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ABSTRACT

Nowadays space missions rely heavily on optical payloads to carry out a wide range of tasks including earth
observation, weather monitoring, astrophysics research and communications. Until recently, the design of
such systems was done according to design principles such as rotational symmetry as it simplifies the theory,
reduces technological risks, manufacturing costs and cuts down assembly, integration and testing efforts.

Nevertheless, the ever-growing need to develop more compact and lightweight payloads with enhanced
performance often forces designers to adopt tilted off-axis configurations which break the rotational sym-
metry of the system. In such circumstances, rotationally symmetric optical surfaces cannot compensate the
tilt-induced optical aberrations and thus no longer provide optimum performance over the complete field
of view. The solution to this problem is to abandon the conventional approach and adopt a new design
paradigm based on the use of non-rotationally symmetric surfaces, also known as freeform optics.

Most of the state-of-the-art methods used for the design of conventional optical payloads are not entirely
suitable for freeform optics because: first of all, they were developed on the basis of rotational symmetry
(which is no longer applicable) and secondly, because they do not cope well with the large amount of ad-
ditional degrees of freedom that freeform optics usually entails. Therefore, this Master Thesis was devoted
to the development of a novel methodology for the design and optimization of payloads based on freeform
optics.

In contrast with most approaches to freeform design, we adopted a high-dimensional approach based on
surface modelling with a substantial amount of degrees of freedom (in the order of 100 to 1000). In addition,
this methodology is built upon the framework of differential ray tracing, a technique which provides valuable
information on how small changes on the parameters of the system or in the ray data alter its optical per-
formance. Although this technique is well known in optical design, it has hardly ever been used in realistic
applications partly because of the difficulty of generalizing it to complex systems, such as those based on
freeform optics. During the course of this research, we have demonstrated that differential ray tracing can
indeed be generalized to freeform systems by means of automatic differentiation tools which can compute
derivatives of computer programs up to machine precision.

Based on those findings, a toolbox for the design and optimization of freeform systems called GDRT was
developed. GDRT has its own ray tracing capabilities; it can model different types of surfaces which includes
reflective (mirrors), refractive (lenses), diffractive (gratings) in both conventional and freeform approaches; it
has built-in optimization techniques which allow for optimization of many metrics of optical performance
(distortion, spot size, wavefront error, keystone, magnification, spectral dispersion, etc) and it is easily cus-
tomizable to cope with new demands and tasks. Consequently, it can effectively operate autonomously, with
minimal communication with commercial software packages for optical design like Zemax Optics Studio.

Our investigations have revealed that it is possible to take a design based on conventional optics which has
stagnated (its optical performance can no longer be improved with Zemax), construct a freeform version and
optimize it with GDRT reaching substantial performance enhancements. This way, GDRT has been tested
for a variety of optical systems in all regimes (reflective, refractive, diffractive) and configurations (on-axis
and off-axis), for wavelengths in the visible as well as thermal infra-red, with varying degrees of complexity;
always with satisfactory results.
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1
INTRODUCTION

1.1. FREEFORM OPTICS

Freeform optics is undoubtedly the cornerstone of this Master Thesis. The concept itself is simple and it
boils down to designing optical systems with surfaces which are not rotationally symmetric. At first glance,
this may not sound like a very innovative idea; but abandoning the assumption of rotational symmetry con-
stitutes a radical change with respect to what has been the design paradigm until quite recently. In fact, the
implications of freeform optics can be rather dramatic and are hindering their application in industries such
as the space industry where technological risks and disruptive innovation are treated with extreme care. In
this section, we will address the potential benefits of freeform optics, give examples of current applications
(both inside and outside the space industry) and analyse the research efforts that have made this technology
a reality.

1.1.1. INTRODUCTION TO FREEFORM OPTICS

Historically, the design of optical systems for imaging applications has followed design principles based on
rotational symmetry for several reasons. First of all, the industry capabilities for manufacturing complex sur-
faces used to be quite limited. Secondly, in those cases were manufacturing was actually feasible, it usually
entailed a large increase in cost per surface which was hard to justify in terms of performance gains. More-
over, surfaces without rotational symmetry impose additional challenges to the assembly, integration and
alignment stages of the instrument, further increasing the project costs and risks. Last but not least, the
achievable optical performance of instruments developed under this simple design philosophy used to be
more than sufficient for most applications, which meant little to no demand existed for complicated designs.

Nevertheless, the constant eagerness to extend the frontiers of scientific knowledge in fields such as as-
tronomy, earth observation, planetary exploration and all space-related disciplines in general, generates an
ever-growing need to develop lightweight solutions for optical instruments with higher overall optical per-
formance and enhanced compactness. In fact, new generation payloads are almost always expected to sub-
stantially outperform their parents which means having to push the technological boundaries further at each
iteration. As a result of this, nowadays it is often inevitable for optical systems to operate in highly folded,
off-axis configurations (see Figure 1.1), breaking the symmetry of the system.

In such circumstances, where components are highly tilted and placed outside the optical axis, it is rea-
sonable to conclude that the assumption of rotational symmetry can no longer provide optical results in
terms of optical performance. The main reason for that is that off-axis systems suffer from tilt-induced opti-
cal aberrations which exhibit complicated field dependencies. Rotationally symmetric surfaces cannot easily
compensate those aberrations and thus, the only solution is to completely abandon the idea of symmetry
and employ freeform optical surfaces.

This is the essence behind the relatively novel design philosophy of freeform optics, a field which has wit-
nessed a fast development in recent years. The key to the success of freeform optics as the new paradigm for
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Figure 1.1: Purely on-axis (left) two-mirror system vs its folded off-axis version

Figure 1.2: Performance vs volume for the Pleiades design, both in conventional and freeform configuration. Source: [1]

optical design is the inherent increase in available degrees of freedom which comes when rotational symme-
try is discarded. With more degrees of freedom to work with, the possibilities for optimizing complex off-axis
systems beyond their current capabilities increases dramatically.

But the potential of freeform optics is not limited to off-axis systems. In fact, even when the system con-
figuration is co-axial and symmetric, the use of rotationally symmetric surfaces usually results in a field mis-
match because the majority of image sensors have rectangular dimensions with a certain aspect ratio [8].
This is because for those systems the optical performance tends to be rotationally symmetric, i.e. the per-
formance contour lines on the image plane are circles, and thus do not match the rectangular shape of the
detector especially if the aspect ratio is high. In such systems, freeform optics offer the possibility of properly
adapting the performance contour lines so that they resemble the shape of the detector.

One of the major strengths of freeform optics is that it can provide higher performance for essentially the
same volume and mass, or the same performance but with a more compact an lightweight design (see Fig-
ure 1.2). In some cases, the use of freeform optics has led to designs which are up 5 times more compact than
those based on traditional surfaces [9]. Other studies have also addressed the possibility of miniaturization
of optical devices by using freeform optics, leading to smaller, thinner and lighter designs [10].

Freeform optics is quickly gaining popularity; a literature survey of the topic shows that research into
freeform optics is dramatically increasing with most effort related to optical design [11]. In fact, freeform
optics has been used in ground-based astronomy applications for at least a decade. Examples include NASA
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Figure 1.3: Optical layout of SCUBA-2. Source: [2]

Infrared Multi-Object Spectrometer (IRMOS) at the Kitt Peak National Observatory [12] for which the use of
freeform optics helped reduce the size by an order of magnitude [13]; as well as the Submillimetre Common-
User Bolometer Array 2 (SCUBA-2) on the James Clerk Maxwell telescope whose scientific requirements and
constraints on the telescope mechanical structure led to a complex optical design using freeform mirrors [14].

Due to the inherent high-risk nature of space endeavours and to the scarcity of opportunities for error
correction, the space industry usually adopts a risk-adverse culture which leaves little freedom for innovation
not strictly needed for mission success [15]. Nevertheless, the extension of freeform optics to space-borne
systems is slowly gaining speed. Most of the relevant players of the space sector have shown their interest for
freeform optics as the key technology for future generations of space instruments.

On the one hand, NASA has already acknowledged the "enormous potential of freeform surfaces for im-
proving optical systems" [16] and is actively involved in gaining expertise in this emerging field, enabling
instruments for CubeSat platforms [17]. In 2016, NASA funding was allocated under the Instrument Incuba-
tor Program for the MiniSpec proposal: Miniaturized Imaging Spectrometer to measure vegetation structure
and function which will utilize freeform optics to enable high spectral and spatial resolution on a very small
bus [18].

On the European side, ESA and the Netherlands Space Office (NSO) are cooperating to deploy a precursor
of the Sentinel-5 mission: the Sentinel-5P satellite whose launch is planned for September 2017 will carry the
TROPOMI payload containing a freeform primary mirror for its telescope. TROPOMI is a major re-design of
OMI by TNO, but with more demanding performance requirements such as a factor of six smaller ground
pixel and signal-to-noise ratios to fit an order of magnitude lower signals [19]. In addition, the German
Aerospace Centre (DLR) has recently developed a new hyperspectral Earth Sensing Imaging Spectrometer
(DESIS) which will be integrated into Multi-User-System for Earth Sensing (MUSES) a platform on-board the
International Space Station (ISS) which can host up to 4 Earth observation instruments. DESIS, which is
scheduled for launch towards the ISS this year, employs freeform surfaces to improve the performance of its
Offner-type spectrometer [4]. These initiatives combined with other recent industry-university partnerships
(like the creation of the Center for Freeform Optics CeFo at the University of Rochester) suggest that freeform
optics will become a mature and widespread technology in future space missions.

https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/iss-muses#launch
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Figure 1.4: CAD render of Sentinel-5p including the TROPOMI payload. Source: [3]

Figure 1.5: Offner-type freeform surface (left) and combined M1-M3 mirrors of the TMA (right) of the DESIS instrument. Source: [4]
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1.1.2. DEVELOPMENT OF FREEFORM OPTICS

The change in design paradigm from conventional optics to the novel freeform optics approach required a
series of developments in all the stages of the design process, ranging from the theoretical framework to the
manufacturing of components and the integration of complete optical payloads. The first and most funda-
mental step was the extension of optical aberration theories (which were built upon the assumptions of ro-
tational symmetry) to general cases of off-axis systems with non-rotationally symmetric surfaces. Extending
the theoretical framework is essential as it allows designers to understand the origin of the aberrations de-
grading the optical performance of these systems and to develop suitable correction strategies. These recent
developments started a decade ago with the work by Thompson when he extended the wave aberration the-
ory to systems which are not rotationally symmetric but employ rotationally symmetric surfaces [20]. Later
on, Fuerschbach built upon those findings and derived the formalism for the aberration theory of systems
based on freeform surfaces, with emphasis on Zernike polynomials [21].

The next step required the development of tools which implement that theoretical knowledge and ex-
ploit it to design freeform systems. This includes constructing a proper framework for modelling the system
and its optical surfaces and to optimize it according to a particular choice of degrees of freedom, metrics
of performance and optimization algorithms. It is in this particular field where the major research effort is
currently being spent; including this particular Master Thesis. The common approach in recent years has
been to re-use the same techniques, although slightly adapted, already present in state-of-the-art software
packages for optical design. But this may not be the optimum procedure as conventional optics and freeform
optics design are substantially different in nature. Novel tools and techniques tailored to the particular needs,
strengths and weaknesses of freeform optics might in the end be needed to exploit the full potential of this
technology.

The final step involved innovations in the stages of the design process where actual freeform components
are involved. Unfortunately, due to their inherent complexity, the beneficial effects of freeform optics usu-
ally come at the cost of introducing new challenges in the manufacturing, metrology, assembly, integration
and alignment. Extensive research has been devoted to develop novels techniques for the manufacturing of
freeform surfaces including diamond turning [22], high-speed micromilling [23] and ultra-precision grind-
ing [24]; and compensation strategies to ensure proper form accuracy [25]. A thorough review of the most
relevant research into manufacturing and measurement of freeform optics can be found in [11].

1.2. PROBLEM DEFINITION

These days most players in the design chain (system engineers, optical designers, AIT engineers, project man-
agers, etc) acknowledge that freeform systems can be superior to conventional designs in terms of perfor-
mance and compactness. But it is no less true that a reluctance to adopt freeform optics exists, when conven-
tional designs can meet the requirements. This reluctance is usually fuelled by widespread beliefs such as:
freeform components are inherently more sensitive to mechanical tolerances, freeform systems are very compli-
cated to integrate and align and the freeform surface departures are so small that they cannot be resolved by
manufacturers amongst others. These assumptions although true up to a certain extent, represent a short-
sighted view of the whole field of freeform optics; and some are refuted in the literature [7] and in this very
report.

It is true that in the past, optical designers were constrained by limitations on the manufacturing capa-
bilities and sometimes requested components beyond what was achievable at that time. But nowadays, with
the aforementioned advances in manufacturing, the tables have turned and those capabilities exceed the
demands imposed by designers; especially when freeform surfaces are involved. Companies with extensive
experience in optical surface manufacturing often argue that their freeform manufacturing capabilities are
widely underused [1], and have to encourage designers to take advantage of them and incorporate freeform
surfaces into their designs.

So the manufacturing capabilities are there; the theoretical framework to deal with freeform systems is
there; but what is currently lacking is specific tools for the design and optimization of those systems. As al-
ready mentioned, current efforts to design freeform optics, what one would call the state-of-the-art approach,
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Figure 1.6: Typical workflow in optical design and optimization. Conventional tools and techniques are compared with those used in
this project (ticked in green)

are based on the use of the same tools (Zemax and CODE V), techniques and design philosophies that were
historically used for conventional systems. Perfectly reasonable, well-performing designs can be achieved
that way and the literature is full of examples ([26], [27], [28], [29]), but in this report we argue that a specific
approach tailored to the particular traits of freeform optics could be used instead, with equally satisfactory
results but without the limitations imposed by the conventional tools.

To properly understand what the essence of this statement is, let us first compare the state-of-the-art
freeform design methodology with the novel approach adopted for this Master Thesis.

1.2.1. STATE-OF-THE-ART VS. NOVEL APPROACH

The natural workflow of the optical design process with conventional tools like Zemax (widely used to de-
sign systems based on rotational symmetric surfaces) can be easily visualized by looking at Figure 1.6. The
designer usually starts with a set of requirements on optical performance (target wavefront error, distortion,
ground resolution...) and some constraints on the physical envelope of the system (maximum volume, type
of surfaces, target focal length...). Based on that information, the designer sets up a concept for the physical
architecture of the optical system and generates a baseline design by defining the geometry of the different
surfaces in the software tool. Then, a merit function is constructed which encodes the performance of the
system as a function of the parameters (degrees of freedom) of the defined geometry. The final step is an
optimization stage which alters the system parameters until a design which complies with the requirements
and constraints is reached. This is in itself an iterative process, and several runs are usually needed before a
proper solution is found.

In what one might call the state-of-the-art in freeform optics design, the stages described above are tack-
led from a perspective which can be summarised into the following key points:

1. Surface representation models usually employ some form of series expansion of global polynomials
such as Zernike, Chebyshev, XY polynomials, etc. This means that a change in one coefficient of the
series expansion affects the complete surface. Therefore, only a small number of coefficients is needed
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to represent the complete surface, keeping the amount of degrees of freedom quite low. Nevertheless,
local and hybrid methods are starting to gain popularity.

2. Conventional tools for standard optical design and their associated techniques. This includes software
tools like Zemax and CODE V, with discrete ray tracing and finite-difference schemes for the compu-
tation of derivatives of merit functions.

3. Gradient-based optimization algorithms as implemented in the aforementioned tools are commonly
used in freeform optimization. Nevertheless, conventional gradient-based algorithms which are suc-
cessful for rotationally symmetric systems with around a dozen degrees of freedom might not perform
well when applied to large-scale optimization of freeform systems. This partially motivates the choice
of global polynomials with few degrees of freedom, as these algorithms tend to suffer from convergence
and speed issues.

In contrast, the novel approach presented in this report introduces some changes into the state-of-the-art
philosophy for freeform optics design which we will justify here.

1. As far as surface representation is concerned, the use of global polynomials can sometimes lead to
several issues. The particular details about this topic are given in subsection 2.7.2 but, in essence, what
we propose is a hybrid model which combines global and local surface representation.

2. With respect to ray tracing and the computation of derivatives we argue that the technique called dif-
ferential ray tracing combined with the use of automatic differentiation tools allows the computation
of derivatives of interest in the optical system.

3. Those derivatives are computed for arbitrary order up to machine precision, without any assumption
about the geometry of the system and without a severe penalty on the amount of degrees of freedom
used.

4. This is made possible by a mathematical framework which takes advantage of Fermat’s path principle
and the Implicit Function Theorem

5. As a result of this, we are able to optimize freeform systems with a large number of degrees of freedom
(100 - 1000) using second order algorithms which exploit Hessian information, leading to improve-
ments in convergence speed.

1.3. RESEARCH QUESTION

Now that the necessary background has been presented, we can announce the research question at the core
of this Master Thesis. The research objective for this thesis project can be summarized as follows:

The research objective is to develop an optimization toolbox based on the concept of differential ray
tracing and automatic differentiation tools for the design and optimization of space instruments based on
freeform optics

Which can be rephrased into the following research question:

Is it possible to improve the optical performance and compactness of space instruments based on freeform
optical surfaces?

In order to properly address the research question, started by tackling a series of relevant subquestions
which provide insight into the complete research problem. Answering these subquestions has led to a satis-
factory answer of the main research question.



8 1. INTRODUCTION

1. Is it possible to apply differential ray tracing to general freeform optics systems using automatic differen-
tiation tools?. The tedious and error-prone derivations of differential ray tracing in the general case for
complex systems constitute the main drawback which currently hinders the application of this tech-
nique to freeform optics. Combining a formulation based on Fermat’s path principle and the Implicit
Function Theorem with the use of automatic differentiation tools we have circumvented this drawback.

2. Can differential ray tracing data be used for the optimization of freeform systems?. Differential ray trac-
ing provides information about the optical system which is of great interest for optimization: how slight
changes in the system parameters or in the ray data affect the propagation of rays through the system.
This allowed us to compute derivative information in the form of Jacobian and Hessians of optical merit
functions and to successfully use them for numerical optimization.

3. What is the best optimization technique to design and optimize freeform systems?. Differential ray trac-
ing gives us access to a gradients, Hessian-vector products and Hessian matrices. Not all optimization
algorithms exploit the same kind of information and thus do not lead to the same results and per-
formance. We have shown that second-order optimization algorithms (trust region) provide the best
balance between convergence speed and final results.

4. Can differential ray tracing be used for other applications of interest in optical design?. The informa-
tion from differential ray tracing is not limited to optimization purposes. Tolerancing, which studies
how optical performance degrades when mechanical tolerances are considered can benefit from the
information from differential ray tracing.

Due to the way they are set up, these questions can be addressed in a consistent and systematic manner.
Throughout this project we have tackled each question with satisfactory results. In a way, each question re-
lates to a specific milestone in the development of GDRT, the toolbox for design and optimization of freeform
optics which constitutes the main outcome of this research project.

1.4. REPORT STRUCTURE

This report has been structured as follows. First of all, in chapter 2 the complete mathematical framework
of this project is thoroughly explained. This includes the technique of differential ray tracing (of paramount
importance for this research), Fermat’s path principle and how the implicit function theorem is used to extract
valuable information from that principle. In addition, automatic differentiation a key tool for this project is
presented; the main outcome of this project Generalized Differential Ray Tracing (GDRT) toolbox for opti-
mization of freeform optics is thoroughly described. Topics such as the mathematical modelling of surfaces
and the definition of merit functions are also covered.

Secondly, in chapter 3 the optimization case studies used to benchmark GDRT and their most relevant
results are presented. We have investigated four optical systems which include: the Cooke triplet a simple
and well-known system based on the use of lenses, an spectrometer which includes a diffraction grating,
a compact telescope based on a monolithic block of infra-red material and a reflective telescope based on
mirrors.

Then, in chapter 4 we present a technique to characterize the merit function landscape and look for ad-
ditional local minima in freeform systems with a large amount of degrees of freedom. This technique takes
advantage of the curvature information encoded in the Hessian matrix (available via GDRT) to generate a
smart set of starting points around a known minimum for subsequent local optimization.

A proof of concept of parallel optimization based on the Alternating Direction Method of Multipliers
(ADMM) is presented in chapter 5. We have shown that the technique of consensus optimization can be
used to exploit some inherent parallelism in the optimization of optical systems.

In chapter 6, a complete tolerance analysis of the freeform spectrometer is provided, showing that it is
possible to construct the optical system and still maintain sufficient levels of performance. Moreover, we
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investigated the sensitivity of freeform systems to mechanical tolerances and compared it to the sensitivity of
a conventional system.

Possible extensions and improvements of GDRT for the future have been identified and analysis in chap-
ter 7, the most important being the application of differential ray tracing to tolerancing.

Finally, chapter 8 summarizes the most relevant findings of this research and draws some conclusions.





2
MATHEMATICAL FRAMEWORK

In this chapter we analyse the key mathematical techniques that make GDRT, the toolbox for the optimization
of freeform systems, possible. The name of GDRT comes from Generalized Differential Ray Tracing, therefore
we will dedicate the first section of this chapter to introduce the notion of differential ray tracing. Soon, it
will become clear that the main goal of this MSc Thesis, the extension of differential ray tracing to a gen-
eral freeform optical system for optimization purposes, can be a challenging task without the use of certain
methods and techniques.

These methods mainly include Fermat’s path principle, Implicit Differentiation and Automatic Differen-
tiation. We will thoroughly describe them in the remaining sections of this chapter. We will conclude by
explaining the part of GDRT which takes care of how freeform surfaces are modeled mathematically and the
merit functions which are differentiated via differential ray tracing to make optimization possible.

2.1. DIFFERENTIAL RAY TRACING

Differential ray tracing is one of the cornerstones of this research project. In order to properly understand
this concept, let us first introduce the idea of standard ray tracing.

2.1.1. INTRODUCTION

Ray tracing, i.e., computing the propagation of a discrete set of rays through a system, is the most common
operation in optical design [30] and it is used extensively in commercial software tools to evaluate optical
performance. The idea behind ray tracing is quite simple: given an input ray (defined by its position in the
pupil plane and its direction as a field vector), one can trace the ray through the system, computing its in-
tersections with the different optical surfaces, in order to determine its output position and direction in the
image plane. Repeat this process for a sufficiently large number of rays and properly aggregate the results and
you will have a realistic evaluation of the performance of your system. Whether you get a measure in terms
of spot size, wavefront error, distortion, Modulation Transfer Function, or other exotic metrics only depends
on the way you post-process your ray tracing results.

Nevertheless, in many situations it is convenient not only to have discrete ray data, but also to have access
to derivatives of traced rays with respect to the construction parameters of the optical system [31]. This is the
main idea behind differential ray tracing , a collection of methods for computing the changes in optical per-
formance metrics as ray data or design parameters are varied continuously [32]; this is of great importance for
optical design, especially for the tolerancing and optimization of optical systems. The essence of differential
ray tracing can be easily understood by looking at Figure 2.1. There we show a ray propagating from A to B
through an optical system consisting of two mirrors (M1 and M2). We define x, y, z as the global coordinates
of the reference system, while ui , vi , wi correspond to generalized local coordinates.

The local coordinates ui , vi define the local reference system centred at surface i and, in the simplest
case, they correspond explicitly to the cartesian local coordinates xl , yl but, in principle, they can adopt

11
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Figure 2.1: Schematic representation of differential ray tracing

any form. The sag equation wi is just a mathematical way of representing the shape of an optical surface
(sphere, paraboloid, plane...) and it is normally parametrized as a function of the generalized local coordi-
nates and some defining parameters wi ≡ wi (ui , vi ,Ψi ). Changes in the geometry of the surface are encoded
via changes in Ψi . An example of Ψi is given below containing a matrix Θ which represents the rotation
matrix needed to transform between the surface local reference frame and the global reference frame, the
curvature of the surface C (needed for the sag equation) and a set of coefficients αk of a polynomial series
expansion which could define a freeform sag equation.

Ψ= {Θ,C ,αk } (2.1)

In its nominal path, the ray intersects the mirrors at the points (u, v) and (u′, v ′) and arrives at the image
plane at point B(x, y) (we directly use x, y coordinates for the image because it is a simple plane so there is
no need for exotic parametrizations). If a certain change is induced in the parameters Ψ1 of the first mirror
M1, this would result in changes in the ray propagation through the system so that this time the ray reaches
the image plane at a slightly different point B∗(x∗, y∗). Differential ray tracing is the technique which studies
how infinitesimal changes in the parameters of the system (a change in the definition of M1, in our case) alter
the propagation of rays through the optical system.

It is easy to see how important this is for optimization purposes. We have already mentioned that the
fundamental building blocks of optical performance evaluation are the ray tracing results (the position of
rays on the image plane). And the main goal of optimization is to find a proper way to modify the parameters
of the system so that the performance is enhanced. Differential ray tracing provides a direct link between
those two things and thus is an extremely valuable technique.

There are basically two approaches to differential ray tracing: finite difference approximation or analytic
methods. The first method is based on introducing small variations in the design parameters and performing
discrete ray tracing. Then, the resulting changes in a performance metric are related to those variations via
a finite difference approximation formula to obtain a numerical approximation of the derivatives. Although
this method is used in many commercial software packages, its precision has been shown to be inadequate
in some cases [33].

Finite difference approximations also require at least two ray tracing operations per design parameter and
can therefore be prohibitively expensive for freeform optics systems when the number of degrees of freedom
becomes large. The second analytic approach is to directly differentiate the algebraic ray tracing equations
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[31], leading to purely analytic expressions that link the changes in system parameters to the behavior of rays.
This method produces exact results, which do not suffer from the inherent inaccuracies of finite differences
and it is the one we have adopted for this research project.

2.1.2. HISTORICAL DEVELOPMENT

Analytic differential ray tracing is not a modern discovery. Early studies in the field were limited to simple
symmetric surfaces and a few design parameters [31]. Later developments extended the formulation to conic
sections and aspheric surfaces ([30], [32], [34]).

In recent years, elaborate methods for complex and more general cases have been presented ([35], [36],
[37],[38]). However, all these studies share a common characteristic: the mathematical framework is derived
by hand and the necessity of keeping it fully analytic gives rise to long and tedious derivations of the differ-
ential ray tracing expressions for complex optical systems. The formulas usually contain a myriad of terms
and the functional relationships between the different variables are in most cases highly non-linear; thus
deriving a closed-form expression for the Jacobian matrix of aberrations is not easily achieved [33]. The com-
putation of the Hessian matrix, of great importance for the convergence of optimization algorithms, is even
more challenging [35].

Consequently, researchers are usually forced to adopt simplifying assumptions regarding the nature of
the system (rotational symmetry, on-axis geometries, or simple surface representation), which hinder the
applicability of differential ray tracing in the most general case. Even the most advanced commercial soft-
ware packages for optical design which have built-in tools for differential ray tracing, are limited to simple
examples [39]. This severely limits the direct applicability of this method to realistic scenarios in modern
optical design where the ever-increasing performance requirements and constraints on optical systems force
designers to come up with solutions of relatively high complexity.

Nowadays, with the onset of freeform optics as the new design paradigm, extending the formalism of
differential ray tracing to these systems with a manual approach is close to being an unfeasible task. This
fundamental drawback is circumvented in GDRT by the use of modern automatic differentiation algorithms
applied to the expressions of differential ray tracing. This approach completely eliminates the necessity of
hand coding the expressions and can handle any type of differentiable surface geometry in an efficient and
accurate way. As with current state-of-the-art analytical differential ray tracing approaches, the resulting
algorithm, which is the baseline of GDRT, only requires a unique ray tracing operation, independent of the
number of design parameters under consideration.

In order to understand how GDRT operates, let us take a closer look at its fundamental building blocks.

2.2. LIGHT PROPAGATION

We begin by presenting the general approach to modeling the propagation of rays through an optical system.
Let a ray represent the propagation of light between two points of the optical system r0 (a point in the object
plane) and k0 (a point on the image plane). LetΨ be a vector which contains the necessary parameters which
define the optical system (radii of curvature, refractive index, freeform modeling parameters, etc).

The propagating ray will intersect each optical surface i at the points Pi which can be defined as follows:

Pi = Ri (Ψ) · {ui , vi , wi }+Oi (Ψ) (2.2)

wi ≡ wi (ui , vi ,Ψ) (2.3)

where Ri (Ψ) and Oi (Ψ) are the rotation matrix and offset vector representing the coordinate changes from
the local reference system of surface i to the global reference system. The variables ui , vi represent the gen-
eralized local coordinates of surface i , which would correspond to local x, y in a commercial optical design
software. They are referred to as local because they are defined on a reference frames which are centred on
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each of the surfaces i . The surface itself is given by the sag equation wi (ui , vi ,Ψ) evaluated at the generalized
coordinates and which depends on the particular choice of system parametersΨ. This surface description is
as general as it can be, and allows for both standard and freeform surfaces.

As a result of this, the propagation of a ray through the optical system is given by the different intersection
with the surfaces, and can be represented by the following function:

f : r0,k0,Ψ→ {{u1, v1}, · · · , {uN , vN }} (2.4)

Which means that for a given ray {r0,k0} and a set of system parametersΨwe associate a set of dependent
variables, the generalized local coordinates {{u1, v1}, · · · , {uN , vN }}, which represent the propagation of that
ray through the system. Once the values of the local coordinates are known, it is possible to transform them
into global coordinates by using (2.2).

In light of this, we can conclude that the main objective of differential ray tracing is to obtain the following
information about the derivatives of those quantities:

Υk = d k {ui , vi }

d{r0,k0,Ψ}k
(2.5)

WhereΥk constitutes a tensor containing the k−th order derivatives of the ray tracing results with respect
to: the ray parameters (like pupil position, field, etc) and the system parameters. The reason why these
derivatives are important is because most metrics of optical performance are defined on the basis of ray
tracing results. Therefore, knowing how the ray tracing results change as a function of changes on the system
parameters and ray data is extremely valuable for optical optimization purposes.

The question of how GDRT gains access to these derivatives is not clear at this moment as ui , vi constitute
ray tracing results which can only be solved via numerical techniques for the vast majority of cases. In otder
to understand how this question can be answered, we need to take a look into Fermat’s path principle and the
Implicit Function Theorem.

2.3. FERMAT’S PATH PRINCIPLE

Discovered by Fermat in 1650, the principle of least time simply states that out of all possible paths that
it might take to get from one point to another, light takes the path which requires the shortest time [40].
A modern generalization of the principle applicable to quantum mechanics states that the path must be
extremum (not necessarily the shortest). Expressed in a mathematical way, the optical path length L travelled
by a ray of light between two points A and B must be an extremum, in the sense of variational calculus:

δL = δ
∫ B

A
nds = 0 (2.6)

In this case, n represents the index of refraction and d s the path length differential. When travelling
through several optical surfaces, with different refractive index, the integral can be broken down into piece-
wise intervals. Assuming perfectly homogeneous media, the rays travel in straight lines and the integral can
be transformed into the standard Euclidean norm between two points. Thus, for a system containing N +2
optical surfaces, with index of refraction ni ,i+1 between surfaces i and i +1, the optical path length can be
written as:

L =
N+1∑
i=0

ni ,i+1‖Pi Pi+1‖ (2.7)
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The application of Fermat’s path principle to Equation (2.7) directly yields that all partial derivatives of L
with respect to the generalized local variables must be equal to zero. Otherwise, the optical path would not
be extremum:

∂L

∂ui
= ∂L

∂vi
= 0 ∀i ∈ [1, · · · , N ] (2.8)

which can be written as

fu,i = ni−1,i
∂‖Pi−1Pi‖

∂ui
+ni ,i+1

∂‖Pi Pi+1‖
∂ui

= 0 (2.9)

fv,i = ni−1,i
∂‖Pi−1Pi‖

∂vi
+ni ,i+1

∂‖Pi Pi+1‖
∂vi

= 0 (2.10)

We will refer to the different terms fu,i , fv,i as the Fermat error terms throughout the remaining sections.
As we are considering N +2 surfaces, the total amount of ui , vi variables is 2(N +2). The system of N equa-
tions defined in Equation (2.8) allows us to directly determine 2N variables, corresponding to the generalized
coordinates of surfaces in between the first and the last. The remaining 4 variables (the pair of coordinates
for the object plane and the image plane, for instance) are fully determined by the parameters of the ray being
traced {r0,k0}.

2.4. IMPLICIT DIFFERENTIATION

We have seen that Fermat’s path principle links the derivatives of the optical length ∂L/∂ui ,∂L/∂vi so that
the light propagation represents a physical system. But this does not provide (at least directly) the relevant
quantities of interest for differential ray tracing ∂{ui , vi }/∂Ψ.

Thankfully, the Implicit Function Theorem [41] allows us to unlock that information in an elegant way.
Consider a generic function f such that f :Rn ×Rm →Rm

f (x, y) = 0 (2.11)

With x ∈Rn the dependent variables and y ∈Rm the independent variables. Under mild assumptions such
as that the function is continuous and differentiable around the neighbourhood of a solution (x∗, y∗), and
that the partial Jacobian ∇x f (x∗, y∗) is non-singular, the Implicit Function Theorem states that:

"An implicit function x = g (y) exists around y∗ such that is continuous and differentiable with respect to
u according to":

∇y g (y) =−∇x f (g (y), y)−1 ·∇y f (g (y), y) (2.12)

The immediate consequence of the theorem is that, provided that one has access to the system f , one
can directly compute the derivatives of the dependent variables x with respect to the independent variables
y without having to solve the system and without knowing the actual implicit dependency x = g (y). More-
over, the theorem can be extended to compute derivatives of arbitrary order by applying the theorem to the
previous result ∇y g (y). How this theorem can be applied to Fermat’s path principle will be clear in a moment.

Let us recall the set of 2N Fermat error terms fu,i , fv,i . These terms, constitute a system equivalent to that
of the generic function f which depends both on the generalized local coordinates {ui , vi } (consider them as
the dependent variables) and the system parametersΨwhich act as independent variables. Consequently, the
Implicit Function Theorem can be applied to compute ∂{ui , vi }/∂Ψ. We will illustrate the whole procedure
below, to show that it is in accordance with the general formulation of the theorem.
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For any system parameterΨ j each Fermat error term must fulfill:

d fu,i

dΨ j
= d fv,i

dΨ j
= 0 ∀i ∈ [1, · · · , N ] (2.13)

Which can be expanded according to the chain rule, for the fu,i terms

d fu,i

dΨ j
= ∂ fu,i

∂Ψ j
+

N∑
k=0

∂ fu,i

∂uk

∂uk

∂Ψ j
+

N∑
k=0

∂ fu,i

∂vk

∂vk

∂Ψ j
= 0 (2.14)

With an analogous expression for the fv,i terms. The terms ∂ fu,i /∂uk in Equation (2.14) represent deriva-
tives of the Fermat error terms with respect to generalized coordinates of the surfaces, which mainly contain
derivatives of the surface sag wk (uk , vk ,Ψ) and of the coordinate transformations Rk (Ψ),Ok (Ψ). In contrast,
the terms ∂ fu,i /∂Ψ j are derivatives of the Fermat error terms with respect to system parameters such as the
radius of curvature or the freeform model parameters.

The equations from (2.14) can be arranged into a linear system of equations of the form Ax = b



∂ fu,1

∂u1
· · · ∂ fu,1

∂uk
· · · ∂ fu,1

∂uN
...

. . .
...

. . .
...

∂ fu,i

∂u1
· · · ∂ fu,i

∂uk
· · · ∂ fu,i

∂uN
...

. . .
...

. . .
...

∂ fu,N

∂u1
· · · ∂ fu,N

∂uk
· · · ∂ fu,N

∂uN





∂u1

∂Ψ j
...

∂uk

∂Ψ j
...

∂uN

∂Ψ j


=−



∂ fu,i

∂Ψ j
...

∂ fu,i

∂Ψ j
...

∂ fu,i

∂Ψ j


(2.15)

For the sake of simplicity, we only show the derivation for the fu,i , but the extended form would include
the fv,i terms as well. The system of equations f resulting from the application of Fermat’s path principle
is something which is readily available for any system once it has been defined. Therefore, GDRT has full
access to it and could compute both Jacobians with respect to the generalized coordinates and the system
parameters.

Consequently, by direct application of the Implicit Function Theorem, GDRT can unlock the derivatives
of the ray tracing results with respect to the parameters of the optical system ∂{ui , vi }/∂Ψ j for any surface
of interest i and any chosen parameter j . This is by definition, the outcome of a differential ray tracing
calculation.

To summarize, the application of Fermat’s path principle to a generic optical system gives rise to a sys-
tem of equations which links the different generalized local coordinates so that the ray propagation remains
physically meaningful. In addition, the Implicit Function Theorem can be applied to that system of equations
to automatically compute differential ray tracing information, in the form of derivatives of the ray tracing re-
sults with respect to system parameters. The formulation presented in this chapter, has been derived without
making any assumptions regarding the number and type of optical surfaces or the parameters used to define
the system; and thus is completely general and applicable to freeform systems of arbitrary complexity.

The only issue here is that the aforementioned Jacobians contain extremely complicated dependencies of
the surface sags, coordinate transformation, ray trace results and systems parameters; and therefore cannot
be derived by hand (this will become clear in the following section). It is at this point, that the use of Automatic
Differentiation tools becomes a necessity. But before analysing the importance of Automatic Differentiation,
let us first introduce the concept of bilevel optimization and how it relates to the Implicit Function Theorem
and the problem of optical design.
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2.4.1. BILEVEL OPTIMIZATION AND THE OPTICAL DESIGN PROBLEM

The way we exploit Fermat’s system of equations and use the Implicit Function Theorem to unlock derivatives
of optical merit functions is basically equivalent to a bilevel optimization problem [42]: a special kind of hi-
erarchical problem where an inner optimization task (lower level) is embedded within an outer optimization
(upper level). Its mathematical formulation adopts the following form:

Φ(x) = argmin
y

(
f (x, y) : g (x, y) ≤ 0

)
(2.16)

x = argmin
x

(
F (x, y) : y ∈Φ(x)

)
(2.17)

The lower level problem shown in (2.16) represents a parametric optimization which determines the con-
straints y =Φ(x) which apply to the upper level problem shown in (2.17). The goal is to find the value x which
minimizes the merit function F (x, y) knowing that y will depend on the specific choice x, a requirement
which makes bilevel optimization problems more difficult to solve.

Another way to understand the essence of bilevel optimization is to look at it from the perspective of
Stackelberg games: a type of strategic game in economics in which a leader makes the first move and the
follower decides its move based upon the result of the leader’s action [43]. In this optical game, the leader is in
charge of deciding the state vector x representing the parameters of the optical system, while the follower can
be regarded as the one in charge of the ray tracing through the optical system, in this case y . The leader starts
by making a move, i.e. by selecting a possible state x0 for optimization. Based on that decision the follower
computes the solution of the ray tracing problem y0 =Φ(x0) in such a way that the Fermat error terms f (x, y)
are minimized.

At this point, with the information about the follower’s move, the leader can ponder over his next move, in
other words, he can evaluate the merit function F (x0, y0) which defines his strategy and decide which action
x1 to take next. The goal of the leader is to carefully decide which actions to take (how to adapt the optical
system) taking into account the fact that the response of the follower will depend on his own choices (the ray
tracing results which define performance directly depend on the leader’s choice of optical system).

The application of the Implicit Function Theorem to obtain information regarding how the ray tracing
results change as a function of the state vector (the ∂y(x)/∂x derivatives), is just a way for the leader to gain the
knowledge of how his actions will affect the decision of his follower and exploit that knowledge to devise the
best possible strategy. Here, the term implicit precisely represents the situation we are dealing with because
the follower’s response (which is ultimately affecting the success or failure of the leader) implicitly depends
on the actions taken by the leader. The elegance and power of the Implicit Function Theorem is that it allows
the leader to know how his actions would impact the outcome even before deciding which action to take. In
other words, without implicit differentiation, the leader has no way of inferring the follower’s response before
actually making his decision and registering the response, and therefore the optimization problem would
become extremely challenging.

2.5. AUTOMATIC DIFFERENTIATION

The use of automatic differentiation techniques to compute the derivatives which appear in differential ray
tracing calculations in a precise and efficient way is one of the key features of GDRT. But before analysing in
detail how we apply such techniques, we will motivate with a simple example why automatic differentiation
is so important for this project.

2.5.1. MOTIVATION

Once all the necessary mathematical framework for generalized differential ray tracing from the previous
sections has been set up, one could argue that a direct approach of hand-coding all the derivatives and func-
tional relationships could be used to construct GDRT. In principle, such an approach would render the use of
automatic differentiation unnecessary as all the differentiation would be taken care by the user.
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However, it is easy to show that for the most general case of an optical system of moderate complexity,
this can quickly become an overwhelming task. The amount of dependencies between the different compo-
nents of the mathematical framework leads to chain rule-based derivations which are extremely tedious to
construct and more importantly, extraordinarily difficult to debug.

To illustrate this, let us consider a single Fermat error term fu,i for a generic surface i . We will begin by
analysing in detail what is needed to construct fu,i . Later on, we will apply implicit differentiation to see what
additional dependencies are required for the complete differential ray tracing. If we recall Equation (2.9), the
Fermat term has the following structure:

fu,i = ni−1,i
∂‖Pi−1Pi‖

∂ui
+ni ,i+1

∂‖Pi Pi+1‖
∂ui

= 0 (2.18)

fu,i mainly contains derivatives of an Euclidean norm between pairs of points corresponding to the inter-
section with the previous surface Pi−1, the surface of interest Pi and the following surface Pi+1. One should
note that in order to compute the norm properly, all three points must be expressed in the global coordinate
system. The first term in the right-hand side can be expanded as:

∂‖Pi−1Pi‖
∂ui

= ∂
√

(xi −xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2

∂ui
(2.19)

Recalling Equation (2.2), each point in global coordinates depends on the generalized local coordinates
and the reference transformation such that:

(xi , yi , zi ) = Ri (Ψ) · {ui , vi , wi }+Oi (Ψ) (2.20)

wi ≡ wi (ui , vi ,Ψ) (2.21)

After expanding Equation (2.19), we reach

∂‖Pi−1Pi‖
∂ui

= 1

‖Pi−1Pi‖
[

2(xi −xi−1)
∂xi

∂ui
+2(yi − yi−1)

∂yi

∂ui
+2(zi − zi−1)

∂zi

∂ui

]
(2.22)

Due to the dependency of wi (ui , vi ,Ψ), the term
∂zi

∂ui
must be further expanded to:

∂zi

∂ui
= ∂zi

∂wi

∂wi

∂ui
(2.23)

Consequently, just to define half of a single Fermat term
∂‖Pi−1Pi‖

∂ui
term, one would need to provide:

1. Derivatives of the global coordinates with respect to local generalized coordinates
∂xi

∂ui
,
∂xi

∂ui
,
∂zi

∂wi
which will depend on the reference transformations for each surface Ri and on the system parame-
tersΨ.

2. Derivatives of the sag equation with respect to local generalized coordinates
∂wi

∂ui
. When using a com-

bination of standard surfaces and freeform departures, these derivatives will expand into additional
terms. These derivatives will carry dependencies on the local coordinates and the system parameters.
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Up to here the derivations are tedious but doable. For a system with N +2 surfaces, one would have to set
up 2N Fermat terms in the form of pairs fu,i , fv,i . Each will contain two terms like ∂‖Pi−1Pi‖/∂ui , which in
turn contain 4 distinct derivatives.

The real issue comes when implicit differentiation is applied. Let us begin with the Jacobian ∇u f from
Equation (2.15). This requires us to differentiate each Fermat error term fu,i , fv,i once again with respect to
the generalized coordinates. A quick look at Equation (2.22) tells us that this will give rise to several situations:

When differentiating first with respect to ui and then with respect to u j 6=i , cross terms like the following
will appear:

∂

(
2(xi −xi−1)

∂xi

∂ui

)
∂ui−1

(2.24)

∂

(
2(zi − zi−1)

∂zi

∂wi

∂wi

∂ui

)
∂ui−1

(2.25)

When differentiating first with respect to ui and then with respect to vi , cross terms like the following will
appear:

∂

(
2(xi −xi−1)

∂xi

∂ui

)
∂vi

(2.26)

∂

(
2(zi − zi−1)

∂zi

∂wi

∂wi

∂ui

)
∂vi

(2.27)

Which will include, among other terms, cross derivatives of the sag equations
∂2wi

∂ui∂vi
.

When differentiating twice with respect to ui or vi , a similar situation will be observed, this time with

second derivatives
∂2wi

∂u2
i

And we have not even mentioned the derivatives of the 1/‖Pi−1Pi‖ which will need to be added when

expanding the terms
∂2‖Pi−1Pi‖
∂u j ,∂uk

. One can easily understand that the expressions will grow to enormous

magnitude after all the chain rule applications. The possibility of successfully hand coding these relationships
is close to negligible.

What’s more, so far we have only analysed the derivatives with respect to local generalized coordinates
ui or vi ; but there is whole family of derivatives with respect to the system parameters Ψ. If we consider
now the Jacobian ∇Ψ f , we would need to compute the derivatives of the whole set of 2N Fermat terms with
respect to each parameter Ψ j in our system definition Ψ. This set can contain as many types of variables
as: transformation related (distances, tilts, decenters...), standard surface information (curvature, conic con-
stant, groove frequency of diffraction gratings), freeform surface parameters, etc. Therefore, a wide variety of
derivative terms will appear.

The derivative of the Fermat term with respect toΨ j takes the following form:

∂2‖Pi−1Pi‖
∂ui∂Ψ j

=
∂

(
1

‖Pi−1Pi‖
[2(xi −xi−1)

∂xi

∂ui
+2(yi − yi−1)

∂yi

∂ui
+2(zi − zi−1)

∂zi

∂wi

∂wi

∂ui
]

)
∂Ψ j

(2.28)
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Imagine thatΨ j represents a transformation-related parameter (the tilt X of surface i for instance). This

will be included in the transformation matrix Ri (Ψ), which appears in derivatives of the type
∂xi

∂ui
. Therefore,

Equation (2.28) will contain terms such as:

1.
∂‖Pi−1Pi‖

∂Ψ j
which will consist of terms of the form

∂xi

∂Ψ j
which depend on the transformation matrix Ri

2.
∂2xi

∂ui∂Ψ j
which contain the derivatives of the transformation matrix with respect toΨ j .

Now let’s assume Ψk 6= j corresponds to surface-related parameters, like the curvature of a conic surface.
Then Equation (2.28) will give rise to terms like:

∂

(
2(zi − zi−1)

∂zi

∂wi

∂wi

∂ui

)
∂Ψk

(2.29)

After applying the chain rule, we will find terms of the form:

1.
∂wi

∂Ψk
first derivatives of the sag equation

2.
∂2wi

∂ui∂Ψk
cross-derivatives of the sag equation with respect to the local coordinates and the surface

parameter

3.
∂zi

∂Ψk

∂zi

∂wi

∂wi

∂ui
combinations of derivatives of the global coordinates with respect to system parameters,

derivatives of global coordinates with respect to local coordinates (related to coordinate transforma-
tions) and derivatives of the sag equation

Let us recall that this differential ray tracing calculation has been done for first derivatives, i.e. it only
provides useful information for gradient-based optimization. This already required computing an extensive
list of first and second order derivatives of very different nature and use the chain rule to combine them into
immense expressions. If one wants to exploit Hessian information, the complete derivation presented in this
section needs to be taken one step further, which means additional complexity in the form of third order
derivatives of sag equations and the like.

We can thus conclude that although the general framework of differential ray tracing adopts a fairly simple
form, the actual implementation of all the necessary expressions for a realistic optical system is a gargantuan
task in itself. Hand-crafting the propagation of all the dependencies using the chain rule without making a
mistake is almost impossible, and debugging a code of such scale and complexity would take an unreasonable
amount of it.

There is actually no real gain on constructing these expressions by hand, except that of mathematical
elegance. All these derivations are simply means to a more important end: the results of differential ray
tracing to be used during optimization. Therefore, how we reach that end is of no concern to us so long as we
obtain the correct result in the least amount of time. That is the main reason why automatic differentiation
algorithms are so important to GDRT, as they automatically take care of propagating the derivatives according
to the chain rule.
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2.5.2. THE CONCEPT OF AUTOMATIC DIFFERENTIATION

Automatic differentiation (AD), also known as algorithmic differentiation, is a set of computational tools
which are primarily based on the mechanical application of the chain rule to calculate the derivatives of
functions given in the form of computer programs. AD tools take advantage of the fact that all computer pro-
grams, no matter their complexity, boil down to a sequence of basic arithmetic operations (addition, prod-
uct), evaluations of elementary functions whose derivatives are known (such as exp(·)) and some flow control
operations (if, else, etc). By means of repeatedly applying the chain rule of differential calculus to all oper-
ations and functions inside the computer program, AD tools can compute any derivative of arbitrary order;
and more importantly, the result is accurate up to machine precision. This task, which can be extremely time-
consuming and error-prone if done by human means, instantly becomes trivial when AD tools are employed.

2.5.3. DIFFERENCES WITH symbolic AND numerical DIFFERENTIATION

Automatic differentiation is often mistaken with other techniques for the evaluation of derivatives. It is im-
portant to understand that there are fundamental differences between these methods and automatic differ-
entiation

Symbolic differentiation.
This technique is probably the one closest to automatic differentiation and it is implemented by well-

known computational tools such as Maple and Mathematica. The main difference between the two tech-
niques is that symbolic differentiation treats the algebraic expression to be differentiated as a tree (a graph
in which two nodes are connected only by one path), whereas automatic differentiation is based on acyclic
graphs (which allow for two nodes to be connected by several paths. In addition, symbolic differentiation
constructs an extra tree which represents the computation of the derivative, while automatic differentiation
extends the function graph so that it can compute the derivative as well.

Consequently, the symbolic approach can cause the same sub-expression to appear in several places of
the constructed derivative. Moreover, the length of the derivative expression tends to increase rapidly with
the number of independent variables of the function, potentially leading to exponentially large expression
which take unreasonable time to evaluate. In contrast, due to the aforementioned characteristics, automatic
differentiation retains and shares intermediate results between the function and its derivative, leading to
substantial simplification and a more efficient use of resources.

Another important point is that symbolic differentiation requires an algebraic expression of the function
whereas automatic differentiation can easily cope with functions which are defined in the form of computa-
tional algorithms containing exotic features like loops and branches. Let us recall that the ray tracing results
usually come in the form of numerical solutions of non-linear equations and thus do not have an algebraic
form.

Numerical differentiation.
It is easy to see that numerical differentiation (probably the most popular technique for evaluating deriva-

tives) and automatic differentiation are completely different things. First of all, numerical differentiation only
provides numerical approximations of the derivatives, computed via a truncated series expansion, a finite dif-
ference scheme (such as the one shown below), while the method of automatic differentiation is entirely based
on analytic expressions and chain rule operations.

f (x +h) = f (x)+ ∂ f

∂x
h +O (h2) (2.30)

∂ f

∂x
' f (x +h)− f (x)

h
(2.31)

Numerical differentiation is actually quite powerful and widely used by the scientific community, but
it suffers from some inherent disadvantages; the most important being the fact that accuracy of the result
depends on a proper choice of the step size h. In fact, the belief that an arbitrary reduction of h will enhance
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Figure 2.2: Computational graph of the function f (x1, x2) = sin(x1)+x1x2. The flowchart for reverse mode automatic differentiation is
shown in blue

the accuracy of the finite difference scheme indefinitely is a common misconception which goes against the
basics of floating-point arithmetic.

It is important to note that the use of automatic differentiation for calculating derivatives is not unknown
of in optical design. Some years ago a study showed that automatic differentiation can be faster and more
accurate than numerical differentiation, and particularly well-suited for freeform optics [44]. Besides, the
study stressed that despite of its superiority, automatic differentiation is yet disregarded for this applications.

2.5.4. COMPUTATIONAL GRAPH AND AD MODES

It was already mentioned that automatic differentiation treats the function as a computational graph. Now
we will thoroughly explain what this means and how it relates to the two main modes of automatic differ-
entiation: forward and reverse mode. Not to be mistaken with forward and backward differences of finite
difference schemes.

Let us consider the function f (x1, x2) = sin(x1)+x1x2. As shown in Figure 2.2 we can represent the function
as an acyclic graph in which each operation is a node, which can have multiple inputs, and outputs can be
used more than once. This is a great of visualizing how the function is mainly based on simple operations
(the nodes) and how the computational flow goes. But how is the derivative constructed with automatic
differentiation?

There are two major approaches in automatic differentiation. Forward mode starts at the fundamental
part of the computational graph (the independent variables x1, x2 and works its way forward through the
graph by constructing derivatives of intermediate variables in terms of their parents. This is the most intuitive
way of thinking about the derivative, and it is how most of the people would apply the chain rule.

In contrast, reverse mode starts at the end of the graph and propagates the derivatives of the final result
with respect to intermediate quantities, working its way back to the inputs.

The main difference between the two methods lies on the computational cost. Forward mode run time
complexity scales linearly with the number of independent variables. Reverse mode scales linearly with the
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number of operations in the function. Consequently, when dealing with scalar functions with many inputs,
the computation of gradients is more efficient via reverse mode differentiation.

To properly understand how the flow of reverse mode differentiation works, let us examine the example

function in detail, using Figure 2.2 as a reference. We will refer to the quantities
∂ f

∂wi
as gradients and to

∂wi

∂w j
as adjoints. Starting from the result, we follow the flow backwards (from (a) to (f )) constructing the gradients
of the function with the help of the adjoints:

(a)
∂ f

∂w3
= 1 (2.32)

(b)
∂w3

∂w2
= 1

∂ f

∂w2
= ∂ f

∂w3

∂w3

∂w2
= 1 ·1 (2.33)

(c)
∂w3

∂w1
= 1

∂ f

∂w1
= ∂ f

∂w3

∂w3

∂w1
= 1 ·1 (2.34)

(d)
∂w1

∂x1
= cos(x1) (2.35)

(e)
∂w2

∂x1
= x2

∂ f

∂x1
= ∂ f

∂w1

∂w1

∂x1
+ ∂ f

∂w2

∂w2

∂x1
= 1 ·cos(x1)+1 · x2 (2.36)

( f )
∂w2

∂x2
= x1

∂ f

∂x2
= ∂ f

∂w1

∂w1

∂x2
+ ∂ f

∂w2

∂w2

∂x2
= 1 ·0+1 · x1 (2.37)

Judging from the expressions above it is clear why this method is called reverse mode. The natural thing

for a person to do would have been to take the function f = w1 + w2, directly write the chain rule
∂ f

∂x1
=

∂ f

∂w1

∂w1

∂x1
+ ∂ f

∂w2

∂w2

∂x1
and then find the particular subexpressions. Instead reverse mode starts from the small

and simple subexpressions and goes back until it reaches the complete gradient.

2.5.5. AUTOMATIC DIFFERENTIATION IN GDRT - THEANO

The usual case for optical design is to have a single scalar merit function f which contains all the perfor-
mance metrics and constraints for the optical system; which depends on a set of degrees of freedom. For the
particular case of GDRT, this set of degrees of freedom can be quite large, meaning that we have to deal with
a scalar function with many inputs. Consequently, reverse mode (which we have already said it works well
with many inputs and few outputs) is the best choice of automatic differentiation techniques.

Nowadays, there are many libraries available for automatic differentiation purposes, some specifically
written in Python and others written in languages like C and C++ but well-prepared for Python use. To cite
some examples: CppAD [45], Tensorflow [46] and Theano ([47]). Broadly speaking, the two main differences
between purely Python-based tools and C or C++ tools for AD are speed and ease-of-use. Low-level language
based tools like CppAD obviously outperform Python tools in terms of computational speed, but tend to lack
the user-friendliness and familiarity that makes Python so suitable for fast prototyping and experimentation.
Therefore, for GDRT which is already conceived as a Python toolbox, we decided to stick to AD tools with
strong Python features, in this case Theano. This allowed for fast development and facilitated the integration
of the AD functionalities with the rest of the GDRT modules.

Here, we present an example of derivative computation in Theano for a simple function, to quickly visu-
alize the fundamental ideas behind this tool. The idea is to first define a Theano variable x and the expression
for the function we want to derive y .

y =
√

x2 +1 (2.38)
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d y

d x
= xp

x2 +1
(2.39)

The call to Theano.tensor.grad takes care of computing the gradient and the theano.function call con-
structs a function which receives the value of the input x and returns the value of the gradient. For this simple
example the derivative is straightforward and we can check the Theano result against its true value

import numpy as np
import theano
import theano.tensor as T

x = T.dscalar(’x’)
y = T.sqrt(x**2 + 1)
grad = T.grad(y, x)
f_grad = theano.function([x], grad)

f_grad(1)
>>> 0.70710678118654746

1./np.sqrt(2.)
>>> 0.70710678118654746

2.6. GDRT TOOLBOX

To further illustrate how GDRT is constructed and how this approach to freeform optics design differs from
the state-of-the-art methods, we will present a detailed description of the structure and components of GDRT.
The toolbox has been developed and expanded almost from scratch for this project, including new function-
alities as the project progressed. The main GDRT module follows a modular structure composed of different
Python Objects, each carrying out a specific set of tasks, which can be roughly classified into the following
categories:

1. Surface: these are Python Objects in charge of the surface description. They include generic surface
models like standard conic and biconic surfaces, planes and different kinds of freeform surfaces, as well
as models for special surfaces like the object, entrance pupil and image plane.

2. Field: in charge of the reference system transformations and the normal vector of the Surface objects.

3. Fermat Solver: its main function is to set up the Fermat system of equations containing all the Fermat
error terms and solving it.

4. Ray Tracer: takes care of all standard ray tracing operations between the different surfaces. It takes
advantage of the already defined Fermat error terms to construct a ’Fermat-based Ray Tracer’ (this idea
is explained in the following section).

5. Implicit: takes care of the direct application of the Implicit Function Theorem to unlock the results of
differential ray tracing.

6. Optimizer: in charge of all optimization related tasks such as merit function definition, handling of
degrees of freedom and the computation of derivatives (gradient, Hessian, Hessian-vector product)

The GDRT toolbox also contains a set of auxiliary scripts and functions which take care of tasks like: solv-
ing large batches of linear systems efficiently, vectorizing important operations, definition of physical pa-
rameters (refractive index of materials as a function of wavelength), generating pupil-field-wavelength ray
sampling schemes, etc.
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Figure 2.3: Work-flow diagram of GDRT

The general work-flow for defining and optimizing a freeform optical system with GDRT, and the inter-
faces with Zemax are shown in Figure 2.3. The different stages of the process can be summarized as follows:

1. The process starts with an optimization based on standard rotationally symmetric surfaces done in
Zemax. Once the optimizer stagnates and can no longer improve the performance, the system is trans-
lated into GDRT.

2. A GDRT ray tracing is done to validate the Python-based system definition. The results of the ray trace
are compared to those given by the Zemax ray tracing.

3. Once the system definition is validated, the merit function is defined in Theano as a function of the ray
tracing variables and the system parameters.

4. The framework of differential ray tracing is applied to obtain the derivatives of the merit function with
respect to system parameters. Theano automatically takes care of handling all chain-rule propagations.

5. Numerical optimization is done based on the merit function and derivative information to obtain a
freeform system with enhanced performance.

6. Finally, GDRT uses the final system parameters to generate surface files compatible with Zemax. These
files are loaded into Zemax and the optical performance is compared to that of the initial non-freeform
system.

The validation of the imported initial system based on ray tracing cross-check ensures that the GDRT
system and the Fermat ray tracer are properly set up and mimic the operation of Zemax. After that, GDRT
is capable of operating autonomously without depending on Zemax. This is a very important feature as the
import-export operations with Zemax are remarkably slow and should be kept to a minimum.

The fact that the final freeform system is exported to Zemax and that all performance evaluations are
done using that state-of-the-art package ensures the validity and reproducibility of the toolbox results. GDRT
is essentially in charge of optimization tasks. Once the optimization has finished, the final results of that
optimization are judged from the perspective of an independently validated software tool like Zemax.
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2.6.1. GDRT RAY TRACING

It is important to note that the ray tracing performed by Ray Tracer inside GDRT is substantially different to
the conventional ray tracing which Zemax uses. The usual approach to ray tracing is to solve the equation
for the intersection between a propagating ray (defined by a point P and a vector ŵ) and a surface of interest
(defined by its equation z ≡ z(u, v,T ), which depends on the local coordinates (u, v) and the local-global
transformation T ). In other words, the intersection I (u, v) must be aligned with P along the ray direction and
fulfil the surface equation:

P +µŵ = z(I ,T ) (2.40)

Once the intersection I has been computed for one surface, Snell’s law can be applied to calculate the
outgoing direction, which involves the index of refraction ni n , nout as well as the surface normal N̂ . Then,
the previous operation is repeated but this time I becomes the new P and the computed direction becomes
ŵ . By sequentially performing these steps one can calculate the complete set of intersections, i.e. the ray
tracing results.

But GDRT uses a slightly unconventional form of ray tracing in order to exploit some of its key features.
The underlying physical principle behind computing the intersections and applying Snell’s law is that the ray
tracing must always fulfil Fermat’s path principle; i.e. the resulting paths computed with the conventional
ray tracing are extremal paths. Therefore, the Fermat error terms representing the partial derivatives of the
optical path length as defined earlier in (2.9) must vanish at the physical solution of a ray tracing operation.
Any deviation from that path results in non-zero values of the terms.

As GDRT already employs the Fermat error terms to construct the differential ray tracing framework, one
can easily recycle those expressions to construct a "Fermat ray tracing" based on the minimization of vectorial
function f ≡ ( fu,i , fv,i ). As the expressions fu,i and fv,i constitute non-linear functions of the local coordinates
(u, v), one must start by providing a guess for the intersection I (u0, v0) and apply an iterative method, such
as a non-linear least squares to find the value which minimizes the Fermat error terms. To further illustrate
the differences between the two approach, Figure 2.4 is shown.

The main advantage of this type of ray tracing is that it efficiently uses information which was already
needed in GDRT and avoids the development of a completely new ray tracing module. Nevertheless, it has
several drawbacks; the most important being that it is not as numerically robust as a conventional ray tracing
(an issue which probably could be improved by refining the choice of the iterative method used to minimize
the terms).

2.7. SURFACE MODELLING
In this section we present the different types of surfaces implemented in GDRT. It is important to note that
the kind of surface used determines what type of optical system we are dealing with, and thus influences
how Fermat’s path principle is applied. Below, we analyse how the principle applies to each particular type of
system.

2.7.1. FERMAT’S PATH PRINCIPLE BY TYPE OF SURFACE

Reflective systems. For purely reflective systems which only consider mirrors, like a TMA telescope, the for-
mulation of Fermat’s path principle adopts the simplest form. The optical path length OP between two points
A and B going through an reflective optical element can be written as:

OP = n0|AP |+n1|PB | (2.41)

For the point P to be an extremum, the following conditions on the derivatives of the optical path length
must be fulfilled
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Figure 2.4: A comparison between conventional ray tracing and GDRT ray tracing

∂OP

∂x
= ∂OP

∂y
= 0 (2.42)

Refractive systems. The situation is slightly different when refractive elements are involved. This time,
the dependency of the index of refraction n with the wavelength λ must be taken into account; leading to:

OP = n0(λ)|AP |+n1(λ)|PB | (2.43)

Consequently, when tracing rays of different wavelengths, Fermat’s path principle will give different re-
sults.

Diffractive systems. If the system of interest contains a diffractive element such as a diffraction grating,
Fermat’s path principle requires an additional modification to account for the grating effect. Diffraction grat-
ings can be considered as optical elements which introduce an increment in the phase of the propagating
ray depending on its wavelength, as given by the grating phase function Φ. That increment in phase can be
translated into optical path and added to Fermat’s path principle, given rise to:

OP = n0|AP |+n1|PB |+mλΦ (2.44)

Where m is the diffraction order being considered andΦ(x, y) is the phase function of the grating. In con-
ventional diffraction gratings containing straight lines constantly spaced along the x-axis, the phase function
has the following form:

Φ(x, y) = a0x (2.45)
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Where a0 is the so-called line density, measured in lines per mm.

General systems. Consider a system which contains optical elements of the three types mentioned above:
refractive, reflective and diffractive. Such a system could be an spectrometer containing several mirrors, a
prism and a diffraction grating. The formulation of Fermat’s path principle in this case, adopts the most
general form possible:

OP = n0(λ)|AP |+n1(λ)|PB |+mλΦ (2.46)

After applying the necessary conditions, we reach:

∂OP

∂x
= n0(λ)

∂|AP |
∂x

+n1(λ)
∂|PB |
∂x

+mλ
∂Φ

∂x
= 0 (2.47)

∂OP

∂y
= n0(λ)

∂|AP |
∂y

+n1(λ)
∂|PB |
∂y

+mλ
∂Φ

∂y
= 0 (2.48)

2.7.2. FREEFORM SURFACE MODELLING

The way we operate in this research project is by adding some sort of freeform model on top of standard
surfaces, just like Zemax does. The modelling of surfaces for freeform optics is a complicated matter in itself.
There is a wide variety of mathematical models to choose from, each with its own strengths and weaknesses.
All freeform models can be classified according to two categories:

1. Global: these are models whose influence is global, meaning that a change in one parameter of the
model will affect the complete domain of the surface. Examples from this category are: Zernike poly-
nomials [48], XY polynomials [49], Q polynomials [50] or Chebyshev polynomials [51].

2. Local: these models only influence the surface locally, so that a change in one parameter affects a
specific region of the domain. Examples of this type of model are: Splines [52], Radial Basis Functions
[53], etc.

The particular choice of which models to use depends on a range of factors:

1. The strengths and weaknesses of the model. Global and local surface representations are completely
different, and each has its own advantages. The designer must take that into consideration and choose
the model which is more suitable for the application of interest.

2. General characteristics of the optical system. For instance: the type of instrument, on-axis or off-axis,
the existence of symmetry...

3. The type of optical elements it contains. Is it a monolithic block of infrared material? Does it use mir-
rors, lenses or both? Does it contain a diffraction grating? Depending on the answer to these questions
certain freeform models may be more suitable.

4. The demands on performance. This is certainly a key factor. In some cases, the system just needs a
slight improvement and a very simple soft-freeform model with just a few terms (e.g. some astigma-
tism, coma and spherical aberration) and very mild departures are sufficient. In other situations, the
demands on performance are so strict that only a hard-freeform freeform approach which changes the
system radically can lead to compliance with the specifications.

5. The amount of degrees of freedom your optimizer can handle. More often than not this becomes
the major limitation, usually because conventional optimization algorithms tend to scale poorly with
dimensionality.
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6. The availability of the models. This may seem trivial but not all freeform models are implemented in
state-of-the-art optical design packages. Therefore, sometimes designers are forced to "work with what
they have" and do have little or no choice as far as the model is concerned. The obvious alternative is
to implement your own models but that takes significant time and effort.

7. The designer’s personal preferences may also play a role. There is no definite answer to which freeform
model is best so sometimes designers just go with what they think is better, or what they are more
comfortable with.

Global models have the main advantage of only requiring a small number of parameters to completely
reproduce a complex surface, thanks to their global behaviour; whereas local models usually require a higher
amount of parameters to retrieve the same surface. Nevertheless, local models have the advantage of allowing
the user to model localized effects which global models can simply not reproduce.

Some feasibility studies done at OHB before the start of this thesis revealed that a hybrid approach, which
combines both global and local surface representation yields the best balance and helps reach competitive
levels of performance while keeping the number of degrees of freedom at a reasonable level. The main idea
is that an underlying global model with just a couple of parameters can reproduce most of the bulk surface
effects needed to improve the performance, while a local model takes care of the remaining local effects that
a global model cannot capture.

Below we thoroughly describe the implementation of this hybrid model for all the types of optical surfaces
GDRT can handle.
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A) Freeform mirrors and lenses.
This type of freeform surface representation is mainly used for the spectrometer system, the Cooke triplet

and the telescopes, where reflective and refractive surfaces are involved. It contains a combination of global
and local terms to model the additional departure with respect to a standard surface. Thus we can write the
freeform contribution as:

z(x, y) = zglobal(x, y)+ zRBF (x, y) (2.49)

zglobal(x, y) = ay2 +by + cx2 +d (2.50)

zRBF (x, y) =
N∑
i

wiΨ(‖x−xi‖) (2.51)

In this case the global terms correspond to a form of XY-polynomials. The local terms represent a Radial
Basis Functions (RBF) definition. This type of surface modelling is very simple. It works by setting up a grid
of nodes xi in a certain domain. At each node, a basis function Ψ is placed with an associated weight wi .
Then, the value of the surface at a certain point x is computed as a linear combination of the basis functions
evaluated at that point. The degrees of freedom of this model are the weights wi . By changing their value,
any type of surface can be reproduced as RBF constitute a complete base, which might not necessarily be the
case for other surface representation.

The basis functionΨ(‖x−xi‖) is chosen by the designer and it takes the form of any function which fulfils
the following conditions:

1. It is local, meaning that it has influence in a limited area of its domain

2. It depends on some measure of distance between the evaluation point (x, y) and each of the nodes of
the RBF grid (xi , yi )

This means that functions such a Gaussian or an inverse quadratic can act as basis for an RBF surface
model. For this research project we have decided to use Gaussians as our basis functions; as previous studies
have shown that they are useful and simple to implement.

The fact that the basis functions depend on the distance between points and nodes, opens up the possi-
bility of using two different kinds of RBF models: Cartesian and polar.

Cartesian freeform. The simplest approach is to define the RBF terms in such a way that they depend on
the standard Cartesian distance as shown below for a Gaussian RBF. This formulation is the most common
one, and it is frequently used throughout this project

Ψ(‖x−xi‖) = e−((x−xi )2+(y−yi )2)/ε2
(2.52)

Polar freeform. However, in some situations the designer might need the optical elements to exhibit some
kind of polar behaviour. For instance, one might be interested in having a freeform character only along the
radial coordinate. In that sense, although the surface does not strictly follow a standard conic definition, it
has azimuthal symmetry. We will refer to this type of surface as polar freeforms.

The only difference with respect to a Cartesian freeform is that this time the RBF depend on the radial
coordinate ρ and not on θ. Both types of surfaces have been investigated during this research project, with
promising results.

Ψ(‖x−xi‖) = e−((ρ−ρi )2)/ε2
(2.53)
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B) Freeform diffraction gratings. Most lithographic gratings are usually manufactured in the form of
planar gratings with perfectly straight grooves separated at a constant frequency a0 [54]. In this situation,
and assuming that the light is perfectly collimated at the diffraction grating, all rays experience the same
diffraction effect no matter the field and pupil position, as given by the grating equation:

mλa0 = si nθi + si nθr (2.54)

Where m is the diffraction order (m = ·· · ,−1,0,1, · · · ), λ is the wavelength, θi is the incidence angle and
θr is the reflected angle (both measured with respect to the surface normal). Only having the single degree of
freedom of the groove frequency a0, forces the designer (or more correctly, Zemax) to choose a value which
on average works best for all field points. One can easily understand that although this can simplify the
manufacturing process of a diffraction grating, from the point of view of optical performance, it is far from
being the optimum choice. Ideally one would like to adapt the shape of the grating to the particular needs
of each ray. This type of technology is usually referred to as Variable Line Spacing diffraction gratings ([55],
[56]).

By allowing the diffraction grating to become a freeform surface, meaning that the groove frequency is
now not constant but a function of the grating coordinates, one can locally change the amount of diffraction
effect imparted by the grating to each ray. As a result of this, the diffraction grating not only does its job of
dispersing the light but is starts playing an active part in the correction of optical aberrations. This is a similar
idea to that of hybrid lenses, a type of lenses which have diffractive structures directly machined on top to
combine their refractive effect with diffractive capabilities for infra-red applications [57].

One might argue that allowing this variation in line spacing will lead to non-physical diffraction grat-
ing designs impossible to manufacture. But the empirical results presented in this report suggest that the
freeform departures on optical surfaces tend to be very small compared to the original shape and that the
freeform shape effects in diffraction gratings are so small that the constant groove frequency term remains
dominant. Consequently, the final design exhibits a slight "bending" of the grooves due to the spatial varia-
tion of the groove density; but although noticeable the overall effect is mild.

There is no doubt that the manufacturing of these freeform gratings will be more challenging than that
of standard design. Nevertheless, a quantitative analysis of these issues, at this point of the research work
(where no data on the manufacturing capabilities is available), is impossible and certainly beyond the scope
of this project. In any case, some successful examples of manufacturing of freeform gratings can be found
in the literature [58], showing that ESA considers this a very promising solution to achieve compact and cost
effective instruments for small satellites.

Coming back to the modelling of these gratings, we have mentioned that the intensity of the diffraction
effect needs to be a function of the grating coordinates. This is the same as saying that the phase function of
the grating needs additional spatial dependencies apart from the standard linear term. The phase function
Φ is needed for the application of Fermat’s path principle because it represents the additional optical path
induced by the diffraction grating on the propagating rays. By adopting a similar approach to the one used
for the mirrors, we can write the phase functionΦ as:

Φ(x, y) =Φg l obal (x, y)+ΦRBF (x, y) (2.55)

Φg l obal contains both the standard linear term a0x plus some global terms in the form of polynomials
which respect the required x-symmetry.

Φg l obal (x, y) = a0x +bx2 + c y2 (2.56)

ΦRBF follows the same type of RBF approach that we used for the Cartesian freeform mirrors

ΦRBF (x, y) =
N∑
i

wiΨ(‖x−xi‖) (2.57)
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In the end, no matter what type of surface you are modelling (lens, mirror, grating...), GDRT will work with
a set of parameters of a global model and a set of weights of an RBF model. Those are the degrees of freedom
of the freeform surface, and will be used as variables for the optimization process.

2.8. MERIT FUNCTIONS

Merit functions are a key feature of GDRT as they represent the basis for any optimization procedure. The
main purpose of a merit function is to encode into a scalar mathematical expression the optical performance
upon which the system will be optimized. In complex systems such as the freeform spectrometer, one wants
to optimize for several quantities at once (in this case RMS spot radius, dispersion, keystone and magnifica-
tion), but not all of them are of the same importance to the designer. Therefore, the particular preferences
and needs of each system must be properly accounted for in the merit function itself.

In other to do so, some "importance weights" wi can be introduced so that the crucial components have
a greater impact on the value of the merit function; thus the optimizer will make a greater effort to reduce
those terms. As a result of this, a generic merit function in GDRT will look like this:

f (x) = w1
f1(x)

f1(x0)
+·· ·++wn

fn(x)

fn(x0)
(2.58)

Where fi (x) is a metric of optical performance such as RMS spot radius evaluated at the variable state
x. It is important to note that all metrics are scaled by its initial value fn(x0) before optimization so that all
quantities are comparable. This helps avoid situations in which several metrics have very different orders
of magnitude. In that case, the optimizer could reduce the overall merit function by greatly increasing the
smaller metrics and only slightly reducing the bigger ones. For instance, if f = A +B , where A0 = 1000 and
B0 = 1 , a suitable new state would be A = 995, B = 4; but it is obvious that from a design point of view this is
a terrible update as A is only a 0.5% better, while B is 4 times worse.

Finally, it may be necessary to incorporate some constraints into the optimization to ensure the system
does not deviate too much from a certain limit. This can easily be done by defining penalty functions px into
the merit function itself.

px = g (x −x0)2 (2.59)

f (x) = w1
f1(x)

f1(x0)
+·· ·++wn

fn(x)

fn(x0)
+·· ·+px (2.60)

Provided that the final expression of the merit function depends on information about the ray tracing op-
erations, GDRT will be perfectly capable of computing its gradient, Hessian-vector product and the Hessian
up to machine precision.

Here, we provide a short summary of common metrics of performance which we have implemented in
GDRT. With rudimentary knowledge of Python, a user can combine these metrics or quickly define new ones
to create a merit function for a particular optical system of interest.

2.8.1. RMS SPOT RADIUS

An ideal optical system, without accounting for diffraction, would focus all rays coming from the pupil with
the same field angle onto a perfect point on the image plane. However, in a realistic system this will never
be the case and, in the presence of optical aberrations, the rays will intersect the image plane forming a
cloud of points of finite size which is usually referred to as the spot, see Figure 2.5. Therefore, the size of
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Figure 2.5: Example of a Spot Diagram from Zemax. Each plot corresponds to a field point, the size of the spots is given at the bottom

the spots represents a good metric of performance for systems which exhibit a substantial amount of optical
aberrations and are far from the diffraction limit.

ri =
√

(xi −xc )2 + (yi − yc )2 (2.61)

RMSspot =
√√√√ 1

N

N∑
i

r 2
i (2.62)

The usual way to define the metric is by means of a Root Mean Square method applied to the different in-
tersections of the rays being traced with the image plane, leading to the notion of RMS spot radius. The RMS
is computed with respect to a reference of the spot such as its geometrical centroid (xc , yc ), but sometimes
the chief ray (the one passing through the center of the pupil) is used. This metric which is widely used in
optical software packages like Zemax, is one of the basic merit functions defined in GDRT.

2.8.2. WAVEFRONT ERROR

The notion of wavefront refers to the surface of equal phase perpendicular to the light path propagation.
Thus, for a perfect collimated beam the wavefront is a plane; while for a perfect convergent or divergent beam
the wavefront is a sphere. Inevitably, the propagation of light through a real optical system induces optical
path differences which translate into aberrations of the wavefront (see Figure 2.6). The outgoing light which
arrives at the image plane will no longer have a spherical wavefront; the shape of the actual wavefront tells a
lot about the dominant aberrations of the optical system, such as coma, astigmatism, spherical aberration,
etc.

In light of this, one can see that wavefront error defined as the departure from a reference sphere serves
as a valid metric of performance for an optical system. In contrast with RMS spot radius, which only required
the ray tracing results (xi , yi ) at the image plane, the calculation of wavefront error is more complicated. It
requires computing the optical path for each ray from the pupil up to the image plane; a computation which
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Figure 2.6: The origin of wavefront error as an optical path difference (OPD). Source: Telescope-Optics

additionally requires compensation of the inherent tilt of the incoming wavefront for all field points outside
the axis. And then an extra ray tracing operation up to a reference sphere is needed to calculate the complete
wavefront error. As the wavefront error represents a complete 2D map over the pupil, it is not directly suitable
as a merit function and it is common to compute the RMS wavefront error to translate it into a scalar value:

wi =OPi −OPr e f (2.63)

RMSw ave =
√√√√ 1

N

N∑
i

w2
i (2.64)

Where OPi represents the total optical path for a point i in the pupil, OPr e f is the optical path of the
reference ray (usually the chief ray).

Both spot radius and wavefront error are consequences of the same phenomenon, the existence of optical
aberrations, but they have different realms of applicability as merit functions. For systems with low impact of
optical aberrations, optimizing for RMS spot radius can eventually lead to a situation in which the size of the
spot is close to the radius of the Airy disk. In that case, as the system is close to being diffraction-limited the
notion of spot radius looses significance and it is advisable to switch to an optimization based on wavefront
error, which is still valid for this situation.

2.8.3. DISTORTION

The essence of distortion is that a real optical system will not image a square grid perfectly, but rather distort
its shape. This is caused by the actual wavefront arriving shifted with respect to a reference sphere, which
causes varying point height magnification in the image (see Figure 2.7). Despite the shift, as the wavefront
remains spherical distortion does not lead to a loss of image quality, but it is an undesirable effect to control
and minimize as much as possible. If the image is distorted, parts of it could lie outside the detector array
losing information; or the detector would have to be oversized and thus some pixels will be left unused.

Defining distortion as a merit function is quite simple because knowing the ideal focal length of the sys-
tem and the field of view, one can infer how a square grid should look like on the image plane, and use it as a
reference to compute deviations from the ray tracing.

di , j =
√

(xi −xr e f
i )2 + (y j − y r e f

j )2 (2.65)

http://www.telescope-optics.net/aberrations.htm
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Figure 2.7: Distortion in an optical system. Source: Telescope-Optics

RMSdi st =
√√√√ 1

N

1

M

N∑
i

M∑
j

d 2
i , j (2.66)

2.8.4. FOCAL LENGTH, F-NUMBER, IMAGE SIZE

Controlling the size of the image, for a given entrance pupil diameter and field of view, implies controlling
the focal length and F-number of the optical system. The size of the image is actually just a particular case
of distortion control in which we are only interested in controlling the boundaries of the grid and do not care
about the distortion within the grid. Therefore, when inner distortion is not an issue but the control of either
focal length or F-number is necessary, image size can be used as a merit function.

2.8.5. MAGNIFICATION

In the most general case, magnification is defined as the ratio between the size of the image and the size
of the object. If a particular requirement on magnification applies, one can define the magnification error
as the deviation between the true image size and the nominal size. Based on that a merit function can be
constructed.

But for GDRT, magnification was used in the context of slit spectrometers. In such a system, the entrance
slit defining the field of view of the spectrometer is imaged along the x dimension of the detector for the
different wavelengths λi of the spectral range. This allows the study of the spectral properties of the sources
being imaged, such as the identification of absorption lines on the atmosphere or the characterization of the
spectrum of distant stars.

In a similar way to distortion and image size, one would like the image of the slit to have the same size for
all wavelengths on the focal plane so that it fills exactly the pixel array. Thus we can define magnification as a
merit function in the following way:

mi = xmax (λi )−xr e f (2.67)

M =
√√√√ 1

N

N∑
i

m2
i (2.68)

It is important to note that this metric only accounts for what happens at the edge of the array. The image
of the slit could have varying distortion along the x dimension but, on average, lead to the same magnifica-
tion.

http://www.telescope-optics.net/distortion.htm
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Figure 2.8: Spectral features to be optimized or at least characterized in a conventional spectrometer design

In the particular case of spectrometers, light is separated by wavelength and imaged onto the detector
plane, which means that one spatial dimension is lost at the cost of introducing a spectral dimension. This
particular feature brings up a new set of performance metrics specific to this type of system, see Figure 2.8,
which include keystone and dispersion.

2.8.6. KEYSTONE

Keystone is defined as a change in field-magnification with wavelength. As mentioned above, even for perfect
magnification, between the inner and outer field the imaging of the slit could have distortion. Keystone
accounts for the distortion along the x dimension which depends on the wavelength, meaning that points
with the same nominal field fx but different nominal wavelengthλ, have a different x position on the detector
plane. Thus keystone can be translated into a merit function as follows:

ki (xi ) = 1

M

M∑
j

(xi (λ j )−xr e f
i )2 (2.69)

κ= 1

N

N∑
i

ki (2.70)

2.8.7. DISPERSION

If keystone was the change of field-magnification with wavelength, dispersion is just its spectral equivalent;
defined as the change in spectral-magnification with field. Ideally, the sampling distance between wave-
lengths along the spectral axis should not depend on the field point and be equal to the intended spectral
sampling. In reality, this distance between wavelengths will change slightly along the x-axis, resembling a
change in spectral magnification. Therefore, we can define dispersion as:

δ j (λ j ) = 1

N

N∑
i

(y j (xi )− y r e f
j )2 (2.71)

∆= 1

M

M∑
j
δ j (2.72)
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2.8.8. SMILE

One should note that in order to compute dispersion, one wavelength (usually the primary wavelength) is
used as a reference which means that the metric is relative instead of absolute. Consequently, even in the
absence of dispersion the shape of the different slit images on the detector can end up being curved. This
phenomenon is known as the smile of the spectrometer. Although being an undesired effect, smile is usually
not taking into account during optimization and it can be compensated via post-processing of the data cubes,
provided that proper calibration and characterization has been done.





3
RESULTS

In this chapter, four case studies of optical systems which have been optimized with GDRT are presented to
illustrate the capabilities of this tool. The first one corresponds to the famous Cooke triplet which has served
as a sort of benchmark for optical research in the past and has a more academic feel to it. The second one
corresponds to a realistic space optical instrument: a spectrometer based on a double TMA and a diffraction
grating. The third one is a concept design of freeform telescope based on a monolithic block of infra-red
material, aimed at fitting within the volume limitations of a CubeSat platform. The third system, is a reflective
telescope consisting of three freeform mirrors.

One of the key assets of these examples is that they display all the relevant features of GDRT in its com-
plete range of optical systems: purely refractive (Cooke triplet), diffractive + reflective (freeform spectrometer),
refractive-reflective (compact monolithic telescope) and purely reflective (telescope).

3.1. COOKE TRIPLET

The Cooke triplet, invented in 1893 by H. Dennis Taylor for the optical company T. Cooke & Sons, constitutes
the design with the smallest number of optical elements capable of correcting all 7 Seidel aberrations [59]:

1. Achromatic: spherical aberration, coma, astigmatism, field curvature and distortion.

2. Chromatic: axial color and lateral color.

It consists of a set o 3 lenses, one negative flint glass lens in the middle surrounded by two positive crown
glass lenses (see Figure 3.1). This leaves the system with a total of 14 degrees of freedom which correspond to
the 6 curvatures, 3 lens thicknesses, 2 air spaces and 3 glass choices.

Figure 3.1: Optical layout of the Cooke triplet

39
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Despite its apparent simplicity, the Cooke triplet was a great technological advancement for its time, and
since then it has served as an example in many academic papers on optical design (e.g. [60]). For this reason,
we decided to use the Cooke triplet as a benchmark for GDRT.

3.1.1. DIFFERENTIAL RAY TRACING

One of the major strengths of differential ray tracing is that it can provide accurate derivatives of quantities
of interest of optical systems without having to rely on finite-difference approximations [30]. In this example,
we show how this technique can be used to compute derivatives of the position of rays on the image plane,
with respect to variables of the Cooke triplet.

In order to make this possible, first of all GDRT had to be extended so that it could handle the fact that
the Cooke triplet is a refractive system. Refractive elements such as glass lenses suffer from chromatism,
meaning that their index of refraction varies with wavelength, giving rise to chromatic aberrations such as
axial and lateral color. Consequently, the ray tracing operations embedded in GDRT as well as all differential
ray tracing calculations need to incorporate this wavelength dependency.

This requires the implementation of the so-called Sellmeier equation [61], which is an empirical relation-
ship between n the index of refraction of a medium and λ the incident wavelength:

n2(λ) = 1+ B1λ
2

λ2 −C1
+ B2λ

2

λ2 −C2
+ B3λ

2

λ2 −C3
(3.1)

The Sellmeier coefficients Bi , Ci can easily be found in the databases of optical glasses. For this example
we decided to use the Cooke triplet file available in Zemax Optics Studio. We select a single ray to be traced
through the system up to the image plane; corresponding to pupil coordinates Px = 0,Py = 1 and field co-
ordinates Hx = 0, Hy = 0. Our quantity of interest as far as differential ray tracing is concerned will be the
first derivatives of the y-coordinate on the image plane with respect to each of the design curvatures of our
system:

d y

dci
(3.2)

In spite of its simple look, that derivative is anything but straightforward. It contains information on how
the outcome of a ray tracing operation varies with respect to a fundamental quantity of the optical system.
In order to obtain that derivative by hand, one would need to compute the derivatives of the ray tracing
equations which contain information on curvatures, positions (distances and tilts), index of refraction, sur-
face derivatives, angles of incidence for each surface; all of that entangled in the form of highly non-linear
relationships. It is tedious and error-prone (but doable) for single ray in simple on-axis systems with few
spherical surfaces like the Cooke triplet, but it is extremely cumbersome for a complex optical system with
many degrees of freedom and many rays being traced.

That is the main reason why most of the time, differential ray tracing results are approximated by finite-
difference techniques. Nevertheless, thanks to the use of automatic differentiation tools in GDRT, that prop-
agation is done automatically under the surface, reducing the effort to a simple call to Theano.

The results as given by GDRT for these derivatives are presented below in Table 3.1. In order to validate the
results, finite-difference approximations were computed using the ray tracing information from Zemax. To
further strengthen the claim that differential ray tracing computed via automatic differentiation is superior to
the finite-difference approach, we decided to compare the results of one derivative d y/dci with those from
Zemax, for varying values of the step size.

In other words, we compared the accuracy in derivative computation of GDRT with that of Zemax as a
function of the finite-difference step size h. The results as shown in Figure 3.2 reveal a well-known issue
of finite-differences: the accuracy of the approximation improves (i.e. the difference with respect to GDRT
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Table 3.1: Derivatives of the Cooke triplet, computed with differential ray tracing

Curvature Value [mm−1] Derivative d y/dci [mm2]
c1 0.045426 -166.025083
c2 -0.002295 147.432003
c3 -0.045018 -107.559584
c4 0.049281 103.207876
c5 0.012550 -118.378438
c6 -0.054362 132.589605

Figure 3.2: Comparison of first derivative accuracy bewteen GDRT-based automatic differentiation and Zemax-based finite differences

goes down) as the step size h decreases with a slope proportional to the order of the scheme being used.
Nevertheless, the improvement is not eternal and at some point floating-point arithmetic errors of stochastic
origin start to severely degrade the accuracy of the approximation. Although the deviations are usually small,
they certainly do not help when precise evaluations of gradients are required to ensure decent convergence
of optimization algorithms; in which case automatic differential becomes a must.

An equivalent procedure of automatic differentiation can be set up to compute the derivatives with re-
spect to other variables of interest such as the thickness of the lenses, air spaces, conic constants, tilts (in case
we want to create an off-axis system) or any parameter of a freeform surface representation, as we will show
in the following section.

Moreover, the choice of the function to differentiate is unrestricted. Any scalar quantity which depends
on the behaviour of rays can be defined as a quantity of interest for GDRT; this includes: distortion, wavefront
error, spot size, MTF and spectral metrics such as keystone and dispersion.

Differential ray tracing is not limited to the calculation of first order derivatives [62]. In fact, derivatives of
any order are easily accessible no matter their exotic nature. This way, GDRT can gain access to the Hessian
matrix of the system and use it either for optimization purposes, or sensitivity analysis.

In Figure 3.3, the Hessian matrix H(ci ,c j ) as computed by GDRT is provided. This matrix encodes very
valuable information regarding the Cooke triplet. The diagonal of H reveals that the last curvature c6 has
the highest impact on the position of y for the ray being traced. From the rest of the matrix we can extract
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-203.391 −122.903 667.954 −1069.534 1560.172 −1834.037
−122.903 -362.302 −502.203 865.443 −1295.523 1515.861
667.954 −502.203 294.147 −207.153 492.681 −538.422

−1069.534 865.443 −207.153 340.875 −311.585 314.512
1560.172 −1295.523 492.681 −311.585 -276.584 177.157
−1834.037 1515.861 −538.422 314.512 177.157 -807.840


Figure 3.3: Hessian matrix of the Cooke triplet

that changing the two curvatures of a lens at the same time, i.e.
d 2 y

dci dci+1
for i = 1,3,5 has little impact on y

(something to be expected as each lens has curvatures of similar value but opposite sign). Moreover, changing
the first and last curvatures at the same time has the biggest impact on the result.

All this information might seem intuitive once the results are available, and the general trends can be
guessed from the beginning. But having access to the actual values in the form of a Hessian matrix for op-
timization purposes is extremely useful. Another advantage of GDRT (in addition to the accuracy we men-
tioned ealier) is that this result via numerical differentiation requires a substantial amount of ray tracing
operations. For n curvatures, the Hessian matrix contains n(n+1)/2 independent derivatives, in this case 21.
For each derivative (assuming we use a central difference scheme for the second derivative) one needs to do
3 ray tracing operations f (x), f (x −h), f (x +h), which leads to a total number of 63.

63 consecutive ray tracing operations for a Cooke triplet might not take a lot of time, however, for a com-
plex freeform system with a large number of degrees of freedom N , not only does the amount of ray tracings
scale with N 2, but also each each operation becomes more time consuming. In contrast, differential ray trac-
ing on GDRT has the advantage of only requiring a single ray tracing operation for the computation of all the
derivatives.

To summarise, due to its analytic nature, the results of differential ray tracing are not subject to accuracy
losses and numerical instabilities like finite-difference approximations; and require a smaller amount of ray
tracing operations leading to significant savings in computational time.

3.1.2. OPTIMIZATION

The previous section showed how GDRT can provide derivatives of any quantity of the optical system for a
single ray trace. That is a somewhat academic exercise of limited application which demonstrates the fun-
damental workings of the GDRT. Therefore, in this section we present a full scale example of how freeform
optics optimization can be used in the Cooke triplet.

The underlying idea is very simple. With the 14 degrees of freedom inherent to the Cooke triplet there is a
limit to what can be achieved in terms of optical performance. But the standard Cooke triplet can be taken as
a starting point for a design which relies on freeform surfaces to bring the performance to unexplored levels.

GDRT has been developed in such a way that it can generate a starting design based on the parameters
of any optical system created with Zemax Optics Studio or a similar package. Then GDRT extends the sys-
tem definition so that it can handle freeform surfaces, mainly in the form of additional surface departures
modeled with Radial Basis Functions (RBF).

Based on its differential ray tracing capabilities, GDRT can compute (up to machine precision) the gradi-
ent and Hessian matrix of any merit function, no matter the complexity of the optical system or the number of
degrees of freedom. With that information available, we can perform numerical optimization of the system.

In order to make the results as realistic and verifiable as possible, we copied the conditions for the Cooke
triplet example from Zemax, in terms of pupil, field, wavelength sampling. This particular Cooke triplet has
a circular field of view of 20° in radius. Due to the rotational symmetry of the system, a small number of field
points defined in the first octant can be used to control the complete field of view (see Figure 3.4). Based on
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Table 3.2: Physical constraints of Cooke triplet

Parameter Value
Pupil radius 5 mm
Wavelength range 480 - 550 - 650 nm
Field radius 20 deg

Figure 3.4: Sampling configuration for the Field of View of the Cooke triplet

these three field points (blue, green and red) the rest is simply symmetrised to account for the complete field
of view.

This symmetry property is also exploited by GDRT in its freeform optics definition. Only RBF weights
influencing the first octant are set as variables. The rest of the surface area is symmetrized according to the
values for the control octant. This significantly reduces the amount of variables needed for optimization, but
also ensures that the final performance is symmetric. The merit function was set as a simple linear combi-
nation of RMS spot radius and distortion. The starting values of RMS spot radius for the Zemax Cooke triplet
are shown in Figure 3.5. Then, the system was optimized using GDRT until convergence.

In order to ensure the GDRT are completely valid, the final performance of the system was entirely ver-
ified in Zemax Optics Studio, just like for the initial system. The freeform departures generated during the
optimization process can easily be uploaded into Zemax in the form of .dat files as Grid Sag surfaces.

The outcome of the optimization in terms of RMS spot radius can be seen in Figure 3.6. For all wave-
lengths, the performance across the field of view varies between 2 and 6 µm; a substantial improvement with
respect to the initial design, specially around the edge of the field of view.

More details on the actual performance of the freeform Cooke triplet, as well as a comparison with the
initial design, can be found in Tables 3.3 and 3.4. One can observe that the average improvement in distortion
is approximately 95% and around 45% for RMS spot radius.

Judging by the results, one might tend to think that the optical system must have changed radically dur-
ing optimization. The truth is that the departures introduced by the freeform terms are usually very small
compared to the original surfaces. In Figure 3.7 the surface sag of the front glass of the Cooke triplet is shown
at different stages. In Figure 3.7a the complete sag which comprises both the standard spherical sag and the
freeform sag is presented, while Figure 3.7b only shows the freeform contribution as computed by GDRT. It
can be observed that the magnitude of the freeform sag is substantially smaller than that of the spherical
term.

Nevertheless, we have seen that despite the small magnitude of the freeform terms, the impact on the
overall optical performance of the system is quite extraordinary, effectively reducing the distortion by more
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Figure 3.5: Initial RMS spot radius vs field of the Cooke triplet

Figure 3.6: Final RMS spot radius vs field of the freeform Cooke triplet

Table 3.3: Distortion results for the freeform Cooke triplet

Wavelength [nm] Initial value Final value Improvement [%]
480 0.0637 % 0.0038 % 94.0
550 0.0614 % 0.0007 % 98.9
650 0.0610 % 0.0021 % 96.6

Table 3.4: RMS spot radius results for the freeform Cooke triplet

Wavelength [nm] Initial average value [um] Final average value [um] Average improvement [%]
480 7.10 3.78 30.08
550 7.43 3.85 45.32
650 9.61 3.86 57.44
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(a) Standard + freeform sag of the Cooke triplet

(b) Isolated freeform sag of the Cooke triplet

Figure 3.7: A comparison between the standard and freeform contributions to the sag of the first surface in the Cooke triplet
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than 95%, and the spot radius by almost 50%. This means that freeform optics can dramatically improve the
performance of an optical system with only slight changes on the surfaces.

Despite the fact that the optimization results are quite illustrative, the Cooke triplet is by no means the
ideal system to demonstrate the full potential of GDRT. Freeform optics are better suited for more complex
systems with plenty of off-axis surfaces and significant aberrations, where the lack of symmetry becomes a
powerful asset rather than a disadvantage.

Before jumping towards the next optical system, we will dedicate a section of this report to an important
point about numerical optimization.
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Figure 3.8: Eigenvalue spectrum of the freeform Cooke triplet

3.1.3. A NOTE ON HESSIAN-BASED OPTIMIZATION

In most software packages for optical design just as Zemax it is common to only use gradient-based numer-
ical algorithms for the optimization tasks. One of the reasons behind this choice has already been covered:
computing second order derivatives (such as the Hessian) with finite-differences and discrete ray tracing op-
erations can be remarkably time-consuming. Another reason is the fact that for most the optimization of
simple optical systems, gradient-based algorithms perform well enough to simply not justify the change to-
wards second-order.

In this section, we provide experimental evidence which supports the claim that algorithms based on
second order derivative information are needed for an effective optimization of complex freeform optical
systems.

We will use the freeform Cooke triplet as an example. Based on the standard Cooke triplet, we defined a
freeform version with a total of 120 degrees of freedom (20 per surface) using a global + RBF description. At
the starting point, the Hessian matrix as provided by GDRT is readily available. This allows us to compute its
eigenvalue decomposition which is shown in Figure 3.8.

The eigenvalue decomposition of the Hessian matrix provides valuable information regarding the merit
function landscape, and the potential behaviour of optimization algorithms. In light of the results, we can
conclude that there is a wide disparity in the magnitude of the eigenvalues, varying from almost 1010 to
around 1. Consequently, the condition number κ(H) of the Hessian matrix, which is given by the ratio of
the maximum to minimum eigenvalues, is remarkably large.

κ(H) = ‖H‖‖H−1‖ (3.3)

κ(H) = |λmax (H)|
|λmi n(H)| =O (1010) (3.4)
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This means that the optimization problem is severely ill-conditioned, and the merit function landscape
is extremely elongated along particular directions around the minima. This is exactly the type of situation in
which gradient-based algorithms perform badly, showing extremely slow convergence. That is the main rea-
son why one needs to use algorithms based on second order derivative information, which take into account
information about the eigenvalues of the Hessian (or an approximation of it) to properly rescale the descent
direction, mitigating convergence issues.

Even if the algorithm used for optimization exploits second-derivative information (like the Trust Region
Newton - Conjugate Gradient) at each iteration the state update needs to be computed by solving a linear
system of equations Ax = b of the form:

H M x =−O f (3.5)

or a damped version, in case of the Levenberg-Marquadt (Damped Least-Squares):

[H +µ ·di ag (H)]M x =−O f (3.6)

which is usually solved via iterative methods like Conjugate Gradient. The convergence properties of
these iterative methods can be severely hindered when the matrix A (in our case, the Hessian) has a large
condition number [63], increasing the number of iterations needed to compute the update M x and therefore
slowing down the overall speed of the optimization. As the condition number provides information about
the sensitivity of the solution to perturbations in the data [64], an ill-conditioned Hessian will be sensitive to
inaccurate estimations of the gradient, possibly leading to erroneous state updates M x.

Therefore, it is always beneficial to adapt the problem from the beginning to reduce the condition number
in favour of a more robust and numerically stable version of itself. This is usually referred as preconditioning
and it is commonly used to enhance the convergence properties of the iterative methods for solving linear
systems of equations [65].

For illustrative purposes we defined a simple Jacobi-like preconditioner [63], which consists of a diagonal
matrix stored in the form of a single vector p. The preconditioner p acts as a rescaling for the state vector
x and all its associated derivatives (gradient, Hessian-vector product...) so that the optimizer works with
a preconditioned state x∗ of approximately constant order of magnitude for each component; the desired
situation for most optimization algorithms.

x∗ = p∗x (3.7)

x∗ ' {O (1), · · · ,O (1)} (3.8)

Where ∗ represents the element-wise vector product. For the sake of simplicity, the preconditioner only
uses a set of two values which are linked to the mean eigenvalues of the inverse Hessian matrix for global and
local freeform terms in the RBF description, λg l obal and λlocal . This are computed only once from a spectral
decomposition of the Hessian for a particular optical system and reduced each type a new optimization is
performed.

p ∝ {λg l obal , · · · ,λg l obal ,λl ocal , · · · ,λlocal } (3.9)

We compared the convergence behaviour of two optimization runs of Trust Region Newton - Conjugate
Gradient with the same conditions in terms of initial state and algorithm parameters. The first run corre-
sponds to the nominal freeform Cooke triplet and the second one was its preconditioned version using p.
The results are presented in Figure 3.9 and reveal that even with such a simple preconditioner, the number of
iterations required to reach convergence can be reduced dramatically.

In addition, we checked the impact of p on the condition number and the spectrum of the Hessian matrix
of the preconditioned problem. The use of a preconditioner p has two major effects. First of all, it shifts
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Figure 3.9: Merit function vs number of iterations for the freeform Cooke triplet in its nominal and preconditioned version. Algorithm:
Trust Region Newton - Conjugate Gradient

the spectrum bringing down the maximum eigenvalue to O (1). Secondly, it tends to cluster the eigenvalues
reducing the condition number [66]. If the initial condition number was around O (1010), the preconditioned
version of the optimization problem exhibited a value of O (107), which is quite an improvement for such a
crude preconditioner.

When dealing with stiffer problems with extremely large condition numbers, it might be advisable to con-
struct a more elaborate preconditioner, but for the applications we usually deal with, this simple precondi-
tioner is more than enough.

3.2. BENCHMARK OF OPTIMIZATION ALGORITHMS

The use of a preconditioner to rescale the different types of variables in the state vector to approximately
order one had other beneficial effects apart from speeding up the convergence of the Trust Region algorithm.
It opened up the possibility of using other optimization algorithms which could not be used before, simply
because the initial problem was too ill-posed to avoid divergence.

Once the problem was sufficiently regularized for most algorithms to be applicable, we decided to per-
form a benchmark study to characterize the behaviour of the different algorithms as far as convergence pro-
file, number of iterations, speed and final solution are concerned.

In order to characterize how each algorithm scales with the dimensionality of the problem, the same study
was done for two different configurations of the freeform Cooke triplet: a low-dimensional optimization with
24 degrees of freedom, and a high-dimensional optimization with a total of 120 degrees of freedom

3.2.1. LOW-DIMENSION BENCHMARK

The first part of the study relates to how the algorithms perform when dealing with a freeform optical system
of relatively low dimensionality (a Cooke triplet with only 24 degrees of freedom). This number is substan-
tially smaller than what we usually employ in freeform optics design in GDRT (between 100 and 500), but it
allows us to check the behaviour of algorithms which are known to scale poorly with dimensionality.
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Table 3.5: Performance results of different optimization algorithms for the freeform Cooke triplet with 24 degrees of freedom

Algorithm Iterations Time [min] Speed [ sec / iter] Merit Function Stop criterion
Conjugate Gradient 16 0.5 1.9 0.716045 Early stop
BFGS 260 5.0 1.2 0.370274 Early stop
L-BFGS 1542 30.0 1.2 0.345386 Converged
Newton - CG 68 15.0 13.2 0.336785 Converged
Trust Region N-CG 42 7.7 11.0 0.336776 converged

Figure 3.10: Convergence behaviour of several optimization algorithms for the low-dimensional freeform Cooke triplet

For all the algorithms we used a starting point of x0 = 0 which corresponds to the standard system as given
by Zemax; and we defined a stop criterion of ‖∇ f ‖ ≤ 10−5 for the convergence. All algorithms were taken from
the SciPy module.

The results for this benchmark are summarized in Table 3.5 and Figure 3.10. Despite the precondition-
ing, Conjugate Gradient (CG) performs poorly and quickly stops achieving merit function improvements.
The Broyden-Fletcher–Goldfarb-Shanno algorithm, both in its standard version (BFGS) and its low-memory
version (L-BFGS) perform significantly better with a similar convergence profile. The former stopped prema-
turely but very close to the local minimum, while the latter managed to fulfil the stop criterion with a slightly
better merit function but considerably more iterations and computational time.

In contrast, the Newton - Conjugate Gradient (N-CG) which takes full advantage of the Hessian-vector
product provided by GDRT manages to reach convergence to the local minimum in around 70 iterations. The
trust region version of the algorithm, the Trust Region Newton - Conjugate Gradient (T-N-CG) performs even
better, reaching full convergence in less than 50 iteration in under 8 minutes. Although they exhibit almost
identical convergence profile, the trust region version of the N-CG algorithm has the advantage of being more
robust, as it only "trusts" the second-order expansion of the merit function up to a certain radius, which is
adapted during optimization depending on the success of the iterations. This avoids failures in the updates
due to the unreliability of the expansion far away from the point of interest.

It is interesting to note that although the iterations for second-order optimization algorithms are one
order of magnitude more expensive than the gradient-based or BFGS iterations, as we are only interested in
global computational time tc (which is ni ter times tper i ter ), it really pays off to use this type of algorithm. The
only drawback is that the overhead, in the form of compilation time for Theano, increases when second-order
is used.
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Table 3.6: Performance results of different optimization algorithms for the freeform Cooke triplet with 120 degrees of freedom

Algorithm Iterations Time [hours] Speed [ sec / iter] Merit Function Stop criterion
Conjugate Gradient 2000 10 18 0.134268 Max iter
BFGS 594 2.1 12.8 0.113598 Early stop
L-BFGS 2500 9.1 13.1 0.115485 Max iter
Newton - CG 73 2.5 123.3 0.113692 Converged
Trust Region N-CG 35 1.3 133.7 0.113578 Converged

Figure 3.11: Convergence behaviour of several optimization algorithms for the high-dimensional freeform Cooke triplet

3.2.2. HIGH-DIMENSION BENCHMARK

The same analysis was repeated for a freeform Cooke triplet with a total of 120 degrees of freedom, with the
same conditions as before. The results are summarized in Table 3.6. It is important to note that as the low and
high dimension cases correspond to entirely different systems (in the sense of number of degrees of freedom),
the local minimum occurs at different values of the merit function: around 0.336775 for the 24 dof case and
around 0.1.

The results of this analysis show that there is a great difference in the convergence behaviour between
first-order algorithms (Conjugate Gradient and (L)BFGS) and those which exploit the second-order informa-
tion from GDRT (Newton-CG and Trust Region NCG). The former require a large number of iterations which
tend to be rather cheap (around 15 seconds), while the latter manage to converge in less than 100 iterations,
but each being around 10 times as costly. The low-memory version of BFGS, the L-BFGS, certainly performs
quite badly and it is not recommended, taking close to 10 hours of computation.

BFGS, and Newton CG take approximately the same amount of time to converge, although the conver-
gence profile is quite different (see Figure 3.11). Due to the disparity on the number of iterations, instead of
using a logarithmic scale which would obscure the area around the Newton CG and the Trust Region NCG,
Figure 3.11 has been cropped to 500 iterations.

Out of all algorithms, the Trust Region NCG is the one that provides the best performance, being the
fastest both in total number of iterations and total time needed for convergence. This algorithm has proven
to be the best choice in all the optimization studies we have done with GDRT so far, and thus has become
the standard. Its used of second-order derivative information ensures a remarkably fast convergence, quickly
improving the value of merit functions.
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Table 3.7: Technical specifications of the freeform spectrometer

Requirement Value Unit
Physical requirements
Max. volume 150 l
Numerical aperture (NA) 0.18
Diffraction grating diameter 70 mm
Slit half-size 25 mm
Magnification 1.0
Pixel size 20 um
Field number of pixels 2500
Spectral requirements
Min. wavelength 400 nm
Max. wavelength 1225 nm
Spectral sampling 7.5 nm
Number of wavelengths 110
Dispersion 375 nm / mm
Performance requirements
RMS spot radius 10 um
Keystone 2 um
Dispersion error 6 um
Magnification error 2 um

3.3. FREEFORM SPECTROMETER

In this section we show how GDRT can be used to optimize a realistic example of an optical system for space
applications: a spectrometer. This example complements the Cooke triplet in the sense that it contains the
two types of surfaces which have not been analysed yet: reflective and refractive.

3.3.1. TECHNICAL SPECIFICATIONS

We begin by presenting the requirements associated with this optical system (see Table 3.7). Some of them
represent physical constraints for the system such as the maximum volume, the size of the diffraction grating
(limited by manufacturing capabilities), the field of view (given by the slit dimensions) and physical charac-
teristics of the detector.

The system is expected to operate in the Visible - Near Infrared regime and comply with the following
performance requirements:

1. RMS spot radius shall be less than 10 µm for all wavelengths and across the whole field of view.

2. Keystone shall be less than 2 µm across the whole field of view

3. Dispersion errors shall be less than 6 µm across the whole field of view

4. Magnification errors shall be less than 2 µm at the end of the field of view (25 mm)

In case some clarifications regarding the definition of the requirements are needed, a thorough explana-
tion of metrics such as RMS spot radius, keystone, dispersion and magnification can be found in section 2.8.

3.3.2. INITIAL DESIGN

The first step was to come up with an initial design entirely based on standard conic surfaces and optimize it
with state-of-the-art techniques, in this case Zemax Optics Studio.

The solution was a double TMA design [67] with a diffraction grating, see 3.12. The mirrors M4 and M6
are designed in such a way that they share the same substrate which allows them to be manufactured in one
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Figure 3.12: 3D layout of the spectrometer
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Figure 3.13: RMS spot radius as a function of field for the spectrometer

single piece with the same tool configuration. A similar design can be found in [68]. This not only reduces
manufacturing costs, but also it reduces assembly, integration and alignment effort.

This design was optimized with state-of-the-art techniques in Zemax for spot size, keystone and disper-
sion until no further improvement in optical performance could be obtained. The final results are summa-
rized below.

3.13 shows the evolution of RMS spot radius as a function of field of view for the three main wavelengths
(minimum, central and maximum). With an average value of around 25 µm, the design does not fulfil the
requirement of 10 µm by a wide margin. The situation is not better when other requirements are considered.
On average, keystone is close to 4.5 µm, still way off the nominal 2.0 µm, while dispersion error is around 8
µm also higher than the intended value of 6 µm.

It is important to note that further optimization runs with Zemax no longer result in performance en-
hancements. With the amount of degrees of freedom considered, which correspond to the typical ones for
standard conic surfaces and constant groove density diffraction gratings (curvatures, conic constants, tilts,
distances, groove frequency, etc) the system seems to have reached its limit capabilities. It is at this point
that the introduction of freeform optics to the system can unlock the situation, allowing the system to further
improve its performance due to the addition of new degrees of freedom

3.3.3. FREEFORM DESIGN

Once we made sure the standard Zemax design could no longer be improved, we used it as starting point for
a freeform optimization with GDRT. Here, we will present two distinct cases that we analysed. The first one
corresponds to a design which employs Cartesian freeform surfaces for the mirrors and a freeform grating.
The second design uses a combination of the two types of freeform mirrors: M1, M2 and M3 are defined as
polar freeforms, while M4, M5 and M6 are left as Cartesian. The grating is also freeform. For details regarding
these types of freeform surfaces see subsection 2.7.2.

A) CARTESIAN FREEFORM DESIGN

As mentioned above, this system uses a Cartesian freeform surface representation on top of the standard
conic sags, which includes a series of global terms (in the form of XY polynomials) and local terms given by
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Figure 3.14: RMS spot radius as a function of field for the freeform spectrometer

Table 3.8: Performance comparison between the initial spectrometer and its optimized freeform variant

Metric Initial value [um] Final value [um]
RMS spot radius 22 1.2
Keystone 5.5 0.15
Dispersion 8 0.20
Magnification 10 0.14

a Radial Basis Function approach. The optimizer defined in GDRT uses a trust-region Newton-Conjugate
Gradient algorithm to optimize the system with respect to the weights of the freeform terms (both global an
local). The input to the optimizer is, at each iteration, the gradient and the Hessian-vector product of the
merit function which are obtained via differential ray tracing. A full-Hessian optimization is also possible,
but it requires longer computational times and memory, providing little to no gain in total speed.

The results in terms of optical performance of the final freeform system (as given by Zemax after opti-
mization) are presented here. Figure 3.14 shows that the RMS spot radius varies between a maximum of 1.8
and a minimum of 0.8 µm. This constitutes and average improvement with respect to the initial design of
around 94% over the complete field of view and wavelength range. And a final optical performance in terms
of RMS spot radius which is approximately one order of magnitude better than the nominal requirement.

It is important to note that, with these values of RMS spot radius, the system is close to being diffraction-
limited. Figure 3.15 shows the actual spot sizes for the central wavelength (800nm) with the associated Airy
disk, for different field points. It appears that the spots fall within, or are very close to, the theoretical diffrac-
tion limit marked by the Airy disk for the wide majority of the field range. Obviously, the situation is even
better for the upper limit wavelength (1225nm) in the NIR regime where the system is certainly diffraction-
limited; and worse at the lower limit wavelength (400nm) in the boundary of the visible regime.

In terms of keystone, dispersion and magnification the results are also quite remarkable. Table 3.8 pro-
vides a comparison between the standard Zemax design and the Cartesian freeform version of the spectrom-
eter design.

Probably, the most illustrative thing to show is the actual shape of the freeform mirrors which makes
this level of optical performance possible. In Figures 3.16 and 3.17 the contribution from the global terms of
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Figure 3.15: RMS spot radius diagram for the central wavelength of the freeform spectrometer

the freeform description to the total sag of the mirrors is shown (only the values inside the actual footprint
are shown). To make comparisons more meaningful, the same color bar scale was used for all mirrors. This
allows us to identify which mirrors experiment the greatest changes in shape. It can be observed, that the
variation in height is in the order of magnitude of 100 µm for most mirrors, which is a substantial amount for
a freeform surface.

In a similar fashion, Figures 3.18 and 3.19, represent the contribution from the local RBF terms of the
freeform model. In this case, the surface departure can be as small as a couple µm in most cases, although it
can sometimes reach more than 10 µm. A ’global mirror’ to ’local mirror’ comparison for each surface reveals
that although most of the freeform effect is handled by the global terms, there are very local behaviours which
the global terms cannot model. It is at these scales that the RBF description plays a major role, imparting very
specific departures in localized areas of the mirrors.

An equivalent approach can be used to study the freeform diffraction grating. In Figure 3.20, the contour
lines of the phase function are shown for each situation: only the global terms, only the local terms and the
complete shape. This is essentially equivalent to showing the actual grooves of the manufactured grating.
Nevertheless, the distance between lines is not set to the true scale, simply for illustrative purposes.

The most important feature is that the freeform character of the grating, in the form of a variable line
spacing, results in groove lines that are visibly bent along the x-direction. Obviously, just like when freeform
mirrors are used, the departure from the ideal case of a constant line spacing diffraction grating is fairly small,
but noticeable. The magnitude of the bending seems to be around 0.5 mm along the complete length of the
grating (60 mm), which is well under 1%.

It is hard to tell at this stage if this poses a great challenge in terms of manufacturing; as that will depend
a lot in the actual capabilities of the chosen provider. In any case, a recent report [58] shows that the Euro-
pean Space Agency (ESA) is currently involved in R& D activities to develop spectrometers based on freeform
gratings; and demonstrates that it is currently possible to manufacture and characterize freeform gratings
without any rotational symmetry.

At this point, it seems reasonable to address certain considerations regarding the number of freeform
surfaces used for this case study. We decided to initially use all surfaces as freeforms in order to investigate
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(a) Global contribution of M1 in [um]

(b) Global contribution of M2 in [um]

(c) Global contribution of M3 in [um]

Figure 3.16: Global contribution of M1, M2, M3 in [um]
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(a) Global contribution of M4 in [um]

(b) Global contribution of M5 in [um]

(c) Global contribution of M6 in [um]

Figure 3.17: Global contribution of M4, M5, M6 in [um]
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(a) Local contribution of M1 in [um]

(b) Local contribution of M2 in [um]

(c) Local contribution of M3 in [um]

Figure 3.18: Local contribution of M1, M2, M3 in [um]
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(a) Local contribution of M4 in [um]

(b) Local contribution of M5 in [um]

(c) Local contribution of M6 in [um]

Figure 3.19: Local contribution of M4, M5, M6 in [um]
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(a) Global contribution of the Diffraction Grating

(b) Local contribution of the Diffraction Grating

(c) Total freeform contribution of the Diffraction Grating

Figure 3.20: Components of the freeform diffraction Grating
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what a fully freeform system is capable of achieving. Nevertheless, in a realistic scenario it might not be
feasible to use freeform optics on all elements of the system, for a variety of reasons:

1. Cost is the main driver of freeform optics. And this increase in cost with respect to their standard
surfaces counterparts comes from all stages of the engineering process:

(a) Design & Development. Designing freeform surfaces is significantly more time-consuming than
simple conic or aspheric surfaces, which can be modelled quickly with a few parameters.

(b) Manufacturing. High precision tools and longer times are usually needed to polish the surfaces
to the desired level of accuracy [69].

(c) Metrology. To ensure the as-manufactured surface complies with the requirements metrology is
needed; but the metrology of freeform surfaces is remarkably complicated. Conventional interfer-
ometers designed for spherical surfaces are not always suitable for freeform systems because their
dynamic range is insufficient to measure the departure between the spherical reference wavefront
and the test wavefront [70]. More often than not, custom-made nulling subsystems are need to
properly measure the freeform surface. And those systems have to be specifically designed, opti-
mized, manufactured and assembled for each freeform surface that one wants to test.

(d) Assembly, Integration & Alignment. The lack of rotational symmetry of freeform optics com-
plicates the AIT process [11]. In addition, freeform optics can be more sensitive to performance
degradation due to mechanical tolerances, increasing the demands for a fine alignment.

2. Risk in both the form of technological and financial risk is a key factor to take into account. A de-
sign completely based on freeform optics carries more risks than a state-of-the-art design with a single
freeform surface.

Consequently, in some situations it may be necessary to make a trade-off and limit the number of freeform
surfaces to only the strictly necessary. At that point an interesting question arises. It seems obvious that not
all surfaces will have the same impact on the performance of the system. Therefore, we could ask ourselves
whether it is possible to achieve comparable levels of performance by using only a partially freeform system.
In other words, a system which combines standard conic surfaces and a few freeform surfaces where they are
most needed. The results of this investigation are shown below.

Partially freeform system.
The choice of which surfaces to use is by no means straightforward. There is no general rule which will tell

you how many and what surfaces will have the biggest impact on your performance because that depends on
how you define performance and the particular system you are dealing with.

Some optical insight and rules of thumb suggest that the first surface after the slit (M1) and the last surface
before the image plane (M6) are likely to be reasonable choices. As we mentioned earlier that M6 and M4 will
be manufactured in a common substrate, there is no cost/effort penalty on also selecting M4 as freeform. The
diffraction grating was also considered as freeform for this analysis.

This leaves us with a spectrometer based on 3 standard conic surfaces (M2, M3 and M5), 3 freeform
surfaces (M1, M4 and M6) and a freeform diffraction grating. For the freeform surfaces, we used the same
configuration in terms of number of freeform parameters as before. Several optimization runs with GDRT
revealed that it is possible to achieve almost the same level of optical performance with this configuration.
As far as RMS spot radius is concerned, the behaviour is essentially identical as a function of field of view,
with maximum deviations with respect to the full-freeform system of around 1-2 µm. Independent studies
[16] reported a similar situation in which the desired performance improvements could be obtained by only
applying freeform optics to those surfaces of greatest influence on the system.

Taking into account the fact that the full-freeform performance was already well within the specifications,
this performance degradation is considered acceptable and a wide margin for tolerances is still available. Not
only is the optical performance almost the same when only the crucial surfaces are set to be freeform, but the
time required for optimization is substantially smaller, due to the reduced amount of degrees of freedom.



3.3. FREEFORM SPECTROMETER 63

In conclusion, we have shown that a partially-freeform design with almost the same performance as the
full-freeform alternative, but smaller associated cost, risk and development effort is perfectly feasible. Thanks
to the remaining margin in optical performance, further trade-offs could be made by restricting the system to
even less freeform surfaces (possibly discard the diffraction grating due to high technological risk), if needed.
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Figure 3.21: RMS spot radius as a function of field for the polar freeform spectrometer

Table 3.9: Performance comparison between the initial design, the Cartesian and the polar freeform spectrometer

Metric Initial [um] Cartesian [um] Polar [um]
RMS spot radius 22 1.2 0.91
Keystone 5.5 0.15 0.51
Dispersion 8 0.20 0.60
Magnification 10 0.14 0.37

B) POLAR FREEFORM

This case study is quite similar to the Cartesian version of the freeform spectrometer. The only difference
is that this time, the first three mirrors M1, M2 and M3 are defined using a polar freeform description. The
remaining surfaces: the diffraction grating, M4, M5 and M6 follow the Cartesian approach for freeform sur-
face definition used in the previous example. The results which will be presented in this section indicate
that freeform surfaces with a certain polar behaviour (i.e. a certain degree of rotational symmetry) are also
capable of producing high-performance designs.

As far as optical performance is concerned, the results of RMS spot radius vs field are similar to those of
the Cartesian version (see Figure 3.21), varying between 0.6 and 1.2 µm for all wavelengths. Figure 3.22 shows
the spot diagram for the central wavelength. Once again, the system is close to being diffraction limited at
that wavelength. The only thing to note is the fact that this time the spots exhibit a slight protrusion along the
y-axis whose origin could not be identified. Despite this, the RMS spot radius values are still well within the
specification.

In terms of keystone, dispersion and magnification the results are similar to the Cartesian version. A com-
plete summary of the performance levels of the initial, the Cartesian and the polar versions of the spectrome-
ter is shown in Table 3.9. Both freeform versions, perfectly comply with the specifications of the spectrometer
design.

For the sake of completeness, the freeform sags of the polar mirrors are shown in Figure 3.23. This includes
both global and local terms. One should note that although the freeform surfaces are perfectly polar along
the radial coordinate, as the apertures are decentered with respect to the vertex of the mirrors, the surface
plots appear decentered as well.
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Figure 3.22: Spot diagram for several field points at the central wavelength (800 nm) for the polar freeform spectrometer

To conclude, we present below some considerations regarding polar freeform surfaces:

One of the possible advantages of polar freeform optics is its manufacturability. Even though, this type of
surface has a marked freeform character along the radial coordinate, it exhibits a rotational symmetry equiv-
alent to that of standard conic surfaces. This symmetry could be exploited during the manufacturing and
polishing stage to simplify the process and reduce the cost. In fact, this potential has already been identified
in a recent study from this year [71], where the so-called "Near Rotational Freeform Surfaces" (NRFS) are used
to facilitate the machining of freeform surfaces on brittle infra-red materials. This benefit is not applicable to
Cartesian freeform surfaces, which cannot rely on symmetry.

It is important to note that, just like the freeform diffraction grating, all these considerations greatly de-
pend on the actual capabilities of a chosen manufacturer. Therefore, it is extremely useful to know what
kind of surface you can expect to get easily from your particular supplier. Not all of them use the same tools
and techniques and thus the results might vary. Establishing a close relationship with the manufacturer and
polisher of your freeform surfaces is a key asset for any project.

Fortunately, GDRT and its freeform surface descriptor has sufficient generality to allow the implementa-
tion of the particular type of surface that best suits what some supplier might provide. Having access to that
information allows you to incorporate that into the optimization process at an early stage of the project. In
the end, this results in a robust design which does not suffer from a mismatch between the surfaces you have
modelled, and the surfaces you are going to get. In reality this is a complicated thing to achieve for several
reasons:

1. The optical designer might not fully know what the capabilities of the supplier are in terms of freeform
manufacturing. Thus, it is difficult for him to incorporate that into the design.

2. It is difficult to agree upon a common surface definition. The parameters a designer uses in the opti-
mization can be different to those a manufacturer uses during its work. If you do not define a consistent
and unambiguous description, you will end up with a surface which the manufacturer says complies
with the specification, but that it is completely different to what you wanted in the first place.

3. Designers normally would like to know what the supplier can manufacture before asking for a specific
surface; but the supplier usually wants designers to tell them what they want to get and then answer
them if that can actually be manufactured. In other words, each one expects the other to share their
information first; which inevitably results in no information being shared at all.
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(a) Polar freeform contribution of M1

(b) Polar freeform contribution of M2

(c) Polar freeform contribution of M3

Figure 3.23: Polar freeform contribution of M1, M2 and M3
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Figure 3.24: Performance results of several optimization runs of the freeform spectrometer showing some overfitting issues

3.3.4. THE PROBLEM OF oversampling

In this section we analyse an issue called oversampling which can appear during the optimization of freeform
optics based on local methods (like RBF), and present some recommendations on how to avoid it.

Optical systems are physical systems for which their operating parameters (wavelength range, field of
view, etc) are obviously continuous intervals on the real numbers. In other words, if the field of view is 20
degrees, the optical system has to maintain the desired level of performance over the infinite set of angles
between 0 and 20.

But infinite-dimensional optimization is extremely challenging so instead, designers always optimize op-
tical systems over a finite set of parameters; i.e. only a small number of discrete wavelengths and field points
are used as control parameters. In most cases, no major issues will arise and the final system (which was
optimized only for a discrete set) will perform well over the complete range of parameters.

Nevertheless, in certain occasions one observes that the final performance is indeed better for the dis-
crete set of parameters used for optimization, but it is quite poor outside those points (see Figure 3.24), with
substantial oscillations between control points (black dots are the control field points). This phenomenon is
generally referred to as overfitting and is a well-known issue in many scientific disciplines including interpo-
lation [72], statistics [73] and machine learning [74]. As seen in Figure 3.24, the existence of overfitting in the
freeform spectrometer directly depends on N (the number of RBF nodes used per surface) and ε (the shape
parameter of the Gaussian RBF).

This overfitting behaviour was observed several times during the early investigations of the freeform spec-
trometer optimization. The merit function representing optical performance in GDRT would be substantially
reduced during optimization, suggesting significant improvements; however, once exported back to Zemax,
performance analysis over the complete field of view revealed severe degradation for all field points outside
the control set. The reasons behind this problem are related to the way RBF representation for optical sur-
faces works, and are quite easy to understand.

RBF representation in GDRT works by setting up a grid of nodes separated by a ∆ which we referred to as
sampling. At each node a Radial Basis Function is centred, whose value depends inversely on the distance to
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the node (the further away, the lower the value). When the RBF is a Gaussian, the area of influence of each
is proportional to the shape parameter of the Gaussian ε. The degrees of freedom of the optimization are
essentially the weights of the RBF nodes, meaning that the intensity of each function is adjusted according
to a measure of optical performance. But that metric of performance is constructed based on the results
of tracing a discrete set of rays through the different surfaces. Those rays being traced come from different
positions on the pupil, different field points and different wavelengths. Therefore, it is obvious that for the
optimizer to properly choose the values of the RBF weights, each RBF node needs to influence a sufficiently
dense and diverse set of rays from different field points, pupil positions and wavelengths.

To better understand this, let us refer to Figure 3.25. When the sampling distance between nodes ∆ is
sufficiently large, the area of influence of each node (assuming the shape parameter is adjusted accordingly)
is wide enough to cover the footprints of multiple rays from different field points, wavelengths and pupil
positions. Consequently, when the optimizer tries to change the value of one RBF weight, it will consider the
impact of that weight on the behaviour of all those rays, and no overfitting will appear.

Nevertheless, when optimizing a freeform system like the freeform spectrometer it is easy to fall into
the mistake of "increasing the amount of RBF nodes" by reducing ∆ in an attempt to enhance the optical
performance, but without modifying the ray sampling. This has the immediate effect of reducing the amount
of rays influenced by each node, which can lead to a situation in which some nodes only influence rays from
one particular field point, pupil position and wavelength; and in some extreme cases, no rays at all. Thus,
during optimization the value of those weights will be chosen regardless of their possible impact on other
rays outside the region of influence; but as we said before, the field of view, wavelength range and pupil
are intrinsically continuous independently of the amount of rays traced. So in the end when the optical
performance is evaluated over the continuous range, there will be overfitting for certain field points outside
the control points.

This situation of using an excessive amount of RBF nodes without re-adjusting the pupil-field-wavelength
sampling and suffering from overfitting is what we refer to as oversampling the surfaces. An immediate so-
lution to this problem is to adjust the amount of rays being traced (increasing the number of field points,
wavelengths, and pupil points) so that the density of rays per node is kept approximately constant and suf-
ficiently high to avoid overfitting. However, this raises the issue of computational speed because it requires
increasing the amount of degrees of freedom and rays being traced at the same time, dramatically increasing
the time needed for optimization. Consider a ray bundle as a tensor with dimensions the pupil coordinates,
the field coordinates and wavelength R ≡ R[u, v,θx ,θy ,λ]. Doubling the ray sampling in all dimensions in-
creases the pupil points by 4, the field points by 4 and the wavelengths by 2, leading to 32 times more rays
being traced. In reality, the effect is not so dramatic because wavelength overfitting is almost never an issue
and a couple of wavelengths are sufficient; pupil sampling is also not so critical, in spectrometers the θy is
not even considered and usually the planar symmetries of the system allow for reduced ray sampling. The
only real threat is normally field overfitting.

We briefly mentioned earlier that the shape factor ε of the Gaussian RBF depends on the sampling ∆. Our
investigations revealed that ε also has an impact on the onset of overfitting and has to be chosen carefully.
For two Gaussian RBF nodes separated by ∆, the value of the first RBF at the second node is given by:

f1(x =∆) = exp(−∆
2

ε2 ) (3.10)

This means that the ratio f1/ f2 is equal to 1/2 when the shape parameter ε is set to ∆/
p

ln2 which is
roughly 1.2∆. Empiric results from our research suggest that setting the value of at least ε = 2∆ is sufficient
to avoid overfitting. The reason is that, just as having several rays influenced by each node was important,
having each surface point influenced by several nodes ensures a proper choice of the RBF weights. For our
particular ’rule of thumb’ value of ε = 2∆, the overlap between nodes leads to a ratio of f1/ f2 = exp(−1/4)
which is roughly 0.78 for adjacent nodes, and f1/ f3 = exp(−1) which is around 0.36 second closest node
located at 2∆.



3.3. FREEFORM SPECTROMETER 69

(a) A situation with proper RBF sampling. Each node influences rays of different
pupil, field and wavelength

(b) Increasing the amount of nodes leads to some of them losing their influence over
different field points (left) and even over different pupil position and wavelengths

(right)

Figure 3.25: The impact of RBF sampling on the onset of overfitting
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Table 3.10: Requirements for the Monolithic Thermal Infra-red imager concept

Requirement Value Unit
Max. volume 100 x 100 x 100 [mm] x [mm] x [mm]
Material Germanium
Entrance pupil diameter 90 mm
Focal length 200 mm
F number 2.2
Field of view (fx, fy) ±2.8 x ±2.2 [deg] x [deg]
Spectral range 8 - 12 um
Pixel size 15 um
RMS spot radius 15 um

In conclusion, a careless choice of the amount of rays being sampled, the amount of RBF nodes and the
shape parameters of the functions can lead to the issue of overfitting. We have identified the causes of this
problem and we proposed strategies for avoiding it.

3.4. COMPACT THERMAL INFRA-RED TELESCOPE

In this section we present a rather different case study to show the versatility of GDRT. The freeform spec-
trometer was a purely reflective-diffractive system of significant size, with a spectral range in the visible and
near infra-red regime. This time the system of interest is a thermal infra-red imager based on a monolithic,
purely refractive concept with strict constraints in volume.

3.4.1. TECHNICAL SPECIFICATIONS

The idea for this concept was a system which could approximately fit inside a CubeSat platform, therefore
the total volume is constraint to be around 100x100x100 mm. Also, the system would be monolithic, i.e.
constructed out of a single block of infra-red material; its faces acting as optical surfaces. The most relevant
requirements and physical constraints for this case study are summarized in Table 3.10.

3.4.2. INITIAL DESIGN

Based on those requirements a baseline design was set up using rotationally symmetric surfaces in Zemax
Optics Studio; in this case we decided to use biconics which are equivalent to a standard conic sag but with
two curvatures cx ,cy and two conic constants kx ,ky .

z(x, y) = cx x2 + cy y2

1+
√

1− (1+kx c2
x x2 +ky c2

y y2)
(3.11)

The chosen optical layout can be seen in Figure 3.26. Light enters the through the pupil on the left side
and travels through the block of germanium up to the first face R1, where it bounce back towards the lower
face. After a second internal reflection at R2, light reaches the final face (at the top) and leaves the block while
being focused onto the image plane. Thus, the optical system consists of a total of 4 active surfaces: two
boundaries of the block (S1,S2) and two internal reflections (R1,R2).

With that in mind, the system was optimized with Zemax until the optical performance could no longer be
improved. Despite extensive efforts, due to the limited amount of degrees of freedom available and the strict
constraints on the overall size of the system, the performance levels could only be brought down to values
above the requirements (see Figure 3.27), with a minimum of 21 microns and a maximum of more than 91
microns, when the desired value was 15 microns.

Therefore, the system was transferred into GDRT and optimized using our freeform optimization capa-
bilities. The results are presented in the following section.
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Figure 3.26: Optical layout of the Monolithic Thermal Infra-red imager concept

Figure 3.27: RMS spot radius field map for the rotationally symmetric version of the Monolithic Thermal Infra-red imager concept
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Table 3.11: RMS spot radius comparison between the initial and the freeform version of the Compact Thermal Infra-red imager concept

Field point [deg, deg] (0, 0) (2.8, 0.0) (0.0, 2.2) (2.8, 2.2) (2.8, -2.2) (0.0, -2.2)
Initial system 27.18 33.80 27.02 28.24 91.94 51.06
Freeform system 12.41 13.73 11.81 17.70 17.95 14.81

Figure 3.28: RMS spot radius field map for the freeform version of the Monolithic Thermal Infra-red imager concept

3.4.3. FREEFORM DESIGN

The main metric of performance for the freeform version of the Monolithic Thermal Infra-red imager is RMS
spot radius. However, in contrast with the previous case studies (Cooke triplet and spectrometer) we now
have constraints on the focal length and working F-number. If this is not accounted for in GDRT, the optimizer
will most certainly generate a design which does not comply with those constraints. The way we solved that
issue is as follows. In GDRT it is easy to constraint the distance between points on the image plane; thus we
can control image size. As the field of view is given, controlling image size automatically allows for control
of the focal length. In addition, as the pupil diameter is fixed, controlling focal length implies controlling
F-number.

Once we included the metrics of performance and constraints into the merit function, the system was
optimized inside GDRT, and then exported to Zemax for final performance evaluation. The freeform surface
representation chosen in this case is the base biconic from the initial design plus a freeform departure con-
sisting of global polynomial terms and the usual RBF. The amount of RBF nodes per surface is around 100
which leads to a total number of degrees of freedom close to 500. Once again due to the inherent planar
symmetry of the system, the surface representation is forced to be symmetric along the x-axis.

The results after optimization are summarized in Table 3.11. Significant improvements in RMS spot radius
were achieved for all field points. The final field map can be seen in Figure 3.28. Recalling the requirement
of 15 µm, we can conclude that for most of the field of view the freeform system falls within the desired
specifications, with slight deviations at the edges. Undoubtedly, additional efforts will be needed to bring up
the optical performance to higher levels and thus allow sufficient margin for tolerances. Nevertheless, as a
first order solution, this freeform system demonstrates that GDRT is a powerful tool to improve a standard
design whose performance is stagnated above the requirements.
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We conclude this section presenting the freeform departure of each of the surfaces in the monolithic
imager, see Figure 3.29 and Figure 3.30. All surfaces exhibit a smooth freeform departure (strong influence of
the global terms) in the order of 100 µm, except for the second reflection R2 which only has around 25 µm.
Overall, the first two shapes resemble a standard rotationally symmetric sag; while R2 looks very much like
an decentered astigmatic surface.
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Figure 3.29: Freeform departure (global + RBF) for the first two surfaces of the freeform Monolithic Thermal Infra-red imager concept
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Figure 3.30: Freeform departure (global + RBF) for the last two surfaces of the freeform Monolithic Thermal Infra-red imager concept
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Table 3.12: Main requirements and physical constraints of the LWIR imager

Requirement Value Unit
Entrance pupil diameter 30 mm
Field of View 10 degrees
F numbed 1.9
Spectral range 8 - 12 um
Wavefront error @10 um 1/100 waves

3.5. LONG-WAVE INFRA-RED REFLECTIVE IMAGER

We conclude this chapter with another system optimized with GDRT, but from a slightly different perspec-
tive. The system in this case is a long-wave infra-red (LWIR) reflective imager which operates in the 10 µm
wavelength range and follows the one presented in the landmark paper of freeform design [28]. In that study,
Fuerschbach, Rolland and Thompson used nodal aberration theory and Zernike polynomials to design a
freeform system substantially superior to its conic-only counterpart.

At early stages of this research (in fact, even before this Master Thesis started) we decided to use this paper
as a benchmark for what it ended up being a primitive version of GDRT. This much simpler tool, despite being
based on the use of Fermat’s path principle for the computation of derivatives, it did not make use of the Im-
plicit Function Theorem and differential ray tracing as GDRT now does and lacked most of its main features
and capabilities. Nevertheless, after several months of research and thanks to the use of RBF surface repre-
sentation, it was advanced enough to generate a freeform system which outperformed the one presented in
[28].

In order to gain some insight into how the latest version of GDRT has improved and how powerful the
novel approach based on differential ray tracing can be, we decided to bring back this study and re-optimize
it with GDRT. The results of this investigation are summarised in the following sections.

3.5.1. TECHNICAL SPECIFICATIONS

The LWIR system can be regarded as the reflective equivalent of the Compact Thermal Infra-red imager from
the previous section, with a similar size and wavelength range but using only mirrors. The operating require-
ments are summarised in Table 3.12, the main metric of performance being RMS wavefront error. This is a
novelty with respect to the previous systems presented in this report, where RMS spot radius was used as the
main metric. Nevertheless, this is not an issue as GDRT currently includes wavefront error as a merit function
available for freeform optimization.

The requirement on wavefront error of 1/100λ at 10 µm is a rather demanding one, considering the
fact that the diffraction limit for this system is approximately 0.07 λ, but it is not beyond the capabilities
of freeform optics.

3.5.2. FREEFORM DESIGN

We will not go into detail about the surface representation used by Fuerschbach as it is readily available in
his paper, but in essence it is the well-known approach of combining a base conic with a series expansion of
Zernike polynomials. The particular choice of which Zernike terms to use and on which surface they should
be included is skilfully done using nodal aberration theory and it is well explained in [28]. An equivalent
approach was followed for our particular version of the system (which we will refer to as pre-GDRT) during the
early stages of research. This step can be done easily in Zemax to obtain a system which fulfils the wavefront
error requirement of 1/100 waves at 10 mum.

After that, the pre-GDRT system (which includes conic and Zernike terms) was optimized outside of Ze-
max adding a layer of local surface representation in the form of RBF. This brought down the wavefront error
even further to maximum values of less than 1/200λ.
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Figure 3.31: Optical layout of the freeform LWIR imager

The same procedure was followed but this time using the full capabilities of GDRT to re-optimize the
Zemax freeform system. It is important to note that both optimizations (pre-GDRT and GDRT) are done
only considering the RBF surface representation as degrees of freedom. The conventional parameters of the
Zemax freeform system (curvatures, tilts and also the Zernike coefficients) are kept fixed. GDRT managed
to bring the wavefront error down again with respect to the pre-GDRT version, to values below 1/300λ over
the complete field of view. A comparison between the wavefront error field maps for both the pre-GDRT and
GDRT version is shown in Figure 3.32.

To summarise these findings, during an early investigation previous to the development of GDRT we man-
aged to improve the wavefront error performance of an optical system similar to the one shown in [28], from
1/100λ to 1/200λ. In order to benchmark the capabilities of the full GDRT suite, we decided to recover this
study and re-do the optimization using our differential ray tracing approach. This led to a further improve-
ment in optical performance up to 1/300λ wavefront error.

However, the benefits of GDRT compared to the early investigations are not simply limited to optical
performance. First of all, the pre-GDRT version required an extremely large amount of RBF nodes per surface
to achieve its goals (in the order of 1000). This did not pose a serious problem in itself because the pre-
GDRT software was considerably more primitive than the current GDRT and lacked many functionalities,
which means it had more spare time to spend in dull tasks (such as RBF evaluation) before the optimization
becomes too slow to be useful. Nevertheless, it is still a significant disadvantage as the size of the export
surface files scales with the amount of RBF weights; and too large a file significantly slows down the evaluation
of performance in Zemax.

In addition, the pre-GDRT version suffered from certain texture issues on the optical surfaces (see Fig-
ure 3.33) which means that the freeform departures were not as smooth as expected and exhibited medium-
frequency features. This is certainly a problem because medium and high frequency surface features imply
complications for the manufacturing and polishing processes; and can also affect the optical performance
of the system in a negative way. Fortunately, GDRT does not suffer from these issues and always generates
perfectly smooth freeform departures with a reasonable amount of RBF nodes (around 100).
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(a) Contour plot of the wavefront error field map for the pre-GDRT version

(b) Contour plot of the wavefront error field map for the GDRT version

Figure 3.32: Comparison of wavefront error between the pre-GDRT and GDRT version of the LWIR imager
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(a) Freeform departure of M1 for the pre-GDRT version showing signs of non-smooth surface
features

(b) Freeform departure of M1 for the GDRT version showing a perfectly smooth surface

Figure 3.33: Comparison of pre-GDRT and GDRT freeform surface departures





4
GLOBAL MINIMA

4.1. MOTIVATION

All our investigations so far have been centred around the search for local minima; i.e starting from a fully
optimized system from Zemax, GDRT employs local optimization techniques to obtain one freeform system
of enhanced optical performance. But one should note that optical design is an inherently non-linear opti-
mization problem of high dimensionality when freeform surfaces are considered. Therefore, a wide variety of
local minima are expected to exist within the merit function landscape, representing different optical systems
of locally-optimum performance.

Solely from an optical designer perspective, finding a single one of those minima which fulfils the techni-
cal requirements is usually sufficient; provided that the optical system is meaningful in physical terms. But in
order to gain a deeper insight into the subject of freeform optics optimization it is important to characterize
the merit function landscape, at least from a qualitative point of view.

For this reason, we carried out an analysis of the merit function around the neighbourhood of a local
minimum for a freeform system. We used a method to sample the merit function landscape based on the
curvature information from the Hessian matrix.

4.2. METHODOLOGY

The main goal of this investigation was to characterize the landscape of a typical merit function around a
freeform minimum and try to locate and study alternative minima in its surroundings. At first glance, one
could think of using a global optimization strategy to identify the different minima. But, for the systems we
have studied with GDRT, the amount of degrees of freedom n usually varies between 100 and 1000, which is
well beyond the capabilities of state-of-the-art global optimizers (at least in a reasonable amount of time).

An alternative approach is to use some sort of sampling method combined with local optimization to
study only a discretized set of the state space. Even so, when sampling a high dimensional space x ∈ Rn ,
in order to keep a constant sampling density, the number of sample points N scales with 2n which grows
quickly to infeasible computational times. Consequently, one needs to devise a way of making the most out
of its samples by incorporating as much information as possible from the merit function landscape into its
sampling strategy.

Thankfully, as we are interested in investigating the neighbourhood of a local minimum x∗, the Hessian
matrix which contains information about the curvatures of the merit function can be used to construct a
smart sampling method. The idea is to draw a set of p samples S = {x1, · · · ,xp } from a multivariate Gaussian
distribution Nn with mean equal to the local minimum and covariance matrix proportional to the inverse of
the Hessian at the local minimum:
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µ= x∗ (4.1)

C =σH−1(x∗) (4.2)

S vNn(µ,C ) (4.3)

The use of the inverse Hessian in the covariance matrix results in sample sets elongated along directions
where the curvature of the merit function is low. This has two beneficial effects:

1. Samples along those regions of low curvature are more likely to be attracted by alternative minima,
increasing the chance of discovery

2. The regions of high curvature, where a local optimizer would tend to bring the state quickly back to x∗
tend to be ignored with this method. This translates into a more efficient use of the samples, allowing
to reduce the number of them and consequently saving computational time

Care should be taken to ensure that the evaluation point x∗ is a local minimum, or at least sufficiently
close to one, for the Hessian and its inverse to be positive semi-definite matrices. By definition, the covariance
matrix must be positive semi-definite; otherwise one would end up trying to draw samples with negative
variance.

The parameter σ allows for control of the overall size of the sample set. One should note that not all
generated states might represent meaningful optical systems. In other words, although the merit function
is usually defined in the complete domain of Rn , it is restricted to states which fulfil the natural constraints
imposed by Fermat’s path principle. As a result of this, some states (if far away from x∗) may cause the ray
trace operation to diverge as they represent non-physical systems.

In the end, the choice of σ is driven by a trade-off. Small values lead to samples initially close to x∗,
lowering the chances of escaping its basin of attraction and of finding new minima; while large values increase
the probability of generating non-physical system (i.e. wasted samples).

Once the samples have been generated, the procedure is quite straightforward. For each sample, a local
optimization run is performed until a new optimum state is reached. A post-processing stage will take care
of analysing how the sample set has evolved in order to answer the following questions:

1. Have alternative minima been found?

2. If so, how do they look like when compared to the nominal minimum x∗?

3. If not, how does the merit function around x∗ look like?

4.3. HESSIAN INVERSE

Although GDRT has second order derivative capabilities, obtaining the Hessian and inverting it can be too
computationally challenging in terms of time and memory. In contrast with a standard optimization task
where accuracy plays a key role, for this sort of investigation we only need the inverse Hessian to get a broad
idea of the curvatures and generate sample sets. Having the exact values up to machine precision will not
ensure that the samples we draw will lead to new minima, and the computation of p local optimization runs
already takes a significant amount of time. Therefore, for this task we are content with using the following
fast approximation of the inverse Hessian.

For a generic Linear Operator A in Rn → Rn , the Python module SciPy can reconstruct a partial eigende-
composition up to (n−2) if provided with its right and left hand side vector products methods A ·v and vT ·A.
For the case of the Hessian matrix, GDRT has fast and easy access to the Hessian vector product H · v so we
can obtain the (n −2) highest eigenvalues [Λ]∗ and their associated eigenvectors [U ]∗.
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Figure 4.1: Styblinski-Tang function in 2 dimensions

H ≡ Li near Oper ator (H · v) (4.4)

[Λ]∗, [U ]∗ = ei g en(H) (4.5)

So that:

Hui =λi ui (4.6)

The only drawback of this decomposition is that it is incomplete, meaning that the last two eigenval-
ues and eigenvectors are missing. However, based on previous knowledge about the Hessian spectrum we
know that those two eigenvalues will be many orders of magnitude smaller than λ1 and very close to the
last one available λn−3. Consequently, we can complete the decomposition by cloning λn−3 and adding two
additional linearly independent eigenvectors without degrading the accuracy of the approximation. A Gram-
Schmidt orthonormalization process can be used to generate the additional eigenvectors.

Now, based on the extended decomposition [Λ], [U ] the approximate inverse Hessian can be recovered
using the following formula. As [Λ] is a diagonal matrix, its inverse can be computed immediately by taking
the reciprocal of the eigenvalues λi :

H−1 'UΛ−1U T (4.7)

4.4. 2D EXAMPLE

In order to illustrate the idea behind this method, before studying a high-dimensional scenario, we will
present first a simple 2D example which allows for direct visualization. Consider the Styblinski-Tang func-
tion for a generic dimensionality d :

f (x) = 1

2

d∑
i

(x4
i −16x2

i +5xi ) (4.8)

When restricted to 2 dimensions this function has 4 local minima in the [−5,5]× [−5,5] domain, one of
them constitutes the global minimum located at x∗ = (−2.903534,−2.903534). The function landscape can
be seen in Figure 4.1.
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Figure 4.2: Results of the global minima method for σ= 1 (left) and σ= 100 (right) for the Styblinski-Tang function

Judging from the figure, it is easy to understand why without knowing anything about the function land-
scape (the natural situation for a high dimensional optimization problem), one might end up always find the
same local minimum, if the starting points are within the basin of attraction of that particular minimum.

For this example problem we used the inverse Hessian matrix, which can be computed analytically, to set
up the covariance matrix and draw 25 samples around the local minimum opposite to the global one. We ran
local optimization procedures for each sample and reported the final optimum states. The results are shown
in Figure 4.2 for two different values of initial sample set size. The starting sample states are shown in colour
blue while the final optimized results are shown in green.

At this point several conclusions can be drawn:

1. The method we proposed is capable of identifying new local minima in the neighbourhood of the nom-
inal one used to draw the samples (see the green points in Figure 4.2)

2. Incorporating curvature information from the Hessian into the covariance matrix enhances the effec-
tiveness of the sampling. The steep areas of high curvature need not be sampled because there is no
chance of not falling back towards the original minimum. Therefore, the samples tend be shifted to-
wards more interesting areas of low curvature where bifurcations towards other minima might exist

3. The success of this method in finding additional minima depends on a proper choice of the sample
size σ. When σ is too small, all the samples will start on the basin of attraction of the nominal local
minimum and will not produce new findings.

4.5. RESULTS

For this investigation, we used a relatively low-dimensional version of the freeform Cooke triplet with 24 de-
grees of freedom to reduce the total computational time down to a reasonable value (p local optimization
runs in a high dimensional space can be quite demanding). The system was preconditioned in accordance
with the method shown in subsection 3.1.3. Based on the procedure described in section 4.2, the search space
was sampled using a set of p = 100 randomly generated samples with covariance matrix proportional to the
Hessian inverse at the local minimum C =σH−1(x∗). An initial investigation for σ= 0.1 did not yield new lo-
cal minima. All the samples either failed to convergence during local optimization, or converged to the initial
minimum x∗.

Therefore, the same procedure was repeated for a higher value of set size σ = 1.0. This time, careful
analysis of the convergence behaviour for each sample revealed that, although most samples converged back
to x∗, some appeared to have converged to states of slightly higher merit function then the nominal one,
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Table 4.1: RMS spot radius performance and GDRT merit function values for the freeform Cooke triplet associated with x∗ and the two
minima candidates

System of interest
Field Point [deg] Nominal Minimum Candidate 1 Candidate 2

[0, 0] 4.729 5.059 4.185
[0, 14] 6.182 6.354 7.645

[14, 14] 9.266 7.793 15.777
GDRT Merit Function 0.336775 0.547606 0.723034

Figure 4.3: 3D layout of the Nominal Minimum freeform Cooke triplet

which suggested the existence of new local minima. Two samples of interest were selected, we will refer to
each sample as "Candidate 1" x1 and "Candidate 2" x2.

Both candidate states were used to generate freeform systems which we exported to Zemax Optics Studio
for characterization and to compare them with the nominal system linked to x∗. We were interested in under-
standing how the different values in GDRT merit function translate into differences in optical performance
between the systems, and the overall layout in terms of curvatures, thickness and surface shape.

The results in terms of optical performance for the three systems of interest are summarized in Table 4.1.
It can be observed that the values of RMS spot radius for several field points are very similar for all the systems,
the major changes happening close to the boundary of the field of view. We will now analyse each candidate
in detail.

4.5.1. CANDIDATE 1

After loading the necessary sag files into Zemax, the system candidate 1 was compared with the one asso-
ciated with the local minimum x∗. Judging from Figure 4.3 and Figure 4.4, there are substantial differences
in terms of optical layout between the two systems. The first and last lenses of the new candidate show in-
creased thickness with respect to the nominal design. More importantly, the curvatures of the second lens
have increased up to the point of almost contacting each other at the center. This obviously means that the
system is close to being physically unrealistic, a situation which will become clear in a moment.

We decided to explore the merit function landscape along the n-dimensional line v connecting the two
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Figure 4.4: 3D layout of the Candidate 1 freeform Cooke triplet

states x∗ and x1. This allows for direct visualization of the merit function, even though the state space is
inherently high dimensional.

∆x = x1 −x∗ (4.9)

v = x∗+τ∆x ∀τ ∈R (4.10)

The merit function f was evaluated along the interval τ= [−0.5,1.5] which covers both sides of the pair of
minima. The results shown in Figure 4.5 are quite revealing. Both points x∗ and x1 appear to be two distinct
local minima separated by an small ’energy barrier’ of O (0.1). However, for values of τ slightly higher than
1.0, i.e. further away from x1, the merit function suddenly diverges. This is perfectly in accordance with the
observation that Candidate 1 is close to being a non-physical system due to the excessive curvatures of the
second lens (let us recall Figure 4.4). When τ increases beyond the point where the two surfaces of the second
lens auto-intersect each other, the ray tracing is no longer valid; thus the merit function loses its meaning.

This is an inherent disadvantage of generating the samples randomly in this global minima method. Even
when taking the inverse Hessian information into account, for sufficiently large values ofσ, the probability of
drawing sample states which represent non-physical systems (with negative thickness, wrong curvature sign
at the entrance surface, self-intersecting surfaces, etc) starts to become significant.

4.5.2. CANDIDATE 2

The same process was repeated for the Candidate 2 system, which exhibited slightly worse optical perfor-
mance than Candidate 1. Interestingly, the optical layout in this case (see Figure 4.6) is opposite to that of
Candidate 1. This time, the thickness of the first and second lenses are smaller compared to the nominal sys-
tem, while the thickness of the second surface is larger. That last feature, combined with milder curvatures
for the second lens, ensures that Candidate 2 appears to be a well-behaved system from a physical point of
view. There is no danger of self-intersection between surfaces.

Once again, the merit function was analysed along the line connecting x∗ and x2. As expected, the ap-
parently ’more physical’ behaviour of Candidate 2 translates into a much more robust merit function (see
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Figure 4.5: Merit function along the line covering x∗ and x1

Figure 4.6: 3D layout of the Candidate 2 freeform Cooke triplet
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Figure 4.7). This time, the landscape is continuous and differentiable at both sides of the pair of minima. The
merit function ’energy barrier’ between the two minima is higher than in the previous case; around O (1).

A thorough analysis of the merit function in the vicinity of x2 revealed that the candidate point does not
constitute a local minimum in the strict sense. Despite the apparent convergence behaviour observed when
the sample was drawn and optimized, the magnitude of the gradient (around 10−3) remains quite large in
comparison with the value for x∗ (around 10−7). Even if Figure 4.7 shows that the point is indeed a local
minimum along the v direction, in the complete n-dimensional state space, there are directions along which
the merit function still improves.

The spectrum of the Hessian matrix evaluated at x2 is composed by 23 positive eigenvalues of large mag-
nitude (some as high as 108) and only 1 negative eigenvalue with the smallest magnitude out of the whole set
(10−1). The result indicates that x2 corresponds to a saddle point of the merit function; but one which is al-
most completely convex except for a direction of mild negative curvature. This explains the remarkably slow
convergence rate reported for this sample and helps emphasize the statement that second-order derivative
information are really necessary in this type of system. With the merit function landscape as it is (in terms of
curvature mismatch), gradient-based algorithms would struggle to progress in the neighbourhood of x2. And
these results are for the preconditioned Cooke triplet; the situation for the un-preconditioned system could
be even more dramatic.

If x2 is used as a new starting point for a high dimensional optimization with a very demanding tolerance
on the norm of the gradient, one will observe that it eventually leads back to the true local minimum x∗.
Nevertheless, x2 still constitutes an important point of interest because it illustrates one of the fundamental
problems of local optimization: how an unlucky starting point can lead the optimizer to become temporarily
trapped in a poor state which appears to be a local minimum, simply because the convergence has slowed
down significantly for many iterations. In a situation like this, the designer might end up looking at an op-
tical system which is by no means optimum, as there is another local minimum in the vicinity which the
optimization did not find.

Another important thing to note is that, as the number of dimensions n grows larger, the threshold δ on
the norm of the gradient g =∇ f (which is usually defined as the stop criterion for the optimization algorithm)
becomes increasingly harder to fulfil. Let us assume that the gradient has p components equal to 0 and (n−p)
components equal to a non-zero value ε:

g = [g1, · · · , gp , · · · , gn] g j = ε ∀ j > p (4.11)

The norm of the gradient is thus

‖g‖ =
√√√√ p∑

1
02 +

n∑
p+1

ε2 = εpn −p (4.12)

Which only depends on the amount of non-zero components, rather than on the dimension of the search
space. At low dimensionality (n = 2, p = 1 for instance), only 1 component needs to be equal to 0 for the
gradient to have norm ε. In contrast, at high dimensionality (such as n = 50, p = 1), 49 components out
of the total of 50 must be identically equal to 0 for the gradient to have the exact same norm as the low
dimensional case. This makes the search for local minima more challenging as n grows. If one decides to relax
the threshold δ to a higher value when optimizing for large n, the possibilities of encountering a situation like
that of Candidate 2 increase. In contrast, if one keeps the δ fixed, the amount of iterations required to fulfil
the gradient threshold will inevitably grow as n grows; iterations that at the same time grow in computational
cost with n.

‖g‖max = max(|g1|, · · · , |gp |, · · · , |gn |) (4.13)

An alternative to this problem is to use the maximum norm defined as the maximum absolute value of all
components of the gradient. But even so, the changes of fulfilling the threshold decrease as the dimension of
the gradient grows larger.
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Figure 4.7: Merit function along the line covering x∗ and x2





5
ALTERNATING DIRECTION METHOD OF

MULTIPLIERS

5.1. MOTIVATION

The approach to freeform optics design proposed in this project usually leads to high-dimensional optimiza-
tion problems with hundreds of variables. Most conventional optimization algorithms tend to scale poorly
with dimensionality; therefore we decided to investigate the possibility of using algorithms specifically de-
signed for, or at least well-suited, for large-scale optimization tasks.

The Alternating Direction Method of Multipliers (ADMM), an algorithm which is quickly gaining popular-
ity, is particularly powerful for large-scale optimization problems which exhibit some inherent parallelism. In
this chapter, we demonstrate via a simple proof-of-concept that the ADMM algorithm can be successfully ap-
plied to freeform optics optimization, in a way which opens the doors for future implementations of parallel
computing techniques.

5.2. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

The Alternating Direction Method of Multipliers [5] is an optimization algorithm developed around the 1970s
which is becoming increasingly popular for a wide range of tasks such as large-scale optimization [75], image
processing [76] and machine learning [77]. This algorithm attempts to blend the beneficial characteristics
of two different precursor algorithms: the decomposability of the dual ascent method and the superior con-
vergence properties of the method of multipliers [5]. We will begin by considering a general optimization
problem of the form:

minimize
x,z

f (x)+ g (z) (5.1)

subject to Ax +B z = c (5.2)

With x ∈Rn , z ∈Rm , A ∈Rp×n , B ∈Rp×m and c ∈Rp . We can now introduce the augmented Lagrangian Lρ
of the function, with the Lagrange multipliers λ and penalty parameter ρ:

Lρ(x, z,λ) = f (x)+ g (z)+λT (Ax +B z − c)+ ρ

2
‖Ax +B z − c‖2 (5.3)

The ADMM algorithm applied to this problem gives rise the following iterative update structure:
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xk+1 = argmin
x

Lρ(xk , zk ,λk ) (5.4)

zk+1 = argmin
z

Lρ(xk+1, zk ,λk ) (5.5)

λk+1 =λk +ρ(Axk+1 +B zk+1 − c) (5.6)

Two subsequent minimization steps in x and z followed by an update of the multipliersλ. The key features
that makes ADMM special is the fact that the x and z variables are updated in an alternating fashion (thus its
name of Alternating Directions Method of Multipliers).

It is often convenient to rescale the definition of the variables in the ADMM based on the following ex-
pressions for the primal residual r and the dual variable u:

r k = Axk +B zk − c (5.7)

uk = 1

ρ
λk (5.8)

The resulting ADMM structure can be written as follows:

xk+1 = argmin
x

f (x)+ ρ

2
‖Ax +B zk − c +uk‖2 (5.9)

zk+1 = argmin
z

g (z)+ ρ

2
‖Axk+1 +B z − c +uk‖2 (5.10)

uk+1 = uk + (Axk+1 +B zk+1 − c) (5.11)

The stop criteria for the ADMM is usually linked to the current value of two residuals: the primal residual
r and the dual residual s:

r k = Axk +B zk − c (5.12)

‖r k‖2 ≤ εpr i mal (5.13)

sk = ρAT B(zk+1 − zk ) (5.14)

‖sk‖2 ≤ εdual (5.15)

In light of the general structure of the algorithm presented above, one can conclude that the philosophy
of ADMM is to decompose the solution to large global problem into small local subproblems which can be
solved independently.
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Figure 5.1: General form consensus optimization. Local objective terms are on the left; global variable components are on the right.
Each edge in the bipartite graph is a consistency constraint, linking a local variable and a global variable component. Source: [5]

5.3. CONSENSUS OPTIMIZATION

One common application of ADMM, consensus optimization [5], is particularly suitable for the kind problem
we deal in freeform optics optimization. Consensus optimization basically aims at optimizing an objective
function f , separable into subfunctions fi which depend on local variables xi ∈Rn under the constraint that
all local variables should agree and be equal to a global variable z. We can express this idea as:

minimize
x

N∑
i=1

fi (xi ) (5.16)

subject to xi − z = 0 i = 1, · · · , N (5.17)

Which is a particular case of the general problem from section 5.2. The idea behind consensus optimiza-
tion can be easily understood by looking at Figure 5.1. Each subfunction to minimize depends on a particular
subset xi which acts as a local copy of the global variable z. The framework of ADMM consensus optimization
ensures that after minimization of each subfunction, the different local copies are in consensus, i.e. are equal,
with their corresponding component of the global z.

When the ADMM is applied to this type of problem, the resulting structure adopts the following form:

xk+1
i = argmin

x
fi (xi )+λk

i · xi + ρ

2
‖xi − zk‖2 (5.18)

zk+1 = argmin
z

N∑
i=1

−λk
i · z + ρ

2
‖xk+1

i − z‖2 (5.19)

λk+1
i =λk

i +ρ(xk+1
i − zk+1) (5.20)

Thanks to the decomposability of the merit function f each xi minimization can be solved indepen-
dently over N different processors, which allows for full use of parallel computing capabilities to speed up
ADMM. Then, the z minimization steps aggregates the results from the different processors to ensure con-
sensus among the local variables.
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In order to further understand how consensus optimization works, we will present an example of ADMM
application to freeform optics design. Let us consider the optimization of a freeform Cooke triplet. It is quite
common to define the merit function for an optical system as a combination of certain metrics of perfor-
mance evaluated over a discrete set of field points, pupil coordinates or wavelengths. Let us assume that this
time the merit function is the sum of the spot size over a total of N field points:

f =
N∑

i=1
fi (xi ) (5.21)

Were fi is the spot size as field point i and xi represents a local copy of the system parameters z. The
framework of ADMM consensus optimization allows for parallelization of the field into a set of N partitions
which can be optimized independently, while ensuring that all subproblems maintain consensus of the sys-
tem parameters. The price one has to pay is that the number of variables n is essentially multiplied by N .
Nevertheless the negative impact of that is quite low, as each x-minimization subproblem fi is substantially
simpler than the global form and can be efficiently solved in parallel using simple optimization algorithms.
The field partitioning also has the beneficial effect of bringing down the size of the ray tracing operations as
the total amount of rays being traced nr ay s is distributed among the different processors to nr ay s /N . In addi-
tion, the complexity of the z-minimization subproblem remains almost constant as the number of partitions
increases, as it usually boils down to a simple weighted average of the local variables.

5.4. ALGORITHM IMPLEMENTATION

In contrast with conventional algorithms such as BFGS or the Newton method, ADMM is not readily avail-
able in common Python packages such as Scipy. Fortunately, very recently SParse Optimization Research
COde (SPORCO), an open-source Python package for solving optimization problems with sparsity-inducing
regularization has been released [78].

SPORCO includes a generic implementation of the ADMM algorithm in the form of Python objects, which
provides the basic skeleton to construct a customized implementation for an specific problem of interest.
Thanks to its Python interface and open-source characteristics, SPORCO allows for a fast and simple blend
with the existing functionalities of GDRT.

The generic ADMM from SPORCO contains basic functionalities transparent to the type of problem being
solved such as residual computation, universal update structures, stopping criteria, etc. The main task of the
user is to override the methods of the ADMM class to adapt them to the specific problem. This includes all
the x, z-minimization steps, u-update, as well as constraint enforcements A,B ,c. Therefore, there is complete
freedom of choice for the algorithms used in the intermediate minimization steps, freedom to construct the
different partitions and parallelize the solution those subproblems. In addition, the fact that the basic internal
structure of the ADMM algorithm is already taken care of by SPORCO simplifies the development stage and
minimizes verification and validation efforts.

5.5. RESULTS

In this section we present the results for a proof-of-concept ADMM optimization of the freeform Cooke triplet
which allows for parallel implementation. As already explained in subsection 3.1.2, the freeform modelling
for the Cooke triplet made use of the existing symmetries to simplify the system. The RBF weights and field
points are symmetrized in a octant fashion; thus we only consider the following field points to describe the
complete field of view (see Table 5.1). This corresponds to the 6 independent field points for a 3×3 square
grid with diagonal 20 degrees, which give rise to 6 field partitions.

This time the xi variables (∀i = [1, · · · ,6]) correspond to local copies of the degrees of freedom (n = 24)
associated with each field point. The merit function f was defined as the sum of the RMS spot size evaluated
at each field point.
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Table 5.1: Field of view partitions for the ADMM implementation of the freeform Cooke triplet

Field point 1 2 3 4 5 6
X [deg] 0 10/

p
2 20/

p
2 10/

p
2 20/

p
2 20/

p
2

Y[deg] 0 0 0 10/
p

2 10/
p

2 20/
p

2

Table 5.2: RMS spot radius comparison for the non-freeform and the freeform version of the Cooke triplet optimized with ADMM

Field point 1 2 3 4 5 6
Initial [um] 5.086 6.739 15.001 9.764 15.980 11.699
Final [um] 2.157 3.182 7.676 6.240 9.065 4.640

f ({x1, · · · , xN }) =
N=6∑
i=1

fi (xi ) (5.22)

Even though the definition of each x-minimization step is entirely independent of the rest of local copies
and can be solved in parallel over N processors, we started with a purely sequential computing approach for
the sake of simplicity. For the x-minimizations we used the BFGS algorithm, while a Trust Region Newton-CG
was used for the z-minimization because the Hessian of that subproblem is simple and readily available (it
does not depend on the freeform system definition).

The ADMM algorithm fulfilled the stop criteria for the primal and dual residuals after less than 3500 iter-
ations, with a total computational time of around 7 hours. This means that the approximate cost per ADMM
iteration is around 7 seconds, which includes 6 x-minimization subproblems (the main drivers of compu-
tational time), a z-minimization subproblem (which converges most of the times in a single step) and the
Lagrange multipliers update. A parallel implementation would definitely be more competitive.

The merit function evolution with iterations and the convergence behaviour of the residuals is shown
in Figure 5.2 and Figure 5.3, respectively. A comparison of optical performance between the non-freeform
starting point and the ADMM-optimized system is presented in Table 5.2, in the form of RMS spot radius
evaluated at each field partition.

5.6. PARALLELIZATION

As already mentioned, the independent nature of the xi minimization allows for parallelization of the sub-
problems. A very simple and easy method to gain some performance with Python is to use multi-threading
to distribute the computation of xk

i over several threads.

To illustrate this, we performed a quick experiment in which we compare two versions of the ADMM code:
a purely sequential version and one which applies multi-threading to the xi minimization. The standard
sequential version of the code was benchmarked for the first 50 iterations, leading to a total time spent on the
x-minimization step of 417 seconds (an average of 8.34 seconds per step). Then, the multi-threaded version
of the code was also benchmarked for the same amount of iterations, taking a total of 346 seconds (average
of 6.92 seconds per step).

speedup = tsequenti al − tmul ti−thr ead

tsequenti al
100 (5.23)

This constitutes an approximate speedup of 17%; which may not seem extraordinary but, for a large num-
ber of iterations (let us recall that the sequential ADMM took around 3500 iterations to converge), it can build
up to a significant improvement in overall speed.
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Figure 5.2: Merit function evolution with iterations for the ADMM algorithm applied to the freeform Cooke triplet

Figure 5.3: Evolution of the primal r k and dual sk residuals with iterations for the ADMM algorithm applied to the freeform Cooke
triplet
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Figure 5.4: A comparison between synchronous and asynchronous parallel computing. Source: [6]

5.7. ASYNCHRONOUS ADMM

5.7.1. SYNCHRONOUS VS. ASYNCHRONOUS

In a usual parallel implementation of ADMM, several processors (workers) will be in charge of computing
the xi -minimization substeps independently. Nevertheless, for the z-minimization step the aggregated in-
formation of x = {x1, · · · , xN is required, which means that in principle, the processors in charge of the z-
minimization (master) would have to wait until all N have finished their respective task. This approach to
parallel computing is usually referred to as synchronous, as synchronization events take place so that proces-
sors can update the variables and share data needed for the upcoming iteration. The obvious consequence
of this method is that the overall speed of the computation is governed by the speed of the slowest of all pro-
cessors; and situations in which most of the processors are in an idle state waiting for the rest to finish can
become quite common.

In contrast, asynchronous parallel computing [77] tries to minimize idle times and thus speed up itera-
tions by eliminating synchronization steps. Each processor operates asynchronously, without waiting for the
rest to finish; consequently iterations get disordered as the fastest processors start their next iteration while
others are still computing. A quick way to visualize the fundamental differences between synchronous and
asynchronous parallel computing is shown in Figure 5.4.

This behaviour has a detrimental effect on the convergence properties of the algorithm due to phenom-
ena such as uncordinated memory access and inconsistent read (details in [6]), which is easy to understand:
when a fast processor starts the next iteration without waiting for some of the slowest ones to properly up-
date the variables they are in charge of, that minimization substep will be done on the basis of outdated
information and thus the result will not be truly optimum. As a result, additional iterations will be needed
to reach convergence. The essential idea behind the asynchronous approach is that the detrimental conver-
gence effects of asynchrony are expected to be compensated by a substantial improvement in speed of the
iterations, leading to an overall improvement in computational speed (’more less-meaningful iterations, but
much cheaper’).

5.7.2. LOAD BALANCE

Asynchronous parallel computing introduces an additional issue to consider: load balance. An important
assumption to guarantee convergence of an async-ADMM is that all updates from theworkers should have
the same probability of arriving at the master [77]. In other words, the speed of each worker, on average
throughout the iterations, should be approximately the same for all N . In reality, this is difficult to ensure
because the tasks sent to the different processor might differ in complexity.

In problems with significant load imbalance (one task being more complex than the rest), the worker in
charge of the most complex task will repeatedly need more time than his peers. This will inevitably lead to
his work being ignored by the rest of the fast workers quite frequently due to asynchrony. Therefore, having a
consistent load balance is key to ensuring convergence of an asynchronous algorithm.
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Figure 5.5: Relative frequency of each field partition being considered for the pk fastest updates for different values of pmi n . Left:
pmi n = 3, centre: pmi n = 4 and right: pmi n = 5

5.7.3. MIMICKING ASYNCHRONY

Implementing a fully functioning asynchronous parallel ADMM requires an expertise and effort which is far
beyond the scope of this project. Nevertheless, the effects of asynchrony can be easily mimicked by a couple
of modifications introduced in a sequential version of the code. This mimicry does not allow us to study
the speed advantages of an asynchronous ADMM, but readily provides valuable information regarding the
convergence properties.

The idea is quite simple. Let us assume the existence of a master processor in charge of the z-minimization
step, and N workers each in charge of an xi -minimization substep. These steps will be solved sequentially at
every iteration, as in the standard ADMM implementation, each taking a certain time τi . At every iteration,
we will assume the master "waits" an arbitrary amount of time τ for the workers to do their tasks. After τ sec-
onds, he will aggregate the xk+1

i updates from the pk fastest processors and the xk
i from the slowest ones and

perform the z-minimization; where pk is the random number of processors which have finished in τi < τ.
This can be summarized as follows:

At iteration k do:

1. Compute all the xi -minimization substeps and register each speed τk
i

2. Draw a random number pk between pmi n and N

3. Select the pk fastest substeps and combine their new results xk+1
i with the old ones from the N − pk

slowest substeps xk
i . In other words, ignore the results from the N −pk slowest updates.

4. Use the aggregated variable x̂k+1 to solve the z-minimization

We analysed the behaviour of the asynch-ADMM for several cases of pmi n , according to the scheme de-
scribed above. The relative frequency with which each field partition was considered among the pk fastest
is shown in Figure 5.5. It is evident that fields 2 through 5 require approximately the same time τk

i for their
minimization steps and thus have almost the same probability of their updates being considered by the mas-
ter. This set is an example of proper load balance. However, the results also indicate that as the number of
minimum processors pmi n being accepted decreases, the frequency with which updates for fields 1 and 6
are accepted also decreases. This reveals that those updates tend to be slower than the rest and are usually
under-represented in the global update x̂k+1, which can lead to a degradation on the convergence properties
of the ADMM when pmi n is low.

The detrimental effects of this substantial load imbalance can be partially alleviated by introducing a
certain modification to the schedule of the master. Instead of just waiting for the pk fastest, no matter which
ones they are, the master could keep a counter ck

i of how many iterations have passed since receiving an
update from worker i . If after C iterations no information from worker i has been received, the master will
wait for it and reset ck

i . This reduces the gains in speed because it forces a certain kind of synchronization,
but otherwise the convergence behaviour of the algorithm can be quite poor.



6
TOLERANCE ANALYSIS

When an optical system is designed and optimized using software tools like Zemax or GDRT, the value of the
parameters is known up to machine precision and the shape of the surfaces is assumed to be ideal without
manufacturing errors. But when the system is actually manufactured, assembled and integrated there will
be inherent uncertainties and inaccuracies which will affect the ultimate performance. In other words, the
final as-built performance of the optical system will differ from the nominal performance given by the optical
model. In some cases, the performance degradation can be so severe that the as-built system no longer meets
the requirements. Therefore, after the design and optimization stage it is of paramount importance to analyze
the impact of manufacturing errors, mechanical tolerances, assembly uncertainties and alignment errors on
the optical performance of the system, to first of all ensure that the as-built system will comply, but also to
design a reasonable assembly and alignment strategy which will guarantee that compliance. This analysis is
usually referred to as a tolerance analysis.

In this section, the results of the tolerance analysis for the freeform spectrometer analysed in chapter 3
are presented. For this study, we used the so called polar freeform version of the system which combines both
Cartesian and polar freeform surfaces. This tolerance analysis was entirely done using the state-of-the-art
techniques included in Zemax because at the time of the analysis, GDRT did not have its own capabilities for
tolerancing properly implemented. The results shown in this section will serve as an illustrative example of
how limited the Zemax tolerancing capabilities are when freeform optics are involved, and how necessary it
is to have a tolerance submodule for GDRT.

6.1. NOMINAL PERFORMANCE

Before jumping directly into the results of the tolerance analysis it is useful to first recall the requirements
for the spectrometer system and the nominal performance of its freeform design. This will help understand
what is the available margin for performance degradation, and will allow us to put the effect of mechanical
tolerances into perspective.

Table 6.1 shows a summary of all relevant metrics of performance for the freeform spectrometer and com-
pares them to the actual requirement. In light of the results we can conclude that a margin of approximately
one order of magnitude is available for tolerances. This might seem like a healthy margin, but the freeform
spectrometer design is a complex system containing a wide number of optical surfaces, which translates into
a lot of degrees of freedom to be controlled accurately. In addition, errors in manufacturing can easily build
up when many surfaces are involved, leading to severe performance degradation. Therefore, a careful toler-
ance analysis is essential to ensure the final as-built system will comply with the requirements.

6.2. TOLERANCE SET-UP

The tolerance analysis for the freeform spectrometer was performed twice, according to two different inte-
gration and alignment philosophies:
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Table 6.1: Nominal performance of the freeform spectrometer compared to the requirements

RMS Spot Radius
Min [um] Max [um] Average [um] Requirement [um]

0.63 1.25 0.91 10
Dispersion

Field [mm] Value [mm] Deviation [um] Requirement [um]
0.0 2.19948 0.52

612.5 2.19965 0.35
25.0 2.19932 0.68

Keystone
Field [mm] Value [mm] Deviation [um] Requirement [um]

25.0
25.00081 @ 400 nm

25.00046 @ 1225 nm
0.35 2

Magnification
Wavelength [nm] Value [mm] Deviation [um] Requirement [um]

400 25.00081 0.81
2800 25.00048 0.48

1225 25.00046 0.46

1. Passive alignment. For this analysis it was assumed that a passive alignment strategy would be fol-
lowed. This means that all surfaces will be mounted without any intermediate control of the optical
performance and without using some of the degrees of freedom of the system as compensators. This
is the simplest approach, but also the most sensitive to alignment errors, as performance cannot be
compensated in-situ during alignment.

2. Active alignment. For this analysis, some of the degrees of freedom of the optical system were assumed
to act as compensators during the alignment process. This means that intermediate evaluations of the
optical performance and active corrections would be carried out during alignment.

For the sake of consistency and completeness, the tolerance analysis for both alignment procedures was
done via a step-by-step approach. At each stage of the process, a different type of mechanical tolerances was
added to the model; subsequently increasing both the complexity and realism of the analysis. The sequence
of tolerances is shown below:

1. Decenters. This includes decenters of the optical surfaces along their local X Y -plane and changes in
distances between surfaces, i.e. along the Z -axis.

2. Tilts around the vertex. This includes rotations of the optical surfaces with respect to their vertex.

3. Tilts around the aperture. In some cases, the vertex of the mirrors in the spectrometer design is out-
side the manufactured region, which means that the tilts around that point have little relevance to
tolerances. In those cases, tilts around the actual aperture of the mirror represent more realistic toler-
ances. It is at this point that the issues regarding Zemax appear. Zemax does not have specific tolerance
operands for tilts around apertures. To circumvent this problem one must define additional dummy
surfaces to trick Zemax into doing the correct tilt. This is a very tedious operation.

4. Surface irregularities. This also poses a serious problem in Zemax. Tolerance operands on surface
irregularities are only implemented for certain freeform surface types. Therefore, in a general case
such as the freeform spectrometer the conventional operands no longer apply. As a first order solution,
one can account for surface irregularity as errors in the radius of curvature of the surfaces, something
that Zemax actually allows.

For each of the criteria shown above, both sensitivity and Monte Carlo analyses were performed.
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Figure 6.1: Impact of the top 10 tolerances on RMS spot radius (coarse tolerances of 50 µm)

As far the merit function is concerned, all tolerance analyses were done for each component of the merit
function of the freeform spectrometer. This includes RMS spot radius, keystone, dispersion and magnifi-
cation. This provides a better insight into the tolerance behaviour of the system and allows us to answer the
following questions:

1. What performance metric degrades more rapidly when mechanical tolerances are taken into account?.
Some metrics such as RMS spot radius might change significantly while others might be fairly insensi-
tive. In the ideal case one would like all the metrics to be as insensitive as possible. In reality, one might
be content with only the less important metrics being the most sensitive.

2. What type of tolerance has the biggest impact on each performance metric?. Not all metrics might re-
spond in the same way to each kind of tolerance. Some might be very sensitive to tilts, while others
might depend more on surface errors. In the ideal case, one would like all the metrics to behave simi-
larly, so that a small number of degrees of freedom could be used to compensate all metrics at the same
time.

The values of mechanical tolerances used for this study were based upon the rules of thumb for optome-
chanics reported in [79].

6.3. RESULTS

6.3.1. PASSIVE ALIGNMENT

In this section the results for the tolerance analysis considering a passive alignment strategy are presented.
We followed the procedure described in section 6.2 of increasing the complexity of the model progressively
until all major effects are considered. A very coarse value of 50 µm (and its respective tilt equivalent) was
used for all tolerances and surfaces; and and 5 µm peak-to-valley for surface irregularity.

This allows us to clearly identify what particular parameters are the ones driving the performance degra-
dation. These will then require tightening of their associated tolerances to more precise values so that the
as-built performance complies with the requirements.

The top 10 most influential tolerances on RMS spot radius are shown in Figure Figure 6.1. In light of the
results we can conclude that the first mirrors of the optical system M1 and M2 are the most sensitive. This is
something to be expected, as the effects of alignment errors on surfaces at the beginning of the optical train
have a longer optical path to travel, and thus more opportunities for amplification and build-up.

The actual values of performance estimated via a sensitivity analysis (with a Root Sum Square method)
are shown in Table 6.2. First of all, it seems clear that with such coarse tolerances, all relevant metrics of
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Table 6.2: Sensitivity analysis - performance after coarse tolerances (50 µm) for the freeform spectrometer

Metric Initial [um] Final [um] Requirement [um]
RMS spot radius 0.81 62.5 10.0
Keystone 0.35 2.8 2.0
Dispersion 0.53 8.0 6.0
Magnification 0.61 64.3 2.0

Table 6.3: Monte Carlo analysis - performance statistics after coarse tolerances (50 µm) for the freeform spectrometer

Metric Initial [um] Mean [um] Standard Deviation [um] Requirement [um]
RMS spot radius 0.81 25.7 10.6 10.0
Keystone 0.35 1.2 0.6 2.0
Dispersion 0.53 2.7 2.1 6.0
Magnification 0.61 22.4 16.1 2.0

performance suffer so much degradation that the values fall outside the specification. The effect is specially
severe in terms of RMS spot radius, the main metric of optical performance for our system. Fortunately, the
results also show that the spectral metrics like keystone and dispersion are fairly insensitive to mechanical
tolerances. This suggests that they will not pose a challenge when more precise tolerances are considered.

In addition, Monte Carlo analyses with 250 systems were done for each metric, the results summarized in
Table 6.3. The performance estimation via Monte Carlo is less conservative than a RSS approach, and more
reliable. If one pays attention to the statistics for both keystone and dispersion (assuming normal distribu-
tions), a 2σ approach reveals that in 95.45 % of the cases the metrics will be quite close to the requirement:
2.4 (2.0) µm for keystone and 6.9 (6.0) µm for dispersion.

The next step was to subsequently tighten the most critical tolerances to more precise values to reduce
the performance degradation. This requires repeating the analysis several times and identifying the killer
tolerances. The final values of tolerances used are summarized in Table 6.4. The tolerances not mentioned in
that table remained at the initial value of 50 µm for decenters and tilts; and 5.0 µm PV for surface irregularity.
One might observe that the most critical tolerances tend to be associated with tilts around the x-axis of the
system. This is the only rotation that does not break the planar symmetry of the optical system.

The performance results for this configuration, which one should remember corresponds to simple pas-
sive alignment (i.e. no compensation during integration), are summarized here. In Table 6.5 the estimated
performance via a sensitivity analysis are presented. Both keystone and dispersion are will within the speci-
fication. RMS spot radius appears to be off slightly, while magnification still remains a serious issue. Monte
Carlo results (Table 6.6) support this trend and suggest that in the majority of the alignment scenarios RMS
spot radius would be within acceptable values.

A very important point to analyse here is which mechanical tolerances are the main drivers of perfor-
mance degradation after the tightening to more precise values. This will answer the question of whether the
metrics that are still above the requirement could be further improved by tightening those tolerances. The
truth is that, the tolerances for M1 and M2 still remain the performance killers as shown in Figure 6.2. But

Table 6.4: Final configuration of mechanical tolerances for passive alignment of the freeform spectrometer

Surface Tolerance type Value [um]
M1 Tilts & Decenters 10
M2 Tilts & Decenters 10
M3 Tilt X 15
M4 Tilt X 25
M5 Tilt X & Surface irregularity 25 & 2.5 PV
M6 Tilt X 25
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Table 6.5: Sensitivity analysis - performance after tight tolerances (see Table 6.4) for the freeform spectrometer

Metric Initial [um] Final [um] Requirement [um]
RMS spot radius 0.81 13.8 10.0
Keystone 0.35 1.5 2.0
Dispersion 0.53 3.5 6.0
Magnification 0.61 23.4 2.0

Table 6.6: Monte Carlo analysis - performance statistics after tight tolerances (see Table 6.4) for the freeform spectrometer

Metric Initial [um] Mean [um] Standard Deviation [um] Requirement [um]
RMS spot radius 0.81 6.6 2.4 10.0
Keystone 0.35 0.8 0.4 2.0
Dispersion 0.53 1.4 1.0 6.0
Magnification 0.61 8.8 6.6 2.0

Figure 6.2: Impact of the top 10 tolerances on RMS spot radius (tight tolerances see Table 6.4)
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Table 6.7: Comparison of RMS spot size for passive and active alignment strategies

Analysis type Passive aligment [um] Active alignment [um]
Sensitivity 13.8 10.1
Monte Carlo N(6.6, 2.4) N(5.1, 2.2)

Table 6.8: Effect of active alignment in the other performance metrics

Metric Passive aligment [um] Active alignment [um]
Keystone 1.5 2.0
Dispersion 3.5 3.7
Magnification 23.4 42.0

those tolerances are already set to quite demanding values (10 µm) just like other key tolerances like the tilt
X of M6 and M3 (25 and 15 µm respectively).

Consequently, the most sensible thing to do at this point is to establish an active alignment strategy that
could bring the performance down to reasonable values by using compensators, instead of demanding unre-
alistic tolerances.

6.3.2. ACTIVE ALIGNMENT

Briefly speaking, an active alignment strategy requires the following things: a compensator, measurements
and some sort of optimization. The way it works is as follows. Some of the adjustable parameters of the
system (such as the tilt of a mirror) are defined as compensators meaning that their value will be actively
adjusted during the integration of the optical system to compensate for performance degradation. In order
to select the proper value for the compensators, an AIT engineer must make some measurements of optical
performance (the RMS spot radius at some point of the detector, for instance); then an optimization will
decide what is the ideal value of compensation to reduce the performance degradation.

The result of an active alignment strategy is that with the same values of mechanical tolerances as in the
previous passive scenario, the final performance of the optical system can be better, thanks to the effect of
the compensators. In reality, an active alignment strategy need not be complicated or involve exotic com-
pensators to achieve decent performance enhancements.

For the freeform spectrometer we decided to start the analysis with a simple compensation strategy in
which only the position and orientation of the detector plane is used as compensator. The z-position of the
detector can be used as a simple focus compensator, while the tilts around x and y can be used to correct the
RMS spot radius. These are corrections that, in principle, can easily be applied in a realistic AIT scenario.

The results in terms of RMS spot radius for an active alignment scenario are summarized in Table 6.7. One
can easily observe a substantial improvement thanks to the use of compensators. The estimated performance
via sensitivity analysis (RSS method) is just above the requirement, but this estimation tends to be on the
conservative side. The Monte Carlo results indicate an average performance at approximately 5.1 µm (half
the value of the requirement) with a standard deviation of 2.2 µm. This means that with a confidence of
95.45 % the RMS spot radius in a realistic scenario is expected to be below 9.5 µm. Obviously, this analysis
from Zemax is not totally realistic as it assumes no uncertainty in the value of the compensator during its
optimization. In reality, there will be an uncertainty on the value of the parameters used as compensators;
but as a first order analysis this model might suffice.

Due to the limitations of Zemax, the optimization used to compute the proper values of the compensator
does not show how the other metrics are affected by these changes. But one can take the nominal values of
the compensators as produced by Zemax and evaluate the keystone, dispersion and magnification in separate
systems. This is a crude solution, but it gives some insight into how the compensators alter the metrics that
are not considered during active aligment.
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The results for this analysis are shown in Table 6.8. Evidently, the metrics that are not taken into account
for the choice of the compensators suffer some degradation during the active alignment process. One cannot
expect an AIT engineer to measure every single metric of performance during integration and use it to com-
pute the proper compensation. In some cases, such measurement might even be impossible. In addition,
there is no guarantee that metric will not counteract each other, meaning that one improves with a certain
parameter (like the tilt X of the detector) while others get worse. In such scenario, compensation of all metrics
at the same time becomes infeasible.

In any case, these results indicate that the three main metrics of optical performance of the freeform
spectrometer (RMS spot radius, keystone and dispersion) will comply with their associated requirements
once realistic mechanical tolerances are considered.

6.4. FREEFORM SENSITIVITY

It was already mentioned in section 1.2, that one of the many factors slowing down the inclusion of freeform
surfaces in optical payloads for space applications is the widespread assumption that freeform systems are
more sensitive to assembly tolerances than their rotationally symmetric counterparts. What this notion im-
plies is that even though freeform surfaces might have superior nominal performance, the rate of perfor-
mance degradation when mechanical tolerances are considered is expected to be higher, leading to a signif-
icant loss of the performance advantage when the system is assembled and integrated. Expressed in math-
ematical terms, the performance f can be modelled around the nominal point θ as a series expansion on a
particular system tolerance ∆θ (such as the change on the tilt of one mirror):

f (θ+∆θ) = f (θ)+ 1

2

∂2 f

∂θ2 ∆θ
2 +O (∆θ3) (6.1)

Where f (θ+∆θ) is the as-built performance which depends on the nominal performance f (θ),
∂2 f

∂θ2 is

the sensitivity of the performance and∆θ is the mechanical tolerance. As the system has been optimized, the

gradient of the performance
∂ f

∂θ
is zero.

In light of this, the assumption states that
∂2 f f r ee

∂θ2 > ∂2 fconv

∂θ2 such that:

f f r ee (θ+∆θc ) ≥ fconv (θ+∆θc ) (6.2)

For a particular value of tolerance ∆θc , even if the nominal performance was better:

f f r ee (θ) ¿ fconv (θ) (6.3)

At this point two questions arise: is the sensitivity of freeform systems actually higher? and if so, for what
value of mechanical tolerance ∆θc is the performance advantage of freeform systems lost?. As far as the first
question is concerned, there is no actual agreement in the literature, with some studies claiming that, con-
trary to the general assumption, freeform systems are actually less sensitive to assembly tolerances [7] while
other study from this year claims that sensitivities are not really influenced by the freeform character, but
by the degree of packaging, size and form of the optical surfaces [80]. Therefore, we decided to tackle this
question for one of the freeform systems designed with GDRT.

For this investigation we extended the tolerance analysis presented in this chapter and compared the
evolution of optical performance as a function of mechanical tolerances for both the freeform spectrometer
system and its non-freeform baseline design. We started with the first two surfaces which had already been
identified as the most sensitive to mechanical tolerances: M1 and M2.
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Figure 6.3: Evolution of RMS spot radius as a function of mechanical tolerances of M1 for the non-freeform and freeform spectrometer

The results for M1 are shown in Figure 6.3. Let us first recall quickly what each tilt implies: tilt around X
does not break the plane symmetry of the system, whereas both tilts around Y and Z do. Tilt Z (usually referred
to as clocking was not included in the plot as it is quite similar to tilt Y. It appears that around the nominal
point the freeform system tends to have a higher sensitivity to the tilts of M1. But even if the performance
degradation rate is higher, the crossover occurs for∆θc ' 0.2 degrees, which corresponds to 7200 arcseconds.
One should note that the sensitivity comparisons presented in [7] were done for a tolerance of only 30 arc-
seconds.

In fact, when the aperture size is taking into account, 0.2 degrees of tilt Y for M1 translate into more than
250 microns of relative misalignment; 5 times larger than the coarsest value used for the tolerance analysis
and obviously way too coarse of any realistic assembly scenario. When only the 30 arc-second interval is
considered (see Figure 6.4) the performance degradation of the freeform system is almost negligible, and
system remains substantially superior to the conventional one.

A similar situation was observed for the tolerances of M2. As already mentioned, these are the two most
sensitive surfaces of the spectrometer as they are the closest to the entrance slit; but we were also interested
in the sensitivity behaviour of surfaces further down the optical train. Thus we repeated the analysis for the
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Figure 6.4: Close-up of tilt Y from Figure 6.3 for the range of tolerances analysed in [7]

last mirror before the detector: M6.

The results in this case revealed that although the sensitivity (formally
∂2 f

∂θ2 ) around the nominal point is

indeed higher for the freeform system, the performance profile is such that no actual crossover ∆θc exists. In
other words, even for mechanical tolerances as coarse as 1 degree of tilt on all the axes of M6, the performance
of the freeform system always remained superior to that of the conventional system.

To summarize, in accordance with other studies presented elsewhere [7], the assumption that freeform
systems are inherently more sensitive to tolerances than conventional designs is, at the least, misleading. It
is true that for the freeform spectrometer presented in this study, at the limit ∆θ −→ 0 the sensitivity in its

formal definition
∂2 f

∂θ2 can be higher. But it is no less true that the difference in degradation rate is so low that

even for the most initially-sensitive surfaces, the freeform performance advantage only vanishes for values of
mechanical tolerances which are far outside what would be considered a reasonable assembly scenario. And
for less sensitive surfaces, the advantage is actually never lost.

Consequently, for the range of mechanical tolerances already needed to meet the requirements, virtually
no effect would be noted in the freeform system. What’s more, the fact that the nominal performance of
the freeform system is substantially superior to that of the conventional design allows for relaxation of the
tolerances. A conventional design based on rotational symmetric surfaces would only barely comply with the
requirements (the one shown here does not even reach that level), leaving almost no room for performance
degradation due to tolerances. And in that case, it would not even matter which one is "more sensitive".





7
FUTURE WORK

Despite the success of GDRT as a toolbox for optimization of freeform optics, a lot of potential still remains
to be exploited. In this chapter we present some ideas for future extensions, novel functionalities and various
improvements which could greatly enhance GDRT.

7.1. EXTENSION OF GDRT

7.1.1. TOLERANCE ANALYSIS

The next step after the development of an optical design concept which fulfils the requirements is to evalu-
ate the impact of mechanical tolerances on the final performance. The optical model used for optimization
relies on the assumptions that any parameter of the system is known to infinite accuracy (or to the machine
precision, to be exact) and that the optical surfaces are perfect. In reality, when the optical surfaces are man-
ufactured there will be errors and inaccuracies (for instance, in the form of surface roughness). In addition,
the optical surfaces will be mounted, assembled and aligned within a certain level of uncertainty.

As a result of this, some performance degradation will inevitably occur once the system is integrated. It is
the role of the optical engineer to model the effect of these mechanical tolerances right from the beginning,
to ensure that despite the uncertainties, the final performance of the as-built system will comply with the
specifications.

As already mentioned during the tolerance analysis of the freeform spectrometer, the capabilities and
functionalities of Zemax for tolerance analysis are quite scarce as far as freeform surfaces are concerned. Most
of the functionalities commonly used in standard surfaces are not even implemented for freeform surfaces
in Zemax. This complicates the analysis of tolerances in freeform systems so that tedious workarounds are
needed to compute useful information. Sometimes the issue can be so serious that a thorough and realistic
tolerance analysis with Zemax is no longer an option.

Fortunately, the information required for analysing the effect of mechanical tolerances: how the optical
performance is influenced by changes in the parameters of the system? is essentially the same as the differential
ray tracing information which GDRT already employs for optimization. Consequently, it seems a natural
choice to extend the functionalities of GDRT so that it can provide tolerance analysis capabilities. This could
potentially avoid the issue of not having the right tools to do a proper analysis in Zemax.

7.1.2. STRAY LIGHT ANALYSIS

The degradation of optical performance due to stray light (light that arrives at the detector in an unintended
way) is a key concern for space instruments. Stray light can come in various forms such as light scattered
from the different surfaces and structure of the instrument, unintended reflections on lenses, ghost orders

109



110 7. FUTURE WORK

from diffraction gratings or simply light from an outer source which follows a path not considered during the
design stage.

A great deal of effort has to be devoted to analysis during the development of an instrument to ensure no
major stray light issues will compromise its operation and to guarantee that the requirements will be met.
Some of those analyses involve a brute-force approach, tracing thousands upon thousands of rays through
the optical system to evaluate stray light, consuming a lot of time. Monte Carlo methods such as importance
sampling are usually used to reduce the amount of rays needed to draw meaningful conclusions, but they are
far from optimal.

As already mentioned, differential ray tracing contains information on how the path of a ray changes when
either the system parameters or the ray data are changed. This information can be quite useful for stray light
analysis, a topic which is mainly concerned about the paths of rays going through the optical system. In fact,
some years ago a study [81] acknowledged the potential of differential ray tracing for stray light analysis. It
argued that the derivatives could be used to aim rays at target points, resulting in faster convergence and less
noise compared to traditional Monte Carlo methods. Therefore, this is a topic of interest for possible future
applications of GDRT.

7.1.3. MERIT FUNCTIONS AND SURFACE MODELS

Despite that GDRT has a suite of merit functions and surface models wide enough for most applications,
there is still room for further extension. It is always beneficial to have as many merit functions as possible
available and once implemented for a particular case study they can easily be recycled for other optical sys-
tems. Currently, efforts are being devoted to the implementation of merit functions based on Point Spread
Function (PSF) and Modulation Transfer Function (MTF) as it is common for optical systems to have some
requirements linked to those metrics.

As fas as surfaces are concerned, the selection of surfaces for optical systems is almost endless both in
the realm of conventional and freeform systems. Extending GDRT so that it can cope with a range of optical
surfaces (Zernike polynomials, XY polynomials, Q-polynomials, etc) will allow for more thorough research
into freeform systems. Moreover, the implementation of new surface models in GDRT is a relatively simple
and easy task which does not require extensive knowledge of the inner working of the toolbox, and can be
done by almost any user with a programming background.

7.2. IMPROVEMENTS OF GDRT

7.2.1. SPEED IMPROVEMENTS OF AUTOMATIC DIFFERENTIATION

The choice of using Theano for the automatic differentiation operations was mainly motivated by the ease of
use of its Python environment which favours fast development and experimentation, as well as the existence
of some practical experience prior to the start of this project. Nevertheless, the actual computational speed
of Theano is by no means competitive to what other AD tools can offer, specially does developed in C or C++.

This lack of speed is the price one has to pay when dealing with freeform systems with many degrees of
freedom. Although it is not critical, the slow character of Theano can sometimes lead to optimization runs
which take several hours to compile and tens of hours to run; a highly undesirable situation. Therefore it
could be extremely beneficial to dedicate some efforts to improve the speed of the computations. This can
basically from within, by using GPU computing when possible to gain performance with Theano, or from
without, meaning that other AD tool with intrinsically better performance could substitute Theano itself.

7.2.2. STARTING POINT GENERATION

The way GDRT usually operates is by taking a conventional design from Zemax whose performance can
be no longer optimized and use it as a starting point for freeform optimization. One should note that the
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main feature of GDRT is local optimization meaning that the numerical algorithm looks for a system with
enhanced performance, a local minimum in the neighbourhood of the starting point. But optical design is in
itself a highly non-linear optimization problem which means that a multitude of local minima can exist with
the merit function landscape. Thus, there is no guarantee that the candidate found by a local optimization
method will be the global minimum. What’s more, the result of the optimization (what minimum is found)
directly depends on the choice of the starting point.

In light of this, one can quickly identify a weak point of GDRT: the result provided by the toolbox (when
using local methods) depends on how well someone has done the task of optimizing the starting point in
Zemax. If the initial system is inherently bad, GDRT will be able to improve it, but it is fairly possible that the
result ends up being worse than what GDRT could have achieved if provided with a more suitable starting
point. In other words, at the moment GDRT "works with what it gets". It is important to note that this is not
an exclusive weakness of GDRT, but that Zemax also suffers from it. That is the reason why a good optical de-
signer is essential for ensuring the success of an optimization with Zemax. One can not expect Zemax to take
a terrible design which does not resemble at all what we want to achieve and output a perfectly reasonable
design with optimized performance.

Nonetheless, a future improvement of great importance to GDRT would be to devise a way of generat-
ing a set of starting points which are good candidates for freeform optimization, instead of just relying on a
single one. Another possibility would be to implement some sort of global optimization which would allow
for analysis of the complete search space. However, global optimization is in itself much more challenging
and time consuming than local optimization, and it does not scale well with dimensionality. Therefore, for
the freeform systems studied with GDRT (with hundreds of degrees of freedom), global optimization if not
implemented smartly could take an unfathomable amount of time.





8
CONCLUSIONS

In light of what has been presented in this report, we can at this point draw the following conclusions:

1. First of all, we have shown that the technique called differential ray tracing can be successfully applied
to general optical systems containing freeform surfaces. The main drawback of differential ray trac-
ing, the tediousness of deriving and hand-coding the expressions, was effectively circumvented by the
use of automatic differentiation tools. This allows the computation of differential ray tracing results
of arbitrary order up to machine precision, without resorting to finite-difference approximations. The
method presented in this report (which is based on the application of Fermat’s path principle and the
implicit function theorem) is independent of any assumption regarding the rotational symmetry of the
system and the type of surfaces it contains.

2. Based on those findings, a Python toolbox called Generalized Differential Ray Tracing (GDRT) was de-
veloped. The main goal of the GDRT toolbox is the design and optimization of optical systems based on
freeform optics. GDRT has been extended during this research project to cope with a wide spectrum of
optical system, ranging from reflective (containing mirrors) to refractive (lenses and prisms) and diffrac-
tive (diffraction gratings), or combinations of them. In addition, different surface description models
for both freeform and conventional optical surfaces have been implemented.

3. A wide range of merit functions which are commonly used in optical design to quantify optical perfor-
mance and optimize designs have been implemented in GDRT, including spot radius, wavefront error,
distortion and spectral metrics for spectrometers. In addition, the versatility of GDRT allows for fast
and easy extension of the merit function suite to deal with the particular requirements of the optical
system of interest.

4. One of the key features of GDRT is that it takes advantage of differential ray tracing techniques to com-
pute derivative information essential for effective optimization, including the gradient, Hessian matrix
and Hessian-vector product evaluated up to machine precision. These derivatives can be computed
for any type of merit function containing different metrics of optical performance and physical con-
straints, with respect to any variable of the optical system.

5. Based on these derivatives, GDRT can perform numerical optimization of optical systems in an au-
tonomous way without directly relying on other software packages for optical design such as Zemax.
Moreover, GDRT can easily handle freeform systems containing a large number of degrees of freedom
(in the order of magnitude of 100 and 1000).

6. Several optimization case studies were used to test and analyze GDRT. The results indicate that GDRT
is perfectly capable of taking stagnated designs based on rotational symmetric surfaces (created with
state-of-the-art techniques) and optimize them into freeform systems with significant enhancements
on optical performance. These case studies included systems from a wide range of configurations (in-
cluding on-axis and off-axis), types of surfaces (reflective, refractive and diffractive), applications (spec-
troscopy, imaging), spectral range (visible, near infra-red and thermal infra-red) and size (compact and
large). In all cases, substantial improvements in optical performance were reported.
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7. A complete tolerance analysis was performed for one of the freeform systems optimized with GDRT
(the freeform spectrometer), showing that it is possible to reach the desired levels of optical perfor-
mance when reasonable mechanical tolerances are taken into consideration. In addition, remarks re-
garding the sensitivity of freeform systems to mechanical tolerances have been discussed.

8. GDRT is mainly based on local optimization techniques. Nevertheless, a method to characterize the
parameter search space and look for global minima was demonstrated in this report. This method uses
Hessian information to construct a high-dimensional sampling tailored to the landscape of the merit
function.

9. A proof of concept regarding the use of parallel computing with GDRT was also presented. This study
made use of the Alternating Direction Method of Multipliers (ADMM) to demonstrate how consensus
optimization can be used to parallelize the optimization of freeform systems.

10. Potential for further extension of GDRT has been identified. Tolerance analysis of freeform optics is, at
this day, the most promising application. The tolerancing capabilities of state-of-the-art software tools
such as Zemax are very limited when freeform systems are considered. Other ideas include the use of
GDRT for stray light analysis.
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