
BSc report TECHNISCHE WISKUNDE

“Models, Solutions and Relaxations of the Asymmetrical Capacitated Vehicle
Routing Problem”

(“Modellen, oplossingen en relaxaties van het asymmetrical capacitated vehicle
routing problem”)

LENNART KERCKHOFFS

Technische Universiteit Delft

Supervisor

Prof.dr.ir. K.I. Aardal

Committee Members

Dr. G.F. Nane Dr. Ir. M. Keijzer

January, 2017 Delft

ii

Preface

This bachelor thesis, or “Bachelor Eind Project (BEP)”, is written as part for the curriculum of
bachelor students of Applied Mathematics at the TU Delft. It is carried out at the TU Delft it-
self. Due to optimization being the most interesting and fun (to me) part of mathematics, I asked
K. Aardal to be my supervisor. Together with her, we decided on the ACVRP. This decision
was inspired by the growing popularity of ordering goods online, specifically online supermarkets.

This thesis should be read by any and all interested, but is mostly (in complexity) targeted at
my fellow students in mathematics.

I would like to thank my commitee and Theresia van Essen, who helped me a lot when I had
problems with AIMMS. I would like to extend a special thanks to my supervisor Karen Aardal,
who greatly helped me through the process of coming up with the project, deciding the goal and
determining ways to achieve this, not even mentioning the numerous times she read through this
thesis to help me improve it.

iii

iv

Abstract

In this thesis, we take a look at theAsymmetrical Capacitated Vehicle Routing Problem (ACVRP).
We will take a look at different possible formulations for the problem and choose one based on
the ease of implementation, the computation speed of solving it, and the available relaxations.
The problem, and its relaxations, will be modeled and solved using AIMMS, a commercial mod-
eling software.
Using the methods described above, we model different cases and instances of the problem us-
ing a Two-Index Vehicle Flow formulation. We apply an Assignment Problem relaxation and a
Linear Programming relaxation to each of the instances.
We find that the problem is easiest to solve when all customers are relatively close to each other
(as opposed to being placed in separate clusters that are relatively far from each other), and that
the LP relaxation gives bounds with a fairly good quality in short periods of time.

v

vi

Contents

1 Introduction 1

1.1 Research goals . 1

1.2 Overview . 2

2 Problem Description 3

2.1 The Traveling Salesman Problem . 3

2.2 The ACVRP . 5

2.3 Formal definition and notation . 8

2.3.1 Solution . 8

2.4 Different formulations . 9

2.4.1 Two-Index Vehicle Flow . 10

2.4.2 Two-commodity flow Formulation . 11

2.4.3 Set partitioning formulation . 12

3 Relaxations 15

3.1 LP relaxations . 16

3.2 Lagrangian relaxations . 16

3.3 Problem-specific relaxations . 16

3.4 Relaxations for the two-index vehicle flow formulation 17

3.4.1 The LP-relaxation . 17

3.4.2 The assignment lower bound . 17

3.4.3 K-Shortest spanning Arborescence problem (KSSA) 19

3.4.4 The disjunctive lower bound . 20

vii

viii CONTENTS

3.4.5 The Lower bound based on flow . 20

3.5 Relaxations for the two-commodity flow formulation 22

4 Implementation 23

4.1 Software used . 23

4.1.1 AIMMS . 23

4.1.2 CPLEX . 23

4.2 The ACVRP instances . 24

4.2.1 Converting the Problem . 24

4.2.2 An example . 24

4.2.3 Applying the AP-relaxation . 27

4.2.4 The LP-relaxation . 28

4.3 Bigger instances . 29

4.3.1 The “Ideal” Case . 31

4.3.2 Clustered Customers . 31

4.3.3 All customers relatively close . 32

4.3.4 Combination of the previous two cases . 33

5 Conclusions and reflections 35

Chapter 1

Introduction

The optimization branch of mathematics concerns itself with a wide variety of problems (often
inspired by practice). One could, for example, wonder what the fastest way is for their group of
13 friends with 4 vehicles available to pick everyone up from their home, and then meet at the
bar.
That is in essence a comparable problem to what we will discuss in this thesis. We consider an
online supermarket with a fleet of K vehicles with limited capacity. We want to use this fleet to
serve a number of customers, each of which has a specific demand, while minimizing the total
distance traveled by the fleet. We call this problem the Capaitated Vehicle Routing Problem
(CVRP). To aid us in solving our problem to optimality, we will investigate some relaxations of
the problem to get a lower bound on the optimal value, which is the shortest traveled distance
in this case. The relaxations can also aid in determining the quality of solutions produced
by heuristics, which provide upper bounds on the optimal value. Both the heuristics and the
relaxations are computable in reasonable (polynomial) time. We will consider a specific case,
inspired by the internet supermarket Picnic. This will be modeled with different formulations
and then solved using the modelling software AIMMS. Finally, we will apply the determined
relaxation using AIMMS.

1.1 Research goals

Vehicle routing problems are known to be very hard to solve, and thus it is unclear if online su-
permarkets can solve their instances to optimality in time to assign the routes to the customers.
On top of that, the distances in our problem are not symmetric, meaning that traveling from
client A to client B might be longer (or shorter) than going in the opposite direction. This gives
rise to the so-called asymmetrical CVRP (ACVRP), which is at least as hard as the CVRP with
symmetric distances. For this reason, they often approximate their solutions by using heuristic
methods. While these generally give fairly accurate results, there is no way (or no time) for these
online supermarkets to check the accuracy of their result. Using relaxations on some problem
instances could produce some bounds on the solution to approximate the accuracy of a solution.
The online supermarket we used as inspiration for our practical instances, called Picnic, has
relatively small vehicles (meaning a relatively small capacity to store the groceries that need to
be delivered). This means that delivery routes of the vehicles will be short. One goal of this
thesis is to find out whether the short route ACVRPs are relatively easy to solve in practice.

1

2 CHAPTER 1. INTRODUCTION

On top of that, the delivery cars have two separate compartments for storing groceries: one for
cooled, and one for uncooled goods. The customers’ demands for groceries are also divided into
a cooled and an uncooled demand. We want to adjust existing formulations for the ACVRP to
account for the capacities and demands being split up.
We want to give a small overview of different formulations of the ACVRP, and find out which
of the formulations is the most likely to yield the best results and also suitable for applying
relaxations to.

1.2 Overview

In the coming chapters, we will slowly work toward achieving the goals outlined above. In Chap-
ter 2 we will formally introduce the ACVRP, starting from the well-known Traveling Salesman
Problem (TSP). After introducing the notation used, we will then consider some different for-
mulations of the ACVRP. After that, in Chapter 3 we will define what relaxations are, and why
they are useful. After that, we will consider different relaxations for some of the formulations of
the ACVRP and their usefulness. In Chapter 4 we will shortly introduce AIMMS, the software
used to model and solve our problem. After that, we will solve different instances of our problem,
and apply relaxations to them. Finally, in Chapter 5 we will discuss our results.

Chapter 2

Problem Description

Now that we have our problem outlined, it is time to introduce it formally. First we will define
a more specific case of the CVRP, the Traveling Salesman Problem. We do this because it is
easier to understand than the CVRP, and extending it to the CVRP is convenient for explanation
purposes. After that, we will consider different formulations for the ACVRP, and which to use
when we start the implementation.

2.1 The Traveling Salesman Problem

The problem we are considering belongs to the family of Vehicle Routing Problems (VRPs). A
VRP is a generalization of the well-known Traveling Salesman Problem (TSP). As an introduc-
tion to the VRP, and to make it easier to grasp, we will first introduce the specific VRP instance
of the TSP.
The TSP is one of the most important and studied (graph theory-)optimization problems. De-
spite being formulated as early as 1930, it is still being studied extensively because of its com-
plexity (in relation to the size of the problem) and its modern day relevance (from delivering
mail to designing microchips).
In its simplest form, it can be represented as a mailman wanting to deliver his mail. He wants to
do his job as quickly and efficiently as possible, and he starts from his own house and wants to
end at his own house (or the post office). Thus, he tries to find the shortest route that starts and
ends at his house, and visits all the other houses on his mail route as well. The name stems from
a traveling salesman trying to sell his goods by visiting locations (often referred to as “cities”) in
the same way.
We model this problem by way of a graph G. We let every customer be a vertex in the vertex
set V and connect them via arcs in the arc set A, representing the connections between the
customers. Each arc is assigned an associated travel cost cij , usually the time or distance it
takes to travel from one customer to another. We use a binary variable xij to check whether the
arc traveling from i to j is used in the solution.
Below we give an Integer Linear Programming formulation that can be used to model and solve
the TSP. Here, we assume we have n−1 houses where the mailman needs to deliver mail. House

3

4 CHAPTER 2. PROBLEM DESCRIPTION

1 is the mailmans house.

min
n∑
i=1

∑
j 6=i,j=1

cnijxij (2.1)

subject to
n∑

i=1,i 6=j
xij = 1 j = {1, . . . , n} (2.2)

n∑
j=1,j 6=i

xij = 1 i = {1, . . . , n} (2.3)

subtour elimination constraints (2.4)
xij ∈ {0, 1} (2.5)

Here, Constraints 2.2 and 2.3 are called the degree constraints, making sure that every customer
is visited exactly once (Constraint 2.3 makes sure the mailman arrives once, and Constraint 2.2
ensures he also leaves each customer once). We will now explain what the Subtour Elimination
Constraints (2.4) are.
A problem that sometimes arises while trying to solve a TSP is the concept of subtours. If
we only include the “degree-constraints” (making sure every vertex is arrived at and left exactly
once) in the problem formulation, small tours not starting or ending at the house of the mailman,
called subtours, may occur. To this end, so-called “subtour elimination constraints” are added
to the formulation to make it complete.

Figure 2.1: Subtours in a TSP with 5 customers

An example of these constraints are the Miller-Tucker-Zemlin constraints [12], which can also be
found in the book by Papadimitriou [9]. Here, n is the number of customers and ui, i = 1, . . . , n
is an additional variable that gives an ordering to the vertices, excluding the depot, to prevent
the formation of subtours:

ui − uj + nxij ≤ n− 1, 1 ≤ i 6= j ≤ n (2.6)
ui ∈ R ∀i = 1, . . . , n (2.7)

Constraints (2.6) force an ordering of the customers on a route. A proof that these inequalities
not only restrict solutions to tours, but do not exclude any tours can be found in the book by
Papadimitriou [9].
For more information on the TSP, we refer to the book by Applegate et al. [14]. Another set of
constraints that excludes the appearance of subtours can be obtained using a nontrivial partition

2.2. THE ACVRP 5

(S, S̄) of {0, . . . , n}. We demand for each such partition that∑
i∈S,j∈S̄

xij ≥ 1 (2.8)

This makes sure that the sets in the partition are connected to each other. For example, in
Figure 2.1, it would make sure that there is an arc going out of 1-2-3 into 4-5, and vice versa, as
shown in Figure 2.2.

Figure 2.2: The partitions are now connected, no more subtours occur

Even though this formulation might seem exponentially large at first (because of the great number
of subsets when the number of customers is high), it is actually the more used of the two.
The problem is polynomially separable, meaning that after the problem is solved accounting
only for the degree constraints, accounting for the subtour elimination constraints becomes a
polynomially solvable Separation Problem. In such a problem, we must determine for a given
vector x∗ whether or not there exists a proper subset of vertices S such that

∑
i∈S,j∈S̄ xij ≥ 1,

meaning that a subtour elimination constraint is violated. See also the book by Applegate et al.
[14]. For a more technical explanation, see the book by Grötschel et al. [15].
While the definition and aim of a TSP are not that complex to grasp, it can get computationally
complicated rather quickly. An instance with n different houses/locations, for example, has (n−1)!

2
different solutions (that would be 1.814.400 different solutions for n = 10, and 1.216451 ·1018 for
n = 20). The TSP is NP-hard, which is Math for “very hard, we cannot consistently solve this
in a short time (yet)” (NP stands for Non-deterministic Polynomial time problems).
Because of this, most TSPs are not solved exactly.

2.2 The ACVRP

The VRP can be derived from the TSP in the following way:
Instead of one mailman, we have a group of mailmen who all start from and end at the same
post office (also called the depot). We want the total travel cost (defined in terms of travel time
or distance usually) of all mailmen to be as small as possible.
If we then add that each house has a different amount of mail they will recieve (the demand of
that home), and that each mailman has a bag with a limited space for mail and packages (a
capacity), we get the Capacitated Vehicle Routing Problem (CVRP).
Now, if a mailman has to take different routes to and from one place to another (because of
one-way streets, for example), the time travelled to and from one place to another will differ. In
other words, the travel costs will be asymmetrical, and we obtain the asymmetrical Capacitated

6 CHAPTER 2. PROBLEM DESCRIPTION

Vehicle Routing Problem (ACVRP).
Because of the VRP being a generalization of the TSP, it is NP-hard as well.
We will mostly consider the ACVRP in this thesis, but other types of vehicle routing problems
include:

• Generalized Vehicle Routing Problem (GVRP): we group several houses (or maybe a neigh-
bourhood) into a so-called cluster. Then, we say that only one house from a cluster has to
be visited.

• Vehicle Routing Problem with Pickup and Delivery (VRPPD): some mail needs to be
moved from one location to the other, so the mailmen have some pick-up location they
need to visit before they deliver their mail.

• Vehicle Routing Problem with LIFO: the VRPPD, with an added Last-In-First-Out con-
straint: the package being delivered must be the most recently picked up one. Because
items do not need to be temporarily unloaded to be able to deliver items further in the back
(or: mailmen do not have to look through their bag, as the package is on top), reducing
delivery times.

• Vehicle Routing Problem with Multiple Trips (VRPMT): each mailman is able to do more
than one route.

• Open Vehicle Routing Problem: mailmen do not have to return to their house/the depot.

• Vehicle Routing Problem with Time Windows (VRPTW): people need to be home to accept
their packages, and there are only certain times each day where they are able to do so.
We add to each customer a drop off time and make sure packages are delivered after each
customers earliest-, and before his/her latest arrival time.

These are, of course not all of the possible variations. For more examples, one could for example
take a look at the overview presented by Escobar et al. [3].
In our specific case, instead of houses recieving mail, we have customers ordering groceries from
an online supermarket. We replace the mailmen with vehicles and the mail with groceries. The
post office we now just call a depot.

In the case of the online supermarket Picnic, a fleet of K vehicles needs to deliver groceries to
customers with a certain demand for groceries. Each customer has a given demand for cooled
and uncooled goods. Analoguously, the vehicles, depicted in Figure 2.3, in the fleet have two
capacities: one for cooled, and one for uncooled goods. We assume that these capacities are
the same. We define the travel cost from a vertex to another as the distance between these two
vertices. These distances are not symmetric because of one-way roads. Thus, we obtain our
ACVRP (with two capacities).
Picnic promises their customers to give them an accurate estimate of the arrival of their grocceries
(a 5 minute time window). However, this does not add time windows to our ACVRP, as customers
are first assigned to a certain shift or time window, and then the routes for the vehicle are
determined. Thus, the time window part of this problem is a separate problem that happens
before solving the ACVRP. However, this does imply short routes. All customers need to be able
to be served within an hour, so, considering drop-off times and possible delays, we want routes
of at most 45 minutes. These “routes” start at the first, and end at the last customer, they do
not count the time traveling to or from the depot. We do this because the vehicles can in theory

2.2. THE ACVRP 7

depart from the depot an arbitrary amount of time before the groceries need to be delivered at
the first customer. They can then wait with visiting all the customers until the time the groeries
are promised to be delivered to the first customer in their route.
For the sake of argument, we assume that a vehicle goes 30 km/h (which is equal to 8.333 m/s)
on average during their delivery route (not accounting for time standing still when dropping off
goods), and they have a drop-off time of 4 minutes for every customer. This could prompt us to
add an extra constraint ∑

(i,j)∈Vri
cijxij

8.333
· 60 + 4 · nri ≤ 45 (2.9)

See Section 2.3 below for a description of the variables and coefficients used.
Thus, the maximum length of the route is equal to

45− 4 · nri
60

· 8.333 meters (2.10)

An important question to consider is whether an ACVRP with short routes is computationally
easier to solve in practice than an ACVRP with routes of arbitrary length.
If we test this out using AIMMS, this turns out to be the case: for a network with 10 customers
and distances between customers short relative to the distance between the depot and customers,
we consider two cases:

• one with a fleet of 8 vehicles with capacity 13, constituting short routes

• one with a fleet of 3 vehicles with capacity 26, constituting longer routes

AIMMS was able to solve the problem with short routes in around 0.06 seconds, and the problem
with longer routes in 0.38 seconds. While 0.38 seconds is of course still a very fast time to solve
the problem, this does illustrate that problems with long routes in the solution take longer to
solve than problems with short routes. In bigger problems with for example up to 100 customers,
these small computation differences (for small instances) can become quite significant.
This is probably because the amount of customers to be considered to use in a route decreases with
each route that was previously computed. So with short routes, each route becomes increasingly
more easy to compute, faster than with longer routes where this “elimination” of customers does
not happen as often.

Figure 2.3: E-workers: Picnics delivery cars

8 CHAPTER 2. PROBLEM DESCRIPTION

2.3 Formal definition and notation

Let V be a vertex set {v0, v1, . . . , vn}, with v0 representing a depot, and the other vi, i = 1, . . . , n
representing customers.
Let A be a set of arcs, A = {(vi, vj)| ∀i 6= j} with pairs of customers representing a road between
these customers. We want our graph to be complete, so if there is no direct road between two
customers, we add an arc between them with cost equal to the shortest path between them.
Another option on could present would be to add an arc with a very high cost to make the graph
complete, but this would exclude certain feasible solutions of the problem).
Let xij be a binary variable.

xij =

{
1 if arc (i, j) is traversed in the solution to the ACVRP
0 otherwise

Let C = {cij |i, j ∈ {0, . . . , n}} be a set of costs associated with traveling from vi to vj (note that
cij = cji does not always hold because our problem is asymmetrical).
Each customer i has two demands di1 and di2 (or one demand di in some of our examples)
associated with the amount of uncooled and cooled items they ordered. Note that d01 = d02 = 0.
In this case, the demands are integer, because goods are allocated into crates of equal size (also
called totes), and each storage of a vehicle (called “E-workers” in Picnic’s case, see Figure 2.3).
has a given number of spaces for these crates.
We also have a fleet of K vehicles with two associated capacities Q1, Q2 (one capacity Q in some
of our examples) for uncooled and cooled storages (we assume a homogeneous fleet here, and we
assume that Q1 = Q2).
For the solution, we assign each customer route ri = (v0, vri1 , vri2 , . . . , v0) to a vehicle in the
fleet. The total demands of all these customers can of course not exceed the capacities of the
vehicle, the route has to conform with the time windows, and customer orders cannot be divided
over different vehicles.
Vri = {v0, vri1 , . . . } is the set of customers in a route ri, so |Vri | = nri is the number of customers
in a given route. We denote R as the set of all customer routes.
Finally, γ(S), S ⊂ V is the minimum number of vehicles needed to serve all customers in a set S.
γ(S) can be determined by solving a Bin Packing Problem (BPP), where you have n containers
with a certain capacity, and m units of different size that all need to be assigned to a certain
container.

2.3.1 Solution

A solution to the problem consists of a collection of feasible routes R = {r1, . . . , rK} such that
each customer is visited exactly once. Note that in cases where the size of the fleet is not
determined beforehand, R can contain empty routes.
In this thesis, we define the ‘cost’ of a route to be the sum of the travel distances. Other examples
of cost include travel time, fuel costs or combinations of any of the previous three.

2.4. DIFFERENT FORMULATIONS 9

2.4 Different formulations

In the literature, there are more or less two basic modelling approaches for the VRP. The first
type are called the vehicle flow formulations. In a flow problem, a certain amount of flow needs
to be transported from the source node to the sink node. Each arc has a certain capacity for the
flow associated with it.
These formulations use integer variables associated with each arc of the graph, indicating whether
an arc is traversed or not. However, the linear programming (LP) relaxations of these models
can be very weak when combined with tight capacity constraints. The ILP formulations can
usually be modeled as either a two-index or three-index problem. In a two-index problem, we
use a variable xij to indicate whether the arc (i, j) is traveled in the solution of the problem. In
three-index formulations, we are a little more specific and use a variable xijk to indicate whether
vehicle k travels from i to j in the solution of the problem. We will only consider two-index
formulations in this paper, not three-index formulations. We do this because in our case, when
the vehicles are uniform, two-index formulations achieve the same results as three-index formu-
lations, but they are usually a little faster. The paper by Baldacci et al. [1] shows that the
quality of both formulations is the same, but that two-index formulations are computationally
less demanding.

The other type of formulation has an exponential number of binary variables, each associated
with a different feasible circuit. We try to determine a collection of circuits with minimum cost,
such that each customer is served once. We call this a set partitioning problem (SPP). These kinds
of formulations are usually solved with a method called column generation. More information
and specifics on this method can be found in the book by Wolsey [10]. Unfortunately, due to
time constraints and the scope of this thesis, we will not consider column generation any further.
Because of this, and the large amount of variables in SPP formulations, we will mainly consider
the flow formulations in this thesis.

10 CHAPTER 2. PROBLEM DESCRIPTION

2.4.1 Two-Index Vehicle Flow

The formulation given below is based on the formulation for the ACVRP in the paper by Toth
and Vigo [2].

min
∑
i∈V

∑
j∈V

cijxij (2.11)

subject to
∑
i∈V

xij = 1 for all j ∈ V \ {0} (2.12)∑
j∈V

xij = 1 for all i ∈ V \ {0} (2.13)

∑
i∈V

xi0 = K (2.14)∑
j∈V

x0j = K (2.15)

∑
i 6∈S

∑
j∈S

xij ≥ γ(S) for all S ⊂ V \ {0}, S 6= ∅ (2.16)

xij ∈ {0, 1} for all i, j ∈ V (2.17)

In this formulation we can clearly see the similarity with the TSP formulation from Section 2.1.
Here, Constraints (2.12) and (2.13) make sure that each customer is visited (arrived at and left
from) exactly once. Constraints (2.14) and (2.15) make sure all vehicles end and start at the
depot. Finally, Constraint (2.16) ensures that for each subset of customers, there are enough
vehicles to serve all of them (thus eliminating the possibility of subtours appearing in a solution).
The problem with Constraint (2.16) is that there is a very large number of subsets S of V . For
a problem with 10 customers, there are 10468900 different subsets S, and we cannot use the
same method of separation as with the TSP. This is most likely because the multitude of vehicles
making the problem not polynomial anymore.
Thus, we want to find a constraint that is somewhat easier on the calculations. Toth and Vigo
[2] proposed considering the subtour elimination constraints for the TSP by Miller et al. (1960),
and extending them to the CVRP. These new constraints replace Constraint (2.16) with the
following two constraints:

ui − uj +Qxij ≤ Q− dj for all i, j ∈ V \ {0} (2.18)
di ≤ ui ≤ Q (2.19)

where ui, i ∈ V \ {0} is a continuous variable, analoguous to the one used in the subtour elimi-
nation constraint of the TSP. Constraints (2.18) and (2.19) impose the capacity requirements of
the CVRP. Also, when xij = 0, Constraint (2.18) is not binding since uj ≤ C, and ui ≥ di (else
customer i cannot be serviced). When xij = 1, it imposes that ui ≥ uj + di (note that when
xij = 1 we first arrive at i, and then go to j straight after).
Toth and Vigo [2] proposed an extra requirement, di+dj ≤ Q, for Constraint (2.18), however the
capacity is already implied by the combination of Constraints (2.18) and (2.19) for both xij = 1
and xij = 0, and accounting for these extra requirements allows for certain infeasible solutions
where the total load of a route exceeds the demand (especially in short routes).

2.4. DIFFERENT FORMULATIONS 11

2.4.2 Two-commodity flow Formulation

A multi-commodity flow problem is a flow problem where there are multiple flow demands
between the source and sink nodes.
The two-commodity flow forulation of the CVRP is based on the two-commodity flow formulation
introduced by Finke et al. [7] for the TSP.
In this case, V = {0, . . . , n+ 1}, where 0, n+ 1 represent the same vertex: the depot. We define
yij as follows:

yij =

the amount of groceries carried from customer i to customer j, if xij = 1

the amount of space left in the vehicle, yji = Q− yij if xji = 1

0 otherwise.

We define d(S) for S ⊂ V be the total demand from the customers in S. δ(S) is the set of
customers incident to (a customer in) the set S. Ā is the set of arcs, not considering the arcs
to and from vertex n + 1. The two-commodity flow formulation for the ACVRP, based on the
formulation by Baldacci et al. [1] then becomes:

min
∑
{i,j}∈Ā

cijxij (2.20)

subject to
∑

j∈V \{n+1}

(yji − yij) = 2di, ∀i ∈ V (2.21)

∑
j∈V

y0j = d(V) (2.22)

∑
j∈V

yj0 = KQ− d(V) (2.23)

∑
j∈V

yn+1,j = KQ (2.24)

∑
{i,j}∈δ({h})

xij = 2, (∀h ∈ V) (2.25)

yij + yji = Qxij , (∀{i, j} ∈ A) (2.26)
yij ≥ 0, yji ≥ 0, (∀{i, j} ∈ A) (2.27)
xij ∈ {0, 1}, (∀{i, j} ∈ A) (2.28)

Here, Constraint (2.21) makes sure each customer gets exactly their demand delivered to them:
i is visited exactly once, i.e. there is exactly one car visiting i from exactly one customer, p
(which can also be the depot in this case), and that car departs to exactly one other customer q
(not the depot). From this, it follows that

∑
j∈V \{n+1}(yji−yij) = ypi−yip+yqi−yiq. Let dp, di

be the demands of i and p respectively, and d̄q the total demand of q and all other customers on
this particular route that are visited after q.
Then, ypi−yip+yqi−yiq = di+d̄q−(Q−(di+d̄q))+(Q−d̄q)−d̄q = di+di+d̄q+d̄q−d̄q−d̄q−Q+Q =
2di.
Constraints (2.22) and (2.23) make sure all the flow (groceries) leave from the depot (the flow
carried away from the depot is equal to the total demand of all the customers), and that as much
flow as the total demand is dropped off (the total flow coming into the depot is equal to the
total capacity of the vehicles, minus the total demand of all of the customers). Constraint (2.24)

12 CHAPTER 2. PROBLEM DESCRIPTION

ensures all vehicles end up back at the depot again. Constraint (2.25) forces any feasible solution
to contain two edges incident to each other, while Constraint (2.26) ensures that the sum of the
load in the vehicle plus the amount of space left in the vehicle is equal to the capacity of the
vehicle.
The two-commodity formulation can be rewritten in terms of variables yij only. To do this, we
substitute variables xij with variables yij using Constraint (2.26). The Constraints (2.28) should
then be replaced by yij + yji ∈ {0, Q},∀{i, j} ∈ Ā.
All valid inequalities that can be used to relax the ACVRP can be applied to the two-commodity
flow formulation by changing the xij to an yij in the formulation.
The relaxations for the two-commodity flow formulation are of a quality equal to that of the
two-index vehicle flow formulation. However, the LP relaxation of the two-commodity flow is
easier and faster to solve than the LP relaxation of the two-index vehicle flow formulation (see
also the paper by Baldacci et al. [1]).
Despite this, the two-index vehicle flow formulation has been studied more and therefore, more
and better relaxations are known.

2.4.3 Set partitioning formulation

The set partitioning formulation of the CVRP was originally proposed by Balinski and Quandt
[8].
This formulation is different from the ones before in that we do not try to find paths between
customers, which then form different routes. Instead, we consider the set of all feasible routes
R, and try to find which of these routes minimize the total travel costs.
Here, ajri is a binary coefficient that has value 1 if customer j belongs to route ri, and 0 otherwise.
ξri is a binary variable that is equal to 1 if and only if ri belongs to the optimal solution.
[8].

min
∑
ri∈R

criξri (2.29)

subject to
∑
ri∈R

ajriξri = 1 (∀j ∈ V \ {0}) (2.30)

∑
ri∈R

ξri = K (2.31)

ξri ∈ {0, 1} (∀ri ∈ R) (2.32)

Constraint (2.30) makes sure that each customer is covered by one route, and Constraint (2.31)
requires that K routes are selected.
When the cost matrix satisfies the triangle inequality 1, we can obtain a so-called set covering
formulation that preserves the optimal objective function value by writing Constraint (2.30) as
≥ inequalities.
This formulation is very general and can take additional constraints such as time windows or
route lengths into consideration, since route feasibility is implicitly considered in the definition
of the index set of all feasible routes R.
Another advantage of the set partitioning formulation is that any valid inequality designed for
the two-index formulation can be transformed into a valid inequality for the set partitioning

1In this case, traveling over a direct path from A to B will always be less expensive than traveling from A, to
C and then to B.

2.4. DIFFERENT FORMULATIONS 13

formulation by noting that a solution ξ for the set partitioning formulation can be transformed
into a solution x of the two-index formulation, using:

xij =
∑
l∈R

ηlijξl, ∀{i, j} ∈ E (2.33)

where the ηlij are defined as follows:

• if l is a single customer route covering customer h, then ηl0h = 2 and ηlij = 0, ∀{i, j} ∈
E \ {0, h}

• if l is not a single customer route, then ηlij = 1 for each edge {i, j} covered by route ξ and
ηlij = 0 otherwise.

Then, any valid inequality designed for the two-index formulations can be transformed into a
valid set partitioning formulation inequality.
More information on the set partitioning formulation and valid bounds for this formulation can
be found in the paper by Baldacci et al. [1].
However, as mentioned above, we will not consider this formulation any further because of the
scope of this thesis.

14 CHAPTER 2. PROBLEM DESCRIPTION

Chapter 3

Relaxations

Sometimes a problem is too large or complicated to solve exactly (within a reasonable time
window). In such a case, other methods must be implemented to find a near-optimal solution,
or to approximate one. Some options in the first case include applying heuristic methods, using
algorithms that find a solution that conforms to the constraints, but not necessarily giving the
best objective value.
Another way is to approximate the problem and solving a nearby, related problem. This related
problem can for example be achieved by removing or weakening some constraints of the problem.
The solution to the related problem provides a bound on the objective value for the problem: a
lower bound for a minimization problem, and an upper bound for a maximization problem.
Suppose we solve a minimization problem using heuristics. This yields an upper bound on the
optimal value of the solution. To then assess the accuracy of this upper bound, we could apply
a relaxation to the problem, producing a lower bound on the optimal value of the solution.
Comparing these two bounds should give a decent indication of the quality of solutions, for
example those found with heuristic methods.
Formally, a relaxation of a minimization problem z =min{c(x) : x ∈ X ⊆ Rn} is another
minimization problem z =min{c′(x) : x ∈ T ⊆ Rn}, such that

• X ⊆ T

• c′(x) ≤ c(x) ∀x ∈ X

For further information, see the book by Wolsey [10].
One could wonder if there is a way to use the bounds from heuristics and relaxations, and to
narrow them down to achieve the optimal solution.
The most well-known way of doing this is using branch-and-bound. With this, the solution space
is partitioned into convex sets, for which upper and lower bounds are computed. In a branch
and bound algorithm, the set of all possible solutions is iteratively split into smaller sets. The
cost function is then minimized over these smaller sets. We call this branching, as this can be
seen as roots of a tree that are splitting up, or branching out.
Because we do not want to check every possible smaller set, we also introduce the bounding
procedure: the algorithm keeps tracks of the bounds on the minimal cost function that it is
looking for, and uses these bounds to “prune” the solution space, meaning that it eliminates sets
of possible solutions that will not contain a useful minimum on the value of the cost function.

15

16 CHAPTER 3. RELAXATIONS

While branch-and-bound is a nonheurstic method that returns an optimal solution to the prob-
lem, it is sometimes very slow (in the worst case even exponentially so), and a bit of luck is
needed to use it to get a solution within a reasonable time window. Having good bounds also
typically helps to speed up the process.
We give three examples of relaxations: LP relaxations, Lagrangian relaxations and problem-
specific relaxations.

3.1 LP relaxations

In the case of an 0-1 Integer Linear Program (ILP), we obtain the LP-relaxation by removing the
integer restriction on the variables xij , allowing them to be continuous and part of the interval
[0,1]. The good thing about LP-relaxations is that it derives from the NP-hard ILP problem a
related Linear Program, which typically is much easier to solve, as LP problems are polynomially
solvable.

3.2 Lagrangian relaxations

Lagrangian relaxations are very useful when the problem has constraints that can be divided into
two “categories”: “good” constraints, which are fairly easily to solve the problem with, and “bad”
constraints, the constraints that make the problem hard to solve. The problem is then “relaxed”
by removing the bad constraints, making the problem easier to solve. To still somewhat account
for these contraints, they are added into the objective function with certain weights. These
weights are called the Lagrangian Multipliers.
Another, more detailed explanation, can be found in the book by Wolsey [10]. Other examples,
and a short explanation, of Lagrangian Relaxations can be found in the paper by Klau [4].

3.3 Problem-specific relaxations

Often, a problem can be relaxed in a way unique to that problem. These problem-specific
relaxations include the well-known 1-tree relaxation for the TSP. A 1-tree is a graph with vertices
1, 2, . . . , n consisting of a tree on 2, 3, . . . n and two arcs incident with vertex 1. It is a tree with
exactly one cycle, which contains vertex 1. This relaxation was proposed by Held and Karp [6].
A one-tree relaxation is applied as follows: choose a node in de graph, for example node i. We
then try to find the cheapest one-tree on the graph, such that the cycle in the one-tree includes
i, and for which i is incident to two other nodes. Note that a cycle in a 1-tree that includes
all the vertices in the graph is a valid tour and as such a feasible solution for the TSP. Thus,
finding the aforementioned cheapest one-tree including i is a relaxation, as the optimal solution
is a 1-tree including i, but it does not have to be the cheapest 1-tree including i.
Clearly this problem is not an LP-relaxation, as we do not change any restraints on the variables
xij . It is not a Lagrangian relaxation either, as we do not change the objective function in any
way.

3.4. RELAXATIONS FOR THE TWO-INDEX VEHICLE FLOW FORMULATION 17

Figure 3.1: An example of a 1-tree on a graph with 6 nodes

3.4 Relaxations for the two-index vehicle flow formulation

We will now consider some possible problem-specific relaxations for the two-index vehicle flow
formulation and compare their performance, before applying one later in Chapter 4.
The following relaxations are based on the formulation for the ACVRP in the paper by Toth and
Vigo [2].

3.4.1 The LP-relaxation

As described in Section 3.1. The formulation for the LP-relaxed two-index vehicle flow formula-
tion is:

min
∑
i∈V

∑
j∈V

cijxij (3.1)

subject to
∑
i∈V

xij = 1 for all j ∈ V \ {0} (3.2)∑
j∈V

xij = 1 for all i ∈ V \ {0} (3.3)

∑
i∈V

xi0 = K (3.4)∑
j∈V

x0j = K (3.5)

uj − ui +Qxij ≤ Q− di for all i, j ∈ V \ {0} (3.6)
di ≤ ui ≤ Q (3.7)
xij ∈ [0, 1] for all i, j ∈ V (3.8)

3.4.2 The assignment lower bound

In this relaxation, we will ignore Constraints (2.16) (or (2.18) and (2.19)). The problem we then
obtain is an asymmetrical K-TSP problem (a regular TSP, only with K mailmen instead of one),

18 CHAPTER 3. RELAXATIONS

without the subtour elimination constraints:

min
∑
i∈V

∑
j∈V

cijxij (3.9)

subject to
∑
i∈V

xij = 1 for all j ∈ V \ {0} (3.10)∑
j∈V

xij = 1 for all i ∈ V \ {0} (3.11)

∑
i∈V

xi0 = K (3.12)∑
j∈V

x0j = K (3.13)

xij ∈ {0, 1} for all i, j ∈ V (3.14)

In this problem, we want a collection of circuits of our graph that visits all vertices (not 0) once,
and vertex 0 K times, while minimizing the total distance traveled. Because we do not account
for the capacity and disregard subtour elimination constraints, it is possible for this solution to
be infeasible for the ACVRP.
This problem is a little easier to solve when we transform the problem above into an assignment
problem (AP). An AP is a case of a transportation problem (TP). In a transportation problem,
we want to find an optimal transportation scheme on a graph with m warehouses and n retail
outlets, while keeping in mind the demands of each customer and the supply of each warehouse.
The goal in an AP is to minimize the cost or time of completing a number of jobs by some
number of people. Important to note here is that the number of sources is equal to the number
of destinations (because each person is assigned, and assigned to exactly one job). If the number
of people is different from the number of jobs, we can compensate by adding “dummy” jobs or
people, until the number of sources is equal to the number of sinks.
We define this problem on an extended complete digraph G′ = (V ′, A′), where V ′ := V ∪W ′
and W ′ = {n + 1, . . . , n + k − 1} contains K − 1 additional copies of vertex 0, and the cost c′ij
of each arc in A′ is defined as follows:

c′ij =

cij for i, j ∈ V \ {0}
ci0 for i ∈ V \ {0}, j ∈W ′

c0j for i ∈W ′, j ∈ V \ {0}
λ for i, j ∈W ′

(3.15)

where λ is a very large number M (see also Figure 3.2).
Now, we can replace (2.14) by K constraints of type of (2.12), one for each copy of the depot.
In the same way, we can replace (2.15) with K constraints of type of (2.13).
Originally, this transformation was used by Lenstra and Rinnooy Kan (1975) to transform a TSP
into a m-TSP (where we want m circuits visiting a certain vertex m times, and all other vertices
once).
Note that we arrive at a different transformation if we define λ differently. For example, λ = 0
means we try to find a solution with at most K routes, and λ = −M means we try to find a
solution with Kmin routes.

3.4. RELAXATIONS FOR THE TWO-INDEX VEHICLE FLOW FORMULATION 19

Figure 3.2: The extended complete digraph G′ on a network with 2 vehicles, giving us one copy of the
depot, 0, to add to the graph.

3.4.3 K-Shortest spanning Arborescence problem (KSSA)

This relaxation is based on the 1-tree relaxation for the symmetric TSP by Held and Karp [6].
We convert the flow problem into an arborescence: a directed graph with a root u, where for
every other vertex v there is exactly one directed path from u to v.
We obtain this problem from the two-index vehicle flow formulation by removing the outdegree
Constraints (2.12) for all customer vertices (i = 1, . . . , n), and weakening the capacity-cut Con-
straints (2.16) so only the connectivity is important (by replacing the right-hand side with 1).
We then obtain the K-shortest spanning arborescence problem (KSSA):

min
∑
i∈V

∑
j∈V

cijxij (3.16)

∑
i∈V

xij = 1 for all j ∈ V \ {0} (3.17)∑
i∈V

xi0 = K (3.18)∑
ij∈V

x0j = K (3.19)

∑
i 6∈S

∑
j∈S

xij ≥ 1 for all S ⊆ V \ {0}, S 6= ∅ (3.20)

xij ∈ {0, 1} for all i, j ∈ V (3.21)

This problem can be solved by considering two separate subproblems:

• determining a min-cost spanning arborescence with outdegree K at the depot vertex, de-
fined by (3.16), (3.17), (3.20) and (3.21)

• determining a set of K min-cost arcs entering the depot, defined by (3.16), (3.18), and
(3.19).

The first subproblem can be solved in O(n2) time, and the second problem in O(n) time. Thus,
this relaxation can be solved in O(n2) time.

20 CHAPTER 3. RELAXATIONS

This relaxation is seldomly used in branch and bound algorithms, and its quality is generally
poor (or at least worse than the AP lower bound).

3.4.4 The disjunctive lower bound

We will consider two bounds here, both proposed by Fischetti et al. [13]. One bound is based
on a disjunction on infeasible arc subsets, and the second bound is based on a min-cost flow
relaxation.
We will first define what an infeasible arc subset really is.
A given arc subset B ⊂ A is infeasible if no feasible solution to the ACVRP can use all its arcs.
More formally, when

∑
(i,j)∈B xij ≤ |B| − 1 is valid for the ACVRP.

For any infeasible arc subset B ⊂ A, the following logical disjunction holds for all feasible
solutions x of the ACVRP:

∨
(i,j)∈B(x ∈ Qij := {x ∈ RA : xij = 0}) (RA = Rk, where |A| = k).

In other words, for any infeasible arc subset B, at least one of the arcs contained in B is used in
none of the feasible solutions x of the ACVRP.
Then, we have defined |B| restricted problems, each denoted as RP ij , including the additional
condition xij = 0 imposed for a different (i, j) ∈ B. For each RP ij , a lower bound zij is
computed through the AP relaxation (with cij := +∞ to impose xij = 0). Since zij ≥ LAP for
all (i, j) ∈ B, the disjunctive bound LD :=min{zij : (i, j) ∈ B}, is of better quality than LAP .
We will now describe a way to acquire infeasible subsets B:
First we solve the AP relaxation with no additional constraints, and store the corresponding
solution (x∗ij : i, j ∈ V). When x∗ is feasible for the ACVRP, the lower bound LAP cannot be
improved. Because then, the relaxation yields a feasible problem and we have solved the problem
itself. Otherwise, try to improve it by using a disjunction on a suitable infeasible arc subset B.
Note that imposing xij = 0 for any (i, j) ∈ A such that x∗ab = 0 would produce zij = LAP .
Therefore, B is chosen as a subset of A∗ := {(i, j) ∈ A : x∗ij = 1}, such that it corresponds to
one of the following:

• a circuit which is disconnected from the depot vertex

• a path such that the total demand of the associated customer vertices exceeds Q

• a feasible circuit which does not visit a set of customers, S, with a total demand that
cannot be served by the remaining K − 1 vehicles (γ(S) > K − 1)

if any exist. A more precise description of an algorithm that can be used to acquire the disjunctive
lower bound can be found in the paper by Fischetti et al. [13].
Regrettably, due to time constraints, we are not able to implement this bound in this thesis.

3.4.5 The Lower bound based on flow

Consider a partition of V : {S1, . . . , Sm} with 0 ∈ S1. Now, partition A into {A1, A2}, where
A1 contains the arcs with both end points in Sh, h = 1 . . .m, and A2 those connecting vertices
belonging to different Sh’s:

A1 :=

m⋃
h=1

{(i, j) ∈ A : i, j ∈ Sh} (3.22)

A2 := A \A1 (3.23)

3.4. RELAXATIONS FOR THE TWO-INDEX VEHICLE FLOW FORMULATION 21

Different vertex partitions {S1, . . . , Sm} lead to different lower bounds. Choosing Sh = {h}, for
example, produces a relaxation that coincides with the AP relaxation. When Shs with a cardinal-
ity greater than one are chosen, the relaxation can take into account the associated capacity-cut
constraints (which are neglected by the AP relaxation), while making a possible contribution of
the arcs in Sh (belonging to A1) less strong and weakening the degree constraints of the vertices
in Sh.
We will now decribe a bound based on projections, LP , given by LP := z1 + z2, where the zi are
lower bounds on

∑
(cij : (i, j) ∈ A∗ ∩At) for every optimal ACVRP solution A∗ ⊂ A.

Initially, we ignore the contribution of the arcs internal to Sh to LP , meaning that we set z1

equal to 0 (this will be clarified below).
We compute z2 by solving the LP relaxation R1 obtained from the two-index vehicle flow formu-
lation by weakening Constraints (2.12)-(2.15) to account for the removal of the arcs in A1, and
imposing the Constraints (2.16) only for the m subsets Sh.

The LP relaxation model is:

z2 = min
∑

cijxij (3.24)

subject to
∑

i∈V :(i,j)∈A2

xij ≤

{
1 for all j ∈ V \ {0};
K for j = 0;

(3.25)

∑
j∈V :(i,j)∈A2

xij ≤

{
1 for all i ∈ V \ {0};
K for i = 0;

(3.26)

∑
i 6∈Sh

∑
j∈Sh

xij =
∑
i∈Sh

∑
j 6∈Sh

xij ≥

{
γ(V \ Sh) for h = 1;

γ(Sh) for h = 2, . . . ,m;
(3.27)

xij ∈ {0, 1} for all (i, j) ∈ A2 (3.28)

We can view this problem as an instance of a min-cost flow problem on an auxiliary layered
network, making it easier to be solved efficiently. The network contains 2(n+m+ 2) vertices:

• two vertices, i+ and i−, for all i ∈ V

• two vertices, ah and bh for all h = 1, . . . ,m

• a source vertex s and a sink vertex t

with arcs and costs:

• for all (i, j) ∈ A2: arc (i+, j−) with cost cij and capacity 1

• for all h = 1, . . . ,m: arcs (ah, i
+) and (i−, bh) for all i ∈ Sh, with cost 0 and capacity 1 for

i 6= 0 and K for i =0

• for all h = 1, . . . ,m: arc (ah, bh with cost 0 and capacity |Sh| − γ(Sh) if h 6= 1 or |S1| +
K − 1− γ(V \ S1) if h = 1

• for all h = 1, . . . ,m: arcs (s, ah) and (bh, t), both with cost 0 and capacity |Sh| if h 6= 1 or
|S1|+K − 1 if h = 1

22 CHAPTER 3. RELAXATIONS

Finding the min-cost s − t flow of value n + K on the above network solves the LP relaxation
model. The worst-case time complexity for computing z2 and the corresponding residual costs
is O(n3).
Due to the scope of this project, we will not consider this bound any further though.

3.5 Relaxations for the two-commodity flow formulation

An overview of different bounds on the commodity flow (and on another two-index flow) formu-
lation of the ACVRP can be found in the paper by Baldacci et al. [1].
The LP lower bound of the two-index formulation with rounded capacity (RC) inequalities (a
weaker version of Constraint (2.16)) replaced by generalized multistar (GLM) inequalities yields
the same result as the LP relaxation of the two-commodity flow formulation plus the commodity
flow (CF) inequalities.
However, the size of the above two-commodity is polynomial, while the two-index relaxation has
an exponential amount of constraints.

Everything taken into consideration, we decide to use the two-index flow formulation, because it
performs the best and is still easy to implement.

Chapter 4

Implementation

In this chapter, we will first introduce the software we used. After that, we will briefly discuss how
to change the formulations from Chapter 2 and Chapter 3 to the specific example of the online
supermarket Picnic. We will then consider a small example of a ACVRP to better understand
the larger instances we will consider afterwards. For the larger instances, we will consider three
cases: one where all the customers are fairly grouped together in distinct clusters, one where all
of the customers are relatively close to each other and one case that is in between those two.
The problems were simulated on a laptop, that has an Intel(R) Core(TM) i5-3230M CPU @
2.60GHz processor.

4.1 Software used

4.1.1 AIMMS

AIMMS (Advanced Interactive Multidimensional Modeling System) is a software designed to
model and solve optimization and scheduling-type problems. It uses a fairly comprehensive
modeling language, while simultaneously having a graphical user interface that is clear and
intuitive.
While it is possible for students to obtain a free license and copy of the program, it is mainly
used as a commercial solver. It is employed by companies such as Unilever, Shell and Zalando.
AIMMS is designed to be used in conjunction with solvers such as CPLEX or Gurobi.
In this thesis, AIMMS (and CPLEX) solved problems to optimality using Branch and Bound
(see the intro to chapter Chapter 3) in combination with the dual simplex algorithm.
The (dual) simplex algorithm is a way to solve LP-problems. Starting from a feasible solution,
it works iteratively. In each iteration the algorithm finds an extreme value of the set of solutions
and checks wether it is optimal. The algorithm terminates when an optimal value is found, or
when it can conclude that there is no solution to the problem.

4.1.2 CPLEX

IBM CPLEX is a commercial mathematical optimization solver, based on the programming
languages Python, Java, C# and C++. CPLEX solves integer programming problems and LP

23

24 CHAPTER 4. IMPLEMENTATION

problems using Branch and Bound in combination with primal or dual versions of the simplex
algorithm, or using the barrier interior point method. It is also intended for use on quadratic
programming problems, and convex quadratically constrained problems using Second-Order Cone
Programming (SOCP).
CPLEX is part of the standard package of AIMMS. I did not directly use CPLEX, but using
the interface of AIMMS, one indirectly prompts it to use CPLEX to solve their optimization
problem.
In this thesis, CPLEX uses the dual simplex method to solve the LP problems.

4.2 The ACVRP instances

4.2.1 Converting the Problem

As mentioned in Chapter 2, we need to edit our ACVRP formulations a bit to make them suit
the Picnic case. More specifically, we have two capacities Q1 and Q2 (for cooled and uncooled
goods) for each vehicle, and there are two demands d1 and d2 associated with each customer.
Editing the two-index flow formulation to account for this is not too hard: each set of constraints
that use either the demand or the capacity are split up into two sets of constraints, one for Q1

and d1, and one for Q2 and d2. The formulation then becomes:

min
∑
i∈V

∑
j∈V

cijxij (4.1)

subject to
∑
i∈V

xij = 1 for all j ∈ V \ {0} (4.2)∑
j∈V

xij = 1 for all i ∈ V \ {0} (4.3)

∑
i∈V

xi0 = K (4.4)∑
j∈V

x0j = K (4.5)

u1j − u1i +Q1xij ≤ Q1 − d1j for all i, j ∈ V \ {0} (4.6)
d1i ≤ u1i ≤ Q1 (4.7)
u2j − u2i +Q2xij ≤ Q2 − d2j for all i, j ∈ V \ {0} (4.8)
d2i ≤ u2i ≤ Q2 (4.9)
xij ∈ {0, 1} for all i, j ∈ V (4.10)

We edit the formulations for the relaxations in the same way.
Finding the size of the fleet Kmin also becomes harder: we need to solve a BPP where there are
two types of items, and where each container has two separate spaces, one for each type of item.

4.2.2 An example

For the sake of understanding the implementation, we will we create our own customer input:

4.2. THE ACVRP INSTANCES 25

• Depot 0: Laagraven 7, 3439 LG Nieuwegein

• Customer 1: Topaaslaan 40, 3523 AW Utrecht

• Customer 2: Slotlaan 34, 3523 HD Utrecht

• Customer 3: Loopplantsoen 51, 3523 GT Utrecht

• Customer 4: W.A. Vultostraat 41, 3523 TZ Utrecht

• Customer 5: Van Lippe Biesterfeldstraat 22, 3523 VC Utrecht

In the case of Picnic, the depot is usually relatively far away, compared to the proximity of
the customers to each other. Because the customers are all relatively close to each other, it is
possible for the company to serve all the customers of a delivery area within an hour, starting
from the first customer, making it possible to give each customer an accurate estimate of when
their groceries will arrive.
Because of this, we first determine Kmin, the minimum number of vehicles needed to serve all
customers in a route. We determine Kmin using a modified version of the Bin Packing Problem,
with bins that have two compartments with capacity Q1, Q2. There are n items, where item i
has two components which have size di1 , di2 .
We then set K = Kmin, and continue with our ACVRP.
Using google maps, we find:

Figure 4.1: The network of the depot and customers, as seen in google maps.

26 CHAPTER 4. IMPLEMENTATION

0 1 2 3 4 5
0 × 4.0 km 3.4 km 3.5 km 3.4 km 3.4 km
1 4.3 km × 0.9 km 0.85 km 1.0 km 0.45 km
2 3.2 km 0.45 km × 0.12 km 0.55 km 0.26 km
3 3.4 km 0.40 km 0.12 km × 0.6 km 0.55 km
4 3.2 km 1.1 km 0.8 km 0.85 km × 0.8 km
5 3.6 km 0.45 km 0.26 km 0.3 km 0.35 km ×

Figure 4.2: Distances between the customers

We say that for the e-workers (with Q1 = Q2 = 10), the following table of demands holds:

Customer Unooled Cooled
demand demand

0,6 0 0
1 7 1
2 5 6
3 2 8
4 3 3
5 6 2

Figure 4.3: The demands of the customers

These demands are higher than they would be in practice (a demand of 8 crates of groceries is
probably uncommon), and the capacity for the vehicles is a little lower, but for this particular
theoretical instance we want to avoid having less than 2 vehicles, which would trivialize the
problem too much.

By solving the corresponding BPP, we see that Kmin =min(Kmincooled
,Kminnotcooled

) = 3.

When we solve this problem exactly, we get the following table:

0 1 2 3 4 5
0 0 0 1 1 0 1
1 1 0 0 0 0 0
2 1 0 0 0 0 0
3 0 1 0 0 0 0
4 1 0 0 0 0 0
5 0 0 0 0 1 0

Figure 4.4: Solution to our ACVRP example

This table corresponds to having three routes:

• one route from the depot, to 2 and then back to the depot

4.2. THE ACVRP INSTANCES 27

• one route from the depot, to 3, to 1, and then back to the depot

• one route from the depot, to 5, and then via 4 back to the depot

Figure 4.5: The routes illustrated on google maps

The total cost of this solution is 21.8, and it took us 0.008 seconds to solve it.
We will now take a look at the result of applying relaxations (more specifically, the AP bound
and LP relaxations).

4.2.3 Applying the AP-relaxation

As previously noted, we will use the AP lower bound, as described in Section 3.4.2.
We transform the cost matrix (Figure 4.2) following the guidelines from Section 3.4.2 and obtain
the following table of costs using λ = 999 as the large number used as a cost for traveling between
two of the copies of the depot:

28 CHAPTER 4. IMPLEMENTATION

0 1 2 3 4 5 6 7
0 × 4.0 km 3.4 km 3.5 km 3.4 km 3.4 km × ×
1 4.3 km × 0.9 km 0.85 km 1.0 km 0.45 km 4.3 km 4.3 km
2 3.2 km 0.45 km × 0.12 km 0.55 km 0.26 km 3.2 km 3.2 km
3 3.4 km 0.40 km 0.12 km × 0.6 km 0.55 km 3.4 km 3.4 km
4 3.2 km 1.1 km 0.8 km 0.85 km × 0.8 km 3.2 km 3.2 km
5 3.6 km 0.45 km 0.26 km 0.3 km 0.35 km × 3.6 km 3.6 km
6 × 4.0 km 3.4 km 3.5 km 3.4 km 3.4 km 999 km 999 km
7 × 4.0 km 3.4 km 3.5 km 3.4 km 3.4 km 999 km 999 km

Figure 4.6: The transformed table of travel costs for LAP

After this, we remove Constraints (2.14) and (2.15), and edit Constraints (2.12) and (2.13) to
include constraints for vertices 0, 6 and 7.
When we solve this new relaxed problem, we find the following:

0 1 2 3 4 5 6 7
0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 0 0
2 0 0 0 0 0 0 1 0
3 1 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 1
5 0 1 0 0 0 0 0 0
6 0 0 0 1 0 0 0 0
7 0 0 0 0 1 0 0 0

Figure 4.7: Solution to our relaxed ACVRP example

Which corresponds to:

• one route from the depot, to 2, to 6, to 3, and then back to the depot

• one cycle between 1 and 5

• one cycle between 4 and 7

With a total travel cost of 21.0 km, taking us 0.001 seconds to solve. Notice that the AP bound
is pretty close to the actual optimal solution, within 4%.
Clearly, this is not a feasible solution for the normal ACVRP (there are two circuits disconnected
from the depot, and the first route exceeds capacity for the uncooled goods).

4.2.4 The LP-relaxation

We will now apply the LP-relaxation described in Section 3.1. We only have to change the
requirements for the variables xij , so we can quickly start calculating the LP bound, which gives
us the following table for the xij :

4.3. BIGGER INSTANCES 29

0 1 2 3 4 5
0 0 0 0.8 0.8 1 0.4
1 0 0 0.2 0.2 0 0.6
2 1 0 0 0 0 0
3 0.1 0.9 0 0 0 0
4 1 0 0 0 0 0
5 0.9 0.1 0 0 0 0

Figure 4.8: Solution to our LP-relaxed ACVRP example

With a total cost of 21.3, taking us 0.003 seconds to solve. While it took us a little longer to solve
(which is of course not yet a very interesting indicator with these small instances), it produces
another good bound, one of higher quality than the AP one: it is within 3% of the optimal
solution value.

It is too early to draw any conclusions from these small, almost trivial instances. We will now
take a look at more substantial problems, as mentioned before.

4.3 Bigger instances

Now that we have an understanding of our methods, we can take a look at some more interesting
instances.
For each of the following three cases, we will consider 3 to 5 instances with 50 customers. We
assume that the depot is relatively far from the customers. We will assume a homogeneous fleet
with the capacity for both cooled and uncooled goods equal to 18.
Because of the relation between the amount of customers on a route and the average distance
between two customers on a route (see Section 2.2, equation (2.10)), we want routes of at most
10 customers (at which point the average length between two customers becomes around 700
metres. With 11 customers this is less than 200 metres, which is not very realistic). As such, we
randomly generate the demands as an integer between 1 and 4, which brings the average route
to an amount of customers of about 7. See Figure 4.9 for the table of demands.
This, in combination with our capacity of 18, means that our fleet will have K = 7 vehicles. Note
that Kmin = 6, but then we would need routes of up to 10 customers, and that is not realistic
with the constraint on route length.
For each customer, we let the distance to the depot be relatively large: in each of the following
instances, we let the distance from any customer to the depot be a random number between 3
and 5. This is fairly realistic, as depots are often located outside of neighbourhoods, in industrial
areas for example.
In the following instances, we have set the maximum amount of runtime for the algorithm to
two hours.
More than this (or even just this) would take too long to be relevant for an online supermarket,
and the results we do get with these approximated solution values (in essence heuristic solutions)
are good enough to be drawn conclusions from.
For the specific instances, I encourage sending me an e-mail at lennart.kerckhoffs@hotmail.com,
so I can send you the specific data for studying and reproducing.

30 CHAPTER 4. IMPLEMENTATION

i dcooled(i) duncooled(i)

1 3 4
2 4 3
3 2 3
4 1 0
5 1 1
6 0 2
7 3 1
8 4 0
9 4 2
10 3 1
11 4 2
12 3 2
13 1 4
14 1 1
15 1 2
16 3 3
17 2 3
18 2 4
19 1 2
20 2 3
21 4 3
22 1 3
23 0 2
24 2 1
25 3 0
26 1 2
27 1 1
28 2 0
29 0 2
30 4 3
31 1 1
32 4 3
33 3 1
34 2 3
35 0 3
36 1 4
37 2 1
38 1 1
39 1 3
40 2 4
41 1 3
42 3 2
43 2 1
44 3 2
45 4 1
46 1 1
47 3 3
48 3 4
49 3 2
50 2 2

Figure 4.9: The demands of our customers in the coming problems, generated using ASELECT in Excel

4.3. BIGGER INSTANCES 31

4.3.1 The “Ideal” Case

To have something to compare the other results to, we will now generate an (in theory) ideal
case, for which we should be able to solve the problem very quickly.
In this ideal case, we group customers together in clusters in such a way that one vehicle is
sufficient to serve all customers in that cluster. The distance between two customers that are in
different clusters will be generated as a random number between 2 and 5.5 kilometres, while the
distance between two customers within the same cluster will be between 0.2 and 1.5 kilometres.
We will ignore the constraint of route length here, assuming that the customers within one route
are sufficiently close to one another that there will not be any problems.
This way, solving this instance of the ACVRP reduces (for a human, at least) to solving 6
(Kmin = 6, as mentioned before) separate TSP’s. While this is still an NP-hard problem, 6
TSP’s with 6 to 12 customers are in theory a lot easier to solve than one ACVRP with 50
customers and 6 vehicles.
Notice that this is not, in practice how we actually solve this problem. We do however “hope”
that our solving software is able to recognize this problem as being easily solvable from the data
it is provided.
The tables for this data were judged to large to be included in this thesis. AIMMS was able to
solve this instance to optimality in 83.945 seconds, and returned an optimal solution value of
67.2 km.
The AP relaxation solution had a value of 20.3 after 0.080 seconds, and the LP relaxation had a
value of 62.8, taking us 0.074 seconds. We cannot yet draw conclusions about this instance, as we
have not yet checked the other instances. We can, however, already see that the AP relaxation,
while it is very fast, gives us a terrible lower bound: within 70% is a way too large interval to
gain any useful information about the quality of a potential heuristic solution. On the other
hand, the LP solution is also found very quickly, and gives a value within 7% of the optimal
solution value. While still farther off than we would want, it is a more useful relaxation than the
AP relaxation.

4.3.2 Clustered Customers

In our first case, we assume that the customers are close together. In theory, this might make the
problem easier to solve, if the software we use is able to detect that certain groups of customers
that are close to each other can be served by a subset of the vehicles (just like in Section 4.3.1).
In practice, this is not how we will solve this problem, because sometimes a vehicle needs to
deliver groceries to multiple clusters to use the vehicles and their capacity more efficiently.
When looking at clustered customers, we can assume that the total amount of customers in a
route is not as important as the total amount of customers in a route in one cluster with regards
to the maximal route length. This is because the supermarket can make sure their customers
are scheduled in such a way that the 1-hour time window will not pose any problems for vehicles
visiting two different customer clusters.
We will generate the distance between two customers in the same cluster as a random number
between 0.2 and 1.5 kilometres. The distance between two customers of different clusters will
again be generated as a random number between 2 and 5.5 kilometres.
We want each cluster to be able to be served by 1 or 2 vehicles. As such, we want around 7 or
14 customers in each cluster.
We generate each cluster in the following way:

32 CHAPTER 4. IMPLEMENTATION

• randomly let the cluster be able to be visited by either 1 or 2 vehicles (approximately). We
call this number k.

• let the size of the cluster be a random integer generated between (7 · k)− 3 and (7 · k) + 3.

• randomly determine which customers will be in the cluster.

We expect these instances to be the most easy to solve, because of the problem being nearly
separable into smaller problems (with a lot less possible solutions in total).
We generated three cases: the first had 4 clusters, the second 5 clusters and the last 6 clusters.

• AIMMS was able to solve the first instance to optimality in 380.34 seconds, and returned
an optimal solution value of 63.2 km. The AP relaxation solution had a value of 59.3 after
0.082 seconds, and the LP relaxation had a value of 59.3, taking us 0.06 seconds.

• AIMMS was able to solve the second instance to optimality in 399.38 seconds, and returned
an optimal solution value of 65.8 km. The AP relaxation solution had a value of 62.4 after
0.08 seconds, and the LP relaxation had a value of 62.4, taking us 0.085 seconds.

• AIMMS was not able to solve the third instance to optimality, but it did manage to find
a feasible solution in 7202.2 seconds, and returned a solution value of 67.9 km. The AP
relaxation solution had a value of 62.5 after 0.079 seconds, and the LP relaxation had a
value of 62.6, taking us 0.078 seconds.

Compared to the “ideal” case, the problems were a lot harder to solve (one instance even had to
be terminated early).
The relaxations, however, did a little better in general. Note that the LP and AP relaxations
gave (almost) the exact same quality of the bound, while the LP relaxation was a little faster
(however, negligibly so).

4.3.3 All customers relatively close

When all customers are relatively close to each other, such that we cannot cluster different groups
of customers, we expect the computation time to be a little longer, as we need to consider more
options when assigning customers to the vehicles. We will generate the distance between any
two customers as a random number between 0.2 and 1.5 kilometres, as with the customers in
the same cluster in Section 4.3.2 (essentially, we have instances with one big cluster of customers
here).
We expect these instances to take the longest to be solved, because the algorithm essentially
needs to consider all options, without being able to quickly terminate possible solutions.
We generated 3 different instances:

• Instance 1 took us 34.492 seconds to solve, and returned an optimal solution value of 56,4.
The AP relaxation solution had a value of 54.7 after 0.082 seconds, and the LP relaxation
had a value of 54.7, taking us 0.075 seconds.

• AIMMS was able to solve the second instance to optimality in 168.94 seconds, and returned
an optimal solution value of 56.3 km. The AP relaxation solution had a value of 54.1 after
0.079 seconds, and the LP relaxation had a value of 54.1, taking us 0.068 seconds.

4.3. BIGGER INSTANCES 33

• AIMMS was able to solve the second instance to optimality in 2.74 seconds, and returned
an optimal solution value of 56.8 km. The AP relaxation solution had a value of 10.2 after
0.081 seconds, and the LP relaxation had a value of 55.3, taking us 0.097 seconds.

Contrary to our expectations, the cases where the customers are not divided into separate clusters
is easier to solve for AIMMS than the case where the customers are clustered. It might even
be faster than what we considered to be the “ideal” case. This could possibly be because in the
clustered case, customers might “accidently” be clustered in such a way that almost every vehicle
needs to visit more than one cluster. We can see this reflected in the costs too: the optimal
solutions for the clustered cases are higher than for the not clustered cases: the extra costs can
be expected to come from travel between two different clusters. Because of this traveling in
between clusters, the algorithm has to consider not only each customer that will minimize the
cost of the route (as with the not clustered case), but before that which cluster constitutes the
best possible choices of customers.
The AP relaxation has again a case where it fails and gives a fairly useless lower bound of 10.2,
compared to the optimal value of 56.8. Note that this third case was solved extremely quickly,
in 2.74 seconds. In the other cases, the LP and AP relaxations performed comparably, and gave
fairly decent bounds, within 4% of the optimal solution.

4.3.4 Combination of the previous two cases

In these instances, we will generate instances with two small clusters (of 5 to 7 customers, as in
Section 4.3.2), and group all other customers together in one big cluster.
We generated 4 instances, two with two clusters aside from the on big cluster, and two with three
clusters aside from the one big cluster.

• Instance 1 took us 795.95 seconds to solve, and returned an optimal solution value of 76,9.
The AP relaxation solution had a value of 72.8 after 0.03 seconds, and the LP relaxation
had a value of 72.8, taking us 0.085 seconds.

• Instance 2 took us 447.87 seconds to solve, and returned an optimal solution value of 62.3.
The AP relaxation solution had a value of 57.9 after 0.064 seconds, and the LP relaxation
had a value of 57.9, taking us 0.079 seconds.

• AIMMS was not able to solve the third instance to optimality, but it did manage to find
a feasible solution in 7202.02 seconds before calculations were terminated, and it returned
a solution value of 63.5. The AP relaxation solution had a value of 59 after 0.071 seconds,
and the LP relaxation had a value of 59.1, taking us 0.041 seconds.

• AIMMS was not able to solve the fourth instance to optimality, but it did manage to find
a feasible solution in 7206.7 seconds before calculations were terminated, and it returned a
solution value of 64.9. The AP relaxation solution had a value of 60.1 after 0.079 seconds,
and the LP relaxation had a value of 60.1, taking us 0.079 seconds.

Again we are a little surprised by the results: this case seems to be the most computationally
difficult of all the cases overall. Looking at the large costs, this might again be a problem caused
by the need to travel in between clusters alot, as with the clustered case (see Section 4.3.3).
The computation time and quality of the bound of the AP and LP relaxations were again

34 CHAPTER 4. IMPLEMENTATION

comparable, with speed being around the same on average, but the LP relaxation winning out
with the quality of the bound. In general, the bounds were within 7% of the optimal solution
value, which is okay.

Chapter 5

Conclusions and reflections

In this thesis, we took a look at the Asymmetric Vehicle Routing Problem. We introduced
different ways to model this problem mathematically. Taking the speed of solution methods,
possible relaxations and, sadly, time constraints into account we opted to use a Two-Index Flow
formulation to model the problem.
We then looked at different possible relaxations for the problem, and chose to apply both a
Linear Programming relaxation and an Assignment Problem relaxation.
In Chapter 4, we extended the ACVRP to our specific example, where we had vehicles with two
different demands: one for cooled, and one for uncooled goods.
After that, we took a look at 4 different cases to test our model and relaxations from the previous
chapters in practice. These cases were randomly generated. For each case and each instance of
a case, the same table of demands for the customers.
We saw that, contrary to what we expected, cases where all of the customers are grouped rel-
atively close together, the problem is more easy to solve than when the customers are divided
into separate clusters, with larger distances between customers in separate clusters.
Also, while ACVRPs with a large number of vehicles and thus a large number of routes (due to
a low capacity per vehicle) are computed faster than ACVRPs with relatively larger capacity.
We also saw that the LP relaxation works better than the AP relaxation in quality of the bound
while requiring around the same computation time. It should be mentioned that the AP relax-
ation also requires a bit more work before it can be applied in each case, because the graph has
to be extended depending on the number of vehicles used. We also saw that the AP relaxation
“flops” in rare cases, providing us with near useless lower bounds.

This research is by no means finished: we did not have the chance to test too many different
instances for each case, so our conclusions might be a little unreliable, or off.
Due to time constraints, we also neglected some possible relaxations, such as the Lower Bound
Based on Flow and the Disjunctive Lower Bound. While these require more extensive algorithms,
they should in theory provide high quality bounds. Aside from that, more formulations of the
ACVRP can be tested. For example, one could see if a Set Partitioning formulation yields better
results in solving the problem exactly, or has better relaxations for finding lower bounds on the
optimal solution value.
Lastly, everything mentioned above could be applied to even bigger instances with more cus-
tomers, or problems where the fleet is non-homogeneous, or at least the capacity for cooled and
uncooled goods is different.

35

36 CHAPTER 5. CONCLUSIONS AND REFLECTIONS

Bibliography

[1] Roberto Baldacci, Paolo Toth, Daniele Vigo Recent advances in vehicle routing exact algo-
rithm. http://dx.doi.org/10.1007/s10288-007-0063-3

[2] Paolo Toth, Daniele Vigo Models, relaxations and exact approachtes for the capacitated
vehicle routing problem. Università di Bologna, Dipartimento die Elettronica, Informatica e
Sistemistica, Viale Risorgimento 2, 40136 Bologna, Italy

[3] A.H. Escobar, Z.M. Granada E. E.M. Toro O,. Literature review on the vehicle routing
problem in the green transportation context. Revista Luna Azul, 42:362-387, 2016.

[4] G. W. Klau Lagrangian Relaxation: An Overview Discrete Mathematics for Bioinformatics
WS 07/08, 18th of december 2007

[5] H. Yeo Course notes IEOR 251 - Facility Design and Logistics, March 16, 2005

[6] M. Held, R.M. Karp The traveling salesman problem and minimum spanning trees: Part II,
Math. Programming 1 (1971)

[7] Finke G, Claus A, Gunn E (1984) A two-commodity network flow approach to the traveling
salesman problem. Congress number 41: 167-178

[8] M.L. Balinski and R.E. Quandt On an integer program for a delivery problem Princeton
Universtiy, Princeton, New Jersey March 11, 1963

[9] Christos H. Papadimitriou, Kenneth Steiglitz Combinatorial Optimization: Algorithms and
Complexity 1982

[10] L.A. Wolsey Integer Programming December 1998

[11] I. Kara, G. Laporte, T. Bektas A note on the lifted Miller–Tucker–Zemlin subtour elimi-
nation constraints for the capacitated vehicle routing problem Received 30 September 2002;
accepted 5 May 2003

[12] Miller, C. E.; Tucker, E. W.; Zemlin, R. A. (1960). Integer Programming Formulations and
Travelling Salesman Problems J. ACM. 7: 326–329

[13] M. Fischetti (University of Padova, Padova, Italy), P. Toth, D. Vigo (University of Bologna,
Bologna, Italy) A branch-and-bound algorithm for the capacitated vehicle routing problem
on directed graphs Received August 1992; revision received may 1993; accepted June 1993

[14] David L. Applegate, Robert E. Bixby, Vasek Chvátal and William J. Cook The Traveling
Salesman Problem: A Computational Study Princeton University Press, 2006

37

38 BIBLIOGRAPHY

[15] M. Grötschel, L. Lóvasz, A. Schrijver Geometric Algorithms and Combinatorial Optimization
Technische Universität Berlin, Eötvös Loránd University, University of Amsterdam 1988

