to store
the end time of an activity.

Once an agent decides to perform an activity ak, the corresponding start time is
set to the current time; the end time is set probabilistically to dk or dk + d′k, based on
delay probability pk. The start time of an activity can take on at most h unique values
in the worst case and the (correlated) end time can take on two, resulting in an upper
bound of 2h unique value assignments for the activity time variables. As this is true for
every activity and each of these assignments can, in the worst case, occur in every time
step, the state space of a single agent is bounded by h×

∏
a∈A 2h = O(2h|A|) states.

When taking into account that activities can be performed only once, this bound can
be tightened to O(h×

(
h
h−d
)
) such that d =

∑
ak∈A dk is the minimally required time

for all activities.

Remark 3.6 Actions and activities

In the thesis both terms are used in the context of actions but they are used
consistently to denote distinct things. The term action only denotes actions of an
MDP, i.e. elements of the set A. Activities refer to high-level, complex tasks that
can be encoded in an MDP through one or more actions. They can always be
discerned by their notation: activities a ∈ A are denoted using a monotype and
caligraphic font, while MDP actions a ∈ A are in regular fonts.

The action set of a single-agent MDP contains exactly one startk action for each
of its maintenance activities ak ∈ Ai. This action signals the start of the activity
and sets the corresponding start time variable to the current time. Depending on its
stochastic outcome, the end time for its activity is set to either the current time plus

79

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

its regular duration dk (not delayed) or to the current time plus both its regular as
well as its delay duration d′k (delayed). The probability of these outcomes is defined
by its the activities delay probability pl, as before. To prevent activities from being
performed more than once or when they cannot be completed anymore, the agent is
given a reward of negative infinity when its start time is already set or its end time
may be past the planning horizon, respectively. The action set also includes the noopi
action that allows the agent to wait one time step without doing any maintenance. In
summary, the MDP action set of each agent consists of |Ai|+ 1 actions.

The transition function Pi of the agent MDP includes basically three high-level
transitions, which can be easily specified in a factored MDP. When an agent performs
a start action startk, a transition is made to the state where the start time of ak is
set to the current state time t and the new state time is set to t+ dk. From this state
only a delay action can be taken that result in a probabilistic transition to either the
state where the activity is completed and the end time is set to t, or the state with
the current time and end time both set to t + d′, depending on delay probability p.
The last transition is that of noopi, in this case a simple state transition occurs to the
state with t + 1. In all the transitions described it is assumed that only the explicitly
mentioned variables change value, all other state variables will have the same value in
the new state that results from the transition.

Lastly, the reward function of the agent MDP includes the revenue and maintenance
costs of the agent. Upon starting an activity ak the agent receives a reward

ri(akt
k
s , t

k
e) = wk −

tke∑
t=tks

(
ci(ak, t)− `(ak, t)

)
(3.9)

where tks and tke are respectively the start and end time variables of the activity. This
reward is typically assigned to the agent after it becomes known whether or not his
activity is delayed, i.e. for a full transition (s, a, s′), or at the end using Equation 3.7
when all start and end times are known. All summarised, the planning problem of a
single agent is modelled as:

Definition 3.7 Single-agent MDP formulation of the maintenance planning
problem

A single-agent instance M = 〈{i} , {Ai} , {ci} , `, T 〉 of the maintenance plan-
ning problem is represented through a Markov Decision Process such that the
planning problem of agent i is modelled by an MDP Mi = 〈Si, Ai, Pi, Ri〉 where:

• Si is the set of states storing the current time and for each of its activities ak ∈ Ai
the start and end time of that activity,

• Ai the action with for each activity ak ∈ Ai an action startk and one no-op
action noopi,

80

3

3.3. MAINTENANCE PLANNING AS A MARKOV DECISION PROCESS

• Pi the state transition probability function defined such that for every possible
transition (s, a, ŝ) ∈ Si ×Ai × Si:

Pi(s, a, ŝ) =



0, t(ŝ) = h

pk, a = startk, ak /∈ s, t(ŝ) = t(s) + dk + d′k and o−k ∈ ŝ
1− pk, a = startk, ak /∈ s, t(ŝ) = t(s) + dk and o+

k ∈ ŝ
1, a = noopi and t(ŝ) = t(s) + 1

0, otherwise

such that for a state s ∈ Si, t(s) represents the time in that state, ak /∈ s
denotes that activity ak has not yet been performed in the state, and o−k , o

+ ∈ s
respectively express that activity ak has or has not delayed in the state,

• Ri the reward function such that for every transition (s, a, ŝ) the reward is:

Ri(s, a, ŝ) =

{
ri(ak, t(s), t(ŝ)), if a = startk

0, otherwise,

where ri is defined as in Equation 3.9. Notice that the (delayed) activity duration
is implicit in the transition from s to ŝ.

Example 3.8 Example Maintenance MDP

Figure 3.5 shows a graph that illustrates the states and actions of a single-agent MDP
for agent A of Example 3.5. There are three types of nodes in this graph, intermedi-
ate state nodes (single circles), terminal state nodes (double circle) and chance nodes
(black triangles), and they are grouped column-wise per time step. For compactness start
actions startk are labelled with their associated activity ak and no-ops by ◦A.

The state nodes correspond to all the unique states in the state space of the agent.
In this illustration, they have been labelled with the start and end times of activities that
are completed. A state is terminal, i.e. the planning problem has been solved completely,
if there are no more activities to perform. Chance nodes are required for actions with
stochastic outcomes (start a1 in this example), depending on the realisation of the delay
one of the connected state nodes is reached. For instance, if activity a1 is chosen in the
initial state the top state (at time t3) after the chance node is reached if it does not delay
– the outcome is o+

a1 – and the bottom state (at time t4) otherwise. Notice that one
additional time step td is required in this graph to allow activities to end in the last time
slot, e.g. when starting a2 in time t5.

In this example, all transition probabilities equal one except those including a chance
node. Recall from Example 3.5 that activity a1 has a delay probability of 0.3 and therefore
the transition probability for every transition of the form (s, start1, s

′), where activity a1

is not delayed in the new state s′, is 0.7. Similarly, when a1 is delayed in s′ the transition
probability P (s, start1, s

′) is = 0.3. Finally, although it is possible to perform no-ops in
terminal states where the time is less than tdone, they do not contribute to the reward in
maintenance planning and such transitions are therefore omitted.

81

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

a2

a1

o+
a1

o−a1

a2

◦A

t1 t2 t3 t4 t5

◦A a2

a2

a1: (t1, t3)
a1: (t1, t3)
a2: (t3, t4)

a1: (t1, t3)
a1: (t1, t3)
a2: (t4, t5)

a1: (t1, t5)
a1: (t1, t4)
a2: (t4, t5)

a1

o+
a1

o−a1

a2: (t1, t2)

a1: (t2, t4)
a2: (t1, t2)

a1: (t2, t5)
a2: (t1, t2)

td

◦A a2
a1: (t1, t3)

a1: (t1, t3)
a2: (t5, td)

◦A a2
a1: (t1, t4)

a1: (t1, t4)
a2: (t5, td)

a1

o+
a1

o−a1

a1: (t3, t5)
a2: (t1, t2)

a1: (t3, td)
a2: (t1, t2)

a2: (t1, t2)

◦A

a1

a2

a2

a2

o+
a1

o+
a1

o−a1

o−a1

a1

a1: (t2, t4)

a1: (t2, t5)
a1: (t2, t5)
a2: (t5, td)

a1: (t2, t4)
a2: (t4, t5)

a2: (t2, t3)

a1: (t3, t5)
a2: (t2, t3)

a1: (t3, td)
a2: (t2, t3)

s0

◦A a2

a1: (t2, t4)
a1: (t2, t4)
a2: (t5, td)

Figure 3.5 Graph illustrating a single-agent MDP, states are shown as circles and the
actions as edges. Stochastic transitions are depicted using chance nodes (black triangles)
and depend on the outcome of the action. Terminal states are shown as double circles.

Reward functions are illustrated for a part of the graph in Figure 3.6. The reward of each
transition (s, a, s′) is displayed on top of state s′. For instance, the transition reward from
performing activity a1 in the initial state leading to state s′ in which a1 is not delayed, is
given by its revenue minus its maintenance costs, or w1−

∑t2

t=t1 c(a1, t), which is equal to

82

3

3.3. MAINTENANCE PLANNING AS A MARKOV DECISION PROCESS

109.32 If activity a2 is started afterwards, the transition reward R(s, start2, s
′) = 40 and

the total reward obtained for this execution sequence from initial state to terminal state is
149.

a2

a1

o+
a1

o−a1

t1 t2 t3 t4 t5

◦A a2

a2

109 40

0 20

94 20

td

◦A a2
0 35

◦A a2
0 35

s0

R = 149

R = 129

R = 144

R = 114

R = 129

Figure 3.6 Illustration of transition rewards for a part of the MDP of Figure 3.5. Every state
is labelled with the transition reward for transferring to it and the total reward obtained in
every execution sequence is shown on the right.

Using single-agent MDPs it is possible to obtain a joint policy π = {πi}i∈N by solving
them individually and combining the individually optimal policies. But although each
policy πi is optimal for agent i, this approach completely ignores dependencies between
agents and therefore the resulting joint policy might be far from optimal. Agents
interact on the network level, which is not considered when agents develop their policies
individually. When network cost are relatively low compared to the individual revenues
and maintenance cost of every agent, such an approach may be a feasible approximation
that leads to acceptable results, otherwise a coordination approach is required that
develops contingent plans for all agents simultaneously. A solution is to model the
problem as a multi-agent MDP that includes the reward dependency:

Definition 3.9 maintenance planning problem as multi-agent MDP

An instance 〈N ,A, c, `, T 〉 of the maintenance planning problem can be
modelled as a multi-agent MDP M = 〈N , S,A, P,R〉 by constructing for each
agent the single-agent MDP Mi according to Definition 3.7 and combining them
such that

• S =
�

i∈n Si is the set of joint states,

• A = {Ai}i∈N the set of joint actions,

• P (s,~a, ŝ) =
∏
i∈N Pi(s,~a, ŝ) is the joint transition probability for every transi-

tion (s, a, ŝ) ∈ S ×A× S,

32 Here no network costs occur because of the binary model used in the example. In general these can
also be defined for a single activity.

83

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

• R(s,~a, ŝ) =
∑
i∈N Ri(s, ai, ŝ) + `(s,~a, s) is the joint reward function that now

separates the ‘local’ reward from the inter-agent ttl penalties. The local reward
is (re)defined as

Ri(s, ai, ŝ) =

{
wk −

∑t(ŝ,i)
t=t(s,i) ci(ak, t), if ai = startk

0, otherwise
(3.10)

in which t(s, i) is the value of the time variable of agent i encoded in state s.
This reward thus no longer includes the ` component. Furthermore it depends
on its own action ai ∈ ~a, while the joint reward ` depends on the joint transition.

Note that the function `(s,~a, ŝ) that computes the network costs, now over the shared
state of all agents, can be implemented in multiple ways. The simplest way is to sum
over all network costs as defined in Equation 3.6 only in every transition that leads to
a ‘terminal’ state, i.e. one in which the time in the state of each agent is equal to the
planning horizon h:

`(s,~a, ŝ) =

{∑
t∈T `(H

h
A(t), t), ∀i ∈N : t(ŝ, i) = h

0, otherwise
(3.11)

and observe that Hh
A can be derived from the activity start and end variables in the

terminal state s.
For MDP solvers that use backwards iterations such as SPUDD [116], this formula-

tion is likely beneficial to the policy search because the network costs are computed
immediately and value optimisation starts from there. Solvers that start from an initial
state could potentially do a lot of unnecessary work before concluding that the network
costs, not computed until hitting a terminal state, make the policy infeasible.

Although the above formulation enables the use of MDP solvers, MMDPs such as
this one can only be solved by specialised multi-agent MDP methods such as the one
presented in the next chapter. To make use of any of the many generic MDP solvers,
the MMDP must be ‘flattened’ into a single-agent joint MDP representation of the
MMDP but much of the solving efficiency relies on the way the MMDP is flattened.
To this end, the next sections will discuss several ways to obtain a joint MDP, starting
with a straightforward but inefficient enumerative approach working up to encodings
that can greatly reduce MDP size and, consequentially, solving time.

3.3.1 Enumerative Joint MDP

A first naive but illustrative approach to model the MMDP as a joint MDP is obtained
through enumerating all combinations of states and actions of the agent MDPs Mi.
Such an enumeration however requires a modification of the individual MDPs. While
previously it was no problem to have actions that can take multiple time steps to
complete in the single-agent case, when dealing with multiple agents this is no longer
trivial. Either all agents must share the same time variable, requiring a completely
specified joint action in each time step (as in Figure 3.7), or each agent must maintain

84

3

3.3. MAINTENANCE PLANNING AS A MARKOV DECISION PROCESS

its own time variable, leading to very complex joint states and an even larger state
space (see below). The first approach is taken in the joint MDP encoding discussed
here, for the main reason that later more efficient MDP encodings are possible only
when sharing a global time variable.

The state space of the joint MDP can be obtained by making their time variable
part of a global set of states Sg (which hence has exactly h states) and effectively
enumerating all combinations of individual agent states and the global state, effectively
‘flattening’ the state space. This leads to the state space S = Sg × S1 × . . . × Sn.
In the maintenance planning problem, Sg only contains states that correspond to the
current global time, but in general it can represent various pieces of shared knowledge.
Recall from the previous section that the size of the state space of each agent i is in
the order of O(2h|Ai|), thus the size of the joint state space is worst-case bounded by∏
i∈N 2h|Ai| × |Sg|, which is of order O(2hα

n

) for α = maxi∈N |Ai|, and therefore
exponential in both the activity set size and the number of agents.

Defining the joint action set is more cumbersome in the multi-agent setting. Agents
can start activities jointly, but they may be of various durations and therefore transition
to different times, which is not possible when using a shared global time. In order to
overcome this problem, maintenance operations are encoded using sequences of unit
time actions as startk, cont1

k, cont
2
k, . . . until all d̂(ok) steps have been performed.

The start action startk, if included in a joint action, sets the start and end time of
activity ak as before. In every following state with a global time t less than the end
time of the activity, the continue action contk must be executed by its associated
agent, otherwise again a penalty of negative infinite is incurred. Vice versa, no agent
can perform a continue action if no activity is being performed (all end time values

are lower than the global timer). The agent will always perform d̂(ok) − 1 continue
operations sequentially after the start action to match the regular duration and possible
delay duration, depending on the outcome ok. Note that the continue action contk
is action specific because of activity rewards (discussed later). An example of activity
decomposition in illustrated in Figure 3.7.

Agent A

Agent B

t1 t2 t3 t4 t5

starta1

startb1

Agent C

starta2 conta1 conta1

contb1 startb2 contb2

contc1startc1 contc1 contc1

Figure 3.7 Decomposition of activities into unit-time actions shown for the example history
of Figure 3.3.

Summarising the previous discussion, the action set Ai of each agent contains for
each activity ak ∈ A a start action startk and continue action contk and again a
no-op action noopi. The set of all available joint actions is defined by the Cartesian

85

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

product of all individual action sets: A =
�

i∈nAi. Let α = maxi∈N |Ai|, then the
joint action set size is bounded by (2α+ 1)n = Ω(2n · αn).

The transition probabilities can be easily defined when a factored MDP is assumed
as before. Transitions are expressed in terms of their impact on state features that is
caused by each joint action. In this encoding, each joint action always increases the
state time variable by one. Other features change depending on the actions in the joint
action. Every start action sets the start time and end time of the activity it corresponds
to, other actions do not cause a change in state features. When an activity ak can
delay, its start action can have two outcomes that result in a different end time for
the activity in the resulting state. Each of these start actions necessarily specifies two
possible transitions and therefore a joint action with x start actions has 2x result states,
each with a unique assignment of end times. The probability of such a transition is
equal to the product of individual delay probabilities. For all other transitions, without
start actions, the probability is always 1 (which is of course equal to 20).

Rewards are specified in a similar way as the transition probabilities in that they
can be easily expressed over joint actions. As the joint action exactly specifies the
set At of activities that are being performed at time t, the cost of each joint action is
given by the sum of individual cost functions ci(ai, t) and the network reward `(At, t)
of Equation 3.6. The current activity ai of agent i can be determined from the joint
action: an agent is performing activity ak ∈ Ai if the joint action contains any of the
actions startk or contk (notice that this requires the continue action to be unique
for the activity). The cost of a no-op action is assumed to be zero, as before. The
revenue of an activity should be awarded once, which is done only when a start action
is performed. Hence the revenue of a joint action is given by the summing over all
activity revenues wk of every activity ak that has a start action startk in the joint
action. As in the joint MDP joint action decisions are made through single actions,
the reward of every single action in the joint MDP is set exactly to that of the joint
action as just described.

Remark 3.10 Complexity of the network cost model

Although the reward can be defined as just discussed, the choice of reward function
can greatly influence computational complexity. In general the MDP model does
not pose any restrictions on the type of reward function that is used. Encoding
reward functions can nevertheless be far from trivial and can have a significant
impact on the computational effort required to solve the MDP. Encoding a non-
linear reward may require an exponential number of data nodes to represent or
one massive value table of exponential size and hence can make an otherwise easy
MDP intractable to solve. For this reason network costs will be restricted to only
binary, linear relations, e.g. combinations of activities ai and aj for which there
is at least one time step t where `(〈ai, aj〉 , t) 6= `(ai, t) + `(aj , t); a restriction
that for instance the factor-based models of Example 3.5 satisfies. The encoding
of binary relations is polynomial in size and as a result also tractable to compute.

3.3.2 Avoiding Exponentially Sized Action Spaces

In the previous section a first attempt at constructing the joint MDP for maintenance
planning problems was proposed. However this leads to an MDP that has both an

86

3

3.3. MAINTENANCE PLANNING AS A MARKOV DECISION PROCESS

exponentially sized state space as well as action set. Most current-day MDP solvers
are well-tailored to handle exponentially sized state spaces but cannot deal adequately
with exponentially sized action sets. To overcome this problem, two alternative en-
codings are presented in this section that both result in an action set of polynomial
size. Both encodings rely on moving part of the information currently encoded as part
of the actions into the state space using a two-state activity selection process: first,
every agent determines the activity it will start or continue and, when all agents have
determined their activity, the joint activity is executed. Although both encodings use
this two-stage idea, they differ in how activity selection is performed.

The main problem of the enumerative encoding is that in each time step a joint
activity must be decided on for all agents concurrently and the number of such joint
activities is exponential in the number of agents. Intuitively it seems better to de-
couple the activity selection process of the agents into n separate decisions and, after
these decisions have been made, jointly execute these decisions for the current time
step. If the activity selection per agent can be done more compactly than exhaustive
enumeration, the action set size of the resulting MDP can be substantially smaller.

To achieve such a two-stage encoding, it is first necessary to enforce an agent-by-
agent action selection. Moreover, as the joint activity is not ‘executed’ until for all
agents the activity to perform is selected, additional bookkeeping is required to keep
track of activities chosen. The ordering of agent action selection is enforced using a
global state variable that keeps track of the agent that should decide on its activity,
from this point on referred to as the agent token. In order to make sure that actions
can only be started when its associated agent has the agent token, a penalty of negative
infinity is given if it does not have the token. To keep track of the chosen activity of
each agent, a current activity variable is appended to each of the local state spaces
Si. The two-stage approach is illustrated in Figure 3.8: agents take the token, decide
on their activity and pass it on. Eventually the joint activity is ‘executed’, meaning
that the effects of the joint activity are applied on the state space, e.g. setting a start
and end time of an activity. The execute action can thus have 2x different (stochastic)
outcomes, where x is the number of activities that can delay and starting now (startk).

Now, the key to improving the efficiency of the MDP encoding lies with the activity-
selection procedure. Two approaches are introduced that can effectively reduce the
action set size through smarter encoding: agent chaining and activity grouping.33 Agent
chaining is based upon the observation that agents sequentially decide on their activity
to start or continue, and therefore it is not necessary to enumerate joint activities.
Instead, for every agent only |Ai| start actions have to be generated in order to start
an activity. Continuation of the current activity can be done using an agent-specific
continue action conti. The resulting encoding resembles Figure 3.8, albeit that each
ax (analogously for b and c of course) is replaced by a start action startx and every
agent i has additional actions conti and noopi. In addition to setting the start time, the
start actions sets the current activity variable of the agent. When an action is selected
for all agents, the execute action exec applies the effects of the chosen activities,

33 In work preceding this thesis, Scharpff et al. [228] termed these encodings respectively action
chaining and activity chaining.

87

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

increments the state time and resets the agent token to the first agent. If an activity
takes multiple time steps and it is not yet completed in the next time step, its agent
can only select the continue action. The continue action only passes the token to the
next agent; its current activity variable remaining unchanged in the state.

Agent A Agent B Agent C

Execution

t t+ 1

a1

a2

a3

c1b1

b2

c3

c2

Action selection

exec

a4

agent
token

A
B

C

∗

Figure 3.8 Illustration of the two-stage encoding approach using the agent chain encoding on
the example problem. Every time an agent has the token it determines the activity to perform
and then passes the token to the next agent. When all agents have determined their activity,
the token is set to done (*) and the joint activity 〈a4, b1, c3〉 is executed (highlighted in the
figure). Both stages are contained within a single time step.

The size of the action set that results from the agent chaining encoding is much
smaller than that of the aforementioned enumerative encoding. Each agent has |Ai|
start actions, one no-op action and one continue action, and there is one global execute
action. The number of actions is therefore given by

∑
i∈N (|Ai|+2)+1 = |A|+2n+1.

As typically the number of activities is much larger than the number of agents, the
action set size is of order O(|A|). Using only n + 1 additional variables – the current
activity of each agent and global agent token – the action set size can be reduced from
exponential to polynomial in the number of activities, at the cost of a linear increase
in the (exponential) state space size. Nevertheless, it is possible to achieve an even
compacter encoding by grouping activities.

In agent chaining, each agent sequentially decides on starting or continuing an
activity and to this end |A| start actions need to be enumerated. But, since there
is already an agent token present in the encoding, activities can be grouped by index
into a single start action that sets the current activity based on the value of the agent
token. Instead of generating a start action for every activity, only maxi∈N |Ai| start
actions are required to cover all activities. Formally, activity groups are defined as
Aj = {a | ∃i : Ai[j] = a} for every j = 1, 2, . . .maxi∈N |Ai|. For all of the activity
groups Aj , a start action startj is encoded that sets the current activity for agent i
to Ai[j] when the agent token value is i. After setting the current activity, the agent
token is passed on as before.

An example of activity grouping is shown in Figure 3.9 for the same problem as
before. To better relate with agent chaining, the activities are shown as squares with
dashed borders but they are not the actual actions in this encoding. Observe that

88

3

3.4. APPROXIMATION OF MAINTENANCE PLANS

Ag. A Ag. B Ag. C

agent
token

t t+ 1

ExecutionAction selection

exec

A4 a4

A3 c3a3

A2 c2b2a2

A1 c1b1a1

∗B

C

A

Figure 3.9 Illustration of the activity grouping encoding. In this example the same joint activity
〈a4, b1, c3〉 as before is executed (again highlighted) although through different actions.

the activity group encoding results in only 5 actions whereas the previous needed 10.
In general, because of the construction of the activity groups, this encoding requires
maxi∈N |Ai|+2 actions where the two extra actions are a no-op group and the execute
action. Therefore the action set size is of order O(maxi∈N |Ai|), which is typically
much smaller than the previous O(|A|) achieved by agent chaining. Also interesting to
note is that the activity group encoding completely decouples the action set size from
the number of agents in the problem. Of course, increasing the number of agents is
not without cost. Although the number of actions does not increase with the number
of agents, the complexity of each action does as more activities are grouped into it.
Still, existing solvers scale better in terms of runtime due to the very compact action
space compared to the enumerative or even agent-chaining encodings.

3.4 Approximation of Maintenance Plans

From both the dynamic programming formulation of Section 3.2 and the more involved,
but exponential state MDP formulations of Section 3.3.2, it is clear that finding an
optimal maintenance plan is a computationally-demanding task. Indeed the experi-
mental evaluation of 3.5 later in this chapter clearly illustrates that finding an optimal
solution for instances of all but the smallest sizes is quickly considered intractable. For
some applications, finding an optimal maintenance plan is possible because either the
number of agents and actions is manageable, or simply because there is enough time
available to develop the plan. In other settings, for example the decision support setting
of Chapter 5 where many problem instances need to be solved, it may be acceptable
to trade some of the solution quality for a (substantial) decrease in runtime.

This section proposes an approximation approach for mpp, or multi-agent MDPs
in general, based upon Monte-Carlo tree search (MCTS) (see e.g. the work by
Coulom [70]). In MCTS the search space is modelled as a tree, that is gradually being
built by the algorithm. In the case of MMDPs, the nodes in this tree correspond to the
states S and the edges to the transitions P that result from taking one of the actions A,

89

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

similar to the graph of Figure 3.5. In each iteration of the algorithm, a node will be
selected, a new action will be tried and the corresponding transitions will be explored
to construct a new part of the search tree. The node representing the state will then
store the expected rewards as a result of function R and keep track of the action that
in expectation maximises that reward. Observe that if this process would continue
indefinitely, the full policy search tree would be constructed and the optimal policy is
easily extracted from the tree. The key idea however is that at any given time during
the construction of the tree, the MCTS algorithm can return an approximation of the
optimal policy by returning the best transitions for every node known so far. In other
words, it functions as an anytime-approximation algorithm that with every iteration
gets closer to an optimal solution. The generic procedure is shown in Algorithm 3.11.

Algorithm 3.11 Generic Monte-Carlo Tree Search

Require: Search tree τ , time limit tlim

1: function MCTS(τ , tlim)

2: while time < tlim and ∃n, a : Ṽ (n, a) = unknown do

3: n← SelectNode(τ) . Determines next node to evaluate

4: a← SelectAction(τ, n) . Select the action to take from node n

5: n′ ← ExpandSearchTree(τ, n, a) . Expand n with a, leading to new node n′

6: Hh ← SimulateRollOut(n′) . Simulate rollout from node n′

7: Ṽ (n, a, n′)← BackPropagateValues(τ,Hh) . Estimate values of rollout Hh

8: end while

9: return T

10: end function

Implementations of the MCTS algorithm vary in how each of the steps SelectNode,
SelectAction, ExpandSearchTree, SimulateRollOut and BackPropagateValues

are performed. The first two steps are heuristic functions to determine the tree
node that is evaluated next and the action that is taken from that node. The step
ExpandSearchTree uses this node n and action a to expand the search tree by a
single new node n′ that represents a possible outcome of taking the action a from
node n. Unless n′ is already a terminal state, the rollout step SimulateRollOut

samples one possible execution sequence from node n′ until the planning horizon is
reached by realising outcomes, yielding one possible full-length history Hh. Finally, the
backwards-propagation step BackPropagateValues sets a value estimate (as only the
values in sampled areas are known) in all of the nodes of the current search tree that
are present in the rollout Hh using a predetermined heuristic. This is an important
difference with for example typical dynamic programming approaches that evaluate all
possible futures to determine the value of a node; here only an estimate is made and it
is gradually improved as more and more samples are taken from the search tree. In the
limit, when the search tree has been fully expanded, these estimates will equal the exact
rewards. The main benefits of performing MCTS over the exhaustive approach are that
often a small number of samples can be enough to approximate these values closely
and, as the estimated value improves with every new sample, it allows an any-time
approximation of the policy.

90

3

3.4. APPROXIMATION OF MAINTENANCE PLANS

Example 3.12 Monte-Carlo Tree Search

In Figure 3.10a an example search tree for a one-agent, two-activity MDP instance is
shown, in which 5 samples have been performed.

s0

3

2

4

sb̂

sb

sâ

sa

sb̂â

sb̂a

sbâ

sba

sâb̂

sâb

sab̂

sab

a

b

a

â

b̂

b

b

a

a

b

b̂

b

b̂

a

â

a

â

5

4.6

b

6

(a)

s0

3

2

4

sb̂

sb

sâ

sa

sb̂â

sb̂a

sbâ

sba

sâb̂

sâb

sab̂

sab

a

b

a

â

b̂

b

b

a

a

b

b̂

b

b̂

a

â

a

â

5

8
6.4

6.2

b

6

(b)

Figure 3.10 Illustration of Monte-Carlo tree search. The decision nodes are displayed
as circles, with triangles illustrating chance nodes with multiple possible outcomes. The
branches descending from a decision node are labelled by the action whereas the branches
after each chance node are labelled by the possible not-delayed or delayed outcomes (e.g.
a and â). The nodes and edges expanded during the tree search are displayed solid, the
remaining unexplored parts are depicted dotted and greyed and (estimated) rewards are
shown in blue. In (a) five samples have been taken, leading to the expansion of the tree by
nodes sa, sâ, sab, sab̂ and sâb̂, labelled by their corresponding rewards. In (b) an example

next evaluation is shown where action b is selected at node s0 and realised by outcome b̂.

In Figure 3.10a both outcomes for action a from initial state s0 (the root node) have been
evaluated, leading to new nodes sa and sâ, as well as both outcomes of action b from state
sa and only outcome b̂ from state sâ. The greyed parts of the search tree correspond to the
remaining transitions in this simples, two-step example that have not yet been visited by
the algorithm. Figure 3.10b shows a subsequent sample being performed (in red) from the
initial state node S0 when activity b is chosen. Here its outcome is randomly determined
as b̂ and hence the search tree is expanded with a node for the newly found state sb̂. The
parts in red that are dashed illustrate a simulated rollout that is being performed from
node sb̂ to sample an outcome of the planning problem and get an estimate of its reward.
The rewards that were found during this and previous simulations are shown as labels at
the nodes. The new simulated rollout led to a first reward estimate for state sb̂ but also
to an update of the estimate for the root node s0 during the backward propagation as a
new part of the search tree has been explored that was reachable from it. Note that in this
simple example the value set in backwards propagation corresponds to the expected value
over the currently known outcomes. In general, any backwards propagation function can
be used but its choice is crucial to the theoretical guarantees and practical performance of
the tree search algorithm and may vary per domain.

The node and action selection methods determine where and how sampling is performed
in the search tree. As MCTS is typically used as an anytime approximation, it is preferable
to expand the most interesting parts of the search space as soon as possible e.g. the
areas that are likely to yield the most reward. Many heuristics exist for selection but

91

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

one particular successful variant of MCTS is the Upper Confidence bounds applied

to Trees (UCT) algorithm due to Kocsis and Szepesvári [142]. UCT uses the UCB1

algorithm, originally proposed for stochastic bandit problems by Auer et al. [17], as its
heuristic to guide MCTS. For a given Monte-Carlo search tree 〈V,E〉, UCB1 suggests
expanding the node n∗ such that

n∗ = arg max
n∈V

B ·

√
logCk(parent(n))

Ck(n)
+ R̃k(n) (3.12)

in which k is the number of rollouts performed so far, Bk is a bias, set to the estimated
expected policy value in UCT, Ck(n) is the number of times node n has been visited
in k trials and Ṽ (n) is an expected reward estimation for node n after the first k trials.

In practice, UCB1 adequately balances between exploration infrequently visited states
and exploiting states with high reward, making UCT an effective anytime MCTS algo-
rithm. Indeed, Keller and Eyerich [133] show that their implementation of UCT for
domain independent stochastic planning is very successful. Their PROST toolkit, with
their own implementation of UCT, did very well in the International Probabilistic Plan-
ning Competition of 2011.34 As a follow-up, Keller and Helmert [134] proposed an
improved algorithm that combines UCT with heuristic and/or search (AO*), known as
UCT*. This algorithm uses the MCTS approach and UCB1 heuristic of the former, but
uses the greedy rollout simulation with a variable search depth of the latter to focus
more on the short-term rewards following a decision. In this way, node expansion is
still balanced between exploration and exploitation but, instead of performing complete
depth-first rollouts until the planning horizon, UCT* performs rollouts of limited length.
As a consequence the tree is built in a way that more resembles breadth-first search.

Still, UCT and UCT* suffer from two main drawbacks: it cannot determine whether
the current state is solved optimally unless all of its child nodes have been sampled
completely and its UCB1 heuristic does not offer any search space pruning [134]. More-
over, while MCTS offers a good anytime approximation, it is not guaranteed to find
a fully specified policy for a stochastic planning problem. Consider the example of
Figure 3.10b, if the algorithm would terminate at this point during the search, the
policy will not contain any action for the state sb as none of its transitions have been
expanded during the search. Such a policy that is not fully specified is referred to as a
partial policy. Partial policies can still be usable in practice, although some additional
planning must be performed when a non-terminal state is reached for which no tran-
sition is known. This can be acceptable in cases where the partial policy covers the
states that are often encountered during execution or when there is limited time for
offline planning but more time is available during execution. In addition to having to
perform additional planning, it is not possible to directly compute the expected value
of a partial policy because the values for unexpanded states and transitions are not
known. When the goal is to find an approximate policy for the problem, but partial
policies are unacceptable, the latter can be augmented to obtain a fully specified policy.
For instance by appending do-nothing operations until the planning horizon is reached
or setting actions randomly.

34 See the IPPC 2011 website at http: // users. cecs. anu. edu. au/ ~ ssanner/ IPPC_ 2011/ .

92

http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/

3

3.5. EMPIRICAL EVALUATION OF MPP

3.5 Empirical Evaluation of MPP

This chapter introduces the maintenance planning problem and first approaches
to solve it, that is, to find a policy that maximises the sum of expected rewards.
Section 3.3 proposes an MMDP model and various encoding techniques to transform it
into a joint MDP that can solved by any existing MDP solver. Furthermore, Section 3.4
introduces an approximation for the MMDP model based upon Monte-Carlo tree search
for settings where efficient policy computation is preferred over maximising the reward.
In this section, both approaches are evaluated empirically on instances of mpp. In
particular, several experiments are conducted that

1. compare the scaling of the three proposed MDP encodings – enumeration, agent
chaining and activity grouping – in terms of runtime and memory usage,

2. investigate the influence of the activity set size and planning horizon on the
scaling of the problem complexity, and

3. compare the approximation approach against the best performing optimal MDP
method in terms of scalability in the size of the problem instance.

To find optimal policies for the MDP encoding the Stochastic Planning Using

Decision Diagrams algorithm (SPUDD) of Hoey et al. [116] is used. This algorithm
is a variant of the Structured Policy Iteration algorithm of Boutilier et al. [38]
that uses algebraic decision diagrams [19] to efficiently represent rewards as graphs.
This representation allows for a compact modelling of problem rewards as well as using
state factors to group states that result in similar rewards. Therefore it is particularly
well-equipped to deal with problems that have large state spaces and highly structured
rewards, both true for mpp.35 Finding approximate policies is performed using the
UCT* algorithm of the PROST toolkit36 by Keller and Eyerich [133] and run on the
MMDP modelling of mpp instances. The instances themselves are encoded according
to Definition 3.3 in the relational dynamic influence diagram language (RDDL) [226],
a descriptive language for multi-agent planning problems. Finally, UCT* is an anytime-
approximate algorithm and it does not provide any bounds on the error of the produced
policy. In order to compare the quality of the approximations of the algorithm against
the optimal policy values, a slightly modified version of the algorithm is used. This
algorithm, ε-UCT*, iteratively runs the UCT* algorithm with increasingly more runtime
until a policy has been found with a maximal error of ε compared to the optimal policy
value. For the experiments themselves, three different sets of instances are used:

• actsize: Test set of 45 instances to determine the influence of activity set
sizes. This set includes 15 2-agent instances with |T | = 46 and activity set sizes
increasing from 1 to 15. For the 3, 4 and 5-agent instances, only activity set
sizes 1 to 10 were considered (again |T | = 46).

35 This is discussed in more detail in Chapter 4. Indeed the algebraic decision diagrams and the
resulting reward trees largely resemble the concept of Conditional Return Graphs.

36 Although Keller and Eyerich [133] refer to the PROST planner, the PROST toolkit currently includes
many other algorithms for probabilistic planning and therefore here referred to as such.

93

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

• horizon: Test set of 70 instances to determine the influence of the planning
period length. For each agent set size, different activity set sizes are used to
account for the complexity increase of more agents. The following activity set
sizes are used: 10 and 15 for 2 agents, 5 and 10 for 3 agents, 3 and 10 for 4 agents
and 10 for 5 agents. The latter two are only solved by the activity group encoding
and therefore the set sizes of 10 are determined to further investigate the scaling
of that particular encoding. For all 7 types of instances, 10 actual instances are
generated with increasing planning horizon length |T | ∈ [1, 6, 11, . . . , 46].

• random: Test set of 81 2-agent and 27 3-agent instances to compare the optimal
algorithm versus approximate methods. For the 2-agent problems 9 random
instances are generated with |Ai| ∈ [1, 3] and T ∈ [6, 8, 10], while in the case of
3-agent problems 9 random instances are generated for only |Ai| = 3 and the
same planning period length.

Furthermore, all activities of the test sets have a non-zero probability of delaying
and the traffic cost model is fully connected, i.e. every combination of activities results
in a super-linear cost. In a sense, these instances are the “hardest” mpp problems.

The experimental results presented in this section were obtained by running them
on a system with an Intel i7 Quad Core processor, each with a clock speed of 1.60 GHz,
and 12GB of internal memory (DDR3). The time limit used in these experiments is 3
hours for the experiments with the optimal solver. For the comparison with approximate
techniques a time limit of 10 minutes was set. Instances not solved within the time
limit are not considered in the results and this is noted in the presentation of the results.
Note that in these experiments the goal is not to establish exact runtimes or compare
against other approaches. This evaluation is primarily meant to provide an insight into
the scaling of techniques and the influence that problem characteristics may have.

The first experiment investigates the scalability of the three MDP encodings pre-
sented in Section 3.3, namely enumeration, agent chaining and activity grouping. To
this end, the 45 instances of the actsize and the 70 instances of the horizon test
set are encoded using all three methods and subsequently solved by the SPUDD solver.
After every solving run, SPUDD reports the runtime in seconds and memory usage in
terms of nodes required to represent the state space and reward structure of the MDP.
The average runtime and memory usage of these results are shown in Figure 3.11 where
they are grouped per agent set size.

A first observation is that in both figures only the activity group encoding is plotted
for the 5-agent instances. Only using this encoding SPUDD was able to solve all 5-agent
instances within the time limit of 3 hours (with an average runtime of approximately
87 minutes). Indeed, Figure 3.11a illustrates that in terms of runtime, the activity
group encoding typically produces an optimal policy an order of magnitude faster than
the other two encodings. Although these results are not sufficient to generalise with
respect to the scalability, they do suggest that all techniques scale exponentially in
the agent set size and, indirectly, the action and state space of the problem, and that
of these three encodings the activity group contributes most to the scaling of MDP
techniques.

94

3

3.5. EMPIRICAL EVALUATION OF MPP

100

101

102

103

104

 2 3 4 5

R
u

n
ti
m

e
 (

s
)

Number of agents

Average runtime of encodings

Enumeration
Agent chain

Activity group

(a)

104

105

106

107

108

 2 3 4 5

N
u

m
b

e
r

o
f
n

o
d

e
s

Number of agents

Average memory use of encodings

Enumeration
Agent chain

Activity group

(b)

Figure 3.11 Runtime and memory usage as reported by SPUDD for the 115 instances of the
actsize and horizon test sets for the three MDP encodings enumeration, agent chaining
and activity grouping. Both graphs use a logarithmic scale for the Y-axis.

In terms of memory usage, shown in Figure 3.11b, the SPUDD algorithm performs
comparably on the three encodings, with a slightly lower memory consumption when the
enumeration encoding is used. This result is to be expected: both the agent chaining
and the activity grouping transfer the complexity of action sets into the state space,
therefore requiring more memory to represent all the states of the problem. Observe
that the agent chaining and activity grouping encodings exhibit a similar pattern in their
memory usage. This is because both techniques have a similar additional overhead in
the state space. Also, SPUDD does not report the exact amount of memory required
but only the number of nodes, which in turn are pre-allocated in chunks as is typical in
data structures such as lists and arrays. The memory usage only provides insight into
the order of magnitude. An exact comparison of memory usage is not possible.

Having established that the activity group encoding is the most effective technique
to scale the SPUDD solver, further analysis focuses on identifying the characteristics
of mpp that make the problem hard to solve. From the previous experiments it was
already clear that the agent set size largely influences the complexity, however the role
of the other parameters is unclear. Therefore the results are also plotted by per test set,
actsize and horizon, that respectively vary in activity set size and planning horizon.
The results are shown in the graphs of Figure 3.12.

10-2

10-1

100

101

102

103

104

 1 2 3 4 5 6 7 8 9 10

R
u

n
ti
m

e
 (

s
)

Activity set size

Impact of activity set size

N = 2
N = 3
N = 4
N = 5

(a)

10-2

10-1

100

101

102

103

104

 0 10 20 30 40 50

R
u

n
ti
m

e
 (

s
)

Planning horizon length

Impact of planning horizon length

N = 2
N = 3
N = 4
N = 5

(b)

Figure 3.12 Runtime as a function of (a) activity set size and (b) planning horizon length.
Again both graphs use a logarithmic scale for the Y-axis.

95

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

Figure 3.12a clearly demonstrates the effectiveness of the activity grouping in trans-
ferring the action set space complexity into the state space, which in turn is more
manageable for MDP solvers such as SPUDD. While the impact of the agent set size is
clearly noticeable, an increase of activity set size only marginally increases the runtime
required by the solver. On the other hand, Figure 3.12b shows that the planning hori-
zon does substantially influence the solving time required. Especially in the lower-value
regions, e.g. a horizon of 20 or below, the planning length has a lot of impact on
the scalability. Instances with low planning horizon are expected to be relatively easy
as there are only a limited number of possible plans. Increasing the planning horizon
introduces an exponential number of new plans, therefore the computation time in-
creases rapidly. As the horizon reaches higher values, the number of possible new plans
continues to decrease as the activity set size is fixed. Instead the activities just take
more time and/or more no-ops are included, leading to only minor increases in runtime.

The last experiment compares the scalability of the optimal SPUDD algorithm against
the approximate UCT* Monte-Carlo tree search algorithm. In particular, the bounded-
error variant ε-UCT* is used and the quality of the produced is compared to that found
by the optimal algorithm in terms of expected value that is obtained. On the 108
instances of the random test set, the SPUDD algorithm is run as well as the ε-UCT*
algorithm with four different values for ε: 0.5, 0.25, 0.1 and 0.01. In other words, the
expected value of the approximated policy must respectively have an expected value
of at least 50%, 75%, 90% and 99% of the value of the optimal policy. To diminish
the impact of chance in the Mote-Carlo tree search, each data point for ε-UCT* is an
average over 3 solving runs. To measure the quality of the policy π produced by the
approximation algorithms relative to any optimal policy π∗, the error ε = 1−V π/V π∗

is computed where V π and V π
∗

are the expected reward of respectively the approximate
and optimal joint policies.

|N | = 2 |N | = 3

Method V π Time (s) ε V π Time (s) ε

CoRe 671.425 87.005 - 724.702 152.872 -

0.50-UCT* 527.295 0.703 0.195 525.954 0.951 0.274

0.25-UCT* 635.765 4.260 0.048 685.264 1.504 0.056

0.10-UCT* 666.240 6.808 0.007 705.450 1.706 0.022

0.01-UCT* 671.224 7.572 0.000 723.969 2.497 0.001

Table 3.4 Comparison of average runtimes and expected values of the optimal (SPUDD) and
approximation algorithms (ε-UCT*) for various values of ε, summarised over 2 and 3 agent
instances. The column ε contains the approximation error relative to the optimal value.

The results of the experiment are summarised in Table 3.4 for the 2 and 3 agent
instances. It can be seen immediately that the quality of the approximated policies
are relatively close to the that of the optimal policy, whereas the runtime required by
approximation is orders of magnitude less. Even a high value of ε, e.g. 0.5, the obtained
quality is at most 20% and 28% lower than that of optimal algoritm for respectively the
2 and 3 agent instances, with a speedup of almost 120 times for the 2-agents instances

96

3

3.6. FURTHER DISCUSSION

and 160 times for 3 agents. Furthermore if a quality with an error of at most 1% is
desired, the ε-UCT* algorithm produces such near-optimal policies within a fraction of
the time required by SPUDD to produce an optimal policy that is only slightly better.37

0

200

400

600

800

1000

1200

 6 8 10

E
x
p

e
c
te

d
 p

o
lic

y
 r

e
w

a
rd

Planning horizon length

Average reward

SPUDD
UCT* ϵ < 0.50
UCT* ϵ < 0.25
UCT* ϵ < 0.10
UCT* ϵ < 0.01

(a)

0

50

100

150

200

 6 8 10

R
u

n
ti
m

e
 (

s
)

Planning horizon length

Average runtime

SPUDD
UCT* ϵ < 0.50
UCT* ϵ < 0.25
UCT* ϵ < 0.10
UCT* ϵ < 0.01

(b)

Figure 3.13 Average expected policy value and runtime as a function of planning horizon
length for the optimal SPUDD and approximate ε-UCT* methods, with desired quality ε ∈
[0.5, 0.25, 0.1, 0.01] and |N | = 2.

Finally, to get an insight into the scaling of the optimal and approximate algo-
rithms, Figure 3.13 depict the runtime and expected policy value of all techniques as
a function of the planning horizon for the 2-agent instances of random. Figure 3.13a
shows the average expected values obtained by the policies of both techniques, whereas
Figure 3.13b illustrates the average runtime. Although the 3-agent instances are not
shown here, the figures are highly similar to those of the 2-agent instances albeit that
the runtime required by the SPUDD algorithm in particular increases more rapidly as
the horizon increases. Both graphs correspond to the expectations set by the figures
in Table 3.4: the expected value of approximate policies is close to the optimal policy,
and approaches the optimal policy for smaller ε, whereas the scaling of the approxi-
mate algorithms in terms of runtime is much better than that of the optimal algorithm.
Note that with respect to the attained policy value, Figure 3.13a shows that for harder
problems the ‘gap’ between optimal and approximate policy values widens.

3.6 Further Discussion

In this chapter the maintenance planning problem, an example self-regulating
planning problem inspired by a real-world use case, is presented as a mathematical
optimisation problem. As a first method to find solutions to the optimisation problem
a recursive formulation is defined that can be solved through dynamic programming.
Thereafter, a multi-agent Markov Decision Process (MMDP) formulation of mpp is
presented, enabling the use of off-the-shelve MMDP solvers to produce solutions to the
optimisation problem. Furthermore, a ‘flattening’ of the MMDP into the more widely
studied MDP model is proposed via three distinct encodings: enumeration, agent chain-
ing and activity grouping. Whereas the former is a naive (exponential) enumeration

37 Although optimality is in some cases necessary, e.g. for the dynamic mechanism of Chapter 6.

97

CHAPTER 3. SOLVING THE MAINTENANCE PLANNING PROBLEM

of all joint activity combinations, the latter two are more advanced encodings that
produce action set sizes linear in the number of activities. This is achieved by trans-
ferring some of the complexity into the state space, which is typically better handled
by MDP algorithms. Next, an approximate UCT* algorithm based on Monte-Carlo tree
search is discussed for those settings where computational efficiency is more important
than optimality. Finally, the effectiveness of the encodings and the scaling of all the
presented (MDP) techniques are evaluated, showing that indeed mpp is a challenging
problem even for state-of-the-art solvers.

With respect to the empirical evaluation, only the SPUDD and UCT* algorithms have
been tested on MDP-encoded instances of mpp. The reward structure of SPUDD and
Monte-Carlo search tree of UCT* make them suitable candidates for highly structured
problems such as mpp. Nonetheless it would be interesting to solve the instances using
other techniques like the ones presented by Boutilier et al. [40], Dai [71], Oliehoek
et al. [196], Plutowski [207], Ruiz and Hernández [224] or even the point-based POMDP
algorithm of Walraven and Spaan [259], and to compare them to the methods used here.
Furthermore, other approximation techniques such as heuristic-based action selection
or reactive planning may also be suitable to produce (near-)optimal policies fast.

Regarding the MDP encoding of mpp also some improvement can be implemented
in future work. First of all, the states of the problem can be generalised in such a
way that many paths of the decision policies converge to the same states. Consider
the encoding of states as described in Section 3.3.2, every state contains a global time
variable as well as a start and end time for every activity. However, for the decision
making in future states it is sufficient to know an agent is currently idle and that a
certain activity is no longer available. Moreover, the start time and end time of each
activity can be derived from the actions startk and cont prescribed by the joint policy.
In other words, all states with information 〈tglobal, tsk, tek〉 can be summarised into four
states 〈tglobal,¬k, idle〉, 〈t− global,¬k,¬idle〉, 〈tglobal, k, idle〉 and 〈tglobal, k,¬idle〉
such that ¬k and k respectively denote that activity k is not or is completed in the
state, and similarly idle and ¬idle denote that the agent is idle or not in that state.
This abstraction of states may be beneficial to reduce the state-space complexity, in
particular in problems with a large horizon where the number of possible combinations
of start and end times may be high. In a similar line of work, Walraven and Spaan [258]
introduces the concept of scenarios that may be very relevant in the context here to
reason about commonly reoccurring sequences of states.

For the SPUDD solver an interesting enhancement is the addition of preconditions
to MDP actions. Currently the MDP encodings use minus infinite value penalties to
enforce domain rules regarding feasible outcomes. The downside thereof is that the
solver may perform a lot of computations and evaluations before finding out that a
certain action choice was infeasible to begin with. By adding preconditions, that are to
be evaluated before the action-selection phase, the MDP encoding can help the solver
to avoid infeasible areas of the solution space all together.

A final note here is that the focus of this chapter has been primarily on mpp.
Although the ideas and concepts transfer to other (MDP-modelled) planning problems,
and in particular self-regulating planning problems, generalising the approach taken here
into guidelines or a standard methodology is left to future work.

98

Chapter 4

Maintenance Planning with
Multiple Agents

In the previous chapter, the maintenance planning problem (mpp) was introduced. This
problem, abstracted from a realistic challenge in need of solutions, poses a complex task
for (automated) decision making. The previous chapter proposed several rudimentary
methods to solve the problem, relying on existing approaches and techniques to develop
both exact and approximate solutions. In particular, through efficiently ‘flattening’ the
planning problem into a single-agent Markov decision process, it was demonstrated
that optimal policies for mpp can be found using the SPUDD solver, albeit for small
instances. The line of optimal solving is continued in this chapter, but the focus is
shifted from effectively applying available methods to the design of a novel approach
that targets the structure inherent to mpp. and similar problems that can be modelled
as a multi-agent MDP (MMDP).

Recall from the previous chapter that the agent group and activity chain encodings
of Section 3.3 successfully reduce the action set size from an exponential to a polynomial
size. Nonetheless, when searching for the optimal policy, a typical MDP solver still
has to evaluate all possible action decision sequences of every possible joint action
to compute the joint reward, even when agents’ decisions do not interact. In the
maintenance planning domain, for example, revenues and costs depend only on the
action of the agent that executes it. Reward interaction between agents only arises
when network costs are involved. Ideally, reward computation should thus be decoupled
for all decisions but those involving network costs in the mpp domain, or any multi-
agent reward in general. In fully-observable, multi-agent MDPs, however, the value
function cannot be factored into additive local components without loss of optimality
as these components depend on non-local transition probabilities [145].

This chapter introduces an alternative approach to compute the expected value of
a policy based on returns, defined as the cumulative reward obtained from a sequence
of transitions. In other words, the return of a series of joint states and actions is the
total reward that an agent receives, without the discounting by state/action transition
probabilities typical to the expected value. Exactly because returns do not rely on the

99

CHAPTER 4. MAINTENANCE PLANNING WITH MULTIPLE AGENTS

joint transition probability, they can be decomposed without loss of optimality when the
agents have independent transitions even though the optimal value function cannot.

In this chapter it is shown that return computations can be factored during policy
search to compute the expected value of a policy more efficiently. In particular, in
Section 4.2 a novel data structure called the conditional return graph is presented, a
directed acyclic graph that compactly represents the returns local to an agent. The key
idea is that when inter-agent rewards – referred to as interaction rewards – are sparse or
limited in scope, they can be expressed compactly in local reward graphs which in turn
are used to compute and bound joint transition rewards in a factored way. Moreover,
when independence between CRGs is detected, (subsets of) of local components can
be optimised independently, effectively decoupling agents during optimal policy search.

Consider the following example. There are two agents, numbered 1 and 2, with
actions A1 = {a1} and A2 = {a2, b2, c2} respectively. Furthermore, the (joint) MMDP
reward function R is composed of two individual reward functions R̄1 and R̄2, one for
each agent, and a network cost function R̄1,2 = `(〈a1, a2〉 , t). The latter yields 0 for all
transitions but the ones involving joint action 〈a1, a2〉, because they take place within
close proximity of each other. Figure 4.1 visualises all state transitions available from
a joint state

{
s0

1, s
4
2

}
. Each arc is labelled by the transition and the reward functions

required to compute the resulting reward of the transition.38

s0
1, s

4
2

〈a1, a2〉 R̄1 + R̄2 + R̄1,2

〈a1, b2〉

〈a1, c2〉

s1
1, s

4
2

s1
1, s

6
2

〈a1, a2〉

〈a1, b2〉

〈a1, c2〉

R̄1 + R̄2

R̄1 + R̄2

R̄1 + R̄2 + R̄1,2

R̄1 + R̄2

R̄1 + R̄2

Figure 4.1 State-transition graph showing all available transitions, i.e. with non-zero proba-
bility, from a joint state

{
s0

1, s
4
2

}
. Each arc represents a joint action (labelled in black) and

the reward functions required to compute the transition reward (blue).

First of all, observe that the interaction reward function R̄1,2 needs to be computed
in only two transitions: the ones involving 〈a1, a2〉. In addition, all transition reward
computations require the individual reward functions R̄1 and R̄2, but they only depend
on the local state transition, e.g. to compute R̄1 only knowledge regarding the transition
of agent 1 is necessary. Obviously, a better idea would be to decompose at least the
individual rewards of both agents into two completely isolated reward graphs. The
interaction reward R̄1,2 must nevertheless still be accounted for. To this end the
following two graphs are constructed: one for agent 1 that represents the transition
reward given R̄1 and R̄1,2 (assigned arbitrarily to agent 1) and another for agent 2

38 Note that for a single transition the terms reward and return are interchangeable.

100

4

with only the individual reward R̄2. The latter is similar to a typical single-agent MDP
transition graph (and therefore not illustrated), the former is shown in Figure 4.2a and
includes all of the transitions of Figure 4.1.

s0
1

{s01, s42}, 〈a1, a2〉 , {s11, s42}

R̄1+R̄1,2

R̄1+R̄1,2

R̄1

{s01, s42}, 〈a1, a2〉 , {s11, s62}

{s01, s42}, 〈a1, b2〉 , {s11, s42}

s1
1

{s01, s42}, 〈a1, c2〉 , {s11, s42}

{s01, s42}, 〈a1, c2〉 , {s11, s62}

R̄1

R̄1

R̄1

{s01, s42}, 〈a1, b2〉 , {s11, s62}

(a)

a1

R̄1+R̄1,2

R̄1+R̄1,2

R̄1

s0
1

s1
1a2

∗2

s42 → s42

s42 → s62

�2

(b)

Figure 4.2 Two state-transition graphs for agent 1 that represent all rewards obtainable
given functions R̄1 and R̄1,2. The graph of (a) includes all possible joint transitions and
their rewards, whereas (b) illustrates the conditional return graph that compactly represents
the same rewards by grouping transitions. Here, ∗2 and �2 are wildcards representing the
(remaining) actions and state transitions of agent 2 respectively.

Note that the nodes of this graph are local states only but the reward R̄1,2 can
still be computed because the arcs represent joint transitions. Moreover, the total joint
reward is found by summing the transition rewards of both agents’ transition graphs
(again, the graph of agent 2 is not shown). Another observation reveals more structure
that can be exploited: many of the transitions the graph of Figure 4.2a do not require
knowledge about agent 2’s transition and can be grouped. Only transitions with joint
action 〈a1, a2〉 need this information, the others are independent, which is made explicit
in the conditional return graph of Figure 4.2b.

The above example demonstrates the main intuition behind the effectiveness of
conditional return graphs: when inter-agent reward interactions are limited in number,
they can be efficiently represented through local structures, simultaneously decoupling
returns of agents where possible. Additionally, although returns cannot be directly used
to compute the expected value of a joint policy, local bounds on the minimum and
maximum return can be used to bound the local expected value. Moreover, summing
these local bounds yields an upper and lower limit of the expected value of the joint
policy, thus enabling a branch-and-bound style policy search. Finally, in mpp and
many similar problems like machine scheduling, finite-resource production planning or
rostering of personnel, actions can be performed only a single or limited number of
times, after which they are no longer available. Therefore any reward interaction that
involves such an action can also no longer occur, e.g. R̄1,2 after completing a1 or
a2. When such conditional reward independence is detected in a state, agents can be
decoupled from the state onward for the remainder of the policy search.

Figure 4.3 visualises this conditional reward independence for a 3-agent example
where all agents have three actions: ai, bi and ci. Notice that after such a decoupling as

101

CHAPTER 4. MAINTENANCE PLANNING WITH MULTIPLE AGENTS

〈a1, a2, a3〉

〈b1, b2, b3〉
〈b1, b2, c3〉

saaa

〈b1, c2, b3〉
〈b1, c2, c3〉 〈c1, b2, c3〉 〈c1, c2, c3〉

〈c1, b2, b3〉 〈c1, c2, b3〉

(a)

〈b1, b2〉

〈a1, a2, a3〉

saa1,2 sa3

〈b1, c2〉 〈c1, b2〉 〈c1, c2〉 b3 c3

(b)

Figure 4.3 Agent decoupling during policy search: (a) part of a typical joint policy search
tree with joint states and actions and (b) the same graph when agent sets {1, 2} and {3} can
be decoupled after joint action 〈a1, a2, a3〉. After the decoupling, agents 1 and 2 no longer
have to consider transitions of agent 3 (and vice versa) when searching for the optimal joint
actions for the remainder of the planning problem.

shown in the figure, agent 3 needs only its own CRG with local states and actions to find
the transitions that optimise its expected reward. The CRGs in this example reduce the
number of transitions from 23 = 8 to 22+21 = 6. Considering that a naive policy search
algorithm requires O(|S1|2 |A1|×|S2|2 |A2|×|S3|2 |A3|) further evaluations in the worst

case, the example decoupling would reduce this to O(|S1|2 |A1|×|S2|2 |A2|+|S3|2 |A3|).

Contributions In this chapter a new optimal joint policy search algorithm is presented
that uses CRGs as its main data structure, termed Conditional Return Policy

Search (CoRe). The algorithm resembles a typical branch-and-bound policy search,
however it computes rewards using CRGs and decouples policy search whenever agents
become independent as a result of no more future reward interactions. The experiments
at the end of this chapter demonstrate that CoRe finds optimal policies typically faster
than the SPUDD approach of the previous chapter and scales better in terms of horizon
and number of agents for sparse-reward mpp problems. The CoRe algorithm was first
introduced by Scharpff et al. [229], this thesis contributes to it a strengthened definition
of the conditional return graph and its elements (Definitions 4.3 to 4.5) and an elaborate
example that illustrates the impact thereof (Example 4.14). The source code can be
found at https://github.com/AlgTUDelft/core-solver.

The focus of this chapter is on transition-independent MMDPs, or TI-MMDPs, a
sub-class of MMDPs in which agents depend on others only through their rewards.
The decoupled reward structure that is characteristic to this set of MMDPs has been
the inspiration for the theory underlying the CoRe algorithm. As a result, CoRe can
typically exploit the TI-MMDP reward structure really well. Nevertheless, transition
independence is not a necessary prerequisite for the approach and in Section 4.5 it is
discussed how the algorithm can be extended to general MMDPs.

4.1 Returns in MDP

As mentioned in the introduction, the policy search method presented in this chapter
and its data structure are based on returns. Before going into the concept of returns,

102

https://github.com/AlgTUDelft/core-solver

4

4.1. RETURNS IN MDP

however, it is first necessary to clarify precisely the transition-independent MMDP (TI-
MMDP) model and to introduce a general partitioning of rewards that will be the basis
for the approach presented in this chapter. Although transition-independent MMDPs
have been discussed in Chapter 2 (Definitions 2.11 and 2.17), here the model is restated
in its entirety to ease further exposition:

Definition 4.1 Transition-independent Multi-agent MDP (TI-MMDP)

A (factored, fully-observable) transition-independent, multi-agent Markov decision
process, or TI-MMDP, is defined by the tuple 〈N ,S,A,P ,R〉 where:

• N is the finite set of agents, indexed as 1, 2, . . . , n,

• S =
�

i∈n Si is the factored, finite state space,

• A = {Ai}i∈N is the collection of action sets where Ai contains the actions only
available to agent i ∈N ,

• P = {Pi}i∈N is the collection of transition probability functions such that each
Pi : Si × Ai × Si 7→ [0, 1] is the transition probability of agent i, based on its
own states and actions,

• R defines the joint reward for every transition, e.g. R : S ×A× S 7→ R.

The MMDP is transition independent when P (s,~a, ŝ) =
∏
i∈N Pi(si, ai, ŝi), such

that si, ŝi ∈ Si are respectively the state and next state of agent i, and ai ∈ Ai the
action that agent i takes in joint action ~a.

Given that the TI-MMDP is factored and transition independent, it is possible to
decompose the reward function into a set of locally scoped reward functions R ={
R̄e | e ⊆N

}
, such that ∀i ∈N: R̄i is the local reward (function) of agent i and any

other function R̄e with |e| > 1 is called an interaction reward (function) with agents e
in its scope. This decomposition is without loss of generality as the original reward
function R can be represented through a single interaction reward R̄N with all agents
in its scope.

An important advantage of such a partitioning is that to compute the reward due
to each of these functions, only the states and actions of the agents in its scope
are required. Therefore, the reward from any function R̄e with agent(s) e in its
scope is given by R̄e({si}i∈e , 〈ai〉i∈e , {ŝi}i∈e), conveniently written R̄e(se,~ae, ŝe)
such that se, ŝe ∈

�

i∈e Si and ~ae ∈
�

i∈eAi. Moreover, the total reward obtained
from a joint transition (s,~a, ŝ), when the rewards are decomposed as described above,
is computed by

R(s,~a, ŝ) =
∑
R̄e∈R

R̄e(se,~ae, ŝe) =
∑
R̄e∈R

R̄e({si}i∈e , 〈ai〉i∈e , {ŝi}i∈e) (4.1)

where the symbol R is slightly abused to denote both the set of all reward functions
as well as the function to compute the joint reward for a given transition.

103

CHAPTER 4. MAINTENANCE PLANNING WITH MULTIPLE AGENTS

Let R̄ denote the set of only interaction rewards, i.e. R̄ =
{
R̄e | e ⊆N , |e| > 1

}
.

Agents N ′ ⊆N are said to be dependent if they are all within the scope of at least one
such a function, i.e. ∃R̄e ∈ R̄ : N ′ ⊆ e. Furthermore, an action ai of agent i is said
to be a dependent action if there is at least one interaction reward function R̄e ∈ R̄
with R̄e(se,~ae, ŝe) 6= 0 for at least one combination of (joint) states se, ŝe and joint
action ~ae that includes action ai. For dependent actions, R̄e, ai ∈ Dom(R̄e) is used to
denote that action ai belongs to the input of that function, i.e. it depends on another
agent through interaction reward R̄e. Of course, a single action can have several
interaction rewards. Note that when R̄e is mentioned, it is implicitly assumed that it
is an interaction reward and not a local reward, thus R̄e ∈ R̄, unless stated otherwise.

Recall from Section 2.2 that the expected value of an optimal policy for a (finite-
horizon) MDP is computed by the Bellman equation, which can be rewritten to ac-
commodate for partitioned rewards:

V ∗(st) = max
~a t∈A

∑
st+1∈S

P (st,~a t, st+1)
(
R(st,~a t, st+1) + V ∗(st+1)

)
= max
~a t∈A

∑
st+1∈S

P (st,~a t, st+1)
(∑
R̄e∈R

R̄e(s
t,~a t, st+1) + V ∗(st+1)

)
(4.2)

where V ∗(st+1) = 0 for every state st with t > h due to the finite horizon. A
key observation is that, although the expected value V ∗ can be computed through
a series of maximisations over the planning period, it cannot be factored into locally
solvable components without losing global optimality, unless they are independent in
both transitions and rewards [145]. In contrast, the cumulative reward obtained from
following a state/action sequence can be factored into local components that can be
leveraged in optimal policy search. This cumulative reward is known as the return and
is computed over execution sequences, i.e. the history of transitions, first introduced in
Section 3.1. Briefly reiterating, a history Ht from time 0 to t contains the state/action
transitions (s0,~a 0, s1), . . . , (st−2,~a t−2, st−1), (st−1,~a t−1, st) that lead to state st. In
its (equivalent) compact form, a history is typically written as a state-action sequence:
θt = [s0,~a 0, s1,~a 1, . . . , st−1,~a t−1, st]. The return of such a sequence is defined as:

Definition 4.2 Return

The return of an execution sequence is the accumulated reward from the transitions
it represents39, or

Z(θt) =

t−1∑
x=0

R(sx,~a x, sx+1) (4.3)

in which sx, sx+1 and ~a x are respectively the (joint) states and actions at time x in
sequence θt.

Similar to the reward partitioning introduced earlier, it is possible to decompose the
return of Equation 4.3 into localised components, such that the return is alternatively

39 And hence the notions of return and reward are equivalent for a single transition.

104

4

4.2. CONDITIONAL RETURN GRAPHS

represented as

Z(θt) =

t−1∑
x=0

∑
R̄e∈R

R̄e(s
x
e ,~a

x
e , s

x+1
e) (4.4)

as long as the states and actions of all agents in every set e are included in θt.
The formulation of Equation 4.4 may seem trivial, but it opens the way for a

factored policy evaluation method and – demonstrated later – decoupling of agents
during policy search. Recall that the expected value of a policy is the product of the
reward and probability of each history, i.e. execution sequence, that may be realised
under the policy. Therefore, it is possible to express the expected value of policy π as

V π(s0) =
∑

θh|π,s0
Pr(θh)Z(θh) =

∑
θh|π,s0

Z(θh)

h−1∏
t=0

P (st,~a t, st+1) (4.5)

such that θh|π, s0 denotes all execution sequences (histories) up to horizon h reachable
under policy π from initial state s0 (analogous to Equation 3.7). Although Equation 4.5
does not directly express the optimal expected value, it does allow for a factored
computation of the expected value of any given policy π.

4.2 Conditional Return Graphs

The definition of return – the sum of rewards as a result from the transitions taken –
and the knowledge that the joint transition reward in an MMDP can be expressed as a
sum of locally scoped reward functions R̄e, gives rise to a novel reward data structure.
This section formally introduces the conditional return graph (CRG), a data structure
that represents all MDP returns effectively in a local transition graph when the reward
interactions between agents are sparse. Here, sparse means that the interaction rewards
are non-zero for a relatively small subset of joint transitions and/or that there are at
most a few agents in the scope of such rewards (formalised in Theorem 4.7 presented
later). The term conditional is due to the decision-graph structure of the CRG in the
sense that the return is conditional on the execution sequence observed, represented
by paths through the CRG nodes and edges.

The main intuition behind the effectiveness of CRGs is that by partitioning the joint
reward function, according to the aforementioned reward partitioning, and grouping
them into a smaller and coherent data-structure, they represent locally computable
reward components that are easily combined when policy evaluation demands it. This
enables both a more compact representation of all potential rewards of the MMDP as
well as caching, and later re-use, of these rewards to facilitate computation of expected
value when probabilities become known during policy search.

The partitioned rewards can be grouped in many ways, but the most natural group-
ing of return components is at the agent level, which is also logical because each agent
is at least involved in its private reward function R̄i. Note that the choice of parti-
tioning does not change the outcome, it only influences the efficiency of the search
procedure. Hence the rewards R are partitioned into disjoint sets Ri =

{
R̄i
}
∪ R̄i

105

CHAPTER 4. MAINTENANCE PLANNING WITH MULTIPLE AGENTS

such that R̄i ⊆ R̄ is the set of interaction rewards assigned to agent i and together
these sets form the joint reward, i.e. R =

⋃
i∈N Ri. Given this factoring of rewards

the computation of Equation 4.1 still holds, although slightly altered:

R(s,~a, ŝ) =
∑
i∈N

Ri(s,~a, ŝ) =
∑
i∈N

∑
R̄e∈Ri

R̄e(se,~ae, ŝe) (4.6)

and notice that only the scope ei ⊆ N such that ei =
{
j ∈N | ∃R̄e ∈ Ri : j ∈ e

}
is

required to compute the rewards over sets Ri. This is the key function of a CRG: it
represents only the rewards Ri of the joint transitions of the agents ei.

Decoupling of reward is a first step towards a more effective policy search method
because only interacting states and actions are considered instead of the complete
joint state and action spaces. However, the assumption of transition independence
introduces an additional structure in the rewards that can be exploited, especially
when interactions are sparse, allowing grouping of transitions that lead to equivalent
states and rewards. For this it is necessary to define the available (joint) transitions:

τ e = {(se,~ae, ŝe) | se, ŝe ∈ Se, ~ae ∈ Ae, Pe(se,~ae, ŝe) > 0} (4.7)

where Se =
�

i∈e Si and Ae =
�

i∈eAi denote the joint states and actions of agents e,
a notation that was introduced in the previous section. Thus, τe ∈ τ e denotes a joint
transition (se,~ae, ŝe) of agents e, whereas τj ∈ τ j implies a single-agent or local
transition (sj , aj , ŝj). A local transition τi = (si, ai, ŝi) is said to be contained in τe,
denoted τi ∈ τe, if si ∈ se, ai ∈ ~ae and ŝi ∈ ŝe. In addition, a (joint) transition of
all the agents in e without transition τj of agent j is conveniently written as τe \ {τj}
when τj ∈ τe, i.e. the transition of agent j is part of the joint transition τe.

With the notion of available transitions, it is possible to capture the set of actions of
other agents that potentially influence the rewardsRi assigned to agent i. An action aj
of agent j 6= i is said to be dependent with respect to local transition τi of agent i if
(a) the action aj occurs in one of the available joint transitions τe that contains τi, (b)
its presence as part of a transition τj = (sj , aj , ŝj) influences the interaction reward
and (c) there is at least one transition with another action a′j of agent j that does not
cause the same interaction reward. The last condition is included to prevent marking all
actions as dependent when actually the interaction reward depends on the state and/or
state transition of agent j (captured by the transition influence, Definition 4.4). This
leads to the definition of dependent actions:

Definition 4.3 Dependent Actions

The set of dependent actions of an agent j ∈ N that may reward-interact with
agent i 6= j when agent i’s transition is τi = (si, ai, ŝi) is given by:

D(τi, j) = {aj ∈ Aj | ∃ R̄e ∈ Ri, ∃ τe ∈ τ e,∃ a′j 6= aj ∈ Aj :

τi ∈ τe ∧ aj ∈ ~ae (4.8)

∧ R̄e(τe) 6= R̄e(τe \ {τj}), s.t. τj ∈ τe (4.9)

∧ R̄e(τe) 6= R̄e(se,~ae \ {aj} ∪
{
a′j
}
, ŝe)} (4.10)

106

4

4.2. CONDITIONAL RETURN GRAPHS

All actions of an agent j 6= i that are not dependent with respect to a transition τi,
i.e. the actions Aj \D(τi, j), are grouped in the CRG for agent i via a ‘wildcard’ ∗j .
Note that conditions (a) through (c) are represented in this definition by respectively
the terms 4.8, 4.9 and 4.10.

Although the aforementioned dependent actions influence the rewardsRi, they may
not do so for every possible transition of the corresponding agent. For instance, joint
action 〈ai, aj〉 may only cause a reward interaction when agent j transitions from a
state sxj to syj , but will not for any other transition. Furthermore, when the interaction
reward is not action-based but state-based, i.e. when condition (4.10) is not met for
any action of agent j but the interaction reward is influenced by the agent’s transition,
it is often still the case that only a subset of the (state pairs in) transitions will actually
influence the interaction reward. This is captured by the (transition) influence.

The definition of transition influence is rather similar to that of dependent actions.
For a state transition from sj to ŝj of an agent j 6= i to be considered an influence
with respect to local transition τi, both states must (a) be part of a transition τj such
that both τi and τj are contained in a joint transition τe, (c) such a transition τj must
have an impact on at least one interaction reward and (c) there must exist at least
one other transition of agent j that does not have the same interaction reward impact.
The latter condition is, alike before, to prevent all state transitions being marked an
influence whereas the interaction reward depends solely on the action. Formally, the
influence is defined as

Definition 4.4 Transition Influence

The set of state pairs of an agent j that may lead to a reward interaction when
agent i 6= j follows transition τi = (si, ai, ŝi) and agent j performs action aj ∈ Aj
concurrently, known as the (transition) influence, is defined as

I(τi, aj) = {(sj ,ŝj) ∈ S2
j | ∃ R̄e ∈ Ri,∃ τe ∈ τ e,∃ (s′j , ŝ

′
j) 6= (sj , ŝj) ∈ S2

j :

τi ∈ τe ∧ τj = (sj , aj , ŝj) ∈ τe (4.11)

∧ R̄e(τe) 6= R̄e(τe \ {τj}), s.t. τj ∈ τe (4.12)

∧ R̄e(τe) 6= R̄e(se \ {sj} ∪ {s′j},~ae, ŝe \ {ŝj} ∪ {ŝ′j})} (4.13)

Finally, for any set of actions Aj of an agent j, the transition influence of that set with
respect to local transition τi of agent i is defined as the union of all influences, or

I(τi, Aj) =
⋃

aj∈Aj

I(τi, aj) (4.14)

This last definition is useful to capture the influence of a wildcard set ∗j . Again, non-
influencing state transitions can be grouped. The symbol �j is used to denote the set
of all non-influencing state pairs of agent j, given a local transition τi and action aj
(or wildcard ∗j).

Together, the definitions of dependent actions and transition influences capture all
actions and state transitions of other agents that need to be considered to represent
all (joint) transition rewards Ri. This is captured by a Conditional Return Graph:

107

CHAPTER 4. MAINTENANCE PLANNING WITH MULTIPLE AGENTS

Definition 4.5 Conditional Return Graph

Given a disjoint, complete partitioning R =
⋃
i∈N Ri of rewards over agents i ∈N ,

the Conditional Return Graph (CRG) φi is a directed acyclic graph with for every
stage t of the decision process a node for every reachable local state si ∈ Si and
for every available local transition τi = (si, ai, ŝi) a tree compactly representing
all transitions τe = (se,~ae, ŝe) of the agents e ⊆ N in the scope of Ri, or e ={
i ∈N | ∃R̄e ∈ R : i ∈ e

}
.

The tree consists of two parts: an action tree that specifies all dependent actions
and an influence tree that contains the relevant local state transitions. For every
action ai ∈ Ai of agent i, the state si is connected to the root node vai of an
action tree by an arc labelled with action ai. For every root node vai , let v = vai
be the root of an action tree such that it is defined recursively over the remaining
N ′ = e \ {i} agents as follows:

A1 If N ′ 6= ∅ take some j ∈N ′, otherwise stop.

A2 For every aj ∈ D(τi, j), create an internal node vaj connected from v by an arc
labelled with the action aj .

A3 Create one internal node v∗j to represent all actions of agent j not in D(τi, j) (if
any), connected by an arc labelled by the ‘other action’ wildcard ∗j from the root
node v.

A4 For each leaf node vaj (or v∗j) that results from the previous steps, create a
sub-tree with N ′ = N ′ \ {j} and v = vaj as its root using the same procedure.

When all action arcs have been created, each leaf node vax of the action tree is
the root node u of an influence tree, where ax is either the last dependent action or
wildcard ∗x of the agent x that is visited in the last recursion. Starting again from
N ′ = e \ {i}:

B1 If N ′ 6= ∅ take some j ∈N ′, otherwise stop.

B2 If the path from si to node u contains an arc labelled with action aj ∈ D(τi, j),
create child nodes usj→ŝj to represent all local pairs of state transitions (sj , ŝj)
of agent j in the action influence I(τi, aj), connected to node u by arcs labelled
sj → ŝj .

else

The path from si to node u contains the wildcard ∗j . Create child nodes usj→ŝj
for all pairs of local state transitions (sj , ŝj) ∈ I(τi, ∗j), i.e. the influence of the
set of actions represented by ∗j (all aj /∈ D(τi, j)), and connect them to u with
arcs labelled sj → ŝj .

B3 If there remains any pair of local states (sj , ŝj) ∈ S2
j with P (sj , aj , ŝj) > 0 that

is not in I(τi, aj) or a pair with
∑
aj∈∗j P (sj , aj , ŝj) > 0 that is not in I(τi, ∗j),

depending on the action of agent j on the path to node u, create another child
node u�j connected by an arc labelled by the ‘other state pairs’ wildcard �j .

108

4

4.2. CONDITIONAL RETURN GRAPHS

B4 For each leaf node usj→ŝj (or u�j) that results from the previous step, create a
sub-tree with N ′ = N ′ \ {j} and root u = usj→ŝj (resp. u = u�j) repeating the
same procedure.

Finally, each leaf node usx→ŝx (x again being the last agent) of every influence tree
is connected to the new local state node ŝi by an arc labelled with the transition
reward Ri(se,~ae, ŝe) that corresponds to the actions and state pairs on the path
from si to ŝi.

From the above definition it is trivial to implement a CRG construction algorithm that
produces direct, acyclic reward graphs, alike the one shown in Figure 4.4b of Exam-
ple 4.6. Observe that any path from the root node to the new local state sufficiently
specifies a joint transition of the agents in the scope of the CRG. In other words, each
path contains all the information required to compute Ri(se,~ae, ŝe) of any local tran-
sition of the agents e in the scope of the CRG φi. Whenever a wildcard action or state
transition occurs, any of the state pairs and actions represented by that wildcard can
be used to compute the transition rewards because they all result in the same reward.

Recall that a sequence of transitions up to time t is captured by an execution
sequence θt and that the return of such a sequence is the total reward obtained from
its execution. Also, observe that paths through a CRG φi to local state nodes sti
correspond to local execution sequences θtei , where t is the stage in the planning
horizon and ei is the set of agents in the scope of φi. Each of these sequences contain
only those transitions τei = (sei ,~aei , ŝei) local to the CRG of agent i. Moreover, due
to the decomposition of rewards into disjoint sets Ri it is possible to decompose the
returns over local execution sequences θtei as

Z(θt) =
∑
i∈N

Z(θtei) (4.15)

Example 4.6 CRG

Figure 4.4 again shows the two local reward graphs for the rewards R1 =
{
R̄1, R̄1,2

}
of agent 1 from the introduction. Figure 4.4a illustrates the full transition graph whereas
Figure 4.4b illustrates the CRG that is constructed from following Definition 4.5. As agent 1
has only action a1, the action tree of the CRG for the transition τ1 = (s0

1, a1, s
1
1) requires

only a single arc from the root to node va1 , followed by an arc for the dependent action a2,
which is (the only) member of D(τ1, 2), and one for the remaining actions ∗2 = {b2, c2}.
From both new leaves, va2 and v∗2 , an influence tree is generated. For the leaf v∗2 that
results from ∗2 no interaction reward follows as I(τ1, ∗2) = ∅ and an arc labelled �2 is
generated that represents every possible state transition of agent 2. The influence tree
starting from node va2 , containing a2 in its path, is slightly more complex because there is
reward interaction. Here the influence is I(τ1, a2) =

{
(s4

2, s
4
2), (s4

2, s
6
2)
}

, thus two influence
arcs. Note that if agent 2 would have had more state transitions available than the two
already contained in the influence, a wildcard influence �2 arc would also have been added
from node va2 .

109

CHAPTER 4. MAINTENANCE PLANNING WITH MULTIPLE AGENTS

s0
1

{s01, s42}, 〈a1, a2〉 , {s11, s42}

R̄1+R̄1,2

R̄1+R̄1,2

R̄1

{s01, s42}, 〈a1, a2〉 , {s11, s62}

{s01, s42}, 〈a1, b2〉 , {s11, s42}

s1
1

{s01, s42}, 〈a1, c2〉 , {s11, s42}

{s01, s42}, 〈a1, c2〉 , {s11, s62}

R̄1

R̄1

R̄1

{s01, s42}, 〈a1, b2〉 , {s11, s62}

(a)

a1

R̄1+R̄1,2

R̄1+R̄1,2

R̄1

s0
1

s1
1a2

∗2

s42 → s42

s42 → s62

�2

(b)

Figure 4.4 The two state-transition graphs for the rewardsRi agent 1 from the introduction
that represent all rewards obtainable given functions R̄1 and R̄1,2. The graph of (a) includes
all possible joint transitions and their rewards, whereas (b) illustrates the conditional return
graph that compactly represents the same rewards by grouping actions and influences.

4.2.1 CRG Size

CRGs provide a compact representation of rewards when reward interactions are sparse
or have a limited number of agents in their scope. In order to formalise this com-
pactness, a bound can be made on the maximum number of nodes in the CRG. Let
the maximal size of any of the local state spaces be denoted by

∣∣S̄∣∣ = maxi∈N |Si|
and that of the local action spaces by

∣∣Ā∣∣ = maxi∈N |Ai|. Furthermore, α =
maxi,j∈N maxτi∈τ i

|D(τi, j)|) and β = maxi,j∈N maxτi∈τ i
maxaj∈Aj

|I(τi, aj)| are
respectively the sizes of the largest dependent action set and transition influence set.
When no dependent actions or transition influences occur respectively α or β (or both)
include at least the wildcard arc, thus both are guaranteed equal to or larger than 1. It
is not necessary to include ∗j when computing β, because the size of the influence of ∗j
is determined whenever any action aj ∈ ∗j is evaluated. Lastly, w = maxR̄e∈R̄ |e| − 1
is the maximum number of agents on which an agent can depend.

Theorem 4.7 The CRG size is bounded in the number of dependencies

The size of a CRG is bounded by the number of dependent actions and transition
influences

O
(
h ·
∣∣Ā∣∣ ∣∣S̄∣∣2 · (αβ)w

)
(4.16)

Proof. A CRG has as many layers as the planning horizon h. In the worst case, in every
stage there are

∣∣S̄∣∣ local state nodes, each connected to at most
∣∣S̄∣∣ next-stage local

state nodes via multiple arcs. The number of action arcs between two local state
nodes si and ŝi is at most

∣∣Ai∣∣ times the maximal number of dependent actions,
which is bounded by αw. Finally, the number of influence arcs is bounded by βw.

Putting Theorem 4.7 in perspective, the size of a full policy search space tree with n =

|N | agents is bounded by Θ(h ·
∣∣S̄∣∣2n · ∣∣Ā∣∣n). In theory all actions can be dependent, in

110

4

4.2. CONDITIONAL RETURN GRAPHS

which case the worst-case size of all CRGs together is of order O(nh·
∣∣S̄∣∣2+2w ·

∣∣Ā∣∣1+w
),

2w because there are at most
∣∣S̄∣∣2 state pairs in an influence set, which is typically

still much more compact unless w ≈ n. In many planning problems, however, the
interaction rewards are more sparse such that αw �

∣∣Ā∣∣w and βw �
∣∣S̄∣∣w. Moreover,

(4.16) upper bounds the general CRG size, for a specific CRG φi this bound is often
more tight as for many agents the number of dependent actions and/or influences is
smaller than respectively α or β.

Remark 4.8 State features

Definition 4.5 states the general definition of CRGs with dependent actions and
pairs of states that fully specify local transitions. If states are factored, i.e. com-
posed from individual features X (see Definition 2.5), the influence is sufficiently
expressed by (combinations of) features instead of states. For example, for an
interaction reward that is only non-zero when some feature Xx

j of agent j is set
from 0 to 1, the influence just contains feature transition {Xx

j = 0} → {Xx
j = 1}

instead of all state pairs sj → ŝj that correspond to {Xx
j = 0} ∈ sj and

{Xx
j = 1} ∈ ŝj , leading to a much smaller β in Theorem 4.7. The use of

features is illustrated in Example 4.14.

4.2.2 Bounding the Returns

Although CRGs allow a compact representation of returns given the reward functionsRi

assigned to the CRG φi of agent i, recall that it is not possible to directly compute the
expected value of the local execution sequences represented by the CRG. This is because
the rewards are known for every possible local transition, but the actual transition
probabilities (of other agents) are not. Only when these probabilities become known
during policy search, returns can be used to compute the expected value (Equation 4.5).
Nevertheless, the returns represented by the CRGs may be used to bound the expected
value of local execution sequences and, as a corollary of Equation 4.15, the expected
value of the globally joint policy. In particular, the maximal and minimal obtainable
returns from a local state onward directly bound the expected value that can be achieved
from that state. By summing the return bounds of all local states, it is possible to bound
the global return of all (remaining) execution sequences, which also directly bounds
the expected value of the (optimal) joint policy. In addition, these bounds depend
only on local states and transitions, and can therefore be determined and stored while
generating the CRG for efficient global bound computation in policy search.

Let φi(si) denote the set of local transitions (sei ,~aei , ŝei) available from state si
(with si ∈ sei), captured in CRG φi, i.e. φi(si) = {τei ∈ τ ei | (si, ai, ŝi) ∈ τei} where
ei is the scope of Ri. The upper bound on the remaining return from a state si ∈ Si
is then defined recursively as

U(si) = max
(sei ,~aei ,ŝei)∈φi(si)

(
Ri(sei ,~aei , ŝei) + U(ŝi)

)
(4.17)

such that ŝi ∈ ŝei and naturally U(si) = 0 for every terminal state of the planning
problem, e.g. when t = h in the finite horizon setting. This upper bound can be
applied to a joint state se involving agents e simply by summing the upper bound

111

CHAPTER 4. MAINTENANCE PLANNING WITH MULTIPLE AGENTS

of the individual local states, or U(se) =
∑
i∈e U(si). For a specific joint transition

(s,~a, ŝ), the maximal future return that may be obtained is

U(s,~a, ŝ) =
∑
i∈N

(
Ri(sei ,~aei , ŝei) + U(si)

)
(4.18)

Naturally, all of the above formulations of upper bounds are easily modified into
lower bounds L(si) and L(s,~a, ŝ) by replacing the max operator by a min operator.
It can be shown that both bounds are admissible with respect to the expected value
that can be obtained from a given state, i.e. they never underestimate (upper bound)
or overestimate (lower bound) the expected value.

Lemma 4.9 Admissible heuristics

The bounding heuristics L(s) and U(s) are admissible with respect to the expected
value V (s) obtained from a joint state s ∈ S onward.

Proof. See Appendix A.2.

The upper and lower bound are computed for every state of every CRG after the initial
generation step that implements Definition 4.5. Using a recursive depth-first procedure
based on Equations 4.17 and 4.18 the bounds are determined and annotated in every
state of the CRG.

4.2.3 Conditional Reward Independence

So far it was shown that conditional return graphs offer a compact representation of
all local returns – the accumulated reward for every sequence of local transitions –
and enable the bounding and storage of the minimum and maximum obtainable return
from each state. In domains where interactions become unavailable as a result of past
decisions, CRGs can help to exploit the consequential agent independence. This occurs
for instance when actions can be executed only once or when transitions are unavailable
when a state feature takes on a certain (irreversible) value (‘task is done’, ‘out of fuel’,
‘money < 400’, etc.). Especially problems with transient state spaces, i.e. where every
state is visited at most once, typically exhibit a lot of such dynamic independencies.

Task-modelling MMDPs, such as mpp, are a good example of a problem with
such a structure. Maintenance activities may be performed only once, after which
they are no longer available to the agent. Hence, once the activity is completed,
no more reward interactions (the network costs in mpp) involving that activity will
occur. The intuition is then that when no more reward interactions will occur between
(sets of) agents, it is possible to factor the remaining computation of expected value
into independently-computable components. In other words, when such independence
is encountered, policy search can be decoupled into sub-problems that can be solved
separately, and their solutions may be combined to obtain the joint policy without losing
global optimality. This is formalised by the notion of conditional reward independence:

112

4

4.2. CONDITIONAL RETURN GRAPHS

Definition 4.10 Conditional Reward Independence

Given an execution sequence θt, two agents i, j ∈N (i 6= j) are conditionally reward
independent, denoted CRI(i, j, θt), if for all reachable future states st, st+1 ∈ S and
every joint action ~a t ∈ A still available from the state at time t that results from
execution history θt:

∀R̄e ∈ R s.t. i, j ∈ e : R̄e(s
t,~a t, st+1) = 0 (4.19)

Furthermore two sets of agents A,B ⊆N such that A∩B = ∅ are conditionally re-
ward independent, denoted CRI(A,B, θt), if as a result of an execution sequence θt:

∀i ∈ A, ∀j ∈ B : CRI(i, j, θt) (4.20)

If for an agent i and sequence θt it holds that CRI({i} ,N \ {i} , θt) it has no more
future reward interactions and is said to be locally conditional reward independent.
This special case of CRI is typically easily detected from the local state of the agent
during the generation of the CRG. For each such a state sti, the CRG generation
is completed using an optimal policy search that finds π∗i (sti) (and only the local
transitions (sti, a

t
i, s

t+1
i) of that policy are included in the remaining part of the CRG).

Lemma 4.11 CRI decouples returns

Given an execution history θt = [s0,~a 0, . . . , su, . . . , st] up to time t that can be
partitioned into two histories, θu = [s0, . . . , su] and θu

′
= [su, . . . , st], and a disjoint

partitioning of agent setsN = N1∪N2∪. . .∪Nk such that for every pair Na, Nb ∈N
it holds that CRI(Na, Nb, θ

u) when a 6= b, then the return can be decoupled as:

Z(θt) = Z(θu) +

k∑
i=1

ZNi(θ
u′

Ni
) (4.21)

Here, θu
′

Ni
is the execution history of the agents in the set Ni ⊆ N , starting from

time u.

Proof. See Appendix A.3.

A concluding remark to this section is that conditional reward independence is usually
but not always easily detected from the current state. For instance, in mpp the state
describes what tasks have been completed and this is enough to immediately determine
CRI. Although this and many other domains allow the formulation of similar reward
independence conditions, in general detecting CRI may need to iterate over all combina-
tions of future states and actions to conclude that indeed no more reward interactions
occur. Such a check would require O((

∣∣S̄∣∣2 ∣∣Ā∣∣)n) in the very worst case (
∣∣S̄∣∣ and

∣∣Ā∣∣
being the maximum state and action set size as before) and may be computationally
prohibitive for some domains.

113

CHAPTER 4. MAINTENANCE PLANNING WITH MULTIPLE AGENTS

4.3 Policy Search based on Returns

The conditional return graphs and related concepts together form the theoretical
foundation of a new policy search algorithm, termed Conditional Return Policy

Search (CoRe). The CoRe algorithm resembles a branch-and-bound style search over
the joint policy space to find optimal policies for TI-MMDPs, relying on CRGs for ef-
ficient reward computation, bound-based pruning and decoupling of agents during the
search. The algorithm searches through a DAG of joint states and actions that models
the TI-MMDP, while maintaining a current state in each of the CRGs such that to-
gether they correspond to the global joint state. ‘Performing’ a joint transition (s,~a, ŝ)
in this graph then comes down to selecting and following the paths (se,~ae, ŝe) in the
CRGs that (locally) correspond to the joint transition. This enables CoRe to quickly
retrieve cached rewards, stored on the paths, and bounds, stored at the CRG local state
nodes. First, however, the CRGs need to be generated.

The very first step is to partition the reward functions over the agents such that
R =

∑
i∈N Ri, where each Ri is the set of reward functions assigned to agent i

as before, but the distribution of rewards impacts performance. Intuitively, assigning
the rewards to agents such that their sizes are approximately equal would result in the
most balanced CRGs and therefore a good distribution of complexity and dependence.
Although this approach works well for mpp, the impact of reward function distribution
on the performance of CoRe depends greatly on the problem domain and needs to be
studied on a per-domain basis. Having established the preferred partitioning heuristic,
each CRG φi for rewards Ri is generated according to Definition 4.5 with the addition
of a backward pass to compute return bounds. Moreover, when local conditional
reward independence is detected, the CRG is completed using a simple value-iteration
algorithm that determines the optimal transitions τi and includes only those.

The CoRe main routine is shown in Algorithm 4.12. As with Value Iteration

(Equation 2.6) and Policy Iteration (Algorithm 2.4) this algorithm computes the
expected value of the optimal policy, adapting the algorithm to construct the optimal
joint policy is trivial. The algorithm performs a recursive branch-and-bound search
on the (sub-)set of agents N . When CRI occurs between sub-sets of agents, they
are decoupled during expected value computation. This is detected in line 5 using
a connected component algorithm on a graph with nodes N and an edge (i, j) for
every pair of agents i, j ∈ N that are still dependent given the current execution
sequence θtN , or ¬CRI(i, j, θtN), maintained during policy search. The connected
components that are returned are exactly those sets e of agents that are independently
solvable (passed as N in the next recursion on line 13).

Now for every such a subset e, CoRe determines which joint action ~a te from the set
of available joint actions Ae =

�

i∈eAi for agents e maximises the expected policy
value (which includes the single-agent case). To enable pruning sub-optimal actions,
however, first the maximal return of each such action (line 7) and the best minimal
return (line 9) are computed. These are subsequently used in line 10 to discard any
joint action that does not at least obtain the minimal return Lmax. Lines 11 to 15
compute the expected value of the joint action by summing over the expected values
of all possible outcome states, which are found by recursing further until the planning

114

4

4.3. POLICY SEARCH BASED ON RETURNS

Algorithm 4.12 Conditional Return Policy Search (CoRe)

Require: CRGs φ, agent scope N , current execution sequence θtN , planning horizon h

1: function CoRe(φ,N , θtN , h)

2: if t = h then return 0

3: end if

4: V ∗ = 0

5: for all conditional reward independent subsets e ⊆N given θtN do

6: for all ~a te ∈ Ae do

7: U(ste,~a
t
e) =

∑
st+1
e ∈Se

P (ste,~a
t
e, s

t+1
e)U(ste,~a

t
e, s

t+1
e) . Comp. upper bounds

8: end for

9: Lmax = max~a t
e∈Ae

∑
st+1
e ∈Se

P (ste,~a
t
e, s

t+1
e)L(ste,~a

t
e, s

t+1
e) . Best lower bound

10: for all ~a te ∈ Ae with U(ste,~a
t
e) ≥ Lmax do

11: V~a t
e

= 0, Vmax = 0

12: for all st+1
e ∈ Se with P (ste,~a

t
e, s

t+1
e) > 0 do

13: V~a t
e
+ = P (ste,~a

t
e, s

t+1
e)Re(ste,~a

t
e, s

t+1
e)

+ P (ste,~a
t
e, s

t+1
e)CoRe(φ, e, θte + [~a te, s

t+1
e], h)

. Eval. next state

14: end for

15: Vmax = max(Vmax, V~a t
e
)

16: Lmax = max(Lmax, V~a t
e
) . Tighten lower bound

17: end for

18: V ∗+ = Vmax

19: end for

20: return V ∗

21: end function

horizon has been reached. Line 16 is included to update the lower bound with the
expected value of the joint action that was just evaluated, if higher, and potentially
prune even more of the joint-action iterations done in line 10. Finally, the optimal value
for the subset e is added to the known optimal values, which is returned ultimately.

Theorem 4.13 CoRe correctness

Given TI-MMDP M = 〈N ,S,A,P ,R〉 with (implicit) initial state s0, CoRe always
returns the optimal expected value V ∗(s0).

Proof. Given Lemmas 4.9 and 4.11 the proof becomes rather straightforward. First
it is shown that agent partitioning based on CRI does not harm optimality when
computing the expected policy value. Then it is show that the branch-and-bound
procedure of CoRe is correct.

Lemma 4.11 shows that conditional reward independence allows for a decoupling of
returns. Additionally, for any disjoint partitioning of agents N1 ∪N2 ∪ . . . , Nk = N
with for every pair of agents Na, Nb ∈N : CRI(Na, Nb, θ

t) (a 6= b) it can be shown
that the expected value of a policy π decouples as:

V π(st) =

k∑
i=1

V πNi
(stNi

) (4.22)

115

CHAPTER 4. MAINTENANCE PLANNING WITH MULTIPLE AGENTS

From Equation Equation 4.5, recall that the return Z(θu
′
) from timestep u onwards

is equal to
∑k
i=1 ZNi

(θu
′

Ni
) (Lemma 4.11) and that, because of transition indepen-

dence, each set Ni of agents has independent probability distributions over future
execution histories θu

′
. This leads to the following series of equalities

V π(st) =
∑

θu′ |π,θt
Pr(θu

′
)Z(θu

′
) =

∑
θu′ |π,θt

Pr(θu
′
)

k∑
i=1

ZNi
(θu
′

Ni
)

=
∑

θu′ |π,θt

k∑
i=1

Pr(θu
′
)ZNi

(θu
′

Ni
) =

k∑
i=1

∑
θu′ |π,θt

Pr(θu
′
)ZNi

(θu
′

Ni
)

=

k∑
i=1

∑
θu
′

Ni
|π,θt

Pr(θu
′

Ni
)ZNi

(θu
′

Ni
) =

k∑
i=1

V πNi
(stNi

)

Furthermore, Lemma 4.9 shows that both the lower and upper bound return heuris-
tics used in CoRe are admissible with respect to the optimal expected value of a policy.
It remains to show that its branch-and-bound search does not prune optimal joint
actions from the policy search space. Let V (st,~a t) denote the expected value of
joint action ~a t from state st (often referred to as the Q-value in MDP literature),
e.g.

V π(st,~a t) =
∑

st+1∈S

P (st,~a t, st+1)
(
R(s,~a, ŝ) + V π(st+1)

)
(4.23)

and the bounds on this action value are given by

B(st,~a t) =
∑

st+1∈S

P (st,~a t, st+1)
(
R(s,~a, ŝ) +B(st+1)

)
(4.24)

where B is either the lower bound L or upper bound U . Following standard branch
and bound, CoRe may discard a joint action ~a when there exists at least one other
joint action ~a ′ such that U(st,~a) < L(st,~a ′) because both bounds are admissible.
Because CoRe evaluates every combination of joint states and actions, unless pruned
by branch and bound, the search will eventually return the optimal policy value π∗(s0)
from initial state s0.

Because of Theorem 4.13, the CoRe algorithm always finds the optimal policy for any
given TI-MMDP. Moreover, as there is only a finite number of execution histories, it
is also guaranteed to terminate in a finite number of recursions. The working of the
algorithm is illustrated in detail in the elaborated example following next.

Example 4.14 Conditional Return Policy Search

All of the concepts of CoRe are illustrated on a two-agent example mpp problem with
horizon h = 2. Let N = {1, 2} and the activities be unit-time actions A1 = {a1, b1, c1}
and A2 = {a2, b2, c2}. For ease of exposition only action c2 is stochastic, with outcomes c

116

4

4.3. POLICY SEARCH BASED ON RETURNS

and c̄ and probabilities Pr(c) = 0.75 and Pr(c̄) = 0.25 (both still taking unit time). Local
reward functions of agents are typical private maintenance cost functions c1 and c2, and
in this example there are two network cost functions ` that lead to interaction rewards.

For the purpose of illustrating the potential of CoRe in this example, here a deviation
is made from the standard network cost functions of mpp. The first network cost func-
tion R̄aa1,2 penalises both agents if actions a1 and a2 are performed concurrently (at any
time), but the cost depends on whether or not agent 1 is blocking the road from all traffic.
This is modelled through feature X1 of agent 1 that can assume values X+

1 (not blocked)
or X−1 (blocked). Furthermore, actions a1 and c2 also cause hindrance, but only when
action c2 results in outcome c̄, e.g. because of the additional work required. The latter
network cost is captured by R̄ac1,2. Both interaction rewards are assigned to agent 2, thus
R1 = R̄1 and R2 = R̄2 ∪ R̄aa1,2 ∪ R̄ac1,2.

φ1
s01

sa1

a1 b1 c1

t = 0

t = 1

5 2 4

sb1sa1

φ2 s02a2

X
+
1 X

−
1 �1

a1 ∗1

sa2

10 6 3

c2

7

c

4

a1

�1

6

�1

4

∗1
b2

sc2 sc̄2sb2

c̄

Figure 4.5 The CRGs of agents 1 (left) and 2 (right). The local states sti are grouped
vertically by the planning stage t. φ1 only models the local rewards (red), and hence just
local transitions, of agent i (∗2 and �2 are both omitted if no alternative is available). The
CRG φ2 of agent 2 includes dependent actions and transition influences. The state sa1 is
highlighted green because it is locally conditional reward independent.

Figure 4.5 shows the CRGs for both agents for the first time step. The CRG φ1 of agent 1
is rather straightforward because it represents just the local reward function R̄1. As a
result, φ1 is a standard state/action transition diagram with the addition of the reward
arcs; the �2 branches have been omitted as no transition influence occurs. Observe that
state sa1 is locally conditional reward independent because after execution of a1 it cannot
perform a1 again and, as R̄aa1,2 and R̄ac1,2 both cause network costs only when action a1

is performed, no future reward interactions can occur. Observe also that in this specific
example all actions lead to a unique new state, according to the mpp MDP formulation
of the previous chapter. In general an arbitrary number of actions may lead to the same
result state (resulting in even more compact CRGs).

Agents 2 however has a much more complex CRG. For action b2 a simple tran-
sition again suffices, but actions a2 and c2 may cause reward interaction and thus
induce more CRG arcs. First consider action a2 that interacts with action a1, i.e.
D((s0

2, a2, s
a
2), 1) = {a1}. The action tree part for this transition contains thus an

arc for action a1 and all remaining actions {b1, c1}, represented by wildcard ∗1. Recall
that when joint action 〈a1, a2〉 is performed, the reward depends on whether the road is
blocked or not. Therefore the transition influence I((s0

2, a2, s
a
2), a1) contains the state pairs{

(X+
1 → X−1), (X−1 → X+

1)
}

that model the feature value change – assuming it cannot
remain the same for sake of simplicity – and they are shown in the CRG labelled by their new
state value, e.g. X−1 in the CRG denotes (X+

1 → X−1), followed by the reward arcs for re-

117

CHAPTER 4. MAINTENANCE PLANNING WITH MULTIPLE AGENTS

wardsR2(s0
2∪X−1 , 〈a1, a2〉 , sa2∪X+

1) = R̄2(s0
2, a2, s

a
2)+R̄aa1,2(s0

2∪X−1 , 〈a1, a2〉 , sa2∪X+
1) =

10 and R̄2(s0
2, a2, s

a
2) + R̄aa1,2(s0

2 ∪ X+
1 , 〈a1, a2〉 , sa2 ∪ X−1) = 6. From the ‘other action’

branch ∗ no dependency occurs, hence it is followed bt the � influence arc and finally the
reward R̄2(s0

2, a2, s
a
2) = 3.

In this example, c2 is the only stochastic action and has two possible outcomes: c or c̄.
For clarity, each outcome is included as an additional arc after action c2 (after the square
node) but note that this is actually implied the result state of each transition, here sc2 and
sc̄2. Recall that c2 in R̄ac1,2 interacts with just action a1 and then only when outcome c̄ is
realised. Therefore, the c path is simple whereas the path with c̄ contains an action tree
part similar to that of a2, with all leaves followed by the ‘any influence’ �1 branch and the
rewards R2(s0

2, 〈a1, a2〉 , sc2) = 4 and R2(s0
2, 〈a1, a2〉 , sc̄2) = 6.

The process for CRG creation is continued for t = 2 and the result is shown in Fig-
ure 4.6, where some parts of CRG φ2 are omitted for clarity (greyed branches with their
local actions). In addition to the previous figure, this one shows the upper and lower return
bounds as pairs [L,U] annotated at local states and intermediate CRG nodes when they
are non-trivial.

c2

c
a1

�1�1

∗1
[2, 5]

[5, 5.75]

c̄

6

sbc2 sbc̄2

3 4

φ1 φ2
s01

sa1

sab1 sac1 sbc1

a1 b1 c1

a1 a1c1c1 b1

s02a2

X
+
1 X

−
1 �1

a1 ∗1

t = 0

t = 1

t = 2

5 2 4

5 4 4

sb1sa1 sa2

10 6 3

c2

7

c

4

a2

X
+
1 X

−
1 �1

a1 ∗1

8 6 11

sab2

a1

�1

6

�1

4

∗1

52

b2

[6, 8]

[6, 11]

[6, 8]

[3, 3] [4, 5] [4, 4] [5, 11]

sc2 sc̄2sb2

a2
b2 a2 b2

b2 c2

[6, 14] [4, 10][7, 9]

[8, 16][10, 19]

[13, 19]

[6.5, 17.5]

[5, 19]

c̄

Figure 4.6 The CRGs from the previous example expanded for the second timestep. To
preserve readability only the transitions from state sb2 are shown in φ2. Return bounds are
shown next to nodes as [L,U] pairs.

A few interesting aspects are highlighted here. First note that return of stochastic action c2
is an expected return, thus also its bounds are expected. Consider the state sb2 and the
action c2 directly after it, the bounds at the stochastic node (black square) are expected
values over both outcomes, e.g. [5, 5.75] = Pr(c)× [6, 6] +Pr(c̄)× [2, 5]; all other bounds
are simply the minimum and maximum remaining return. Also interesting is that after
state sa1 in φ1 only one transition is included. Due to the local independence in sa1 it is
possible to compute locally optimal policy π∗(sa1) from which just the optimal remaining
transition(s) are added to the CRG (chosen randomly as c1 in this example). Observe that
of course the next state sac1 is locally independent but also the state sab1 as action a1 is
completed. Finally, notice that φ1 illustrates multiple transitions leading to the same result
state in the CRG.

118

4

4.3. POLICY SEARCH BASED ON RETURNS

.

c2

c
a1

�1�1

∗1
[2, 5]

[5, 5.75]

c̄

6

sbc2 sbc̄2

4

φ1 φ2
s01

sab1 sbc1

a1

b1

c1

a1 c1

s02

a2

t = 0

t = 1

t = 2

2

5

sb1

c2

7

a2

X
+
1 X

−
1 �1

a1 ∗1

8 6 11

sab2

52

b2

[6, 8]

[6, 11]

[6, 8]

[4, 5] [5, 11]

sb2

[5, 19]

saa sba sbb scc scc̄

a1a2 a1b2 b1b2 c c̄

s0

c1c2

.

. . .

sbbac sbbac̄

a1c2

c1a2

sbbaa

a1a2

c1c2π∗1 (sb1) π∗2 (sa2)

Policy Search

c c̄[11, 16]

[2, 5][6, 6]

[5, 5.75]

[10, 10.75]

Figure 4.7 CoRe policy search in progress. On the left the CRGs are shown with highlighted
in red the execution sequences that correspond to the current joint execution sequence,
shown in the policy search tree on the right. The branch marked with the blue cross can
be pruned due to branch and bound. The green highlighted states in the search tree result
in the two agents becoming independent.

An example of the CoRe algorithm at work is given in Figure 4.7. On the left are the
previous CRGs, minimised to show only the elements relevant for the current policy search
evaluation, displayed on the right in the policy search tree. The tree shows a handful of
the available joint actions at time t = 1, with their result states, and only two of the four
possible joint actions for t = 2 from joint state sbb that results after execution of joint ac-
tion 〈b1, b2〉 at t = 1. An example execution sequence θ2 = [s0, 〈b1, b2〉 , sbb, 〈a1, a2〉 , sbbaa]
is highlighted red in the policy search tree, as are the corresponding local sequences
θ2

1 = [s0
1, b1, s

b
1, a1, s

ab
1] and θ2

2 = [s0
2 ∪ X−1 , 〈b1, b2〉 , sb2 ∪ X

+
1 , 〈a1, a2〉 , sab2 ∪ X−1], such

that X−1 ∈ s0
1 in this example. Combining the rewards on both CRG paths, the total return

for this particular sequence is (2 + 7) + (7 + 6) = 22.
Through branch-and-bound pruning, joint action 〈a1, c2〉 from state sbb at time t = 1

is discarded because the upper bound on its return is 10.75 (summed from the CRGs: (5)+
(6×0.75+5×0.25)) whereas action 〈a1, a2〉 is guaranteed to yield at least 11. Conditional
reward independence occurs in the policy search tree at the green states, for example in
the joint state sab. Note that previously state sa1 was identified locally independent but
state sb2 could not have been. Only when it has become known that agent 1 completed a1,
it is sure that no further reward interaction occur, which agent 2 could not have detected
locally. In this two-agent example, the remaining optimal transitions are found through
individual optimisation (possibly with a more efficient single-agent algorithm), resulting in
optimal policies π∗1(sa1) and π∗2(sb2) for agents 1 and 2 respectively, and they are combined
to produce all optimal joint actions. Had there been more agents, e.g. a third that is only
interacting with agent 2, the search would be decoupled into an individual optimisation of
agent 1 and a continued joint policy search with agents 2 and 3.

119

CHAPTER 4. MAINTENANCE PLANNING WITH MULTIPLE AGENTS

4.4 Experimental Evaluation of CoRe

The potential of CoRe is analysed through an experimental evaluation on instances of
mpp. In a series of tests, the performance of the algorithm is investigated in terms
of the leverage it provides, by means of joint actions pruned, and how it compares to
the optimal SPUDD-based method of the previous chapter, in regard to both runtime
and scalability in the planning horizon and number of agents. Four experiments are
outlined here that study respectively

1. the number of evaluated joint actions to quantify the impact of branch and bound
and conditional reward independence on the (reduction of) policy search space,

2. the solving coverage of CoRe versus its alternatives when given random mpp
problems to verify that it enables more problems to be solved,

3. the runtime required to solve random mpp problems to compare CoRe against its
alternatives, and

4. the solving coverage when given problems that exhibit a CoRe-favourable struc-
ture to demonstrate the scalability of the algorithm.

For the experiments four algorithms are considered. The first is the simple depth-
first policy search described in Section 3.2, abbreviated DP, that functions as a baseline
against which all other algorithms can compare. SPUDD represents the exact MDP-
based solution from the previous chapter that generates an efficient MDP encoding of
the problem, solved by the SPUDD solver (see Section 3.5). CoRe is the conditional
return policy search algorithm as presented in this chapter. Finally, mainly intended
to study the impact of branch-and-bound pruning, an additional variant of CoRe with
pruning disabled is included (CRG-PS). Note that the latter variant still detects and
exploits conditional reward independence to decouple policy search.

The benchmark set for the first three experiments, random, is a set of 2, 3 and
4 agent mpp instances (400 each) in which agents have 3 maintenance activities, the
planning horizon varies from 5 to 10, the delay probabilities are random and the reward
interactions are all binary. For the last series of tests, aimed at demonstrating the
scalability of the CoRe algorithm, another test set is used. This set, referred to as
pyra, contains instances with a number of agents varying from 2 up to 10, where each
agent has again 3 activities but now the interactions are structured in a way that is
favourable to CoRe. For the first experiments, however, the random set is used.

The first experiment studies the number of joint actions that need to be evaluated
before reporting that the optimal policy has been found, to investigate the impact of
branch and bound and conditional reward independence. The dynamic programming
algorithm DP evaluates exactly all sequences of joint actions that lead to a terminal
state, a state in which all activities are completed, and hence functions as a baseline
in this experiment. CRG-PS is expected to reduce this number because it decouples
action decisions whenever agents become independent due to CRI. CoRe should reduce
this number even more with its branch-and-bound pruning. SPUDD does not report this
information and is therefore excluded from this test.

120

4

4.4. EXPERIMENTAL EVALUATION OF CORE

101

102

103

104

105

106

107

#
 E

v
a

lu
a

ti
o

n
s

Instance

Joint actions evaluated

DP (n = 3)
CRG-PS (n = 3)

CoRe (n = 3)

Figure 4.8 Number of joint actions evaluated in 3-agent instances from random by DP, CRG-PS
and CoRe (log scale, ordered by the number of DP evaluations).

The results of the experiment are shown in Figure 4.8, depicting the number of joint
actions that were evaluated per algorithm. The outcomes have been ordered based on
the amount of evaluations that DP needed. First note that the vertical axis uses a log
scale and that CRG-PS thus decreases the amount of joint-action evaluations by an order
of magnitude over DP only through exploiting conditional reward independence. When
branch and bound is also included, i.e. through the CoRe algorithm, this reduction can
be much better. Although its effect varies per instance, the number of evaluations is
always reduced and for many instances this decrease is of a factor between 102 and
103.

0

25

50

75

100

5.0 6.0 7.0 8.0 9.0 10.0

%
 S

o
lv

e
d

Planning horizon length

Solving Coverage, 3 agents

SPUDD
DP

CRG-PS
CoRe

(a)

0

25

50

75

100

5.0 6.0 7.0 8.0 9.0 10.0

%
 S

o
lv

e
d

Planning horizon length

Solving Coverage, 4 agents

CRG-PS
CoRe

(b)

Figure 4.9 Relative solving coverage (y axis) of all algorithms of instances from the random

benchmark set versus the planning horizon length (x axis), for 3 agents (a) and 4 agents (b).

Having observed the policy search space reduction achieved by the CRG-enabled
algorithm, the next experiment focuses on the scalability of the algorithms in terms
of number of agents and planning horizon. Because CoRe exploits the structure of
the problem, and therefore the hypothesis is that more problems will be solved with
respect to the other approaches. Figure 4.9 shows the solving coverage, the percentage
of problems solved within a 30-minute time limit, of all algorithms with respect to the
random test set.40 When considering the 3-agent instances (Figure 4.9a) it can be

40 All two-agent instances were solved by all algorithms within the time limit and are hence omitted.

121

CHAPTER 4. MAINTENANCE PLANNING WITH MULTIPLE AGENTS

seen that all algorithm scale comparably, with CoRe having a slight advantage over the
others. For the 4-agent instances (Figure 4.9b), however, the picture changes. Only the
CRG-enabled methods were able to solve instances of this size, where naturally CoRe

outperforms the “branch-and-bound-less” variant CRG-PS. The main reason for this
difference is that CRGs successfully exploit the conditional action independence that
decouples the agents for most of the planning decisions. Only when reward interactions
may occur actions are coordinated, whereas SPUDD coordinates all joint decisions.

10-1

100

101

102

103

R
u

n
ti
m

e
 (

s
)

Instance

Required time, 2 agents

SPUDD
CoRe

(a)

10-1

100

101

102

103

R
u

n
ti
m

e
 (

s
)

Instance

Required time, 3 agents

SPUDD
CoRe

(b)

Figure 4.10 Average runtime (y axis, log scale) of SPUDD and CoRe to solve random instances
for 2-agent (a) and 3-agent (b) instances solved by both (ordered by SPUDD runtime).

Given the fact that CoRe solves more problems than the other approaches, it is also
expected to be faster overall. Figure 4.10 visualises the runtimes of SPUDD and CoRe

taken in the previous experiment, sorted on their SPUDD runtime. As CoRe achieves
a greater coverage than SPUDD, outcomes that have not been solved by SPUDD are
excluded. CoRe solves all but the most trivial instances faster than SPUDD both with
2 and 3 agents, and has a greater solving coverage: CoRe failed to solve 3.4% of the
instances plotted, whereas SPUDD failed 63.9% of the instances that CoRe solved (which
are thus not in this figure).

1

2 3

4 5 6 7

(a)

0

20

40

60

80

100

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

%
 S

o
lv

e
d

Number of agents

Solving Coverage (pyra)

SPUDD
CoRe

h = 4
h = 6
h = 8

(b)

Figure 4.11 The pyra benchmark tests: (a) the pyramid-like reward-interaction graph with
edges between agents (nodes) that are reward dependent, illustrated for 7 agents, and (b) the
solving coverage (y) of SPUDD and CoRe versus the number of agents (x axis) of instances of
the CoRe-favourable pyra instances.

122

4

4.5. FURTHER DISCUSSION

As a final experiment, CoRe is tested against the set pyra a set of problems that
is structured in such a way that it exhibits a lot of conditional reward independence.
This experiment is mainly to demonstrate that if indeed the planning problem possess
a structure that is targeted by CoRe, the algorithm scales really well in comparison to
other approaches. In instances of this set, every first activity of the k-th agent depends
on the first action of agents 2k and 2k + 1, resulting in the pyramid-like dependency
structure of Figure 4.11a. As a result, performing a dependent action causes the set of
agents to be partitioned into two sets, at best halving the policy search space. Indeed,
Figure 4.11b shows that this favourable structure allows the CoRe algorithm to scale
up to solving instances with 10 agents (with h = 4), whereas SPUDD can do no better
than solving 5-agent instances.

4.5 Further Discussion

This chapter presents a novel optimal policy search algorithm for multi-agent MDPs
that are transition-independent (TI-MMDPs) based on a data structure known as Con-
ditional Return Graphs (CRGs). These graphs provide efficient storage, bounding and
decoupling of rewards when inter-agent reward interactions are sparse and/or limited.
The focus of this chapter is on transition-independent MMDPs because problems that
fit this model typically possess a structure that CoRe can exploit well. The need for
transition independence, however, can be alleviated by two alterations.

First of all, the CRGs represent state transitions that are local to its corresponding
agent. Due to the transition independence property actions of other agents only in-
fluence the reward of a transition, not the state that the agent ends up in. Therefore
the definitions of dependent actions (Definition 4.3) and transition influence (Defini-
tion 4.4) need to be extended to also include those actions and transitions that do not
necessarily impact reward but at least influence the local state. Note that in general
these actions and influences may belong to any of the agents outside the scope of the
CRG rewards Ri.

The second change required to drop the transition independence requirement lies
with the decoupling of agents. Without the presence of transition independence, con-
ditional reward independence is no longer a sufficient condition to decouple agents
because, although their returns can be decoupled, the expected value function that
includes transition probabilities cannot. The correctness proof of Theorem 4.13, and
in particular the part that establishes Equation 4.22, relies on the independence of
transition probabilities to decouple execution sequences. This can be resolved by in-
corporating the transition independence condition explicitly in the definition of CRI. In
essence, two disjoint sets of agents A and B can be decoupled as a result of an exe-
cution sequence if they are CRI and for all future reachable states and every remaining
future joint action the transition probabilities between sets A and B are independent,
i.e. P (stAB ,~a

t
AB , s

t+1
AB) = P (stA,~a

t
A, s

t+1
A) × P (stB ,~a

t
B , s

t+1
B). This additional condi-

tion guarantees that no more reward dependencies as well as transition dependencies
can occur between (groups of) agents. Still it must be remarked that, although it is
possible to extend the method to general MMDPs, it will likely be effective only on in-
stances where reward and transition interactions are very sparse/limited. The addition

123

CHAPTER 4. MAINTENANCE PLANNING WITH MULTIPLE AGENTS

of transition dependence will lead to an enormous blow-up of CRG sizes for multi-agent
problems with many inter-agent interactions.

Asides the generalisation of the CoRe method, a number of other improvements
can be made to the implementation presented in this chapter, relevant for both the
TI-MMDP and MMDP case. Although it has not been discussed earlier, the execution
sequences can be used to prune states, actions and/or entire transitions during the
generation of the CRGs. This technique is shown in Example 4.14 where for instance
action a1 is no longer included as a branch from state sa1 because it has been completed
previously, detectable from the execution sequence θ1 = [s0

1, a1, s
a
1] leading to the state.

This sequence-pruning is possible from the MDP model. For example, any action ai for
which no transition (si, ai, ŝi) exists such that P (si, ai, ŝi) > 0 can be omitted during
CRG creation, but more intelligent procedures may be developed to exclude more arcs
and nodes from the generation to minimise the size of the CRGs.

The CoRe main loop of Algorithm 4.12 can be strengthened by interleaving joint
action selection with agent set decoupling. Now the algorithm always generates and
evaluates joint actions of size |e| for the sets e ⊆N that result from the decoupling in
line 5 of the algorithm. More efficient could be selecting actions one by one and decou-
ple agents immediately when the action choice results in no more future interactions
after completing the action, thus interleaving action selection and CRI decoupling. For
instance, consider 5 agents that depend all on the action a of their neighbour, i.e. a1

depends on a2 whereas a3 depends on a2 and a4 and so on, but also have additional
non-interacting actions. When agent 3 is the first agent for which an action is se-
lected, and the selected action is a3, the agent set can immediately be decoupled in
sets {1, 2} , {3} and {4, 5}. Not only does this result in small, easily solvable problems
for all joint actions involving a3, it also leads to a quick global upper bound on the
reward. How to order agents and do this agent selection to maximise the benefit of
decoupling remains open for future work. Other techniques proposed in the literature
to decouple agents are also promising, e.g. the work by de Nijs et al. on decoupling
agents using marginal utility costs [189] or constraint decoupling [191].

Besides the optimal algorithm presented here, CRGs can be employed to approx-
imate TI-MMDPs in several ways. First, the reward structure of the problem itself
may be approximated. For instance, the reward-function approximation of Koller and
Parr [145] can be applied to increase reward sparsity, or CRG paths with relatively small
reward differences may be grouped, trading off a (bounded) reward loss for compact-
ness. Secondly, the CRG bounds directly lead to a bounded-approximation variant of
CoRe, usable in e.g. the approximate multi-objective methods presented in the next
chapter. Lastly, the CRG structure can be implemented in any (approximate) TI-
MMDP algorithm or, vice versa, any existing approximation scheme for MMDP that
preserves TI can be used within CoRe.

It must be noted that although the experimental evaluation of Section 4.4 illustrates
that the performance of CoRe is outstanding, it is unclear how it would relate to other
(TI-)MMDP methods and perform on other domains. At the point of writing this,
there is no clear TI-MMDP alternative to compare against. Still, the results here show a
significant improvement compared to the highly-optimised, state-of-the-art MDP solver
SPUDD. Furthermore, only the mpp domain has been considered in these experiments.

124

4

4.5. FURTHER DISCUSSION

Although mpp is a perfect example of a problem that fits the TI-MMDP model that
typically has sparse reward interactions, further research should try and transfer the
results onto other domains.

Finally, although this work has been inspired by approaches from decentralised
(PO)MDP methods, the fully-observable MMDP model targets a fundamentally dif-
ferent class of problems. In the latter all agents observe the global state and therefore
policies are conditioned on the entire state. In decentralised models, the joint policy is
a combination of local policies that, although possibly developed centrally, only contain
decisions based on the local state of one agent. The key difference is that, because
of full observability in TI-MMDP, the value function cannot be factorised as a sum of
localised components as in Theorem 4.13. Additionally, Dec-(PO)MDPs exploit obser-
vational independence that is not present in MMDP. Arguably Dec-MDP methods can
be applied to approximate MMDP policies, but will at best equal the expected value of
the latter and may be arbitrarily worse in domains where a high level of joint coordina-
tion is required (e.g. responding immediately to activity delays). For an experimental
confirmation thereof see the original paper [229].

125

Chapter 5

Maintenance Planning with
Multiple Objectives

So far several approaches have been presented to solve the maintenance planning prob-
lem. Optimal policies can be found using the SPUDD MDP encoding of Chapter 3 or
the Conditional Return Policy Solver (CoRe) that more efficiently exploits the structure
of the problem. Additionally, in Section 3.4 an approximation method for mpp was
presented that is more suitable if efficiency is required. Although these approaches
vary in their quality guarantees and, inevitably, their run-time complexity, they have in
common that they all seek to maximise ‘the value’ of the joint policy. Typically, this
value expresses a single monetary quantity that is associated with the policy, such as
the expected total revenue or costs. Other criteria may be incorporated in this value if
they can be operationalised through a scalar value, e.g. expressed in terms of money.

In many real-world problems the quality of a policy can be measured in many –
possibly non-monetary – ways. For example the increase in asset quality, the hours of
traffic time lost that are expected to be incurred/prevented by the policy, the number of
concurrent resources required to perform the maintenance, the quality level or even the
minimum level of safety of the maintenance work. Although many of such objectives
can be operationalised in terms of money, this is not always possible the moment the
policy is developed. For instance, the cost of an hour of ttl may vary over time and hence
it is impossible to know during planning what the actual cost will be when the policy
is executed. Moreover, every agent may have its own preference over these objectives
that can change as the planning and/or execution of maintenance progresses or might
be hard to quantify in the first place. In such scenarios it is not possible to produce a
single optimal joint policy that optimises over all objectives before its execution. The
typical approach in such settings is to find a set of policies that defines an optimal
policy for every unique combination of preferences, known as weights. Then, when
these weights become known just before the execution phase, the optimal policy for
that moment can simply be selected from the solution set.

Policies in a multi-objective setting yield a multi-dimensional expected value, there-
fore a measure to express the overall policy quality as a single value is still necessary

127

CHAPTER 5. MAINTENANCE PLANNING WITH MULTIPLE OBJECTIVES

to produce such a solution set. For this purpose typically a scalarisation function is
considered in multi-objective planning. The scalarisation function operationalises the
policy quality over all objectives based on scalarisation weights that express the value-
per-unit or (relative) preference for each objective. Given such a vector of weights,
the scalarisation function transforms the multi-dimensional (expected) policy value –
e.g. a vector containing one weight value for every objective – into a scalar value that
represents the total policy value for the given weight vector. Essentially, with a scalar-
isation function and a given weight vector, a multi-objective planning problem can be
transformed to a single-objective equivalent and, consequentially, be solved using any
existing single-objective planning method (formalised later in Equation 5.2).

Recall, however, that in the previously described scenarios the weights were not
known during the planning phase and hence it is impossible to develop a single, optimal
policy beforehand. Instead, a solution for this type of problem must specify an optimal
policy for every possible combination of weights. A naive solution approach to find a
set of ‘good’ alternatives would thus be to enumerate all possible weight combinations
and solve their corresponding single-objective problems, returning only the dominating
policies as the solution. Here a policy dominates another policy if its scalarised expected
value is higher. However this approach is infeasible for most planning problems as the
number of weight combinations is typically very large or even (near-)infinite.

Instead, by restricting the scalarisation function to be a linear, non-decreasing func-
tion, the solution set, i.e. the set of optimal policies for every combination of weights,
equals a Convex Coverage Set (CCS) that can be computed much more efficiently.
The main intuition is that when the scalarisation function is linear and non-decreasing,
policies will be optimal for a range of weights and the CCS can easily be constructed
by combining the optimal policies such that the entire weight region is covered. More
specifically, for every optimal policy π∗ a value vector w •V π∗ can be constructed.
Then, the CCS is simply the piece-wise linear convex (PWLC) function that is the
supremum over all value vectors such that the entire weight range is covered. Fig-
ure 5.1 illustrates this intuition through a two-objective example.

V π,w

w1
0 1

f(V π∗ ,w)

x1 x2

π∗1

π∗2

Figure 5.1 Example of a Convex Coverage Set for a two-weight problem that is optimal for all
weights w1 ∈ [0, 1] such that w2 = 1−w1. Due to the linearity and non-decreasing properties
of f , the policy π∗1 is optimal for w1 ∈ [0, x1] whereas π∗2 is optimal for the range [x1, 1].

The linearity and non-decreasing assumptions restrict the types of problems that
can be modelled, but such scalarisation functions capture many of the most natural

128

5

multi-objective operationalisations such as a revenue/cost per resource unit, relative
preference over objectives or priority trade-offs. Note that this model also captures
problems with non-increasing scalarisation function through a simple negation of the
scalarisation function. Examples that do not fit the linearity constraints are problems
with combinatorial rewards (e.g. a ‘bonus’ only when a set of items is obtained),
random reward signals and similar more complex reward structures. The maintenance
planning problem fits this model perfectly however: although the MDP model defined
in Section 3.3 has a single-objective reward function, this reward is more realistically
expressed linearly over two objectives, profits and ttl, e.g.:

R(s,~a, ŝ) =
〈
Rprofit(s,~a, ŝ), Rttl(s,~a, ŝ)

〉
s.t.

Rprofit(s,~a, ŝ) =
∑
ak∈~a

wk −
∑
t∈T

c(~a) (5.1)

Rttl(s,~a, ŝ) =
∑
t∈T

`(~a)

such that the profit objective value is computed by Rprofit(s,~a, ŝ) and that of the ttl
objective by Rttl(s,~a, ŝ). Then the importance of each objective can be specified with
weights wprofit and wttl such that a scalar reward for any transition τ = (s,~a, ŝ) is
given by wprofit ×Rprofit(τ) + wttl ×Rttl(τ).

In Section 5.1 an existing method to find the optimal CCS for any multi-objective
MDP (MOMDP) is presented, which is called Optimistic Linear Support (OLS)

[217]. Given an optimal MDP solver, OLS is able to find the CCS with a provably
minimal number of policy computations. Therefore, using any of the methods from
the previous chapters, OLS can solve the multi-objective variant of mpp optimally.
However, the previous chapters also show that solving only one single-objective MDP
of mpp is already a very time-consuming process. Computing the optimal CCS for
mpp41 is hence only feasible when enough time and resources are available beforehand.

This chapter focuses on multi-objective planning scenarios where the latter is not
the case. Consider as an example a decision-support system for mpp that lets human
planners collaboratively develop a joint policy through a series of iterative planning
rounds (as in Section 6.2 or the game of Chapter 7). In each round, planners are
presented the current, but not yet agreed upon, joint policy that resulted from all
previous rounds together and they each are requested to submit a new policy for
their own maintenance tasks until all parties are satisfied with the joint policy. An
automated planner that provides policy suggestions would greatly assist human decision
makers in this task, but OLS is not suitable in this scenario. Although OLS is able to
incorporate user preferences (e.g. wprofit and wttl) that may vary during the planning
process, its time-demanding policy search makes it inadequate to provide many planning
suggestions quickly. Finding the optimal CCS is not exactly a requirement in these
scenarios. As long as the quality of the produced suggestions is ‘good enough’, it is
acceptable to human decision makers in this and many similar settings.

41 As multi-objective planning is the subject of this chapter, it is implicitly assumed that by mpp the
multi-objective variant of mpp is meant in this chapter, i.e. with the reward function of Equation 5.1.

129

CHAPTER 5. MAINTENANCE PLANNING WITH MULTIPLE OBJECTIVES

Contributions In this chapter, two methods are presented to approximate the CCS
of multi-objective planning problems with varying weights: Approximate Optimistic

Linear Support (AOLS) and Scalarised Sample-based Iterative Improvement

(SSII), presented originally by Roijers et al. [216]. Both algorithms produce an approx-
imate CCS, but differ in their approach. The former method, described in Section 5.2,
is an approximate version of the OLS algorithm. Essentially, the theorem underlying
OLS can be adapted to show that, given an ε-approximate MDP solver, AOLS produces
an ε-approximate CCS with a minimal number of policy computations. Section 5.3
presents the latter approach, SSII, that approximates the CCS by sampling policies
over (a part of) the weight range and iteratively improving these samples by allowing
the incorporated single-objective MDP solver increasingly more time per sample. Both
methods have their strengths and weaknesses, demonstrated by the experiments of Sec-
tion 5.4. The main selling points of both algorithms are the bounded-approximation
guarantee of AOLS versus the typically higher quality approximation of SSII over a
known prior, i.e. a weight region of focus, given equal time.

The work presented in this chapter has been published and presented at the inter-
national conference on automated planning and scheduling (ICAPS) [216]. Because
this has been a joined research effort, parts of this chapter – in particular regarding OLS

and AOLS – are also discussed in the thesis of Roijers, titled “Multi-Objective Decision-
Theoretic Planning” [214]. Also, Section 5.1 consists entirely of previous work by
(mainly) Roijers et al. [217], but a thorough understanding of OLS is necessary for the
presentation of the AOLS algorithm. The empirical evaluation of Roijers et al. [216] has
been expanded in Section 5.4 to include the CoRe solver of Chapter 4.

5.1 Multi-objective Planning with Unknown
Weights

Before presenting the two new algorithms mentioned in the introduction, this section
reiterates the relevant concepts from Section 2.7 to formalise the setting that is consid-
ered in this chapter and discusses the previous state-of-the-art algorithm, Optimistic
Linear Support [217], from which AOLS is derived. In multi-objective planning prob-
lems, the goal is to find all policies π that optimise the vectored expected value V π. If
the vectored expected value can be transformed into a scalar value through a scalarisa-
tion function f , that takes a vector of objective weights as its input, a single ‘total’ value
over all objectives can be computed. Then, when the weight vector become known, the
multi-objective problem can be transformed into an equivalent single-objective prob-
lem. More formally, given a linear scalarisation function f , a vector of scalarisation
weights w and an m-dimensional value V π for a policy π with initial state s0, the
scalar value of a policy is given by

V π,w(s0) = f(V π(s0),w) = w •V π(s0) =
∑

k∈[1,m]

wkV
π
k (s0) (5.2)

Observe that when the values of these weights are known before planning starts,
there is no need for multi-objective approaches. The setting considered here is there-

130

5

5.1. MULTI-OBJECTIVE PLANNING WITH UNKNOWN WEIGHTS

fore one in which weights specify for example the relative importance of each of the
objectives, but the value of these weights are unknown until the execution of starts.
In other words, an optimal policy for every combination of weights must be readily
available when execution is initiated. When the scalarisation function is linear, the set
of optimal policies for the entire weight range is captured by the Convex Coverage Set
(Definition 2.23):

Ψ =
{
π ∈ Π

∣∣ ∀w ∈ [0, 1]m, ∀π′∈Π, f, s0 : f(V π(s0),w) ≥ f(V π′(s0),w)
}

(5.3)

Without loss of generality it is assumed that all objectives are desirable, thus they
always assume positive values. To model non-desirable objectives, objective values can
be negated. Moreover, as only relative importance matters when computing optimal
policies, the weights are assumed to lie within the [0, 1] range and sum to 1.

In previous work, Roijers et al. presented an algorithm to find the CCS for multi-
objective planning problems with unknown weights [217]. Their Optimistic Linear

Support (OLS) approach exploits the linearity property of the scalarisation function to
minimise the number of policy searches required to find the CCS. In essence, OLS iter-
atively adds policies π with corresponding value vectors w •V π for specifically chosen
weights to a partial CCS until the supremum over all its value vectors exactly matches
the CCS value. It determines the weights to search based on a theorem that was
originally presented in the context of POMDPs [60].42 This theorem, due to Cheng,
states that when comparing the value of an incrementally constructed partial CCS with
that of the CCS, the largest difference will always be at a vertex of the former, i.e. a
point at which the piece-wise linear convex function that is the supremum of all value
vectors changes slope (see the work by Roijers [214] for their formal definition). These
vertices are known as corner points or corner weights43 and are exactly the weight
vectors considered by the OLS algorithm in its iterations.

Put more formally, let Ψ denote the CCS and ψ the partial CCS that is being
constructed by an algorithm such as OLS. Furthermore, let the value of a (partial)
CCS Ψ at a given weights vector w (with implicit initial state s0) be defined as

VΨ(w) = max
π∈Ψ

w •V π (5.4)

then the following theorem holds:

Theorem 5.1 Maximal CCS error

Let Ψ ⊆ Π denote a CCS for a multi-objective MDP. Then for any partial Convex
Coverage Set ψ ⊆ Π, the weight vector w that maximises VΨ(w) − Vψ(w) is a
corner weight of ψ.

Proof. Given by Cheng [60].

42 Using the term ‘parsimonious representation’ for the Convex Coverage Set.
43 Although the singular noun is used, a corner weight is actually a weight vector. The term is adopted

here to remain consistent with previous work.

131

CHAPTER 5. MAINTENANCE PLANNING WITH MULTIPLE OBJECTIVES

An immediate corollary of this theorem is that, when searching for the CCS, only
the corner weights of the partial CCS need to be considered, thus greatly limiting
the size of the search space. In the worst case there are exactly as many corner
weights as there are unique optimal policies for the MOMDP plus one, which is a major
reduction compared to the infinite number of weight vectors in [0, 1]m. However, the
impact of Theorem 5.1 becomes really apparent when it is combined with the linearity
property of the scalarisation function. Observe that if the scalarisation function f is
linear and all weight vectors w contain only zero or positive entries, the corresponding
value maxπ∈Ψw • f(V π,w) of any (partial) CCS must be both linear as well as convex.
Consequentially, the maximal possible CCS error can be expressed with respect to the
best potential value, captured by the hypothetical optimistic Convex Coverage Set.
Below the OCCS is defined formally, followed by a visualisation in Example 5.3.

Definition 5.2 Optimistic Convex Coverage Set (OCCS) [217]

An optimistic Convex Coverage Set (OCCS) ψ̄ for a partial CCS ψ is a set of value
vectors v that yields the highest possible scalarised value for all w ∈ [0, 1]m, consis-
tent with the value vectors w •V π associated with policies π ∈ ψ.

Example 5.3 Optimistic CCS

Figure 5.2a shows a partial CCS ψ, for a two-objective problem as before, that consists of
two value vectors (red lines) for two (values of) previously found policies (red dots). The
optimistic CCS, shown in green, is the maximum expected value any policy in between
the two previous point can attain. Due to the linearity and convexity, no policy value can
exceed the optimistic CCS. Moreover, the maximum error is bounded by the distance ∆max

between the two PWLC functions.

V π,w

w1
0 1wmax

∆max

ψ

ψ̄

(a)

V π,w

w1
0 1wmax

∆max
ψ

ψ̄

(b)

V π,w

w1
0 1wmax

∆max ψ

ψ̄

(c)

Figure 5.2 Two-objective examples showing the relation between the partial CCS ψ (red)
and optimistic CCS ψ̄ (green) when (a) the partial CCS only contains two policies (dots)
and value vectors (blue lines), (b) a third policy is added to the partial CCS that was found
at wmax and improves the partial CCS, and (c) a fourth, non-improving policy is found
and added. The maximal possible error ∆max is always at a corner weight wmax of ψ.

Figure 5.2b shows an updated situation where a policy π is added that is optimal at the
weight vector wmax of the left figure. This new policy improves the partial CCS, as its
PWLC value function now contains a bigger area. Moreover, the optimistic CCS must be

132

5

5.1. MULTI-OBJECTIVE PLANNING WITH UNKNOWN WEIGHTS

updated to remain consistent the new with value vector w •V π. In Figure 5.2c a new policy
(blue dot) is found but its expected value is equal to that of the value vector at wmax and
therefore the partial CCS is not improved. This policy is preserved in the search history
but will not be included in the final CCS (and hence marked blue instead of red). Still,
from this policy it follows that the OCCS value must exactly equal the partial CCS value
for all weight vectors in the region up to the third policy from the left, found at wmax of
Figure 5.2a. Note that by definition of the partial CCS and the optimistic CCS, the value
function of the CCS itself must lie on or in between the two.

Now, let Vψ̄(w) = maxv∈ψ̄w •v define the value of the optimistic CCS at weights w,
i.e. the best possible value at each w. Then, the maximal possible error of a partial
CCS ψ at w with respect to its optimistic CCS ψ̄ is given by:

∆ψ(w) = Vψ̄(w)− Vψ(w) (5.5)

As a corollary of Theorem 5.1 and Equation 5.5 it must be that the maximal error
with respect to both the CCS as well as the optimistic CCS is at a corner weight of
the partial CCS. Moreover, if the maximal error at all corner weights of the partial
CCS is zero with respect to the optimistic CCS, the partial CCS must be a CCS for
the MOMDP. Even more so, Equation 5.5 forms the basis of an anytime algorithm
that iteratively decreases the maximal error with respect to the optimistic CCS, by
prioritising over the corner weight that currently maximises ∆ψ(w). This leads to OLS,
shown in Algorithm 5.4.

Algorithm 5.4 Optimistic Linear Support (OLS)

Require: MOMDP M , scalarisation function f and single-objective MDP solver M.

1: function OLS(M, f,M)

2: ψ = ∅ . Partial CCS

3: WV = ∅ . Searched weight vectors and found values

4: Qw = {〈ek,∞〉 | ∀k ∈ [1,m]} .
〈
w,∆ψ(w)

〉
-queue, initially unit vectors ek

5: 〈wmax,∆max〉 = Qw.pop()

6: while ∆max > 0 do

7: 〈π∗,V ∗〉 = M(scalarise(M, f,wmax)) . Solve scalarised MDP at wmax

8: WV = WV ∪ {〈wmax,V ∗〉}
9: if wmax •V ∗ > Vψ(wmax) then . Add policy if CCS improves at wmax

10: ψ = ψ ∪ {π∗}
11: W = cornerWeights(ψ) . Recompute corner weight(s) after adding π∗

12: ψ̄ = calcOCCS(WV,W) . Compute optimistic CCS for ψ

13: for each w ∈W \WV do

14: Qw.add(
〈
w, Vψ̄(w)− Vψw

〉
) . Add new vector with error ∆ψ(w)

15: end for

16: end if

17: 〈wmax,∆max〉 = Qw.pop() . Get next weight vector that maximises ∆ψ

18: end while

19: return ψ

20: end function

133

CHAPTER 5. MAINTENANCE PLANNING WITH MULTIPLE OBJECTIVES

The full description of the OLS algorithm can be found in the work by Roijers
et al. [217], here it is only outlined briefly. Put simply, in every iteration the algorithm
first computes the optimal policy for the single-objective MDP that is scalarised given
the scalarisation function f and weight vector wmax that maximises error ∆max =
∆ψ(wmax) using solver M (line 7). Note that it is assumed that the solver returns
the expected value per objective, i.e. as a value vector V ∗. This is achieved by either
altering the solver, if possible, or by including a separate, subsequent multi-objective
policy evaluation step that is not listed here. Next, lines 9 to 12, check whether the
partial CCS is improved by policy π∗ and, if so, add it to the partial CCS, determine
the set of (new) corner weights and the corresponding optimistic CCS. The latter two
are done via simple linear programs. cornerWeights computes all intersections of
value vectors within the [0, 1]m domain. The OCCS is determined by for every corner
weight w ∈W running the following linear program:

max w •v

subject to ∀ 〈wπ,V
π〉 ∈WV : wπ •v ≤ w •V π (5.6)

This program returns the value vector that maximises the potential CCS value
at w, from which in turn the maximal CCS error can be computed using Equation 5.5.
Finally, all new corner weights (slightly abusing notation to remove the previously
searched weight vectors WV) and their corresponding maximal error with respect to
the optimistic CCS are added to the queue (lines 13-15) and the process is repeated.
When the maximal error ∆max becomes equal to zero, the value of the partial CCS ψ
must equal that of the CCS over the entire weight range and the algorithm terminates
and returns the CCS.

For completeness, it must be remarked that Algorithm 5.4 lists OLS in its sim-
plest form. The algorithm can be optimised by iteratively recomputing the new corner
weights, instead of a full computation every iteration, and be made anytime approx-
imate by incorporating a time limit and/or a bounded approximation algorithm by
terminating when ∆max falls below a specified threshold [217].

5.2 Approximate Optimistic Linear Support

The OLS algorithm of the previous section produces a Convex Coverage Set for any
multi-objective MDP within a limited number of iterations. Still, every iteration re-
quires solving a typically complex single-objective MDP optimally, which in itself may
be very computationally demanding, and hence this approach is not feasible for many
MOMDPs. This section introduces the Approximate Optimistic Linear Support

(AOLS) algorithm, a bounded-approximation variant of the previously discussed OLS.
The AOLS algorithm is nearly the same as the OLS method, however instead of an opti-
mal single-objective MDP solver it takes an ε-approximate MDP solver as its argument
and produces an ε-CCS, i.e. a Convex Coverage Set with a bounded error of ε with
respect to the optimal CCS value.44 At its core is a modified version of Theorem 5.1,

44 The term optimal is actually implied by Convex Coverage Set and thus superfluous. It is used,
however, to explicit the difference between the CCS and the approximate ε-CCS.

134

5

5.2. APPROXIMATE OPTIMISTIC LINEAR SUPPORT

adapted to the approximate setting, such that again it is possible to guarantee that the
algorithm terminates within a finite number of iterations. Additionally, even though
AOLS builds its CCS using approximate policies that may cause corner weights to shift
each round, the approximate CCS (not to be confused with partial CCS) value can be
shown to converge through the modified theorem. Further in this section the AOLS algo-
rithm is presented, followed by its correctness proof based on the maximal approximate
CCS error of Theorem 5.8. First, it is necessary to formalise the bounded-approximation
solver:

Definition 5.5 ε-approximate MDP solver

An ε-approximate MDP solver that produces a policy π with an expected value V π

such that for any ε ≥ 0: V π ≥ (1 − ε)V π∗. Here, V π
∗

is the expected value of
optimal policy π∗.

and the corresponding ε-approximate CCS:

Definition 5.6 ε-approximate Convex Coverage Set (ε-CCS)

The ε-approximate Convex Coverage Set (ε-CCS) for an MOMDP is a set of poli-
cies Ψ̃ ⊆ Π such that for every weight vector w ∈ [0, 1]m, a linear scalarisation
function f and ε ≥ 0 the set Ψ̃ contains at least one policy π with a scalarised value
at most a factor 1− ε lower than the CCS value VΨ(w) at w, or

Ψ̃ = {π ∈ Π
∣∣ ∀w ∈ [0, 1]m, ∀π′ ∈ Π, f,

s0 : f(V π(s0),w) ≥ (1− ε)f(V π′(s0),w)} (5.7)

and note that the near-optimality condition of Definition 5.6 can be formulated more
briefly as ∀w ∈ [0, 1]m : VΨ̃(w) ≥ (1− ε)VΨ(w), with implicit f and s0.

Although Definition 5.6 formally bounds the approximate CCS to have a value at
most (1−ε) away from the optimal CCS, an algorithm to produce the approximate CCS
must be able to guarantee this bound without knowing the actual CCS. Therefore again
the optimistic CCS is used, albeit with a minor adaptation of the CCS error. Recall
that the CCS error ∆ψ(w) of Equation 5.5 defines an absolute error of a partial CCS ψ
with respect to its corresponding OCCS ψ̄ at weights w. This is easily transformed
into a relative maximal CCS error:

∆r
ψ(w) = 1− Vψ(w)

Vψ̄(w)
(5.8)

such that the partial CCS error is bounded relative to the OCCS and, indirectly, to the
optimal CCS. Altogether, the above lead to the AOLS algorithm of Algorithm 5.7.

The first thing to notice is that the AOLS algorithm is highly similar to the previously
presented OLS algorithm, but has some subtle differences. First notice that throughout
the algorithm the relative error ∆r

ψ is used, instead of the absolute error ∆ψ, so that
the algorithm may terminate when the partial CCS ψ value is within at most a factor ε

135

CHAPTER 5. MAINTENANCE PLANNING WITH MULTIPLE OBJECTIVES

Algorithm 5.7 Approximate Optimistic Linear Support (AOLS)

Require: MOMDP M , scalarisation function f , error bound ε and ε-approximate, single-objective

MDP solver M̄.

1: function AOLS(M, f, ε, M̄)

2: ψ = ∅,WV = ∅ . Partial CCS, searched weights and values

3: Qw = {〈ek,∞〉 | ∀k ∈ [1,m]} .
〈
w,∆r

ψ(w)
〉

-queue, intially unit vectors ek
4: 〈wmax,∆r

max〉 = Qw.pop()

5: while ∆r
max > ε do

6: 〈π,V 〉 = M̄(scalarise(M, f,wmax)) . Approximate scalarised MDP at wmax

7: WV = WV ∪ {〈wmax,V 〉}
8: if wmax •V > Vψ(wmax) then . Add policy if CCS value improves

9: ψ = ψ ∪ {π}
10: ψ = prune(ψ) . Prune dominated policies

11: W = cornerWeights(ψ) . Recompute corner weight(s) after adding π

12: ψ̄ = calcOCCS(WV,W, ε) . Compute new OCCS

13: for each w ∈W \WV do

14: Qw.add(
〈
w, 1− Vψ(w)/Vψ̄(w)

〉
) . Add w with relative error ∆r

ψ(w)

15: end for

16: WV = W

17: end if

18: 〈wmax,∆r
max〉 = Qw.pop() . Get next weight vector that maximises ∆ψ

19: end while

20: return ψ

21: end function

away from the value of the CCS (line 5). Furthermore, because AOLS uses approximate
solver M̄, policies may become dominated in the partial CCS. Therefore AOLS includes a
pruning step each time the partial CCS is expanded (line 10) that removes any policy π
with value V π if ∀w ∈ [0, 1]m,∃π′ ∈ ψ : w •V π ≤ w •V π′ with π 6= π′. Finally, the
calcOCCS program is adapted slightly to incorporate the possibility of being ε wrong
at every corner weight w ∈W :

max w •v

subject to ∀ 〈wπ,V
π〉 ∈WV : wπ •v ≤ w

•V π

1− ε
(5.9)

In other words, the optimistic CCS overestimates the value of the CCS by a fac-
tor 1/(1− ε) so that is always an upper bound on the (partial) CCS value. Note that
the AOLS algorithm may be terminated at any point to produce a partial CCS with a
value of at least (1 −∆r

max)VΨ(w) at all weight vectors w ∈ [0, 1]m. The algorithm
can therefore be employed as an anytime approximation method, in a similar fashion
as OLS, but with a bounded error at the point of termination. In addition, as was
assumed by OLS, AOLS expects the single-objective solver M̄ to return a value vector,
but in the approximate setting this may introduce a dominating component to the
runtime. Recall that the number of states in a policy may be exponential and therefore

136

5

5.2. APPROXIMATE OPTIMISTIC LINEAR SUPPORT

a naive policy evaluation routine could introduce an exponential time requirement. To
combat this, more efficient or approximate evaluation methods can be used, although
the latter might affect the bound on the maximal CCS error.

Now it remains to show that the AOLS algorithm indeed produces an ε-CCS within
a finite number of iterations. First it is shown that AOLS also needs to consider only the
corner weights of its partial CCS to maximise the CCS improvement in each iteration
of the algorithm.

Theorem 5.8 Maximal approximate CCS error

Let Ψ ⊆ Π denote a CCS for a multi-objective MDP. Then for any approximate partial
Convex Coverage Set ψ ⊆ Π, the weight vector w that maximises VΨ(w)− Vψ(w)
is a corner weight of ψ.

Proof. Recall that ∆ψ(w) = VΨ(w) − Vψ(w) (Equation 5.5) and that this function
hence must also be PWLC because it is the difference between two PWLC functions.
Therefore the weight vector at that which ∆ψ(w) is maximised must be in one of
the four cases illustrated by Figure 5.3.

∆max

Vψ(w)

VΨ(w)

(a)

Vψ(w)

VΨ(w)

∆max

(b)

∆max

Vψ(w)

VΨ(w)

(c)

∆max

Vψ(w)

VΨ(w)

(d)

Figure 5.3 Four possible cases for the weights at which ∆ψ(w) is maximal: at a weightsw
that is (a) neither a corner point of Ψ or ψ, (b) a corner point of Ψ but not of ψ, (c) a
corner point of ψ but not of Ψ or (d) a corner point of both.

Case (a) maximises ∆ψ(w) if and only if the slope of ∆ψ(w) is equal to 0, in
which case its value is never higher than the value at the adjacent corner point(s)
where its slope changes. Case (b) can never occur because if the weight vector w
that maximises ∆ψ(w) is a corner point of Ψ but not of ψ and ∆ψ is maximised
then the value V (w) must also be at maximum at w. However, if V (w) is maximal
at w then it is not a PWLC function, which contradicts its definition. Only cases (c)
and (d) remain and in both cases the maximum error resides in a corner point of the
partial CCS ψ, proving the theorem.

Due to Theorem 5.8, the AOLS algorithm is guaranteed to make the best possible
improvement to the partial CCS (value) in each iteration. In addition, for every weight
vector that is checked, the partial CCS value will either increase or remain the same
if no improvement is found (the condition of line 5). As a corollary, the maximum
relative error also decreases or remains the same and thus ultimately converges when
all corner weights have been checked. Then it remains to show that this convergence
is within a finite number of iterations, i.e. there are a finite number of such corner
weights considered by AOLS.

137

CHAPTER 5. MAINTENANCE PLANNING WITH MULTIPLE OBJECTIVES

Theorem 5.9 AOLS correctness and convergence

Given an ε-approximate MDP solver M̄, such that ε ≥ 0, AOLS produces an ε-CCS
within a finite number of iterations.

Proof. The algorithm iterates over a priority queue of tuples, consisting of corner
weights w and their corresponding relative CCS error ∆r

ψ(w), until the first relative
CCS error lower or equal to ε is encountered. In this case, all remaining corner
weights in the queue must have a relative error less than ε due to the queue sorting.
For new corner weights, M̄ always produces a policy with an expected value of at
least 1 − ε times the expected value of the optimal policy and hence Vψ(w) ≥
(1 − ε)VΨ(w). Moreover, by adding a new policy to the partial CCS, the value of
the partial CCS must increase and, consequentially, the maximum relative CCS error
in the newly established corner weights must decrease – and ultimately converge –
correspondingly. Finally, because every corner weight evaluated by AOLS is added to
a searched-weights list, therefore considered only once, and the number of possible
corner weights is finite, the number of corner weights considered by AOLS is finite.

At termination, the maximum relative error at all corner weights w must be below ε
and, as a corollary of Theorem 5.8, this must hold for all possible weight vectors w ∈
[0, 1]m. Consequentially, the produced partial CCS satisfies Equation 5.7 and is hence
an ε-approximate CCS.

Remark 5.10 AOLS with an unbounded MDP Solver

It is possible to run AOLS with an unbounded approximate MDP solver and the
algorithm will still converge on an approximate CCS, however no bound can be
derived on the quality of the resulting approximate CCS. Moreover, in this case it
is not possible to prioritise over relative CCS errors. Instead AOLS must continue
checking – randomly selected – corner weights until no more improvement is made
or there are no more corner weights to the partial CCS.

5.3 Scalarised Sample-based Iterative
Improvement

The Approximate Optimistic Linear Search method of the previous section pro-
vides a more time-efficient method to produce a high-quality CCS that the previous
OLS algorithm. Moreover, if an approximate, single-objective MDP solve with bounded
error ε is used, the value of the approximate CCS is guaranteed at most a factor ε lower
than that of the optimal CCS. When time is limited, however, AOLS may ‘waste’ much
of its time on areas of the weight range that could actually be of little interest to the
planner. There are many situations in which a planner has some preliminary knowledge
regarding the most interesting areas of the weight range, but not on specific weight
values. For instance, if one weight expresses the relative cost of a resource unit, the
planner may not be interested in any solution where the cost weight exceeds 50%. In
such a scenario, the planner prefers a method that tries to maximise the CCS value in

138

5

5.3. SCALARISED SAMPLE-BASED ITERATIVE IMPROVEMENT

the range where wcost ∈ [0, 0.5], given the little time available. AOLS, however, cannot
distribute its planning effort in such a way; it always considers the entire range [0, 1]m.

In such settings, where a prior distribution over the weights (or prior for short) is
known, the Scalarised Sample-based Iterative Improvement (SSII) algorithm
typically produces a better CCS value in the specified weight range. The essence of this
approach is very straightforward: given a prior distribution pr over the weight simplex,
sample weight vectors from that prior and spend the most time on finding high-quality
policies for these vectors. SSII, shown in Algorithm 5.11, does this in an iterative
fashion to make the best use of the time it is given. It continually improves its partial
CCS until there is no more time, at which point the current partial CCS is returned.

Algorithm 5.11 Scalarised Sample-based Iterative Improvement (SSII)

Require: MOMDP M , scalarisation function f , anytime single-objective MDP solver M̄, weight

sample vectors W̃ , sample runtime funcion T and time limit tlimit.

1: function SSII(M, f, M̄, W̃ , T, tlimit)

2: ψ = ∅
3: WV = ∅
4: for each w ∈ W̃ do

5: tw = T (−1) . Set initial sample runtime

6: WV [w] = M̄(M, f,w, tw) . Store tuple 〈π,V π〉 found at weight vector w

7: end for

8: while time used < tlimit do

9: ψ̄ = calcOCCS(WV, W̃ ∪ e) . Comp. OCCS from samples W̃ and extrema e

10: wmax = nextSample(ψ̄,WV, W̃ , t) . Determine next sample weight wmax

11: twmax = T (twmax) . Increase allowed runtime for the sample

12: 〈π,V π〉 = M̄(M, f,wmax, twmax) . Compute new policy and value

13: if wmax •V π > wmax •WV [wmax] then

14: WV [wmax] = 〈π,V π〉 . Update policy at sample vector wmax

15: end if

16: end while

17: ψ = {π ∈WV | ∃w ∈ [0, 1]m, ∀π′ 6= π ∈WV : w •V π > w •V π′ } . Comp. new CCS

18: return ψ

19: end function

Besides the MOMDP M and (linear) scalarisation function f as before, the SSII

algorithm requires an anytime, single-objective, MDP approximation algorithm M̄, a
set of weight vectors W̃ sampled from the prior distribution pr, an increasing list of
allowed runtimes T and a time limit tlimit. The anytime solver, in combination with
the runtime list, make it possible for SSII to iteratively improve on its samples until
the time limit is reached. Initially, ‘a quick-and-dirty’ partial CCS is determined by
running M̄ solver at every sample weight vector with very little time (lines 4 to 7).
Then, as long as there is time available, the algorithm tries to improve the policies
at each of the samples by allowing the MDP solver increasingly more time. For this,
it first computes the optimistic CCS (line 9) using the weight sample vectors in W̃ ,
appended with the weight simplex extrema e =

⋃
k∈m ek that do not necessarily need

139

CHAPTER 5. MAINTENANCE PLANNING WITH MULTIPLE OBJECTIVES

to be contained in prior pr. The OCCS is then fed, alongside the current results WV ,
prior sample vectors W̃ and currently used runtime for each weight vector t, into
the nextSample routine that determines the sample weight vector to improve next
(line 10). This function can be arbitrarily complex and may use any combination of the
aforementioned parameters to determine the next sample weight. In the experiments
of Section 5.4, the sample vector w that maximises ∆ψ(w) is selected.

Having determined the weight sample vector to improve next, the allowed runtime
for that vector is increased in line 11 by function T . This function returns a new
maximal allowed runtime for sample vector wmax, given that its last attempt was
given twmax

time (such that T (−1) is assumed to return the initially allowed runtime).
Therefore, this function is typically asymptotic and (exponentially) increasing in its
argument. Given the sample weight vector and the allowed runtime, the anytime solver
is ran once more on the scalarised MDP to compute a new policy and associated value.
Note that because an anytime, approximate solver is used, the policy value is expected
but does not necessarily have to improve. For this reason, line 13 check whether the
new policy should replace the previous one. After the policy is added or discarded, the
process is repeated for a new (possibly the same) sample weight vector, until there is no
more time left. When time runs out, the algorithm returns its partial CCS determined
from all the policies at the sample weight vectors (line 17). Note that only the non-
dominated policies are returned, with the highest scalarised value in at least one weight
vector w ∈ [0, 1]m.

Example 5.12 Scalarised Sample-based Iterative Improvement

Once more, a two-objective problem is considered with objectives w1 ∈ [0, 1] and w2 =
1 − w1. Furthermore, in this example w1 represents a per-unit selling price of a resource
and the planner knows that only the area w1 ∈ [0.5, 0.9] is of interest. A value lower
than 0.5 would lead to losses whereas a relative price above 0.9 makes the resource too
expensive. This information can be transformed in a prior distribution over weights such
that

∑0.9
w1=0.5 pr(〈w1, 1− w1〉) = 1 and, correspondingly, pr(〈w1, 1−w〉) = 0 for all

w1 ∈ [0, 0.5) ∪ (0.9, 1] In addition, the algorithm is given a sample runtime function that
doubles the previous runtime, i.e. T (x) = 2x with initial runtime T (−1) = 1 second.

V π,w

w1
0 1

Ψ

0.5 0.9

ψ

pr

(a)

V π,w

w1
0 1

Ψ

0.5 0.9

ψ

pr

(b)

V π,w

w1
0 1

Ψ

0.5

pr

0.9

ψ

(c)

Figure 5.4 Illustration of the Scalarised Sample-based Iterative Improvement al-
gorithm in three subsequent stages: (a) after computation of the initial sample set, (b)
after finding a higher-value policy at weight w1 = 0.5 and (c) upon termination of the
algorithm.

140

5

5.3. SCALARISED SAMPLE-BASED ITERATIVE IMPROVEMENT

Figure 5.4 visualises the execution of the SSII algorithm on this problem in consecutive
stages of the planning process. Each of the figures illustrate the partial CCS (red line
segments), composed from the value vectors (blue lines) corresponding to the (values of
the) policies, illustrated by the dots. Red dots represent policies that are included in the
partial CCS, whereas blue dots indicate policies that are (currently) dominated. The dotted
green line visualises the CCS for this example problem. Note that this is purely to illustrate
typical SSII results, this information is not actually available to the algorithm. The prior
of interest, i.e. the range w1 ∈ [0.5, 0.9], is shown as a gray area and in this example 5
sample weight vectors are used, uniformly distributed over the prior with interval 0.1.

The first figure, Figure 5.4a, shows the result of the prior weight sample initialisation
performed by lines 4 to 7 of Algorithm 5.11. This initialisation produces a fast (max 1
second per sample) but inaccurate first partial CCS, with a value much below that of
the optimal CCS. However, from this partial CCS an optimistic CCS is computed that is
employed to guide the sample improvement algorithm. The OCCS itself is not shown in
this figure, because it nearly overlaps the partial CCS. Only in the regions [0, 0.5], [0.6, 0.7]
and [0.8, 0.9] its value is slightly higher than the partial CCS. Recall that SSII does neither
know the optimal CCS value nor any bound on the approximation error. Therefore, the
best it can do is to determine the OCCS based on the sample vectors W̃ and the weight
simplex extrema, i.e. the unit vectors ek for k ∈ [1,m]. Notice also that there is one policy
shown blue in this figure because its value vector is dominated by the others for all weight
vectors.

In this example, SSII is given a next-sample heuristic that prioritises samples based on
the OCCS error ∆ψ(w). This leads to the selection of wmax = 〈0.5, 0.5〉 as the sample
to improve next and now it is given T (1) = 2 seconds to find a policy. Figure 5.4b shows
the outcome with regard to the value of the partial CCS, which is increased by the newly
sampled policy (value). As a side effect of this improvement, the policy at sample 〈0.6, 0.4〉
becomes dominated and would not be in the partial CCS if the search terminated now.

Figure 5.4c shows the eventual situation upon termination of the algorithm, when the
time limit was reached. After multiple iterations the partial CCS has increased much in
value, especially in the region of the prior. Within this area the value of the partial CCS
is very close to the optimal CCS value. Outside this area, however, the partial CCS value
is much lower than that of the CCS. This is typical for the behaviour of SSII: whereas
AOLS does its best on finding a ‘good-quality’ approximation overall, SSII focuses on
maximising the partial CCS value in a specific range. Note that the quality of the SSII

approximation can be increased by extending its time limit, leading to better samples,
and/or using more samples in the prior, leading to a closer approximation of the shape of
the CCS value function. Of course, both measures have their impact on the algorithms
anytime performance.

As opposed to AOLS the SSII algorithm does not produce an approximate CCS with
bounded error, but produces a high-quality approximation of the optimal CCS in its
prior. The former is simply because it focuses on a specific area of the weight range
and provides no guarantees outside this range. Note that it is possible to provide a
quality bound in the prior if the anytime approximate MDP solver M̄ provides a bound
on the value of the policies it produces. Furthermore, while it is not designed as such,
the algorithm can be modified to continue until a specified quality is achieved (instead
of running until time is out) if the single-objective solver provides a quality bound.

141

CHAPTER 5. MAINTENANCE PLANNING WITH MULTIPLE OBJECTIVES

5.4 Comparison of Multi-objective Algorithms

This section analyses the strengths and weaknesses of the previously described AOLS

and SSII algorithm through empirical evaluation. Both algorithms are tested on a set
of mpp instances with two objectives: maximising profits and minimising the traffic
time lost. Similar to the introduction, the (relative) weights corresponding to these
objective are denoted by wprofit and wttl respectively and the reward function of
Equation 5.1 is used with the simple linear scalarisation functionw •V π. Both methods,
and OLS as a benchmark, are run on a test set random-mo that consists of randomly
generated 2-agent and 3-agent instances (144 each) of the multi-objective mpp, with
2 to 4 activities and horizons varying between 3 and 10. 4-Agent instances are not
considered as a result of the experiments of the previous chapter. Finally, to test
the performance of SSII versus AOLS on a prior distribution of weights, a prior pr
is defined that focuses on the weight range wprofit ∈ [0.5, 1] (and, correspondingly,
wttl ∈ [0, 0.5]). This prior is distributed uniformly over the range wprofit ∈ [0.5, 1]
and satisfies

∑
w∈W pr(w) = 1. The outcomes of both algorithms produced for the

aforementioned instances are compared to the optimal CCS produced by OLS through
several error metrics.

εmax The maximal ε of the approximate CCS over the considered weight
range W , i.e. the maximal relative error between two CCSes:

εmax(Ψ, ψ,W) = max
w∈W

1− Vψ(w)

VΨ(w)
(5.10)

εopt The percentage of instances for which a (near-)optimal solution is
found, where a CCS is considered optimal in a range W if ∀w ∈W :
εmax < 0.01.

εmax The maximal absolute error between two CCSes in the weight range,
not including the prior:

εmax(Ψ, ψ,W) = max
w∈W

VΨ(w)− Vψ(w) (5.11)

εexp The expected coverage of the approximate CCS w.r.t. the CCS, in-
corporating the prior:

εexp(Ψ, ψ, pr) =

∫
[0,1]m

pr(w)
(
VΨ(w)− Vψ(w)

)
dw (5.12)

Finally, OLS, AOLS and SSII all require an (approximate) single-objective solver
to produce a policy for the scalarised MDPs. OLS relies on an optimal MDP solver
to produce the optimal CCS and hence, with the experiments of the previous chapter
in mind, CoRe is used. For the approximate algorithms, the UCT* [134] algorithm is

142

5

5.4. COMPARISON OF MULTI-OBJECTIVE ALGORITHMS

used (see Section 3.4) and run on an RDDL encoding of mpp (as in Section 3.5.
Although this solver is anytime-approximate, it does not provide a guaranteed error
bound and therefore AOLS cannot guarantee an ε-CCS. The results presented in this
section, however, show that the UCT* algorithm performs very well on instances of
the mpp. By comparing the approximate CCS value with the optimal one, it can be
shown that the ε produced by AOLS in combination with UCT* is typically very low. To
establish this, two preliminary experiments are performed that analyse the performance
of UCT*, of which the results are shown in Figure 5.5. Note beforehand that UCT*

produces only partial policies, i.e. it only includes actions for states and transitions that
were visited during its policy search. These partial policies are amended by inserting
no-operation actions, with its corresponding transition and new state, whenever the
policy does not contain an action.

Method Time (s) εmax εopt εexp εmax

OLS

SPUDD 614.480 - - - -

CoRe 391.108 - - - -

AOLS

UCT* 0.01s 2.527 0.351 28 % 0.186 98.659

UCT* 0.1s 3.933 0.234 44 % 0.049 33.503

UCT* 1s 10.170 0.099 66 % 0.012 13.249

UCT* 10s 56.138 0.022 85 % 0.000 0.427

UCT* 20s 85.976 0.015 89 % 0.000 0.064

(a)

0

2

4

6

8

10

12

14

16

 4 5 6 7 8 9

R
u

n
ti
m

e
 (

s
)

Planning horizon length

Runtime required to achieve quality bound

UCT* ϵ < 0.50
UCT* ϵ < 0.25
UCT* ϵ < 0.10
UCT* ϵ < 0.01

(b)

Figure 5.5 Analysis of AOLS performance, using UCT* as its approximate MDP solver, in
terms of solution quality and the time required: (a) summary over 100 solved instances
from random-mo showing the average runtime and error metrics, and (b) a graph of the
average runtime required to achieve various quality bounds εmax for 96 solved instances from
random-mo-N3 with 3 agents, 3 maintenance activities and increasing horizon.

143

CHAPTER 5. MAINTENANCE PLANNING WITH MULTIPLE OBJECTIVES

First a comparison is done of the CCS produced by each of the algorithms in terms
of time and solution quality. The results of this comparison is listed in Table 5.5a for
the 100 instances of random-mo that are solved by both AOLS with UCT* OLS with
CoRe and, OLS with SPUDD (Section 3.5) within at most 20 minutes. Because UCT* is
stochastic in nature, all AOLS runs are done three times and their average is considered
as a single result. The tables shows the average runtime and aforementioned error
metrics for each of the considered algorithms. Observe that this experiment again
confirms the performance increase of CoRe with respect to the SPUDD approach, as
was established previously in Chapter 4. Secondly, when UCT* is allowed at most 10
milliseconds to find a policy, already 28% of the instances are solved optimally. Note
that the listed runtime of 2.5 seconds is because AOLS runs UCT* on multiple corner
weights, incurring overhead for encoding the MDP as an RDDL instance and starting
the PROST toolkit. Finally, observe that the quality increases significantly when the
allowed runtime increases. By running UCT* with at most 20 seconds per policy search,
AOLS manages to find approximate CCSes with an average ε-bound of 0.015 and solves
almost 90% (near-)optimally.

Figure 5.5b shows the average runtime that UCT* takes to produce a single pol-
icy for various approximation quality levels. CoRe and UCT* are run on the new set
random-mo-N3 of 100 instances with 3 agents that each have 3 maintenance activities
to complete and horizons varying between 4 and 9 (instances with a horizon of 10
often caused CoRe to run longer than the maximum allowed time of 15 minutes in this
experiment and are therefore omitted), and the expected values of the resulting policies
are compared. As UCT* does not provide a bounded approximation it is run multiple
times, such that each run is allowed more time, until the desired ε is reached. When
this is the case, the runtime reported by UCT* is used as the time required to reach
that quality. Note that this therefore overestimates the required time as a policy with
bound ε may have been found earlier but UCT* does not terminate until its allowed
runtime has been used. Again, UCT* is run three times on every instances to reduce
the influence of its stochasticity.

The plot of Figure 5.5b shows that UCT* quickly produces policies for mpp, even if
an error ε of at most 0.01 is allowed. By comparison, UCT* takes on average about 15
seconds to produce a near-optimal policy for the instances with a horizon of 9 whereas
CoRe averages just above 14 minutes. For this reason, i.e. the CoRe runtimes are
orders of magnitude larger, they are not shown in this figure, but they are similar to
the runtimes reported in the previous chapter. With regard to the scalability of the
UCT* runtimes, although no larger problems have been considered in this experiment,
the shapes of each of the plots expose an (intuitive) underlying structure. When the
problem size and complexity increases, it is to be expected that it becomes exponentially
harder for UCT* to find near-optimal policies, while low-quality solutions can still be
produced quickly.

Having established the potential of UCT* as anytime approximate single-objective
MDP solver, the next experiment compares the runtimes and produced CCSes of all
algorithms, where both AOLS and SSII use UCT* as their approximate MDP solver.
SSII is run both with and without knowledge of a prior weight distribution, thus on
ranges wprofit ∈ [0.5, 1] and wprofit ∈ [0, 1] respectively, samples 10 weight vectors

144

5

5.4. COMPARISON OF MULTI-OBJECTIVE ALGORITHMS

uniformly from its assigned weight range and uses an OCCS based weight-selection
heuristic. As before, OLS in combination with the CoRe algorithm is used to produce
the optimal CCS to which all other algorithms are compared. The SPUDD solver is
no longer considered, on account of its performance in previous experiments. For this
experiment, the test set random-mo is again considered, this time with a maximum
allowed runtime of 30 minutes. Any run that takes longer is discarded from the results.
Furthermore, an optimal CCS is required to evaluate the approximate CCSes against,
hence only those instances are compared for which CoRe successfully found the CCS.
The results of this comparison are shown in Table 5.1 and Table 5.2 for respectively
the 2-agent and 3-agent instances of random-mo.

wprofit ∈ [0, 1] wprofit ∈ [0.5, 1]

Method Time |Ψ| VΨ εmax εopt εexp εmax VΨ εmax εopt εexp εmax

OLS

CoRe 391.2 6.6 1205.27 - - - - 658.35 - - - -

AOLS

UCT* 0.01s 2.7 3.4 1165.20 .262 14.5 % .032 91.88 628.51 .221 14.5 % .042 90.97
UCT* 0.1s 3.7 4.5 1197.06 .100 52.6 % .006 24.30 651.95 .058 52.6 % .009 23.93
UCT* 1s 8.6 5.6 1203.25 .022 82.9 % .002 9.46 656.35 .016 82.9 % .003 9.45
UCT* 10s 43.1 6.6 1205.27 .000 100.0 % .000 0.03 658.35 .000 100.0 % .000 0.03
UCT* 20s 64.4 6.6 1205.27 .000 100.0 % .000 0.01 658.35 .000 100.0 % .000 0.01

SSII (np)
UCT* 1s 15.4 4.7 1203.20 .019 68.4 % .002 10.03 656.45 .019 68.4 % .003 10.02
UCT* 10s 40.8 5.1 1205.23 .004 86.8 % .000 1.13 658.31 .004 88.2 % .000 1.12
UCT* 60s 82.3 5.1 1205.24 .004 86.8 % .000 1.09 658.31 .004 88.2 % .000 1.08

SSII (p)
UCT* 1s 15.4 4.8 1200.56 .312 56.6 % .004 18.88 655.56 .021 80.3 % .004 12.99
UCT* 10s 40.8 5.4 1203.62 .240 73.7 % .001 7.47 658.34 .001 98.7 % .000 2.67
UCT* 60s 82.0 5.4 1203.63 .240 73.7 % .001 7.43 658.34 .001 98.7 % .000 2.63

Table 5.1 Comparison of runtime taken (seconds) and resulting CCS quality of OLS, AOLS
and SSII, in the full weight range wprofit ∈ [0, 1] and in the prior range wprofit ∈ [0.5, 1]
on 76 solved 2-agent instances of random-mo. The time listed next to the algorithm names is
the maximum allowed runtime for UCT* to produce a single policy. SSII is both run with and
without a prior, denoted by p and np respectively.

Both tables show averages of the runtime it took the algorithms to produce a CCS,
the size |Ψ| of the CCS, the value VΨ =

∑
w∈W VΨ(w) of the CCS, and the values

for the various error metrics defined at the beginning of this section. The CCS value
and error metrics are computed for both the entire weight range as well as only over
the prior range, to analyse the performance of the SSII algorithm in the prior.

An immediate observation from the 2-agent results (Table 5.1) is that both the AOLS
and SSII algorithms perform relatively well compared to OLS in terms of speed versus
quality. Whereas OLS on average takes about 6.5 minutes to produce a CCS, AOLS
produces an almost equivalent CCS in an average of slightly more than 43 seconds
when UCT* is given at most 10 seconds. SSII np that samples the entire weight
region also produces a high-quality CCS quickly but cannot approximate the shape of
the value function as well as AOLS. This latter claim is intuitively supported by the

145

CHAPTER 5. MAINTENANCE PLANNING WITH MULTIPLE OBJECTIVES

resulting CCS size as more value vectors in the CCS lead to more detail in the CCS
value function shape. As a consequence, its maximal epsilon εmax is typically not far
from that of AOLS but not as often below 0.01. When given a prior however, SSII
does not perform as well over the full weight range (the columns below wprofit ∈
[0, 1]). Its average εmax and εmax are much higher, and the percentage of near-optimal
solutions is much lower than its non-prior counterpart and AOLS. Still, the figures show
that its average CCS value is close to optimal and almost 74% of the instances are
solved near-optimally. This suggests that there are a few instances on which SSII

performs terrible, while on average its performance is acceptable. On the other hand,
when concentrating on the prior weight range, i.e. wprofit ∈ [0.5, 1], SSII with prior
information clearly demonstrates better performance. Nonetheless, the average quality
of the CCSes produced by SSII on this range is bested by AOLS in the 2-agent case.

wprofit ∈ [0, 1] wprofit ∈ [0.5, 1]

Method Time |Ψ| VΨ εmax εopt εexp εmax VΨ εmax εopt εexp εmax

OLS

CoRe 980.9 8.4 1244.05 - - - - 687.60 - - - -

AOLS

UCT* 0.01s 3.1 3.3 1170.28 .381 0.0 % .058 160.52 633.06 .358 0.0 % .078 160.51
UCT* 0.1s 4.0 3.4 1213.12 .222 8.1 % .024 95.77 663.65 .189 8.1 % .034 95.37
UCT* 1s 15.8 5.1 1235.46 .088 43.2 % .007 37.84 680.02 .064 43.2 % .011 37.84
UCT* 10s 102.4 7.4 1242.94 .020 89.2 % .001 8.32 686.46 .014 89.2 % .002 8.32
UCT* 20s 168.5 7.7 1243.52 .006 94.6 % .000 3.71 687.02 .006 94.6 % .001 3.71

SSII (np)
UCT* 1s 20.1 4.0 1234.00 .085 32.4 % .008 42.24 679.35 .078 32.4 % .012 42.21
UCT* 10s 83.6 4.7 1242.87 .021 64.9 % .001 11.37 686.38 .021 64.9 % .002 11.33
UCT* 60s 239.8 5.1 1243.94 .006 83.8 % .000 2.25 687.49 .006 83.8 % .000 2.22

SSII (p)
UCT* 1s 20.2 4.1 1220.90 .333 32.4 % .018 58.75 676.35 .095 40.5 % .015 46.41
UCT* 10s 83.6 5.6 1241.33 .137 70.3 % .002 13.75 686.18 .016 81.1 % .002 10.12
UCT* 60s 239.9 5.9 1243.01 .110 86.5 % .001 5.10 687.59 .002 97.3 % .000 1.45

Table 5.2 Comparison of runtime taken (seconds) and resulting CCS quality of OLS, AOLS and
SSII for 37 solved 3-agent instances of random-mo. The columns are equal to Table 5.1,

In the three-agent case, presented in Table 5.2, a slightly different picture arises for
SSII. The algorithm exhibits better performance within the region of the prior, demon-
strated foremost by the lower maximum epsilon, as well as the expected and maximum
CCS errors. The optimality percentage is also slightly higher but this corresponds to
solving one more instance optimally than AOLS. It must be noted that overall SSII with
60 seconds for UCT* does take more runtime than AOLS with 20 seconds to produce its
better CCS in the prior range. Hence the observed better performance may be a result
of simply using more time. Nevertheless, when compared to its non-prior counterpart,
the algorithm does exploit information regarding a prior weight distribution to produce
a better CCS in that range. Again, both approximate methods produce a CCS that
is very close to optimal already when allowing UCT* at most 10 seconds to run. One
final interesting observation is that while focusing on the prior region SSII solves more
instances optimally in the full range weight than its non-prior counterpart, whereas in

146

5

5.5. FURTHER DISCUSSION

the two-agent problems the εopt score is lower of the prior variant. That is, for the
three-agent problems εopt is higher in the full weight range wprofit ∈ [0, 1] for SSII

that samples only prior wprofit ∈ [0.5, 1] than its counterpart that samples the full
weight range. While the two-agent case seems intuitive, focusing on the prior range
will lead to less optimal approximation over the full weight range, this is not observed
for the three-agent problems. Although this has not been studied further, the hypoth-
esis ventured here is that (almost) all of the corner weights lie within the prior range of
wprofit ∈ [0.5, 1], therefore performing more sampling in this range will lead to better
CCS approximations than distributing the 10 available samples over the full weight
range. Further experiments with a different prior (e.g. wprofit ∈ [0, 0.5]) or allowing
SSII without prior information an equal number of samples in the range wprofit can
be undertaken to validate this hypothesis.

5.5 Further Discussion

This chapter proposes two new approximation techniques for multi-objective planning
problems with unknown weights that can be modelled as MDPs, both with their own
strengths and weaknesses. The Approximate Optimistic Linear Support (AOLS)
algorithm, an approximate adaptation of the OLS algorithm [217], produces an approx-
imate CCS with a bounded error ε that can be specified by the planner and is typically
much more time-efficient than its exact predecessor OLS. When exact weights are not
known but a prior distribution over the weight simplex, i.e. the planner has imprecise
information regarding the weight vectors of interest, the Scalarised Sample-based

Iterative Improvement (SSII) algorithm may be more appropriate. While AOLS

does not consider such information, SSII focuses specifically on the most interesting
areas of the weight simplex and, as a consequence, oftentimes produces a higher-quality
CCS in the prior region.

While the experimental evaluation of Section 5.4 provides supporting evidence for
the aforementioned strengths and weaknesses, further experiments are required to in-
vestigate the scalability of these results. On account of the complexity of 4-agent
problems, demonstrated in Chapter 4, no such experiments have been considered. Ad-
ditional research is required to study whether the results presented in this chapter also
apply to larger problems. Given the pattern that emerges from comparing 2-agent and
3-agent instances it seems likely that the strengths of both algorithms will be more
pronounced on 4-agent problems, but this has not been (empirically) confirmed. Fur-
thermore, in all experiments regarding SSII the same prior was considered and the al-
gorithm always used 10 uniform samples over that prior. More experiments are required
to determine how SSII behaves on different (types of) prior weight distributions and
with other sampling methods. Additionally, further research into the weight-selection
heuristics may also lead to better performance of the algorithm.

Another interesting avenue for future research lies in harnessing the strengths of
both algorithms. A hybrid algorithm could combine the appealing solid theoretical
foundation of the inner-loop approach of AOLS with a prior-based heuristic weight
selection similar to that of SSII. This could yield an algorithm that will both produce
a guaranteed ε-approximate CCS but with an (expected) better anytime performance

147

CHAPTER 5. MAINTENANCE PLANNING WITH MULTIPLE OBJECTIVES

in the prior. Furthermore, where AOLS now stops if the maximum relative error drops
below ε, the SSII heuristic may help in still increasing the CCS value until the total
available runtime has been exhausted. Finally, when the approximate MDP solver does
not guarantee an error bound of ε (such as UCT*), the heuristic approach of SSII may
still be able to guide the CCS weight vector selection to quickly identify corner points
at which the value can be improved most.

It must be remarked that both OLS and AOLS relied on a single-objective MDP solver
that returns both the (optimal) policy and its expected value per objective. Although
many existing single-objective MDP solvers return a (scalar) expected value as well as
the policy and can be adapted to instead return the value vector over all objectives,
this is not true in general. In the latter case a separate policy evaluation step must be
included in both algorithms that performs an exact evaluation of the policy. A naive
implementation thereof is polynomial in the number of actions and states squared, i.e.
O(|A| |S|2), and would compromise the efficiency of both AOLS and SSII. Although for
mpp and many other problems a more efficient expected value computation is possible,
this is not true for all combinations of solvers and domains. For these (uncommon)
situations it must be studied whether approximate policy evaluation can be employed
in combination with either algorithm.

148

Chapter 6

Maintenance Planning with
Self-interested Agents

All of the approaches to solve the maintenance planning problem that were presented
in previous chapters required that the agents participating in the maintenance planning
problem are fully cooperative: all participating agents willingly provide all their infor-
mation regarding revenues, preferences and costs to a central point of computation.
Then, this central coordinator – a public or private third-party institution, the road au-
thority, etc. – can develop a contingent maintenance plan that is optimal for the group
as a whole. This assumption, however, is in many cases not realistic. Service providers
in the maintenance planning problem are typically commercial parties that focus mostly
on their own interests, i.e. they are selfish, leading to a misalignment between the in-
dividual goals and the global or group goal. Moreover, information regarding revenues,
preferences and costs is almost always considered vital business information that agents
are not willing to disclose to others, unless they can profit from it. Note that selfishness
does not imply maliciousness: selfish agents strive to maximise their gain, regardless
of the impact on other agents, but do not intentionally seek to harm others [212].

In a setting with selfish agents, monetary incentives can be used to elicit private
information from the agents, rewarding them for providing the planner with the nec-
essary information to develop a globally optimal plan. A challenges that arises from
this approach, however, is that agents might ‘cheat’ the planner in order to increase
their personal gain. If an agent knows how the planning is performed, it can provide
false information so that the end result is better for the agent itself, most likely at the
cost of other participants. Therefore an incentive scheme to obtain private information
should not only reward agents when they disclose it, but also only when they do so
truthfully. Finding such an incentive scheme is the focus of mechanism design theory
(see Appendix E for a refresher) and the basis of the solution presented in Section 6.1.2.

Another approach to deal with selfishness in planning problems that is discussed in
this chapter concentrates on decentralising the decision making such that each agent
develops its own planning. More specifically, if an agent knows the plans of all others
at the beginning of his decision making, it can react optimally with respect to the

149

CHAPTER 6. MAINTENANCE PLANNING WITH SELF-INTERESTED AGENTS

plans of others. When this this planning performed iteratively, i.e. each agent gets
a turn to react to all others, over multiple rounds, this approach is known as best-
response planning. This method offers several benefits: agents do not have to disclose
(private) information other than their intended plan, agent autonomy is preserved and
the computational effort of the planning problem is distributed, albeit almost always
at the loss of optimality.

Contributions In this chapter, the dynamic maintenance mechanism is presented as
a novel optimal dynamic mechanism for maintenance planning. This mechanism was
first introduced by Scharpff et al. [228]; this thesis extends that work by a formal
proof showing that the maintenance mechanism is indeed a dynamic Vickrey-Clarke-
Groves mechanism, and thus welfare-maximising, strategyproof and budget-balanced
in a within-period, ex-post Nash equilibrium (informally, the equilibrium that results
when agents are utility maximising, accounting future uncertainty).

Furthermore, in Section 6.2 of this chapter a novel class of congestion games is pre-
sented, termed stochastic planning congestion games, accompanied by a best-response
planning approach that was briefly considered by Scharpff et al. [228], based upon the
method of Jonsson and Rovatsos [127]. While this approach no longer guarantees op-
timal planning, it better preserves the privacy of the agents and is more time-efficient
than the dynamic VCG mechanism. Most of the work in Section 6.2 has not been
published before and is a contribution made by this thesis.

6.1 A Dynamic Mechanism Approach to
Maintenance Planning

Standard ‘static’ mechanism design theory (Appendix E) is suitable for dealing with
single-shot games where agents perform one single joint action, resulting in one out-
come for which the mechanism computes payments that are incurred once. For almost
all single-shot games, the VCG mechanism provides a straightforward solution that is
satisfactory; it is both strategyproof, (ex-post) individually rational and (weakly) bud-
get balanced. When applying static VCG mechanisms in a sequential setting where
types change over time, as is the case in the maintenance planning problem, it fails to
guarantee the properties that held for the single-shot setting. The intuition behind this
is that in sequential decision making, decisions influence each other not only for the
current decision but might also affect future decisions, and payments in a static mecha-
nism cannot adequately account for this (an example of this is given in Example 6.11).
In reaction to this research focused on dynamic mechanism design, extending exist-
ing mechanism design theory for one-shot games to the setting of sequential games.
Moreover, as static mechanisms can be seen as a special case of dynamic mechanisms,
all of the impossibility results transfer directly to the dynamic setting. This section
introduces first the most important notions of dynamic mechanism design, mainly de-
rived from the presentation by Cavallo [54]. Thereafter, in Section 6.1.2, a dynamic
mechanism for maintenance planning is described.

150

6

6.1. A DYNAMIC MECHANISM APPROACH TO MAINTENANCE PLANNING

Before going into dynamic mechanism design theory, however, it is first necessary
to clarify what is meant by dynamic mechanisms. In the literature there are two main
strands of research that each work on dynamic mechanisms, but each address a different
type of dynamicity. Arguably the most studied version is that of online mechanism
design in which typically agents and/or actions become available or unavailable over
the course of time. A few examples of online mechanism design problems can be found
in WiFi-pricing [89], where customers come and go, scheduling of electrical vehicle
charging [91] and conditional auctions with bidders arriving at varying times [149].
In this thesis online mechanism design is not considered, as they address issues not
encountered in the problems presented in this thesis.

Here the focus is on ‘offline’ dynamic mechanisms in the sense that, although
the complete model is known in advance and does not change, the environment or
preferences of agents in the sequential game might change over time. Agents in such a
game have a dynamic type that includes all possible preferences an agent might have,
for current and future decisions, but it is not known in advance what type will be
realised and how it will evolve during sequential decision making (otherwise a static
mechanism would suffice). Hence, the valuations that an agent has for outcomes of the
game can change over time due to for example actions performed by other agents or a
random change in the environment. As such, a dynamic type typically defines ‘static
types’ – that can be arbitrarily complex as before – for every anticipated possible state
of the world, which may change as a result of new information that becomes available.

Dynamic types can be represented through various models, e.g. black-box simulation
or a numerical model, but Markov decision processes have received the most attention
in this aspect. In this model, the dynamic type of an agent is represented by an MDP
in which the states are possible type realisations, i.e. each state st ∈ Si corresponds
to a type θti ∈ Θi at time t for agent i. The transition probability function and reward
function model the decisions an agent can make, the uncertainty regarding future
types and the expected (future) rewards. At every time step during the execution of
the mechanism – typically referred to as rounds – agents submit their dynamic type
MDP, with its current type as its initial state, such that the mechanism knows the
current and future actions of an agent and its consequential (reported) utility.

For now, it is assumed that the agents have some model to represent their dynamic
type space Θi and instances θti from this space; the details of a dynamic type do not
influence the general concepts and definitions of dynamic mechanism design. Later, in
Example 6.8, an example of a dynamic type modelled as a Markov decision process is
shown. First, however, dynamic mechanisms are defined after which dynamic extensions
of the previously discussed static solution concepts and desired mechanism properties
are presented. The definition of a dynamic mechanism is as follows:

Definition 6.1 Dynamic Mechanism

A (discrete-time, finite-horizon) dynamic mechanism for a sequential game G is
defined by the tuple 〈Γ,ρ, T 〉 in which:

• Γ : Λ 7→ O is the sequential social choice function,

151

CHAPTER 6. MAINTENANCE PLANNING WITH SELF-INTERESTED AGENTS

• ρ = {ρi}i∈N such that the dynamic payment for every agent i is defined as a
function ρi : Λ× T 7→ R, and

• T = {1, 2, . . . , h} is a discrete set of h time steps.

In every round t ∈ T , the players submit a joint action ~a ∈ Λ based upon the joint
dynamic type θt ∈ Θ at time t and joint strategy ~σ ∈ Σ, i.e. ~a = ~σ(θt), from which
outcome Γ(~a) ∈ O is computed, and obtain utility

uti(θ
t
i ,~a) = vi(θ

t
i ,Γ(~a)) + pti(~a) (6.1)

such that pti(~a) conveniently denotes ρi(~a, t) and the valuation vi is derived from the
utility function of agent i in the sequential game at time t (similar to Definition E.6).

For dynamic mechanisms an equivalent to the revelation principle exists: any indi-
rect dynamic mechanism that implements a sequential SCF Γ in equilibrium can be
transformed into an equivalent direct dynamic mechanism [234]. Therefore only direct
dynamic mechanisms are considered in the remainder of this chapter. As in the static
case, the revelation principle allows the social choice function rule and payments to be
defined over the reported types, e.g. Λi = Θi, Γ(θ̂t) ∈ O and pti(θ̂

t) ∈ R.
Execution of a dynamic mechanism resembles executing |T | static mechanisms

consecutively in that at every time step t (also referred to as a round) the game is
played, agents report dynamic types θ̂t to the mechanism, the mechanism determines
the outcome Γ(θ̂t) of the game and transfers payments pti(θ̂

t) based upon the reported
dynamic types. When one such a round has been completed, the next round is executed
identically but now starting from the next state of the game that resulted after execution
of the actions for time t, with new dynamic types θ̂t+1. The timeline of sequential
execution of a direct dynamic mechanism is shown in Figure 6.1.

Report
θ̂t = ~σ(θt)

Outcome
ot = Γ(θ̂t)

Payments
pti(θ̂

t)
Utilities

uti = vi(θ
t
i , o

t) + pti(θ̂)

t+ 1t

Transitions
θti , o

t → θt+1
i

Figure 6.1 Illustration of sequential execution of a dynamic mechanism: the agents report
a joint type from which an outcome and corresponding payments are computed. When the
outcome and payments become known, agents can compute the utility they obtain in this
round of the execution. Finally, the agents transition to their new type for the next round.
Notice that when computing the utility an agent really obtains, its valuation is determined
using its true type θti .

Analogous to static mechanisms, the goal of a dynamic mechanisms is to implement
the sequential social choice function in a game equilibrium where truthful reporting is
the optimal strategy, but the solution concepts for sequential games are different to
that of one-shot games. In particular, with dynamic types it is no longer feasible to
have a dominant strategy implementation because of the uncertainty regarding the
future types that will be realised. Instead a Nash-like equilibrium solution concept is

152

6

6.1. A DYNAMIC MECHANISM APPROACH TO MAINTENANCE PLANNING

defined in which agents employ a strategy that in expectation maximises their utility
over all (remaining) rounds of the mechanism, assuming that all other agents do the
same. This is known as the within-period, ex-post Nash equilibrium and is defined as:

Definition 6.2 Within-period, Ex-post Nash Equilibrium

A joint strategy ~σ ∗ = 〈σ∗1 , σ∗2 , . . . , σ∗n〉 ∈ Σ constitutes a within-period, ex-post
Nash equilibrium from time t ∈ T until the execution horizon h if for every time step
x ∈ [t, h] and associated true dynamic type θx ∈ Θ every agent i plays strategy σ∗i ∈
Σi when sequential SCF Γ is used, such that

σ∗i = arg max
σi∈Σi

E
[h∑
x=t

ui
(
θx,
〈
σi(θ

x
i), ~σ ∗−i(θ

x
−i)
〉)
| θx, ~σ ∗−i,Γ

]
(6.2)

The within-period, ex-post Nash equilibrium, abbreviated here as dynamic Nash, is the
strongest solution concept available for dynamic mechanisms and is also the only one
considered here. For mechanisms that implement Γ in dynamic Nash, the same prop-
erties that are desired in static mechanisms apply, although adapted for the dynamic
setting. Before providing the formal definitions of these properties, first shorthand no-
tations for the expected valuation, payment and utility are defined. The valuation that
an agent i expects to receive from time step t ∈ T until the mechanism’s execution
horizon h when joint strategy ~σ ∈ Σ is played and the mechanism uses sequential
SCF Γ is given by

Ṽ Γ
i (θ̂t, ~σ) = E

[h∑
x=t

vi
(
θ̂xi ,Γ(θ̂x)

) ∣∣∣ θ̂x = ~σ(θx)
]

(6.3)

and the sum of all expected valuations is written as Ṽ Γ(θ̂t, ~σ) =
∑
i∈N Ṽ Γ

i (θ̂t, ~σ).
Similarly, the expected payoff for agent i from time t until horizon h when agents play
joint strategy ~σ is given by

p̃i(θ̂
t, ~σ) = E

[h∑
x=t

pxi
(
θ̂x
) ∣∣∣ θ̂x = ~σ(θx)

]
(6.4)

for every reported dynamic type θ̂t. The expected payment sums the total payoff
that the agent expects to receive from or transfer to the mechanism. Combining both
shorthands, the utility that an agent anticipates under a dynamic mechanism from
time t onward when the agents play a joint strategy ~σ and sequential SCF Γ is used is

ŨΓ
i (θ̂t, ~σ) = Ṽ Γ

i (θ̂t, ~σ) + p̃i(θ̂
t, ~σ)

= E
[h∑
x=t

vi
(
θ̂xi ,Γ(θ̂x)

)
+ pxi

(
θ̂x
) ∣∣∣ θ̂x = ~σ(θx)

]
(6.5)

Observe that when a model is used in which the dynamic type realisations are uncer-
tain but the probability distribution is known at time 0, e.g. a Markov decision process,

153

CHAPTER 6. MAINTENANCE PLANNING WITH SELF-INTERESTED AGENTS

the expectation becomes a sum over all possible dynamic types times their probability
(assuming agents are truthful or a distribution over the misreports is known).45 For
example, the expected utility given a model with known probabilities can be written as

ŨΓ
i (θ̂t, ~σ) =

h∑
x=t

∑
θ̂x∈Θ

Pr(θ̂x|θ̂t, ~σ) · vi
(
θ̂xi ,Γ(θ̂x)

)
such that Pr(θ̂x|θ̂t, ~σ) denotes the probability of dynamic type θ̂x being reported at
time x when dynamic type θ̂t was reported at time t and joint strategy ~σ is played.
Similar substitutions can be made for the expected valuations and payments.

A mechanism is said to be incentive compatible in dynamic Nash if following a
truthful strategy will always yield the maximum utility in expectation for every agent,
given that every other agent will also follow a utility-maximising strategy. The latter
condition that is now included in the definition of incentive compatibility for the dy-
namic setting is due to the strategy assumption required in dynamic Nash. This is
the best available solution concept for dynamic mechanisms, an equivalent of a domi-
nant strategy equilibrium cannot exist in the dynamic setting because it is impossible
to optimise utility no matter what other agents do when there is uncertainty regard-
ing dynamic types that will be realised in the future (unless agents are completely
independent, but then there is no more need for a mechanism).

Definition 6.3 Within-period, Ex-post Incentive Compatibility

A dynamic mechanism 〈Γ,ρ, T 〉 is said to be (within-period, ex-post) incentive com-
patible if the sequential social choice function Γ is implemented in a within-period,
ex-post Nash equilibrium where truthful reporting is utility-maximising in expectation
for every agent from the current time onward. Formally, for every agent i ∈ N , all
time steps from a time t ∈ T until horizon h and all corresponding joint dynamic
types θt ∈ Θ, there exists a strategy σ∗i ∈ Σi such that

ŨΓ
i (θ̂t,

〈
σ∗i , ~σ

∗
−i
〉
) ≥ ŨΓ

i (θ̂t,
〈
σi, ~σ

∗
−i
〉
)

and every σ∗j ∈ ~σ ∗−i is an expected utility-maximising strategy for agent j.

Similar adaptations can be derived for individual rationality:

Definition 6.4 Within-period, Ex-post Individual Rationality

A dynamic mechanism 〈Γ,ρ, T 〉 is (within-period, ex-post) individually rational if
the expected utility of every agent is non-negative from the current time onward.
Formally, for every agent i ∈ N , all time steps from t ∈ T until horizon h and all
corresponding joint dynamic types θt ∈ Θ, there exists a strategy σ∗i ∈ Σi that is
utility-maximising in expectation and

ŨΓ
i (θ̂t,

〈
σ∗i , ~σ

∗
−i
〉
) ≥ 0

45 This assumption was already made by Bergemann and Välimäki [30] in their initial work on dynamic
mechanisms, and is implicit in the dynamic mechanisms theory of Cavallo [54] and this thesis.

154

6

6.1. A DYNAMIC MECHANISM APPROACH TO MAINTENANCE PLANNING

and every σ∗j ∈ ~σ ∗−i is an expected utility-maximising strategy for agent j.

and budget balance:

Definition 6.5 Within-period, Ex-post Budget Balance

A dynamic mechanism 〈Γ,ρ, T 〉 is (within-period, ex-post) budget balanced if the
sum of expected payments over all agents from the current time onward is equal to
zero. Formally, for all time steps from t ∈ T until horizon h and all corresponding
joint dynamic types θt ∈ Θ, and joint strategy ~σ ∗ ∈ Σ:∑

i∈N

p̃i(θ̂
t, ~σ ∗) = 0

where every strategy σ∗i ∈ ~σ ∗ maximises the expected utility of agent i from the
current time onward. When the sum of expected payments is non-positive, the mech-
anism is known as weakly (within-period, ex-post) budget balanced or no-deficit.

Computational efficiency of a mechanism is naturally also desirable but more often than
not difficult to achieve in dynamic mechanisms. This is not necessarily a consequence
of using dynamic mechanisms but more of the underlying dynamic setting. The social
choice function of a dynamic mechanisms has to deal with a number of dynamic types
that is potentially exponential in the execution length T , of which the future realisa-
tions are typically uncertain, and thus a static outcome is no longer sufficient. For
example in the maintenance planning problem, this is the difference between finding
an optimal plan in the static setting and finding an optimal contingent plan that is op-
timal in expectation over all possible future delays in the dynamic setting. The latter
planning problem is much harder to solve and this increase in problem complexity due
to incorporating dynamicity is typical for sequential social choice functions. Computa-
tional efficiency of dynamic mechanisms is simultaneously more desirable but harder to
achieve.

6.1.1 Dynamic Vickrey-Clarke-Groves Mechanisms

For the within-period ex-post Nash equilibrium a dynamic version of the Vickrey-Clarke-
Groves mechanism exists that is concurrently (within-period, ex-post) incentive com-
patible, individually rational and weakly budget balanced. The dynamic VCG mecha-
nism was initially presented by Bergemann and Välimäki [30] and Cavallo [53] showed
that, alike its static counterpart, it is the only dynamic mechanism that achieves this
in dynamic Nash.

In the static VCG mechanism, the payments for agent i were defined according
to the impact of that agent on the reported valuations v−i of the other agents. In
dynamic VCG a similar payment is defined, although based on the impact on the
expected reported valuations over the remaining time. The expected valuation of all
agents other than agent i when all agents participate for every jointly reported dynamic

155

CHAPTER 6. MAINTENANCE PLANNING WITH SELF-INTERESTED AGENTS

type θ̂t during the remaining period [t, h] when joint strategy ~σ is played is given by:

Ṽ Γ
−i(θ̂

t, ~σ) = v−i(θ̂
t,Γ(θ̂t)) + Ṽ

Γ−i

−i (θ̂t+1
−i , ~σ)

and when agent i does not participate, the expected valuation of all other agents is:

Ṽ
Γ−i

−i (θ̂t−i, ~σ−i) = v−i(θ̂
t,Γ−i(θ̂

t
−i)) + Ṽ

Γ−i

−i (θ̂t+1
−i , ~σ)

There is a significant difference between the two (similar to the static case): the
former computes outcomes using the reported dynamic types of all agents, but does
not include the valuation of agent i, whereas in the latter only outcomes are considered
in which reported dynamic type of i is disregarded, i.e. the outcome is computed over
agents N \ {i} (denoted by Γ−i).

As with the static VCG mechanism, the dynamic VCG mechanism is only one of the
possible mechanisms in the dynamic-Groves mechanism class, the dynamic counterpart
of the class of static Groves mechanisms. Both definitions are combined in the following:

Definition 6.6 Dynamic Vickrey-Clarke-Groves (VCG) Mechanism

A dynamic mechanism 〈Γ,ρ, T 〉 is a dynamic Vickrey-Clarke-Groves mechanism if it
is a member of the dynamic-Groves class:

(i) The sequential social choice function Γ optimises the expected overall welfare for
every reported joint dynamic type θ̂t at every time t ∈ T :

Γ(θ̂t) ∈ E
[h∑
x=t

arg max
ox∈O

∑
i∈N

vi(θ̂
x, ox) | θ̂x

]
(ii) The expected payoff p̃i at time t ∈ T for every agent i is relative to its impact

on the reported expected valuation of other agents, now and in the future, such
that for every joint strategy ~σ and all reported dynamic types θ̂t:

p̃i(θ̂
t, ~σ) = Ṽ Γ

−i(θ̂
t, ~σ)− H̃Γ−i

−i (θ̂t−i, ~σ−i) (6.6)

in which H̃
Γ−i

−i (θ̂t−i, ~σ−i) = E
[∑h

x=tH
Γ−i

−i (θ̂x−i) | θ̂x−i = ~σ−i(θ
x
−i)
]

where

H
Γ−i

−i (θ̂t−i) ∈ R is a function that excludes the dynamic type of agent i, and
the expected payoff p̃i is defined as in Equation 6.4.

and said mechanism is a dynamic VCG mechanism if it additionally uses a dynamic
Clarke tax:

(iii) Each agent i pays exactly the difference in expected valuation that is caused by

its participation by letting H̃
Γ−i

−i be the expected valuation that the other agents
could reportedly have obtained, now and in the future, without agent i:

H̃
Γ−i

−i (θ̂t−i, ~σ−i) = Ṽ
Γ−i

−i (θ̂t−i, ~σ−i)

for every reported dynamic type θ̂t and joint strategy ~σ−i.

156

6

6.1. A DYNAMIC MECHANISM APPROACH TO MAINTENANCE PLANNING

The Clarke tax in the dynamic VCG mechanism is enforced by H̃
Γ−i

−i (θ̂t−i, ~σ−i) =

Ṽ
Γ−i

−i (θ̂t−i, ~σ−i) but, as a result of Lemma 6.7 (see below), it is possible to write the
payment of agent i at time t as:

pti(θ̂
t) = v−i(θ̂

t,Γ(θ̂t)) + Ṽ
Γ−i

−i (θ̂t+1, ~σ)− Ṽ Γ−i

−i (θ̂t−i, ~σ−i) (6.7)

where σ∗−i is defined as before and θ̂t+1 are the reported dynamic types after observing

outcome Γ(θ̂t) at time t that included all agents. This is shown in the following lemma:

Lemma 6.7 Dynamic VCG payment

Setting H̃
Γ−i

−i (θ̂t−i, ~σ−i) = Ṽ
Γ−i

−i (θ̂t−i, ~σ−i) leads to the payment of Equation 6.7.

Proof. Similar to the proof by Bergemann and Välimäki [30], see Appendix A.4.

Summarising the notions presented in this section, dynamic VCG mechanism provides
a standard tool to implement incentive compatibility, individual rationality and (weak)
budget balance in a within-period, ex-post Nash equilibrium. Moreover, it is the only
possible dynamic mechanism that is able to obtain all these properties concurrently in
such an equilibrium. It is for this reason that most of the work on dynamic mechanisms
is based upon the dynamic VCG mechanism and that it is also the only one considered
in this thesis. In the next section a dynamic VCG mechanism is presented for the
maintenance planning problem with selfish agents.

6.1.2 The Dynamic Maintenance Mechanism

This section presents a coordination method for maintenance planning with selfish
agents that uses the dynamic VCG mechanism of the previous section to achieve truthful
maintenance cost reports and thus allows for globally optimal planning. It was observed
by Cavallo [53] that the local dynamic types and type reports in (at least) stochastic
planning problems such as mpp can be modelled using the Markov decision process
framework. Essentially, each agent i ∈N has a local MDP Mi that represents its local
dynamic type space Θi, corresponding to its local planning problem. Then, in every
round of the mechanism, each agent reports the state it is currently in, the decisions
it can make now and in the future (the transitions in its MDP), and the valuation for
each of these decisions (transition rewards). From these reports, the mechanism can
construct a joint MDP M =

�

i∈nMi, solve it to obtain jointly optimal policy π∗,
and finally compute payments based on this joint policy. At the end of the round,
the agents are notified of the outcome, i.e. π∗, and the resulting payments, and they
update the current state of their local type space MDP to their new type.

For the maintenance planning problem, the local dynamic type space MDP is defined
by the tuple Mi = 〈Si, Ai, Pi, Ri〉 and it is constructed identically to the single-agent
MDP model of Section 3.3. To briefly recapitulate: states Si capture start and end
times of maintenance activities Ai, the set of actions Ai contains a start action starti
for each of the agent’s activities ai ∈ Ai, Pi specifies a transition for every start action

157

CHAPTER 6. MAINTENANCE PLANNING WITH SELF-INTERESTED AGENTS

to a state where the corresponding activity is or is not delayed, and Ri specifies the
(local) profit obtained (revenue minus maintenance costs) for performing the activity.
Note that the network costs ` cannot be modelled locally (see Section 3.3.1), they
are assumed to be publicly known and included in the sequential SCF of the dynamic
mechanism that coordinates the agents. The dynamic type space is illustrated below.

Example 6.8 Dynamic type space

Again there are two agents, A and B, that want to coordinate their planning while max-
imising their utility. However, this time both agents have to plan two activities, such that
their activity sets become AA = {a1, a2} and AB = {b1, b2}, over three time steps. These
activities and their associated maintenance costs are defined in Table 6.1a and Table 6.1b.

AA t1 t2 t3

a1 = 〈0, 1, 0.2, 1〉 6 4 5

a2 = 〈0, 1, 0, 0〉 12 3 5

(a)

AB t1 t2 t3

b1 = 〈0, 1, 0, 0〉 7 9 11

b2 = 〈0, 2, 0, 0〉 5 8 2

(b)

Table 6.1 Activity sets and maintenance costs of both agents, the costs are shown per
time step in the last three columns of each table.

From the activity definitions and maintenance cost functions, a local dynamic type
space MDP can be constructed for both agents that models their local planning problems.
The dynamic type space MDPs that correspond to the activity sets and maintenance costs
of Table 6.1a and Table 6.1b, are shown in Figure 6.2a and Figure 6.2b respectively. Note
that due to activity a1 of agent A that can delay with probability 0.2, the type of that
agent is uncertain – i.e. dynamic – and therefore a dynamic mechanism is required. If none
of the activities can delay, it would have been possible to coordinate the problem using the
one-shot VCG mechanism of the previous section (but only then, see Example 6.11)

t1 t2 t3 td

a2

a1 o−a1

a1

o+
a1

a2

a2−6

−3

−10 −5

−12

−4

−9

0.8

0.2

o+
a1

0.8

o−a1

0.2

a2
−5◦a

(a)

t1 t2 t3 td

b2
−10

−13

−7

b2

b1

b1
−11

(b)

Figure 6.2 The dynamic type space MDPs of both agents: (a) type space of agent A
that contains one activity a1 with an uncertain duration and (b) that of agent B with two
activities that cannot delay. The reward for every transition is shown (in blue) over the
result state and only the probabilities of both outcomes for uncertain activity a1 are shown
labelled below the transitions (in red), all other transition probabilities are equal to one.

158

6

6.1. A DYNAMIC MECHANISM APPROACH TO MAINTENANCE PLANNING

The dynamic type that each agent reports to the mechanism is θ̂ti =
〈
sθ̂t

i
, Pθ̂t

i
, Rθ̂t

i

〉
such that sθ̂t

i
∈ Si is the current state of the agent, Pθ̂t

i
the transition probabilities and

Rθ̂t
i

the associated transition rewards. The transition probabilities that an agent reports

include all possible transitions from the current state until the end of the mechanism
period T and implicitly defines the set of possible future static type states of the agent
and its (remaining) action set. For every transition, the reward function Rθ̂t

i
contains

an associated reward. The reported dynamic type θ̂ti hence defines an MDP itself,
with sθ̂t

i
as its initial state, describing all decisions the agent can make now and in the

future. Moreover, if all the agents are truthful, they can submit their dynamic type
space MDP to the mechanism at the beginning; thereafter only their current state has
to be submitted every round, i.e. the realised dynamic type.

The sequential social choice function Γ in dynamic VCG is a function that always
returns an outcome that is optimal, given the reported types of all agents. For stochas-
tic planning problems, such as mpp, this means that any optimal stochastic planning
algorithm can be used as sequential SCF, e.g. the algorithm presented in Chapter 4. In
particular, if agents are guaranteed to report truthfully and submit their full dynamic
type space MDP to the mechanism, it suffices to solve the stochastic joint planning
problem only once to obtain an optimal joint policy. This policy can then be used as
the SCF of the mechanism because it exactly prescribes the optimal joint action for
every combination of true types.46

In order to coordinate the maintenance planning problem with selfish agents such
that the sum of agent valuations is maximised, the dynamic VCG mechanism is used.
The valuation function of each agent captures the local value it has for doing main-
tenance, i.e. the sum of its revenues minus its maintenance and network costs. The
revenues and costs for every agent i ∈ N are represented by the reward function Ri
of its (true) dynamic type space MDP (see Example 6.8). The network rewards how-
ever are defined over combinations of activities and can therefore not be expressed in
terms of local states and actions. These need to be accounted for in the joint MDP
that results from combining all dynamic type space MDPs, as discussed in Section 3.3.
However, where previously the problem was to maximise the expected value of the
group as a whole, here each agent strives to optimise its expected individual utility.
Therefore, it is no longer sufficient to simply minimise the sum of all network costs,
in addition these costs must be attributed to the right agent: only the agent(s) caus-
ing hindrance should be penalised for it. In the remainder of this section, a dynamic
VCG mechanism will be constructed for the maintenance planning problem. Moreover,
it is possible to design its payments so that they correspond to the network costs of
mpp, thus making the maintenance mechanism an effective coordination method when
dealing with selfish agents.

It is reasonable to assume that in the context of selfish agents, consensus has
been established regarding the distribution of the network costs, for instance in the
contract. A straightforward method is to evenly divide the network costs over the

46 Although π∗−i, the optimal policy without agent i, must still be computed every round because this
policy is influenced by past decisions of agent i, see Example 6.11 at the end of this section.

159

CHAPTER 6. MAINTENANCE PLANNING WITH SELF-INTERESTED AGENTS

agents responsible, as was the case in the game of Example E.4.47 When dealing only
with binary network costs, the valuation of an agent i for a joint activity ~a when every
agent reports truthfully is then (informally) of the form vi(θ̂

t,~a) = wi − ci(ai, t) −
0.5×

∑
aj∈~a `(ai, aj , t) such that wi and ci are respectively the one-time revenue and

time-dependent maintenance cost function of activity ai ∈ ~a of agent i and ` the
function that models inter-agent network costs. In general any asymmetric distribution
of network costs can be used as long as its sum equals the total network cost, i.e.
`(~a, t) =

∑
i∈N `i(~a, t). An example of such a distribution is a weighted sum in which

every agent is fined based on the proportion of network costs it generates.
Given such a network cost distribution method, the expected valuation that an

agent i ∈ N has when the mechanism uses joint policy π as its sequential SCF and
the agents report according to joint strategy σ can be modelled alike Equation 3.7 as:

Ṽ πi (θ̂t, ~σ) =

E
[∑
ak∈Hh ∩Ai

wk(θ̂ti)−
∑
t∈T

(
ci(θ̂

t
i, H

t) + `i(H
t)
) ∣∣∣ θ̂t = ~σ(θt), Ht = Ht−1⊕ π(θ̂t)

]
(6.8)

where wk(θ̂ti) is the reported revenue for completing activity ak and ci(θ̂
t
i,~a

t) =

ci(θ̂
t
i, ai, t) is the reported maintenance cost for activity ai ∈ ~a t ∩Ai of agent i at

time t ∈ T . Recall that the shorthands c(Ht) and `(Ht) denote respectively c(Ht
A(t), t)

and `(Ht
A(t), t), a notation that was introduced in Chapter 3.

Using these new valuations in which the network costs are assigned to the re-
sponsible agents, it is possible to define a dynamic VCG mechanism for the prob-
lem. Let the true dynamic type space of every agent i ∈ N be modelled as an
MDP Mi = 〈Si, Ai, Pi, Ri〉 then the joint dynamic type MDP M can be constructed
as 〈
�

i∈n Si, {A}i∈N ,
�

i∈n Pi,
�

i∈nRi ∪ `〉 (the details regarding this construction
are explained in Section 3.3). Moreover, the joint MDP without agent i’s presence
induced by the joint report θ̂t−i at time t is defined as M t

−i and is constructed likewise
although without agent i. With these notations, the dynamic maintenance mechanism
can be defined:

Definition 6.9 Dynamic Maintenance Mechanism

The Dynamic Maintenance Mechanism is defined as the tuple 〈π∗,ρ, T 〉 in which:

• π∗ is the optimal policy for joint MDP M ,

• the expected payment for every agent i ∈N from time t ∈ T until the planning
horizon h is given by

p̃i(θ̂
t, ~σ) =

∑
j∈N\{i}

(
Ṽ π
∗

j (θ̂t, ~σ)− Ṽ π
∗
−i

j (θ̂t−i, ~σ−i)
)

(6.9)

47 An alternative but intuitive way to model the network costs in a mechanism is by introducing an
additional ‘society’ agent that represents the network users, with ` as its valuation. The payments
that this agent makes correspond to the tax payers collectively compensating the service providers
for their ‘willingness’ to minimise hindrance or, when it receives a payment, a financial compensation
for the hindrance they collectively experienced.

160

6

6.1. A DYNAMIC MECHANISM APPROACH TO MAINTENANCE PLANNING

where Ṽ π
∗

j and Ṽ
π∗−i

j are computed using Equation 6.8 and π∗−i is the optimal

policy for M t
i, i.e. the joint type space MDP induced by the reported type θ̂t−i

at time t, and

• T is the planning period.

The dynamic maintenance mechanism, is efficient, i.e. it optimises the sum of expected
utility over all agent. Furthermore, due to its construction, the payments under this
mechanism align exactly with the expected harm in terms of network costs caused by
concurrent maintenance. As a result, the dynamic maintenance mechanism can be
shown to be a dynamic VCG mechanism:

Theorem 6.10 The Dynamic Maintenance Mechanism is dynamic-VCG

The dynamic maintenance mechanism is a dynamic VCG mechanism.

Proof. For the Dynamic Maintenance Mechanism to be a dynamic VCG mechanism,
the three conditions for a dynamic VCG mechanism must be satisfied:

(i) The expected valuation of an agent i ∈ N is given by Ṽ π
∗

i (θ̂t, ~σ) from Equa-
tion 6.8. Summing the expected valuations over all agents results in (using
shorthand θ̂t, Ht to denote θ̂t = ~σ(θt), Ht = Ht−1⊕ π∗(θ̂t):∑

i∈N

Ṽ π
∗

i (θ̂t, ~σ)

=
∑
i∈N

E
[∑
ak∈Hh ∩Ai

wk(θ̂ti)−
∑
t∈T

(
ci(θ̂

t
i, H

t) + `i(H
t)
) ∣∣∣ θ̂t, Ht

]
= E

[∑
ak∈Hh

wk(θ̂t)−
∑
t∈T

(
c(θ̂t, Ht) + `(Ht)

) ∣∣∣ θ̂t, Ht
]

in which c(θ̂t,~a, t) =
∑
i∈N ci(θ̂

t
i, ai, t) due to Equation 3.5 and `(~a, t) =∑

i∈N `i(~a, t) by construction. This is exactly equal to the expected value of
Equation 3.7 that the optimal policy π∗ optimises for the (reported) joint dynamic
type space MDP M . As a consequence, policy π∗ optimises the expected overall
welfare.

(ii) and (iii): By definition of Ṽ πj (Equation 6.8) it holds that
∑
j∈N\{i} Ṽ

π∗

j (θ̂t, ~σ)

and
∑
j∈N\{i} Ṽ

π∗−i

j (θ̂t−i, ~σ−i) are equivalent to Ṽ Γ
−i(θ̂

t, ~σ) and Ṽ
Γ−i

−i (θ̂t−i, ~σ−i)
respectively when optimal policy π∗ is used as sequential SCF and π∗−i is the
optimal policy for the joint dynamic type space MDP M t

−i that disregard re-

ports θ̂ti by agent i (its states, transitions and rewards are not included in the
MDP).

Because of Theorem 6.10, the dynamic maintenance mechanism is a dynamic VCG
mechanism and, as a corollary, it is incentive compatible, individually rational and
weakly budget balanced in within-period, ex-post Nash equilibrium.

161

CHAPTER 6. MAINTENANCE PLANNING WITH SELF-INTERESTED AGENTS

Example 6.11 Dynamic Maintenance Mechanism

Consider once more the two agents, A and B, from Example 6.8 that need to perform
activities {a1, a2} and {b1, b2} respectively. Their activities are defined as shown in Ta-
ble 6.2a and Table 6.2b. Additionally, the network costs are defined pair-wise and time
independent according to the matrix of Table 6.2c. For example, for every time step that
activity a2 and b1 are concurrently executed, the network cost ` is `(a2, b1) = 5 (omitting
t because of the time independence). Observe that activity a1 of agent A may delay with
a probability of 0.1 and it requires one additional time step when it is delayed.

AA t1 t2 t3 t4

a1 = 〈0, 1, 0.1, 1〉 6 11 9 18
a2 = 〈0, 1, 0, 0〉 12 5 3 7

(a)

AB t1 t2 t3 t4

b1 = 〈0, 1, 0, 0〉 7 2 3 25
b2 = 〈0, 1, 0, 0〉 5 8 15 17

(b)

` b1 b2

a1 12 5
a2 9 15

(c)

Table 6.2 Activity sets and maintenance costs of (a) agent A and (b) agent B. The
network costs are defined over activity pairs as (c).

The agents agree to using a static VCG mechanism (its construction is illustrated in
Example E.13), with again the network costs split evenly over both agents. However, as
now the agents are planning in a setting that includes uncertainty, they can no longer
simply report their costs and let the mechanism compute an optimal time-slot allocation
(plan). Instead, they each report their dynamic type, i.e. their cost model of the current
and future decisions as an MDP (as in Example 6.8), that models their costs for every
anticipated outcome. The mechanism then employs a stochastic planning algorithm as its
outcome rule that computes the optimal policy given the dynamic type reports. Finally, the
payments of this new mechanism charge each agent the harm in expected utility it brings
upon others, determined by the difference in expected policy values with and without the
agent.

0.1

o+
a1

o−a1

a1, b2

b1 a2

a1 b1 a2

(−6− 5)− 5

0.9

−2 −3

(−6− 5)− 5 −11 −3 −7

π∗

(a)

0.1

o+
a1

o−a1

a1

◦A a2

a1 a2

−6

0.9

0 −3

−6 −11 −3

π∗−B

b2 b1
−5 −2

π∗−A

(b)

Figure 6.3 The optimal policies of the static mechanism (a) with both agents participating
and (b) for each agent without the presence of the other. Probabilities are annotated in
red and transition rewards are shown in blue as a label of the result state.

First, consider the scenario in which both agents report their complete, dynamic type
MDPs MA and MB truthfully in joint dynamic type report θ̂. The mechanism computes

162

6

6.1. A DYNAMIC MECHANISM APPROACH TO MAINTENANCE PLANNING

three policies: the optimal policy π∗ for the joint type MDP MA×MB in which both agents
participate, the optimal policy π∗−B for MA when B would not have participated and the
optimal policy π∗−A for MB without A’s presence. These are all shown as a state-action
diagrams in Figure 6.3.

The payments in the static mechanism are computed as the difference between expected
policy values that an agent has when the other agent is and is not participating. For
agent A, this results in a payment:

pA(θ̂) = v−A(θ̂, π∗)− v−A(θ̂, π∗−A)

=
(

(cB(b2, t1) +
1

2
`(a1, b2)) + Pr(o+

a1)cB(b1, t2) + Pr(o−a1)cB(b1, t3)
)

−
(
cB(b2, t1) + cB(b1, t2)

)
=
(

(−5 +−1

2
`(a1, b2)) + 0.9(−2) + 0.1(−3)

)
−
(
− 5 +−2

)
=
(

(−5 +−1

2
× 5) + 0.9(−2) + 0.1(−3)

)
−
(
− 5 +−2

)
= (−7.5− 1.8− 0.3)− (−7) = −2.6

and, analogously, the payment for agent B can be determined as

pB(θ̂) = v−B(θ̂, π∗)− v−B(θ̂, π∗−B)

=
(

(−6 +−1

2
`(a1, b2) + 0.9(−3) + 0.1(−11 +−7)

)
−
(

(−6) + 0.9(−3) + 0.1(−11 +−3)
)

= (−8.5− 2.7− 1.8)− (−6− 2.7− 1.4) = −2.9

Thus, both agents pay half of the network costs (−2.5) that is caused in the first time
step and each agent additionally pays for future decisions they influence negatively. In the
case of agent A, when his activity a1 delays, B will start b1 not at time t2 but t3 and
its utility is decreased by 1, with a probability of 0.1, leading to total payment −2.5 +
0.1 × −1 = −2.6. Vice versa, the presence of B causes A plan a2 at t4 instead of t3

(if a1 was previously delayed), decreasing A’s utility from −3 to −7 and thus B pays
−2.5 + 0.1×−4 = −2.9. So far, the VCG mechanism seems to work out as well as in the
static mechanism example; nevertheless, it is easy to demonstrate that this mechanism is
not strategyproof.

Assuming once again that agent A has received information that B will always report
truthfully, it can manipulate its utility in its own favour. Observe that the compensation for
the expected harm is discounted by the probability of such harm occurring. In other words,
when the probability of harming another agent in the future is relatively small, the payment
is also relatively low. This offers an avenue for strategic reporting. Given that B will report
the same, truthful dynamic type MDP MB , agent A now reports dynamic type MDP M̂A

that is the same as MA but for the cost of activity a2 at time t4. Instead of reporting 7,
it now reports cA(a2, t4) = 40 and because of the new joint report θ̄ = 〈MA,MB〉, the
optimal policy changes such that when a1 is delayed, now first a2 and then b1 is executed.
This results in a reported joint cost of −28, as opposed to the −43 if a2 would have been
second. In particular, this increases the real utility of agent A by 4, as a2 is planned for
−3 instead of −7 whereas agent B loses 25. Both single-agent policies, i.e. without the
other agent, remain the same.

163

CHAPTER 6. MAINTENANCE PLANNING WITH SELF-INTERESTED AGENTS

Under this joint report, the payment of agent A becomes pA(θ̄) = (−7.5 + 0.9(−2) +
0.1(−28))− (−7) = −5.1 (where most of the terms equal the previous payment computa-
tion, except for the −28). Now although its payment has increased by 2.5, its costs have
decreased by 4 and therefore, by lying, agent A can increase its overall utility (although this
only happens when a1 is delayed). As a corollary, the static mechanism is not strategyproof
in the dynamic setting.

Using the dynamic maintenance mechanism of Definition 6.9, the dynamic setting can
be coordinated in a strategyproof way. To illustrate how this mechanism does achieve
strategyproofness, the same reports are considered and the payments of both agents are
computed. First the scenario where A reports truthfully in joint report θ̂ (and thus the
optimal policy is again π∗). In the first time step, the optimal policy for both agents is
then again π∗ and the individually optimal policies are π∗−B and π∗−A for agent A and B
respectively. This leads to payments

pt1A (θ̂t1, π∗) = v−A(θ̂t1, π∗(θ̂t1)) + Ṽ
π∗−A

−A (θ̂t2, ~σ ∗)− Ṽ π
∗
−A

−A (θ̂t1−A, ~σ
∗
−A)

=
(
− 5 +

1

2
×−5

)
+
(

0.9(−2) + 0.1(−3)
)
−
(
− 5 +−2

)
= −2.6

and

pt1B (θ̂t1, π∗) = v−B(θ̂t1, π∗(θ̂t1)) + Ṽ
π∗−B

−B (θ̂t2, ~σ ∗)− Ṽ π
∗
−B

−B (θ̂t1−B , ~σ
∗
−B)

=
(
− 6 +

1

2
×−5

)
+
(

0.9(−3) + 0.1(−11 +−7)
)

−
(
− 6 + (0.9(−3) + 0.1(−11 +−7))

)
= −2.5

in which θ̂2 is the dynamic type that results after executing optimal decision π∗(θ̂1) at
time 1 (in this case executing a1 and b2). Notice that in the static mechanism the payments
were pA = −2.6 and pB = −2.9; in the dynamic setting, agent A’s payment remains the
same but B pays only the network cost caused by its current decision to execute b2. Any
potential impact by future decisions, such as postponing a2 in favour of b1 when a1 delays,
will be accounted for in later payments. To see this, all payments are computed for both
possible outcomes of a1. When a1 does not delay the payments at time t2+ (+ to indicate
a1 did not delay) are given by

pt2+A (θ̂t2+, π∗) = v−A(θ̂t2+, π∗(θ̂t2+)) + Ṽ
π∗−A,t2+

−A (θ̂t3+, ~σ ∗)− Ṽ π
∗
−A,t2+

−A (θ̂t2+−A , ~σ
∗
−A)

= (−2) + (0)− (−2) = 0

pt2+B (θ̂t2+, π∗) = v−B(θ̂t2+, π∗(θ̂t2+)) + Ṽ
π∗−B,t2+

−B (θ̂t3+, ~σ ∗)− Ṽ π
∗
−B,t2+

−B (θ̂t2+−B , ~σ
∗
−B)

= (0) + (−3)− (−3) = 0

such that π∗−A,t2+ and π∗−B,t2+ are the optimal policies without the other agent from

time 2 onwards when a1 did not delay (i.e. its outcome was o+
a1) and like before θ̂t3+ is

the dynamic type that results from executing the decisions of π∗ for θ̂t2+. Note that the
payments are both equal to zero because there is no network cost interaction and neither
of the agents forces the other into planning its activity at a less favourable time. Put
otherwise, the decisions in π∗ match those of π∗−A,t2+ and π∗−B,t2+. This is also the case
for t3+ and t4+, hence now a1 is considered delayed (omitting formulas):

pt2−A (θ̂t2−, π∗) = (0) + (−3)− (−3) = 0

pt2−B (θ̂t2−, π∗) = (−11) + (−3)− (−11 +−3) = 0

164

6

6.2. SELFISH BEST-RESPONSE MAINTENANCE PLANNING

The last term in the payment of agent A may seem incorrect, because without agent A’s
presence from time t2, intuitively agent B could plan b1 at time t2 instead of t3 and
increase its utility by 1. However, although policy π∗−A,t2− does not consider current and
future decisions of A, past decisions have to be accounted for (and can be derived from
joint dynamic type θ̂t2−). Because of A’s decision at time t1 and the delayed outcome, a1

is still being performed at time t2 and this will lead to a network cost of 1
2
× 5 if agent B

plans b1 concurrently. For the next time steps the payments are:

pt3−A (θ̂t3−, π∗) = (−3) + (0)− (−3) = 0

pt3−B (θ̂t3−, π∗) = (0) + (−7)− (−3) = −4

pt4−A (θ̂t4−, π∗) = (−7) + (0)− (−7) = 0

pt4−B (θ̂t4−, π∗) = (0) + (0)− (0) = 0

When both agents are truthful and a1 is delayed, activity a2 is executed at time t4

instead of t3 and agent B is charged the utility loss (−4) of agent A through payment pt3−B
at time t3. Recall that the utility loss that B suffers as a result of activity a1 delaying
was already accounted for at time t1. Now the scenario in which agent A lies about its
costs – as before reporting cA(a2, t4) = 40 instead of 7 in joint dynamic type report θ̄ –
is analysed. The payments are computed for both outcomes of a1, first at time t1:

pt1A (θ̄t1, π∗) = (−5 + 2.5) + (0.9(−2) + 0.1(−3))− (−5 +−2) = −2.6

pt1B (θ̄t1, π∗) = (−6 + 2.5) + (−3)− (−3) = −2.5

and then for both outcomes of a1:

a1 is not delayed

pt2+A (θ̄t2+, π∗) = (0) + (−3)− (−3) = 0

pt2+B (θ̄t2+, π∗) = (0) + (−3)− (−3) = 0

pt3+A (θ̄t3+, π∗) = (0) + (0)− (0) = 0

pt3+B (θ̄t3+, π∗) = (−3) + (0)− (−3) = 0

pt4+A (θ̄t4+, π∗) = (0) + (0)− (0) = 0

pt4+B (θ̄t4+, π∗) = (0) + (0)− (0) = 0

a1 is delayed

pt2−A (θ̄t2−, π∗) = (0) + (−3)− (−3) = 0

pt2−B (θ̄t2−, π∗) = (−11) + (−3)− (−11 +−3) = 0

pt3−A (θ̄t3−, π∗) = (0) + (−25)− (−3) = −22

pt3−B (θ̄t3−, π∗) = (−3) + (0)− (−3) = 0

pt4−A (θ̄t4−, π∗) = (−25) + (0)− (−25) = 0

pt4−B (θ̄t4−, π∗) = (0) + (0)− (0) = 0

As a result of lying, agent A’s total payment increases by −22 when activity a1 is
delayed, whereas it only decreases its maintenance costs by 4. Therefore, agent A decreases
its utility by misreporting under the dynamic maintenance mechanism.

6.2 Selfish Best-response Maintenance Planning

The previous section defined an optimal method to coordinate maintenance planning
with self-interested agents. The downside of this method, beside the need to disclose
private information and submit autonomy to a centre, is that in order to guarantee
incentive compatibility, the sequential social choice function must find optimal con-
tingent maintenance plans. As discussed in Chapter 3, finding these poses a complex
computational problem. Moreover, to determine the payment for every agent i ∈ N ,
the mechanism must compute the policy π∗−i that would have been optimal without
agent i’s presence in every round of the mechanism. As a consequence, the computa-

165

CHAPTER 6. MAINTENANCE PLANNING WITH SELF-INTERESTED AGENTS

tional effort required to implement such a mechanism may be prohibitively large. This
section introduces a best-response coordination method that does not provide the wel-
fare optimality of dynamic VCG but is still robust against strategic behaviour, without
agents having to share their knowledge, and may be more feasible when dealing with
larger problem sizes.

The main bottleneck of a dynamic VCG mechanism, such as the dynamic mainte-
nance mechanism of the previous section, is that there is one central point of computa-
tion that must always determine efficient allocations, i.e. exact solutions. One could try
weakening the first condition of Definition 6.6 by considering approximate sequential
social choice functions, however none of the guarantees that dynamic VCG provides –
incentive compatibility, individual rationality and weak budget balance – transfer (di-
rectly) when using sub-optimal allocations. A mechanism that uses dynamic VCG with
an inefficient allocation scheme is hence vulnerable to strategic play and potentially
requires substantial amounts of external funding, rendering it useless for most practical
applications.48 Instead of pursuing the direction of approximate dynamic mechanisms,
here the focus is on ‘decentralising’ the computational effort while remaining invulner-
able to strategic behaviour. Instead of computing an optimal coordination strategy
centrally, the agents develop and iteratively improve a policy for their local planning
problem given the policies submitted by the other agents in a best-response fashion.
Thus in every round each agent gets a turn to respond to the plans of all others.

Algorithm 6.12 Best-response Maintenance Planning

Require: mpp instance M , utility functions {ui}i∈N , number of iterations X

1: π0 ← initial (random) joint policy for M

2: k ← 0

3: repeat

4: k ← k + 1

5: πk ← πk−1 . Start with previous joint policy

6: Ñ ← OrderAgents(N) . Determine order of agents

7: for i ∈ Ñ do

8: π′i ← arg maxπi∈Πi
ui(
〈
πi,π

k
−i

〉
) . Find best-response to πk−i

9: πk ←
〈
π′i,π

k
−i

〉
10: end for

11: until πk = πk−1 or k ≥ X
12: return πk

The basic outline of the best-response algorithm is presented in Algorithm 6.12.
Initially, every agent submits a policy that is optimal for its local planning, resulting
in a joint policy π0 that neglects all reward interactions between agents. But, as the
policies of all other agents become known, every agent can react to these in a best-
response fashion: an agent will change its policy when this yields a higher valuation
for the agent given the joint policy π−i of all other agents. As a result, the overall

48 Although examples of successful approximation can be found in the works by, amongst others, Briest
et al. [46], Hartline [111] and Mu’Alem and Nisan [180].

166

6

6.2. SELFISH BEST-RESPONSE MAINTENANCE PLANNING

expected utility of the joint policy (and for each agent individually) is likely to improve
in every iteration, until a local optimum is attained or X iterations have passed. In
general, this procedure is not guaranteed to end up in a local optimum, but for a specific
class of games known as potential games an iterative best-response method will always
result in a pure-strategy Nash equilibrium in a finite number of steps (Definition E.2)
[177, 219, 256].49 A potential game is defined as:

Definition 6.13 Potential Game

A game G (Definition E.1) is a potential game if there exists a potential function Φ:
Λ 7→ R such that when an agent i ∈N changes its action from ai to a′i, its change
in utility must equal the change in potential for both outcomes g(〈ai,~a−i〉) and
g(〈a′i,~a−i〉):

Φ(g(〈ai,~a−i〉))− Φ(g(〈a′i,~a−i〉)) = ui(g(〈ai,~a−i〉))− ui(g(〈ai,~a−i〉)) (6.10)

For the maintenance planning problem it is possible to construct a congestion game
[219] that belongs to a sub-class of potential games.50 More specifically, the model
that is most suitable for maintenance planning is that of the congestion planning game,
proposed by Jonsson and Rovatsos [127]. In congestion games, agents have to select
resources to use at a cost relative to the number of agents using it:

Definition 6.14 Congestion Game

A game G is a congestion game if there exists a set resources E = {e1, e2, . . . , em}
and a monotonic, increasing resource cost function ck : Z 7→ R for every re-
source ek ∈ E that depends on the number of agents assigned to resource ek
in outcome o given by #(ek, o), such that every outcome o ∈ O is mapping of
agents to resources and the utility of every agent i ∈ N is given by ui(o) =
−
∑
ek∈oi ck(#(ek, o)). Here, oi represents the resource assignment of agent i in

outcome o.

Rosenthal [219] showed that every congestion game is a potential game with a potential
function that accumulates (negated) resource costs, or

Φ(o) = −
∑
ek∈E

#(ek,o)∑
j=1

ck(j) (6.11)

and a Nash-equilibrium is guaranteed for this type of games if c is non-decreasing.
Jonsson and Rovatsos [127] extend the congestion game to a congestion planning
game by the addition of a local value function vi : O 7→ R for every agent i ∈N that

49 Note that the ordering in which agents find their best-response policies does matter as to which of
the local optima is obtained, hence the OrderAgents function in line 6 of Algorithm 6.12.

50 See e.g. the work by Roughgarden [221] for a detailed study of congestion games.

167

CHAPTER 6. MAINTENANCE PLANNING WITH SELF-INTERESTED AGENTS

depends only on the assignment oi of that agent such that its utility becomes ui(o) =
vi(oi)−

∑
ek∈oi ck(#(ek, o)). In this type of games the potential function is given by

Φ(o) =
∑
i∈N

vi(o)−
∑
ek∈E

#(ek,o)∑
j=1

ck(j) (6.12)

and it can be shown that this potential function also guarantees the existence of at
least one Nash-equilibrium [127].

Following the construction of Jonsson and Rovatsos [127], a potential game can be
constructed for mpp when an anonymous, non-decreasing model is used for the network
cost, such as the factor-based model of Example 3.5. Here, anonymous means that the
network cost only depends on the number of agents concurrently active on a resource
and not on the specific set of agents. The non-decreasing property is satisfied when
the network cost of performing concurrent maintenance can never decrease when the
number of agents working concurrently increases. This is trivially true for maintenance
planning: more concurrent maintenance on the network can only lead to the same or
more network costs.

The basic setup of the maintenance planning congestion game is a set of agents N
of size n, that each have to play a policy πi ∈ Πi (i.e. Λi = Πi) that optimises their
utility ui when their type is θi ∈ Θi. In this game, agents always report their true type
with their actual maintenance revenues and costs. The outcome rule in this game is
a straightforward function that combines the policies submitted by every player into a
joint policy π =

�

i∈n πi and therefore the set of outcomes in this game corresponds
to the set of available joint policies, i.e. O = Π =

�

i∈n Πi (later it is shown how a
joint policy induces a resource assignment). As a consequence, the local valuation vi
and utility ui of agent i can alternatively be expressed as functions of the joint policy π
and this notation will be convenient later on.

In Chapter 4 it is shown that, without loss of generality, the maintenance rewards
can be divided into a collection of local reward functions

{
R̄i
}
i∈N (local revenues

minus maintenance costs) and interaction rewards R̄ =
{
R̄k | k ⊆N , |k| > 1

}
(the

network costs). The local value function for each agent i ∈ N is defined as vi(π) =
E[R̄i |πi] = V πi , i.e. the expected value of policy πi (Definition 2.1) without the
network costs.51 For each interaction reward R̄k ∈ R̄ an interaction resource ek is
defined with a function

ck(x, t) =
1

x
R̄k(x, t) =

1

x
`k(x, t) (6.13)

that captures the cost per agent when x agents are active at resource e at time t.52 This
function is assumed to be non-decreasing at all t, i.e. x′ ≥ x implies ck(x′, t) ≥ ck(x, t)

51 Technically, the valuation function should be expressed over a resource assignment. It is trivial to
introduce |T | × |Ai| additional ‘activity time slot’ resources for all agents such that the resource
cost for each such a resource etk models the revenue minus maintenance costs when policy πi states
that an activity ak ∈ Ai starts at time t.

52 Again, in congestion game model this should be modelled as |T | resources for every interaction
reward, each modelling an interaction at time t. It is easy to show both models are equivalent.

168

6

6.2. SELFISH BEST-RESPONSE MAINTENANCE PLANNING

or, put in words, the addition of another agent to the resource will always increase the
cost for every agent assigned to it. One could imagine an interaction resource as an area
in which concurrent maintenance has a super-additive effect on traffic. The network
costs for such an area are computed through the (anonymous) function `k, indexed
by k to indicate its correspondence to interaction reward R̄k, that is non-decreasing in
the number of agents. For example, when activities a and b of two distinct agents result
in a (super-additive) network cost, there exists an interaction reward R̄k({a, b} , t) in
the mpp instance and for this reward function an interaction resource ek is created
with a cost function ck(x, t) = 1

2 R̄
k(x, t) based on the number of agents active on this

resource at time t. This number can be zero (a and b are not performed), one (a or b
is performed) or two (both a and b).

Remark 6.15 Non-anonymous Network Costs

The resource costs must be anonymous with regard to agents in the sense that
the increase in network cost does not depend on which agent is assigned. There
can however be non-anonymity as to what activity each agent performs. Two
activities ai and bi that result in different network costs within the same area
when the activities a−i of the others do not change, can be modelled using two
interaction reward functions R̄k1(〈ai, a−i〉) and R̄k2(〈bi, a−i〉) (with according net-
work costs `1 and `2) such that ai ∈ Dom(R̄k1), ai /∈ Dom(R̄k2), bi ∈ Dom(R̄k2)
and bi /∈ Dom(R̄k1). From the agent’s policy πi it is derived to which interaction
resource an agent is mapped, i.e. #(e1, t, πi) = 1 if πi(t) = ai or #(e2, t, πi) = 1
if πi(t) = bi.

In a standard congestion game, the number of agents that concurrently use a resource
is computed using the function #. In the stochastic setting, it is only possible to
determine the expected number of agents on a resource, given a joint policy π. For a
single agent, the probability of it being active at resource ek at time t can be derived
from its policy πi by considering all possible histories Hh of length h:

Pr(i ∈ ek|πi, t) =
∑

Hh∈Hh|πi

Pr(Hh) ·

1, if Hh
A(t) = ai, ai ∈ Ai

and ai ∈ Dom(R̄k)

0, otherwise

(6.14)

The probability of j agents being concurrently assigned to resource ek is then given
by the sum of probabilities of all

(
n
j

)
(unique) subsets N j of agents with size j being

assigned to it at time t, or

Pr(|ek| = j |π, t) =
∑
Nj⊆N

(∏
i∈Nj

Pr(i ∈ ek|πi, t)×
∏

i∈N\Nj

Pr(i /∈ ek|πi, t)
)

(6.15)

Alternatively, this can be written recursively which will be useful later on:

Pr(|ek| = j |π, t) =



0, j < 0

0, j > |π|
1, j = 0

Pr(i ∈ ek|πi, t)Pr(|ek| = j − 1 |π−i, t)
+Pr(i /∈ ek|πi, t)Pr(|ek| = j |π−i, t), otherwise

(6.16)

169

CHAPTER 6. MAINTENANCE PLANNING WITH SELF-INTERESTED AGENTS

Given the expected occupation of a resource, the corresponding expected cost is
computed by summing over all potential occupation levels and the probability thereof:

c̃k(π, t) =

n∑
j=1

Pr(|ek| = j |π, t) ck(j, t) (6.17)

As the execution of a joint policy is inherently uncertain, agents in the maintenance
congestion planning game optimise their expected utility. For each agent i ∈ N , the
utility it obtains when it is potentially assigned to resources ek ∈ E (i.e. every ek ∈ E
for which Pr(i ∈ ek|πi, t) > 0 for at least one t ∈ T) when the joint policy is π is:

ui(π) = vi(π)−
∑
ek∈E

∑
t∈T

n∑
j=1

Pr(|ek| = j, i ∈ ek|πi, t) ck(j, t)

= vi(πi)−
∑
ek∈E

∑
t∈T

n∑
j=1

(
Pr(|ek| = j − 1|π−i, t)Pr(i ∈ ek|πi, t)

− Pr(|ek| = j|π−i, t)Pr(i ∈ ek|πi, t)
)
ck(j, t) (6.18)

The first term accounts for its expected local valuation, according to Equation 2.1,
while the second term counts the expected resource costs – the network costs – for
only those resources the agent is assigned to. The terms in the summation of the last
equality respectively express the probability that i creates a set of size j minus the
probability that a set of size j was already formed by the other agents while i is also
assigned to ek. The latter is accounted for in the next summation, when j = j + 1,
and thus prevents overcounting of costs at set size j. Note that there is no term for
Pr(i /∈ ek|πi, t) as there is no cost to agent i if it does not make use of the resources.

Finally, the potential function corresponding to this stochastic planning game is
defined as

Φ(π) =
∑
i∈N

vi(π) +
∑
ek∈E

∑
t∈T

c̃k(π, t) (6.19)

such that the potential sums the expected resource costs over all interaction resources.

Theorem 6.16 Maintenance Congestion Planning Game

The maintenance congestion planning game is a congestion planning game.

Proof. To prove the theorem, it must be shown that the conditions for a congestion
planning game still hold:

(i) When two joint policies π = 〈πi,π−i〉 and π′ = 〈π′i,π−i〉 differ only in policies πi
and π′i for agent i, it must be that Φ(π)− Φ(π′) = ui(π)− ui(π′).

(ii) The cost function c̃k(j, t,π) for every resource ek ∈ E is monotonic and increasing
in the number of agents.

(iii) The local value function vi for every agent i ∈N is independent from the resource
assignment of other agents.

170

6

6.3. FURTHER DISCUSSION

Condition (i) is proven in Appendix A.5 and thus the maintenance congestion plan-
ning game is a potential game. In fact, by proving this condition, the existence of
Nash equilibria in the maintenance planning game is guaranteed. Additionally, it can
be shown that the maintenance planning game is a congestion planning game by
proving conditions (ii) and (iii).

The expected resource cost must be monotonic in the expected number of agents
concurrently on the resource according to the joint policy. The interaction resource
costs ck are defined as Equation 6.13 and by construction monotonic increasing
in the number of agents at the resource. Now consider the other term of c̃k, the
probability Pr(|ek| = j|π, t) that j agents are assigned to the resource. Observe that
the expected number of agents at resource ek is given by ñk(π) =

∑n
j=0 Pr(|ek| =

j|π, t)×j. To prove condition (ii) it must be shown that when this expected number
increases, c̃k does also. Given two joint policies π and π′ such that ñk(π) > ñk(π′)
then there must exist at least one j for which Pr(|ek| = j|π, t) > Pr(|ek| = j|π′, t)
such that ∑j−1

j′=0
Pr(|ek| = j′|π, t) <

∑j−1

j′=0
Pr(|ek| = j′|π′, t) and∑n

j′′=j+1
Pr(|ek| = j′′|π, t) ≥

∑n

j′′=j+1
Pr(|ek| = j′′|π′, t)

Assume now that the sum of probabilities from j + 1 to n remains equal and that
the increase in probability at j, i.e. Pr(|ek| = j|π, t) − Pr(|ek| = j|π′, t), is equal
to p. Then, because ck is monotonic in j, p · ck(j, k) > p · ck(j − 1, t), which is the
maximal resource cost increase due to the probability increasing for any agent set
size smaller than j. Therefore, the increase in probability p at j results in an overall
increase of expected resource cost. When the sum of probabilities from j + 1 to n
increases, a similar argument can be made to show that again the expected resource
cost can only increase. The expected resource cost is hence monotonic, increasing in
the expected number of agents and, consequentially, condition (ii) is also satisfied.
Condition (iii) holds because the local value function is defined as vi(π) = V πi , i.e.
the expected value of the policy for only agent i, that by definition cannot include
any inter-agent rewards.

As a direct result of Theorem 6.16, the existence of a Nash equilibrium is guaranteed.
Therefore, any algorithm based on Nash-like improvements, such as the best-response
procedure of Algorithm 6.12, is guaranteed to find at least a local optimum of the
potential function. Note that the existence of such an equilibrium does not provide
any guarantees as to the value thereof. Furthermore, in a Nash equilibrium no agent
is better off by unilaterally changing its policy. Better solutions might be achieved if
agents collectively switch or coordinate policies.

6.3 Further Discussion

In this chapter two methods are presented to solve the maintenance planning problem
when dealing with self-interested agents, an optimal dynamic mechanism design solu-

171

CHAPTER 6. MAINTENANCE PLANNING WITH SELF-INTERESTED AGENTS

tion and an approximate best-response congestion game. The dynamic maintenance
mechanism is a dynamic Vickrey-Clarke-Groves mechanism, which is the only type of
dynamic mechanism that concurrently achieves within-period, ex-post incentive com-
patible, individually rational and weakly budget balanced. Nonetheless, there are several
caveats when using dynamic VCG mechanisms: it is vulnerable to opportunistic be-
haviour by groups of agents or when two or more (dummy) agents are controlled by
the same actor, the payments/revenues can be arbitrarily high, profits for the partici-
pants are minimised and the determination of payments may be – or quickly become
– computationally infeasible for some problems. As a consequence, other types of and
sub-optimal mechanisms have been proposed that counter some of these weaknesses,
dropping or trading off some of dynamic VCG’s desiderata.

The most famous counterpart of VCG is the class of d’Aspremont-Gérard-Varet
(AGV) mechanisms [15].53 Alike VCG, mechanisms from the AGV class are efficient, but
additionally they are strictly budget balanced, made possible by defining the payments
based on expected utilities. The trade-off is that AGV mechanisms can only guarantee
ex-ante individual rationality, i.e. players expect to benefit from participating, and
incentive compatibility is implemented in a Bayesian-Nash equilibrium as opposed to the
dominant strategy equilibrium. An extension of this mechanism to the dynamic setting
is shown by Athey and Segal [16], where in fact a more general class of efficient dynamic
mechanisms is proposed which they dub the (balanced) team mechanism. Another
interesting avenue for efficiency is that of approximate mechanism design, especially
when dealing with complex (sequential) social choice functions and payments as for
instance mpp. More on this can found in the works by Briest et al. [46], Hartline [111],
Mu’Alem and Nisan [180], Nisan et al. [188], amongst many others.

With regards to the maintenance planning congestion game of Section 6.2, approx-
imation of the policy search does not interfere with the Nash equilibria of the game as
long as it is deterministic, for instance using the RDDL encoding of Chapter 5. When
policies can be found quickly many iterations of the best-response game can be played,
leading to local optima fast. In particular, it would then be possible to include random
restarts or planning heuristics to increase the chances of finding a good or even opti-
mal local minimum. Finally, note that although agents may cheat the best-response
approach by strategically reporting plans that cause other agents to divert from their
best choices, this behaviour can be countered by instilling fines for not following the
established joint plan. Because the agent is never sure what the last round will be, he is
not guaranteed to be able to resubmit a plan that maximises his own reward at a later
time. Consequentially, opportunistic agents either have to adhere to the joint plan,
thus performing activities at a sub-optimal time that was strategic to report, or divert
from the plan and incur steep penalties. In both cases the agent suffers from its mis-
reporting. Another approach can be to incentivise the sharing of planning information
through explicit rewards [192, 244] so that the joint plan converges to a truly optimal
outcome for all. Lastly it remains to note that the approach described here resembles
the “better-response strategy” of Jordán et al. [128] that was published recently.

53 Independent from this work, Arrow [14] proposed a similar mechanism class.

172

Chapter 7

The Game of Maintenance
Planning

The algorithms and techniques of the previous chapters combined provide a solid theo-
retical basis for the design of incentives and the coordination of agents in self-regulating
planning problems such as the maintenance planning problem. Here, a first step
is taken into the direction of bringing these techniques into real-world contracts. This
chapter investigates the effectiveness of incentives in the group setting and the poten-
tial of self-regulation as a viable alternative to complete regulation when confronted
with human decision-makers. Recall from Section 1.1 that performance-based ap-
proaches such as self-regulation offer many promising benefits, e.g. increased flexibility,
preservation of autonomy and authority, stimulation of performance of each individual
participant as well as the group, less demand on governmental resources and, conse-
quentially, makes better use of public funding [7, 47, 75, 124, 141, 233]. Before these
benefits can be realised, however, a number of challenges must be overcome. Inherently,
self-regulation implies that the coordination amongst individual parties becomes more
complex and uncertain. This is particularly noticeable in the form of increased poten-
tial for opportunistic, self-interested behaviour and possible misalignment of (societal)
objectives that may lead to sub-optimal performance or failures.

For bilateral performance-based contracts, i.e. a partnership between the asset man-
ager and a single service provider, a lot of research has been performed on (the success
of) incentives and practical examples thereof [43, 62, 268]. The management of a
network (see Remark 7.1 below) through performance-based incentives, however, has
not received as much attention and is still paired with great uncertainties. Of particular
interest is the use of incentives to instill self-regulation. This approach is actively being
pursued by, amongst others, Bresnen and Marshall [45], Rose and Manley [218], Love
et al. [163], Volker et al. [254] and Hosseinian and Carmichael [118]. The design of
monetary incentives is considered key to the success of these approaches. Therefore,
of at least equal importance is the effectiveness of said incentives to influence the
decision-making process of contractors. A perfectly designed payment mechanism is
rendered useless if contractors are not stimulated by these incentives in their planning,

173

CHAPTER 7. THE GAME OF MAINTENANCE PLANNING

coordination and execution. Furthermore, many authors state the paramount role of
social relationships in group performance-based contracts and argue that the social di-
mension may be more effective in maximising performance and inciting self-regulation
of a network [41, 47, 140, 218]. Although the use of incentives and requirements for
their design have received much attention in literature, the effectiveness of such incen-
tives to actually influence decision making has not been widely studied in the context
of networks, let alone seen any empirical evaluation. This is surprising since on the
one hand many authors argue the importance and benefits of using performance-based
innovative contract forms in network tenders while others report limitations on the
effectiveness of incentives in said methods.

Remark 7.1 (Public) Network Management, Networks and Network Members

At first the use of the terms network and network management may seem confusing
in this chapter but this terminology is widely recognised in literature. The field
of network management studies the composition, governance and interactions of
inter-firm teams, commonly in the context of multi-agent service delivery or group
contracts. An inter-firm group is referred to as a network and its members are
hence the network members. Public network management (PNM) is the more
specific branch that applies if the network is “led or managed by government
representatives” Agranoff and McGuire [7]. It does not mean the management of
an actual infrastructural or IT network, although these can be the reason for the
network to exist.

This chapter addresses this uncertainty with respect to the effectiveness of monetary
incentives in network tenders and the role of social cohesion of the network. In particu-
lar, it investigates the emergence of coordination in a setting that is designed to reward
contractors for coordinating their interactions or, in other words, the manifestation
of self-regulation as a result of monetary incentives. This setting is created through
serious gaming, a method to perform research in a controlled simulated environment.
This approach enables research into changes in behaviour or decision making without
the risks and potential costly failures that may occur in real-world testing [49, 169].
Using such a serious game, it is investigated whether contractors change their decision-
making behaviour in the presence of network incentives and that this leads to intrinsic
coordination of the network. Furthermore, as several articles report on the importance
of relationships [45, 218] and their impact on contract outcomes [140], the social co-
hesion of the network is investigated as a potential moderator for self-regulation. To
this end, the following research questions are considered in this chapter:

RQ1 Are monetary incentives effective in influencing the decision making of contractors
in the network setting?

RQ2 Does the use of monetary incentives that reward coordination of the network lead
to self-regulation?

RQ3 Does the relationship between network members influence the effectiveness of
the incentives and, indirectly, the manifestation of self-regulation?

174

7

7.1. THE ROAD MAINTENANCE GAME

Contributions This chapter contributes a serious game to study the application of
monetary incentives in a controlled setting with human decision makers. In particular,
the serious game is used to evaluate the potential of monetary incentives to incite self-
regulation. The results of the gaming experiment provide initial evidence that the use of
incentives to steer decision making also applies in the team setting with human-decision
makers, but also show that monetary incentives may lead to unintended consequences.
The findings revealed that monetary incentives based on traffic penalties introduces
competition in the network which hinders coordination. Only in networks with strong
social cohesion this adversarial setting can be overcome and emergent coordination
arises as intended. This suggests that theoretically-engineered incentives may lead to
unexpected and undesired outcomes in practice and that the social dimension is key
to the successful implementation of self-regulation. Moreover, the chapter additionally
presents the design and implementation of the serious game itself that can be used
as a ‘sandbox environment’ in future and related research. The contributions of this
chapter are presented by Scharpff et al. [232] and a complete description of the serious
game and all data that was collected is given by Scharpff et al. [231]. The source
code and data from gaming sessions can be retrieved from the repository at https:

//github.com/AlgTUDelft/road-maintenance-game.
The contributions of this chapter are currently under review for publication and this

chapter is at large a duplication of that article with some alterations to better fit the
style and terminology of the thesis. Most noticeably, the introduction, discussion and
conclusion sections of the paper have been condensed as they are covered in other parts
of this thesis, and sections have been retitled and refactored in accordance with the
format of the thesis. Finally, references to other parts of this work have been integrated
into the body text while explanations of game theory, mpp and other already established
concepts have been removed.

7.1 The Road Maintenance Game

This chapter addresses the uncertainty in network management literature with respect
to the effectiveness of monetary incentives to influence human decision making and
incite self-regulation, and the impact of relationships on this effectiveness, by address-
ing the three aforementioned research questions. While ideally these questions are
answered through real-world experiments, this introduces additional and complex vari-
ables into the decision making and the cost of failure in practical tenders prohibits such
an approach without prior evidence. Therefore the concept of self-regulation though
incentives is first validated in a controlled, agent-based simulation in the form of a seri-
ous game. While serious games are primarily known as a tool for instruction, they can
also be employed as a research method comparable to simulation or experimentation
[49]. Serious games have the potential to integrate a multiplicity of elements including
motivation, expertise and social structures, and can be considered a means to explore,
explain, and assess the complex interactions between ecosystems and human actions
[18]. This research methodology is also known as (agent-based) participatory simu-
lation [107] and can serve to enhance our scientific understanding or to recommend
corrective policy action, as in the studies of e.g. Le Bars and Le Grusse [23], Altami-

175

https://github.com/AlgTUDelft/road-maintenance-game
https://github.com/AlgTUDelft/road-maintenance-game

CHAPTER 7. THE GAME OF MAINTENANCE PLANNING

rano et al. [9] and Meijer et al. [169]. Although the closed-system of a game does
not allow direct generalisation to real-world tenders, it does enable a controlled eval-
uation of changes in the decision-making process and allows reflection on the concept
of implementing self-regulation through incentives.

This section describes three parts of the serious gaming setup. First, it is detailed
what measurements are performed in the experiment, both from the game as well as
through a preliminary questionnaire. Thereafter hypotheses are formed with respect to
the measurements that serve to investigate the research questions from experimental
data. Finally, the section concludes with an outline of the gameplay to illustrate the
game process. The game design and its measurements are summarised here, for a
more complete explanation on the game and its model see the on line appendix [231]
or Appendix B for a detailed description on the measurements.

7.1.1 Operationalising Decision-making, Coordination and
Cohesion

The decision preferences of players are expressed in terms of the three distinct decision
parameters or objectives of the problem domain, namely profit, traffic time lost (ttl)
and risk aversion. A preference for profit reveals itself in predominantly making choices
that lead to a higher profit to the player. A player with a ttl preference is more likely
to strive for minimisation of expected impact on the traffic hindrance. Players that are
risk-averse tend to favour approaches with low delay probability, preferring more robust
planning with low variance in both the profits and ttl.

The decision preferences of players before playing the game are captured in their
profile score. This score is measured through a questionnaire (Figure 7.1) that partici-
pants submit 2 weeks prior to the game. This questionnaire consists of 8 increasingly
complex game situations and participants are asked to rank the options according to
their preferences. From this the profile scores are computed using the methodology
from Triantaphyllou [248]. First the questionnaire is modelled as a multi-criteria de-
cision making in which participants rank their preference over alternatives for every
question to determine the relative weights of alternatives. Then, from the responses
that specify rankings for the alternatives, a preference score per objective is computed
using the weighted-sum method from Roszkowska [220]. Finally, the preference scores
are normalised to obtain the relative importance of each objective. That is, if Q̂p(X)
expresses the preference score for the objective profit (hence the subscript ‘p’) com-
puted from questionnaire responses X, the profile score for the profit parameter is given
by

Qp(X) =
Q̂p(X)

Q̂p(X) + Q̂t(X) + Q̂r(X)
(7.1)

Similarly, the profile scores Qt(X) and Qr(X) express the relative preference for
respectively ttl (subscript ‘t’) and risk aversion (subscript ‘r’). Finally, the rationality
of these responses is determined by comparing them to the Pareto optimal trade-off
[223], which serves as a measured for how well participants are able to make trade-offs.

176

7

7.1. THE ROAD MAINTENANCE GAME

Question 5

You have chosen four potential periods in which you can perform your project.
Using quarterly figures, you determine the following prospects regarding four
possible maintenance periods:

Situation
Risk
of

delay
Period 1 Period 2 Period 3 Period 4

Project
as

planned
67%

TTL 370.000 416.000 333.000 615.000

Profit € 1.369.000 € 1.323.000 € 1.406.000 € 1.124.000

Project is
delayed

33%
TTL 503.000 571.000 493.000 809.000

Profit € 1.236.000 € 1.168.000 € 1.246.000 € 930.000

In addition, you also possess information regarding the TTL figures of the
previous year.

a) Can you specify the order of periods in which you prefer to perform the
maintenance? Please rank them from 1 (best) to 4 (worst).

Answer: Rank:
Period 1
Period 2
Period 3
Period 4

b) Please motivate your ranking.

Figure 7.1 Example problem from the questionnaire.

The strategy scores are determined from the actions that are played in the game,
roughly similar to the multi-criteria method used on the questionnaire. Each of the
actions of the game have been designed for a specific goal and are assigned weights
accordingly. Then the alternative weights of the actions performed are summed to
form a preference score which in turn is normalised to express relative importance of
the objective as in Equation 7.1. For example, the ‘low hindrance’ action will have only
a minor impact on ttl and have a high ttl strategy score Gt. On the other hand, its costs
are relatively high compared to the other available actions and thus the profit strategy
score Gp for this action will be low. Given a maintenance plan plan Y that describes
the assignment of chosen maintenance methods to time slots, the profit strategy score
for that agent is denoted by Gp(Y), using the same subscripts as before.

The outcomes of the game are measured in terms of the profit and ttl that are to
be expected when executing the (current) plan Y, accounting for the risk of potential

177

CHAPTER 7. THE GAME OF MAINTENANCE PLANNING

delays using the standard approach of probability times utility. The functions P (Y)
and T (Y) express respectively the total expected profit and total expected traffic time
lost, given joint plan Y. Additionally, the functions Pwc(Y) and Twc(Y) represent
respectively the profits and ttl in the worst case, e.g. when all maintenance operations
delay. Note that the ttl depends on the joint plan of all players, i.e. all concurrent
maintenance within the infrastructure. The utility to a player is defined as the sum of
its profits from maintenance work minus its costs due to traffic penalties (1 euro for
every hour of ttl in this game model). Thus the sum of utilities u(Y) for a plan Y
is given by P (Y) − T (Y), and similar for the worst case. Finally, an outcome of the
game can be thought of as ‘better’ if either the total profit increases, the total ttl
decreases, or both. Therefore the performance ratio φ of a joint plan Y is computed
by the formula φ(Y) = P (Y)/`(Y). For clarity of presentation, the questionnaire
response X or joint plan Y are assumed implicit. For instance Qt(X) and P (Y) are
written as Qt and P .

Description

Coordination level

Low Conflict-driven coordination of interactions via bilateral or trilateral negotiations

Medium Coordination of network via democratic, plenary negotiations

High Centralised planning that governs network decisions

Cohesion level

Unfamiliar Players have (had) limited to no interaction previously

Familiar Players see and/or work with each other on a regular basis

Table 7.1 Definition of the qualitative categories for the coordination and cohesion level
variables and their descriptions.

In addition to the quantitative information that is measured from the questionnaire
and the game on decision preferences and the outcomes of the game, two qualitative
parameters are considered in this study. These are the coordination level that is show-
cased by the network and the social cohesion of network members. Both parameter
are established by classification rules, shown in Table 7.1. The coordination level of a
network is established trough observing the communications and interactions that take
place between the players outside of the game. Depending on the types of interaction
displayed by the players, the game session is classified into one of the categories. For
example, a session where players only resolve planning conflicts in pairs or triples would
be categorised as ‘Low’. If in addition plenary negotiations are used (at least once) it
would be considered ‘Medium’. The designation ‘High’ is given to game sessions in
which central regulation takes place. The social cohesion of the group is a qualification
of the relation between participants outside of the game, established through inquiry
at the start. Because a classification of social cohesion is hard to capture exactly, two
clearly disjoint categories are used. If players in a gaming session have never or rarely
interacted with each other, either during work or during social events, the group is
classified as ‘Unfamiliar’. Other groups, in which participants do frequently interact,
are classified as ‘Familiar’.

178

7

7.1. THE ROAD MAINTENANCE GAME

7.1.2 Hypothesising Self-regulation in Road Networks

Using the methodology of the preceding sections, the research questions that were pro-
posed in the introduction are examined. Therefore, these questions are translated into
hypotheses that can be tested in the closed system of the serious game. To ascertain
that the game is designed correctly and the human decision makers act according to
the model adopted here, first a set of validation hypotheses are formulated. Thereafter
it is discussed how the original questions (albeit in a compacter form) can be answered
through hypothesis testing.

Is the model valid? As a first step, the model of the game itself is analysed to
confirm the validity of the assumptions underlying the design and further experiments.
To this end, three hypotheses are proffered. The first hypothesis is that the decision-
making of human decision makers can be considered at least boundedly rational. While
an exact degree of rationality cannot be determined, decision optimality can be used
as an approximation of the ability to rationally maximise utility. Hence, the rationality
of a questionnaire response, and thus an indicator for the rationality of the participant,
is defined as its relative position on a scale from the lowest possible score to the
Pareto-optimal trade-off that is closest to the response score. The resulting metric is
an indicator for the rationality on the [0, 1] scale and agents are considered boundedly
rational if this their rationality score is at least 0.8. Therefore it is hypothesised that
the mean of rationality scores of the agents is at least 0.8 with a confidence level of
95%.

The second and third hypotheses establish the correctness of the game design.
Validation hypothesis two states that the actions affect their designated objective. That
is, the hypothesis is that there is a strong correlation between the played strategy scores
Gp, Gt and Gr and their corresponding impact on the outcome Y, respectively the
expected profit P (Y) and ttl T (Y) for the first two and the worst case profit Pwc(Y)
and ttl Twc(Y) for the latter. Finally, to confirm that coordination of decisions is
beneficial to the players and hence the premise that network-based incentives stimulate
coordination, a third hypothesis states that coordination is strongly correlated to utility.

Are monetary incentives effective to influence decision making? It is hypothe-
sised that applying monetary incentives in a network-based tender is an effective way
to influence the decision-making process contractors. Hence there should be a notable
difference in the decisions-making preferences of players when comparing the settings
with and without monetary incentives. Although both the questionnaire and the game
confront players with networks, only the latter actually includes monetary incentives.
This hypothesis is tested by comparing the means of the decision scores of both in all
decision parameters and showing that they are significantly different.

Do network incentives lead to self-regulation? Before the relation between the
incentives and self-regulation can be studied, first the notion of self-regulation must
be translated into the context of the game. When is a network considered to be self-
regulating? And how can self-regulation be quantified or at least partially ordered?

179

CHAPTER 7. THE GAME OF MAINTENANCE PLANNING

Answering these questions with an exact metric is infeasible, hence two hypotheses are
formulated that together approximate the original research question. The first is that
due to the presence of incentives, the observed coordination level of every game is at
least ‘Medium’, which corresponds to a network-wide coordination of interactions. In
games with a ‘Low’ rating, coordination arises from conflict that need to be resolved be-
tween two or three players and is not considered coordination of the network. Secondly,
in a self-regulated network, members are expected to act more in favour of the network,
which is expressed in the game through a traffic or risk-averse play-style. Thus, the
hypothesis is that a strong positive correlation exists between the coordination level
and the strategy scores for ttl Gt and risk-aversion Gr.

Do relationships influence the effectiveness of incentives and, indirectly, self-
-regulation? To confirm that decision making is influenced by social cohesion and
not a predisposed preference of individual participants, first a comparison is performed
between the a priori profile scores and the in-game strategy scores. The hypothesis is
that there exists no correlation between all pairs Qx and Gx, where x represents the
profit, ttl and risk-aversion objectives. Assuming that this first hypothesis is confirmed,
the inverse is studied for social cohesion. That is, it is hypothesised that social cohesion
is strongly correlated to changes in strategy scores only and the change in preferences is
statistically significant. Finally, it is to be expected that players that are more familiar
with each other are more likely to coordinate their operations, expressed in a strong
correlation between cohesion and coordination.

7.1.3 Playing the Game

The hypotheses of the previous section are validated in a controlled environment that
simulates maintenance planning problem in a game called “Road Maintenance
Game”. In this game, players take on the role of one of the five service providers (SPs)
that need to plan and execute maintenance work for the client, the asset manager
(AM), on the road network visualised in Figure 7.2. As monetary incentives to incite
self-regulation, the original network payments of Equation 3.6 are used such that SPs
are charged 1 euro per additional hour of ttl caused. The design of the game entails a
complex model of actions, rewards and rules, based upon figures of actual road main-
tenance projects from Brandt [42], of which an elaborate description can be found in
the online appendix [231]. Here the core parts of the game are explained to understand
the methodology and value the obtained results correctly.

Each players is responsible for an equivalent portfolio of 4 maintenance projects,
for which they must select one of the four alternative methods to perform the work
– ‘low cost’, ‘low hindrance’, ‘low risk’ and ‘fast completion’ – and plan them in
time. The methods differ in their duration and direct impact on the profits and traffic
hindrance, but also in their indirect impact in the form of risk of maintenance delays. All
alternatives except for the ‘low risk’ have a delay probability of 33% and varying delay
durations. If delayed, the project may incur additional costs and ttl. The alternatives
also vary in network impact: whereas the ‘low hindrance’ alternative results in low ttl
even when it is planned concurrently with other works, the ‘low cost’ alternative will

180

7

7.1. THE ROAD MAINTENANCE GAME

Figure 7.2 The user interface of a game in progress with the infrastructure (bottom left), the
current joint plan as Gantt chart (top) and a graph showing its impact on ttl (bottom right).
In the action bar on the right are the actions currently available to the player (Red Team).

lead to a substantial amount of ttl if planned concurrently with others. Finally, players
may decide to pass up on a project altogether and miss out on the contracted revenue
for that task but perhaps avoid steep ttl penalties. During the game, the interface
of Figure 7.2 functions as a decision-support system that computes and displays the
impact of their decisions, incorporating the last-known decisions made by other players.

The game is run in a client-server fashion, where the game master (the AM) hosts
a game server and all players (the SPs) connect to the game with Tablet PCs. Every
tablet corresponds to one of the players and shows the planning interface of which an
example is shown in Figure 7.2. This interface visualises the planning decisions and
their impact on profit and ttl and presents the available actions to the players.

Figure 7.3 The various stages of the game and their succession.

The game play follows the process flow of Figure 7.3:

1. At the start of the game players are introduced to the network, briefed and finally
assigned one of the five maintenance portfolios for which they will be responsible
during the rest of the game.

2. In the ‘individual planning round’ they are given the task to develop a mainte-
nance schedule according to their preferences. Their scheduling decisions can
be summarised into two actions for every maintenance project: a) choose the

181

CHAPTER 7. THE GAME OF MAINTENANCE PLANNING

preferred maintenance method and plan it in time or b) choose to not plan
the method. Each player individually submits their schedule to the AM when
satisfied.

3. Once all players submitted their plans, the AM merges them into a single joint
plan and sends that plan to all players thus informing them about the decisions
made by others.

4. Now a ‘network planning round’ starts. With the newly received information
about the plans of other players, every player is again requested to submit a
maintenance schedule for their operations. This schedule can be the same as
before, a slightly modified one to account for the other players or a completely
new one. Once they are again satisfied with their schedule, they submit it to
the AM and wait for the other players to do the same. Note that there are no
real-time updates of the other players’ plans during this round, only when all
plans are again submitted will this information be updated.

5. Once the (new) plans have again been received by the AM, the joint maintenance
plan is updated and sent back to the players. This time an approval round is
requested from all players.

6. In the approval round, every player either accepts or declines the joint plan. If
any of the players declines, a new network planning round is started and the
process is reset to the network planning round of step 4.

7. If all players accept the joint plan, the planning phase ends. From this point
onward no more changes can be made to the joint maintenance schedule and the
(expected) group ttl score is recorded. Now the execution phase starts, and the
only action left in the game is the ‘realisation’ of outcomes of the maintenance
projects. In the execution phase, the plan execution is (gradually) simulated
one week at a time until a maintenance operation starts that may delay. The
player to which the task belongs then rolls a dice. If the dice lands on a green
square, there will be no delay in the execution of the task, whereas a red square
means that the task is delayed (effectuated by the game master). This process
is continued until all tasks have been fulfilled and a year has passed in the game.
Then the game ends.

8. At the end of the game, the session winner is the player that has the highest
profit after the execution of the joint maintenance plan.

Players can win the game in two ways. In every session, the player that has the
highest profit after execution of the joint maintenance plan is declared the winner of
the session. On the other hand, the group of players that achieves the lowest expected
traffic time lost compared to all other sessions will win as a group (before execution).
These two ways to win mimic the typical misalignment between the goals of the service
providers (maximum profit) and that of the contractor (minimal nuisance) that is seen
in practice. To emphasise this misalignment and provoke competition, there is only a
small price for the winning player in a single session (e 2.50 scratch ticket) but a more
valuable one for the players in the winning session (e 10 vouchers for all participants).

182

7

7.2. GAMING RESULTS

7.2 Gaming Results

This section presents visual and tabular summaries of the data gathered through the
combination of the questionnaire and the Road Maintenance Game. The full data set
can be found in Appendix C and the repository available at https://github.com/

AlgTUDelft/road-maintenance-game. For the sessions both public institutions and
companies were contacted that focus on asset-management related activities. Getting
together a large enough group of people able to participate in a gaming session of ap-
proximately 3 hours proved to be challenging, especially when dealing with practitioners
from the industry. Nonetheless, 7 sessions with a total of 95 participants were hosted
in groups of varying composition, skill and social coherence. Furthermore, 60 ques-
tionnaire responses were received from the participants. Table C.1 gives a descriptive
overview of all sessions. The overall results of all sessions in terms of the game goals,
i.e. maximising profit and minimising ttl, are summarised in the graphs of Figure 7.4.
The figures show the expected profit and ttl of the group as a whole, as recorded at
the end of each round (based on the data of Section C.2 of Appendix C).

ID Company/institute Profile #P #Q Category Coordination Cohesion

A University, Computer Science 9 9 Students Low Unfamiliar

B ICT-focused R&D Company 10 9 Engineers Low Familiar

C Utility provider, mainly power 15 3 Professionals Low Unfamiliar

D Dutch national road authority 17 16 Trainees High Familiar

E Dutch national road authority 8 5 Trainees Medium Familiar

F AM Professionals 20 9 Professionals Medium Unfamiliar

G AM and Health-care Consultants 16 9 Professionals High Familiar

Table 7.2 Outline of game session characteristics, from left to right the columns are: ses-
sion identifier, company/institute, number of participants, number of questionnaires reviewed,
participants skill category, and the observed coordination and social cohesion of participants.

0

10

20

30

40

50

60

 1 2 3 4 5 6 7

E
u

ro
s
 (

K
)

Round number

Total Profits

(a)

Sessions

A
B
C
D
E
F
G

0

10

20

30

40

50

60

 1 2 3 4 5 6 7

H
o

u
rs

 (
K

)

Round number

Total Traffic Time Lost

(b)

Figure 7.4 Quality of the joint plan at the end of each round in terms of the goals profit and
ttl: (a) shows the expected profit in thousands of euros, (b) the expected ttl in thousands of
hours. Note that the ranges on the vertical axes do not align, but the sizes of the ranges do.
The line styles associated with each session are shown in the legend in the middle.

183

https://github.com/AlgTUDelft/road-maintenance-game
https://github.com/AlgTUDelft/road-maintenance-game

CHAPTER 7. THE GAME OF MAINTENANCE PLANNING

Outcomes and decision-preference scores are computed over N − 1 rounds, such
that N is the number of rounds played in a session. This is to correct for the ‘last
round’ effect due to the design of the game that the player with the highest expected
profit at the end of the game wins the session. This caused players to radically change
their strategy in the last round to a profit-driven one in an effort to win the prize.
With the exception of session G, all games suffered from this effect. This can also be
observed from the graphs in Figure 7.4: all lines show a substantial growth in profits
in the last round, often paired with an increase in ttl.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
T

L
 p

ro
fi
le

 s
c
o

re

Profit profile score

Profile Scores from Questionnaire

Risk aversion
profile score

[0.00, 0.25]

[0.00, 0.25]

[0.36, 0.50]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
T

L
 s

tr
a

te
g

y
 s

c
o

re

Profit strategy score

Strategy Scores from In-game Decisions

Risk aversion
strategy score
[0.00, 0.25]

[0.26, 0.35]

[0.36, 0.50]

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

Profit TTL Risk aversion

S
c
o
re

Comparison of Profile and Strategy Scores

Profile
Strategy

(c)

0

5

10

15

20

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 o

f
q

u
e

s
ti
o

n
n

a
ir

e
s

Decision rationality score

Profile Score Rationality Distribution

(d)

Figure 7.5 Visualisation of (a) the profile scores determined from the questionnaire responses,
(b) the strategy scores computed from in-game action decisions, (c) a comparison of their
distributions and (d) the computed rationality of questionnaire responses.

The decision preferences of participants are visualised through the graphs in Fig-
ure 7.5, where Figure 7.5a plots the profile scores and Figure 7.5b the strategy scores.
Both figures show the profit and ttl preferences on the x and y axis respectively, and
use different point styles to categorise the risk aversion scores associated with each
point. For example, points visualised by a diamond shape correspond to a preference
score with a preference score for risk aversion between 0.36 and 0.5. Risk aversion
scores greater than 0.5 are not found in either the profile score or the strategy score.
Figure 7.5c visualises the distribution of profile scores and strategy scores using a box
plot. This picture illustrates the range in which preferences are typically expressed.
The means are illustrated by the thick lines in the vertical middle of the boxes, that
represent the first and third quartile of the data set. The whiskers visualise the most
distant point on both ends that are at most 1.5 away from the inter-quartile distance.

184

7

7.2. GAMING RESULTS

Finally, the histogram of Figure 7.5d shows the distribution of rationality as computed
from the questionnaires. All visualisations use the scores of Tables C.2 and C.6.

Qp Qt Qr

Gp -0.10 57% -0.10 54% 0.22 91%

Gt 0.14 73% 0.12 63% -0.29 98%

Gr 0.00 2% 0.15 75% -0.13 68%

Table 7.3 The correlation strengths and associated confidence levels (grey) for every pair of
profile and strategy scores.

Based upon the same data sets, a correlation analysis is performed on the relation-
ship between profile scores and strategy scores. Correlation coefficients are computed
using the Pearson method [247, 269] and correlation confidence is computed through
two-tailed sample t-tests with confidence levels 95% and 99%. Interpretation follows
the model for social sciences [66] and, conform the labelling by Taylor [247], defined as
weak for coefficient values in the range [0, 0.35], moderate for [0.36, 0.67] and strong
for [0.68, 1.0]. The summary of this analysis is shown in Table 7.3.

Expected outcomes Worst-case outcomes

Variable P T u φ Pwc Twc uwc φwc CD CH

Qp -0.15 0.31 -0.47 -0.34 -0.13 -0.19 0.13 0.07 -0.51 -0.18

Qt -0.01 -0.13 0.13 0.14 -0.11 -0.15 0.11 0.07 0.10 0.02

Qr 0.21 -0.30 0.52 0.34 0.27 0.38 -0.27 -0.15 0.60 0.22

Gp 0.87 0.64 0.09 -0.41 0.80 0.68 -0.31 -0.43 -0.37 -0.69

Gt -0.82 -0.53 -0.18 0.28 -0.81 -0.55 0.13 0.24 0.26 0.68

Gr -0.78 -0.67 0.05 0.50 -0.63 -0.72 0.48 0.59 0.58 0.58

Coordination -0.23 -0.45 0.37 0.59 -0.12 -0.51 0.58 0.68 - 0.57

Cohesion -0.57 -0.42 -0.05 0.33 -0.50 -0.47 0.25 0.38 0.57 -

Table 7.4 Summary of the correlation analysis between the variables and outcome. All cor-
relation coefficients with a statistical confidence level greater than 99% are shown in bold,
greater than 95% in italic and all correlations with lower likelihoods of being correct predictors
are depicted in grey.

To gain insight into the interactions between the parameters in the environment
and their relation to the outcomes of the game a comprehensive correlation analysis
is performed, of which the summary is presented in Table 7.4. Correlations shown in
bold correspond to a confidence level of at least 99%, italic to 95% and the others are
shown in grey. For the game outcomes, the expected profit P and ttl T is listed along
with the associated performance ratio φ and the worst-case profit Pwc and ttl Twc with
their performance ratio φwc. The abbreviations CD and CH refer to respectively the
coordination level and the cohesion level of games. The figures underlying this table

185

CHAPTER 7. THE GAME OF MAINTENANCE PLANNING

can be found in Table C.1 (coordination and cohesion level), Table C.2 (profile scores),
Table C.6 (strategy scores) and Table C.4 (outcomes) of the appendix.

Table 7.5 takes a closer look into the variables coordination level and cohesion level.
This table lists the averages per category for the expected outcomes and associated
performance ratio, the worst-case outcomes, profile scores and strategy scores of either
variable. The same data set as for Table 7.4 was used in a similar fashion to construct
this table. Note that the correlation coefficient included in this table are the same as
in Table 7.4 but restated to provide a more complete overview.

Expected outcomes Worst-case outcomes Profile scores Strategy scores

P T u φ Pwc Twc uwc φwc Qp Qt Qr Gp Gt Gr

Coord.

Low 45.7 28.6 17.1 1.62 33.0 35.2 -2.1 0.95 0.43 0.36 0.21 0.60 0.23 0.18

Medium 43.3 23.6 19.6 1.87 31.9 28.1 3.8 1.16 0.35 0.37 0.28 0.53 0.23 0.24

High 43.2 22.4 20.8 2.00 31.8 26.1 5.7 1.27 0.34 0.37 0.29 0.50 0.27 0.24

Corr. -0.23 -0.45 0.37 0.59 -0.12 -0.51 0.58 0.68 -0.51 0.10 0.60 -0.37 0.26 0.58

Cohesion

Unfam. 47.7 28.3 19.4 1.70 35.0 34.7 0.3 1.02 0.39 0.37 0.24 0.65 0.18 0.17

Familiar 42.0 23.1 18.9 1.90 30.7 27.2 3.4 1.18 0.36 0.37 0.27 0.48 0.28 0.24

Corr. -0.57 -0.42 -0.05 0.33 -0.50 -0.47 0.25 0.38 -0.18 0.02 0.22 -0.69 0.68 0.58

Table 7.5 Average values for the outcomes and scores per coordination and cohesion category.
Again correlation coefficients with a confidence level of at least 99% are shown bold, 95% in
italic and the rest in grey.

7.2.1 Findings

Using the measurements and observations of the previous section, the hypotheses for-
mulated for the research questions are again considered. The same structure as before
is used in presenting the findings relevant to each question.

Validity of the Model To assert that human decision makers are at least boundedly
rational, the hypothesis is that the mean of rationality scores is at least 0.8. In other
words, human decision makers are capable in finding at least 80% optimal solutions on
average. This assumption is validated by performing a one-tailed, one-sample t-test
where the mean of rationality scores µθ is compared against a mean of 0.8 using null-
hypothesis H0 : µθ > 0.8 and a confidence level of 95%. The resulting probability value
is 0.010 and since this is lower than the desired confidence value of 0.05, it is concluded
that the null-hypothesis is valid. Furthermore, there are two outliers at 0.255 and 0.385
that likely correspond to misunderstanding the questionnaire, as the rationality of the
next lowest is close to 0.7. When these outliers are removed, the mean of rationalities
becomes greater than 0.84 with the same confidence level.

186

7

7.2. GAMING RESULTS

The correctness of the game design is illustrated by the correlations between the
strategy scores and the outcomes listed in Table 7.4. Starting with the profit strategy
score Gp, the table shows a strong positive correlation between this score and the total
expected profits P and worst-case profits Pwc of the game outcome as the absolute
value of the coefficient is greater than 0.67. Profit strategy scores show a moderate to
strong positive correlation to the ttl in the resulting outcomes. Note that this positive
correlation is conform the intended design as higher ttl values mean more network
hindrance. For ttl, a similar analysis shows that it is strongly negatively correlated
to profits, and moderately negatively correlated to ttl. Risk aversion is also strongly
negative correlated with both and in addition shows a moderately positive correlation
with the performance ration, e.g. the ratio of profit versus ttl, thus the risk-averse
actions are likely to lead to performance increases. In conclusion, although the original
hypothesis of strong correlations is not proven, the correlation coefficients are all in the
range of moderate to strong correlation and hence the hypothesis is highly plausible.

Note that although it might seem that playing a risk-averse strategy is more ef-
fective to reduce the overall ttl, this cannot be concluded from the table. A quick
linear regression analysis reveals a minor flaw in the design of the actions however. The
slopes of both functions show that risk-averse actions are approximately 1.6 times more
effective in reducing ttl (−43.8K versus −71.6K). This effect was not intended but is
a consequence of the factor-based ttl model used that amplifies ttl for every concur-
rent maintenance operation. Observe also that there is no evidence for a relationship
between strategy and the utility of the players.

It remains to show that coordination is beneficial to the outcomes. Table 7.5 il-
lustrates the correlations of interests. These figures do not provide sufficient evidence
for the hypothesis of a strong correlation, nonetheless they do reveal a moderate cor-
relation between the coordination level and the utilities. This suggest that again it is
at least plausible that coordination is beneficial to the players, also supported by the
observed average utility per category. Moreover, the performance ratio shows a mod-
erate to strong correlation to the coordination level, indicating that more coordination
is likely to improve the trade-off between profits and ttl. Finally, coordination seems to
substantially improve the worst case scenarios in the game to the benefit of all players.

Influence of Monetary Incentives on Decision Making The effectiveness of the
monetary incentives is measured through the hypothesis that a significant difference can
be observed between the decision making with and without monetary incentives. The
decision-making preferences in the former situation are given by the strategy scores from
the game, the latter through the profile scores computed based on the questionnaire.
Indeed, Figure 7.5a to Figure 7.5c appear to visualise a difference between the two
categories. In Figure 7.5a, the profile scores seem relatively balanced with a slight
preference towards profit and ttl over risk aversion. The strategy scores of Figure 7.5b
seemingly indicate that when monetary incentives are used, a profit-focused play style
is preferred. This assessment is supported by the box plot in Figure 7.5c that visualises
the distributions of both score types. A two-tailed, paired t-test between the means of
all Qx and Gx is performed with null-hypotheses H0 : µQx

= µGx
and a confidence

level of 95% to confirm the statistical significance of the difference. The resulting

187

CHAPTER 7. THE GAME OF MAINTENANCE PLANNING

probability values are 0.009, 0.001 and 0.313 for respectively the profit, ttl and risk-
aversion scores. Hence, with high statistical likelihood, the changes in preference for
profit and ttl can be ascribed to the presence of monetary incentives, but risk-aversion
seems unaffected.

Self-regulation of the Network The results indicate that a change of behaviour
can be observed in the presence of incentives. Hence it is interesting to know whether
that change corresponds to the manifestation self-regulation. The first hypothesis in
this regard is that the presence monetary incentives always leads to a coordination
level of ‘Medium’ or ‘High’. A quick glance at Table C.1 is sufficient to invalidate this
hypothesis. In three games coordination was limited to only conflict-driven negotiations.
The second hypothesis states that monetary incentives lead to a change in decision-
making strategy towards a ttl-driven or risk-averse play style in the game. Table 7.5
however shows only a moderate correlation between coordination and risk aversion,
and no such a relationship is established between coordination and ttl strategy scores.
Hence the incentives are unlikely to incite self-regulation.

An interesting additional find from the same table is that whereas Table 7.3 illus-
trates that a correlation between profile scores and game scores is highly unlikely, the
coordination level is moderately correlated to both the profile and strategy scores for
risk. This does not reveal a relationship between risk aversion and coordination, but it
does suggest that network members with a predisposition against risks are more likely
to coordinate their operations, with or without the presence of incentives.

Role of Social Cohesion As incentives do not consistently incite self-regulation, the
influence of relationships on coordination of even greater interest. First the hypothesis
is tested that preference changes are due to the presence of familiar network members
and not from player profiles. The absence of any relationship between the profile scores
and social cohesion can be concluded from Table 7.5 with a high likelihood. All profile
parameters are at most weakly correlated with low likelihood (respectively 83%, 10%
and 91% for profit, ttl and risk aversion). The strategy scores, on the other hand, appear
to be related to cohesion. With risk aversion being at least moderately correlated, a
strong correlation is revealed for profit and ttl strategy scores. A one-tailed paired t-test
is performed to analyse the statistical significance of this change in strategy means.
The use of a one-tailed test follows from the strong directions of the coefficients. As
null-hypotheses H0 : µGx,U

> µGx,F
are used, such that U and F correspond to the

categories ‘Unfamiliar’ and ‘Familiar’ and x to the objectives. The tests yield probability
values 0.020, 0.028 and 0.035 for respectively the profit, ttl and risk-aversion strategy
scores with a confidence level 95% and hence the behavioural change to a collaborative
play style is statistically significant. With respect to the correlation between cohesion
and coordination, a similar conclusion can be drawn as twice before. Table 7.4 provides
evidence of a moderate correlation but the original hypothesis of a strong correlation
is not satisfied, although a relationship is very plausible. Summarising these findings,
social cohesion is a probable moderator for the effectiveness of monetary incentives.

188

7

7.3. EVALUATION OF GAMING RESULTS

7.3 Evaluation of Gaming Results

Here the findings of the experiments are discussed and their relevance to the broader
context is addressed. First, the effectiveness of monetary incentives to influence decision
making is considered and in particular how behaviour is changed and how this relates
to current literature. Thereafter the role of social cohesion is investigated.

The effectiveness of incentives to influence decision making was already highlighted
by other scholars such as Bresnen and Marshall [45], Bower et al. [41] and Rose and
Manley [218]. This study contributes an empirical confirmation that indeed incentives
changes behaviour of participants within the controlled experimental setting and pro-
vides an insight into how behaviour is influenced (Figures (a) to (c)). The findings
show that the payment mechanism used in this game led to a competitive play style
focused on profits, whereas the questionnaire responses of the same group of partic-
ipants were more balanced in their decision preferences. Even more so, all but a few
participants motivated their responses in the questionnaire among the lines of “this
seems to optimally balance profits and ttl” when asked why they chose a specific al-
ternative. In the game, however, profit was observed to be the key driver of all but a
few players. Nonetheless, the profit-driven behaviour did not result in the emergence of
coordination, even though players could improve their utility by coordinating their ac-
tions. Further investigation into the existence of any correlation between coordination
and agent decision making reveals moreover that no substantial differences are found
in the strategic preferences for different levels of coordination, except for a stronger
risk aversion (Table 7.5). The latter effect is explained by an increased focus on robust
planning so that coordination of activities is guaranteed. The experiments here there-
fore contribute to an improved understanding of the influence of incentives on decision
making, but also lead to wondering why coordination does not emerge, even if players
can benefit from doing so.

One explanation that is offered by literature is the inability of players to fully com-
prehend the complexity of the domain and thus fail to maximise their gains, as observed
by for instance Eriksson [83] and Shadid [235]. Although the participants performed
near optimal in their questionnaire responses, the complex dynamics of a coordinating
a 5-player network under pressure of time via a new interface may justify this explana-
tion. Along the same lines is the relative novelty of the role the players assume which
requires an additional set of skills and capabilities [112, 141, 246] that the participants
may not possess. In either case, a mitigating measure is to employ computer-aided
decision support techniques that help to maximise the value of planning and suggest
coordination to network members when this is beneficial, leading even the most iso-
lated or selfish network members to coordinate decisions. Positive examples in similar
decision-support scenarios can be found in the works by e.g. Cheung et al. [61], Le Bars
and Le Grusse [23] and Douma et al. [82]. Of additional value is the use of collabora-
tion tools and knowledge sharing, as proposed by Eriksson [83]. Whether these extra
measures result in more coordination could be established through additional gaming
experiments and would be a valuable empirical contribution by future work.

A more plausible explanation offered by e.g. Bresnen and Marshall [45] and Fehr
and Falk [85] is that the monetary incentives lead to an effect that is opposite to their

189

CHAPTER 7. THE GAME OF MAINTENANCE PLANNING

intended design. The payment mechanism used in the game penalises the players per
additional hour of traffic time lost. Although the mechanism was intended to stimu-
late reduction of hindrance due to maintenance and encourage efficient and innovative
operations, it can be experienced as a painshare mechanism that only penalises bad
behaviour. This type of mechanism has been found much less effective to motivate
contractors. For instance, Choi et al. [62] conclude from a large survey of completed
projects that agreements that incorporate both positive and negative incentives success-
fully improved performance while agreements with only penalties led to performance
worse than conventional contracts. Through a serious gaming study not unlike the one
performed here, Altamirano and de Jong [11] demonstrated that high penalties seem
to create incentives for collusive behaviour, while a combination of moderate penalties
with significant bonuses creates a positive atmosphere of trust. Similarly, Hosseinian
and Carmichael [118] remark that “sharing gain/pain provides a strong motivational
factor for all parties to work together, rather than in a confrontational or adversarial
fashion, with the desired result of producing a successful project”. Particularly the
‘adversarial fashion’ seems to fit the observations made here. Instead of motivating
players to collaborate, the incentives appeared to stimulate a competitive attitude with
a decrease in ttl and risk-averse preferences in favour of a profit-driven play style.
Not only is competition within the network regarded detrimental to its performance
[69, 235], it is counterproductive to an open and cooperative network environment in
which decision coordination and co-creation is stimulated [118, 113].

In contrast, the experimental results regarding social cohesion present a new empiri-
cal confirmation of the positive impact of the social dimension on network performance.
A contribution of this work is that while networks with familiar members demonstrate
a more collaborative attitude in their decision making, as per expectation, it is newly
shown that no such inclination was observed in questionnaire responses of the same
participants. Another new finding is that while the ‘socially-cohesive’ networks were
confronted with the same monetary incentives as the unfamiliar networks, they did
not show a similar competitiveness. As a corollary, the presence of familiar network
members is seemingly influencing their decision making towards a more collaborative
style and supports the incentive mechanism in achieving its intended results. This once
more stresses the importance of building a socially cohesive network, as many authors
have before [45, 7, 140, 255], but contributes also the learning that the relationships
within the network may be a necessary condition for (inadequately designed) monetary
incentive schemes, or are at least beneficial to realising its goal of maximising network
performance.

7.3.1 Conclusion

Concluding the experimental evaluation, the results show that incentives are effective
in changing decision preferences but may lead to counterproductive effects. Instead
of inciting better performance, the findings demonstrate that players are driven to
a competitive attitude, detrimental to collaboration. Furthermore, it was observed
that networks with strong social cohesion can overcome this competition and will self-
regulate their performance as intended by the incentive design. These results confirm

190

7

7.4. FURTHER DISCUSSION

previous findings on the importance of relationships within the network and addition-
ally signify the role of social cohesion on the effectiveness of incentive mechanisms,
suggesting that strong social cohesion is prerequisite to performance-based monetary
incentive mechanisms.

The recommendation ventured from this study is therefore that if self-regulation is
to be successfully implemented in contracts, it should be based on positive incentives
structures that incite better performance in a cooperative atmosphere of co-creation
and trust. Consequentially, self-regulation is deemed most effective in collaborative
team settings such as alliances and early contractor involvements or integrated project
delivery. Future work is needed to clarify the impact of the incentive design on self-
regulation, compare the findings here to the non-incentivised setting and perform re-
peated studies to strengthen the conclusion drawn in this study on road maintenance.
The serious game setup of this study can be reused in future settings and is available
online to be used in related studies.

7.4 Further Discussion

Ultimately, the failure of monetary incentives to incite coordination in every gaming
session may be interpreted as evidence against the use of incentives to achieve self-
regulation, but a closer look at the results suggests otherwise. The experiments in a
controlled setting reveal a definite potential for monetary incentives but their poten-
tial is determined by the type of incentives that are used, the relationships within the
network or a combination of both. From the gaming sessions it is yet impossible to
conclude the exact role either element. As a consequence, further study is strongly
recommended to isolate either the design of the mechanism or social cohesion as the
main contributor to self-regulation, or conclude that both are prerequisite to network
self-regulation. Regardless, the experiments performed provide new insights and rec-
ommendations for both the research on and the application of incentives in networks.
With the next step of bringing self-regulation into practice through monetary incentives,
and evaluating their effect in real-world scenarios, three main directions for current and
future work are identified.

First of all, adequate design of the incentive scheme is vital to the success of
performance-based tenders and care should be taken in the type of incentives that
are implemented, especially when good relationships cannot be guaranteed. The use
of painshare without the gainshare led to competition and selfish optimisation within
the network and this should be considered in game-theoretically engineered incentive
schemes such as that by [106, 228, 254] or [117]. Although on paper such mechanisms
result in optimal coordination of the network, they may be counterproductive to self-
regulation in practice if based upon an incompatible payment mechanism. The effect
of incentive design, and in particular the type of mechanism employed, needs further
investigation to establish the exact mediators that realise the desired changes in decision
making towards self-regulation.

Secondly, the findings here again underline the paramount importance of the so-
cial dimension in network-based approaches and emphasise that relationships between
network members are to be fostered. Even though the precise effect of social cohesion

191

CHAPTER 7. THE GAME OF MAINTENANCE PLANNING

is not fully determined, monetary incentives to stimulate self-regulation seem most ef-
fective in cooperative networks and its promise is hence the greatest in managing the
interactions in collaborative networks such as alliances, early contractor involvements
or integrated project delivery. In such networks cooperative behaviour between the
parties is established and measures are taken to get all parties to work to the same
goal [50, 118]. Moreover, alliances are becoming the preferred delivery for large and
complex projects [114, 163] and hence the contribution of self-regulation as a method
to optimise network performance is very relevant for future work.

Thirdly, to bring self-regulation into realistic tenders, concerns will have to be
addressed with respect to accountability and the possibility of failure to stimulate
desired performance. While the application of performance-based contracting on the
network level is certainly promising, the lack of a principal in the network may lead
to gaps in the responsibility of the network [7]. Self-regulation is inherently in tension
with the accountability of the network and requires a solid legal basis before practical
use can be realised. Furthermore, as also prevalent in the experiments, decentralised
tools and lack of coordination by a central institution or agency can certainly worsen
the performance and output of a network, as noted by [249], and may in the worst
case lead to a fall-back to regulatory approaches [239]. More research is needed into
mechanisms and their enforcement to prevent such fall-backs in practice. One typical
approach to reduce the probability of failure and increase the effectiveness of incentives
is to perform regular monitoring [124, 90], or at least increase the perception thereof
[185], but this is typically paired with substantial costs to the client.

Finally, care must be taken in the interpretation of the results from the experiments
and their translation to the real world. Although players often show behaviour similar as
they would in comparable real-world situations, the game will always remain a simplified
model of the world and hence behaviour cannot be directly extrapolated to realistic
scenarios. The absence of real-world consequence may also cause players to take more
risks than they normally would. The gaming setting however helps to explore potential
changes in decision-making preferences and patterns in behaviour under controlled
conditions that may guide further experimentation and research. On that note, the
serious game itself is an additional contribution of this work and available online for
future research. It can be used for instance to play the same game with different
incentive mechanisms, or the absence of incentives, to further investigate their impact,
but also to explore the potential related approaches such as the Dynamic Contracting
framework of [254] or the gainshare/painshare mechanisms of [118]. Alternatively,
it can be employed as a tool to get practitioners acquainted to the concept of self-
regulation, alike [9], [110] and [82], or to perform many experiments using automated
agents to play the game [262]

192

Chapter 8

Discussion and Conclusions

Self-regulation is the next step in performance-based contracting with the potential to
transfer the desirable properties of performance-based approaches to group contracts.
Examples of such benefits are increased flexibility, better preservation of autonomy and
authority of participants, maximal utilisation of knowledge and expertise, emergent co-
ordination and, consequentially, better use of public funding. The main focus of this
research is to combine algorithmic techniques of decision-theoretic planning and game
theory to enable this transfer. The key concept is that through careful design of mone-
tary incentives and the availability of automated planning support the contracted group
of agents will become self-regulating and successful outcomes can be guaranteed. In
other words, agents will actively seek to coordinate their joint decisions amongst them-
selves and optimise their contribution to the contracted goal. The previous chapters
have proposed various approaches with the purpose of bringing self-regulation closer to
application in group contracts, addressing specific parts of the main challenge. Here
they are discussed within the broader context of the main research question of this
thesis:

Main Research Question

Can algorithmic techniques be employed to efficiently coordinate planning
in self-regulating contracts and ensure successful outcomes while preserving
the autonomy and interests of the agents?

All of the algorithms and techniques presented in Chapters 3 to 7 contribute to
this goal of achieving successful self-regulation in team contracts but concentrate on
different elements of this challenge. Whereas Chapters 3 to 5 focus on the decision-
coordination aspect of self-regulation, Chapters 6 and 7 address the design and appli-
cation of these incentives. In Section 8.1 the research questions are reviewed against
the contributions each of the aforementioned chapters. From the evaluation of the
questions an answer to the main question is formulated in Section 8.2. Thereafter, in
Section 8.3 the position of this work is discussed in a broader context and the direct
and indirect implications of the contributions of this thesis are reviewed in the various
areas of research that are touched upon.

193

CHAPTER 8. DISCUSSION AND CONCLUSIONS

8.1 The Challenges of Self-regulation

In Section 1.3, the main research question of this thesis was broken down into several
smaller questions that address various aspects of self-regulation in the context of con-
tracts. Here these challenges are re-evaluated and, now equipped with the algorithms,
mechanisms and empirical evaluations presented throughout the chapters of this thesis,
it is discussed if and how they can be overcome.

RQ1 Coordinating self-regulating planning with existing techniques

Can the vast body of existing planning literature, with its tools and tech-
niques, be employed to develop joint policies for self-regulating planning
problems?

Yes. Chapter 3 demonstrates two ways in which the maintenance planning prob-
lem (mpp), the main example problem and an instance of the more generic self-
regulating planning problem, can be represented by the Markov decision pro-
cess model that is widely supported in stochastic planning literature and tools. The
first is a direct translation of the problem into a multi-agent MDP (MMDP), thus
making it possible for any MMDP solver to produce solutions for mpp. Additionally,
Chapter 3 shows that for mpp it is also possible to ‘flatten’ the MMDP into a joint
but single-agent MDP hence allowing any generic MDP solver to develop policies for
the maintenance planning problem, of which there are plenty in the literature
of stochastic planning. The experiment at the end of the chapter illustrate that for
instance the SPUDD solver [116] is able to produce optimal solutions.

RQ2 Leverage the structure of self-regulating planning

Can the structural properties of self-regulating planning problems be lever-
aged to produce optimal joint policies significantly more efficient than cur-
rently available methods?

Yes. Instances of the self-regulating planning problem, such as mpp, exhibit
a particular structure in their transition and reward functions as a consequence of their
definition. In essence, the decisions of agents in self-regulating planning are completely
independent except for the reward interaction introduced by the performance-based
payment functions. Chapter 4 presents the CoRe algorithm that exploits this particular
absence of transition dependence. In the empirical evaluation at the end of the same
chapter it is demonstrated that this algorithm manages to solve ‘bigger’ instances of
mpp and performs at least one order of magnitude faster than its available alternatives,
Dynamic Programming and SPUDD. For many instances runtime reductions of a factor
100 are observed, while some are even solved 1000 times faster.

RQ3 Self-regulating planning with multi-dimensional objectives

Can multi-objective planning methods be applied to self-regulating planning
problems with multi-dimensional objectives to efficiently find an optimal
joint policy for every linear trade-off between objectives?

194

8

8.1. THE CHALLENGES OF SELF-REGULATION

No. In the special case where objective weights are known beforehand, the multi-
objective MDP (MOMDP) that represents the multi-objective mpp can be transformed
into a ‘regular’ multi-agent MDP and solving this special case is therefore at least as
hard as finding an optimal policy for MMDP. In general, these weights are not known
a priori and hence multi-objective solvers have to produce a set of optimal policies
for every combination of objective weights. The OLS method discussed in Chapter 5
reduces the number of optimal policy computations to a minimum by focusing on the
Convex Coverage Set (CCS), i.e. the set of optimal policies that cover all combinations
of linear weights, but still many time-consuming exact solving runs have to be performed
to generate this set.

Given that exact solving is typically too computationally-demanding for all but the
smallest instances of mpp, the attention shifts towards finding approximate solutions
for multi-objective mpp. In Chapter 5 it is shown that without the requirement of
optimality it becomes possible to solve a much broader range of instances while the loss
of quality is shown to be relatively small or can even be bounded. The Approximate

Optimistic Linear Support (AOLS) algorithm provides a bounded guarantee on
the relative error with respect to the optimal convex coverage set, allowing a fully
configurable trade-off between solution quality and the maximum available or allotted
runtime. The empirical evaluation shows that AOLS is able to produce a near-optimal
CCS with errors lower than 2% for most instances, and in some cases it even produces
the optimal CCS in just a fraction of the time that the exact OLS algorithm needs
(even compared against the CoRe solver that specifically leverages the characteristics of
mpp). In situations where more is known about the distribution of the objective weights,
the Scalarised Sample-based Iterative Improvement (SSII) algorithm may be
more effective than AOLS in producing a high-quality coverage for a specific weight
region, albeit without guarantees on the solution quality. Empirical evaluation shows
that SSII on average can produce a higher-quality CCS than AOLS for the specific area
of focus.

Despite the positive results obtained through approximation, the answer to the
original question still remains negative. While approximation techniques seem promising
and are able to produce high-quality solutions for MOMDPs, they do not offer the
guarantee of optimality that was sought after. Furthermore, as current exact algorithms
only manage to solve small instances of mpp, it is unknown how the results obtained
here generalise. Further research is required to evaluate how well the approximation
algorithms presented here scale in terms of quality and runtime when faced with larger
or harder problems.

RQ4 Self-regulating planning with self-interested agents

Can game-theoretical techniques be employed to guarantee optimal joint de-
cision policies for self-regulating planning problems if agents are autonomous
and self-interested?

Yes. However not all conditions of the question can be satisfied at the same time.
In Chapter 6, two algorithmic techniques have been proposed to counter the self-
interested behaviour of agents, required to ensure that self-regulation does not suffer

195

CHAPTER 8. DISCUSSION AND CONCLUSIONS

from opportunistic behaviour. The first is the Dynamic Maintenance Mechanism, a
dynamic-Vickrey-Clarke-Groves mechanism that is tailored to mpp in this thesis but
can trivially be extended to other self-regulating planning problems. As it is a dynamic-
VCG mechanism, using this mechanism guarantees that the sum of agent rewards is
maximised, no agent can unilaterally benefit from misreporting its information (e.g.
cheating) and that there is no need for external funding to operate this mechanism.
In essence, through a carefully designed payment mechanism, it makes it in the best
interest of the agent to report its planning problem honestly. Reporting anything
else will result in a loss of reward for the agent. From all these truthful reports the
mechanism operator establishes an optimal joint decision policy and imposes this on
the participating agents.

Exactly this prerequisite for the dynamic mechanism approach, that is, the exchange
of private information and central coordination, makes it impossible to satisfy the con-
dition of agent autonomy. Furthermore, the dynamic maintenance mechanism has to
compute several optimal joint decision policies in each round of its execution, resulting
in a prohibitively large computational effort for most realistically-sized mpp instances.
If either autonomy is principal or computational efficiency is required, a decentralised
approach based on best-response planning is more suitable. Chapter 6 introduces the
stochastic planning congestion game and proves that an iterative, myopic improvement
of individual plans eventually reaches an equilibrium from which no agent wants to di-
vert. Put differently, after a finite number of rounds in which agents optimise their
plans with respect to the known plans of other agents, a joint plan is guaranteed to exist
in which no single agent could be better off by switching plans. Note however that the
existence of such an equilibrium merely implies that a best-response planning algorithm
terminates after a finite number of rounds. This work has not investigated the quality
of the obtained outcomes of best-response planning; existing work on for instance the
“price of anarchy” [221] could be used to quantify outcomes. Still, its preservation of
autonomy and computational efficiency make this an appealing approach to combat
self-interested behaviour.

RQ5 Confronting self-regulating planning with the real world

Can the theoretical guarantees of self-regulating incentives be transferred to
real-world group tenders to ensure successful outcomes if planning decision
are made by human decision makers?

Unclear. The empirical validation of Chapter 7 shows that monetary incentives can
indeed be successful in inciting self-regulation between agents and stimulating them
towards favourable outcomes. In the experiments, however, it was only observed in
sessions with groups in which the social relationships between agents are strong. For
groups in which members are not familiar with one another, the monetary incentives
led to competitive behaviour with detrimental impact on the coordination of the group.
Currently it has not been shown whether the design of the incentives or the social co-
hesion is the main contributor to the emergence of coordination, or that self-regulation
only manifests as a combination of both. Still, the restricted setting of the serious game
provides first evidence for its potential in settings with human decision makers, espe-

196

8

8.2. CONCLUSION

cially in the context of collaborative partnerships such as alliances. Further research is
needed before a successful transfer to real-world group tenders can be ensured.

8.2 Conclusion

From the answers to the research questions above a conclusion is summarised in answer
to the main research question of this thesis:

Main Research Question

Can algorithmic techniques be employed to efficiently coordinate planning
in self-regulating contracts and ensure successful outcomes while preserving
the autonomy and interests of the agents?

Yes, although not all requirements of the main research question can be met con-
currently by any of the approaches presented in this thesis and their implementation
in real-world contracts is still far away. No one-size-fits-all method exists to imple-
ment self-regulation in contracts that simultaneously achieves efficient coordination,
preservation of agent autonomy and interests, absence of opportunistic behaviour and
guaranteed solution quality. Instead several techniques to implement and support self-
regulation in contracts can be discerned, each with its own strengths and weaknesses.

The dynamic mechanism of Chapter 6 is the most promising approach from the
perspective of contract design. Through carefully designed performance payments this
mechanism provably discourages opportunistic behaviour, makes coordination of deci-
sions in the best interest of agents and optimises the expected value. To compute these
payments, however, the mechanism requires full information about the (private) deci-
sion processes of all the participants and needs to solve the underlying self-regulating
planning problem, for example the maintenance planning problem, optimally in
every round of its execution. Even with optimised solving algorithms such as CoRe

of Chapter 4 this is computationally very demanding for even single-objective models;
multi-objective models with their inherent increase in complexity are infeasible to imple-
ment in such a mechanism. Successful outcomes can only be guaranteed if the agents
‘stick to the plan’, i.e. they partially yield their autonomy to the centrally developed
joint policy. Furthermore, the assumption of rationality is shown to be rather strong
in practice and more research is required to obtain similar guarantees in the case of
bounded rationality. This technique is most suitable for settings in which the cost of
opportunistic behaviour is significantly high, problem sizes allow for optimal solution
computation within reasonable time or optimal solutions are demanded.

Best-response planning offers a more efficient method of coordination that preserves
autonomy, interest and privacy of agents, but it can only partly ensure successful
outcomes. In particular, opportunistic behaviour can be discouraged but no guarantees
on the quality of the resulting coordination can be given. Nevertheless, rationality or
optimality are no requirements and hence agents can employ any type of algorithm to
produce a plan in the best-response approach. This means that approximations such
as the UCT* algorithm of Chapter 3 could be used, but it also opens the way for multi-
objective planning as in Chapter 5. On the other hand, the increased efficiency is paired

197

CHAPTER 8. DISCUSSION AND CONCLUSIONS

with a lack of guarantees regarding the quality of the outcomes, due to the limited
information available and lack of global coordination. This method is most applicable
to adversarial or competitive scenarios in which mistrust or commercial reasons makes
agents reluctant to share private information or accept centralised coordination.

Central coordination is suitable if efficiency and solution quality are considered the
most important desiderata in the implementation of self-regulation. This method im-
plements the aforementioned mechanism-based payments to motivate self-regulation
but coordinates decisions centrally using one of the algorithms for self-regulating plan-
ning problems presented in this thesis. Alternatively, this approach can also be im-
plemented in the form of a collaborative decision support system that allows human
decision-makers to express preferences and quickly analyse many high-quality solutions.
It does require a complete submission of autonomy and needs an external mechanism
to mitigate the impact of opportunistic behaviour, e.g. regulation, past-performance
or simply trust. This approach is most appropriate in scenarios with fully-cooperative
agents, collaborative platforms such as decision support systems or settings in which
opportunistic behaviour is already mitigated, not expected or has limited impact on the
outcomes.

8.3 Implications and Next Steps

The previous section summarised the challenges of self-regulation and the contributions
made by this thesis to overcome them from an algorithmic point of view. Although
significant progress is made in various areas, still much work is required to bridge the
gap between the theoretical concept of self-regulation and its implementation in real-
world contracts. This section discusses the impact of the contributions made by this
thesis in terms of immediate next steps that can be taken and open questions that are to
be addressed in subsequent research. These next steps are discussed for the three main
topics around self-regulation addressed by this thesis: decision coordination, incentive
design and its implementation within contracts.

8.3.1 Decision Coordination

With respect to the topic of decision coordination, this thesis contributes mostly to
the field of decision theory, in particular to the area of stochastic decision-theoretic
planning. Although the chapters throughout this work mainly focus on the main-
tenance planning problem, a special case of self-regulating planning
problem set in the domain of infrastructural maintenance, the insights and algo-
rithms presented in this work can be generalised to other domains as well. The results
obtained here apply broadly to any group decision-coordination setting in which the
individual goals of agents do not align with the global goal, as long as objectives
can be operationalised into rewards and payments. Examples of such settings can be
found in abundance in planning literature, e.g. scheduling the loading and unloading
of vessels in harbours [82], supply-chain optimisation with autonomous links [136] and
taxi scheduling [260]. Many more examples can be found throughout the literature
[28, 35, 36, 48, 56, 103, 148, 208, 215, 243, 261].

198

8

8.3. IMPLICATIONS AND NEXT STEPS

The techniques used in Chapter 3 to encode self-regulating problems as a multi-
agent MDP or even a ‘flat’ MDP immediately provides access to a broad portfolio of
already existing solving techniques, both exact as well as approximate. For problems
that fit the self-regulation model this alleviates the need to design and develop problem-
specific solvers. Not only that, it allows researchers and practitioners to rely upon on
the state-of-the-art of decision-theoretic planning to optimise their problems; a field
that is actively being pushed further every day. The ideas used in this chapter to
encode and flatten MMDP may also serve as an inspiration for other problems – for
example the compact encoding of histories in the states of a “memoryless” MDP (e.g.
Markovian), the decomposition of activities into unit-time actions, or the structure of
complex rewards – and provide new leads for research on MDP algorithms.

One of these leads, inspired by the way rewards are encoded in the MDP, is that
of conditional reward independence which lead to the conception of the Conditional

Return Policy Search solver of Chapter 4. The key insight is that in many decision-
coordination problems, including but not limited to self-regulating planning problems,
reward dependencies between agents are limited to a small number of interactions [26,
79, 170, 179, 196, 251, 264]. When these interactions can no longer occur, for instance
because a particular action cannot be performed anymore, the reward functions can be
decoupled and optimised independently. For mpp this particular idea enabled finding
optimal solutions to instances that were previously deemed too hard to solve. Whether
the same applies to other domains is an open question.

The extension to generic MMDPs, as outlined in the discussion of Chapter 4, in-
troduces a multitude of new challenges to the solver that lead to new insights and,
vice versa, may prompt many more positive results for problems that exhibit a simi-
lar conditional-reward structure [26, 40, 80, 103, 171]. An additional benefit of this
extension is that, besides the SPUDD solver, CoRe can be compared to an array of
state-of-the-art (M)MDP solvers, e.g. those proposed by Boutilier et al. [40], Dai [71],
Oliehoek et al. [196], Plutowski [207] and Ruiz and Hernández [224]. Challenges for
future research are to extend the algorithm to generic MMDP without substantially
hampering performance and to determine the existence of characteristics that help
classify problems as ‘suitable’ for CoRe.

The potential of CoRe itself can be increased by interleaving the action selection
with the agent decoupling to better exploit independence, by implementing heuristics
for action-selection to quickly obtain tight bounds, and by adding pruning techniques to
rapidly remove sub-optimal paths from the reward structures. Furthermore, the concept
of conditional reward graphs can be leveraged to develop an approximate algorithm for
domains where efficiency is required. The upper and lower bounds on the rewards stored
in these graphs can directly be employed to produce bounded-approximation algorithm.
Additionally, grouping of sequences with ε-equivalent rewards using arbitrary constraint
validations as done by de Nijs et al. [190] or approaches such as those taken by Guestrin
et al. [104], Koller and Parr [145] or Oliehoek et al. [194] can be used to approximate
the reward function itself, leading to sparser interaction graphs. Finally, techniques like
the factored upper bounds of Oliehoek et al. [195] may be used to approximate the
return bounds and lead to faster pruning at the cost of solution quality.

199

CHAPTER 8. DISCUSSION AND CONCLUSIONS

A substantial contribution of this thesis is made to the domain of multi-objective
planning. Although the optimality requirement of RQ 3 instigates a negative answer,
significant positive results are obtained in the area of approximate MOMDP solving.
Chapter 5 proposes two new approaches to produce approximate convex coverage sets
that in many cases closely resemble optimal solutions while taking only a fraction of the
time required by optimal solvers. The Approximate Optimistic Linear Support

algorithm solves general MOMDPs with a bounded error on the quality of the solution
while SSII is more tailored to exploit preliminary knowledge regarding the distribution
of weights, e.g. when it is roughly known what trade-offs will be made or only parts
of the decision problem are considered viable solutions. Both approaches target the
generic multi-objective MDP model and can make use of any available (ε-approximate)
single-objective MDP solver to compute solutions. As a consequence, not only does
this imply that any available state-of-the-art MDP solver can be capitalised on, both
methods can directly be applied to a wide range of existing multi-objective planning
problems [132, 139, 160, 175, 187, 215] or employed as part of decision-support systems
[23, 61, 65, 82]. An interesting next step would be to harness the strengths of both
algorithms, i.e. have the theoretical guarantees of AOLS combined with the focused
improvements of SSII, although the how remains uncharted. Another next step is
to employ recent techniques that re-use parts of the solution space when computing
policies [133, 213], which is particularly interesting in this domain as many of the
scalarised multi-objective MDPs are similar for a broad range of scalarisation weights.

Still, computational complexity remains a challenge for the implementation of self-
regulation in real-world contract [29, 173]. Solving the underlying decision-coordination
problems of the service providers in an optimal fashion can be argued unsuitable for re-
alistic problem instances. In Chapter 3 it is demonstrated that approximate approaches
produce coordination solutions of near-optimal quality within a fraction of the time.
Additionally, the optimal approach assumes a model in which all uncertainties are
known beforehand and do not change over time, an assumption that is unrealistic in
many decision-making problems. As the planning horizon grows, the probability of
the environment changing in unforeseen ways increases. Therefore an approximate or
‘online’ approach may be more effective and robust in coordinating service providers in
long-term, performance-based contracts.

8.3.2 Incentive Design

On the topic of incentive design, and the enforcement thereof, the major contribu-
tion of this thesis is the toolkit of methods to deal with selfish behaviour in decision-
coordination problems, presented in Section 8.2. The dynamic maintenance mechanism
of Chapter 6 is a novel optimal mechanism that shows the potential of game theory
and mechanism design in sequential decision-making problems such as mpp. In partic-
ular, although the dynamic maintenance mechanism is designed for mpp, the steps of
its construction can be applied directly to any self-regulating planning prob-
lem or in general any non-cooperative problem that can be modelled using the MDP
framework, e.g. [26, 35, 48, 103, 143, 148, 173, 243]. In effect, this work guides the

200

8

8.3. IMPLICATIONS AND NEXT STEPS

design of mechanisms for stochastic planning problems that maximise the value of the
planning process while simultaneously preventing strategic behaviour.

While the theoretical properties of the dynamic maintenance mechanism are appeal-
ing, its immediate practical application is still hampered by the computational effort
it requires. The payments that ensure truthful reporting of agents demand optimal
solutions to the underlying coordination problem, hence limiting its application to only
those problems where the coordination can be determined efficiently or time is not of
the essence. Expanding the scope of dynamic mechanisms such as the dynamic main-
tenance mechanism is an important next step; a step that seems very viable in light of
related work on approximate mechanisms [46, 111, 147, 180].

Along the line of broadening the scope of mechanisms to deal with selfish behaviour,
this thesis contributes a best-response coordination method that is significantly more
efficient than dynamic mechanisms and preserves the autonomy of agents. Moreover,
Chapter 6 demonstrates that for self-regulating planning problem this ap-
proach always converges to a joint coordination that is a Nash equilibrium. In other
words, a joint coordination is guaranteed to be produced by the method within a fi-
nite number of rounds for such problems. As a result, this approach can be applied
directly to competitive settings in which agents are adversarial such as considered by
Buzing et al. [48], Jonsson and Rovatsos [127], Van der Krogt et al. [148]. Best-
response planning does not rely on optimal coordination. This enables the use of any
approximation algorithm to compute local plans and means that it is not affected by
the bounded-rationality typical to human decision makers [94, 130], which was also
observed in Chapter 7.

A point of attention of best-response approach is its inability to provide any as-
surance on quality of the produced outcome. The procedure is certain to terminate
in an equilibrium after a finite number of steps, however there are no guarantees on
the rewards obtained in such a local optimum. A first idea could be to compute the
optimal coordination, or at least an ε-approximation for notoriously complex problems,
to determine the “price of anarchy” [221], i.e. a bound on the optimality loss due to
decentralisation of the decision problem. In addition, an empirical evaluation of the
approach can establish an intuition with respect to typical outcomes. Furthermore, al-
gorithmic techniques and heuristics can be employed to guide the coordination search
and improve the optima found by the method [95, 120, 172, 178, 198]. Other ideas
such as learning [68] and hybrid algorithms [240] can further strengthen this approach.

An aspect that is not covered in this thesis is the impact that malicious agents
may have on the outcomes obtained under either one of the methods. The work here
assumed that agents are selfish but not necessarily harmful to others; they simply
do not care about the rewards obtained by others. Malicious agents, however, may
actively seek to harm other agents and for this they may have justifiable reasons in a
competitive setting [212]. For instance contractors may try to force competition out
of the market. But also a less malevolent intention such as continuation of business
can drive agents to make strategic decisions that are not rational or not included in
models of their rationality function. Dealing with this type of behaviour is typically
very hard in mechanisms because it either violates the underlying assumption of agent
rationality or implies models of rationality that are too complex to compute [72, 86].

201

CHAPTER 8. DISCUSSION AND CONCLUSIONS

Furthermore, both the dynamic maintenance mechanism and the self-response counter
strategic behaviour by single agents, how both approaches hold up against strategic
coalitions is unclear. In parallel to the theoretical research into maliciousness [63, 182]
and collusion [58, 59, 96, 151], the game of Chapter 7 could be used as a testing
environment to get a first insight into the impacts of these types of strategic behaviour
an investigate potential countermeasures, especially if automated agents are used to
mimic the behaviour of any type of player.

8.3.3 Self-regulation in Contracts

Whereas the main focus of this thesis has been on algorithmic techniques for the
design and enforcement of self-regulation incentives, and the consequential decision-
coordination problem, the original motivation of this research is the introduction of
self-regulation into innovative contract forms. The dynamic contracting procedure of
Volker et al. [254] – but also other novel contract forms such performance-driven con-
tracts [246] and Best Value contracts [239], and research similar to that of Bower
et al. [41], Bresnen and Marshall [45], Rose and Manley [218], Turrini et al. [249] –
directly benefit from the research in this thesis. A significant contribution to contract-
ing is again the ‘toolkit’ proposed in the conclusion of Section 8.2 as it provides the
machinery to implement monitoring, performance-based steering and self-regulation, as
well as the equipment to effectively coordinate decisions between contract participants.
Ideas from mechanism design and the solutions presented in Chapters 3 to 6 may be of
inspiration to the construction of efficient payment mechanisms within performance-
based agreements and these mechanisms can be empirically evaluated using the serious
game of Chapter 7. Moreover, the gaming setup offers a sandbox environment for the
empirical evaluation of the execution of contractual frameworks to further study agent
behaviour, incentive design, coordination approaches, etc. without the risks and costs
of real-world testing [9, 20, 27, 155, 225]. Finally, this thesis takes the first steps
towards a practical implementation of self-regulation in real-world tenders.

The serious gaming experiment of Chapter 7 forms a first proof of the concept of
self-regulation in a setting with human decision makers but at the same time shows
that there is still a long way to go before its implementation in actual contracts.
The experiments showed that monetary incentives are certainly capable of changing
decision-making preferences but their effect may be contradictory to their design. Still,
emergent coordination of interactions to improve team performance was observed in
groups with a strong social cohesion and hence the serious gaming experiment provides
initial evidence for the potential of monetary incentives to implement self-regulation
in performance-based contracts. Moreover, the apparent influence of the relationships
between contractors on the effectiveness of incentives confirms once more the impor-
tance of the social factor in partnerships – a conclusion drawn earlier by others such
as Agranoff and McGuire [7], Bresnen and Marshall [45], Klijn et al. [140] and Volker
et al. [255] – and the experiments newly show that social cohesion is at least positively
correlated to the emergence of coordination as a consequence of monetary incentives.
Hence, this suggests that incentives to incite self-regulation are most effective in set-
tings where contractors are familiar and collaborative, such as strategic partnerships or

202

8

8.3. IMPLICATIONS AND NEXT STEPS

alliances [50, 114, 118, 163], and emphasises the importance of nurturing social rela-
tionships in group tenders [44, 76, 154, 218]. Whether social cohesion is a necessary
condition for monetary incentive structures or merely beneficial to coordination for a
particular set of mechanisms can not be concluded from the experiments. This open
problem is one of the most important ones to be addressed in future research and deter-
mines the applicability of the incentive-based approach in domains and settings where
contractors are not inherently collaborative. In a broader sense, it is currently unclear
how the results of the gaming experiment generalise to real-world tenders and hence
additional empirical studies are necessary to establish the potential of self-regulation in
a (more) realistic setting. In this endeavour, the serious game of 7 can be refined to
gradually better approximate realistic contract execution, but ultimately the proof of
the pudding is in the eating.

Notwithstanding the need for a real-world proof, the failure of incentives to con-
sistently achieve self-regulation in the controlled experiments demonstrates the pre-
cariousness of relying solely on incentives to optimise team performance. Carefully
designed incentives that in theory optimise performance and counter opportunism may
cause unexpected or undesirable behaviour of human decision makers and can lead
to difficult questions with respect to the responsibility and accountability of agents.
This is a strong concern to recognise when depending on incentive schemes to incite
performance. If the contracted objectives are not specific enough, malicious service
providers will seek to exploit the performance-based payments while still complying to
the contracted goals. Such outcomes are difficult to prevent from a legal perspective
as the service provider is not actually at fault. But even cooperative service providers
may fail to produce the desired results due to incomplete, incorrect or imprecise goal
and payment formulations. In its essence, the potential of self-regulation is only as
strong as the design of its incentives. Naturally, the effectiveness of incentives is paired
the willingness of service providers to adhere to these incentives and their ability to
optimise their decisions in the light of these incentives. The lack of control and out-
sourcing of expertise makes it difficult to detect and prevent scenarios in which service
providers ignore or misinterpret incentives. These cases may lead to costly failures,
interventions or ‘bail-outs’. In situations where trust is insufficient, uncertainties are
great or objectives are complex, the traditional governed contract is often preferable
as it offers tight control over the process and its outcomes. At any rate, the current
understanding on team incentive structures, e.g. [45, 118, 185, 218], and the out-
comes of the experiments of Chapter 7 together advice against relying completely on
monetary incentives as the single mechanism to concurrently incite optimal contractor
performance, discourage opportunistic behaviour and stimulate cooperation in group
tenders. Instead, further research should consider pairing monetary incentives with ad-
ditional measures to mitigate its potential pitfalls, such as past-performance [81, 84],
trust [7, 140, 150, 255], social control [85], training and knowledge sharing [83, 249],
governmental supervision [90, 185] or automated decision support [23, 61]

Important to consider for contract designers is that while self-regulation stimu-
lates efficient and flexible outsourcing of expertise and work, there may be additional
drawbacks to this approach besides the aforementioned lack of control. The cost of
outsourcing is typically much higher than having in-house resources to perform work

203

CHAPTER 8. DISCUSSION AND CONCLUSIONS

while quality levels are not necessarily better [12]. Outsourcing may also lead to less
knowledge and expertise, making it harder to effectively assess the quality of deliv-
ered services and design the right objectives in tenders. Furthermore, outsourcing
degrades the learning ability of an organisation [146]. For these reasons insourcing
is again preferred in several domains [13, 137]. Also, this thesis has only considered
optimal performance in terms of maximising the total value obtained as a result of
contracted work, regardless of the value to individual contractors. Other aspects such
as fairness [267] may play a role in the success of contracts and alternative value-
maximisation strategies may be more suitable in different setting, e.g. the distribution
mechanism of Cavallo [53]. Certainly, before self-regulation can be implemented in
contracts, further research is required into the legal aspects and implications of self-
regulation [201, 211, 222]. Employing monetary incentives based on group performance
may lead to difficult questions about shared responsibility, intentionally harming other
contractors or who is at fault in case of performance penalties.

In conclusion, this thesis has taken the first step in bringing self-regulation into
contracting frameworks by the introduction of a mathematical framework, contribution
of several techniques to incentivise and coordinate service providers, and through a first
empirical evaluation of the concept in a simulated environment. Nonetheless, many
more steps need to be taken before self-regulation can be implemented in real-world
contracts and they should be taken pairwise with other fields such as contracting
theory, network (interaction) management, legal studies, behavioural psychology, and
many others. Ultimately, guided by the tools, techniques and learnings contributed
by this thesis, and paired with counselling from related disciplines, self-regulation has
the potential to revolutionise the traditionally hierarchical service-delivery model into
partnerships based on co-creation, respect and trust.

204

Bibliography

[1] Rijksbegroting - 3. de agentschappen (Dutch only). Technical report, Ri-
jkswaterstaat, 2013. Available at http://www.rijksbegroting.nl/2013/

voorbereiding/begroting,kst173855_37.html [16 December 2019].

[2] Oxford dictionary: self-regulation, 2015. Available at https:

//www.oxfordlearnersdictionaries.com/definition/english/self-

regulation?q=self-regulation [03 April 2019].

[3] Verkeersintensiteit; rijkswegen (Dutch only). Technical report, Centraal Bu-
reau voor de Statistiek, 2018. Available at https://opendata.cbs.nl/

statline/#/CBS/nl/dataset/82855NED/table?ts=1519907724922 [16 De-
cember 2019].

[4] Motor vehicles; type, age class, 1 january. Technical report, Centraal Bureau voor
de Statistiek, 2019. Available at https://opendata.cbs.nl/statline/#/

CBS/en/dataset/82044ENG/table?ts=1576522293313 [16 December 2019].

[5] Traffic performance motor vehicles; kilometres, type of vehicle, territory.
Technical report, Centraal Bureau voor de Statistiek, 2019. Available at
https://opendata.cbs.nl/statline/#/CBS/en/dataset/80302ENG/

table?ts=1576522182197 [16 December 2019].

[6] Rijksbegroting - agentschap rijkswaterstaat (Dutch only). Technical report,
Rijkswaterstaat, 2019. Available at http://www.rijksbegroting.nl/2020/

voorbereiding/begroting,kst264853_25.html [16 December 2019].

[7] R. Agranoff and M. McGuire. Big questions in public network management
research. Journal of Public Administration Research and Theory, 11(3):295–
326, 2001.

[8] M. Allen, M. Petrik, and S. Zilberstein. Interaction structure and dimensionality
in decentralized problem solving. Proc. of the Twenty-Third AAAI Conference
on Artificial Intelligence, pages 1440–1441, 2008.

[9] M. Altamirano, P. Herder, and M. De Jong. Road roles using gaming simulation
as decision technique for future asset management practices. In Proc. of the
International Conference on Systems, Man and Cybernetics, pages 2297–2302,
2008.

205

http://www.rijksbegroting.nl/2013/voorbereiding/begroting,kst173855_37.html
http://www.rijksbegroting.nl/2013/voorbereiding/begroting,kst173855_37.html
https://www.oxfordlearnersdictionaries.com/definition/english/self-regulation?q=self-regulation
https://www.oxfordlearnersdictionaries.com/definition/english/self-regulation?q=self-regulation
https://www.oxfordlearnersdictionaries.com/definition/english/self-regulation?q=self-regulation
https://opendata.cbs.nl/statline/#/CBS/nl/dataset/82855NED/table?ts=1519907724922
https://opendata.cbs.nl/statline/#/CBS/nl/dataset/82855NED/table?ts=1519907724922
https://opendata.cbs.nl/statline/#/CBS/en/dataset/82044ENG/table?ts=1576522293313
https://opendata.cbs.nl/statline/#/CBS/en/dataset/82044ENG/table?ts=1576522293313
https://opendata.cbs.nl/statline/#/CBS/en/dataset/80302ENG/table?ts=1576522182197
https://opendata.cbs.nl/statline/#/CBS/en/dataset/80302ENG/table?ts=1576522182197
http://www.rijksbegroting.nl/2020/voorbereiding/begroting,kst264853_25.html
http://www.rijksbegroting.nl/2020/voorbereiding/begroting,kst264853_25.html

BIBLIOGRAPHY

[10] M. A. Altamirano. Innovative contracting practices in the road sector: cross-
national lessons in dealing with opportunistic behaviour. PhD thesis, Delft Uni-
versity of Technology, 2010.

[11] M. A. Altamirano and W. M. de Jong. Opportunistic behavior in road mainte-
nance markets. Transportation Research Record: Journal of the Transportation
Research Board, 2108(1):13–22, 2009.

[12] J. S. Arlbjørn and T. Lüthje. Global operations and their interaction with supply
chain performance. Industrial Management & Data Systems, 2012.

[13] J. S. Arlbjørn and O. S. Mikkelsen. Backshoring manufacturing: notes on an
important but under-researched theme. Journal of Purchasing and Supply Man-
agement, 20(1):60–62, 2014.

[14] K. J. Arrow. The property rights doctrine and demand revelation under incom-
plete information. Elsevier, 1979.

[15] C. d’Aspremont and L.-A. Gérard-Varet. Incentives and incomplete information.
Journal of Public Economics, 11(1):25–45, 1979.

[16] S. Athey and I. Segal. An efficient dynamic mechanism. Econometrica, 81(6):
2463–2485, 2013.

[17] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2-3):235–256, 2002.

[18] R. Axelrod. Advancing the art of simulation in the social sciences. In Japanese
Journal for Management Information System, Special Issue on Agent-Based Mod-
eling, volume 12, pages 1–19, 12 2003.

[19] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebric decision diagrams and their applications. Formal Methods
in System Design, 10(2-3):171–206, 1997.

[20] O. Barreteau, F. Bousquet, and J.-M. Attonaty. Role-playing games for opening
the black box of multi-agent systems: method and lessons of its application to
Senegal River Valley irrigated systems. Journal of Artificial Societies and Social
Simulation, 4(2):5, 2001.

[21] L. Barrett and S. Narayanan. Learning all optimal policies with multiple criteria.
In Proc. of the 25th International Conference on Machine Learning, pages 41–47.
ACM, 2008.

[22] F. H. Barron and B. E. Barrett. Decision quality using ranked attribute weights.
Management science, 42(11):1515–1523, 1996.

[23] M. Le Bars and P. Le Grusse. Use of a decision support system and a simulation
game to help collective decision-making in water management. Computers and
Electronics in Agriculture, 62(2):182–189, 2008.

206

BIBLIOGRAPHY

[24] J. Bates. Values of time and reliability in passenger and freight transport in
The Netherlands. Technical Report Project 08064, Significance,Vrije Universiteit
Amsterdam, November 2012.

[25] R. Becker, S. Zilberstein, and V. Lesser. Decentralized Markov decision pro-
cesses with event-driven interactions. In Proc. of the International Conference
on Autonomous Agents and Multiagent Systems, pages 302–309. IEEE Computer
Society, 2004.

[26] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman. Solving transition inde-
pendent decentralized Markov decision processes. Journal of Artificial Intelligence
Research, 22:423–455, 2004.

[27] G. Bekebrede. Experiencing complexity: a gaming approach for understanding
infrastructure systems. Delft University of Technology, 2010.

[28] R. Bellman. A Markovian decision process. Technical report, DTIC Document,
1957.

[29] D. Bergemann and M. Said. Dynamic auctions. Wiley Encyclopedia of Operations
Research and Management Science, 2010.

[30] D. Bergemann and J. Välimäki. Efficient dynamic auctions. Yale University,
Cowles Foundation for Research in Economics, 2006.

[31] D. Bernstein and R. Givan. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research, 2002.

[32] A. Beynier and A. Mouaddib. A polynomial algorithm for decentralized Markov
decision processes with temporal constraints. In Proc. of the Fourth International
Joint Conference on Autonomous Agents and Multiagent Systems, pages 963–
969. ACM, 2005.

[33] A. Beynier and A. Mouaddib. An iterative algorithm for solving constrained
decentralized Markov decision processes. Proc. of the National Conference on
Artificial Intelligence, 2006.

[34] M. Blencowe. Review of Scottish public sector procurement in construc-
tion. Technical report, Scottish Futures Trust, January 2016. Avail-
able at https://www.scottishfuturestrust.org.uk/storage/uploads/

Target_Cost_Guidance.pdf [28 April 2019].

[35] P. Bogetoft. Non-cooperative planning theory, volume 418. Springer Science &
Business Media, 2012.

[36] C. Boutilier. Planning, learning and coordination in multiagent decision pro-
cesses. Proc. of the 6th Conference on Theoretical Aspects of Rationality and
Knowledge, 1996.

207

https://www.scottishfuturestrust.org.uk/storage/uploads/Target_Cost_Guidance.pdf
https://www.scottishfuturestrust.org.uk/storage/uploads/Target_Cost_Guidance.pdf

BIBLIOGRAPHY

[37] C. Boutilier and N. Friedman. Context-specific independence in Bayesian net-
works. Proc. of the Twelfth International Conference on Uncertainty in Artificial
Intelligence, 1996.

[38] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in policy con-
struction. In Proc. of the International Joint Conference on Artificial Intelligence,
volume 14, pages 1104–1113, 1995.

[39] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: structural as-
sumptions and computational leverage. Journal of Artificial Intelligence Research,
11:1—-94, 1999.

[40] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic programming
with factored representations. Artificial Intelligence, 2000.

[41] D. Bower, G. Ashby, K. Gerald, and W. Smyk. Incentive mechanisms for project
success. Journal of Management in Engineering, 18(1):37–43, 2002.

[42] M. H. Brandt. Kwartaalmonitor bereikbaarheidsontwikkeling hoofdwegennet 1e
kwartaal 2011 (Dutch only). Technical report, Ministerie van Infrastructuur
en Milieu Rijkswaterstaat, Dienst Verkeer en Scheepvaart, April 2011. Avail-
able at http://publicaties.minienm.nl/documenten/kwartaalmonitor-

bereikbaarheidsontwikkeling-hoofdwegennet-1e-k-2 [28 April 2019].

[43] M. H. Brandt, G. Loos, and S. van Houten. Fileminuten als gun-
ningscriterium (Dutch only). Technical report, Cobouw, July 2011. Avail-
able at https://www.cobouw.nl/infra/nieuws/2011/07/fileminuten-

als-gunningscriterium-10122517 [28 April 2019].

[44] M. Bresnen and N. Marshall. Partnering strategies and organizational cultures
in the construction industry. In Proceedings, ARCOM 14th Annual Conference,
University of Reading, volume 2, pages 465–76, 1998.

[45] M. Bresnen and N. Marshall. Motivation, commitment and the use of incentives
in partnerships and alliances. Construction Management and Economics, 18(5):
587–598, 2000.

[46] P. Briest, P. Krysta, and B. Vöcking. Approximation techniques for utilitarian
mechanism design. In Proc. of the Thirty-seventh Annual ACM Symposium on
Theory of Computing, pages 39–48. ACM, 2005.

[47] E. M. Van Bueren, E.-H. Klijn, and J. F. Koppenjan. Dealing with wicked prob-
lems in networks: analyzing an environmental debate from a network perspective.
Journal of Public Administration Research and Theory, 13(2):193–212, 2003.

[48] P. Buzing, A. Ter Mors, J. Valk, and C. Witteveen. Coordinating self-interested
planning agents. Autonomous Agents and Multi-Agent Systems, 12(2):199–218,
2006.

208

http://publicaties.minienm.nl/documenten/kwartaalmonitor-bereikbaarheidsontwikkeling-hoofdwegennet-1e-k-2
http://publicaties.minienm.nl/documenten/kwartaalmonitor-bereikbaarheidsontwikkeling-hoofdwegennet-1e-k-2
https://www.cobouw.nl/infra/nieuws/2011/07/fileminuten-als-gunningscriterium-10122517
https://www.cobouw.nl/infra/nieuws/2011/07/fileminuten-als-gunningscriterium-10122517

BIBLIOGRAPHY

[49] A. Calderón and M. Ruiz. A systematic literature review on serious games evalu-
ation: an application to software project management. Computers & Education,
87:396–422, 2015.

[50] D. G. Carmichael. Contracts and international project management. CRC Press,
2000.

[51] A. R. Cassandra. Exact and approximate algorithms for partially observable
Markov decision processes. PhD thesis, Brown University, 1998.

[52] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially
observable stochastic domains. In Proc. of the National Conference on Artificial
Intelligence, volume 94, pages 1023–1028, 1994.

[53] R. Cavallo. Efficiency and redistribution in dynamic mechanism design. In Proc.
of the 9th ACM Conference on Electronic Commerce, pages 220–229. ACM,
2008.

[54] R. Cavallo. Social welfare maximization in dynamic strategic decision problems.
PhD thesis, Harvard University, 2008.

[55] R. Cavallo, D. C. Parkes, and S. Singh. Optimal coordinated planning amongst
self-interested agents with private state. In Proc. of the Twenty-Second Confer-
ence on Uncertainty in Artificial Intelligence, pages 55–62. AUAI Press, 2006.

[56] R. Cavallo, D. C. Parkes, and S. Singh. Efficient mechanisms with dynamic
populations and dynamic types. Technical report, Harvard University, Division
of Engineering and Applied Physics, 2009.

[57] A. P. Chan, D. W. Chan, and J. F. Yeung. Relational contracting for construction
excellence: principles, practices and case studies. Routledge, 2009.

[58] J. Chan and W. Zhang. Collusion enforcement with private information and
private monitoring. Journal of Economic Theory, 157:188–211, 2015.

[59] Y.-K. Che and J. Kim. Optimal collusion-proof auctions. Journal of Economic
Theory, 144(2):565–603, 2009.

[60] H.-T. Cheng. Algorithms for partially observable Markov decision processes. PhD
thesis, University of British Columbia, 1988.

[61] W. Cheung, L. C. Leung, and P. C. Tam. An intelligent decision support system
for service network planning. Decision Support Systems, 39(3):415–428, 2005.

[62] K. Choi, Y. H. Kwak, J.-H. Pyeon, and K. Son. Schedule effectiveness of alterna-
tive contracting strategies for transportation infrastructure improvement projects.
Journal of Construction Engineering and Management, 138(3):323–330, 2011.

[63] A. K. Chorppath and T. Alpcan. Adversarial behavior in network mechanism
design. In Proc. of the 5th International ICST Conference on Performance Eval-
uation Methodologies and Tools, pages 506–514, 2011.

209

BIBLIOGRAPHY

[64] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11(1):17–33,
1971.

[65] R. T. Clemen and T. Reilly. Making hard decisions with DecisionTools. Cengage
Learning, 2013.

[66] J. Cohen. Statistical power analysis. Current directions in psychological science,
1(3):98–101, 1992.

[67] V. Conitzer and T. Sandholm. Complexity of mechanism design. In Proc. of the
Eighteenth Conference on Uncertainty in Artificial Intelligence, pages 103–110.
Morgan Kaufmann Publishers Inc., 2002.

[68] V. Conitzer and T. Sandholm. AWESOME: a general multiagent learning algo-
rithm that converges in self-play and learns a best response against stationary
opponents. Machine Learning, 67(1-2):23–43, 2007.

[69] D. A. Conrad, S. H. Cave, M. Lucas, J. Harville, S. M. Shortell, G. J. Bazzoli,
R. Hasnain-Wynia, S. Sofaer, J. A. Alexander, E. Casey, et al. Community
care networks: linking vision to outcomes for community health improvement.
Medical Care Research and Review, 60(4 suppl):95S–129S, 2003.

[70] R. Coulom. Efficient selectivity and backup operators in Monte-Carlo Tree
Search. In Proc. of the 5th international conference on Computers and games,
pages 72–83. Springer, 2006.

[71] P. Dai. Decision making under uncertainty: scalability and applications. Univer-
sity of Washington, 2011.

[72] R. K. Dash, N. R. Jennings, and D. C. Parkes. Computational-mechanism design:
a call to arms. Intelligent Systems, IEEE, 18(6):40–47, 2003.

[73] A. Davies, S. MacAulay, and T. Brady. Delivery model innovation: insights from
infrastructure projects. Project Management Journal, 50(2):119–127, 2019.

[74] H. A. Davies and E. K. Chan. Experience of energy performance contracting in
Hong Kong. Facilities, 19(7/8):261–268, 2001.

[75] H. Ç. Demirel, W. Leendertse, L. Volker, and M. Hertogh. Flexibility in PPP
contracts–dealing with potential change in the pre-contract phase of a construc-
tion project. Construction Management and Economics, 35(4):196–206, 2017.

[76] G. Dewulf and A. Kadefors. Collaboration in public construction-contractual in-
centives, partnering schemes and trust. Engineering Project Organization Jour-
nal, 2(4):240–250, 2012.

[77] J. S. Dibangoye, C. Amato, and A. Doniec. Scaling up decentralized MDPs
through heuristic search. In Proc. of the Twenty-Eighth Conference on Uncer-
tainty in Artificial Intelligence, 2012.

210

BIBLIOGRAPHY

[78] J. S. Dibangoye, C. Amato, O. Buffet, and F. Charpillet. Optimally solving Dec-
POMDPs as continuous-state MDPs. In Proc. of the Twenty-Third international
Joint Conference on Artificial Intelligence. AAAI Press, 2013.

[79] J. S. Dibangoyea, C. Amatob, O. Buffeta, and F. Charpilleta. Exploiting sep-
arability in multiagent planning with continuous-state MDPs. In Proc. of the
International Conference on Autonomous Agents and Multiagent Systems, pages
1281–1288. IFAAMAS, 2014.

[80] D. Dolgov and E. Durfee. Graphical models in local, asymmetric multi-agent
Markov decision processes. In Proc. of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, volume 2, pages 956–963. IEEE
Computer Society, 2004.

[81] H. Doloi, K. Iyer, and A. Sawhney. Structural equation model for assessing
impacts of contractor’s performance on project success. International Journal of
Project Management, 29(6):687–695, 2011.

[82] A. M. Douma, J. van Hillegersberg, and P. C. Schuur. Design and evaluation
of a simulation game to introduce a multi-agent system for barge handling in a
seaport. Decision Support Systems, 53(3):465–472, 2012.

[83] P. E. Eriksson. Partnering: what is it, when should it be used, and how should
it be implemented? Construction management and economics, 28(9):905–917,
2010.

[84] P. E. Eriksson and M. Westerberg. Effects of cooperative procurement procedures
on construction project performance: a conceptual framework. International
Journal of Project Management, 29(2):197–208, 2011.

[85] E. Fehr and A. Falk. Psychological foundations of incentives. European Economic
Review, 46(4-5):687–724, 2002.

[86] J. Feigenbaum and S. Shenker. Distributed algorithmic mechanism design: recent
results and future directions. In Current Trends in Theoretical Computer Science:
The Challenge of the New Century, pages 403–434. World Scientific, 2004.

[87] R. E. Fikes and N. J. Nilsson. STRIPS: a new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2(3):189–208, 1972.

[88] M. S. Fox, M. Barbuceanu, and R. Teigen. Agent-oriented supply-chain man-
agement. In Information-Based Manufacturing, pages 81–104. Springer, 2001.

[89] E. J. Friedman and D. C. Parkes. Pricing wifi at starbucks: issues in online
mechanism design. In Proc. of the 4th ACM Conference on Electronic Commerce,
pages 240–241. ACM, 2003.

[90] R. Gao and J. Liu. Selection of government supervision mode of PPP projects
during the operation stage. Construction Management and Economics, pages
1–20, 2019.

211

BIBLIOGRAPHY

[91] E. H. Gerding, V. Robu, S. Stein, D. C. Parkes, A. Rogers, and N. R. Jennings.
Online mechanism design for electric vehicle charging. In The 10th International
Conference on Autonomous Agents and Multiagent Systems, volume 2, pages
811–818. IFAAMAS, 2011.

[92] A. Gibbard. Manipulation of voting schemes: a general result. Econometrica, 41
(4):587–601, 1973.

[93] R. Gibbons. A primer in game theory. Harvester Wheatsheaf, 1992.

[94] G. Gigerenzer and R. Selten. Bounded rationality: the adaptive toolbox. MIT
Press, 2002.

[95] F. W. Glover and G. A. Kochenberger. Handbook of metaheuristics, volume 57.
Springer Science & Business Media, 2006.

[96] A. V. Goldberg and J. D. Hartline. Collusion-resistant mechanisms for single-
parameter agents. In Proc. of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 620–629. Society for Industrial and Applied Mathe-
matics, 2005.

[97] C. Goldman and S. Zilberstein. Decentralized control of cooperative systems:
categorization and complexity analysis. Journal of Artificial Intelligence Research,
2004.

[98] C. V. Goldman and S. Zilberstein. Optimizing information exchange in cooper-
ative multi-agent systems. In Proc. of the second international joint conference
on Autonomous agents and multiagent systems, pages 137–144. ACM, 2003.

[99] J. J. Green, Jand Laffont. Characterization of satisfactory mechanisms for the
revelation of preferences for public goods. Econometrica: Journal of the Econo-
metric Society, pages 427–438, 1977.

[100] A. Griffith. Delivering best value in the small works portfolio of public sector
organizations when using preferred contractors. Construction Management and
Economics, 29(9):891–900, 2011.

[101] T. Groves. Incentives in teams. Econometrica: Journal of the Econometric
Society, pages 617–631, 1973.

[102] C. Guestrin and G. Gordon. Distributed planning in hierarchical factored MDPs.
In Proc. of the Eighteenth Conference on Uncertainty in Artificial Intelligence,
pages 197–206. Morgan Kaufmann Publishers Inc., 2002.

[103] C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored MDPs.
Advances in Neural Information Processing Systems, 2001.

[104] C. Guestrin, S. Venkataraman, and D. Koller. Context-specific multiagent coor-
dination and planning with factored MDPs. In Proc. of the National Conference
on Artificial Intelligence, pages 253–259, 2002.

212

BIBLIOGRAPHY

[105] A. Guo and V. R. Lesser. Planning for weakly-coupled partially observable
stochastic games. In Proc. of the International Joint Conference on Artificial
Intelligence, pages 1715–1716, 2005.

[106] D. Gupta, A. Vedantam, and J. Azadivar. Optimal contract mechanism design
for performance-based contracts. Technical report, Minnesota Department of
Transportation Research Services Section, 2011.

[107] P. Guyot and S. Honiden. Agent-based participatory simulations: merging multi-
agent systems and role-playing games. Journal of Artificial Societies and Social
Simulation, 9(4), 10 2006.

[108] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic programming for
partially observable stochastic games. In Proc. of the National Conference on
Artificial Intelligence, volume 4, pages 709–715, 2004.

[109] M. O’Hare, R. Leone, and M. Zegans. Privatization of imprisonment: a man-
agerial perspective. In Private Prisons and the Public Interest, pages 107–129.
Rutgers University Press, 1990.

[110] C. Harteveld, R. Guimarães, I. S. Mayer, and R. Bidarra. Balancing play, mean-
ing and reality: the design philosophy of LEVEE PATROLLER. Simulation &
Gaming, 41(3):316–340, 2010.

[111] J. D. Hartline. Approximation in mechanism design. The American Economic
Review, pages 330–336, 2012.

[112] A. Hartmann and M. Hietbrink. An exploratory study on the relationship between
stakeholder expectations, experiences and satisfaction in road maintenance. Con-
struction Management and Economics, 31(4):345–358, 2013.

[113] A. Hartmann, J. Roehrich, L. Frederiksen, and A. Davies. Procuring complex
performance: the transition process in public infrastructure. International journal
of operations & production management, 34(2):174–194, 2014.

[114] A. J. Hauck, D. H. Walker, K. D. Hampson, and R. J. Peters. Project alliancing
at national museum of Australia: collaborative process. Journal of Construction
Engineering and Management, 130(1):143–152, 2004.

[115] S. Hedborg Bengtsson. Coordinated construction logistics: an innovation per-
spective. Construction Management and Economics, 37(5):294–307, 2019.

[116] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: stochastic planning
using decision diagrams. Proc. of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, 1999.

[117] S. Hong, C. Wernz, and J. D. Stillinger. Optimizing maintenance service con-
tracts through mechanism design theory. Applied Mathematical Modelling, 40
(21-22):8849–8861, 2016.

213

BIBLIOGRAPHY

[118] S. M. Hosseinian and D. G. Carmichael. Optimal gainshare/painshare in alliance
projects. Journal of the Operational Research Society, 64(8):1269–1278, 2013.

[119] R. A. Howard. Dynamic Programming and Markov Processes. John Wiley, 1970.

[120] X. Hu, R. Shonkwiler, and M. C. Spruill. Random restarts in global optimization.
Technical report, Georgia Institute of Technology, 2009.

[121] W. Hughes and S. Kabiri. Performance-based contracting in the construction
sector. Technical report, University of Reading, 2013.

[122] P. Hypko, M. Tilebein, and R. Gleich. Clarifying the concept of performance-
based contracting in manufacturing industries: a research synthesis. Journal of
Service Management, 21(5):625–655, 2010.

[123] H. B. Isik, B. Sohngen, et al. Performance-based voluntary group contracts
for nonpoint source pollution. In 2003 Annual meeting, July 27-30, Montreal,
Canada, number 22064. American Agricultural Economics Association, 2003.

[124] A. A. Javed, P. T. Lam, and A. P. Chan. Change negotiation in public-private
partnership projects through output specifications: an experimental approach
based on game theory. Construction Management and Economics, 32(4):323–
348, 2014.

[125] M. C. Jensen and W. H. Meckling. Theory of the firm: managerial behavior,
agency costs, and ownership structure. Springer, 1979.

[126] A. Jonsson and A. Barto. A causal approach to hierarchical decomposition of
factored MDPs. Proc. of the 22nd International Conference on Machine Learning,
2005.

[127] A. Jonsson and M. Rovatsos. Scaling up multiagent planning: a best-response
approach. In Proc. of the International Conference on Automated Planning and
Scheduling, 2011.

[128] J. Jordán, A. Torreño, M. M. de Weerdt, and E. Onaindia. A better-response
strategy for self-interested planning agents. Applied Intelligence: the interna-
tional journal of artificial intelligence, neural networks, and complex problem-
solving technologies, 48(4):1020–1040, 2018. doi: 10.1007/s10489-017-1046-5.

[129] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1):99–134,
1998.

[130] D. Kahneman. A perspective on judgment and choice: mapping bounded ratio-
nality. American Psychologist, 58(9):697, 2003.

[131] S. M. Kakade, I. Lobel, and H. Nazerzadeh. Optimal dynamic mechanism design
and the virtual-pivot mechanism. Operations Research, 61(4):837–854, 2013.

214

BIBLIOGRAPHY

[132] S. Kalyanasundaram, E. K. Chong, and N. B. Shroff. Optimal resource allocation
in multi-class networks with user-specified utility functions. Computer Networks,
38(5):613–630, 2002.

[133] T. Keller and P. Eyerich. PROST: probabilistic planning based on UCT. In Proc.
of the International Conference on Automated Planning and Scheduling, 2012.

[134] T. Keller and M. Helmert. Trial-based heuristic tree search for finite horizon
MDPs. In Proc. of the International Conference on Automated Planning and
Scheduling, 2013.

[135] R. Kenley, K. London, and J. Watson. Strategic procurement in the construction
industry mechanisms for public sector clients to improve performance in the
australian public sector. Journal of Construction Procurement, 6(1):4–19, 2000.

[136] C. Kilger, B. Reuter, and H. Stadtler. Collaborative planning. In Supply Chain
Management and Advanced Planning, pages 257–277. Springer, 2015.

[137] S. Kinkel. Future and impact of backshoring - Some conclusions from 15 years of
research on german practices. Journal of Purchasing and Supply Management,
20(1):63–65, 2014.

[138] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi, A. Shinjou, and
S. Shimada. Robocup rescue: search and rescue in large-scale disasters as a
domain for autonomous agents research. In Proc. of the IEEE International
Conference on Systems, Man, and Cybernetics, volume 6, pages 739–743. IEEE,
1999.

[139] L. Klein, J.-Y. Kwak, G. Kavulya, F. Jazizadeh, B. Becerik-Gerber, P. Varakan-
tham, and M. Tambe. Coordinating occupant behavior for building energy and
comfort management using multi-agent systems. Automation in Construction,
22:525–536, 2012.

[140] E.-H. Klijn, J. Edelenbos, and B. Steijn. Trust in governance networks its impacts
on outcomes. Administration & Society, 42(2):193–221, 2010.

[141] E.-H. Klijn, B. Steijn, and J. Edelenbos. The impact of network management
on outcomes in governance networks. Public Administration, 88(4):1063–1082,
2010.

[142] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In Machine
Learning: ECML 2006, pages 282–293. Springer, 2006.

[143] J. R. Kok and N. Vlassis. Sparse cooperative Q-learning. In Proc. of the Inter-
national Conference on Machine Learning, pages 481–488, 2004.

[144] C. J. Koliba, J. W. Meek, and A. Zia. Gordian knot or integrated theory?
Critical conceptual considerations for governance network analysis. The Future
of Governance, 2010.

215

BIBLIOGRAPHY

[145] D. Koller and R. Parr. Computing factored value functions for policies in struc-
tured MDPs. In Proc. of the International Joint Conference on Artificial Intelli-
gence, volume 99, pages 1332–1339, 1999.

[146] M. Kotabe, M. J. Mol, and J. Y. Murray. Outsourcing, performance, and the
role of e-commerce: a dynamic perspective. Industrial Marketing Management,
37(1):37–45, 2008.

[147] V. Krishna and M. Perry. Efficient mechanism design. Technical report, Penn-
sylvania State University, 1998. Available at SSRN 64934.

[148] R. Van der Krogt, M. M. De Weerdt, and Y. Zhang. Of mechanism design and
multiagent planning. In ECAI, pages 423–427, 2008.

[149] P. Krysta and B. Vöcking. Online mechanism design (randomized rounding on
the fly). In Automata, Languages, and Programming, pages 636–647. Springer,
2012.

[150] A. Laan, N. Noorderhaven, H. Voordijk, and G. Dewulf. Building trust in con-
struction partnering projects: an exploratory case-study. Journal of Purchasing
and Supply Management, 17(2):98–108, 2011.

[151] J.-J. Laffont and D. Martimort. Mechanism design with collusion and correlation.
Econometrica, 68(2):309–342, 2000.

[152] T. Lam and K. Gale. Highway maintenance: impact of framework agreements
upon project financial performance. Construction Management and Economics,
32(5):460–472, 2014.

[153] T. C. Lam and K. A. Small. The value of time and reliability: measurement
from a value pricing experiment. Transportation Research Part E: Logistics and
Transportation Review, 37(2):231–251, 2001.

[154] E. Larson. Partnering on construction projects: a study of the relationship be-
tween partnering activities and project success. IEEE Transactions on engineering
management, 44(2):188–195, 1997.

[155] S. Lavy, J. A. Garcia, P. Scinto, and M. K. Dixit. Key performance indicators
for facility performance assessment: simulation of core indicators. Construction
Management and Economics, 32(12):1183–1204, 2014.

[156] R. Leiringer, S. D. Green, and J. Z. Raja. Living up to the value agenda: the
empirical realities of through-life value creation in construction. Construction
Management and Economics, 27(3):271–285, 2009.

[157] J. Levin. Relational incentive contracts. American Economic Review, 93(3):
835–857, 2003.

[158] R. Li and R. Roberti. Optimal scheduling of railway track possessions in large-
scale projects with multiple construction works. Journal of Construction Engi-
neering and Management, 143(6):04017007, 2017.

216

BIBLIOGRAPHY

[159] X. Li, T. Geng, Y. Yang, and X. Xu. Multiagent AGVs dispatching system
using multilevel decisions method. In Proc. of the American Control Conference,
volume 2, pages 1135–1136. IEEE, 2002.

[160] G. J. Lim and S. S. Desai. Markov decision process approach for multiple objective
hazardous material transportation route selection problem. International Journal
of Operational Research, 7(4):506–529, 2010.

[161] D. J. Lizotte, M. H. Bowling, and S. A. Murphy. Efficient reinforcement learning
with multiple reward functions for randomized controlled trial analysis. In Proc.
of the 27th International Conference on Machine Learning, pages 695–702, 2010.

[162] D. J. Lizotte, M. Bowling, and S. A. Murphy. Linear fitted-q iteration with
multiple reward functions. The Journal of Machine Learning Research, 13(1):
3253–3295, 2012.

[163] P. E. Love, P. R. Davis, R. Chevis, and D. J. Edwards. Risk/reward compen-
sation model for civil engineering infrastructure alliance projects. Journal of
Construction Engineering and Management, 137(2):127–136, 2011.

[164] O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic
planning and infinite-horizon partially observable Markov decision problems. In
AAAI/IAAI, pages 541–548, 1999.

[165] J. Marecki and M. Tambe. On opportunistic techniques for solving decentral-
ized Markov decision processes with temporal constraints. In Proc. of the 6th
International Joint Conference on Autonomous Agents and Multiagent Systems,
page 219. ACM, 2007.

[166] J. Marecki and M. Tambe. Towards faster planning with continuous resources in
stochastic domains. In Proc. of the National Conference on Artificial Intelligence,
pages 1049–1055, 2008.

[167] J. Marecki and M. Tambe. Planning with continuous resources for agent teams.
In Proc. of The 8th International Conference on Autonomous Agents and Mul-
tiagent Systems, volume 2, pages 1089–1096. IFAAMAS, 2009.

[168] E. Maskin. Nash equilibrium and welfare optimality. The Review of Economic
Studies, 66(1):23–38, 1999.

[169] S. A. Meijer, I. S. Mayer, J. van Luipen, and N. Weitenberg. Gaming rail cargo
management: exploring and validating alternative modes of organization. Simu-
lation & Gaming, 43(1):85–101, 2 2012.

[170] F. Melo and M. Veloso. Decentralized MDPs with sparse interactions. Artificial
Intelligence, 2011.

[171] N. Meuleau, M. Hauskrecht, K.-E. Kim, L. Peshkin, L. P. Kaelbling, T. L. Dean,
and C. Boutilier. Solving very large weakly coupled Markov decision processes.
In Proc. of the Fifteenth National Conference on Artificial Intelligence, pages
165–172, 1998.

217

BIBLIOGRAPHY

[172] V. Mirrokni, N. Thain, and A. Vetta. A theoretical examination of practical
game playing: lookahead search. In Algorithmic Game Theory, pages 251–262.
Springer, 2012.

[173] V. Mirrokni, R. Paes Leme, R. Ren, and S. Zuo. Dynamic mechanism design in
the field. In Proc. of the 2018 World Wide Web Conference, pages 1359–1368.
International World Wide Web Conferences Steering Committee, 2018.

[174] J. P. Mo. System support engineering: the foundation knowledge for performance
based contracting. In ICOMS 2009: asset Management Conference Proceedings:
Sydney, 1-5 June 2009, page 205. Asset Management Council, 2009.

[175] K. Van Moffaert, M. M. Drugan, and A. Nowé. Scalarized multi-objective rein-
forcement learning: novel design techniques. In Symposium on Adaptive Dynamic
Programming And Reinforcement Learning, pages 191–199. IEEE, 2013.

[176] G. E. Monahan. State of the art – a survey of partially observable Markov decision
processes: theory, models, and algorithms. Management Science, 28(1):1–16,
1982.

[177] D. Monderer and L. S. Shapley. Potential games. Games and Economic Behavior,
14(1):124–143, 1996.

[178] B. Monien, D. Dumrauf, and T. Tscheuschner. Local search: simple, successful,
but sometimes sluggish. In International Colloquium on Automata, Languages,
and Programming, pages 1–17. Springer, 2010.

[179] H. Mostafa and V. Lesser. Offline planning for communication by exploiting
structured interactions in decentralized MDPs. Web Intelligence and Intelligent
Agent Technologies, 2009.

[180] A. Mu’Alem and N. Nisan. Truthful approximation mechanisms for restricted
combinatorial auctions. Games and Economic Behavior, 64(2):612–631, 2008.

[181] R. B. Myerson. Game Theory. Harvard University Press, 2013.

[182] P. Naghizadeh and A. Sinha. Adversarial contract design for private data com-
mercialization. In Proceedings of the 2019 ACM Conference on Economics and
Computation, pages 681–699, 2019.

[183] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsella. Taming decen-
tralized POMDPs: towards efficient policy computation for multiagent settings.
Proc. of the International Joint Conference on Artificial Intelligence, 2003.

[184] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Networked distributed
POMDPs: a synthesis of distributed constraint optimization and POMDPs. Proc.
of the National Conference on Artificial Intelligence, 2005.

[185] H. R. Nalbantian and A. Schotter. Productivity under group incentives: an
experimental study. The American Economic Review, pages 314–341, 1997.

218

BIBLIOGRAPHY

[186] J. F. Nash et al. Equilibrium points in n-person games. Proc. of the National
Academy of Sciences, 36(1):48–49, 1950.

[187] T. A. Nguyen, M. Do, A. E. Gerevini, I. Serina, B. Srivastava, and S. Kamb-
hampati. Generating diverse plans to handle unknown and partially known user
preferences. Artificial Intelligence, 190:1–31, 2012.

[188] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game
Theory. Cambridge University Press, 2007.

[189] F. de Nijs, M. T. J. Spaan, and M. M. de Weerdt. Decoupling a resource
constraint through fictitious play in multi-agent sequential decision making. In
Proceedings - 22nd European Conference on Artificial Intelligence, ECAI 2016,
volume 285 of Frontiers in Artificial Intelligence and Applications, pages 1724–
1725, Netherlands, 2016. IOS Press.

[190] F. de Nijs, E. Walraven, M. M. de Weerdt, and M. T. J. Spaan. Bounding the
probability of resource constraint violations in multi-agent MDPs. In Proceedings
of the 31st Conference on Artificial Intelligence, AAAI 2017, pages 3562–3568,
United States, 2017. American Association for Artificial Intelligence (AAAI).

[191] F. de Nijs, M. M. de Weerdt, and M. T. J. Spaan. Multi-agent planning under
uncertainty for capacity management. In Intelligent Integrated Energy Systems,
pages 197–213. Springer, 2019.

[192] A. Noroozian, M. M. de Weerdt, and C. Witteveen. Incentivizing cooperation in
P2P file sharing: indirect interaction as an incentive to seed. In L. Cao, Y. Zeng,
A. Symeonidis, V. Gorodetsky, P. Yu, and M. Singh, editors, Proceedings - 8th
International Workshop on Agents and Data Mining Interaction, pages 36–50.
Springer, 2013. doi: 10.1007/978-3-642-36288-0 5. Harvest Book Part II.

[193] F. A. Oliehoek, M. T. J. Spaan, S. Whiteson, and N. Vlassis. Exploiting local-
ity of interaction in factored Dec-POMDPs. In Proc. of the 7th International
Conference on Autonomous Agents and Multiagent Systems, volume 1, pages
517–524. IFAAMAS, 2008.

[194] F. A. Oliehoek, S. Whiteson, and M. T. J. Spaan. Approximate solutions for fac-
tored Dec-POMDPs with many agents. In Proc. of the International Conference
on Autonomous Agents and Multiagent Systems, pages 563–570, 2013.

[195] F. A. Oliehoek, M. T. J. Spaan, and S. J. Witwicki. Factored upper bounds for
multiagent planning problems under uncertainty with non-factored value func-
tions. In IJCAI 2015 - Proceedings of the 24th International Joint Conference
on Artificial Intelligence, volume 2015-January, pages 1645–1651. International
Joint Conferences on Artificial Intelligence, 1 2015.

[196] F. A. Oliehoek, M. T. J. Spaan, B. Terwijn, P. Robbel, and J. V. Messias. The
MADP toolbox: an open source library for planning and learning in (multi-)
agent systems. The Journal of Machine Learning Research, 18(1):3112–3116,
2017.

219

BIBLIOGRAPHY

[197] A. Opdyke, F. Lepropre, A. Javernick-Will, and M. Koschmann. Inter-
organizational resource coordination in post-disaster infrastructure recovery. Con-
struction Management and Economics, 35(8-9):514–530, 2017.

[198] A. V. Orlov, A. S. Strekalovsky, and S. Batbileg. On computational search for
Nash equilibrium in hexamatrix games. Optimization Letters, 10(2):369–381,
2016.

[199] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT press, 1994.

[200] S. Osborne. Public-private partnerships: theory and practice in international
perspective. Routledge, 2002.

[201] M. Painter and J. Pierre. Why legality cannot be contracted out: exploring the
limits of new public management. In Reasserting the Public in Public Services,
pages 61–74. Routledge, 2010.

[202] C. Papadimitriou, G. Pierrakos, C.-A. Psomas, and A. Rubinstein. On the com-
plexity of dynamic mechanism design. In Proc. of the Twentyseventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1458–1475. SIAM, 2016.

[203] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision
processes. Mathematics of Operations Research, 12(3):441–450, 1987.

[204] D. C. Parkes, R. Cavallo, F. Constantin, and S. Singh. Dynamic incentive mech-
anisms. AI Magazine, 31(4):79–94, 2010.

[205] A. Parkhe. Strategic alliance structuring: a game theoretic and transaction cost
examination of interfirm cooperation. Academy of Management Journal, 36(4):
794–829, 1993.

[206] P. A. Pathak. The mechanism design approach to student assignment. Annual
Review of Economics, 3(1):513–536, 2011.

[207] M. Plutowski. MDP solver for a class of location-based decisioning tasks. In
Proc. of the Nineteenth Conference on Uncertainty in Artificial Intelligence. AUAI
Press, 2003.

[208] M. Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. Wiley, 2009.

[209] M. L. Puterman and M. C. Shin. Modified policy iteration algorithms for dis-
counted Markov decision problems. Management Science, 24(11):1127–1137,
1978.

[210] Z. Rabinovich, C. V. Goldman, and J. S. Rosenschein. Non-approximability of
decentralized control. Technical report, Leibniz Center for Computer Science,
2002.

[211] M. Raskin. The law and legality of smart contracts. Technical report, Georgetown
Law Technology, 2016.

220

BIBLIOGRAPHY

[212] M. Rehák, M. Pěchouček, and J. Tožička. Adversarial behavior in multi-agent
systems. In International Central and Eastern European Conference on Multi-
Agent Systems, pages 470–479. Springer, 2005.

[213] D. Roijers, E. Walraven, and M. T. J. Spaan. Bootstrapping LPs in value iteration
for multi-objective and partially observable MDPs. In Proceedings of the 28th
International Conference on Automated Planning and Scheduling, pages 218–
226. Association for the Advancement of Artificial Intelligence (AAAI), 2018.

[214] D. M. Roijers. Multi-Objective Decision-Theoretic Planning. PhD thesis, Uni-
versity of Amsterdam, 2016.

[215] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research,
48:67–113, 2013.

[216] D. M. Roijers, J. Scharpff, M. T. J. Spaan, F. A. Oliehoek, M. M. de Weerdt,
and S. Whiteson. Bounded approximations for linear multi-objective planning
under uncertainty. In Proc. of the Twenty-Fourth International Conference on
Automated Planning and Scheduling, 2014.

[217] D. M. Roijers, S. Whiteson, and F. A. Oliehoek. Linear support for multi-objective
coordination graphs. In AAMAS 2014: Proc. of the Thirteenth International
Conference on Autonomous Agents and Multiagent Systems, pages 1297–1304.
IFAAMAS, 2014.

[218] T. Rose and K. Manley. Motivation toward financial incentive goals on construc-
tion projects. Journal of Business Research, 64(7):765–773, 2011.

[219] R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria.
International Journal of Game Theory, 2(1):65–67, 1973.

[220] E. Roszkowska. Rank ordering criteria weighting methods–a comparative
overview. Technical report, Wydawnictwo Uniwersytetu w Bia lymstoku, 2013.

[221] T. Roughgarden. Selfish routing and the price of anarchy, volume 174. MIT
Press Cambridge, 2005.

[222] J. Rouse. Performance management, quality management and contracts. In
Public Management in Britain, pages 76–93. Springer, 1999.

[223] D. Rousis. A Pareto frontier intersection-based approach for efficient multi-
objective optimization of competing concept alternatives. PhD thesis, Georgia
Institute of Technology, 2011.

[224] S. Ruiz and B. Hernández. A parallel solver for Markov decision process in crowd
simulations. In Proc. of the Fourteenth Mexican International Conference on
Artificial Intelligence, pages 107–116. IEEE, 2015.

221

BIBLIOGRAPHY

[225] T. Ryan. The role of simulation gaming in policy-making. Systems Research and
Behavioral Science, 17(4):359, 2000.

[226] S. Sanner. Relational dynamic influence diagram language (RDDL): language
description. Technical report, NICTA and the Australian National University,
2010. Available at http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/
RDDL.pdf [3 May 2019].

[227] M. A. Satterthwaite. Strategy-proofness and Arrow’s conditions: existence and
correspondence theorems for voting procedures and social welfare functions. Jour-
nal of Economic Theory, 10(2):187–217, 1975.

[228] J. Scharpff, M. T. J. Spaan, M. M. de Weerdt, and L. Volker. Planning un-
der uncertainty for coordinating infrastructural maintenance. In Proc. of the
International Conference on Automated Planning and Scheduling, 2013.

[229] J. Scharpff, D. M. Roijers, F. A. Oliehoek, M. T. J. Spaan, and M. M. de Weerdt.
Solving transition-independent multi-agent MDPs with sparse interactions. In
Proc. of the Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[230] J. Scharpff, D. M. Roijers, F. A. Oliehoek, M. T. J. Spaan, and M. M. de Weerdt.
Solving transition-independent multi-agent MDPs with sparse interactions. arXiv
preprint arXiv:1511.09047, 2016. (Extended version).

[231] J. Scharpff, D. Schraven, L. Volker, M. T. J. Spaan, and M. M. De Weerdt.
The road maintenance planning game – game design and first results. Technical
report, Delft University of Technology, 2019.

[232] J. Scharpff, D. Schraven, L. Volker, M. Spaan, and M. de Weerdt. Can multiple
contractors self-regulate their joint service delivery? a serious gaming experiment
on road maintenance planning. Construction Management and Economics, 2020.
doi: 10.1080/01446193.2020.1806336. In publication.

[233] D. Schraven, A. Hartmann, and G. Dewulf. Effectiveness of infrastructure asset
management: challenges for public agencies. Built Environment Project and
Asset Management, 1(1):61–74, 2011.

[234] I. Segal and J. Toikka. Revenue equivalence, profit maximization, and trans-
parency in dynamic mechanisms. Technical report, Stanford University, 2007.

[235] W. K. Shadid. A framework for managing organizations in complex environments.
Construction Management and Economics, 36(4):182–202, 2018.

[236] H. Sharma, C. McIntyre, Z. Gao, and T.-H. Nguyen. Developing a traffic clo-
sure integrated linear schedule for highway rehabilitation projects. Journal of
Construction Engineering and Management, 135(3):146–155, 2009.

[237] W. Shen, Z. Wang, and S. Zuo. Ex-post IR dynamic auctions with cost-per-
action payments. In Proc. of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, pages 2076–2078. IFAAMAS, 2018.

222

http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf

BIBLIOGRAPHY

[238] M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 2006.

[239] T. Snippert, W. Witteveen, H. Boes, and H. Voordijk. Barriers to realizing a
stewardship relation between client and vendor: the best value approach. Con-
struction Management and Economics, 33(7):569–586, 2015.

[240] Y. S. Son and R. Baldick. Hybrid coevolutionary programming for nash equi-
librium search in games with local optima. IEEE Transactions on Evolutionary
Computation, 8(4):305–315, 2004.

[241] E. J. Sondik. The optimal control of partially observable Markov processes. PhD
thesis, Stanford University, 1971.

[242] M. T. J. Spaan and F. Melo. Local interactions in decentralized multiagent plan-
ning under uncertainty. In Proc. of the International Conference on Autonomous
Agents and Multiagent Systems, pages 525–532. Citeseer, 2008.

[243] M. T. J. Spaan, C. Amato, and S. Zilberstein. Decision making in
multiagent settings: team decision making. Online tutorial. Available
at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.413.

598&rep=rep1&type=pdf [3 May 2019], 2011.

[244] M. T. J. Spaan, T. S. Veiga, and P. U. Lima. Decision-theoretic planning
under uncertainty with information rewards for active cooperative perception.
Autonomous Agents and Multi-Agent Systems, 29(6):1157–1185, 2015. doi:
10.1007/s10458-014-9279-8.

[245] S. Stein, E. Gerding, V. Robu, and N. R. Jennings. A model-based online mech-
anism with pre-commitment and its application to electric vehicle charging. In
Proc. of the 11th International Conference on Autonomous Agents and Multia-
gent Systems, volume 2, pages 669–676. IFAAMAS, 2012.

[246] A. Straub. Competences of maintenance service suppliers servicing end-
customers. Construction Management and Economics, 28(11):1187–1195, 2010.

[247] R. Taylor. Interpretation of the correlation coefficient: a basic review. Journal
of diagnostic medical sonography, 6(1):35–39, 1990.

[248] E. Triantaphyllou. Multi-criteria decision making methods: a comparative study,
volume 44. Springer Science & Business Media, 2013.

[249] A. Turrini, D. Cristofoli, F. Frosini, and G. Nasi. Networking literature about
determinants of network effectiveness. Public Administration, 88(2):528–550,
2010.

[250] P. Varakantham, J. Marecki, Y. Yabu, M. Tambe, and M. Yokoo. Letting loose
a SPIDER on a network of POMDPs: generating quality guaranteed policies. In
Proc. of the International Conference on Autonomous Agents and Multiagent
Systems, page 218, New York, New York, USA, 2007. ACM, ACM Press.

223

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.413.598&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.413.598&rep=rep1&type=pdf

BIBLIOGRAPHY

[251] P. Varakantham, J. Kwak, M. Taylor, and J. Marecki. Exploiting coordination lo-
cales in distributed POMDPs via social model shaping. Proc. of the International
Conference on Automated Planning and Scheduling, 2009.

[252] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The
Journal of Finance, 16(1):8–37, 1961.

[253] B. Viswanathan, V. V. Aggarwal, and K. P. K. Nair. Multiple criteria Markov
decision processes. TIMS Studies Management Science, 6:263–272, 1977.

[254] L. Volker, J. Scharpff, and M. M. de Weerdt. Designing a dynamic network based
approach for asset management activities. In Proc. of the 28th Annual ARCOM
Conference, pages 655–664, 2012.

[255] L. Volker, M. Altamirano, P. Herder, and T. van der Lei. The impact of inno-
vative contracting on asset management of public infrastructure networks. In
Engineering Asset Management, pages 665–676. Springer, 2014.

[256] M. Voorneveld, P. Borm, F. Van Megen, S. Tijs, and G. Facchini. Conges-
tion games and potentials reconsidered. International Game Theory Review, 1
(03n04):283–299, 1999.

[257] K. Wakuta and K. Togawa. Solution procedures for Markov decision processes.
Optimization: a Journal of Mathematical Programming and Operations Re-
search, 43(1):29–46, 1998.

[258] E. Walraven and M. T. J. Spaan. Planning under uncertainty with weighted
state scenarios. In Proceedings of the 31st Conference on Uncertainty in Artificial
Intelligence, pages 912–921, 7 2015.

[259] E. Walraven and M. T. J. Spaan. Point-based value iteration for finite-horizon
POMDPs. The Journal of Artificial Intelligence Research, 65:307–341, 2019.

[260] M. M. de Weerdt. Plan Merging in Multi-Agent Systems. PhD thesis, Delft
University of Technology, Delft, The Netherlands, 2003.

[261] M. M. de Weerdt and B. Clement. Introduction to planning in multiagent sys-
tems. Multiagent and Grid Systems, 5(4):345–355, 2009.

[262] I. Wenzler and D. Chartier. Why do we bother with games and simulations: an
organizational learning perspective. Simulation & Gaming, 30(3):375–384, 1999.

[263] C. C. White and K. W. Kim. Solution procedures for vector criterion Markov
decision processes. Large Scale Systems, 1(4):129–140, 1980.

[264] S. Witwicki and E. Durfee. Influence-based policy abstraction for weakly-coupled
Dec-POMDPs. Proc. of the International Conference on Automated Planning
and Scheduling, 2010.

224

BIBLIOGRAPHY

[265] J. Wu and E. H. Durfee. Mixed-integer linear programming for transition-
independent decentralized MDPs. In Proc. of the Fifth International Joint Con-
ference on Autonomous Agents and Multiagent Systems, page 1058. IFAAMAS,
ACM Press, 2006.

[266] J. Yu, R. Buyya, and C. K. Tham. Cost-based scheduling of scientific workflow
applications on utility grids. In First International Conference on e-Science and
Grid Computing. IEEE, 2005.

[267] T. R. Zenger and C. Marshall. Determinants of incentive intensity in group-based
rewards. Academy of Management Journal, 43(2):149–163, 2000.

[268] G. Zietlow. Cutting costs and improving quality through performance-based road
management and maintenance contracts-the Latin American and OECD expe-
riences. Senior Road Executives Programme, Restructuring Road Management,
German Development Cooperation, Birmingham, 2005.

[269] K. H. Zou, K. Tuncali, and S. G. Silverman. Correlation and simple linear re-
gression. Radiology, 227(3):617–628, 2003.

225

Publications and
Supplementary Material

Publications

J. Scharpff, M. T. J. Spaan, M. M. de Weerdt, and L. Volker. Planning under un-
certainty for coordinating infrastructural maintenance. In Proc. of the International
Conference on Automated Planning and Scheduling, 2013.

J. Scharpff, D. M. Roijers, F. A. Oliehoek, M. T. J. Spaan, and M. M. de Weerdt.
Solving transition-independent multi-agent MDPs with sparse interactions. In Proc. of
the Thirtieth AAAI Conference on Artificial Intelligence, 2016.

J. Scharpff, D. Schraven, L. Volker, M. Spaan, and M. de Weerdt. Can multiple
contractors self-regulate their joint service delivery? a serious gaming experiment on
road maintenance planning. Construction Management and Economics, 2020. doi:
10.1080/01446193.2020.1806336. In publication.

Co-authored Publications

D. M. Roijers, J. Scharpff, M. T. J. Spaan, F. A. Oliehoek, M. M. de Weerdt, and
S. Whiteson. Bounded approximations for linear multi-objective planning under uncer-
tainty. In Proc. of the Twenty-Fourth International Conference on Automated Planning
and Scheduling, 2014.

L. Volker, J. Scharpff, and M. M. de Weerdt. Designing a dynamic network based
approach for asset management activities. In Proc. of the 28th Annual ARCOM Con-
ference, pages 655–664, 2012.

Non Peer-reviewed Publications

J. Scharpff, D. M. Roijers, F. A. Oliehoek, M. T. J. Spaan, and M. M. de Weerdt. Solv-
ing transition-independent multi-agent MDPs with sparse interactions. arXiv preprint
arXiv:1511.09047, 2016. (Extended version).

J. Scharpff, D. Schraven, L. Volker, M. T. J. Spaan, and M. M. De Weerdt. The road

226

PUBLICATIONS AND SUPPLEMENTARY MATERIAL

maintenance planning game – game design and first results. Technical report, Delft Uni-
versity of Technology, 2019. https://repository.tudelft.nl/islandora/object/
uuid:15778996-6b67-42d7-a923-f31cd6ec0952.

Source and Data disclosure

The source code of the toolkit that contains all the solvers used in the experiments
of Chapters 3 to 5 can be found in the Stochastic Planning Toolkit at https:

//github.com/AlgTUDelft/SPTK.

For a stand-alone implementation of the Conditional Return Policy Search (CoRe)
solver, see https://github.com/AlgTUDelft/core-solver.

The maintenance planning game and the results of the gaming sessions can be found
at https://github.com/AlgTUDelft/road-maintenance-game.

227

https://repository.tudelft.nl/islandora/object/uuid:15778996-6b67-42d7-a923-f31cd6ec0952
https://repository.tudelft.nl/islandora/object/uuid:15778996-6b67-42d7-a923-f31cd6ec0952
https://github.com/AlgTUDelft/SPTK
https://github.com/AlgTUDelft/SPTK
https://github.com/AlgTUDelft/core-solver
https://github.com/AlgTUDelft/road-maintenance-game

TRAIL Thesis Series

This work is part of the TRAIL Thesis Series, a series of the Netherlands TRAIL
Research School on transport, infrastructure and logistics. The following list contains
the most recent dissertations in this series. For a complete overview of more than 250
titles see the TRAIL website: www.rstrail.nl.

Scharpff, J.C.D., Collective Decision Making trough Self-regulation, T2020/17, Novem-
ber 2020, TRAIL Thesis Series, the Netherlands

Guo, W., Optimization of Synchromodal Matching Platforms under Uncertainties,
T2020/16, November 2020, TRAIL Thesis Series, the Netherlands

Narayan, J., Design and Analysis of On-Demand Mobility Systems, T2020/15, October
2020, TRAIL Thesis Series, the Netherlands

Gong, X., Using Social Media to Characterise Crowds in City Events for Crowd Man-
agement, T2020/14, September 2020, TRAIL Thesis Series, the Netherlands

Rijal, A., Managing External Temporal Constraints in Manual Warehouses, T2020/13,
September 2020, TRAIL Thesis Series, the Netherlands

Alonso González, M.J., Demand for Urban Pooled On-Demand Services: Attitudes,
preferences and usage, T2020/12, July 2020, TRAIL Thesis Series, the Netherlands

Alwosheel, A.S.A., Trustworthy and Explainable Artificial Neural Networks for choice
Behaviour Analysis, T2020/11, July 2020, TRAIL Thesis Series, the Netherlands

Zeng, Q., A New Composite Indicator of Company Performance Measurement from
Economic and Environmental Perspectives for Motor Vehicle Manufacturers, T2020/10,
May 2020, TRAIL Thesis Series, the Netherlands

Mirzaei, M., Advanced Storage and Retrieval Policies in Automated Warehouses,
T2020/9, April 2020, TRAIL Thesis Series, the Netherlands

Nordhoff, S., User Acceptance of Automated Vehicles in Public Transport, T2020/8,
April 2020, TRAIL Thesis Series, the Netherlands

228

www.rstrail.nl

TRAIL THESIS SERIES

Winter, M.K.E., Providing Public Transport by Self-Driving Vehicles: User preferences,
fleet operation, and parking management, T2020/7, April 2020, TRAIL Thesis Series,
the Netherlands

Mullakkal-Babu, F.A., Modelling Safety Impacts of Automated Driving Systems in
Multi-Lane Traffic, T2020/6, March 2020, TRAIL Thesis Series, the Netherlands

Krishnakumari, P.K., Multiscale Pattern Recognition of Transport Network Dynamics
and its Applications: A bird’s eye view on transport, T2020/5, February 2020, TRAIL
Thesis Series, the Netherlands Wolbertus, Evaluating Electric Vehicle Charging Infras-
tructure Policies, T2020/4, February 2020, TRAIL Thesis Series, the Netherlands

Yap, M.D., Measuring, Predicting and Controlling Disruption Impacts for Urban Public
Transport, T2020/3, February 2020, TRAIL Thesis Series, the Netherlands

Luo, D., Data-driven Analysis and Modeling of Passenger Flows and Service Networks
for Public Transport Systems, T2020/2, February 2020, TRAIL Thesis Series, the
Netherlands

Erp, P.B.C. van, Relative Flow Data: New opportunities for traffic state estimation,
T2020/1, February 2020, TRAIL Thesis Series, the Netherlands

Zhu, Y., Passenger-Oriented Timetable Rescheduling in Railway Disruption Manage-
ment, T2019/16, December 2019, TRAIL Thesis Series, the Netherlands

Chen, L., Cooperative Multi-Vessel Systems for Waterborne Transport, T2019/15,
November 2019, TRAIL Thesis Series, the Netherlands

Kerkman, K.E., Spatial Dependence in Travel Demand Models: Causes, implications,
and solutions, T2019/14, October 2019, TRAIL Thesis Series, the Netherlands

Liang, X., Planning and Operation of Automated Taxi Systems, T2019/13, September
2019, TRAIL Thesis Series, the Netherlands

Ton, D., Unravelling Mode and Route Choice Behaviour of Active Mode Users,
T2019/12, September 2019, TRAIL Thesis Series, the Netherlands

Shu, Y., Vessel Route Choice Model and Operational Model Based on Optimal Control,
T2019/11, September 2019, TRAIL Thesis Series, the Netherlands

Luan, X., Traffic Management Optimization of Railway Networks, T2019/10, July
2019, TRAIL Thesis Series, the Netherlands

Hu, Q., Container Transport inside the Port Area and to the Hinterland, T2019/9, July
2019, TRAIL Thesis Series, the Netherlands

Andani, I.G.A., Toll Roads in Indonesia: transport system, accessibility, spatial and
equity impacts, T2019/8, June 2019, TRAIL Thesis Series, the Netherlands

229

TRAIL Thesis Series

Ma, W., Sustainability of Deep Sea Mining Transport Plans, T2019/7, June 2019,
TRAIL Thesis Series, the Netherlands

Alemi, A., Railway Wheel Defect Identification, T2019/6, January 2019, TRAIL Thesis
Series, the Netherlands

Liao, F., Consumers, Business Models and Electric Vehicles, T2019/5, May 2019,
TRAIL Thesis Series, the Netherlands

Tamminga, G., A Novel Design of the Transport Infrastructure for Traffic Simulation
Models, T2019/4, March 2019, TRAIL Thesis Series, the Netherlands

230

Appendices

231

Appendix A

Proofs

A.1 MPP is a Self-regulating Planning Problem

Through a series of theorems and proofs, this section will demonstrate that the main-
tenance planning problem (mpp, Definition 3.3) is in fact an instance of self-
regulating planning problem (srp), a MDP-based formulation of self-regulating
planning that was introduced in Definition 1.1. This self-regulating planning problem
can be reformulated in terms of the MDP model as

Definition A.1 Self-regulating Planning Problem

Given agents N = {1, 2, . . . , n}, a reward-independent multi-agent MDP M =
{Mi}i∈N = {S,A, P,R}i∈N , a set p of n payment functions pi : S ×A× S 7→ R
and a finite planning horizon h, the self-regulating planning problem is to
find a joint policy π∗ = 〈π1, π2, . . . , πn〉 that maximises the utility of all agents in
expectation within the planning period, that is the policy π∗∗ given by

arg max
π∈Π

E
[h−1∑
t=0

∑
i∈N

(
Ri(s

t, πi(s
t), st+1) + pi(s

t,π(st), st+1)
)
|P, s0 ∈ S

]
(A.1)

such that st, st+1 ∈ S are the current and next state at every time t ≤ h.

Now, through a series of reductions – first from the mpp to the optimisation problem
of its MDP encoding, then from that problem to srp – it can be shown that all
instances of mpp can be transformed into equivalent instances of srpȦs a corollary,
any algorithm that solves the srp can also solve instances of the mpp. Note that
this proof is a new contribution by this thesis and has not been published. First, the
optimisation problem for the MMDP model of Definition 3.9 is defined:

Definition A.2 Maintenance Planning MDP Problem (MPP-MDP)

Given an MMDP instance M = 〈N , S,A, P,R〉 that encodes an mpp instance using

232

A

A.1. MPP IS A SELF-REGULATING PLANNING PROBLEM

Definition 3.9, the maintenance planning mdp problem (mpp-mdp) is to find
an optimal, joint policy π∗ for M that maximises the expected multi-agent reward R
according to (the finite version of) Equation 2.12.

Given this optimisation problem for the MMDP encoding of the mpp problem, it must
first be shown that mpp reduces to mpp-mdp. That is, any optimal policy for such an
MMDP corresponds to a solution for the mpp instance it encodes.

Theorem A.3 MPP is an MPPMDP

Any instance M = 〈N ,A, c, `, T 〉 of the maintenance planning problem is
reducible to an instance M ′ = 〈N ′, S,A, P,R〉 of mpp-mdp (cf. Definition A.2).

Proof. The relation between the two problems can be demonstrated by a reduction
from maintenance planning problem to mpp-mdp. The construction of in-
stance M ′ follows Definitions 3.7 and 3.9. Here it remains to show that a solution
to mpp-mdp is also a solution for mpp. Hence it must be shown that any opti-
mal joint policy π∗ for M ′ constitutes a solution for the maintenance planning
problem, i.e. it maximises V P of Equation 3.7. Any optimal joint policy π∗ for
the MMDP M of mpp-mdp optimises the expected value of function R over every
state/action-history θ reachable under that policy. That is, it optimises the function
sum of expected return as in Equation 4.5:

V ∗(s0) =
∑

θh|π∗,s0

Pr(θh)Z(θh) =
∑

θh|π∗,s0

Pr(θh)
(∑

(s,~a,ŝ)∈θh
R(s,~a, ŝ)

)
=

∑
θh|π∗,s0

Pr(θh)
(∑

(s,~a,ŝ)∈θh

∑
i∈N

Ri(si, ai, ŝi) + `(s,~a, ŝ)
)

(A.2)

The main observation is that it is possible to construct a history Hh
i for agent i from

every execution sequence θh by adding an entry to the history for every startk,i ∈ ~a
of each transition (s,~a, ŝ) ∈ θh:

Hh
i =

{
〈ak,i, t(s, i), o(ak,i, ŝ)〉 | ∃(s,~a, ŝ) ∈ θh : startk,i ∈ ~a ∧ ak,i ∈ Ai

}
such that t(s, i) ∈ T is the start time of activity ak,i derived from the time variable
of agent i from state s and o(ak,i, t(s, i), t(ŝ, i)) ∈ [o+

k,i, o
−
k,i] the function that

determines the outcome of activity ak,i given the time variable of agent i in the
current and new state. Furthermore, the joint history Hh can be constructed by
aggregating all agent histories Hh

i , e.g. Hh =
⋃
i∈N Hh

i .

Recall that the probability of a state/action execution sequence θh occurring is equal
to the product of state transition probabilities P (s,~a, ŝ) for all transitions (s,~a, ŝ) ∈
θh. By Definition 3.9, the transition probabilities are 1 for all transitions except when
the joint action ~a contains one or more startk,i actions. In these cases the transition
probability is equal to the product of outcome probabilities for all the start actions,

233

APPENDIX A. PROOFS

each given by pk,i if the activity is delayed or 1− pk,i otherwise. In other words, the
probability of such a joint action ~a as time t ∈ T is given by Pr(Ht

o(H
t
A(t))) and

the total probability of a sequence θh is therefore given by
∏
t∈T H

t
o(H

t
A(t)) which

is equal to Pr(Hh) if h = |T | (Equation 3.3).
Now because Ri is only non-zero when ai = startk, summing rewards over all

state transitions (s,~a, ŝ) ∈ θh is equal to summing rewards over all activities in
the history as just defined. Thus the agent rewards Ri can be replaced by their
definition from Definition 3.9. The network cost `(s,~a, ŝ) is by its definition (Equa-
tion 3.11) only summed when ŝ is a terminal state or, in other words, only once per
execution history θh that must end in such a state ŝ. Combining this with the con-
struction of Hh from θh, ` can replaced by (the convenient notation of) its definition
(Equation 3.11).

All of the above results in an updated version of Equation A.2:

V ∗(s0) =
∑

Hh∈Hh|π∗

Pr(Hh)
((∑

i∈N

∑
ak,i∈Hh

i

wk,i −
tk,i
e∑

t=tk,i
s

ci(ak,i, t)
)

+
∑
t∈T

`(Ht)
)

such that tk,is and tk,ie are respectively the start and end time of activity ak,i as spec-

ified by history Hh. Observe that
∑
i∈N

∑tk,i
e

t=tk,i
s
ci(ak,i, t) can also be written as

the sum of costs over all joint activities ~a = Ht
A(t) that are being performed at

time t according to joint history Ht, i.e.
∑
t∈T c(H

t
A(t), t) =

∑
t∈T c(H

t) (short-
hand). Furthermore, the per-agent sum of activity revenues

∑
i∈N

∑
ak∈Hh wk, i

can simply be replaced by the revenues of all activities in the joint history Hh, hence:

V ∗(s0) =
∑

Hh∈Hh|π∗

Pr(Hh)
(∑

ak∈Hh

wk −
∑
t∈T

c(Ht) +
∑
t∈T

`(Ht)
)

Which is equal to the contingent plan value of Equation 3.7 after grouping the
latter two sums and choosing the policy as the contingent plan, e.g. P∗ = π∗.

Thus any instance of mpp can be transformed into an instance of mpp-mdp and
solved by an algorithm for the latter problem. Now it remains to show that mpp-mdp
is reducible to srp because of the transitivity of the reduction relation. In fact, it is
possible to show that mpp-mdp and srp are equivalent problems, e.g. any instance of
mpp-mdp can be solved as an instance of srp and vice versa. This is shown in the
following lemmas.

Lemma A.4 MPPMDP is an SRP

For any instance M = 〈N , S,A, P,R〉 of mpp-mdp there exists a reduction to an
instance M ′ = 〈N ′, S′,A′, P ′,R′,p〉 of srp.

Proof. Let M be the instance of mpp-mdp, i.e. the multi-agent MDP that is con-
structed according to Definition 3.9. Then it is possible to construct an equivalent

234

A

A.1. MPP IS A SELF-REGULATING PLANNING PROBLEM

instance M ′ = 〈N ′, S′,A′, P ′,R′,p〉 of srp as follows. The sets N ′, S′, A′ and P ′

are exactly the same as respectively N , S, A and P of the multi-agent MDP, only
the way the reward function is constructed differs in both models. Recall from Defini-
tion 3.9 that the joint reward function R of the MDP M is obtained by summing the
individual reward functions Ri of all agents i ∈N and the inter-agent reward func-
tion `. Without loss of generality one can assume that there exists a distribution of
inter-agent costs over all agents such that ∀t ≤ h,~a ∈ A : `(~a, t) =

∑
i∈N `i(~a, t).

Here `i(~a, t) represents the costs to agent i as a consequence of joint action ~a be-
ing performed (in a state st) at a time t. A dummy agent 0 may be introduced
if these costs are not incurred to any of the agents i ∈ N but to a centre. With
such a cost distribution function it is possible to define R′ as the collection of in-
dividual agent rewards, i.e. R′ = {Ri}i∈N , and the mechanism payments p as the
distributed inter-agent rewards, i.e. p = {`i}i∈N .

Now to show that finding an optimal policy for MDP M is equivalent to solving srp.
Based upon the multi-agent formulation of the Bellman equation Equation 2.12, the
optimal joint policy π∗ can be found through the formula

π∗ = arg max
π∈Π

E
[h−1∑
t=0

R(st,π(st), st+1) |P, s0 ∈ S
]

which, following Definition 3.9, can be rewritten as

π∗ = arg max
π∈Π

E
[h−1∑
t=0

∑
i∈N

Ri(s
t, πi(s

t), st+1) + `(~a, t(s)) |P, s0 ∈ S
]

= arg max
π∈Π

E
[h−1∑
t=0

∑
i∈N

Ri(s
t, πi(s

t), st+1) +
∑
i∈N

pi(s
t,π(st), st+1) |P, s0 ∈ S

]

= arg max
π∈Π

E
[h−1∑
t=0

∑
i∈N

(
Ri(s

t, πi(s
t), st+1) + pi(s

t,π(st), st+1)
)
|P, s0 ∈ S

]
by construction of R′ = {Ri}i∈N and p = {`i}i∈N , which in turn is exactly
Equation A.1.

and the reduction the other way can also be shown:

Lemma A.5 SRP is an MPPMDP

For any instance M = 〈N , S,A, P,R,p〉 of srp there exists a reduction to an
instance M ′ = 〈N ′, S′,A′, P ′, R′〉 of mpp-mdp.

Proof. Re-using some of the work in Lemma A.4 it is easy to show that for any instance
M an equivalent MMDP M ′ can be constructed. Again, the sets N ′, S′, A′ and
P are equal to their srp counterparts N , S, A and P respectively. The reward

235

APPENDIX A. PROOFS

function R′ can trivially be constructed by the sum of agent rewards and payments,
or R′(s,~a, ŝ) = R(s,~a, ŝ) +p(s,~a, ŝ) =

∑
i∈N Ri(s,~a, ŝ) +

∑
i∈N pi(s,~a, ŝ) for all

possible transitions (s,~a, ŝ) ∈ S ×A× S.
Showing that any solution to an instance of M is a solution to the constructed

instance of srp is demonstrated similarly to the proof of Lemma A.4. A solution for
srp is given by the policy π∗ that satisfies Equation A.1:

arg max
π∈Π

E
[h−1∑
t=0

∑
i∈N

(
Ri(s

t, πi(s
t), st+1) + pi(s

t,π(st), st+1)
)
|P, s0 ∈ S

]
(A.3)

which is equivalent to optimising the the multi-objective Bellman equation that is
the objective function in mpp-mdp if

R′(s,π(st), st+1) =
∑
i∈N

Ri(s
t, πi(s

t), st+1) +
∑
i∈N

pi(s
t,π(st), st+1)

which is the case due to the construction of the reward function just described.

As a corollary of Lemmas A.4 and A.5 it can be concluded that both problems are
equivalent:

Theorem A.6 SRP is equal to MPPMDP

The self-regulating planning problem is equivalent to mpp-mdp.

Proof. The proof is a corollary of Lemmas A.4 and A.5 that show that any instance of
the former can be modelled and solved as an instance of the latter and vice versa.

From the previous theorems it can be concluded that any instance of mpp is also an
instance of srp, which is the conclusion that was sought after.

Theorem A.7 The MPP is a SRPfull

Any instance M = 〈N ,A, c, `, T 〉 of the maintenance planning problem is re-
ducible to an equivalent instanceM ′ = 〈N ′, S,A, P,R,p〉 of the self-regulating
planning problem (cf. Definition A.1).

Proof. The relation between the two problems can be demonstrated by a reduction
from mpp to mpp-mdp and subsequently from mpp-mdp to srp. Because the
reduction relation is transitive and Theorems A.3 and A.6 show the existence of the
required reductions, mpp is reducible to srp.

As a corollary of Theorem A.7, any technique or algorithm to solve self-regulating
planning problem can solve instances of the maintenance planning problem
as instances of the latter can always be transformed into instances of the former.

236

A

A.2. LEMMA 4.9: ADMISSIBLE HEURISTICS

A.2 Lemma 4.9: Admissible heuristics

The bounding heuristics L(s) and U(s) are admissible with respect to the expected
value V (s) obtained from a joint state s ∈ S onward.

Proof. The admissibility of the bounding heuristics is shown by induction. Only the
proof for the upper bound is shown, the proof for the lower bound is conceived accord-
ingly. Recall that R =

⋃
i∈N Ri is the disjoint partitioning of reward functions over the

CRGs and ei is the set of agent in the scope ofRi, i.e. ei =
{
j ∈N | R̄e ∈ Ri ∧ j ∈ e

}
.

First, consider a joint state sh−1 at the very last decision stage, h− 1, for which there
is no future reward:

V (sh−1) = max
~a h−1∈A

∑
sh∈S

P (sh−1,~a h−1, sh)R(sh−1,~a h−1, sh)

= max
~a h−1∈A

∑
sh∈S

P (sh−1,~a h−1, sh)
∑
i∈N

Ri(s
h−1
ei ,~a h−1

ei , shei)

≤ max
~a h−1∈A

max
sh∈S

∑
i∈N

Ri(s
h−1
ei ,~a h−1

ei , shei)

≤
∑
i∈N

max
(sh−1

ei
,~a h−1

ei
,shei

)∈φi(s
h−1
i)

Ri(s
h−1
ei ,~a h−1

ei , shei) =
∑
i∈N

U(sh−1
i)

Then it can be shown that if for a next stage t+1 a valid upper bound exists, the value
for a state st is upper bounded by

∑
i∈N U(sti). And therefore, because U(sh−1

i) is

a valid upper bound on V (sh−1), the upper bound is admissible for all stages before
h− 1:

V (st) = max
~a t∈A

∑
st+1∈S

P (st,~a t, st+1)
(
R(st,~a t, st+1) + V (st+1)

)
= max
~a t∈A

∑
st+1∈S

P (st,~a t, st+1)

(∑
i∈N

Ri(s
t
ei ,~a

t
ei , s

t+1
ei) + V (st+1)

)
≤ max
~a t∈A

∑
st+1∈S

P (st,~a t, st+1)
∑
i∈N

(
Ri(s

t
ei ,~a

t
ei , s

t+1
ei) + U(st+1

i)
)

≤
∑
i∈N

max
(stei

,~a t
ei
,st+1

ei
)∈φi(sti)

(
Ri(s

t
ei ,~a

t
ei , s

t+1
ei) + U(st+1

i)
)

=
∑
i∈N

U(sti)

Thus, by induction, the upper bound U is admissible with respect to the expected value
for any given state st. Following a similar reasoning for the lower bound it is possible
to derive

L(st) =
∑
i∈N

L(sti) ≤ V π(st) ≤
∑
i∈N

U(sti) = U(st) (A.4)

237

APPENDIX A. PROOFS

A.3 Lemma 4.11: CRI decouples returns

Given an execution history θt = [s0,~a 0, . . . , su, . . . , st] up to time t that can be parti-
tioned into two histories, θu = [s0, . . . , su] and θu

′
= [su, . . . , st], and a disjoint parti-

tioning of agent sets N = N1 ∪N2 ∪ . . .∪Nk such that for every pair Na, Nb ∈N it
holds that CRI(Na, Nb, θ

u) when a 6= b, then the return can be decoupled as:

Z(θt) = Z(θu) +

k∑
i=1

ZNi
(θu
′

Ni
) (A.5)

Here, θu
′

Ni
is the execution history of the agents in the set Ni ⊆ N , starting from

time u.

Proof. The following notational shorthand is used. For two (sub)sets of agents A,B ⊆
N , RAB ⊆ R is the set of all rewards for which A ∩B ∩ e 6= ∅. RA 6B ⊆ R is the set
of rewards such that A ∩ e 6= ∅ and B ∩ e = ∅. Observe that the individual rewards
for all agents of A are thus contained within RA 6B (and similarly for all agents b ∈ B,
Rb is included in R 6AB).

Let A and B be disjoint subsets of agents such that A ∪ B = N and let the
reward functions be partitioned accordingly as disjoint sets R = RA 6B ∪R 6AB ∪RAB .

Now assume that as a result of a given execution history θu, such that θt = θu ∪ θu′ ,
now CRI(A,B, θu) becomes true. From the state su that results from execution
history θu all future rewards can only be local with respect to subset A or subset B
because every reward RAB must be zero by definition of CRI. Therefore the (future)
global reward R(τ) of every possible joint transition τ = (s,~a, ŝ) can be written as:

R(τ) = RA6B(τA) +R 6AB(τB) +RAB(τAB)

=
∑

R̄A∈RA6B

R̄A(τA) +
∑

R̄B∈R 6AB

R̄B(τB) (A.6)

and note that RA6B(τA) is equal to RA 6B(τ) because the reward is zero for every tran-
sition not in the scope of RA6B . Remember that the returns for an execution history θh

are expressed by Z(θt) =
∑t−1
x=0R(τx) =

∑t−1
x=0

∑
R̄e∈R R̄e(τ

x
e) (Equation 4.4), where

τxe denotes the transition in the execution history θt local to agents e at time x. Then,
for two disjoint agent subsets A ∪B = N with CRI(A,B, θu) as a result of θu:

Z(θt) = Z(θu) + Z(θu
′
)

= Z(θu) +

t−1∑
x=u

(RA6B(τxA) +R 6AB(τxB))

= Z(θu) +

t−1∑
x=u

RA 6B(τxA) +

t−1∑
x=u

R 6AB(τxB)

= Z(θu) + ZA(θu
′

A) + ZB(θu
′

B)

238

A

A.4. LEMMA 6.7: DYNAMIC VCG PAYMENT

and, consequentially, the returns for agent sets A and B are independent from time u.54

This result can be extended from two agent sets A and B to the desired arbitrary
disjoint partitioning of agents such that N1 ∪N2 ∪ . . . ∪Nk = N and ∀Na, Nb ∈N :
CRI(Na, Nb, θ

u). Without loss of generality, let A = N1 and B = N2 ∪ . . .∪Nk and
decouple the return as Z(θu) + ZA(θu

′

A) + ZB(θu
′

B). Observe that in turn ZB can be

rewritten as ZN2(θu
′

N2
) + ZB\{N2}(θ

u′

B\{N2}) by following the same argument, because
both sets again satisfy conditional reward independence. By continuing this process
Equation A.5 is obtained.

A.4 Lemma 6.7: Dynamic VCG payment

Setting H̃
Γ−i

−i (θ̂t−i, ~σ−i) = Ṽ
Γ−i

−i (θ̂t−i, ~σ−i) leads to the payment of Equation 6.7.

Proof. It is possible to obtain Equation 6.7 by substituting H̃
Γ−i

−i (θ̂t−i, ~σ−i) into Equa-

tion 6.6 by the term Ṽ
Γ−i

−i (θ̂t−i, ~σ−i) and reducing it to the desired payoff function pti.
Substitution results in:

p̃i(θ̂
t
i, ~σ) = Ṽ Γ

−i(θ̂
t, ~σ)− Ṽ Γ−i

−i (θ̂t−i, ~σ−i) (A.7)

substituting the expected payment by its definition (Equation 6.4) and extracting the
payoff for the current time yields

E
[h∑
t=t′

pti
(
Γ(θ̂t)

) ∣∣∣ θ̂t = ~σ(θt)
]

= Ṽ Γ
−i(θ̂

t, ~σ)− Ṽ Γ−i

−i (θ̂t−i, ~σ−i) ⇒

pti(θ̂
t) + E

[h∑
t=t′+1

pti
(
Γ(θ̂t)

) ∣∣∣ θ̂t = ~σ(θt)
]

= Ṽ Γ
−i(θ̂

t, ~σ)− Ṽ Γ−i

−i (θ̂t−i, ~σ−i)

using again Equation 6.4 to replace the sum of expected payments and rearranging
terms leads to

pti(θ̂
t) = Ṽ Γ

−i(θ̂
t, ~σ)− Ṽ Γ−i

−i (θ̂t−i, ~σ−i)− p̃i(θ̄t+1, ~σ)

such that p̃i(θ̄
t+1, ~σ) is the expected payment for the jointly reported dynamic type θ̄t+1

that is reported based on the outcome that included all agents at time t, i.e. the out-
come Γ(θ̂t). Now, the expected payment from t + 1 can be substituted using Equa-
tion A.7:

pti(θ̂
t) = Ṽ Γ

−i(θ̂
t, ~σ)− Ṽ Γ−i

−i (θ̂t−i, ~σ−i)−
(
Ṽ Γ
−i(θ̄

t+1, ~σ)− Ṽ Γ−i

−i (θ̄t+1
−i , ~σ−i)

)
54 Although the execution history θu

′
ranges from time u to t, it is trivial to transform it to the

[0, t− u] range such that all previously defined formulas apply.

239

APPENDIX A. PROOFS

from which eventually the desired Equation 6.7 can be obtained (omitting the condi-
tions θ̂t and θ̄t of the expectation sums for clarity):

pti(θ̂
t) = Ṽ Γ

−i(θ̂
t, ~σ)− Ṽ Γ−i

−i (θ̂t−i, ~σ−i)−
(
Ṽ Γ
−i(θ̄

t+1, ~σ)− Ṽ Γ−i

−i (θ̄t+1
−i , ~σ−i)

)
= Ṽ Γ

−i(θ̂
t, ~σ)− Ṽ Γ−i

−i (θ̂t−i, ~σ−i)− Ṽ Γ
−i(θ̄

t+1, ~σ) + Ṽ
Γ−i

−i (θ̄t+1
−i , ~σ−i)

= E
[h∑
t=t′

v−i
(
θ̂t,Γ(θ̂t)

)]
− E

[h∑
t=t′

v−i
(
θ̂t−i,Γ−i(θ̂

t
−i)
)]

− E
[h∑
t=t′+1

v−i
(
θ̄t+1,Γ(θ̄t+1)

)]
+ E

[h∑
t=t′+1

v−i
(
θ̄t+1
−i ,Γ−i(θ̄

t+1
−i)

)]
(c.f. Eq. 6.3)

= v−i(θ̂
t,Γ(θ̂t)) + E

[h∑
t=t′+1

v−i
(
θ̄t+1
−i ,Γ−i(θ̄

t+1
−i)

)]
− E

[h∑
t=t′

v−i
(
θ̂t−i,Γ−i(θ̂

t
−i)
)]

= v−i(θ̂
t,Γ(θ̂t)) + Ṽ

Γ−i

−i (θ̄t+1
−i , ~σ−i)− Ṽ

Γ−i

−i (θ̂t−i, ~σ−i)

which is exactly Equation 6.7. The last two reductions are possible because respectively
1) the difference of sums over expected valuation for the outcomes including agent i
(the first and third expectation sums) differ only in the current time t, and 2) the
expected valuations can be replaced by their compact forms using Equation 6.3.

Observe that in Lemma 6.7 it is not possible to combine the second and fourth
expectation sums in the second-last step similar to the combination of the other two
summations. This is because their reported dynamic types θ̂t+1 and θ̄t+1 are not the
same at time t+ 1: in the outcomes of the former expected value summation agent i
is never included or considered, in the latter agent i was participating in the outcome
at time t (although its valuation is discarded) but not thereafter. In other words, θ̂t+1

is the new type after outcome Γ−i(θ̂
t
−i) and θ̄t+1 the new type after outcome Γ(θ̂t).

The dynamic type at t+1 can therefore be highly dissimilar between both summations,
depending on the impact of agent i’s presence at time t. The difference between the two
expectation sums can be intuitively seen as the impact that agent i’s current decision
has on future valuations. The immediate impact of agent i’s action is accounted for
by the first term of the dynamic VCG payment, v−i(θ̂

t,Γ(θ̂t)).

A.5 Theorem 6.16: Condition (i)

When two joint policies π = 〈πi,π−i〉 and π′ = 〈π′i,π−i〉 differ only in policies πi and
π′i for agent i, it must be that Φ(π)− Φ(π′) = ui(π)− ui(π′).

Proof. In order to prove the condition it must be shown that ui(π)− ui(π′) equals

Φ(π)− Φ(π′) =
∑
i∈N

vi(π) +
∑
ek∈E

∑
t∈T

c̃k(π, t)−
∑
i∈N

vi(π
′) +

∑
ek∈E

∑
t∈T

c̃k(π′, t)

= vi(π)− vi(π′) +
∑
ek∈E

∑
t∈T

(
c̃k(π, t)− c̃k(π′, t)

)
(A.8)

240

A

A.5. THEOREM 6.16: CONDITION (I)

Let p be shorthand for Pr(i ∈ ek|πi, t) and, as a consequence, 1 − p = Pr(i /∈
ek|πi, t). It is possible to rewrite c̃k(π, t) such that all terms involving agent i are
extracted (using the recursive formulation of Equation 6.16 to obtain the second equa-
tion):

c̃k(π, t) =

n∑
j=1

Pr(|ek| = j|π, t) ck(j, t)

=

n∑
j=1

(
pPr(|ek| = j − 1|π−i, t) + (1− p)Pr(|ek| = j|π−i, t)

)
ck(j, t)

= p

n∑
j=1

Pr(|ek| = j − 1|π−i, t)ck(j, t) + (1− p)
n∑
j=1

Pr(|ek| = j|π−i, t)ck(j, t)

= p

n∑
j=1

Pr(|ek| = j − 1|π−i, t)ck(j, t) + (1− p)c̃k(π−i, t)

= p

n∑
j=1

Pr(|ek| = j − 1|π−i, t)ck(j, t)− pc̃k(π−i, t) + c̃k(π−i, t)

Then, let q denote Pr(i ∈ ek|π′i, t) and consider c̃k(π, t)− c̃k(π′, t) of Equation A.8:

c̃k(π, t)− c̃k(π′, t) = p

n∑
j=1

Pr(|ek| = j − 1|π−i, t)ck(j, t)− pc̃k(π−i, t) + c̃k(π−i, t)

−
(
q

n∑
j=1

Pr(|ek| = j − 1|π−i, t)ck(j, t)− qc̃k(π−i, t) + c̃k(π−i, t)
)

= p
(n∑
j=1

Pr(|ek| = j − 1|π−i, t)ck(j, t)− c̃k(π−i, t)
)

− q
(n∑
j=1

Pr(|ek| = j − 1|π−i, t)ck(j, t)− c̃k(π−i, t)
)

= (p− q)
(n∑
j=1

Pr(|ek| = j − 1|π−i, t)ck(j, t)− c̃k(π−i, t)
)

= (p− q)
(n∑
j=1

Pr(|ek| = j − 1|π−i, t)ck(j, t)−
n∑
j=1

Pr(|ek| = j|π−i, t)ck(j, t)
)

= (p− q)
(n∑
j=1

(
Pr(|ek| = j − 1|π−i, t)− Pr(|ek| = j|π−i, t)

)
ck(j, t)

)

241

APPENDIX A. PROOFS

Now, substituting this result back into Equation A.8 yields

Φ(π)− Φ(π′) = vi(π)− vi(π′) +
∑
ek∈E

∑
t∈T

(
c̃k(π, t)− c̃k(π′, t)

)
= vi(π)− vi(π′)

+
∑
ek∈E

∑
t∈T

(p− q)
(n∑
j=1

(
Pr(|ek| = j − 1|π−i, t)− Pr(|ek| = j|π−i, t)

)
ck(j, t)

)
= vi(π) +

∑
ek∈E

∑
t∈T

p

n∑
j=1

(
Pr(|ek| = j − 1|π−i, t)− Pr(|ek| = j|π−i, t)

)
ck(j, t)

− vi(π′)−
∑
ek∈E

∑
t∈T

q

n∑
j=1

(
Pr(|ek| = j − 1|π−i, t)− Pr(|ek| = j|π−i, t)

)
ck(j, t)

= ui(πi)− ui(π′i)

which proves the condition.

242

Appendix B

Computing Game Scores

This appendix describes the data gathering methodology used to validate the hypothe-
ses of Chapter 7 in full detail. This section is separated into two parts corresponding to
the source from which the measurements are obtained, a priori through a questionnaire
and from measurements during game play. A complete overview of the game design
and the measurements can be found in the on line appendix by Scharpff et al. [231].
Furthermore, the source code for of the Road Maintenance Game and its results can
be found at https://github.com/AlgTUDelft/road-maintenance-game.

B.1 Agent decision preference and rationality

The a priori decision rationality and preference of participants is established by a ques-
tionnaire. This questionnaire poses 7 increasingly more complex decision-making sce-
narios from the maintenance planning domain, asking participants to rank alternatives
according to their preference. Whereas the first question is relatively easy and has a
‘correct’ answer, i.e. the alternatives can be clearly ordered according to their ttl im-
pact, the subsequent questions become increasingly more complex. This is due to the
introduction of new factors into the decision-making process such as profits, delays and
the presence of other service providers. Furthermore, the alternatives are designed in
such a way that no one answer is optimal in all objectives. Therefore the ranking of
alternatives mostly depends on personal preference, that is, the decision rationality of
the participants. The questionnaire is included in Figure B.1.

243

https://github.com/AlgTUDelft/road-maintenance-game

Dynamic Network Planning Questionnaire

Name:
Date:
Occupation and position:

Question 1
You are a service provider responsible for the maintenance of a road segment in a
regional network. To this end, you have studied the impact on traffic of four
possible alternatives. This results in the following congestion figures, expressed
in hours of traffic time lost (TTL), caused by each alternative.

Alternative A Alternative B Alternative C Alternative D
TTL 352.000 578.000 440.000 370.000

a) Can you specify the order in which you would choose from the various
alternatives? Please rank them from 1 (best) to 4 (worst).

Answer: Rank:
Alternative A
Alternative B
Alternative C
Alternative D

b) Please motivate your ranking.

Question 2
In addition you perform cost computation, resulting in the following figures:

Alternative A Alternative B Alternative C Alternative D
TTL 352.000 578.000 440.000 370.000

Profit € 1.450.000 € 2.108.000 € 1.500.000 € 1.739.000

a) Can you specify the order in which you would choose from the various
alternatives? Please rank them from 1 (best) to 4 (worst).

Answer: Rank:
Alternative A
Alternative B
Alternative C
Alternative D

b) Please motivate your ranking.

Question 3
The road authority decides to implement a traffic penalty payment that charges
the service provider 1 euro for each hour of TTL. After some recalculation you find
out that this has the following impact on your project:

Alternative A Alternative B Alternative C Alternative D
TTL 352.000 578.000 440.000 370.000

Profit € 1.098.000 € 1.529.000 € 1.060.000 € 1.369.000

a) Can you specify the order in which you would choose from the various
alternatives? Please rank them from 1 (best) to 4 (worst).

Answer: Rank:
Alternative A
Alternative B
Alternative C
Alternative D

b) Please motivate your ranking.

Question 4
You are aware of the possibility that your project execution might be delayed and
you are wondering how much that will affect the figures from before. Therefore
you decide to also consider this delay in your computations:

Situation
Risk of
delay

Alt. A Alt. B Alt. C Alt. D

Project
as
planned

67%
TTL 352.000 578.000 440.000 370.000

Profit € 1.098.000 € 1.529.000 € 1.060.000 € 1.369.000

Project is
delayed

33%
TTL 443.000 885.000 440.000 503.000

Profit € 1.006.000 € 1.223.000 € 1.060.000 € 1.236.000

a) Can you specify the order in which you would choose from the various
alternatives? Please rank them from 1 (best) to 4 (worst).

Answer: Rank:
Alternative A
Alternative B
Alternative C
Alternative D

b) Please motivate your ranking.

Question 5
You have chosen four potential periods in which you can perform your project.
Using quarterly figures, you determine the following prospects regarding four
possible maintenance periods:

Situation
Risk of
delay

Period 1 Period 2 Period 3 Period 4

Project
as
planned

67%
TTL 370.000 416.000 333.000 615.000

Profit € 1.369.000 € 1.323.000 € 1.406.000 € 1.124.000

Project is
delayed

33%
TTL 503.000 571.000 493.000 809.000

Profit € 1.236.000 € 1.168.000 € 1.246.000 € 930.000

In addition, you also possess information regarding the TTL figures of the
previous year.

a) Can you specify the order of periods in which you prefer to perform the
maintenance? Please rank them from 1 (best) to 4 (worst).

Answer: Rank:
Period 1
Period 2
Period 3
Period 4

b) Please motivate your ranking.

Question 6
Other service providers are also working in this region and they, in combination
with your project, cause additional traffic hindrance:

Situation
Risk of
delay

Period 1 Period 2 Period 3 Period 4

Project
as
planned

67%
TTL 370.000 416.000 333.000 615.000

Profit € 1.369.000 € 1.323.000 € 1.406.000 € 1.124.000

Project is
delayed

33%
TTL 503.000 571.000 493.000 809.000

Profit € 1.236.000 € 1.168.000 € 1.246.000 € 930.000

Situation
Risk
of

delay
Period 1 Period 2 Period 3 Period 4

Project
as
planned

67%

TTL Ind. 370.000 416.000 333.000 615.000

TTL Net. 990.000 2.033.000 3.966.000 1.302.000

Profit € 1.171.000 € 916.000 € 613.000 € 863.000

Project
is
delayed

33%

TTL Ind. 414.000 471.000 406.000 667.000

TTL Net. 2.030.000 2.662.000 6.545.000 1.436.000

Profit € 919.000 € 736.000 € 24.000 € 785.000

In this table, the individual TTL denotes the TTL caused solely by your project,
ignoring others. The network TTL captures the ‘combined effect’ of multiple
service providers working concurrently in the same region. Next to this table,
you are also given a plot of the TTL distribution over time.

APPENDIX B. COMPUTING GAME SCORES

244

B

B.1. AGENT DECISION PREFERENCE AND RATIONALITY

a) Can you specify the order in which you would choose from the various
periods? Please rank them from 1 (best) to 4 (worst).

Answer: Rank:
Period 1
Period 2
Period 3
Period 4

b) Please motivate your ranking.

Question 7
You have chosen the third period and you wish to reduce the incurred traffic time
losses. Through communication with the other contractors, you have been able to
create the following joint schedule:

a) a) If you were given the opportunity to change plans made by others, what
project(s) would you modify? Can you rank the projects based on which
one you would modify first (1) to last (4)?

b) Please motivate your ranking.

Thank you very much for completing this questionnaire!

Project: Rank:
Contractor 2: B1-A
Contractor 2: B14-B
Contractor 3: B15-A
Contractor 5: B13-A

Figure B.1 The seven questions of the questionnaire that is used to determine the a priori
decision preference of game participants.

To measure the decision preference and rationality, the submitted responses are
evaluated against pre-determined rankings of alternatives per question and objective.
In other words, for every question n and objective m there is a ranking of objectives Omn
that lists the alternatives in their order from best to worst. For example, the profit
ordering of question 2 is the ranking Op2 = (4, 1, 3, 2) as alternative B yields the
most profit and A the least. For the ttl, on the other hand, the ranking is given
by Ot2 = (1, 4, 3, 2) as the lowest hindrance is caused by alternative A. Note that here
numerical indexes are used instead of the alphabetical index in the questionnaire, this is
more convenient when computing scores. For each objective the ranking is determined
according to the following rules:

• The profit ranking Op is given by the expected profit of an alternative, ordered
from highest to lowest. When the probability of delay is zero, the profit is simply
the profit as listed (questions 1 to 4). In the case of potential delay, the expected
profit is computed as (1−p)×Pplanned+p×Pdelayed in which p is the probability
of delay (0 or 0.33) and Pplanned and Pdelayed the listed profit when respectively
the maintenance is performed according to plan or a delay is encountered.

• The ttl ranking Ot is determined by the expected ttl, ordered from lowest (best)
to highest (worst). Similar to profit, the ttl score is also computed by the expected
ttl in the presence of delay. Moreover, in the presence of other service providers
an additional ttl component ‘Network’ is factored into the computation, i.e.
(1 − p) × (Tind,planned + Tnet,planned) + p × (Tind,delayed + Tnet,delayed) such
that Tind,x and Tnet,x express the listed individual and network ttl for the planned

245

APPENDIX B. COMPUTING GAME SCORES

and delayed scenarios. Note that it is assumed that work by other contractors
does not delay (or always does) to keep the influence of the network on ttl simple.

• The risk(-aversion) ranking Or is ordered on the expected loss of revenue due
to delay from lowest to highest potential loss. In other words, the risk aversion
score is the highest when the effect of delay is the least and lowest when a delay
causes high revenue decreases. The formula to compute this loss is (Pplanned −
Tplanned)− (Pdelayed − Tdelayed) due to the design of payments such that every
hour of ttl incurs a cost of 1 euro (with Tx = Tind,x + Tnet,x).

Profit TTL Risk-aversion

Question # A B C D A B C D A B C D

1 - - - - 1 4 3 2 - - - -

2 4 1 3 2 1 4 3 2 - - - -

3 3 1 4 2 1 4 3 2 - - - -

4 2 4 3 1 1 4 3 2 2 4 1 3

5 2 3 1 4 2 3 1 4 1 2 3 4

6 1 2 4 3 1 3 4 2 3 2 4 1

7 - - - - 3 4 2 1 - - - -

Table B.1 Rank of alternatives per question and objective from best (1) to worst (4). Entries
marked as ‘-’ indicate a no-score in that objective, due to absence of the objective.

Using these pre-determined rankings per objective, Table B.1 is obtained that con-
tains the rankings for every alternative per question and objective. Now, given a
complete questionnaire response that is composed of rankings X = (x1, x2, . . . , x7),
such that xi ranks the alternatives for question i from best to worst, the rankings
per objective can be used to compute a relative score that expresses how the partici-
pant performs in each of the objectives. This relative score is termed the player profile
score and is an indication for the decision-making preference of the participants. To
compute the profile scores, first the objective rankings of Table B.1 are converted into
weights for each alternative. Then, the submitted ranking of alternatives for each ques-
tion is aggregated into a single score using the multi-criteria decision-making scoring of
Roszkowska [220] and Triantaphyllou [248]. These steps are explained in more detail
below.

The weighting of alternatives is performed according to the rank-order centroid
(ROC) formula proposed initially by Barron and Barrett [22]. ROC is often used in
decision-making theory when the relative rank ordering is known but no meaningful
quantitative information is available about the alternatives. It has the property of min-
imising the maximum error of each weight and typically generates weight vectors that
are comparable to those produced by panels of subject matter experts. Assuming that
the four weights are uniformly distributed, the weight for each alternative is computed
as its expected value by E(wj) = 1/n

∑n
k=j 1/k, where wj is the weight for the al-

ternative at rank position j. In the case of four alternatives this yields the weight
vector (.521, .271, .146, .063), ordered from best to worst alternative. By combining

246

B

B.1. AGENT DECISION PREFERENCE AND RATIONALITY

the relative rank ordering with the rank weights, the weighted rank score Smi per at-
tribute m is determined for every problem i of the questionnaire by simply replacing
the ranks j ∈ [1, 4] of ordering Omi by their respective rank weights wj . Thus, the or-
dering Op5 = (2, 3, 1, 4) of alternatives of question 5 with respect to expected profits
becomes the score vector Sp5 = (.271, .146, .521, .063). Similar substitutions can be
performed to generate all alternative weights.

The weighted rank scores enable to measuring and comparing questionnaire re-
sponses on a quantified scale. Again a single, complete questionnaire response is
denoted by X = (x1, x2, . . . , x7), with xi being the ranking of alternatives for ques-
tion i as submitted by the participant. As before, a ranking is a vector that for every
alternative specifies the preferred order from best (1) to worst (4). Given a rank-
ing xi for question i, the (unscaled) profile score for objective m is then computed by

qm(xi) =
∑4
k=1(5 − xi,k) × Smi,k, such that 5 − xi,k ensures that the first ranked al-

ternative has a weight of 4 and the least preferred option gets a weight of 1. Given a
questionnaire response X, the preference score of a participant for objective m is the
normalised sum of scores over all questions:

Q̂m(X) =

∑|X|
i=1 qm(xi)−Qminm

Qmaxm −Qminm

(B.1)

where Qminm and Qmaxm are respectively the minimum and maximum attainable scores
for objective m computed over all possible rankings of alternatives. Then from the
preference scores over all objectives, the actual profile score can be computed as its
relative importance using the formula:

Qm(X) =
Q̂m(X)∑

k∈{p,t,r} Q̂k(X)
(B.2)

Finally, the rationality of the questionnaire responses is measured in terms of their
distances to the closest Pareto-optimal score and closest minimum score, also known
as the normalised Pareto distance [223]. Given a complete questionnaire score q =
(Qp(X), Qt(X), Qr(X)) with the symbols p for profit, t for ttl and r for risk-aversion,
decision rationality is then expressed as the Euclidean distance of q to the closest
Pareto-optimal score b inversely related to the sum of Euclidean distances to score b
and closest lowest score w:

θ(q) = 1− ||b− q||
||b− q||+ ||w − q||

(B.3)

Here, the closest Pareto scores b and w are determined by checking the distance from
q to all other scores. The sets of the worst and best Pareto scores for the questionnaire
responses are computed using a simple Java program that can be found in the online
code base (https://github.com/AlgTUDelft/road-maintenance-game).

247

https://github.com/AlgTUDelft/road-maintenance-game

APPENDIX B. COMPUTING GAME SCORES

B.2 Player/team Strategy

The in-game actions are scored based on their impact on each of the objectives. Each
maintenance alternative available to the players in the game is attributed scores for
profit, ttl and risk-aversion, and they are ranked from best to worst, similar to the
ranking of the previous section. These rankings are shown in Table B.2.

Method Gp Gt Gr

LOW TTL 4 1 2

LOW COST 1 4 4

NO RISK 3 3 1

FAST 2 2 3

Table B.2 Rank of each maintenance method per objective from best (1) to worst (2).

From these rankings the strategy score for a player is computed from his/her sub-
mitted maintenance plan as follows. For a single player i ∈ N , a maintenance plan is
given by

Yk = (
〈
mi

1, t
i
1

〉
,
〈
mi

2, t
i
2

〉
,
〈
mi

3, t
i
3

〉
,
〈
mi

4, t
i
4

〉
)

such that each
〈
mi
k, t

i
k

〉
represents the chosen alternative mi

k and start time tik of
maintenance task k. The played preference score Gp of player i is then

Ĝp(Yi) =

∑
mi

k∈Yi
gp(m

i
k)−Gminp

Gmaxp −Gminp

(B.4)

in which gp(m
i
k) is the (non-normalised) profit score for method mi

k of task k and Gpmin
and Gpmax denote respectively the minimum and maximum profit scores attainable in
game. As with the profile scores of Section B.1, the profit strategy score Gp, ttl
strategy score Gt and risk-aversion strategy score Gr are computed relative to the
other preferences, thus:

Gm(Yi) =
Ĝm(Yi)∑

k∈{p,r,t} Ĝk(Yi)
(B.5)

and strategy scores of a session are aggregated using the average strategy score over
all teams.

The performance of players with respect to game outcomes is also scored. To this
end, the expected profit, traffic time lost and performance are measured as a function
of the former two, similar to the model of Scharpff et al. [228]. The expected profit of
a player i given its plan Yi, denoted by Pi(Yi), is defined as the expected reward of
completing work minus the expected costs thereof, or

Pi(Yi) =
∑

mi
k∈Yi

(
W (mi

k) −
tik+d(mi

k)∑
t=tik

c(mi
k, t)− p(mi

k)

tik+d̂(mi
k)∑

t=tik

c(mi
k, t)

)
(B.6)

248

B

B.2. PLAYER/TEAM STRATEGY

such that d(mi
k) and d̂(mi

k) denote respectively the regular and extended maintenance
period, the latter only applies when the task is delayed with probability p(mi

k). Fur-
thermore, W (mi

k) is the fixed, contracted reward received upon completion of the
task associated with mi

k (thus independent from the chosen method) and c(mi
k, t) the

maintenance cost of performing method mi
k at time t.55

For the traffic time lost Ti(Y) caused by player i, given joint plan Y =
⋃
i∈N Yi

with the set of players N = {1, 2, . . . , 5}, a similar expected value computation is
made. Notice that for the computation of ttl a joint plan is required as concurrent
maintenance can have super-linear impact on traffic. The ttl model of the game is
defined through a function `i(Y, t) that returns the ttl caused by player i ⊆ N at
time t when joint plan Y is executed. Therefore, the total ttl caused by an individual
player i is given by56

Ti(Y) =
∑

mi
k∈Yi

(tik+d(mi
k)∑

t=tik

`i(Y, t) + p(mi
k)

tik+d̂(mi
k)∑

t=tik

`i(Y, t)
)

(B.7)

With the aforementioned formulas the expected utility of a player i is expressed
as the sum of its expected revenue minus the monetary value of the expected ttl.
Consequentially, expected profit for a player i given a joint plan Y, such that Yi ∈ Y
is the plan of player i, is given by ui(Y) = Pi(Yi) − Ti(Y). Finally, similar to the
decision rationality of profile scores, an indication of the quality of the in-game decisions
can be defined over the strategy scores. The performance ratio φ(Y) for a given joint
plan Y expresses the ratio between profit and ttl:

φ(Y) =
P (Y)

T (Y)
(B.8)

and observe that this value increases either when the joint profit increases, the joint
ttl decreases or both. Hence a higher performance ratio indicates a better overall
outcome.

55 The reward and cost functions have no player index as the underlying model is the same.
56 No time step t is counted more than once due to the one-task-at-a-time restriction.

249

Appendix C

Game Session Outcomes

This chapter summarises the results of all measurements taken from this session, both
a priori as well as during the session. In total, 7 gaming sessions have been performed
with 95 players from various ages, institutions and backgrounds. Each of the sessions
is given a letter for identification purpose and the characteristics of these sessions are
listed in Table C.1.

Company/institute Profile #P #Q Category Coordination Cohesion

A University, Computer Science 9 9 Students Low Unfamiliar

B ICT-focused R&D Company 10 9 Engineers Low Familiar

C Utility provider, mainly power 15 3 Professionals Low Unfamiliar

D Dutch national road authority 17 16 Trainees High Familiar

E Dutch national road authority 8 5 Trainees Medium Familiar

F AM Professionals Course 20 9 Professionals Medium Unfamiliar

G AM and Health-care Consultants 16 9 Professionals High Familiar

Table C.1 Outline of game session characteristics, from left to right the columns are: session
identifier, company/institute, number of participants and questionnaire responses, participants
skill category, and the observed coordination and social cohesion levels.

C.1 Questionnaire Responses

From the 95 participants, 59 valid questionnaires were collected. All of these responses
have been scored according to Equation B.2 and are listed in Table C.2 on the next
page. The columns capture respectively the session name, the computed profit, ttl
and risk-aversion profile scores (Qp, Qt and Qr), and the decision rationality θ. The
average profile score of the session is included in the bottom row, included only for
reference and is not used. The rationality scores are found using Equation B.3 of
Appendix B, where the optimal Pareto trade-offs have been computed using a Java
program that can be found in the repository at https://github.com/AlgTUDelft/
road-maintenance-game.

250

https://github.com/AlgTUDelft/road-maintenance-game
https://github.com/AlgTUDelft/road-maintenance-game

C

C.1. QUESTIONNAIRE RESPONSES

Qp Qt Qr θ

Session A
0.455 0.336 0.209 0.795
0.436 0.352 0.212 0.802
0.481 0.274 0.244 0.855
0.440 0.338 0.221 0.815
0.322 0.373 0.305 0.932
0.475 0.350 0.175 0.730
0.465 0.321 0.213 0.773
0.385 0.384 0.231 0.845
0.253 0.464 0.284 0.385

avg 0.412 0.355 0.233 0.770

Session B
0.244 0.375 0.382 0.955
0.459 0.343 0.198 0.789
0.230 0.401 0.369 0.883
0.244 0.460 0.296 0.691
0.277 0.449 0.274 0.878
0.375 0.375 0.250 0.897
0.369 0.395 0.236 0.870
0.360 0.380 0.259 0.904
0.459 0.343 0.198 0.789

avg 0.335 0.391 0.274 0.851

Session C
0.379 0.367 0.254 0.913
0.428 0.321 0.251 0.849
0.329 0.358 0.314 0.962

avg 0.379 0.348 0.273 0.908

Session D
0.272 0.358 0.370 0.958
0.401 0.345 0.254 0.255
0.455 0.336 0.209 0.795
0.459 0.343 0.198 0.789
0.426 0.355 0.219 0.884
0.398 0.375 0.227 0.855
0.350 0.417 0.233 0.877
0.326 0.378 0.297 0.916
0.327 0.377 0.296 0.982
0.381 0.384 0.235 0.853
0.431 0.342 0.227 0.880
0.335 0.447 0.218 0.710
0.266 0.319 0.415 0.838
0.347 0.400 0.253 0.907
0.336 0.404 0.260 0.938
0.349 0.264 0.387 0.974

avg 0.366 0.365 0.269 0.838

Qp Qt Qr θ

Session E
0.386 0.341 0.273 0.948
0.379 0.367 0.254 0.913
0.420 0.313 0.267 0.815
0.473 0.315 0.212 0.845
0.463 0.314 0.223 0.891

avg 0.424 0.330 0.246 0.882

Session F
0.307 0.457 0.236 0.713
0.432 0.260 0.308 0.862
0.483 0.338 0.178 0.715
0.459 0.343 0.198 0.789
0.190 0.413 0.397 0.802
0.325 0.431 0.243 0.887
0.383 0.336 0.281 0.987
0.337 0.425 0.237 0.731
0.433 0.316 0.251 0.827

avg 0.372 0.369 0.259 0.813

Session G
0.380 0.355 0.266 0.933
0.340 0.393 0.266 0.933
0.467 0.336 0.197 0.790
0.353 0.377 0.270 0.932
0.311 0.438 0.252 0.879
0.350 0.340 0.310 0.961
0.254 0.378 0.368 0.963
0.278 0.446 0.276 0.886
0.394 0.347 0.260 0.922

avg 0.347 0.379 0.274 0.911

Table C.2 Complete overview of questionnaire profile scores, grouped per session. For each
response the profit, ttl and risk-aversion profile scores are computed (resp. Qp, Qt and Qr)
and the decision rationality θ according to Equation B.3.

251

APPENDIX C. GAME SESSION OUTCOMES

C.2 Session Outcomes

The in-game results are listed as a single table per game session. Each table contains
multiple sub-tables, one for every round played in the game, and the listed figures are
the values measured exactly when all players submitted their plan. Per round, the tables
list for both the profit and ttl objectives the maximum value that can be obtained, the
maximum impact of delay on that value and the expected value. For example, at the
end of round 1 of session A, the Red player can potentially achieve a maximum profit
of e 5, 425. If the player is really unlucky and all of its activities are delayed, its profit
decreases by e 6, 464, resulting in a total loss of e 1, 039. In expectation, however, its
profit is e 3, 270 which is of course much better than the worst-case scenario. The ttl
columns are similar but for the fact that the figure in the delay column is added to the
ttl figure in the case of delay. Note that the score listed in the last round is the score
before the execution starts.

Session A P Pdel E[P] T Tdel E[T]

Round 1

Black 4.878 -6.748 2.629 6.179 2.721 7.086

Blue 3.273 -3.446 2.124 6.390 1.107 6.759

Pink 2.907 -4.028 1.564 6.216 893 6.514

Red 5.425 -6.464 3.270 5.632 2.438 6.445

White 5.347 -5.647 3.465 5.158 1.441 5.638

Total 21.830 -26.333 13.052 29.575 8.600 32.442

Round 2

Black 4.878 -6.748 2.629 5.512 2.735 6.424

Blue 5.646 -6.094 3.615 5.095 2.578 5.954

Pink 5.745 -5.796 3.813 5.799 2.139 6.512

Red 5.456 -6.279 3.363 550 2.177 1.276

White 6.183 -6.208 4.114 4.322 2.001 4.989

Total 27.908 -31.125 17.533 21.278 11.630 25.155

Round 3

Black 4.989 -6.226 2.914 5.912 2.387 6.708

Blue 5.646 -6.094 3.615 6.264 1.711 6.834

Pink 6.449 -6.019 4.443 5.029 2.955 6.014

Red 7.242 -7.292 4.811 5.590 3.246 6.672

White 5.927 -5.010 4.257 4.816 1.854 5.434

Total 30.253 -30.641 20.039 27.611 12.153 31.662

Session B P Pdel E[P] T Tdel E[T]

Round 1

Black 3.918 -5.986 1.923 5.766 1.946 6.415

Blue 3.696 -5.289 1.933 7.257 2.079 7.950

Pink 4.269 -6.521 2.095 6.824 2.506 7.659

Red 5.842 -7.297 3.410 6.287 3.234 7.365

White 88 -3.873 -1.203 6.934 984 7.262

Total 17.813 -28.966 8.158 33.068 10.749 36.651

Round 2

Black 4.688 -5.636 2.809 3.240 1.158 3.626

Blue 4.089 -4.935 2.444 4.639 1.726 5.214

Pink 4.269 -6.521 2.095 3.753 2.389 4.549

Red 6.971 -6.352 4.854 4.968 2.832 5.912

White 1.519 -3.771 262 4.450 841 4.730

Total 21.536 -27.215 12.464 21.050 8.946 24.032

Round 3

Black 5.095 -5.472 3.271 3.144 803 3.412

Blue 6.693 -6.808 4.424 5.673 2.148 6.389

Pink 6.491 -6.176 4.432 4.569 1.975 5.227

Red 7.762 -6.724 5.521 4.166 2.588 5.029

White 1.899 -4.043 551 5.123 1.144 5.504

Total 27.940 -29.223 18.199 22.675 8.658 25.561

Round 4

Black 5.095 -5.472 3.271 3.086 1.009 3.422

Blue 7.565 -6.492 5.401 4.825 2.379 5.618

Pink 6.927 -5.927 4.951 4.591 1.820 5.198

Red 8.005 -6.469 5.849 4.465 2.277 5.224

White 1.960 -3.943 646 5.045 998 5.378

Total 29.552 -28.303 20.118 22.012 8.483 24.840

252

C

C.2. SESSION OUTCOMES

Session C P Pdel E[P] T Tdel E[T]

Round 1

Black 6.797 -6.692 4.566 5.837 2.579 6.697

Blue 5.602 -6.532 3.425 5.659 2.404 6.460

Pink 5.040 -6.427 2.898 4.793 2.382 5.587

Red 3.377 -4.433 1.899 5.747 1.650 6.297

White 6.204 -6.810 3.934 6.429 2.697 7.328

Total 27.020 -30.894 16.722 28.465 11.712 32.369

Round 2

Black 6.797 -6.692 4.566 5.744 2.271 6.501

Blue 5.859 -6.329 3.749 5.402 2.277 6.161

Pink 5.741 -6.449 3.591 4.058 2.000 4.725

Red 3.377 -4.433 1.899 5.271 1.650 5.821

White 6.978 -6.742 4.731 5.660 2.207 6.396

Total 28.752 -30.645 18.537 26.135 10.405 29.603

Round 3

Black 5.479 -4.901 3.845 5.097 1.482 5.591

Blue 7.163 -6.599 4.963 5.212 2.086 5.907

Pink 6.524 -6.636 4.312 3.791 1.858 4.410

Red 3.566 -3.292 2.469 4.565 1.092 4.929

White 6.978 -6.742 4.731 4.882 2.245 5.630

Total 29.710 -28.170 20.320 23.547 8.763 26.468

Round 4

Black 5.662 -5.224 3.921 4.711 1.820 5.318

Blue 6.855 -4.857 5.236 4.579 1.369 5.035

Pink 7.691 -6.654 5.473 4.055 2.084 4.750

Red 3.566 -3.292 2.469 4.697 1.044 5.045

White 8.100 -6.179 6.040 4.951 2.195 5.683

Total 31.874 -26.206 23.139 22.993 8.512 25.830

Session D P Pdel E[P] T Tdel E[T]

Round 1

Black 2.582 -1.326 2.140 4.729 361 4.849

Blue 6.044 -5.722 4.137 4.461 1.515 4.966

Pink 3.825 -2.941 2.845 4.158 846 4.440

Red 7.898 -6.326 5.789 4.735 2.212 5.472

White 5.986 -4.675 4.428 5.489 1.462 5.976

Total 26.335 -20.990 19.338 23.572 6.396 25.704

Round 2

Black 3.583 -1.326 3.141 2.657 204 2.725

Blue 6.241 -5.853 4.290 2.972 920 3.279

Pink 3.249 -2.248 2.500 3.078 486 3.240

Red 5.884 -5.033 4.206 2.541 964 2.862

White 4.010 -3.498 2.844 3.012 609 3.215

Total 22.967 -17.958 16.981 14.260 3.183 15.321

Round 3

Black 3.702 -1.326 3.260 3.171 204 3.239

Blue 6.241 -5.853 4.290 2.774 1.110 3.144

Pink 3.011 -2.248 2.262 3.312 446 3.461

Red 6.152 -5.329 4.376 3.141 1.324 3.582

White 4.418 -3.760 3.165 3.193 678 3.419

Total 23.524 -18.516 17.352 15.591 3.762 16.845

Session E P Pdel E[P] T Tdel E[T]

Round 1

Black 5.993 -4.215 4.588 4.223 973 4.547

Blue 3.678 -1.835 3.066 3.932 482 4.093

Pink 5.712 -4.779 4.119 4.084 1.173 4.475

Red 5.001 -3.865 3.713 4.291 970 4.614

White 4.512 -5.109 2.809 3.996 1.263 4.417

Total 24.896 -19.803 18.295 20.526 4.861 22.146

Round 2

Black 5.993 -4.215 4.588 3.751 923 4.059

Blue 4.417 -1.726 3.842 3.218 403 3.352

Pink 5.568 -4.493 4.070 3.925 850 4.208

Red 5.802 -5.005 4.134 3.727 1.205 4.129

White 5.006 -5.026 3.331 3.378 892 3.675

Total 26.786 -20.465 19.964 17.999 4.273 19.423

Round 3

Black 5.924 -4.187 4.528 3.420 1.025 3.762

Blue 4.561 -1.700 3.994 3.267 347 3.383

Pink 6.377 -4.678 4.818 3.307 1.054 3.658

Red 6.032 -5.034 4.354 3.722 983 4.050

White 5.006 -5.023 3.332 3.580 720 3.820

Total 27.900 -20.622 21.026 17.296 4.129 18.672

Round 4

Black 5.790 -4.243 4.376 3.569 1.015 3.907

Blue 6.688 -3.910 5.385 3.355 698 3.588

Pink 6.377 -4.678 4.818 3.179 1.114 3.550

Red 6.413 -5.156 4.694 3.660 1.156 4.045

White 5.006 -5.026 3.331 3.675 826 3.950

Total 30.274 -23.013 22.603 17.438 4.809 19.041

Session E (2) P Pdel E[P] T Tdel E[T]

Round 5

Black 5.790 -4.243 4.376 3.651 1.015 3.989

Blue 6.655 -4.065 5.300 3.501 853 3.785

Pink 6.377 -4.678 4.818 3.230 1.176 3.622

Red 6.413 -5.156 4.694 3.722 1.156 4.107

White 5.006 -5.026 3.331 3.643 826 3.918

Total 30.241 -23.168 22.518 17.747 5.025 19.422

Round 6

Black 5.790 -4.243 4.376 3.805 1.180 4.198

Blue 6.547 -3.955 5.229 3.706 764 3.965

Pink 7.406 -5.464 5.585 3.521 1.585 4.049

Red 6.413 -5.156 4.694 3.794 1.171 4.184

White 4.899 -5.077 3.207 3.681 851 3.965

Total 31.055 -23.895 23.090 18.507 5.551 20.357

Round 7

Black 5.779 -4.348 4.330 4.715 1.297 5.147

Blue 6.796 -4.164 5.408 4.686 1.189 5.082

Pink 7.406 -5.464 5.585 4.143 1.849 4.759

Red 7.893 -5.949 5.910 5.261 1.859 5.881

White 4.899 -5.077 3.207 4.296 1.188 4.692

Total 32.773 -25.002 24.439 23.101 7.382 25.562

253

APPENDIX C. GAME SESSION OUTCOMES

Session F P Pdel E[P] T Tdel E[T]

Round 1

Black 4.008 -4.699 2.442 6.208 1.457 6.694

Blue 5.119 -6.227 3.043 5.386 2.020 6.059

Pink 4.752 -4.061 3.398 5.044 1.115 5.416

Red 5.480 -6.861 3.193 6.481 2.910 7.451

White 5.242 -5.183 3.514 5.712 1.974 6.370

Total 24.601 -27.031 15.591 28.831 9.476 31.990

Round 2

Black 5.625 -4.619 4.085 3.323 1.378 3.782

Blue 5.420 -6.081 3.393 4.317 1.492 4.814

Pink 6.556 -4.204 5.155 3.766 963 4.087

Red 7.267 -6.324 5.159 4.912 1.488 5.408

White 4.752 -5.097 3.053 3.914 1.477 4.406

Total 29.620 -26.325 20.845 20.232 6.798 22.498

Round 3

Black 5.625 -4.619 4.085 4.054 1.143 4.435

Blue 7.308 -6.260 5.221 3.814 1.395 4.279

Pink 6.556 -4.204 5.155 4.524 1.068 4.880

Red 7.097 -6.453 4.946 4.763 1.743 5.344

White 6.463 -5.936 4.484 4.170 1.836 4.782

Total 33.049 -27.472 23.892 21.325 7.185 23.720

Round 4

Black 5.588 -5.216 3.849 4.911 2.200 5.644

Blue 7.308 -6.260 5.221 4.745 2.013 5.416

Pink 5.628 -4.385 4.166 5.230 1.446 5.712

Red 7.864 -6.807 5.595 5.550 2.207 6.286

White 6.720 -6.560 4.533 5.512 2.607 6.381

Total 33.108 -29.228 23.365 25.948 10.473 29.439

Session G P Pdel E[P] T Tdel E[T]

Round 1

Black 4.415 -6.525 2.240 8.219 2.412 9.023

Blue 3.683 -6.793 1.419 6.822 2.586 7.684

Pink 4.716 -6.798 2.450 7.917 2.684 8.812

Red 3.972 -5.413 2.168 7.504 2.200 8.237

White 1.851 -5.718 -55 6.405 2.069 7.095

Total 18.637 -31.247 8.221 36.867 11.951 40.851

Round 2

Black 6.342 -5.908 4.373 4.414 1.413 4.885

Blue 4.323 -3.642 3.109 3.870 851 4.154

Pink 5.947 -3.488 4.784 3.716 1.149 4.099

Red 6.455 -4.536 4.943 3.630 1.262 4.051

White 4.383 -5.228 2.640 3.522 1.112 3.893

Total 27.450 -22.802 19.849 19.152 5.787 21.081

Round 3

Black 6.194 -3.813 4.923 3.909 581 4.103

Blue 5.456 -2.990 4.459 3.553 800 3.820

Pink 6.022 -3.793 4.758 4.102 570 4.291

Red 7.081 -4.437 5.602 3.804 863 4.092

White 6.216 -4.414 4.745 3.918 1.120 4.291

Total 30.969 -19.447 24.487 19.286 3.934 20.597

Round 4

Black 6.309 -3.813 5.038 3.793 581 3.987

Blue 5.456 -2.990 4.459 3.649 724 3.890

Pink 6.022 -3.793 4.758 3.847 540 4.027

Red 7.081 -4.437 5.602 3.453 1.068 3.809

White 5.299 -4.012 3.962 3.313 939 3.626

Total 30.167 -19.045 23.819 18.055 3.852 19.339

Table C.3 Outcomes at the end of every round per team and total for the session. The
first three data columns represent the maximum profit P , the potential profit loss due to
uncertainties Pdel and the expected profit E[P]. Similarly, the columns T , Tdel and E[T] show
the minimum ttl, the potential increase in ttl due to delays and the expected ttl Twc. Note
that the utility is not listed but can easily be computed as u = P − T as every 1 hour of ttl
corresponds to 1 e of penalty to the players (and similarly for expected utility).

254

C

C.2. SESSION OUTCOMES

Table C.4 contains a summarised overview of the previous detailed session outcome
listing per player. The columns R1 to R7 represent the rounds of the game. The profit
and utility are the total session values in thousands of euros, the ttl are the session
totals in hours.

R1 R2 R3 R4 R5 R6 R7 min max

Profit
A 45.494 42.688 51.701 42.688 51.701 46.628
B 44.809 36.496 43.760 44.957 36.496 44.957 42.506
C 49.091 48.140 46.788 48.969 46.788 49.091 48.247
D 45.042 32.302 34.197 32.302 45.042 37.180
E 40.441 39.388 39.698 41.644 41.941 43.447 50.001 39.388 50.001 42.366
F 47.580 43.343 47.612 52.804 43.343 52.804 47.835
G 49.072 40.930 45.084 43.158 40.930 49.072 44.561

TTL
A 32.442 25.155 31.662 25.155 32.442 29.753
B 36.651 24.032 25.561 24.840 24.032 36.651 27.771
C 32.369 29.603 26.468 25.830 25.830 32.369 28.568
D 25.704 15.321 16.845 15.321 25.704 19.290
E 22.146 19.423 18.672 19.041 19.422 20.357 25.562 18.672 25.562 20.661
F 31.990 22.498 23.720 29.439 22.498 31.990 26.912
G 40.851 21.081 20.597 19.339 19.339 40.851 25.467

Utility
A 13.052 17.533 20.039 13.052 20.039 16.875
B 8.158 12.464 18.199 20.118 8.158 20.118 14.735
C 16.722 18.537 20.320 23.139 16.722 23.139 19.679
D 19.338 16.981 17.352 16.981 19.338 17.890
E 18.295 19.964 21.026 22.603 22.518 23.090 24.439 18.295 24.439 21.705
F 15.591 20.845 23.892 23.365 15.591 23.892 20.923
G 8.221 19.849 24.487 23.819 8.221 24.487 19.094

Table C.4 Outcomes per objective summed over all players in the session per round and
summarised over all rounds. Note that every gaming session is presented in its own table.

255

APPENDIX C. GAME SESSION OUTCOMES

C.3 Strategy Scores

Session A Gp Gt Gr

Round 1

Black 0.786 0.143 0.071

Blue 0.563 0.188 0.250

Pink 0.222 0.389 0.389

Red 0.786 0.143 0.071

White 0.625 0.250 0.125

avg. 0.596 0.222 0.181

Round 2

Black 0.786 0.143 0.071

Blue 0.563 0.188 0.250

Pink 0.786 0.143 0.071

Red 0.786 0.143 0.071

White 0.625 0.250 0.125

avg. 0.709 0.173 0.118

Round 3

Black 0.786 0.143 0.071

Blue 0.563 0.188 0.250

Pink 0.786 0.143 0.071

Red 1.000 0.000 0.000

White 0.563 0.188 0.250

avg. 0.739 0.132 0.129

Session B Gp Gt Gr

Round 1

Black 0.500 0.333 0.167

Blue 0.714 0.071 0.214

Pink 0.500 0.313 0.188

Red 0.786 0.143 0.071

White 0.000 0.600 0.400

avg. 0.500 0.292 0.208

Round 2

Black 0.400 0.400 0.200

Blue 0.714 0.071 0.214

Pink 0.500 0.313 0.188

Red 1.000 0.000 0.000

White 0.000 0.600 0.400

avg. 0.523 0.277 0.200

Round 3

Black 0.400 0.400 0.200

Blue 1.000 0.000 0.000

Pink 0.786 0.143 0.071

Red 1.000 0.000 0.000

White 0.000 0.600 0.400

avg. 0.637 0.229 0.134

Round 4

Black 0.400 0.400 0.200

Blue 1.000 0.000 0.000

Pink 0.786 0.143 0.071

Red 1.000 0.000 0.000

White 0.000 0.600 0.400

avg. 0.637 0.229 0.134

Session C Gp Gt Gr

Round 1

Black 1.000 0.000 0.000

Blue 0.625 0.250 0.125

Pink 0.389 0.389 0.222

Red 0.222 0.389 0.389

White 1.000 0.000 0.000

avg. 0.647 0.206 0.147

Round 2

Black 1.000 0.000 0.000

Blue 0.625 0.250 0.125

Pink 0.389 0.389 0.222

Red 0.222 0.389 0.389

White 1.000 0.000 0.000

avg. 0.647 0.206 0.147

Round 3

Black 0.714 0.071 0.214

Blue 1.000 0.000 0.000

Pink 0.625 0.250 0.125

Red 0.278 0.278 0.444

White 1.000 0.000 0.000

avg. 0.723 0.120 0.157

Round 4

Black 0.714 0.071 0.214

Blue 0.714 0.071 0.214

Pink 0.786 0.143 0.071

Red 0.278 0.278 0.444

White 1.000 0.000 0.000

avg. 0.698 0.113 0.189

Session D Gp Gt Gr

Round 1

Black 0.250 0.250 0.500

Blue 0.625 0.250 0.125

Pink 0.333 0.333 0.333

Red 1.000 0.000 0.000

White 0.714 0.071 0.214

avg. 0.585 0.181 0.235

Round 2

Black 0.250 0.250 0.500

Blue 0.625 0.250 0.125

Pink 0.200 0.350 0.450

Red 0.400 0.400 0.200

White 0.000 0.600 0.400

avg. 0.295 0.370 0.335

Round 3

Black 0.250 0.250 0.500

Blue 0.625 0.250 0.125

Pink 0.200 0.350 0.450

Red 0.500 0.333 0.167

White 0.100 0.550 0.350

avg. 0.335 0.347 0.318

256

C

C.3. STRATEGY SCORES

Session E Gp Gt Gr

Round 1

Black 0.563 0.188 0.250

Blue 0.300 0.300 0.400

Pink 0.375 0.375 0.250

Red 0.333 0.333 0.333

White 0.389 0.389 0.222

avg. 0.392 0.317 0.291

Round 2

Black 0.563 0.188 0.250

Blue 0.300 0.300 0.400

Pink 0.375 0.375 0.250

Red 0.389 0.389 0.222

White 0.389 0.389 0.222

avg. 0.403 0.328 0.269

Round 3

Black 0.563 0.188 0.250

Blue 0.300 0.300 0.400

Pink 0.389 0.389 0.222

Red 0.389 0.389 0.222

White 0.389 0.389 0.222

avg. 0.406 0.331 0.263

Round 4

Black 0.563 0.188 0.250

Blue 0.444 0.278 0.278

Pink 0.389 0.389 0.222

Red 0.500 0.313 0.188

White 0.389 0.389 0.222

avg. 0.457 0.311 0.232

Round 5

Black 0.563 0.188 0.250

Blue 0.444 0.278 0.278

Pink 0.389 0.389 0.222

Red 0.500 0.313 0.188

White 0.389 0.389 0.222

avg. 0.457 0.311 0.232

Round 6

Black 0.563 0.188 0.250

Blue 0.444 0.278 0.278

Pink 0.389 0.389 0.222

Red 0.500 0.313 0.188

White 0.389 0.389 0.222

avg. 0.504 0.283 0.213

Round 7

Black 0.563 0.188 0.250

Blue 0.563 0.188 0.250

Pink 0.389 0.389 0.222

Red 1.000 0.000 0.000

White 0.389 0.389 0.222

avg. 0.628 0.203 0.169

Session F Gp Gt Gr

Round 1

Black 0.563 0.188 0.250

Blue 0.625 0.250 0.125

Pink 0.438 0.250 0.313

Red 0.643 0.214 0.143

White 0.714 0.071 0.214

avg. 0.596 0.195 0.209

Round 2

Black 0.563 0.188 0.250

Blue 0.625 0.250 0.125

Pink 0.563 0.188 0.250

Red 0.643 0.214 0.143

White 0.563 0.188 0.250

avg. 0.591 0.205 0.204

Round 3

Black 0.563 0.188 0.250

Blue 0.625 0.250 0.125

Pink 0.563 0.188 0.250

Red 0.643 0.214 0.143

White 0.786 0.143 0.071

avg. 0.636 0.196 0.168

Round 4

Black 0.714 0.071 0.214

Blue 0.625 0.250 0.125

Pink 0.563 0.188 0.250

Red 1.000 0.000 0.000

White 1.000 0.000 0.000

avg. 0.780 0.102 0.118

Session G Gp Gt Gr

Round 1

Black 1.000 0.000 0.000

Blue 0.625 0.250 0.125

Pink 1.000 0.000 0.000

Red 0.714 0.071 0.214

White 0.350 0.350 0.300

avg. 0.738 0.134 0.128

Round 2

Black 0.786 0.143 0.071

Blue 0.444 0.278 0.278

Pink 0.563 0.188 0.250

Red 0.563 0.188 0.250

White 0.350 0.350 0.300

avg. 0.541 0.229 0.230

Round 3

Black 0.563 0.188 0.250

Blue 0.444 0.278 0.278

Pink 0.563 0.188 0.250

Red 0.563 0.188 0.250

White 0.563 0.188 0.250

avg. 0.539 0.206 0.256

Round 4

Black 0.563 0.188 0.250

Blue 0.444 0.278 0.278

Pink 0.563 0.188 0.250

Red 0.563 0.188 0.250

White 0.444 0.278 0.278

avg. 0.515 0.224 0.261

Table C.5 Strategy scores per team and average for the entire session per round of the
game. The data columns present the profit strategy score Gp, ttl strategy score Gr and the
risk-aversion strategy score Gr, as computed following Section C.3.

257

APPENDIX C. GAME SESSION OUTCOMES

And, as with the outcomes, Table C.6 summarises the strategy scores per session
over all rounds of the game.

R1 R2 R3 R4 R5 R6 R7 min max

Profit
A 0.596 0.709 0.739 0.596 0.739 0.681
B 0.500 0.523 0.637 0.637 0.500 0.637 0.574
C 0.647 0.647 0.723 0.698 0.647 0.723 0.679
D 0.585 0.295 0.335 0.295 0.585 0.405
E 0.392 0.403 0.406 0.457 0.457 0.504 0.628 0.392 0.628 0.464
F 0.596 0.591 0.636 0.780 0.591 0.780 0.651
G 0.738 0.541 0.539 0.515 0.515 0.738 0.583

TTL
A 0.222 0.173 0.132 0.132 0.222 0.176
B 0.292 0.277 0.229 0.229 0.229 0.292 0.256
C 0.206 0.206 0.120 0.113 0.113 0.206 0.161
D 0.181 0.370 0.347 0.181 0.370 0.299
E 0.317 0.328 0.331 0.311 0.311 0.283 0.203 0.203 0.331 0.298
F 0.195 0.205 0.196 0.102 0.102 0.205 0.175
G 0.134 0.229 0.206 0.224 0.134 0.229 0.198

Risk aversion
A 0.181 0.118 0.129 0.118 0.181 0.143
B 0.208 0.200 0.134 0.134 0.134 0.208 0.169
C 0.147 0.147 0.157 0.189 0.147 0.189 0.160
D 0.235 0.335 0.318 0.235 0.335 0.296
E 0.291 0.269 0.263 0.232 0.232 0.213 0.169 0.169 0.291 0.238
F 0.209 0.204 0.168 0.118 0.118 0.209 0.175
G 0.128 0.230 0.256 0.261 0.128 0.261 0.219

Table C.6 Strategy profile scores objective averaged over all players in the session per round
and summarised over all rounds.

258

Appendix D

Computational Complexity
Theory

This appendix briefly recapitulates on the most essential notions of computational
complexity theory that are required in order to comprehend the work presented in this
thesis. The theory presented here originates mainly from the book by Sipser [238] and
the interested reader can find a more thorough treatment of complexity theory and
additional material there.

Computational complexity theory provides a framework for the analysis and classi-
fication of the difficulty of solving computational problems. Through formal analysis
of algorithms it is possible to relate the size of the problem’s input to the time and/or
space that is required to solve the problem using the algorithm, and in particular it al-
lows reasoning about the algorithm’s scalability. For one problem, multiple algorithms
might exists that each scale differently in terms of runtime or memory when the size
of problem instances increases. Computational complexity theory helps to classify al-
gorithms according to their (asymptotic) worst-case runtime or memory, expressed as
a function over the input size.

The asymptotic bound is commonly denoted using the ‘big-O’ notation O(g(n)),
where g is the asymptotic worst-case complexity of an algorithm that is a function
of the input size n, and it can be interpreted as ‘this algorithm takes at most g(n)
time/space for an input of size n’. Observe thus that it is possible to analyse both time
and space this way, however in most occasions computational complexity is implicitly
assumed to consider runtime; space complexity analysis is often mentioned explicitly
(also in the names complexity classes, discussed later). Conversely, Ω(g(n)) denotes
that an algorithm requires at least g(n) time or space.

In addition to analysis of algorithms, computational complexity theory can also be
used to classify problems. Essentially, solving a computational problem requires as least
as much runtime as the best known algorithm for it. If for a problem one can prove
that no faster or more memory-efficient algorithm can exist, then the problem can be
classified according to the complexity of that algorithm. This is fundamental to the
theory of complexity classes, that defines a hierarchy of problem difficulty.

259

APPENDIX D. COMPUTATIONAL COMPLEXITY THEORY

The class of problems that is often considered easy, tractable or efficiently solvable,
is that of polynomial time, denoted by p. All problems in this class allow a polynomial
algorithm57 in the size of the input, i.e. their asymptotic worst-case complexity is given
by O(nc) where c is a constant. Algorithms for this class are said to be tractable or
efficient as they scale well with the input size compared to other classes and hence they
are widely considered applicable in practice.

The polynomial-time problems class is contained58 within the larger class of non-
deterministic polynomial time problems, abbreviated with np. For every problem in this
class it is possible to quickly verify that the outcome of an algorithm is indeed correct,
but to produce this outcome it requires a non-deterministic algorithm. Informally one
can say that a non-deterministic algorithm arrives at a correct solution by guessing the
intermediate steps. Such a guessing algorithm does not exist and instead all possible
search directions and their resulting solutions have to be explored by an algorithm to
produce a correct solution in the worst case. Inherently this leads to algorithms that
have asymptotic worst-case bounds of the form O(cn), again c being a constant, and
scale much worse than problems in p.

As p is contained in the set of np, there are problems in np that can be solved
efficiently. However there exist also many problems outside p that require at least
exponential time, known as np-hard problems. Formally np-hard problems need not
to be in the set np themselves but are ‘at least as hard’ as any other problem in np,
i.e. there cannot be any problem in np that is harder to solve than this problem, see
Figure D.1b. Such a relation between problem complexities can be shown through
reduction. If for two problems A and B there exists a method to transform instances
of problem A into instance of problem B such that a solution for B can only be correct
if and only if a correct solution is produced for A, it is said that A is reducible to B
denoted A ≤ B. Consequential from such a reduction is that any algorithm for B is
also able to solve problem A and hence if a polynomial-time algorithm exists for B, A
can also be solved in polynomial time. Observe that this reduction is one way: it does
not have to be that B is reducible to A.

For np-hard problems there must exist a reduction from every other problem in np
because they are at least as hard as all other problems in np. For this reason it is
also true that if there exists a polynomial algorithm for any of the np-hard problems,
all problems in np can be solved in polynomial time. If a problem is both hard for a
complexity class and it also contained within that class, it is said to be complete. The
set of complete problems for a complexity class in significant because it characterises the
hardest problems within that class. The set of np-complete problems has been studied
extensively by computer scientists; it contains famous examples such as boolean
satisfiability (sat), knapsack, traveling salesman (tsp) and many more.

The class np is its turn a subset of pspace, i.e. the class of all problems that can be
solved using polynomial space, which itself is a subset of the exponential time solvable
problems class exptime (exp). The latter contains problems that can be solved in

57 Exponential algorithms may exists for the problem, for example as a result of poor programming,
but if at least one polynomial algorithm exists for a problem, it is a member of p.

58 In this thesis it is assumed that p 6= np, according to common belief. See below for a more in-depth
discussion.

260

D

exponential time by deterministic algorithms, bounded in the worst case by O(cg(n))
where g(n) is a polynomial function. exp contains problems that are considered highly
intractable and may also not be contained in pspace. Similar to p the non-deterministic
counterpart of exp abbreviated nexp(time), is defined as the set of problems that
are solvable with a non-deterministic algorithm in O(cg(n)) and therefore algorithms for
a problem are bounded by O(ch(n))), where h(n) is now an exponential function of n.
Finally both exp and nexp are sub classes of the class of problems that are solvable
using at most exponential space expspace, and between the exp classes there exists
a hierarchy alike that of the p classes.

The complexity classes and relations between them that have discussed in this
appendix are all summarised in Figure D.1a. In Figure D.1b an illustration of hardness
and completeness is shown for np problems; a similar can be made for exp but is not
included here.

(a) (b)

Figure D.1 Diagram illustrating the complexity discussed in this appendix: (a) shows the
complexity class hierarchy and (b) illustrates the sets of hard and complete problems for the
class np.

P versus NP Currently it is still an open question whether p is merely contained in
np, i.e. it is a sub-class of np, or that both classes are equivalent. This conundrum,
commonly referred to as p = np, is one of the most fundamental open problems
in theoretical computer science with enormous consequences if true. If it turns out
that indeed p = np then many of the currently known problems can be solved within
polynomial time and most of the hierarchy between complexity classes (Figure D.1a)
would collapse. Some classes however, such as exp discussed in the previous section,
have been shown to be a strict super set of p and will therefore remain considered
intractable.

Ever since the question p = np was poised there has been a colossal amount of
research to either prove or disprove it, but so far no conclusive answer has been found.
Nonetheless, as still no polynomial algorithm has been found for any of the difficult
problems in np, it is widely believed that the classes are not equivalent. This thesis
will adhere to this common belief and present all complexity relates issues as if they
are shown disjoint to avoid having to repeat this discussion every time.

261

Appendix E

Game Theory and Mechanism
Design

This appendix serves to provide the reader unfamiliar with game theory and/or mech-
anism design a brief introduction into the main notions of both strands of literature.
This appendix is by no means a complete overview but concentrates on providing the
required background to the work presented in Chapter 6. Most of the concepts de-
scribed here are based upon the presentation by Nisan et al. [188], (pointers for) further
reading on game theory may be found in the works by Gibbons [93], Myerson [181]
and Osborne and Rubinstein [199], and for mechanism design in those by Conitzer and
Sandholm [67], Dash et al. [72], Krishna and Perry [147].

E.1 Game Theory

Game Theory is the strand of literature that models (multi-)agent decision making as
a game and studies the outcomes of such a game. Here, every agent is represented
by a player that must play an action – i.e. make one of its decisions – and it obtains
utility for the corresponding joint outcome. For example, in a maintenance planning
game the players must submit a plan, each possible plan being an available action, and
the utility of each player is the sum of the its revenues minus the maintenance and
network costs of the resulting outcome. Game theory mainly focuses is on the (type
of) outcomes that can be obtained, given a definition of a game; mechanism design
aims to influence the outcomes of such a game (discussed in the next section).

A very important assumption required to reason about outcomes of games is that
of agent rationality.59 An agent is considered to be rational if at any time it has to
make a decision, it chooses the decision that optimises the utility it expects to receive
as a result from that decision. The (expected) utility of an agent i is captured through

59 This assumption is vital for all game theoretical literature but does not necessarily hold true in
practice (see Section 8.2).

262

E

E.1. GAME THEORY

its utility function ui that expresses the – usually monetary – gain or loss an agent
has for every possible outcome o ∈ O of the game, which typically depends on the
private information of the agent known as its type θi. In general, this type can be any
structure that represents the private information, from a single constant to a complex,
high-dimensional system, although using more elaborate types can make a mechanism
impractical in terms of tractability (discussed more later) and therefore most mechanism
design approaches focus on types of only one or a few dimensions. Important for now is
that the type of an agent is assumed fixed in the sense that the agent is initially given
a type θi from Θi, the set of types available to that agent, and it will not change type
during the mechanism’s execution. Later the dynamic setting in which an agent’s type
can change is discussed. Summarising, for every outcome o ∈ O the utility function
specifies a value ui(θi, o) ∈ R that this outcome has to the agent and a rational agent
of type θi will always try to achieve the outcome in which its utility is maximised.

The decisions that agent i can make in the game are known as its actions Λi and
the agents chooses the action it will play using its strategy σi : θi 7→ Λi from the set of
strategies Σi available to the agent. The joint strategy ~σ =

�

i∈n σi dictates the joint
action ~a ∈ Λ that is played in a game and the corresponding outcome of such a joint
action is implemented through the outcome rule g : Λ 7→ O. An example of actions
and an outcome rule can be a planning algorithm that takes as its input the activities
each agent wants to perform and returns the corresponding optimal plan. Together,
all of the previous can be summarised into a formal definition of a game:

Definition E.1 (One-shot) Game

A (one-shot) game G is defined as the tuple
〈
N ,Θ,Λ,Σi, O, g, {ui}i∈N

〉
in which:

• N = {1, 2, . . . , n} is the set of agents (players),

• Θ =
�

i∈n Θi is the joint type space where each Θi is type space available to
agent i,

• Λ =
�

i∈n Λi is the set of joint actions where each Λi is the set of actions
available to agent i,

• Σ =
�

i∈n Σi is the set of joint strategies where each Σi is the set of strategies
available to agent i and a single (joint) strategy ~σ ∈ Σ is a mapping of types to
actions ~σ : Θ 7→ Λ,

• O is the outcome space of the game that contains all possible outcomes the
game can have,

• g : Λ 7→ O is the outcome rule of the game such that for every jointly played
action ~a ∈ Λ the outcome rule g(~a) specifies the outcome o ∈ O that results,
and

• {ui}i∈N is the collection of utility functions where ui : Θi×O 7→ R specifies the
utility agent i ∈N has for every outcome o ∈ O for every possible type θi ∈ Θi.

263

APPENDIX E. GAME THEORY AND MECHANISM DESIGN

One play of the game requires every agent i to choose an action ai ∈ Λi, accord-
ing to their (predetermined) strategy σi ∈ Σi. The resulting joint action ~a =
〈a1, a2, . . . , an〉 is ‘executed’, leading to outcome o = g(~a) and utilities ui(θi, o),
such that o ∈ O and θi ∈ Θi is the (predetermined) type of agent i. The game
is one-shot, also called single-shot or static, because agents can only perform one a
single action, leading to one outcome.

Although the formal definition of a game includes all possible types and strategies
available, at the start of the game both are ‘realised’ for every agent. In other words,
when the game starts, the agent taken on a type θi ∈ Θi and strategy σi ∈ Σi.
The main use of a game is to reason about the outcomes and associated utilities that
can result from every combination of types and strategies. For any given combination
of joint type θ ∈ Θ and joint strategy ~σ ∈ Σ, the utility of agent i is given by
ui(θi, g(~σ(θ))) and therefore directly dependent on the types and strategies of other
agents. Different joint strategies lead to different outcomes and game theory analyses
the different outcomes that can occur in equilibrium, known as solution concepts.

An important solution concept is that of a Nash equilibrium, originating from the
work by Nash et al. [186], that results when all agents maximise their own utility given
the knowledge that all other agents will do the same for theirs. A game is in Nash
equilibrium if no single agent can benefit from adopting a different strategy. Let θ−i
and ~σ−i denote respectively the joint type and joint strategy without that of agent i,
i.e. θ−i = θ\θi = 〈θ1, . . . , θi−1, θi+1, . . . , θn〉 and similarly for ~σ−i, such that together
θi and θ−i again form a complete type θ = 〈θi,θ−i〉 for all n agents (likewise 〈σi, ~σ−i〉
forms a complete joint strategy) then the Nash equilibrium can be defined as:

Definition E.2 Nash Equilibrium

A joint strategy ~σ ∈ Σ constitutes a Nash equilibrium if for every agent i:

σ∗i ∈ arg max
σi∈Σi

ui
(
θi, g

(
〈σi(θi), ~σ−i(θ−i)〉

))
(E.1)

where θi ∈ Θi is the true type of agent i.

When agents are not certain about strategies taken by others, but they have a common
belief over the distribution of strategies, a solution concept known as a Bayes-Nash
equilibrium can be achieved. In such an equilibrium, agents can do no better by
deviating from their current strategy given the belief they have over the strategies
played by others.

A more powerful solution concept than Nash is that of a dominant strategy equi-
librium, in which every agent has at least one strategy that yields the highest utility
regardless of the strategies played by the other agents. Formally:

Definition E.3 Dominant Strategy Equilibrium

A game has a dominant strategy equilibrium if for every agent i there exists a

264

E

E.1. GAME THEORY

dominant strategy σ∗i such that

∀θ−i ∈ Θ−i, ~σ−i ∈ Σ−i : σ
∗
i ∈ arg max

σi∈Σi

ui
(
θi, g

(
〈σi(θi), ~σ−i(θ−i)〉

))
(E.2)

where θi ∈ Θi is the true type of agent i and Θ−i and Σ−i denote respectively the
joint types and strategies available to all other agents.

Note that Equation E.2 is almost equal to the Nash equilibrium of Equation E.1 but
it differs in its quantifiers such that the equation must hold for every joint type θ−i
and strategy ~σ−i of the other agents. This solution concept is therefore much stronger
and, because the optimal strategy no longer depends on other agents, allows individual
reasoning about optimal strategies.

Example E.4 Maintenance Planning Game

As an example game, consider maintenance planning problem in which players A and B
have to coordinate a single activity of unit duration with no probability of delay. Each
agent has to decide in which of the two available time steps {t1, t2} it wants to perform
its activity. Both agents are contractually obliged to complete the activity and will therefore
not receive a reward for completing it, instead they want to minimise the cost of it. Agent 1
has costs 2 and 6 for the two time steps respectively, whereas agent 2 has costs 3 and 10.
When both agents plan their activities in the same time step, they are both penalised 5.
This can be formulated as the following maintenance planning problem:

• N = {A,B},
• A = {{a} , {b}} such that a = 〈0, 1, 0, 0〉 and b = 〈0, 1, 0, 0〉,
• cA(a) = 〈2, 6〉 and cB(b) = 〈3, 10〉,
• `(a, b, ·) = 10 (5 penalty for both agents), and

• T = {t1, t2}.

This maintenance planning problem can be converted into a game in which the agents
play by selecting a time slot for their activity. The type of an agent is defined as a function
that describes the revenues and costs for all of its activities in each time step, and its
utility is defined as the profit it obtains for an outcome. This leads to the game (purposely
omitting strategies for now):

• N = {A,B},
• Θ = {{cA}

�
{cB}},

• Λ =
{{
at1, at2

}�{
bt1, bt2

}}
in which at represents agent A ‘playing’ activity a

in time step t (and correspondingly for bt),

• O = {o1,1, o1,2, o2,1, o2,2} such that ox,y represents agent A performing its activity
in time step x, agent B in y,

• g(ax, by) = ox,y, and

• u1(θ1, ox,y) = −c1(a, x) − 0.5`(a, b, x) × X such that X = 1 if x = y and zero
otherwise, u2 is defined analogously as u2(θ2, ox,y) = −c2(b, y)− 0.5`(a, b, y)×X.

265

APPENDIX E. GAME THEORY AND MECHANISM DESIGN

Now the agents in this game both want to minimise their maintenance costs and there-
fore A plays a strategy σA(θA) = arg minat∈Λ cA(at, t) (and B plays a similar strategy).
Following this strategy, both agents will play the action that corresponds to the first time
step, resulting in joint action ~a =

〈
at1, bt1

〉
and outcome o1,1, illustrated in Figure E.1a.

Agent A

Agent B

t1 t2

a

b

uA = −2− 5 = −7

uB = −3− 5 = −8

(a)

Agent A

Agent B

t1 t2

a

b

uA = −6

uB = −3

(b)

Figure E.1 Outcomes of the game corresponding to various joint strategies: (a) both
players minimise their maintenance costs and (b) player B still minimises its maintenance
costs but player A now always selects time step t2.

Although both players minimise their maintenance cost, their utility is not maximal in the
outcome of Figure E.1a because of the network cost penalty that both players receive in
this outcome. Nevertheless, as both players can only play one single strategy, their joint
strategy trivially constitutes a Nash equilibrium and both their strategies are dominant.
However, this will not hold true when more strategies are available.

Each agent now additionally has two more simple strategies at its disposal: ‘always
play time step t1’ and ‘always play time step t2’. In the presence of these extra strategies,
the previous outcome no longer forms a Nash equilibrium. Consider for instance agent A,
if it switches strategy to ‘always t2’ its utility will increase from −7 to −6 and therefore
it can benefit from changing its strategy, as shown in Figure E.1b. Notice that this new
combination of strategies – A plays ‘always t2’ and B minimises its maintenance costs –
does form a Nash equilibrium.

In this specific example there exists a dominant strategy for agent B: irregardless of
what strategy agent A plays, it always maximises its utility by playing either the ‘cost
minimisation’ or ‘always t1’ strategy (although the actual value of the utility depends on
what strategy A plays). For agent A however such a dominant strategy is not available.
When agent B plays either of the previously mentioned strategies that will result in b being
planned at time step t1, agent A is best off by playing ‘always t2’. If B plays the ‘always
t2’ strategy, agent A maximises its utility by playing either one of the other strategies that
are available to it. Therefore, this game has no dominant strategy equilibrium.

E.2 Mechanism Design

Mechanism design bases on game theory to model multi-agent decision making as
n-player games with actions and outcomes, but it additionally steers agents towards
globally favourable outcomes (and therefore sometimes referred to as ‘inverse game
theory’). By far, most of the work on mechanism design focuses on monetary incen-
tives where agents get a payoff for their participation in the mechanism and these

266

E

E.2. MECHANISM DESIGN

are therefore also the only type of mechanism considered in this thesis.60 In monetary
mechanisms, agents are rewarded for their contribution toward a global goal, thereby
making it in their personal best interest to consider the global goal even if they are
selfish.

The main purpose of a mechanism is to impose a function upon the game that
specifies (globally) desirable outcomes that are achieved in the equilibria of the game,
even when agents act in their own best interest. This function is known as the social
choice function (SCF) of the mechanism and it maps the actions of all agents to an
outcome, i.e. f : Λ 7→ O, similar to the outcome rule of the game. Examples of SCFs
are: a winner determination algorithm that allocates an auctioned item to the bidder
with the highest bid, or an optimal planner that uses agent’s preferences to develop an
optimal maintenance plan.

Nevertheless, whereas in a game the utility functions of the agents were assumed
public knowledge, mechanism design assumes a private-values setting in which the
agent’s realised type – its preferences or bid function – is only known by the agent
itself. The set of types available to each agent, i.e. Θi, is public knowledge, but the
mechanism does not know which of these types the agent has. Intuitively, one can
imagine that a mechanism tries to optimise some global goal but it will not know
the (precise) motivation of each of its participants although it can reason about the
various motivations an agent can have. This private value setting is modelled through
a valuation function vi : Θi × O 7→ R such that the value of an outcome o ∈ O
depends on the type θi that is known only agent i and the SCF is a function expressed
over the valuation functions. The goal of a mechanism is then typically to maximise or
minimise the SCF exactly in the equilibria of the underlying game, when all players act
truthfully with respect to their intentions or preferences If a mechanism always succeeds
to achieve outcomes desired by the SCF f in an equilibrium where all agents act
truthfully with respect to their intention or valuation, then the mechanism implements
f and is incentive compatible (discussed in more detail later).

Before going into the details of a mechanism, however, one very important negative
result immediately limits the scope of mechanisms that can implement an SCF in a
truthful equilibrium. This result is known as the Gibbard-Satterthwaite theorem:

Theorem E.5 Gibbard-Satterthwaite [92, 227]

For a game with unrestricted types, |N | ≥ 2, |O| ≥ 3, and a social choice function f
such that ∀o ∈ O,∃~a ∈ Λ : f(~a) = o, a mechanism can implement f in a dominant
strategy equilibrium if and only if f is dictatorial.

Here, dictatorial means that there is one agent that can determine the outcome of
the game, thereby disregarding the preferences of the other agents. For this reason,
a mechanism that implements a dictatorial SCF is considered unacceptable for most
applications. Although this theorem is rather strong, it can be circumvented by weak-

60 There exist mechanisms that do not require monetary transfers, see e.g. Chapter 10 of the book by
Nisan et al. [188].

267

APPENDIX E. GAME THEORY AND MECHANISM DESIGN

ening any of its conditions: using restricted types, considering only problems with 2
outcomes, or implementing f in a weaker solution concept.

It turns out there exists a rather natural restriction on the types of agents under
which this result no longer holds. Using monetary transfers such that the utilities of
agents become quasilinear, e.g. of the form ui + y for some function y, it is possi-
ble to design mechanisms that implement an SCF and are non-dictatorial (e.g. the
Vickrey-Clarke-Groves mechanism of Section E.4). The intuition behind this is that
using transfers, a mechanism has means to reward or penalise agents based on their
contribution to the SCF and, by using well-designed payments, the SCF is implemented
by the mechanism exactly when agents maximise their personal utility (accounting for
the payment it will receive or make). In summary, a (one-shot) mechanism with mon-
etary transfers can be defined as:

Definition E.6 (One-shot) Mechanism

A (one-shot) mechanism for a (one-shot) game G is defined as the tuple 〈f,p〉 where
f : Λ 7→ O is the social choice function and p = {pi}i∈N is a collection of payoff
functions such that each pi : Λ 7→ R defines the payment to agent i depending
on the actions played. For each agent i ∈ N participating in the mechanism, the
(quasilinear) utility of an agent i for outcome f(~a) when joint action ~a ∈ Λ is taken
and its (private) type is θi ∈ Θi is given by:

ui(θi,~a) = vi(θi, f(~a)) + pi(~a) (E.3)

where ∀θi ∈ Θi, o ∈ O : vi(θi, o) = u′i(θi, o) such that u′i is the utility function of
agent i in game G.

A mechanism is said to be executed if the game is played and payments have been
made, based upon the outcome of the SCF. Recall from the previous section that
players use their strategy to determine the action they are going to play in the game.
The joint action that is played is ~a = ~σ(θ), which is reported to the mechanism, and
the outcome thereof is f(~σ(θ)) ∈ O. Thereafter, the mechanism computes and incurs
payments pi(~a) for every agent i based upon the joint action that is taken.

In mechanism design two types of mechanisms are distinguished based upon the type
of information that is reported by the agents to the mechanism. In direct-revelation
mechanisms, agents are required to report their complete private information (its type)
to the mechanism, whereas in indirect-revelation mechanisms other types of actions are
allowed.61 Alternatively one could say that in a direct mechanism the set of actions for
each agent is restricted to reporting its types, i.e. Λi = Θi and therefore σi : Θi 7→ Θi

and O = Θ =
�

i∈n Θi. Due to an important theorem in mechanism design, known
as the revelation principle, it is again possible to limit the scope of mechanisms:

Theorem E.7 Revelation principle [92]

An indirect mechanism that successfully implements social choice function f(~σ(θ))

61 The term ‘revelation’ is often omitted in mechanism design literature and will be omitted from now.

268

E

E.2. MECHANISM DESIGN

in at least a Bayes-Nash equilibrium can be transformed into an equivalent direct-
revelation mechanism that implements SCF f(θ) directly over the joint type θ.

direct mechanism

θ1

θn

f(θ)
σ1(θ1)

σn(θn)

indirect
mechanism

a1

an

Figure E.2 The relation between direct and indirect mechanisms: an indirect can always be
obtained by simulating the use of strategies as a part of the direct mechanism.

As a consequence of the revelation principle only direct mechanisms need to be
considered because of two immediate corollaries of Theorem E.7: either a direct mech-
anism exists that implements f truthfully and it can be transformed to an equivalent
indirect mechanism, or no such direct mechanism exists and therefore also no indi-
rect mechanism can exist that implements f truthfully. This relation is visualised in
Figure E.2: if an indirect mechanism exists for a game, one can always construct a
direct mechanism, that takes type reports as its input, apply strategies to determine
the input to the indirect mechanism and use the indirect mechanism to compute the
SCF outcome. In the remainder of this chapter the focus will henceforth be on direct
mechanisms.

In a direct mechanism, agents report a joint type θ̂ instead of a joint action. The
joint type that is reported does not necessarily contain the true type of every agent: it is
determined by the strategies of the agents such that θ̂ = ~σ(θ) where θ is the true joint
type of the agents. To avoid confusion between the two, the true type of an agent i
will be always denoted by θi whereas its reported type is written as θ̂i. As in a direct
mechanism the agents of the underlying game play a type based on their strategy, i.e.
~σ(θ) = θ̂, it is possible to write f(~σ(θ)) = f(θ̂). Moreover, the payments in a direct
mechanism can be defined directly over the reported type: pi(θ̂) = pi(~σ(θ)). Finally,
the utility of an agent i under a direct mechanism is given by

ui(θi, θ̂) = vi(θi, f(θ̂)) + pi(θ̂) (E.4)

when joint type θ̂ is reported to the mechanism (and θi is the true type of agent i).
Observe that a negative payoff means that the agent should pay the mechanism and
vice versa for a positive payoff. The valuation of an agent is defined over the joint
outcome and can possibly also capture inter-agent valuations. For instance, an agent
might have negative valuation if a certain other agent gets assigned an item by an
auctioning mechanism. An example of a mechanism for the maintenance planning
game of Example E.4 is presented later in Example E.13 in Section E.4.

269

APPENDIX E. GAME THEORY AND MECHANISM DESIGN

E.3 Mechanism Design Desiderata

Typically, there are several desirable properties of which at least a few need to be satis-
fied in order for the mechanism to be applicable in practice. Of course, the main purpose
of a mechanism is to implement a chosen SCF, but there are more characteristics that
are favourable (or often required) in a mechanism. Here the most important mech-
anism desiderata are discussed: incentive compatibility, individual rationality, budget
balance and computational efficiency. The first one, incentive compatibility, is defined
as:

Definition E.8 Incentive Compatible (IC)

A mechanism is incentive compatible if it implements SCF f in an equilibrium where
a truthful strategy is utility-maximising for every agent. Formally, for every agent i ∈
N and every joint type θ ∈ Θ there exists a strategy σ∗i such that

ui(θ, 〈σ∗i (θi), ~σ−i(θ−i)〉) ≥ ui(θ, 〈σi(θi), ~σ−i(θ−i)〉)

In a dominant strategy equilibrium this equation holds true for every joint strat-
egy ~σ−i ∈ Σ−i of the other players, and the mechanism is said to be strategyproof.

Incentive compatibility is more often than not a compulsory property in mechanism
design literature. Under a direct incentive compatible mechanism, the best strategy for
every agent is to report their type truthfully to the mechanism, e.g. without lying about
their preferences. This is very desirable because under such mechanisms agents are
honest about for instance their valuation and therefore the mechanism can find a ‘fair’
outcome. For example in an auctioning setting, under an IC mechanism each bidder
always truthfully reports the valuation it has for the auctioned item and the mechanism
can therefore assign it to the bidder that values it most. In the case of a mechanism
being incentive compatible in dominant strategies it is said to be strategyproof and
for a direct strategyproof mechanism it must be that σi(θi) = θi, i.e. its strategy is to
report its type truthfully.

Another property that is typically essential in a mechanism is individual rationality.
Individual rationality guarantees that it is in the best interest of agents to participate in
the mechanism or, in other words, it will not run at a loss because of the mechanism:

Definition E.9 Individual Rationality (IR)

A mechanism is individually rational if for all joint actions ~a ∈ Λ, all types θi ∈ Θi

and all agents i ∈N :
ui(θi,~a) > 0

When the total utility is always non-negative, i.e. ∀i ∈ N : ui(θi,~a) ≥ 0, the
mechanism is weakly individually rational.

There are different sorts of individual rationality that can be demanded from the mech-
anism, depending on the time at which IR should hold. The strongest type of individual

270

E

E.4. THE VICKREY-CLARKE-GROVES MECHANISM

rationality is ex-post IR, in which agents only participate if they always have positive
utility, regardless of the types and strategies of other agents. When agents expect to
obtain positive utility given knowledge about their private type and beliefs about types
of other agents, the mechanism is said to be ex-interim IR. The weakest rationality no-
tion is that of ex-ante IR, in which agents expect to have positive utility at least prior
to realisation of all agent types, including his own. In other words, in ex-ante IR agents
do not expect to run at a loss given their beliefs about all reported agent types; in
practice, however, negative utilities are possible.

As the mechanism relies on monetary transfers, a property similar to IR is preferable
for the agent that employs the mechanism. Having a mechanism that allocates items
fairly or optimises overall utility is beneficial, but if its payments require (substantial)
external funding it is likely unacceptable. This is the budget balance property:

Definition E.10 Budget Balance (BB)

A mechanism is budget balanced if for all joint actions ~a ∈ Λ:∑
i∈N

pi(~a) = 0

If it never runs at a loss, i.e.
∑
i∈N pi(~a) ≤ 0, the mechanism is weakly budget

balanced (or no-deficit).

Finally, computational efficiency62 of a mechanism is used to refer to the computational
effort that is required to compute social choice function f of the mechanism. Even
though a mechanism might satisfy IC and IR, if computing the objective function is
intractable, the mechanism can still be of little use in practice. A famous example is
that of combinatorial auctions, for which a simple payment scheme exists that leads
to a strategyproof mechanism however determining the winner of the auction poses
an NP-hard problem. Moreover, although often good approximations are available for
such problems, the mechanism design desiderata do not transfer (immediately) to such
approaches. Computational efficiency in mechanisms is the basis for an entirely own
branch of research known as computational or algorithmic game theory. For more
reading on this, the reader is referred to the book by Nisan et al. [188].

E.4 The Vickrey-Clarke-Groves Mechanism

Given the mechanism desiderata presented in the previous section and the impossibility
result by Gibbard and Sattertwaithe (Theorem E.5), the range of mechanisms that can
be successfully applied in practice is limited. Moreover, Green [99] showed that there
exists only one mechanism that is concurrently strategyproof, individually rational and

62 The term computational is included here to avoid confusion with the terminology of an efficient
mechanism that is used in the literature to denote a mechanism that optimises the sum of agent
valuations (e.g. the Vickrey-Clarke-Groves mechanism of the next section).

271

APPENDIX E. GAME THEORY AND MECHANISM DESIGN

(weakly) budget balanced for arbitrary types and quasi-linear utilities. This mecha-
nism is known as the Vickrey-Clarke-Groves (VCG) mechanism, due to the Nobel-prize
winning work by Vickrey [252], Clarke [64] and Groves [101]. Here the VCG mech-
anism will be discussed, starting from the broader class of Groves mechanisms. Let
v−i(θ̂, o) =

∑
j∈N\i vj(θ̂j , o) (which is equal to v−i(θ̂−i, o) as type θ̂i is not used)

denote the reported valuation63 of all agents except agent i for outcome o when joint
type θ̂ is reported, then the class of Groves mechanisms is defined as:

Definition E.11 Mechanisms in the Groves Class

A (direct) mechanism 〈f,p〉 belongs to the Groves class if it satisfies the following
two conditions:

(i) The social choice function f is one that results in outcomes that always optimise
group welfare:

∀θ̂ ∈ Θ : f(θ̂) ∈ arg max
o∈O

∑
i∈N

vi(θ̂i, o)

(ii) The payoff for an agent i is relative to its impact on the valuation of other agents:

pi(θ̂) = v−i(θ̂−i, f(θ̂))− h−i(θ̂−i)

for every reported type θ̂ and function h−i(θ̂−i) ∈ R that excludes the type of
agent i.

Mechanisms in the Groves class aim to optimise the social welfare of the group, i.e. the
sum of individual agent valuations. A mechanism that implements such a social choice
function is termed an efficient mechanism. As a result of Green [99], this is the only
social choice function that allows for an IC mechanism in dominant strategies. The
Groves class provides a straightforward method to design a mechanism that is both
incentive compatible as well as individually rational, although it requires a condition
known as the no negative externalities property to guarantee the latter. This condition
is defined as ∀i ∈ N , θ̂ : vi(θ̂i, f(θ̂−i)) ≥ 0 and it prevents agents from having
a negative valuation for outcomes in which they do not participate. This property
is naturally more often than not present in many realistic mechanism design problems
such as (combinatorial) auctions, voting games and selfish planning. Notice that it is of
vital importance for incentive compatibility that the payment for agent i is independent
from its own reported type: it is only subject to the reported joint type of all other
agents. If this were not the case, an agent is able to influence its own payoff, which
makes it impossible to devise an incentive compatible mechanism (see Example E.13).

One of the shortcomings of the Groves class, is that it does not guarantee budget
balance in general. Not having the budget balance property can be an important draw-
back in many applications as such mechanisms may require external funding. Clarke [64]

63 As the mechanism does not know the true type of an agent, the mechanism can only rely on the
valuation that agents report having for an outcome or, in direct mechanisms, the reported type.

272

E

E.4. THE VICKREY-CLARKE-GROVES MECHANISM

proposed a specific payment function, known as the Clarke tax or Clarke’s pivot rule, as
a choice for the function h of a Groves-class mechanism in order to obtain the no-deficit
property. The Clarke tax charges each agent the value others could have obtained if it
would not have participated, or formally h−i(θ̂−i) = v−i(θ̂−i, f(θ̂−i)). Groves0class
mechanisms that implement Clarke’s pivot rule are known as Vickrey-Clarke-Groves
mechanisms:

Definition E.12 Vickrey-Clarke-Groves (VCG) Mechanism

A direct mechanism 〈f,p〉 is a Vickrey-Clarke-Groves mechanism if it satisfies two
conditions:

(i) The mechanism is a member of the Groves class (Definition E.11).

(ii) Each agent i pays exactly the difference in valuation that is caused by its partici-
pation by letting hi be the valuation that the other agents could reportedly have
obtained without agent i:

pi(θ̂) = v−i(θ̂−i, f(θ̂))− v−i(θ̂−i, f(θ̂−i))

for every reported type θ̂.

As the VCG mechanism is a member of the Groves class, it is automatically strate-
gyproof, i.e. incentive compatible in a dominant strategy equilibrium. Furthermore,
the VCG mechanism is also individually rational and weakly budget balanced if the no
single-agent effect is satisfied. This latter condition states that the sum of valuations
of all N \ {i} agents in an outcome where an agent i is not present cannot exceed
the sum of valuations over the same set of agents in an outcome where all agents
participate, i.e. it must be that v−i(θ̂−i, f(θ̂)) ≥ v−i(θ̂−i, f(θ̂−i)). In other words,
disregarding an agent can never lead to a better outcome for all others collectively (al-
though agents can potentially benefit individually from disregarding an agent, this is
always at the cost of others as a corollary of the no single-agent effect).

Example E.13 VCG for Maintenance Planning

The two agents of Example E.4 agree to coordinate their activity planning using a mech-
anism as long as their joint valuation is optimised. Their valuation vi for an outcome
of is given by the utility function u′i of the maintenance game, e.g. vA(θA, ox,y) =
u′A(θA, ox,y) = cA(a, x) + 0.5`(a, b, x) × X (see Example E.4). As a first attempt, they
consider a direct mechanism that does not use monetary transfers (or pi(~a) = 0 for ev-
ery agent i ∈ N and all joint actions ~a ∈ Λ) with an optimal planning algorithm as its
social choice function f . Nevertheless, the agents quickly realise that this mechanism will
only work when agents are truthful; if not, they can cheat the system by misreporting their
valuation.

Recall that in a direct mechanism, players report their type to the mechanism such that
the mechanism can compute an outcome based on these types. In the maintenance game,
the type of an agent i is its maintenance cost function ci (network costs are publicly known)

273

APPENDIX E. GAME THEORY AND MECHANISM DESIGN

and the social choice function of the mechanism, i.e. the optimal planning algorithm, will
allocate activities to the time steps such that the sum of these maintenance costs and
network costs is minimised. Consequentially, the outcome that is returned by the algorithm
can be influenced by misreporting the maintenance cost function to the mechanism. For
example, the optimal outcome of the game is o2,1 where agent A is assigned time step t2

and agent B time step t1, and this allocation will indeed be returned by f if both agents
report their maintenance costs truthfully. But, although this outcome is jointly optimal,
it is not optimal from agent A’s perspective. The valuation that the agent has for this
outcome is −6 whereas it has a valuation of −2 for outcome o1,2. In essence, agent A’s
utility, i.e. the actual gain or loss it has after mechanism execution (which is equal to its
valuation in this mechanism because no payments are used), is sacrificed by the planning
algorithm in favour of a globally optimal outcome. If the agent is very selfish, it might
not accept such a utility loss and instead falsely report maintenance costs cA(a) = 〈2, 20〉.
Given this false report, the planning algorithm mistakenly finds that outcome o2,1 has a
joint utility of −20 +−3 = −23 and therefore now returns outcome o1,2, that has a joint
utility of −12, as the optimal allocation. The valuations reported by agent A (and B) in
both cases are shown as payoff matrices in Figure E.3.

B
bt1 bt2

A
at1

-8 -10

-7 -2

at2
-3 -15

-6 -11

(a)

B
bt1 bt2

A
at1

-8 -10

-7 -2

at2
-3 -15

-20 -25

(b)

Figure E.3 Payoff matrices under both cost reports where the valuations of agent A and
B are shown in red and green respectively: (a) agents report their maintenance costs
truthfully as cA(a) = 〈2, 6〉 and cB(b) = 〈3, 10〉 and (b) agent A lies about its costs
by reporting cA(a) = 〈2, 20〉 (remember that each agent is penalised −5 whenever their
activities are performed concurrently).

To discourage such strategic behaviour, the agents now turn to mechanisms that do use
monetary transfers. Intuitively such a mechanism should reward the agents for reporting
truthfully and/or penalise them when they do not. They propose a mechanism that still
computes the optimal outcome using the reported maintenance costs but splits the ‘val-
uation loss’ over both agents. The payment rule computes the valuation for both agents
using the reported maintenance costs (it knows only these costs and not the true costs)
and charges half their difference to the agent that profits the most in the jointly optimal
outcome, which is then paid to the other agent. Let θ̂ denote the reported type of both
agents, i.e. their reported maintenance costs, then the payment for both agents is defined
as:

pA(θ̂) = pB(θ̂) = −0.5
(
vA(θ̂A, f(θ̂))− vB(θ̂B , f(θ̂))

)
where f(θ̂) is the optimal outcome of the planning algorithm given the reported types θ̂
describing their maintenance costs.

If both agents report their maintenance costs truthfully under this mechanism in joint
report θ̂, the jointly optimal outcome f(θ̂) is again o2,1. The payments will be pA(θ̂) =

274

E

E.4. THE VICKREY-CLARKE-GROVES MECHANISM

−0.5(vA(θ̂A, o2,1)− vB(θ̂B , o2,1)) = −0.5(−6−−3) = 1.5 and thus pB(θ̂) = −1.5. This
leads to utilities uA(θA, o2,1) = −6 + 1.5 = −4.5 and uB(θB , o2,1) = −3 +−1.5 = −4.5,
in which θA and θB are the true types of both agents. The utility an agent really obtains
depends on its realised type and not (directly) on its reported type, although it may be
able to influence its utility in some mechanisms by misreporting and thereby changing the
outcome or affecting the payment.

Now imagine that agent A misreports its maintenance costs like before as cA(a) =
〈2, 20〉, leading to joint reported type θ̂′ in which B remains truthful, then the jointly
optimal outcome becomes f(θ̂′) = o1,2 and the resulting payments are pA(θ̂′) =
−0.5(vA(θ̂′A, o1,2) − vB(θ̂′B , o1,2)) = −0.5(−2 − −10) = −4 and pB(θ̂′) = 4. The util-
ities for the jointly optimal outcome now become uA(θA, o1,2) = −2 + −4 = −6 and
uB(θB , o1,2) = −10 + 4 = −6. At first glance, this mechanism seem fair to both agents
and it prevents lying because now agent A obtains a lower utility for the outcome that
results from its misreport and, as a consequence, it is better of by reporting its true mainte-
nance costs. Moreover, this mechanism is strictly budget balanced as the sum of payments
is always exactly zero. Nevertheless, even this mechanism is not strategyproof. The prob-
lem is that the agents can still influence their own payment and, in this specific mechanism,
they can increase their payment by (slightly) overreporting costs in a way that the jointly
optimal outcome does not change.

Consider for instance that agent A has obtained information that agent B will report
its costs truthfully. In this case, A knows that the optimal allocation will have a joint
utility of −9 whereas the second-best allocation has joint utility −12. Now, A can report
maintenance costs cA = 〈2, 6 + (3− ε)〉 where ε ∈ (0, 6) and know that outcome o2,1

will remain jointly optimal and it will not be the agent that profits most from the joint
outcome (otherwise A will have to pay B). The payment A will receive becomes pA(θ̂) =
0.5(vA(θ̂A, o2,1) − vB(θ̂B , o2,1)) = −0.5(−(6 + (3 − ε)) − −3) = 3 − 0.5ε and thus by
lying about its costs, it can increase its utility at the cost of agent B (to a maximum of
−6 + 3 = −3 when ε = 0). Therefore, even this mechanism is vulnerable to strategically
misreporting costs.

After some more research, the agents decide to use a Vickrey-Clarke-Groves mecha-
nism. Where before the agents split the difference in valuation evenly, the VCG mechanism
charges each agent the ‘harm’ it causes to the other. An important difference with the
previous mechanism is that the payment for agent i is independent of its declared mainte-
nance costs, thus preventing it from affecting its own utility. Each agent pays the difference
between the valuation of the other agent in the optimal allocation and the valuation of the
other agent in the allocation that is optimal without it participating. For the maintenance
planning mechanism with two agents, the payment for agent A is hence defined as

pA(θ̂) = vB(θ̂B , o)− vB(θ̂B , o−A)

such that o = f(θ̂) is the optimal outcome where both A and B are participating and
o−A = f(θ̂−A) = f(θ̂B) is the optimal outcome for agent B when A is not present. The
payment for B is defined similarly but uses the valuation of agent A and the outcome o−B
in which B is not participating. Notice that slightly overreporting, i.e. reporting higher
costs without changing the outcome, has no effect under this mechanism because the
payment for each agent is completely independent of its own reported valuation.

To illustrate why the VCG mechanism is strategyproof, the utilities for the agents are
computed when they both report truthfully and when agent A misreports cA(a) = 〈2, 20〉.
When both agents are truthful, the optimal outcome is o2,1, which is also the optimal
outcome for agent B when agent A is not participating. The payment for agent A will

275

APPENDIX E. GAME THEORY AND MECHANISM DESIGN

always be zero as the valuation B has for f(θ̂) is equal to the valuation it has for f(θ̂−A),
the optimal outcome without A’s presence. Agent B, however, has to pay for the valuation
loss of agent A. Without agent B, the optimal outcome for agent A is o1,2 with valuation
−2. The value loss of agent A due to agent B’s presence is therefore equal to −6−−2 =
−4, which is exactly the payment for agent B. The utilities of A and B are then −6 and
−7 respectively.

It was already established that no agent can profit from misreporting its valuation by a
small amount; only when the optimal outcome changes as a consequence of the reported
costs, the payment is affected. Consider again the joint report θ̂′ in which A misreports
cA(a) = 〈2, 20〉 and B is truthful. Now the optimal joint outcome becomes o1,2, and this
is also optimal for A without B’s presence as its value is maximised in both cases. Agent B
however prefers outcome o2,1 when A is not participating and therefore now agent A pays
the valuation difference of B such that pA(θ̂′) = vB(θ̂′B , o1,2)−vB(θ̂′B , o2,1) = −10−−3 =
−7. The utility of agent A given the false type report θ̂′ and its real type θA then becomes
uA(θ̂′, o1,2) = vA(θA, o1,2) + pA(θ̂′) = −2 +−7 = −9, and its utility is lower than when
it declares its true costs (−6). Through a formal proof, roughly along the lines of this
example, it can be shown that agents participating in the VCG mechanism maximise their
utility by always reporting truthfully. Consequentially, the dominant strategy for every agent
is to tell the truth and hence a game that uses VCG has a dominant strategy equilibrium:
it is strategyproof.

A final remark about this example is that the VCG mechanism here is not individually
rational. Here, it is assumed that agents will participate in the mechanism to coordinate
the maintenance activities for which they have been contracted, but their utility will always
be below zero. In practice, the contracted agents will typically receive a fixed reward for
their work, thus offsetting their costs by some positive amount. If these fixed profits are
included in the mechanism, it can be made individually rational as well.

276

	Summary
	Samenvatting
	Preface
	Table of Contents
	Decision Coordination through Self-regulation
	Road Maintenance Planning
	Implementing Self-regulation: Dynamic Contracting
	The Challenges of Self-regulation in Contracts
	Outline and Contributions

	Stochastic Planning using Markov Decision Processes
	Markov Decision Processes
	Finding Optimal Policies
	Factored MDPs
	Partial Observability
	Planning with Multiple Agents
	Gaining Traction on Dec-POMDPs
	Planning with Multiple Objectives

	Solving the Maintenance Planning Problem
	The Maintenance Planning Problem
	Solving MPP with Dynamic Programming
	Maintenance Planning as a Markov Decision Process
	Approximation of Maintenance Plans
	Empirical Evaluation of MPP
	Further Discussion

	Maintenance Planning with Multiple Agents
	Returns in MDP
	Conditional Return Graphs
	Policy Search based on Returns
	Experimental Evaluation of CoRe
	Further Discussion

	Maintenance Planning with Multiple Objectives
	Multi-objective Planning with Unknown Weights
	Approximate Optimistic Linear Support
	Scalarised Sample-based Iterative Improvement
	Comparison of Multi-objective Algorithms
	Further Discussion

	Maintenance Planning with Self-interested Agents
	A Dynamic Mechanism Approach to Maintenance Planning
	Selfish Best-response Maintenance Planning
	Further Discussion

	The Game of Maintenance Planning
	The Road Maintenance Game
	Gaming Results
	Evaluation of Gaming Results
	Further Discussion

	Discussion and Conclusions
	The Challenges of Self-regulation
	Conclusion
	Implications and Next Steps

	Bibliography
	Publications and Supplementary Material
	TRAIL Thesis Series
	Appendices
	Proofs
	Computing Game Scores
	Game Session Outcomes
	Computational Complexity Theory
	Game Theory and Mechanism Design

