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Abstract
The severity of hip osteoarthritis is measured
a.o. by the minimal distance between the femoral
head and the acetabular roof in an X-ray image.
However, the whole joint space profile might be
a more accurate estimator, since it would include
irregularities in the bone surface. These irregular
bulges (osteophytes) on the bone surface are
one of the signals that a person might have OA.
Thus the stage of OA might be better estimated
automatically by having this data in the joint space
profile instead of just using the minimal joint space.

For this joint space profile, the distance between
the femoral head and the acetabular roof needs to
be calculated. Therefore, the positions of these
parts in the hip joint are required to be know. These
can be retrieved from e.g. a segmentation mask.

One way of calculating the distance in a joint is
to use a radial projection. A radial projection is a
way of projecting points from a curved space to a
plane by projecting lines from a central point along
increasing angles.

In this paper, we investigate how the joint space
profile can be segmented most accurately from a
radial projection originating from the center of the
femoral head by several comparing noise filtering
and edge-finding algorithms. After which is shown
that a custom algorithm based on the theory behind
edge detection in noisy images works most reliably
and accurately.

There are still multiple points of improvement for
this algorithm. The femoral head can be segmented
more accurately than the acetabular roof, the
segmentation of the latter could be optimized by
detecting the brightest line (peaks) instead of the
most sudden change (steepest gradient) in the
X-ray image as the edge for the femoral head. The
algorithm could be further improved by taking care
of local outliers off those edges.

In conclusion, this paper compares multiple ways
of segmenting the joint space of the hip joint. The
best-performing algorithm could in the future be
used in an assisting tool for doctors to highlight im-
portant irregularities and measurements in the hip
joint space.

1 Introduction
Osteoarthritis (OA) is a growing health problem. In 2021,
1.589.600 people were estimated to have OA in the Nether-
lands. Of them, 28.700 people were newly diagnosed with
OA in the hip joint (Vanhommerig, Poos, Gommer, Hendriks,
& Giesbers, 2022). The diagnosis of OA is often based on

metrics from X-ray images. The stage of OA can also be
(partially) determined from those X-ray images. Such an
X-ray image cropped to show the left hip joint can be seen in
Figure 1.

Figure 1: X-ray image of a left hip joint. Note that this X-ray image
is taken from the front to the back of the person (anterior-posterior),
which results in this hip showing on the right of the original image.

The most common feature used to determine the severity
of hip OA from an X-ray image is the minimum joint space
width, since this feature is associated most strongly with OA
within X-ray images (Croft, Cooper, Wickham, & Coggon,
1990; Terjesen & Gunderson, 2012). The minimum joint
space width is defined as the minimum distance between
the two bones in the hip joint, namely the femoral head,
the ball-shaped part of the femur (thighbone), and the
acetabulum, the socket part of the hip.

This minimum joint space is used most often as one of
the metrics to estimate the severity of OA, however, since
it only focuses on the minimal distance, the severity of OA
might be better estimated by the full joint space profile
along the weight-bearing part of the acetabulum. Previous
research has shown that multiple-joint space width (multiple
distance measurements along the joint) is a better predictor
for knee OA than minimal joint space width (Cheung, Tam,
Chan, Chan, & Wen, 2021). Furthermore, the same research
concluded that the highest number of points tested (64) along
the joint performs the best. Therefore, the full joint space
profile might be an even better estimator.

Since the hip joint is a ball-and-socket joint, a radial
projection can be used to calculate the distance between the
two parts in this joint more easily. A radial projection maps
circular lines to straight lines. This works by projecting lines
from a central point outwards. These lines are then put next
to each other to create a rectangular shape. An example of a
radial projection can be seen in Figure 2. The x-coordinates
correspond to a certain angle, while the y-coordinates
correspond to a certain distance from the center. In the radial
projection, the distance between the two bone structures can
be calculated as the vertical distance between the two lines.



(a) Simplified hip joint

(b) Radial projection of the simplified hip joint

Figure 2: Example of a radial projection on a simplified hip joint. In
(a) a simplified hip joint is shown. The red (dashed) line is the edge
of the femoral head. The blue (continuous) line is the edge of the
acetabular roof. In (b) the radial projection of (a) is shown.

The main advantage of using a radially projected image
over a normal image is that no angles need to be calcu-
lated after the projection. This makes a big difference in
the amount of computational power needed for, and the
performance of certain edge-detection algorithms since
most are naturally best at finding horizontal and/or vertical
edges. The edges of the bone structures of interest should be
approximately horizontal in this projected image.

In order to get an accurate joint space profile, an accu-
rate segmentation of the joint space is needed, which can
be obtained in several ways. Bone structures are often
segmented with a (modified) UNet, a convolutional neural
network (CNN) specifically developed for biomedical image
segmentation (Ronneberger, Fischer, & Brox, 2015).

However, there are multiple disadvantages to using ma-
chine learning methods. CNNs need many annotated training
samples to train, test, and validate to give a good result.
Often, these CNNs are quite computationally intensive to
run too (Ronneberger et al., 2015). Another disadvantage
of many machine learning algorithms used for medical
image segmentation is that they don’t fully follow the ideal
algorithm framework for healthcare (Loftus et al., 2022).
This states that ideal algorithms for healthcare should be
“explainable, dynamic, precise, autonomous, fair, and repro-
ducible” (Loftus et al., 2022, para. 3). The main issue is that
machine learning-based algorithms are often not explainable.

Another way to segment bone structures that follows
this framework better in explainability is to use traditional
edge-finding and segmentation algorithms. These don’t need
a large set of annotated samples for training. Only for the
testing and validation of the accuracy, a test set of annotated
samples is needed. Most importantly, these algorithms
are explainable, which is a great advantage for medical
applications, since it needs to be clear where measurements
come from to make an informed decision. These algorithms
are also autonomous and reproducible. Whether or not the
other criteria for these ideal algorithms are met, depends on
the implementation.

Therefore, in this paper, we investigate how the joint
space profile can be segmented most accurately from a
radial projection originating from the center of the femoral
head by comparing multiple noise filtering and edge-finding
algorithms.

This paper has the following structure: section 2 gives
more information about the background of measuring the
severity of OA and other related research. Next, section 3
explains the methods used in this research, after which the
experimental setup is explained in section 4. The results of
these experiments are shown in section 5. A reflection on
some ethical aspects of this research is given in section 6, fol-
lowed by the discussion in section 7. The paper ends with the
conclusions and recommendations in section 8.

2 Related works
This section gives some background information on how X-
ray images are used to measure the severity of OA in the hip
after which some machine learning methods used in this field,
their results, and limitations are mentioned.

2.1 Measuring the severity of OA from X-ray
images

To score the severity of OA in the hip based on an X-ray
image, often the Kellgren/Lawrence, Croft, or minimum joint
space width metric is used (Kellgren & Lawrence, 1957;
Croft et al., 1990; Terjesen & Gunderson, 2012). One of the
features taken into account in the first two methods is the
presence of irregular bulges (osteophytes) that sometimes
grow on the surface of the bone when having OA (Terjesen
& Gunderson, 2012). Another feature is the change in the
shape of bones (Terjesen & Gunderson, 2012).

To get the minimum joint space width, the space between
the femoral head and the acetabulum is often measured
by hand from an X-ray image, which leads to inconsistent
results. Since different doctors can interpret those images
differently, their findings for the same patients can differ
(Andersen et al., 2023). Furthermore, the same doctor
interprets the same image also differently if they are shown
the same image again after some time. This suggests that
there is a need for a repeatable way of determining this
minimum joint space width.



2.2 Machine learning methods

Therefore Andersen et al. (2023) researched whether it
is possible to automate this procedure while giving more
repeatable and consistent output. The proposed algorithm
first crops to the region of interest for both hip joints. Then it
segments the femoral and pelvic bones. Next, the contours of
the top of the femoral head and the bottom of the acetabular
sourcil (this is the densest line in the acetabular roof) are
identified in this segmentation. Finally, it calculates the
minimum Euclidean distance between these contours. Their
segmentation algorithm consisted of a combination of deep
learning and computer vision. Their results show that the
automated method overestimates the minimum joint space
width by 0.5 mm on average.

Other ways of segmenting the bone structures in the hip
joint often include a (modified) U-Net for CT scans (Xu et
al., 2022; Wu, Zhi, Liu, Zhang, & Chai, 2022). CT scans,
however, have more information than a single X-ray image,
since they consist of multiple images which together form
a 3D view of the hip joint. These U-Net-based algorithms
might need a lot of fine-tuning and post-processing to result
in an accurate segmentation (Xu et al., 2022). Gebre et al.
(2022) have shown that deep learning models on both a com-
bination of CT scans and X-ray images and CT scans alone,
result in a higher accuracy of detecting hip osteoarthritis.

3 Methodology
To be able to segment the joint space from a radial projection
originating from the femoral head, this radial projection was
needed first. After the radial projection, some preprocessing
is done. Next, as much noise from the X-ray image as
possible is removed with different algorithms to facilitate the
segmentation process. Next, the segmentation using tradi-
tional edge-finding is explained. Also, a new edge-detection
algorithm is introduced. Finally, some post-processing steps
are explained which are necessary to help the doctors to
interpret the data in the way they are used to.

3.1 Radial projection

Both methods use the radial projection originating from
the center of the femoral head. A radial projection maps
a Cartesian plane to a polar plane. For this projection, the
center and radius of the femoral head are required. Using the
same centers and radii, the X-ray image was cropped to the of
interest (ROI) for the left and right hip joint separately. These
cropped images then had the center of the femoral head in
the middle of the bottom of the image and had a width and
height proportional to the predicted radius (see Figure 2a).
Next, a polar warping algorithm was used, which maps the
cropped X-ray image to the radial projection originating
from the center of the femoral head. A visual representation
of the image cropped to the ROI and the radial projection of
a simplified hip joint can be seen in Figure 2.

3.2 Preprocessing
The intensities of the image are clipped to the 10th and 100th
percentile, after which they are normalized. This removes
unnecessary information from the background while keeping
as much information as possible from the rest of the image.

3.3 Removing noise
There are many different filters to remove noise from an
image, however, most of these filters do not preserve the
edges that are present in the image. These filters will remove
valuable information which could otherwise be used to find
the edges of the bones. Using these filters will thus probably
result in a less accurate segmentation. So for this application,
an edge-preserving filters sound to be more suitable.

However, due to how X-ray images are constructed (a ray
either hits a certain point/pixel or not), the noise in the image
is local and of a high relative amplitude. This has as effect
that the gradient of this noise also has a high amplitude.
Since edge-preserving filters use the gradient to determine if
there is an edge, the noise is not filtered out well or not at all,
since it is often also detected as edges.

In this paper, we compare one non-edge-preserving and
multiple edge-preserving filters to evaluate which one works
the best in this specific use case. These filters are chosen
since they all have different approaches to removing noise in
an image. The tested filters are:

• Gaussian blur

• Bilateral filter with a Gaussian spatial kernel (Tomasi &
Manduchi, 1998)

• Bilateral filter with a flat spatial kernel

• Total variation denoising (Chambolle, 2004)

• Fast non-local means (Darbon, Cunha, Chan, Osher, &
Jensen, 2008)

• Anisotropic diffusion (Perona & Malik, 1990)

• Difference of Gaussians (El-Sennary, Hussien, & Ali,
2019)

The first of these, Gaussian blur only blurs the image
based on a Gaussian function and is not an edge-preserving
filter, but is often used in image processing.

All the other filters are edge-preserving filters that work in
different ways. The bilateral filter results in an image where
the intensity of each pixel is the result of a weighted average
of nearby pixels (Tomasi & Manduchi, 1998). Total variation
denoising tries to reduce peaks in the input (Chambolle,
2004). This is done by solving a minimization problem
which tries to find a signal with smaller gradients that is
still close to the original signal. Fast non-local means finds
similar patches in the image. Those patches are replaced
with their average if they are close to each other.



Edges have a lower spatial frequency than noise. Gaussian
filters with different sigmas filter out different frequencies.
The difference between these filters results in a band-pass
filter. This way, high-frequency noise can be filtered out,
while edges can be kept. This idea is used in both Anisotropic
diffusion and the difference of Gaussians. Difference of
Gaussians uses just two Gaussian filters, while Anisotropic
diffusion uses multiple.

3.4 Finding edges
Multiple edge-finding are tested to find out which one per-
forms the best:

• Sobel operator
• Roberts cross
• Prewitt operator
• Canny edge detector
• Difference of Gaussians followed by a threshold
• Case-specific edge-finding algorithm

The first three of those edge-finding algorithms are
differential operators. The idea for those three algorithms
is that they approximate the gradient in the image. The
gradient is calculated for each pixel in the x (Gx) and y
(Gy) direction. These two gradients are combined using the

formula G =
√
G2

x +G2
y .

The Canny edge detector uses a more sophisticated
multi-step method to reduce the number of false positives
(Canny, 1986). First, it applies a Gaussian filter to the image
to remove the high-frequency noise. Next, it uses an edge
detection operator, often one of the three mentioned above,
to find the gradient in the image. Next, it calculates the
angle of the gradient for each pixel according to the formula
θ = atan2(Gy, Gx). These angles are then rounded so that
they fall in either of the 4 directions: horizontal, vertical, di-
agonal, and antidiagonal. The sign of the gradient represents
in which direction the gradient goes up (for example left vs
right for the horizontal direction). Next, it calculates if the
gradient is larger (the sign does not matter here) in either the
direction of the gradient or the opposite direction. This way,
the strongest gradients along the edges are found, while the
others are discarded.

Finally, these gradients are filtered based on their strength
to remove low gradients which correspond to only small
changes in the image and which are thus not considered
to be edges. A threshold value is used to filter out all
gradients that certainly belong to an edge (G > Thigh).
Next, all pixels directly next to one of these filtered pixels
with a gradient larger than Tlow (e.g. G > Tlow), are
considered to be part of an edge to. The idea behind this is
that as many edges need to be included in the final image,
while as much noise as possible needs to be excluded.
So all edges where at least one pixel crosses the bound-
ary Thigh is considered an edge, while all others are removed.

Another algorithm is a difference of Gaussians followed
by a threshold. The difference of Gaussians is a bandpass
filter and can be used to filter out high-frequency noise
and keep the edges. This filter subtracts an image with a
large Gaussian blur from an image with a small Gaussian
blur (El-Sennary et al., 2019). This results in an image
without the high frequencies (noise) and the low frequencies
(background or foreground), but which does include the
frequencies in between, which should be the edges we are
looking for. Next, all pixels with a value higher than a certain
threshold will be seen as edges.

The last considered algorithm uses more background
information on this specific use case. The idea is that the
gradient only needs to be calculated in the y-direction in the
radial projection since we are searching for an approximately
horizontal line. By finding the largest peak and valley in this
gradient close to where we expect them, we should be able
to find where the intensities rise and drop the fastest, which
should correspond to the location of the edge of the femoral
head and acetabular roof respectively.

3.5 Creating a segmentation from the edges
The first five of these edge-finding algorithms will output
multiple edges out of which, a segmentation needs to be
made. Since the radius of the femoral head was already
needed for the radial projection, it can be used here again.
Since the edge of the femoral head should be the size of the
radius apart from the center of the femoral head, this edge can
be expected around where the y-coordinate equals the radius.
The closest (continuous) edge can be filtered out to be the
edge of the femoral head, while the first (continuous) edge
above that one should be the edge of the acetabulum.

3.6 Postprocessing
To be able to interpret the segmentations better and to com-
pare them to other segmentation methods, the segmentation
needs to be brought back to the cartesian space. This is done
by doing the inverse of the radial projection.

Another step of the postprocessing is to calculate a joint
space profile from the radial segmentation. The joint space
profile can for example be given as a list of distances. There
each value represents the distance from the femoral head to
the acetabulum and each index corresponds to an angle from
the center of the femoral head. This distance can be calcu-
lated as the vertical distance between the edge of the femoral
head and the acetabular roof, while the angle directly corre-
sponds to the x-coordinate in the radial projection. (see Fig-
ure 2).

4 Experimental setup
In this section, the experimental setup will be explained in
more detail. First, the used datasets will be discussed. Next,
the ground truth for this experiment is introduced. After this,
the implementation of the radial projection, noise-removing
filters, and edge-finding algorithms are discussed.



4.1 Datasets
We use data from two public datasets. The first dataset
is from the Cohort Hip and Cohort Knee (CHECK) study
(Wesseling et al., 2016), which studied the development
of (early) symptoms of OA in the hip and/or knee of 1002
participants who had the early symptoms of pain in their hip
and/or knee. Those participants visited the research center
for multiple years where the researchers took X-ray images
and other measurements at each visit. The X-ray images of
the hips of these participants are used in this study.

The Osteoarthritis Initiative (OAI) study (Eckstein, Kwoh,
& Link, 2014) is another prospective study of OA of which
the data is open-access. From this study, the X-ray images of
the hip of multiple visits of 4755 participants were available
for use in the development of the proposed algorithm.

4.2 Ground Truth
To be able to verify the accuracy of the detection of the edges
of the bone structure from the proposed algorithm, a ground
truth needed to be introduced. For this study, BoneFinder
(Lindner, Thiagarajah, Wilkinson, Wallis, & Cootes, 2013)
was used to generate the ground truth. BoneFinder is a fully
automatic system that localizes specified landmark points in
X-ray images.

4.3 Radial projection
The center and radius of the femoral head are required for
the radial projection. These were calculated from a circle
fitted (Taubin, 1991) to the BoneFinder points corresponding
to the femoral head. These points are in the range [18, 27]
for the right hip and [98, 107] for the left hip.
All steps following this line are executed for the left and right
hip separately. The X-ray image is cropped to three times the
radius of the corresponding hip in width and one-and-a-half
times the radius in height. The center of the femoral head is
then in the bottom center of the cropped image. Finally, the
image is mapped to polar coordinate space, as can be seen in
Figure 3.

Figure 3: Radial projection of the top half of the hip joint

4.4 Removing noise
The mentioned (edge-preserving) filters are run with only
some basic fine-tuning of the parameters since fully fine-
tuning all parameters without overfitting to a small number
of images would have taken too much time for this research.

4.5 Finding edges with standard edge-finding
algorithms

The mentioned edge-finding algorithms are run with more
fine-tuning on a small set of images.

For the difference of Gaussians filter with threshold,
minimum cross entropy thresholding(Li & Tam, 1998) was
used to get a threshold which is used to set everything below
it to black and the rest of the image to white. Next, some
small blobs are removed to remove even more noise. After
these small blobs are removed, a contour-finding algorithm
is used to find the edges of the remaining blobs.

The radius of the femoral head is already known as it is
needed to crop to the correct region of interest. This radius
is also used here as an estimation of where the edge of the
bone of the femoral head should be. For each point on that
line, the closest edge is stored, after which from these closest
edges, a new line is constructed.

4.6 Custom edge-finding algorithm
The case-specific edge-finding algorithm uses more back-
ground information about this specific use case by only
finding two edges in the image. First, it crops the image to a
specific region in the radially projected image where it will
approximate the location of the joint space. This region is
in the x-direction the middle third, which corresponds to 60
degrees centered above the center of the femoral head in the
Cartesian space. In the y-direction, this is from the top of the
image to the radius of the femoral head (the same as used
before to crop the hip joint out of the image) plus an extra 5
millimeters (converted to pixels). These extra 5 millimeters
account for some error in this radius and allow for a more
accurate calculation of the gradient around that point. An
example of such a region of interest can be seen in Figure 4).

Figure 4: Region of interest for approximating the edge of the
femoral head and acetabular roof

Next, the gradient along the x-axis is calculated with the
intensities of the pixels within this ROI. First, the intensities
of all pixels are averaged in the x-direction. Next, a moving
average (window width of 7) is used to filter out small
intensity changes in this mean. This is followed by the
calculation of the slope and finally this is again followed by
a moving average (window width of 5) to filter out small
irregularities. An example of some plots of these lines can be
seen in Figure 5.



(a) Mean along x-axis

(b) Gradient of the mean

Figure 5: Example of the average of pixel intensities in the region of
interest (ROI) along the x-axis, with its moving average (a). And the
gradient of (the moving average of) the mean and its moving average
(b).

Finally, the average edge of the femoral head and the
acetabular roof are calculated. The average edge of the
femoral head is determined to be at the top of the peak
closest to the aforementioned radius (in the example plot
Y=85). We know that the edge of the acetabular roof should
be above the edge of the femoral head. Therefore we only
look at the range above the found edge of the femoral head.
The average edge of the acetabular roof is determined to be
at the bottom of the valley with the largest prominence in this
range (in the example plot Y=61). The prominence indicates
how much the peak (or valley in this case) stands out from
others. This is measured by the difference in height between
the peak and its baseline (where the slope first crosses 0).

Next, the same method of finding the largest promi-
nences is used on each column in the image to de-
termine the peaks and valleys in the gradient. Us-
ing the average edges calculated before, the peaks
and valleys that are most likely to correspond to the
actual edges are found by calculating the formula
prominence/(abs(distance from expected line) + 1)
for each peak and valley and picking the largest of those as
the final edge.

Next, a moving average is used to smoothen out some
of the peaks that occurred due to the absence of the high
gradient at the correct place in the image, since this is done
pixel-by-pixel in the x-direction.

Finally, the same average edge method is used in the other
direction (average of the Y-axis), to find the starting point of
the femoral head. All the values of (moving average of) the
edge of the femoral head before that are set to 0.

5 Results
Multiple algorithms for removing the noise and finding edges
are tested, of which only the custom edge-finding algorithm
was able to segment the joint space in some way for every
given image.

5.1 Difference of Gaussians with thresholding

Figure 6: Example of the BoneFinder segmentation and the segmen-
tation using the difference of Gaussians on two hips.

The difference of Gaussians followed by a thresholding al-
gorithm showed some promising results for some images. An
example of the resulting segmentation in such an image can
be seen in Figure 6. However, for other images, half of the
edges were removed due to the step that removes small blobs,
which results in no joint space segmentation. An example of
this can be seen in Figure 7.

5.2 Custom edge-finding algorithm
The custom edge-finding algorithm gives the best results
since it always gives a line for both the femoral head and the
acetabular roof. An example of the results of this algorithm
is shown in Figure 8a.

This algorithm sometimes incorrectly identifies the end of
the acetabular roof (see the right side left hip joint in Fig-
ure 8a). This is a result of the way how this end position is
calculated. In the cases where the end is incorrectly identi-
fied, the intensity difference is not the largest at the end of the
femoral head, but just before or after it where another part of
the pelvis ends.

5.3 Other tested algorithms
Some of the other results are shown in Figure 9. Not all tested
combinations are shown due to the amount combinations of



different algorithms and parameters.

Figure 7: Example of image with the correct edges due to too many
small blobs being removed.

6 Responsible Research
In this research non-machine learning methods have been
used to see if they can accurately segment the joint space in
the hip joint from an X-ray image.

Machine learning algorithms like those discussed in
section 2, need to train on large datasets for extended periods
of time. This results in the need for powerful computers
and possibly GPUs to speed up the computation. Those
use a large amount of electrical power to train and test
their models. The electricity in the Netherlands still comes
for more than 50 percent from fossil fuels (Netherlands,
2024), which is an ending source of power. Furthermore, the
burning of those fossil fuels brings large amounts of CO2
into the air, which indirectly leads to global warming.

Furthermore, this research tries to help doctors to make
the assessment of OA from X-rays easier, by providing an
automated method to calculate the joint space profile, thus
relieving the healthcare industry from some work.

Finally, because of this method, patients might get a more
suitable treatment for hip OA, since this automated method
is fully consistent between readings, which doctors are not.

(a) Example of the custom edge-finding algorithm compared
to BoneFinder. ”AR” = acetabular roof, ”FH” = femoral head,
”BF” = BoneFinder

(b) Example of the custom edge-finding algorithm compared
to BoneFinder where BoneFinder incorrectly annotated the
end of the acetabular roof. ”AR” = acetabular roof, ”FH” =
femoral head, ”BF” = BoneFinder

Figure 8: Custom edge-finding algorithm compared to BoneFinder



7 Discussion
This research aimed to accurately segment the joint space
from a radial projection originating from the center of the
femoral head using edge-finding and segmentation algo-
rithms.

The difference of Gaussians with thresholding will need
some improvements like selectively removing small blobs
from the thresholded image to work reliable enough to
always give a valid segmentation.

The custom edge-finding algorithm might need some
improvements too, like a different way of finding the end of
the acetabular roof, before this method can actually be used.

It is not always clear whether the edge is determined
correctly at the acetabular roof (for example in Figure 6.
The identified edge is not as smooth of a curve as the one
of the femoral head. Therefore a professional was asked
to determine how the edge should look like in this case.
This professional mentioned that the bone of the acetabular
roof most likely has some more dense spots. This can be
seen in the image as a lighter spot when compared to the
surroundings. The algorithm used for locating this line looks
for edges, which are changes in the intensity of the image.
Thus the edge-finding algorithm sees these more dense spots
which are close to the actual edge (incorrectly) as the edge
itself.

The output of BoneFinder, which is used as ground truth,
is in a format different from the output of the proposed algo-
rithm, which makes the comparison less reliable. BoneFinder
outputs only a specified number of points. This means that
the lines generated from the BoneFinder points can not have
the same level of detail as the proposed algorithm. Therefore,
the comparison is not fair when looking at a low level of
detail, since BoneFinder is missing it.

This suggest that the should be a ground truth with a higher
level of detail to determine the accuracy of the proposed al-
gorithm. However, there is no such a reliable and accurate
automatic segmentation algorithm for hip joints yet. There-
fore this research was done to try to find a new and better
segmentation algorithm.

8 Conclusion and recommendations
This aim of this paper was to find out if and how the joint
space be segmented most accurately from a radial projection
originating from the center of the femoral head using edge-
finding?

First is seen how the images are transformed with a radial
projection from the center of the femoral head, after which
they are preprocessed by rescaling the intensity.

Next, it was found that a difference of Gaussians can be
used as an edge-preserving filter in this specific use-case and
that a custom edge-finding algorithm works even better.

It would be of interest how the segmentation would
perform without the radial projection since that part of
the algorithm might introduce additional (computational)
complexity without increasing the accuracy of the final
segmentation.

Currently, the center and radius of the femoral head are
calculated from the BoneFinder output, since finding them is
not the main point of this research. In the future, this could
be done by a convolutional neural network (CNN) trained
to output the center (x and y coordinates) and the radius of
the femoral head using a circle fitted to the Bonefinder output.

So in conclusion, this paper shows an alternative way to
segment the joint space using traditional image segmentation
and edge-finding algorithms.

This algorithm can be used to calculate a full joint space
profile, which might be able to give more information about
the stage of hip OA than the often currently used minimal
joint space width. This would result in a better way of assist-
ing doctors with automatically determining the stage of OA.
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Appendix

Figure 9: A grid of the output of different algorithms, where each column has a different input image, which is shown in the first row.
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