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THE BIGGERPICTURE Photobiocatalysis is a rapidly evolving field of research. New photobiocatalytic reac-
tions are published almost weekly, presenting fascinating opportunities that enrich chemical synthesis. How-
ever, it is also the time to question the feasibility and practicality of these novel reactions. Only if the reported
approaches can be economically viable can photobiocatalysis transition from ‘‘scientifically interesting’’ con-
cepts to practical applications. In this review,we provide a critical analysis of the current state of the art, high-
lighting performance indicators such as turnover number and the environmental footprint of the reactions.
We hope to spark a critical and lively discussion, thereby advancing the exciting field of photobiocatalysis.
SUMMARY
Photobiocatalysis is currently in vogue. The number of reports combining the disciplines of biocatalysis and
photocatalysis is rapidly increasing. While the synthetic possibilities enabled by photobiocatalysis are fasci-
nating, the economic feasibility and environmental impact are largely neglected in the current literature. In
this contribution, we present a range of key indicators for economic feasibility and environmental impact
that may be useful for readers to assess their own work and thereby avoid unrealistic exaggerations. We
also critically review the current state of the art in photobiocatalysis and question its synthetic practicability
beyond the laboratory. With this contribution, we aim to provoke an open discussion.
INTRODUCTION

Photobiocatalysis is an emergent field at the intersection of pho-

tocatalysis and biocatalysis. By integrating the specificity of bio-

catalysts with the energy efficiency of photocatalysis, it ushers in

an era of interdisciplinary innovation, offering new insights into

reaction mechanisms and enabling novel reaction pathways

previously unattainable through conventional methods. This

synergy not only advances our understanding of light-driven

and enzymatic processes but also aligns with the principles of

green chemistry, advocating for reduced energy consumption

and minimal waste production. Leveraging solar energy to

drive chemical reactions, photobiocatalysis paves the way for

reducing reliance on fossil fuels, contributing to a sustainable

chemical industry with a lower carbon footprint and enhanced

resource efficiency. As such, it holds promise for delivering sus-

tainable solutions in chemical synthesis, underpinning the devel-

opment of renewable energy technologies and fostering environ-

mental stewardship.

Yet, these assertions are frequently made without robust evi-

dence. Undoubtedly, a comprehensive life cycle assessment
Chem Catalysis 4, 101077, Octo
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(LCA) and a techno-economic analysis of an established process

provide concrete, quantitativemetrics to evaluate these aspects.

However, even in the initial stages of development—common

in academic settings—a semi-quantitative assessment can

offer valuable insights, highlight constraints, and steer subse-

quent progress. In the ensuing section, we present straightfor-

ward concepts and metrics designed to furnish the academic

researcher with an accessible and substantive preliminary

evaluation.

Overall, we aspire to enhance academic researchers’ aware-

ness of the intricate factors influencing environmental and eco-

nomic impacts. We hope that the tools presented for discussion

here will help to avoid overly simplified and unsubstantiated

claims regarding sustainability and industrial applicability.

Economic considerations
A common misconception about biocatalysis is its perceived

high cost, primarily due to the expensive enzymes sourced

from specialty chemical suppliers. Yet, it is crucial to recognize

that enzyme production costs are linked to the scale of fermen-

tation (Figure 1A). Tufvesson et al. projected that the costs for
ber 17, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Factors influencing the cost

contribution of a biocatalyst to the final

product

(A) Dependency of the catalyst (cells) production

cost on the scale of the fermentation.

(B) Cost contribution of the catalyst (enzyme as

crude cell extract or whole cells) depending on the

turnover number (TN) or the crude enzyme and the

cell productivity (kgproduct kg
�1

cells). Assumptions

made are as follows. Production costs: whole

cells = 150V kg�1, crude cell extract = 250V kg�1,

molecular weight (MW)product = 200 g mol�1, and

MWenzyme = 50 kDa.
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whole cells and crude cell extracts could be as low as 150 V per

kgcells and 250 V per kgEnzymes, respectively, when manufac-

tured on a large scale.1 These numbers should be taken as rough

guidelines. Naturally, additional factors, such as expression

level, cell density, cultivation time, and the complexity of down-

stream processing, have a significant impact on the production

costs of an enzyme. A notable point is that typical laundry deter-

gents include enzymes at concentrations of 1%–5% (w/w).2

Furthermore, the formulation of the biocatalyst significantly im-

pacts its production costs. Utilizing whole cells, which require

minimal further processing, proves to be the most cost-effective

approach. Producing crude cell extracts entails additional steps,

thus slightly increasing the costs. Enzyme purification, involving

more extensive procedures, can result in a substantial increase

(approximately 5-fold) in production costs, although recent ad-

vancements in purification techniques may reduce these ex-

penses. However, it is essential for practitioners to assess

whether purification is necessary; for instance, due to the pres-

ence of unwanted activities from the host organism or issues

with stability.

Besides production costs, the efficacy of a (bio)catalyst plays

a critical role in determining its contribution to the overall cost

of producing a specific product (Figure 1B). Evidently, the

greater the amount of product generated per unit of catalyst,

the lower the cost contribution of the (bio)catalyst to the final

product.
Table 1. Allowable cost contribution of biocatalysts (whole cells

or crude enzyme extracts) and minimal performance parameters

for economically feasible use in various industrial sectors

Sector

Typical

product

cost

(V kgproduct
�1)

Allowable

catalyst

contribution

(V kgproduct
�1)

Minimal

catalyst

performance

(TN and kgproduct
kg�1

cells)

Pharma 100 10 15,000

15

Fine/speciality

chemicals

10 0.8 150,000

200

Bulk chemicals 1 0.05 2,000,000

3,000

TN = molproduct 3 molcatalyst
�1.

2 Chem Catalysis 4, October 17, 2024
Tufvesson, Woodley, and their colleagues delineated indus-

trial sectors—pharmaceuticals, commodity and fine chemicals,

and bulk chemicals—each characterized by distinct product

cost structures. Table 1 condenses the typical product costs,

permissible catalyst cost contributions, and the ensuing mini-

mum performance criteria for catalysts within each sector.

While these figures offer a preliminary understanding of the

commercial viability of a particular biocatalytic transformation,

it is important to consider that other, less apparent factors

can significantly influence the process. For instance, Evonik’s

replacement of the traditional Lewis acid-catalyzed esterification

of fatty acids with fatty alcohols using an enzymatic method

reduced the reaction temperature from over 180�C to just

60�C. This change eliminated unwanted thermal side reactions,

markedly simplifying and abbreviating both the synthesis and

downstream processing of the product (Figure 2).3,4 This adjust-

ment led not only to amore cost-effective procedure but also to a

considerable reduction in environmental impact.

Environmental impact
Another pervasive a priori assumption is that both bio- and pho-

tocatalysis are inherently benign technologies.5,6 In the case of

biocatalysis, the mild reaction conditions and the renewable na-

ture of the catalyst are often highlighted. For photocatalysis, the

potential use of sunlight is presented as evidence of environ-

mental friendliness. While we largely concur with the promise

of both technologies for more sustainable chemical synthesis,

it is imperative to acknowledge that here too, rigorous scrutiny

is essential.

The synthesis history of a given catalyst of course has an influ-

ence on its environmental impact. Complex resource- and en-

ergy-consuming syntheses increase the environmental footprint

of catalysts (and essentially all products). A complete E(+) anal-

ysis of all steps of a regent’s history obviously rapidly becomes

very time and data intensive. As a doable but still meaningful

alternative, Jessop proposed the qualitative comparison of the

individual synthesis trees.7 Particularly, comparing the number

of synthesis steps already provides a realistic, qualitative handle

to compare the resource intensity of different compounds.

Figure 3 compares some synthesis trees of some biocatalysts

and some representative transition-metal catalysts, organocata-

lysts, and inorganic catalysts. Based on the ‘‘number of steps‘‘

comparison, mesoporous silicates appear to leave behind the



Figure 2. Industrial synthesis of the emollient ester myristyl myristate

(Left) The original process utilized tin oxalate as catalyst and consequently had to be operated at least 180�C. As a result, excessive downstream processing

(DSP) was inevitable. The enzymatic process operates at more ambient temperatures, making additional DSP superfluous, thereby considerably shortening the

production time.

(Right) Comparative LCA of the former Sn-oxalate (black) and the new, lipase-catalyzed reaction (green).
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smallest environmental footprint, followed by enzymes, while or-

ganocatalysts and transition-metal-based homogeneous cata-

lysts appear to have the largest footprint because of the complex

synthesis of organic ligands/substituents. The synthesis tree

analysis also visualizes that the ‘‘100% renewable’’ character

of organo- and biocatalysts is somewhat questionable. In both

cases, some fossil, non-renewable base chemicals can be found

in the synthesis trees. Of course, this analysis is only a snapshot

of the current state of the-art, and the synthesis trees will be

simplified if, e.g., H2 will be obtained from renewable energies.

In any case, we believe that this synthesis tree analysis should

foster a more critical view of catalyst preparation and relativize

the ‘‘complete renewability’’ of bio- and organocatalysts.

It is also crucial to consider that the fermentation process is

resource intensive and consumes a significant amount of en-

ergy.8 We delved deeper into this aspect by applying Sheldon’s

E factor9,10 to the synthesis of two enzymes via 10 L-scale

fermentation (Figure 4).8

The classical E-factor is largely contingent on the enzyme

yield from the fermentation process. In this particular case

study, the E factor was a minimum of 2,800 kg of waste per

1 kg of enzyme. While it may be contended that the by-prod-

ucts of fermentation could be repurposed, for example, as

fertilizers, thereby potentially not qualifying as waste, this

perspective still provides insight into the resource expenditure

as raw material for enzyme production. Moreover, it is debat-
able whether water, as a ‘‘green solvent,’’ should be included

in these calculations. More critical, in our view, is the non-

obvious, ‘‘hidden’’ waste generated in the form of energy con-

sumption. Given that energy production today still largely relies

on the combustion of fossil fuels (Table 2), the resultant CO2

emissions should not be overlooked. Table 2 gives an overview

of the typical CO2 footprints of various energy sources.11 The

local, individual CO2 footprint of the energy used obviously de-

pends on the local mix of the different energy sources.

At initial glance, the figures for the E(+) factor appear alarmingly

high, particularly when considering emissions related to energy

consumption. However, it is important to note that biocatalysts

are typically not the end product but a tool to synthesize the

desired final product. Thus, if the (bio)catalyst is utilized effi-

ciently (for instance, achieving high turnover numbers), its overall

impact on the final product’s footprint could be considered negli-

gible (Figure 4B).

It is also worth mentioning that major enzyme suppliers have

performed LCA analyses for their products.12 At first sight, the

CO2 emissions reported there are approximately 4 orders of

magnitude lower than the numbers shown in Figure 4A. Howev-

er, it should be noted that, in case of industrial enzymes, the

liquid formulation is taken as basis for the CO2 calculations,

whereas in Figure 4A, the basis is the amount of biocatalyst.

Thus, taking an average enzyme concentration of 1–50 gEnzyme

LFormulation
�1, similar values can be calculated. Also, some
Chem Catalysis 4, 101077, October 17, 2024 3



Figure 3. Synthesis trees of some representative catalysts

Encircled compounds are ‘‘base chemicals.’’ Those marked in red are running scarce.

(A) Alumosilicate.

(B) Enzyme.

(C) Proline-derived organocatalyst.

(D) Organometallic catalyst.
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economy-of-scale effects in terms of energy efficiency of

enzyme production (10 L vs. up to 500 m3) may be expected.

Regarding photocatalysis, it is essential to acknowledge that

its primary environmental advantage is purported to stem from

utilizing sunlight to hasten chemical transformations or provide

the thermodynamic impetus for otherwise energetically prohibi-

tive reactions. Nevertheless, the majority of documented photo-

catalysis instances employ artificial lighting instead of sunlight.

Here, we assert that the energy consumed for illumination (and

the consequent CO2 emissions elsewhere) should be factored

in when evaluating the environmental credentials of photocata-
4 Chem Catalysis 4, October 17, 2024
lytic processes. To exemplify this, we have assessed the elec-

tricity usage for a photocatalytic reaction and calculated an E+

value for the total reaction (Figure 5).13

In this particular example, the CO2 emissions caused by the

LED (light emitting diode) illumination accounted for more than

50% of the overall E+ factor of the reaction. The high absolute

values are mainly due to the very dilute reaction mixtures with

maximally 10mM of product. ‘‘Raising the product titers to indus-

trially demanded 50–200 g L�1 will reduce the E-factor . .’’13

Thoughwe still standwith this statement,we note that the demon-

stration is still elusive. It should also be noted that 10mM is not an



Figure 4. E(+) factor calculation of two en-

zymes produced at 10-L scale, taking into

account water and energy consumption-

related CO2 emissions

(A) Summary of E(+) factors determined for the

production of two enzymes.

(B) E factor contribution of an enzyme (own E

factor = 500,000) to the E factor of the final product

depending on its performance (in terms of TNs).

AaeUPO, peroxygenase from Agrocybe aegerita

(expressed in Pichia pastoris); AoFOx, formate

oxidase from Aspergillus oryzae (expressed in Es-

cherichia coli). TheCO2 intensity of the fermentation

was determined by measuring the electricity used

for the single operation steps (e.g., stirring, pump-

ing, heating, cooling etc.) and multiplying these

values with the local CO2 intensity of electricity.
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exceptionally low substrate/product concentration (vide infra).

Figure 6 visualizes the impact of product concentration and

wastewater formation. Still today, themajority of biocatalytic reac-

tions are performed in dilute aqueous reaction media,14–16 result-

ing in several hundred liters of wastewater amounts per kilogram

of product.

In summary, we ascertain that economic and environmental

advantages are not inherently guaranteed for either photocatal-

ysis or biocatalysis. Several factors must be thoroughly evalu-

ated before asserting such benefits. In the subsequent sections,

we will critically examine a selection of photobiocatalytic exam-

ples, endeavor to identify the primary limitations, and propose

potential enhancements.
TRUE PHOTOBIOCATALYTIC TRANSFORMATIONS

Today, three naturally occurring classes of photoenzymes (i.e.,

wild-type enzymes relying on illumination for activity) are known:

being part of the chlorophyl biosynthetic pathway, protochloro-

phyllide oxidoreductases (LPORs)17 catalyze the light-depen-

dent reduction of the C17=C18 double bond in protochlorophyl-

lide (Figure 7). It is interesting to note that, in this case, the

substrate itself serves as photosensitizer. From a biocatalytic

perspective, LPORs are largely unchartered terrain, which may

be largely due to the highly specific substrate range.
Table 2. CO2 footprint of some common energy sources

Energy source

Specific energy

content (kW h�1 3 kg�1)

Methane 55.2

Gasoline 46.4

Coal (black) 26–33

Coal (brown) 10–20

Nuclear power 2.4 3 107

Solar energy –

Wind energy –

Hydroelectric power –
aThe discrepancy between theoretical and realistic CO2 emissions stems f

power plants, etc.; the numbers presented for the non-fossil energy sourc

the power plants.
Like LPORs, photolyases (PLs) have also been receiving inten-

sive scientific interest for decades, albeit not from the bio-

catalysis community.18 PLs catalyze the repair of photodam-

aged DNA (thymine dimers). In PLs, a methenyltetrahydrofolate

photosensitizer activates a photoinactive, reduced flavin via

fluorescence resonance energy transfer (FRET) followed by sin-

gle-electron transfer (SET) to the thymidine dimer, ring cleavage,

and back-SET (Figure 8).18

The youngest known members of the ‘‘true’’ photoenzymes

are the fatty acid photodecarboxylases (FAPs). Since the first

report by Beisson and coworkers in 2017,19,20 the FAP from

Chlorella variabilis (CvFAP) has been attracting a lot of atten-

tion.21–29 The catalytic mechanism of this (and related decar-

boxylases) comprises photoexcitation of the enzyme-bound

flavin cofactor by blue light. The activated flavin then medi-

ates a SET step from the enzyme-bound, deprotonated

carboxylic acid, thereby initiating the almost instantaneous

decarboxylation step and back-electron transfer from the

semi-reduced flavin. Active-site-residing Arg and Cys also

play an important role, presumably in proton transfer

(Figure 9).19,30
Applications of FAPs
CvFAP and its homologs fromother organisms31–33 have received

considerable attention from biotechnologists, particularly for the
Theoretical CO2 emissions

(g(CO2) 3 kW h�1)

Realistic CO2 emissions

(g(CO2) 3 k Wh�1)a

50 90

67.2 240

77–93 200

80–160 300–400

0 2–30

0 20–75

0 3–14

0 1–30

rom several factors, such as often low efficiency in energy conversion at

es also contain indirect emissions during mining and manufacturing of
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Figure 5. Estimation of the E+ factor of a

photobiocatalytic oxidative lactonization

reaction
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valorization of (waste) fatty acids and oils into a new generation of

biodiesel (Figure 10).34–46 Traditional biodiesels (i.e., fatty acid

methyl esters [FAMEs]) are obtained from the reversible (trans)

esterification of fatty acids or their glycerides. This results in the

need for extensive pretreatment (drying) of the feedstock and ne-

cessitates molar surpluses of methanol to maximize the FAME

yield. Despite these apparent shortcomings, biocatalytic FAME

production is also well established on the industrial scale.47–50

The lipase/FAP route appears to be simpler and more efficient,

as the aforementioned disadvantages do not apply here, and,

furthermore, the caloric value of the alkane product is higher

than those of the corresponding FAMEs.

Next to biofuel applications, some very creative approaches to

embed FAPs into synthesis routes for more value-added prod-

ucts have been reported, some of which will be discussed in

more detail. Very early on, several groups started engineering

CvFAP for increased selectivity on various compounds, mainly

in light-driven kinetic resolution reactions (Figure 11). For

example, Wu et al. engineered CvFAP for the kinetic resolution

of a-substituted carboxylic acids,51 for the discrimination be-

tween cis- and trans-unsaturated fatty acids,52 or for the deuter-

ative, kinetic resolution of racemic glycolic acid ethers.53 Also,

the kinetic resolution of racemic phosphinothricin using engi-

neered CvFAP has been reported.

Very recently, Yang and coworkers further engineered FAPs

into so-called radical photocyclases (Figure 12), thereby ex-

panding the reaction scope of FAPs.55
Figure 6. Correlation between product concentration and waste-

water formation in aqueous biotransformations

Black triangles represent values calculated from representative literature ex-

amples.14 The red line indicates the theoretical wastewater generated for a

product with an MW of 200 g mol�1.

6 Chem Catalysis 4, October 17, 2024
CvFAP has also been used in a range of cascade transforma-

tions, particularly for the conversion of unsaturated fatty acids

into value-added products.56–59 An interesting newer develop-

ment comprises the application of FAPs in whole-cell biotrans-

formations, such as the conversion of carbohydrates to al-

kanes60,61 or base chemicals (Figure 13).62

A critical evaluation of FAP performance
One possible application of FAPsmentioned frequently in the ac-

ademic contributions around FAPs is the valorization of renew-

able (waste) fatty acids into combustible fuels (vide infra). In

this light, of course the production costs will play a major role

for the commercial success of this application. We therefore

analyzed the current FAP literature with respect to catalyst turn-

over numbers (Figure 14).

This analysis reveals that the current state of the art in FAP

catalysis in terms of enzyme utilization is still several orders of

magnitude away from economic feasibility (Table 1). Rarely, turn-

over numbers higher than 10,000 and/or product-to-catalyst ra-

tios of higher than 1 have been reported. Obviously, this stands

in stark contrast to the envisioned preparation of fuel alkanes.

Addressing the issues of FAP catalysis
Intensification of FAP-catalyzed fatty acid decarboxylations

has been a topic early on. One focus has been to increase the

quantum yield of the reaction. The poor penetration depth of

(visible) light into the reactionmixtures of classical stirred tank re-

actors renders dissolved, bulk photoenzymes largely inactive. To

address this, flow chemistry reaction setups to increase the sur-

face-to-volume ratio have been established.72,73 Also, parallel

illumination68 and internal illumination70 have been evaluated.

Generally speaking, improving the light penetration indeed re-

sults in higher volumetric productivity but does not positively in-

fluence the total turnover number of the FAPs (both in whole cells

and with isolated enzymes).

In case of whole-cell biotransformation, the surface display of

the FAP on the well membrane of the expression host has been

shown to increase activity, presumably by reducing diffusion lim-

itations over the cell membrane.66,67

Most wild-type FAPs exhibit a clear preference for fatty acids,

i.e., acids with alky chain lengths larger than 10. This can either

be addressed using the decoy molecule approach43,74 or via

enzyme engineering.75

As shown in Figure 14, the major limitation of FAPs in view of

economic feasibility is their low stability. Early on, Scrutton and

coworkers raised the issue of poor photostability of FAPs,29,76

and further evidence underlined the importance of a convertible



Figure 7. Regio- and stereoselective reduction

of the C17=C18 double bond in protochlorophyl-

lide catalyzed by LPOR
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substrate (carboxylic acid) being present upon illumination.69 It

was hypothesized that, in the absence of a substrate, the photo-

excited, enzyme-bound flavin may oxidize nearby active-site res-

idues. However, further experimental evidence is so far lacking.

Additionally, flavins function as photosensitizers for molecular ox-

ygen. Indeed, the photostability ofCvFAPwas somewhat higher in

the absence of O2 compared to the ambient atmosphere.64

The influence of the illuminationwavelength onCvFAP has been

investigated by various groups.63,77,78 A direct correlation of both

CvFAPactivity and stability with the spectral overlapwith the flavin

UV-visible spectrum was observed (Figure 15). The strongest in-

activating influence was observed with blue LED light, almost

entirely overlapping with the CvFAP-absorption spectrum,

whereas red light had only a minor inactivating effect. However,

with decreasing overlap, the decarboxylation activity also

decreased. Hence, the stabilizing effect appears to be largely

compensated by the reduced activity.63 Recent reports on

increased activity and stability upon illumination with violet light78

are difficult to rationalize and necessitate further investigation.

Immobilization of enzymes typically brings about stabilization

against hostile reaction conditions.79 Primarily, immobilization

increases the rigidity of an enzyme and thus counteracts

opposing effects that weaken the tertiary and quaternary struc-

ture of an enzyme, such as elevated temperatures, coordinating

and solvating medium components (solvents, salts, and pH

values) or reactive functional groups like aldehydes, and so forth.

In the case of photodecarboxylases, however, the main reason

for inactivation lies with the prosthetic group and/or amino acids

in the active site. The latter are not affected by immobilization.
Hence, it is not very astonishing that immobilization hardly influ-

ences the photostability of FAPs.73,80,81

Future directions
It is clear that FAP catalysis needs dramatic improvements to

reach economic feasibility. Particularly, the photoinactivation

process so far is poorly understood. Possibly, enzyme engineer-

ing can solve this issue.75 To base any engineering efforts on

experimental evidence, it would be very interesting to identify

the amino acid residues involved in the photoinactivation; e.g.,

by tryptic digestion and high-performance liquid chromatog-

raphy-mass spectrometry characterization. Also, the photo-

bleached flavin cofactor should be characterized in more detail.

Another interesting approach may be to generate FAP mutants

with increased affinity to the carboxylate starting material in

order to minimize illumination of ‘‘empty’’ FAPs leading to

inactivation.

Finally, as suggested by Scrutton and coworkers, embedding

FAP catalysis intometabolically active whole-cell systemswhere

the photoinactivated FAPs may be replaced certainly is an inter-

esting route to explore further.

TEACHING OLD DOGS NEW TRICKS:
PHOTOBIOCATALYSIS FOR NEW-TO-NATURE
REACTIONS

Studies of the photochemical activation of enzyme cofactors,

such as nicotinamide cofactors (NADH, NADPH) have been

documented since the mid-1970s.82–85 The enhanced reduction
Figure 8. PL mechanism

(1) Blue-light photoexcitation of the methyltetrahy-

drofolate cofactor. (2) FRET from the excited folate to

the reduced flavin cofactor. (3) SET from FADH2
ǂ to

the thymidine dimer, forming a ketyl radical. (4) Rapid

cyclobutane ring opening. (5) Back-electron transfer.

Chem Catalysis 4, 101077, October 17, 2024 7



Figure 9. Simplified mechanism of CvFAP-catalyzed decarboxyl-

ation of carboxylic acids

The catalytic cycle starts from the substrate-bound resting state (1) with the

absorption of blue light (�400–550 nm), resulting in the photoexcited (singlet)

state (2). Fast SET from the acid substrate to the flavin (2 > 3), followed by fast

protonation of the developing carbon-centered radical and electron back

transfer to the carbon radical (3 > 4) finally results in the product-bound resting

state (5), which, upon substitution of the product by another acid molecule,

enters a new catalytic cycle.
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potential of the photoactivated, reduced nicotinamide moiety

has been demonstrated to facilitate the radical reduction of inac-

tive precursors. However, it was only recently that Hyster and

colleagues recognized the synthetic potential for stereoselective

radical coupling when cofactors are encapsulated within the chi-

ral milieu of an enzyme’s active site.86 In an initial study, they

illustrated that a photoexcited charge-transfer complex is

formed between NAD(P)H and a-brominated esters (Fig-

ure 16A).87 In a similar vein, Zhao and colleagues expanded

this approach to include photocatalytic radical formation in C–

C bond-forming reactions (Figure 16B).88

Recently, attention has shifted toward photoinduced abiolog-

ical reactions utilizing flavin-dependent enzymes, likely due to

the superior radical stabilization capacity of the alloxazine moi-

ety compared to the nicotinamide ring. The overarching mecha-

nism consistently relies on the photoactivation of the reduced

flavin cofactor, followed by SET to the enzyme-bound substrate

and the elimination of a leaving group. The resultant radical sub-

sequently engages with appropriate reaction partners, such as

C=C double bonds (both inter- and intramolecular), aromatic

compounds, or C-H acidic nitro compounds (Figure 17).

Especially when combined with enzyme engineering to adjust

the selectivity, photobiocatalytic radical reactions are potentially

very powerful methods for the selective generation of previously

inaccessible new C–C bonds.26,86,96,97

Another exciting development in artificial photoenzymes is the

incorporation of non-natural amino acids exhibiting photocata-

lytic properties.98 One particularly interesting approach was re-
8 Chem Catalysis 4, October 17, 2024
ported by Green and coworkers99: installation of a genetically

encoded benzophenone photosensitizer into the active site of ty-

rosyl-tRNA synthetase from Methanococcus jannaschii. The re-

sulting non-natural Diels Alderase was capable of [2+2] cycload-

dition reactions (Figure 18). Up to 300 turnovers have been

reported for the new-to-nature photoenzyme.

ECONOMIC FEASIBILITY AND ENVIRONMENTAL
IMPACT OF THE ‘‘NEW-TO-NATURE’’
PHOTOBIOCATALYTIC REACTIONS

Today, the aforementioned photobiocatalytic transformations

are still in their infancy, and little effort has beenmade to increase

the catalytic performance of these transformations. A very

typical catalyst loading is 1 mol % (i.e., turnover number

[TN] < 100), therefore corresponding more to the performance

of a typical organocatalyst than to an enzyme. The reagent load-

ings of, typically, <10 mM, however, resemble those generally

use in biocatalytic transformations. Regardless of the scientific

merits, when applying the economic and environmental consid-

erations made above, it becomes clear that an economically

feasible application beyond pharmaceutically relevant products

is rather unrealistic. Also the environmental benefits, based on

the current state of the art, are questionable, considering the

high catalyst loadings and the low product titers.

To obtain a clearer picture of the practical feasibility of these

approaches, further studies focusing on exploring the limits of

catalyst usage are highly desirable. Our concern, however, is

that, similar to the case of photodecarboxylases, photoinactiva-

tion of the biocatalysts will represent a major hurdle.

PHOTOBIOCATALYTIC REACTIONS

In this section we will discuss cases where photocatalytic

reactions are combined with enzymatic steps. Classic examples

comprise photocatalytic cofactor regeneration to promote

biocatalytic redox reactions. More recently, the portfolio of

photobiocatalytic reactions was enlarged by sequential cascade,

where either the enzyme substrate is generated photochemically,

or the enzyme product is converted further photocatalytically.

Photocatalytic regeneration of redox enzymes
Reductive regeneration of oxidoreductases

NAD(P)H regeneration systems. Formally, simple reductants

can be employed to convert NAD(P)+ into NAD(P)H. However,

photochemical methods in particular are plagued by substantial

formation of enzymatically inactive NAD(P) dimers and NAD(P)H

isomers. This issue can be largely attributed to the radical nature

of the photochemically induced reduction of NAD+ (Figure 19).

To avoid the undesirable side reactions stemming from the

radical nature of two non-catalyzed SET, a relay system is typi-

cally employed to convert the two SETs (and a protonation

step) into a single, selective hydride transfer. Notably, enzymes

and the organometallic complex [Cp*Rh(bpy)(H2O)]2+ are widely

utilized for this purpose.

Initial efforts to regenerate NAD(P)H from NAD(P)+ date back

to the 1980s,100 using tris(bipyridine)ruthenium(II) ([Ru(bpy)3]
2+)

as a photosensitizer to mediate electron transfer from



Figure 10. Qualitative comparison of tradi-

tional biodiesel and bioalkanes as obtained

via decarboxylation
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triethylamine to NAD(P)+. The SET-protonation-electron transfer

nature of this approach, however, also leads to considerable for-

mation of enzymatically inactive NAD(P) dimers and NAD(P)H

isomers. A switch in the NAD(P)+ reduction catalyst to

[Cp*Rh(bpy)(H2O)]2+, by Ruppert and Steckhan and Wienkamp
and Steckhan, resolved this issue by enabling highly selective

formation of the desired 1,4-NAD(P)H isomers,101,102 a finding

later rationalized by Fish and co-workers (Figure 20).103

Ever since then, [Cp*Rh(bpy)(H2O)]2+ has been the preferred

non-enzymatic NAD(P)H regeneration catalyst for chemical,
Figure 11. Selected examples of engi-

neered CvFAP for kinetic resolution reac-

tions
(A) Xu et al.51

(B) Li et al.52

(C) Xu et al.53

(D) Cheng et al.54
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Figure 12. Engineered FAPs to function as radical cyclases of

ε-unsaturated carboxylic acids and selected examples
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electrochemical, and photochemical104–107 NAD(P)H regenera-

tion. As of today, however, TNs of [Cp*Rh(bpy)(H2O)]2+ rarely

exceed dozens to a few hundred, thereby reducing the eco-

nomic attractiveness of this approach. Also, the mutual inactiva-

tion of [Cp*Rh(bpy)(H2O)]2+ and enzymes will necessitate further

development.108

Among the photobiocatalytic methods to regenerate NAD(P)

H, hydrogenase,109 liponamide dehydrogenases, and ferre-

doxin-NADP+ reductases have been used.110 However, none

of these systems have been evaluated so far, even at small-scale

preparative transformations.

The employment of phototrophic organisms also constitutes a

form of photobiocatalysis, though a discussion of this exceeds

the scope of this review. In recent years, there has been signifi-

cant progress in the development of recombinant Synechocystis

spp. for various redox transformations.111–116 To bypass the

sometimes laborious creation of recombinant phototrophic or-

ganisms, an alcohol/ketone-redox shuttle system has been

introduced (Figure 21).117 Although still in its nascent stages,

this system displays several highly promising features; it is one

of the few photobiocatalytic reaction systems genuinely utilizing

water as an electron donor, it is broadly applicable to both NADH

and NADPH-dependent reactions, and it potentially mitigates is-

sues of photoinactivation through the use of metabolically active

cells. Only time will determine whether this system can fulfill its

potential.

NAD(P)H-independent, direct reductive regeneration. A variety

of enzymes indirectly rely on reduced nicotinamide cofactors,

notably Fe-containing monooxygenases and certain flavin-

dependent monooxygenases and reductases. Therefore, with

such biocatalysts, direct electron transfer to the enzyme-bound

prosthetic group is principally feasible, theoretically simplifying

the reaction scheme (Figure 22).

Therefore, it is hardly surprising that the widely studied heme-

containing P450monooxygenases have been targeted for proto-
Figure 13. Whole-cell artificial cascade transforming glycerol into ethy

AAAP, aromatic amino acid pathway; AtPAL, phenylalanine ammonia lyase from

cum.62
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chemically driven, direct reductive regeneration, replacing natu-

ral single-electron donors such as ferredoxin. The catalytic

mechanism of P450 monooxygenases involves two distinct

SET steps (Figure 23; steps 1 and 3). These electrons, typically

sourced via an electron transport chain from NAD(P)H, can be

substituted by artificial single-electron donors such as ruthenium

complexes118–121 or organic photosensitizers like flavins122–124

or eosin Y.125

Also, the direct photochemical regeneration of non-heme iron

monooxygenases126,127 and of some flavin-dependent monoox-

ygenases has been reported.128–131

Unfortunately, however, photochemical, direct regeneration of

monooxygenases has yet not delivered robust reaction schemes

able to compete with the natural regeneration systems.

A potential explanation for this may be found in what is

known as the ‘‘oxygen dilemma.’’132 Essentially, the majority

of mediators used for the photochemical, direct regeneration

of monooxygenases are single-electron mediators, which the

P450 monooxygenase mechanism also requires (Figure 23).

Radicals formed in these processes react very rapidly with

molecular oxygen (itself a diradical), whereas the reactions

involving two-electron or hydride donors with triplet oxygen

(3O2) are spin forbidden, making them kinetically very slow.

Flavin-containing ene-reductases from the old yellow enzyme

(OYE) class are a group of O2-independent oxidoreductases that

only indirectly rely on the nicotinamide cofactor for reduction.

The photochemical reduction of flavoproteins has been recog-

nized since the 1970s,133 but for a long time, this was not consid-

ered viable for promoting catalytic turnover in preparative bio-

catalysis, such as with OYEs. However, over the past decade,

there has been a shift, with a variety of NAD(P)H-independent,

light-driven reductions being evaluated (Figure 24).134–140

Indeed, the productivities observed for photobiocatalytic

reduction reactions surpass those of corresponding oxyfunc-

tionalization reactions discussed previously. However, the

enzyme TNs still do not exceed several tens of thousands,

posing a challenge to their economic viability. A potential limiting

factor could be the known photoinactivation of flavins and flavo-

proteins, which may affect the robustness of the enzymes.139

Another intriguing example of photocatalytic activation of fla-

voenzymes is seen in fatty acid hydratases. Many of these en-

zymes contain a flavin molecule in their active site, which needs

to be in its reduced form to facilitate efficient C=C double-bond

hydration (even though the addition of water to a double bond is

not a redox reaction).141 Park and colleagues elegantly demon-

strated the impact of in situ photoreduction of the active-site

flavin on the activity of the oleate hydratase from Lacticaseibacil-

lus rhamnosus.142
l benzene

Arabidopsis thaliana; CaER, enoate reductase from Clostridium acetobutyli-



Figure 14. Catalyst performance of some representative FAP-cata-

lyzed decarboxylation reactions

This is based on (A) whole-cells reactions34,37,41,45,53,58,59,63–67 and (B) reactions

using free enzymes.32,36,39,40,43,44,46,51,52,56,68–71
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Oxidative regeneration of oxidoreductases

NAD(P)+ regeneration systems. Like the corresponding

NAD(P)+ reductions approaches, also photocatalytic NAD(P)+

regeneration systems date back to the 1980s110 Particularly,

quinoid systems, such asmethylene blue143,144 or flavins,13,145,146

have gained some popularity, but single-electron acceptors, such

as [Ru(bpy)3]
3+,147 can also be applied as in oxidative-direction,

regioselectivity issues, as in the case of reductive NAD(P)H

regeneration.

All in all, however, photochemical NAD(P)+ regeneration

reactions, like the corresponding NAD(P)+-dependent oxida-

tion reactions, play only a minor role in contemporary

photobiocatalysis.

H2O2-driven biocatalytic oxyfunctionalizations. The aforemen-

tioned oxygen dilemma does not necessarily pose a challenge

to redox biocatalysis. Since H2O2 is generally the end product

of this dilemma, it can be leveraged to promote H2O2-depen-
dent oxidation and oxyfunctionalization reactions (Table 3).148

Peroxygenases149–152 are exemplary enzymes that benefit

from in situ H2O2 generation, as they depend on H2O2 as a stoi-

chiometric oxidant and are irreversibly inactivated by high con-

centrations of it. Thus, maintaining a balance between the

photochemically generated H2O2 rate and the H2O2 consump-

tion catalyzed by peroxygenases is suspected to yield robust

reaction schemes.

Early instances of photochemically driven peroxygenase reac-

tions utilized flavin photosensitizers and EDTA as a sacrificial

electron donor.153,154,160–163 Respectable TNs were achieved

for both the peroxygenase and flavin, yet the use of EDTA as a

sacrificial electron donor resulted in significant waste produc-

tion, including formaldehyde and primary amines. To address

this, alternative electron donors have been assessed. The cath-

ode emerges as an appealing reductant, with its relatively high

O2 reduction overpotential significantly reduced through photo-

activation.157,164–167 Methanol is another promising sacrificial

electron donor, as, ideally, three equivalents of H2O2 can be ob-

tained from one equivalent of MeOH.155–157 Additionally, poly-

ethylene terephthalate-based microplastic has been employed

as a reductant.168

Ideally, water would serve as the sacrificial electron donor.

Using Au-doped TiO2, Zhang et al. demonstrated a proof-of-

concept for this approach, albeit with very low productivities

so far.158 Reactive oxygen species, such as hydroxyl radicals,

originating from photocatalytic water oxidation, pose a major

challenge to the robustness of the biocatalyst.169 Physical sep-

aration of the bio- and photocatalysts may resolve this issue

upon scaling up. Furthermore, waste lignin has been shown

to minimize the occurrence of reactive oxygen species (ROS)

other than H2O2.
170

Finally, broadening the spectrum of usable wavelengths

also merits brief discussion. To cover a broader spectrum of

visible light, Willot et al. employed complementary soluble

photocatalysts, demonstrating an additive effect on produc-

tivity.171 Moving to longer wavelengths, Park et al. utilized

thermal irradiation to promote peroxygenase reactions by ex-

ploiting the Seebeck effect of Bi2Te3.
159 At the other extreme

of the light spectrum, g radiation is known to induce water

splitting into H2O2 and H2. By exposing a reaction mixture to

g radiation, such as that emitted by used nuclear fuel ele-

ments, catalytic turnover of a peroxygenase has been

observed.172 Once again, in situ-generated ROS posed the

biggest issue in terms of robustness, and physical separation

may represent a viable solution.

Overall, compared to other photobiocatalytic approaches, the

in situ generation of H2O2 enables higher TNs. However, the pre-

parative potential, particularly in terms of scaling up, remains to

be demonstrated.

Photocatalysis/biocatalysis cascades
Finally, reaction schemes in which a biocatalytic and a photoca-

talytic step are also worth discussing.

Particularly, photobiocatalytic deracemization reactions have

been reported. Either photochemical in situ racemization of C

centers combined with a stereoselective enzymatic step or

non-stereoselective, photocatalytic reductions of prochiral C=X
Chem Catalysis 4, 101077, October 17, 2024 11



Figure 15. Photochemical properties of

CvFAP

(A) CvFAP absorption and LED emission

spectra.13

(B) Residual CvFAP activity after preincubation

under illumination.69
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bonds combined with enzymatic, stereoselective oxidation (or

vice versa) have been reported. An early example of the first

approach stems from demonstrating the photocatalytic in situ

racemization of chiral amines combined with a hydrolase-cata-

lyzed kinetic resolution reaction (Figure 25).173–175

Also, non-activated b-C–H bonds in carbonyl compounds can

be racemized photochemically by turning the carbonyl group

into the corresponding enamine (Figure 26).176
Figure 16. New-to-nature reactions of alcohol dehydrogenases enab

cofactor

(A) Reductive dehalogenation of a-bromo esters. (1) Photoexcitation of the CT com

the substrate, followed by elimination of Br�. (2) The mesomerically stabilized rad

NAD+ and the dehalogenated product.

(B) Radical coupling based on photocatalytic radical formation in N-(acyloxy)phth

C–C-bond formation by conjugate addition of the carbon-centered radical to a c

12 Chem Catalysis 4, October 17, 2024
Guo et al. established a deracemization of secondary amines

by combining the non-stereoselective photo-induced reduction

of imines with the oxidative kinetic resolution mediated by a

monoamine oxidase (Figure 27).177

In the reverse direction, a photochemical oxidation of

sulfides to racemic sulfoxides can be coupled to an enantio-

selective reduction mediated by sulfoxide reductases

(Figure 28).
led by photoexcitation of the enzyme-bound reduced nicotinamide

plex between enzyme-bound NADH and substrate enables SET fromNADH to

ical is reprotonated stereoselectively in an H-abstraction reaction, resulting in

alimides and reaction with conjugated C=C double bonds. (10) Similar to (1). (20)
onjugated C=C double bond. (30 ) Similar to (2).



Figure 17. Flavoenzyme-catalyzed photoinitiated radical C–C-bond formation
a Sandoval et al.89 and Cesana et al.90

b Gao et al.91

c Starting from a,b-unsaturated ketones.92

d Page et al.93 and Huang et al.94

e Black et al.95

Please cite this article in press as: Ma et al., Photobiocatalysis: More than just an interesting lab curiosity?, Chem Catalysis (2024), https://doi.org/
10.1016/j.checat.2024.101077

Review
ll

OPEN ACCESS
Finally, photo-induced E/Z-isomerization of conjugated C=C

double bonds has been coupled to ene reductase (ER)-catalyzed

C=C-bond reduction (Figure 29).178 The thermodynamically

favored E isomer is not accepted by the ER, whereas the unfa-

vored Z isomer is readily converted. Using Ir-based or flavin pho-

tosensitizers, the equilibrium can be shifted to the Z isomer,

thereby enabling the ER-catalyzed reduction.

The photocatalytic oxyfunctionalization of C–H bonds to pro-

chiral carbonyl groups followed by selective, enzymatic reac-

tions has been reported by Schmid and coworkers.179 Starting

materials containing activated C–H bonds, such as benzylic- or
Figure 18. Creation of an artificial photoenzyme by incorporating a

non-natural benzophenone amino acid and use of this for the ster-
eoselective intramolecular Diels-Alder reaction
allylic C–H bonds or alcohols, were selectively oxidized to the

carbonyl product using sodium anthraquinone sulfate as the

photocatalyst (Figure 30). A range of diverse products is acces-

sible through this combination; one-pot, one-step concurrent re-

actions are particularly feasible with cofactor-independent

enzymes.

Overall, combining ‘‘the best of both worlds’’ from photo-

and biocatalysis enables new possibilities for selective

organic chemistry. This research area is relatively young and

currently focuses on proof-of-concept studies. Hopefully, in

the nearer future, interest in the catalytic performance of

photo- and enzyme catalysts will increase and identify/

address challenges, such as compatibility issues and

productivity.

CONCLUSIONS AND OUTLOOK

In summary, photobiocatalysis is an exciting, dynamic, and

rapidly growing field of research. Novel ‘‘new to nature’’ reac-

tions are enabled by combining photocatalysis with

biocatalysis, opening up a multitude of new synthetic

possibilities.

It is entirely understandable that there is currently a ‘‘gold

rush’’ atmosphere, with many research groups eager to

explore the synthetic potential. This is good and proper.

However, we must not forget that economically inefficient

synthesis routes will ultimately remain laboratory curiosities.

If our intention is to contribute to a better future through

new chemistry, then we must not lose sight of this aspect.

To date, many, if not most, examples of photobiocatalytic re-

actions exhibit very low catalyst efficiencies in terms of TNs.

Specifically, in the case of photoactivated flavoproteins, the
Chem Catalysis 4, 101077, October 17, 2024 13



Figure 19. Direct reduction of NAD(P)+ leads to

significant amounts of undesired side prod-

ucts
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quantities of biocatalysts used are in the mol % range (equiva-

lent to only a few hundred turnovers). Even for photodecarbox-

ylases, a maximum of 10,000 turnovers has been achieved so

far. In this case, the hypothetical cost contribution of the

enzyme to product synthesis would be in the range of at least

several hundred Euros per kilogram. It is obvious that this ex-

cludes any application in the field of new fuels. We have seen

that many researchers are aware of this and are working to in-

crease the efficiency of these reactions. However, we are not

aware of any work to date that addresses the photobleaching

of the flavin group and/or the effects of photoactivated flavins

on the amino acids of the active site. We believe that enzyme

engineering can at least mitigate photoinactivation. Since
14 Chem Catalysis 4, October 17, 2024
classical high-throughput screening assays fail in the case of

unreactive alkanes, small mutant libraries are necessary.

These require an intelligent selection of amino acid positions.

Structure-guided approaches75 as well as AI-based ap-

proaches180,181 may play a significant role here. Similar consid-

erations may apply to other flavin-based photobiocatalytic

systems.

Also, in the field of photocatalytic regeneration methods,

the efficiencies achieved so far do not match those of

purely biocatalytic counterparts. Here, too, it is important

to clearly identify and eliminate the limiting factors. Pre-

sumably, photobleaching and enzyme inactivation by reac-

tive, excited catalysts and/or ROS are significant here as
Figure 20. Using [Cp*Rh(bpy)(H2O)]2+ as cata-

lyst for the selective reduction of NAD(P)+ into

enzyme-active 1,4-NAD(P)H



Figure 21. Photobiocatalytic regeneration of

NAD(P)H using a phototropic cyanobacterium

The cell redox metabolism is coupled to an in vitro

enzymatic productions system through an alcohol/

ketone shuttle. PS, photosystem; PE, production

enzyme.
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well. A practical solution may be compartmentalization us-

ing flow chemistry.182The same applies to cascade reac-

tions, where photocatalytic steps are combined with enzy-

matic steps.

Numerous challenges remain before photobiocatalysis can

transition from a laboratory curiosity to the method of choice

for chemical synthesis on an industrial scale. It remains unclear

whether this transition will succeed, but this very uncertainty

makes this field so exciting to study!
ACKNOWLEDGMENTS

This work was funded by the EuropeanUnion (ERC, PeroxyZyme, 101054658).

Views and opinions expressed are, however, those of the authors only and do

not necessarily reflect those of the European Union or the European Research

Council. Neither the European Union nor the granting authority can be held

responsible for them.
AUTHOR CONTRIBUTIONS

Y.M., Yutong Wang, B.W., J.Z., S.Y., F.Z., and K.L. performed the literature

search, analyzed literature data, and provided quantitative analyses. Y.M.,

Yonghua Wang, and F.H. conceived the study and wrote the manuscript. All

authors have approved the manuscript.
DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCES

1. Tufvesson, P., Lima-Ramos, J., Nordblad, M., and Woodley, J.M. (2010).

Guidelines and cost analysis for catalyst production in biocatalytic pro-

cesses. Org. Process Res. Dev. 15, 266–274. https://doi.org/10.1021/

op1002165.

2. Zhang,J., Tonin,F., Zhang,W.,Hagedoorn,P.-L.,Mallée, L., andHollmann,

F. (2019). Clean’ hydrolase reactions using commercial washing powder.

RSC Adv. 9, 24039–24042. https://doi.org/10.1039/C9RA05828A.

3. Thum, O., and Oxenbøll, K.M. (2008). Biocatalysis: A sustainable method

for the production of emollient esters. SÖFW-journal 134, 44–47.
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Figure 23. Simplified mechanism of P450-

catalyzed oxyfunctionalization reactions

The mechanism comprises two SET steps (1 and 3)

with an intermediate binding of molecular oxygen (2);

the catalytically active Compound I is then formed in a

sequence of protonation and water elimination steps

(4 and 5). Finally, compound I transfers the highly

activated oxygen atom to the substrate (6, highly

simplified).
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Figure 28. Enantioselective sulfoxide reduction combined with

photochemical, non-enantioselective sulfoxidation

Figure 29. Photoinduced E/Z isomerization to generate the ther-

modynamically unfavored substrate for an ene-reductase-catalyzed

C=C reduction
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62. Qin, Z., Zhou, Y., Li, Z., Höhne, M., Bornscheuer, U.T., andWu, S. (2024).

Production of Biobased Ethylbenzene by Cascade Biocatalysis

with an Engineered Photodecarboxylase. Angew. Chem. Int. Ed. 63,

e202314566. https://doi.org/10.1002/anie.202314566.

63. Xia, A., Guo, X., Chai, Y., Zhang,W., Huang, Y., Zhu, X., Zhu, X., and Liao,

Q. (2023). Green light enhanced the photostability and catalytic perfor-

mance of fatty acid photodecarboxylase. Chem. Commun. 59, 6674–

6677. https://doi.org/10.1039/d3cc00995e.

64. Guo, X., Xia, A., Zhang, W., Li, F., Huang, Y., Zhu, X., Zhu, X., and Liao, Q.

(2023). Anaerobic environment as an efficient approach to improve the

photostability of fatty acid photodecarboxylase. Chin. Chem. Let. 34,

107875. https://doi.org/10.1016/j.cclet.2022.107875.

65. Zheng, J., Shen, Z., Gao, J.M., Zhou, J., and Gu, Y. (2023). Enzymatic

Photodecarboxylation on Secondary and Tertiary Carboxylic Acids.

Org. Lett. 25, 8564–8569. https://doi.org/10.1021/acs.orglett.3c03356.

66. Karava, M., Gockel, P., and Kabisch, J. (2021). Bacillus subtilis spore sur-

face display of photodecarboxylase for the transformation of lipids to hy-

drocarbons. Sustain. Energy Fuels 5, 1727–1733. https://doi.org/10.

1039/D0SE01404D.

67. Li, Z., Ge, R., Tan, L., Zhang, W., and Zhang, Y. (2023). Photodecarbox-

ylase Displayed onMicrobial Cell-Surface for Enhanced Biocatalytic Per-

formance. ChemCatChem 15, e202300494. https://doi.org/10.1002/

cctc.202300494.

68. Winkler, C.K., Simi�c, S., Jurka�s, V., Bierbaumer, S., Schmermund, L.,

Poschenrieder, S., Berger, S.A., Kulterer, E., Kourist, R., and Kroutil,

W. (2021). Accelerated Reaction Engineering of Photo(bio)catalytic Re-

actions through Parallelization with an Open-Source Photoreactor.

ChemPhotoChem 5, 957–965. https://doi.org/10.1002/cptc.202100109.

69. Wu, Y., Paul, C.E., and Hollmann, F. (2021). Stabilisation of the fatty acid

decarboxylase from Chlorella variabilis by caprylic acid. Chembiochem

22, 2420–2423. https://doi.org/10.1002/cbic.202100182.

70. Duong, H.T., Wu, Y., Sutor, A., Burek, B.O., Hollmann, F., and Bloh, J.Z.

(2021). Intensification of Photobiocatalytic Decarboxylation of Fatty

Acids for the Production of Biodiesel. ChemSusChem 14, 1053–1056.

https://doi.org/10.1002/cssc.202002957.

71. Guo, X., Xia, A., Li, F., Huang, Y., Zhu, X., Zhang, W., Zhu, X., and Liao, Q.

(2022). Photoenzymatic decarboxylation to produce renewable hydro-

carbon fuels: A comparison between whole-cell and broken-cell bio-

catalysts. Energy Conv. Manag. 255, 115311. https://doi.org/10.1016/j.

enconman.2022.115311.
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