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Abstract

Transition metal complexes as homogeneous catalysts enable high enantioselectivity in
hydrogenation reactions, making them especially beneficial for the pharmaceutical indus-
try. The development of data-driven prediction models enhances high-throughput cata-
lyst design. However, these models often focus solely on static molecular representation,
neglecting the dynamic behavior of the system, such as the formation of conformer ensem-
bles. Currently, no method is available to systematically account for these conformational
effects at reasonable costs. In light of this, the study aimed to develop a practical tool that
allows predictive models to incorporate the dynamic characteristics of catalysts via con-
former ensembles. A dataset of Rh-based precatalysts with mainly bidentate ligands was
utilized. Three cheminformatic tools -RDKit, OpenBabel, and CREST- were explored for
reliable, automated conformer ensemble generation. Among them, only CREST proved
feasible, although it exhibited several limitations and required manual modification. A
mapping between the conformer geometries obtained from GFN2-xTB and DFT calcula-
tions was achieved based on the relative energies and root mean square deviations. This
revealed that many conformers generated by CREST converge into the same DFT local
minimum. A classification method was developed to bridge the gap between conformers
obtained from the two quantum chemical calculations by selecting a subset of conformers
from the CREST ensemble that appear as distinct conformers in the DFT ensemble. This
approach allows DFT calculations to be performed only on conformers that would resultin
different DFT minima on the potential energy surface, thereby eliminating redundant cal-
culations and saving significant costs. This unsupervised DBSCAN clustering algorithm
was applied to the GFN2-xTB energy and RMSD of the conformers, reducing the number
of redundant conformers by 46% in the original dataset of Rh-based precatalyst structures.
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Introduction

In modern chemical industrial processes, catalysts undoubtedly play a crucial role [1]. By
definition, a catalyst is a chemical substance that accelerates the reaction rate by provid-
ing a new reaction mechanism with lower activation energy without being permanently
consumed [1-3]. Catalytic steps are incorporated into approximately 90% of chemicals
processes, from bulk chemicals to pharmaceutical industries, due to their numerous ad-
vantages [4-0].

Catalysts are often categorized into three main groups: homogeneous, heterogeneous
and biocatalysis [3]. Homogeneous catalysts are in the same phase as the reactants, whereas
the phase of heterogeneous catalysts differ from them [7]. Biocatalysis refers to the process
in which chemical reactions are catalysed by cells or cell components [8]. Although het-
erogeneous catalysis is employed in 85% of the catalytic processes, homogeneous catalysts
offer a key advantage of high selectivity, making them particularly relevant in industries
such as fine chemicals or pharmaceuticals [9]. In many cases, when chirality is introduced
to an atom, only one enantiomer is pharmacologically active while the other one may
have undesirable effects [10]. Examples of such drugs include thalidomide or propranolol
among many others [11]. The utilization of catalysts capable of selectively producing only
the desired enantiomer can reduce the costs of downstream processes and lead to a higher
production yield.

The use of transition metal (TM) complexes for homogeneous catalysis has recently
gained traction [1]. Their use is widespread in the pharmaceutical industry to produce
active pharmaceutical ingredients in processes such as asymmetrical hydrogenation [12].
Rhodium-based catalysts can be used to asymmetrically hydrogenate imines to obtain
amines with specific chirality. In this manner, high enantiomer selectivity can be achieved
[13, 14]. Chiral amines are key components in the pharmaceutical industry as 40% of phar-
maceutically active compounds have a chiral amine in the structure [15]. An example of a
reaction scheme, where chirality is introduced to an amine by a transition metal-catalysed
asymmetric hydrogenation can be seen in Figure 1.1.

The primary advantage of TM complexes lies in the tunable nature of their ligand
properties making them suitable control the catalyst performance [17]. Given the great
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Figure 1.1: Asymmetric hydrogenation of imines using transition metal based catalysts.
Image recreated from [16].

amount of available ligands with the absence of straightforward ligand-performance cor-
relation, it is necessary to develop techniques for high-throughput catalyst screening [17].
As a consequence, TM catalysts have become a major research area within novel catalyst
design, discovery and optimization [18, 19]. The appearance of high-throughput exper-
imentation (HTE) has allowed for extended experimental catalyst screening [20]. How-
ever, as it remains based on trial and error methodology, it is costly, time and resource
consuming [6]. To accelerate catalyst design and development several computer based
tools emerged to complement experimental methods. Data-driven statistical methods like
Machine Learning (ML) aim to find correlations between the catalyst properties and per-
formance such as catalyst activity or selectivity [6, 21]. The predictions obtained by these
models enable the reduction in the number of experiments needed to identify a catalyst
with the desired properties [21]. An example of an automated approach towards catalyst
design is shown in Figure 1.2. The starting point of these models is a database containing

Input structure +

. Geometry optimization Featurization ML model Predictions
experimental data

Figure 1.2: General approach to automated catalyst design: The workflow begins with the
digital representation of catalyst structures alongside their experimental data. The next
step involves optimizing the geometry of these structures, followed by a featurization
process. Finally, a machine learning model is trained to predict the experimental data for
new structures. Image created using [22].
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an initial representation of the input catalyst structures as well as the corresponding ex-
perimental data on their performance indicators. These structures are subjected to geom-
etry optimization, followed by the quantification of catalytic properties using descriptors.
These input features are then employed by various ML algorithms to capture correlations
between catalyst properties and performance [6, 21]. The obtained model can be further
utilized to make accurate catalyst performance predictions based on the molecular descrip-
tors.

An appropriate input structure representation is vital to the success of the model, as
it impacts every subsequent step [23]. When stereochemistry is introduced to a molecule,
conformational dynamics play a crucial role in characterizing the behaviour of the molec-
ular system [24]. As shown in Figure 1.3, a simple 2D representation cannot accurately
capture the geometric and electronic differences between conformers. Therefore, descrip-

2D representation 3D representations
. ° *
g . .&' - ~‘ = ‘e o°
o o o ¢
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ot St *e® ] S e
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= @ o /é‘ P P o,
. ¢ & s. 6.

Figure 1.3: Various 3D geometries (right) from a 2D drawing (left) of a molecular
structure.

tors that exclusively featurize a static molecular representation may prove inadequate in
describing the underlying chemistry of the system [23, 24]. An additional challenge lies in
the limitations of analytical methods to observe the dynamic behavior of catalyst structures
in situ during reactions [25]. Classical analytical measurements, such as nuclear magnetic
resonance (NMR) or infrared (IR) spectroscopy are hindered by the low concentration and
short time-frame in which the substrate-catalyst complex exists [1]. Due to the lack of
knowledge about the actual conformational behavior during reactions, current computa-
tional approaches for catalyst design either consider only the most stable conformer or
perform a full computational study at exceptionally high costs [26]. Currently there is
no developed method that systematically considers conformational ensembles in a high-
throughput manner at reasonable costs.

In the light of current challenges in the field, the research presented in this thesis is
aimed at establishing a dynamic representation of catalyst structures via conformer en-
sembles and benchmarked methods to generate them in a high-throughput, automated
manner. During this study, the following questions were investigated:

* Does the use of various conformer searching engines based on distinct methodolo-
gies result in varied conformer properties? Which conformer searching tools are
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applicable to our TM dataset?

¢ How does further geometry optimization influence the properties of the ensembles
obtained from conformer searching?

¢ [s it possible to select a subset of conformers that can accurately represent the DFT
refined ensemble to reduce the amount of DFT calculations required?

The structure of this thesis is as follows: First, the applicable theoretical background
is provided, followed by a description of the computational methods utilized. The main
part of the thesis discusses the obtained results and observations. Finally, a section of
conclusions and further recommendations is provided.



Theoretical background

This chapter aims to provide an overview of the theory behind this research. First, an
overview of TM complexes is presented, followed by a discussion of the four pillars of
state-of-the-art catalyst design.

2.1 Transition metal complexes

Transition metals are well-suited for utilization as homogeneous catalysts due to their
unique properties arising from their partially filled d- (or f-) subshell [27, 28]. They can
be present in various oxidation states [28], and can form both ¢ and 7 bonds due to their
valence atomic orbital (AOs) that can construct hybrid molecular orbitals (MOs) with var-
ious kinds of molecules [27]. The selection of the metal center is crucial for successful cat-
alyst design [29]; typically used metals include cobalt, rhodium, platinum, or ruthenium
among many others [30]. Ligands (atoms or molecular fragments [31]) typically bond to
the metal centre in such way that the coordination number of the metal centre is either 4 or
6 [28]. These ligands can modify the electronic and geometric properties of the catalyst en-
vironment and therefore the active site of the catalyst [27]. Hence the choice of the ligand
can be used to tune the performance of the catalyst [27]. The most commonly encoun-
tered ligands are the phosphorus ligands [32], but ligands containing nitrogen or oxygen
atoms have also gained significant attention in various applications [33-35]. Phosphorus
atoms can be characterized on the Lewis acid-base scale as soft, ligating atoms that have
been demonstrated to effectively enhance the efficiency of the designed catalysts for var-
ious reactions [29]. It is often thermodynamically more advantageous for ligands to have
more than one atom connected to the metal centre, forming polydentate complexes [28].
Phosphorus ligands are commercially available and utilized as mono- bi- and polydentate
ligands [29]. This research mainly focused on biphosphine bidentate ligands, but the cat-
alyst library also included TM complexes with monophosphines, aminophosphines, and
phosphoramidites [36].
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2.2 Computer-aided catalyst design

The appearance of computer algorithms revolutionized homogeneous catalyst design en-
abling a more efficient and affordable exploration of the chemical space [6]. Several com-
putational tools have emerged aiming to provide accurate molecular representations and
find statistical correlations between molecular properties and catalytic performance [18,
37, 38]. An ML-aided catalyst design workflow including experimental chemistry, quan-
tum chemical methods and ML-based modeling is presented in Figure 2.1 [39]. Current

Computational

screening
(Theory)
Database f
Y 4
Literature &\r .

Human intuition

Automated synthesis,
characterization,
,,.u and catalytic tests

Figure 2.1: Catalyst design using ML tools: Initially, the data acquired through
experiments is used to establish a relationship between catalyst properties and
performance. The ML model then predicts the performance of new catalyst structures,
reducing the number of experiments required. Image taken from [39].

state-of-the-art computer aided catalyst design workflows rely on 4 scientific fields: ex-
perimental chemistry, quantum chemical (QC) methods, cheminformatics and statistical
(artificial intelligence) models [40].

2.2.1 Chemical databases

While one of the main objectives of future design processes is the independency from ex-
perimental data [41], it is not yet achievable [42]. The success of predictive data-driven
models lies within the size and accuracy of experimental and computational databases
[19]. One of the biggest challenge computer aided catalyst design still faces is the lack of
large, robust, representative datasets [19, 43]. Datasets containing quantified properties of
catalyst structures and experimental parameters as well as indications of the experimen-
tally obtained catalyst performance can be used for models to identify correlations and
make predictions [6, 40]. The desired target performance indicators that are experimen-
tally measured are usually the activity, conversion or enantioselectivity [6], while various
molecular descriptors are used as input features.
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Descriptors

For accurate data-driven algorithms, applying a computer-readable representation of molecules
is essential [44]. Due to the complex nature of computational tasks and circumstances,
there is no absolute way of representation [44]. Most cheminformatic programs are ac-
tively developed to include and convert between representations with different level of
dimensionality [19]. The most common representation in chemistry is using string-like
chemical SMILES notation [45]. Due to the complexity of TM complexes, 1D or 2D repre-
sentations like chemical SMILES fail to reliably represent TM complexes [46]. When mod-
eling a delicate quantity such as enantioselectivity, the model can become highly depen-
dent on structural changes, making at least 3D representation necessary [40, 47, 48]. In the
featurization of catalytic structures via descriptors, the chemical information of molecular
geometries and the electronic structure of molecules is converted into mathematical (nu-
merical) representation [49, 50]. Descriptors are utilized by quantitative structure-activity
relationships (QSAR) models to investigate potential relationships between molecular de-
scriptors and catalyst activity [18, 21]. A comprehensive list of used descriptors can be
found in Appendix B.

In this study, the descriptors representing the 3D structure of the molecule are divided
into three categories: electronic, steric, and geometric descriptors. Electronic descriptors

a) b)

LUMO
HOMO-LUMO gap

Wt

HOMO-LUMO gap buried volume bite angle cone angle

Energy

Figure 2.2: Example of key descriptors, (a) HOMO-LUMO gap, (b) buried volume, (c) bite
angle, and (d) cone angle.

are designed to capture the main electronic structure of the molecule including the electron
densities and the local charge distribution [51, 52]. Some example of electronic descrip-
tors include the natural bond orbitals (NBOs), dispersion, nucleophilicity and the HOMO-
LUMO gap. The HOMO-LUMO gap, significantly impacting the reactivity of the molecule
[53, 54] is the energy gap between the highest unoccupied and the lowest occupied molec-
ular orbital (illustrated in Figure 2.2 (a)). The second category of the descriptors are steric
descriptors, which are used to characterize the steric effects that stems from each atom oc-
cupying a specific amount of space [23]. These effects are non-bonding interactions from
the overlap of electron clouds [23]. A fundamental steric descriptor for predictive models
is the buried volume [40]. The buried volume quantifies the percentage of a sphere with
a given radius is taken up by the ligand around a specific atom as a centre [55]. An illus-
tration of the buried volume with the metal as the centre of the sphere is shown in Figure
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2.2 (b). The third category is the geometric descriptors, mostly consisting of bond lengths
and angles [21]. Two key descriptors to mention are the bite angle and the cone angle, pre-
sented in Figure 2.2 (c) and (d) respectively. The bite angle, that has been proven to have
be a significant feature of prediction models, describes the angle between the metal centre
and two connecting ligand atoms [56]. The cone angle is utilized for symmetrical biden-
tate ligands to express the angle of a cylindrical cone that takes the metal as centre and the
outmost atoms” Van der Waals radii as edges [57, 58]. It is therefore a suitable parameter
to indicate the size of the ligand.

2.2.2 Density functional theory

In computational chemistry, density functional theory (DFT) is widely used for various
tields of applications [59, 60]. Concerning DFT, numerous methods and techniques have
been developed and effectively applied leading to an efficient, robust and widespread ap-
proach [60]. In the field of homogeneous catalysis, DFT is commonly utilized for numer-
ous purposes including predicting reactivity [61], determining energy barriers and there-
fore reaction rate constants [62] and comprehending underlying reaction mechanisms [63].
DFT can serve as a valuable tool for geometry optimization [64] as well as determining the
energy of fixed molecular structures [65].

Despite other quantum chemical methods, the primary focus of DFT is on the electron
density rather than the total energy of the system [66]. To describe and understand DFT, we
must begin with the fundamental equation of quantum chemistry: the time-independent,
non-relativistic Schrédinger equation, which can be expressed by the following form [67]:

Hy = Ev 2.1)

In this equation, A denotes the Hamiltonian operator and ¢ stands for the wavefunction.
The Hamiltonian operator represents the total energy of the system, thus in order to solve
the Schrédinger equation, it has to be expressed. Its form can vary depending on the sys-
tem. In computational chemistry, where multiple nuclei and electron systems are present,
the expanded form is as follows for M nuclei and N electrons [67, 68]:

N 1, 1Y ZAZB
R S TP PR B 35 ST 50 SE R B o JES
i=1 A=1 i—1A=1 A D155 T AZ1B>A

The equation represents the kinetic energy of electron, kinetic energy of nuclei, attractive
Coulomb interaction between nuclei and electrons, repulsion between electrons and repul-
sion between nuclei respectively [68].

The exact analytical solution of the Schrodinger equation can only be obtained for
one-electron systems [69]. For more complex system with multiple electrons and nu-
clei, approximations are required. The main challenge that increase the complexity of the
Schrodinger equation arises from the representation of both electrons and nuclei within
the same wavefunctions. The Born-Oppenheimer approximation is based on the princi-
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ple that the electron is roughly 1800 times lighter than the nuclei, allowing electrons and
nuclei to be treated almost completely separately. This enables them to move around and
react more independently, leading to disregard the kinetic energy of the nulcei and ap-
proximating the repulsion of nuclei as a constant. Thus the Hamiltonian can be simplified
the following way [67]:

R 1 N M, N N 4
H=—5> Vi=2> > -+2.> (2.3)
2 im1A=1 A 27551 T

To construct the wavefunctions, multiple approximations have been developed and ap-
plied, such as the Hartree-Fock (HF) method.

As the primary focus of DFT shifts from wavefunctions to the electron density p(r), the
dimensionality, and therefore computational costs, are drastically reduced [70]. Electron
density allows to only rely on three space coordinates instead of the previous 3N variables
for an N electron system [70]. Using the electron density to describe the total energy of
the system is based on the two theorems of Hohenberg and Kohn. The first theorem states
that the Hamiltonian operator of the system is uniqually determined by the ground state
electron density [67]. Relying on the electron density is therefore sufficient to acquire all the
system properties [67]. The second theorems states that the lowest (ground state) electronic
energy of the system is a functional of the ground state electronic density [67]. Combining
these theorems and the Born— Oppenheimer approximation, the energy of the system as a
functional of density can be expressed in the following form (Kohn-Sham equation [71]):

Elp(r)] = Vn + Venlp(r)] + Elp(r)] + Erp(r)] + EQlp(r)] (2.4)

Where Viyy and V. are the nuclei-nuclei and nuclei-electron attraction energies, E; stands
for the classical repulsion between 2 electrons and Er is the functional of the kinetic energy
of electrons [72]. The last term (E() represents the quantum (non-classical) interaction of
electrons [72]. The two latter terms are unknown to the system, making the main objective
of DFT development the determination of appropriate approximations for them [72]. By
selecting suitable forms for the unknown functional, based on the two theorems of Ho-
henberg and Kohn, the ground state energy and therefore all system properties can be
approached by the minimization of E, [71].

Exchange-Correlation Functionals

The two unknown terms from the previously presented Kohn-Sham equation can be com-
bined to define an exchange-correlation Exc[p(r)] term [72]. This term is a functional of
the electron density and represents the sum of electron-electron interaction and kinetic en-
ergy corrections [70]. Since finding an accurate, efficient, and robust method to express
ExC|p(r)] is critical for successful DFT calculations [60], several approximations emerged,
both non-empirical and semi-empirical [72]. Different dependencies are being taken into
account by these functional leading to significant differences between their accuracy and
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computational expenses. The so-called “Jacobs’s ladder” (Figure 2.3) can be used to col-
lect and categorize these functionals based on the above-mentioned criteria [73]. The lad-

Heaven of chemical accuracy

Rung 5  Double-Hybrid (B2PLYP)
+ dependence on virtual orbitals

Rung 4  Hybrid (B3LYP, PBEO)
+ dependence on occupied orbitals

Rung 3 Meta-GGA (TPSS, MO6)

+ dependence on kinetic energy

Chemical accuracy
Computational cost

Earth: Hartree-Fock Theory

Figure 2.3: The Jacob’s ladder of exchange-correlation functionals, starting from the
Hartree-Fock theory. Climbing the ladder involves increasing dependencies that enhance
both chemical accuracy and computational cost at each step.

der starts with the Hartree approximation ("Earth”) assuming zero exchange correlation
energy (Exc|[p(r)] = 0) and ends with the highest form ("heaven”) of chemical accuracy
[73]. The exchange correlation functionals in between are divided to five rungs, each in-
troducing additional corrections to the energy density [73], raising both the chemical ac-
curacy and required computational power. The lowest three rungs are the (semi-) local
rungs starting from ”“local density approximation” (LDA), “generalized gradient approx-
imation” (GGA) and "meta generalized gradient approximation” (meta-GGA) [73, 74]. A
significant difference between them and the higher level rungs is that they do not take
the Fock exchange into account [60]. They include a self-interaction error (SIE), that is
partially replaced by the Fock exchange in the higher level of functionals (rung 4 and 5:
hybrid and double-hybrid functionals) [60]. The ratio between the DFT-exchange and the
Fock exchange differentiates within the various types of hybrid potentials [60]. The most
commonly used exchange correlation functionals for transition metal complexes are the
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B3LYP and PBEO hybrid functionals [75, 76]. The PBEO hybrid functional that was used for
the current study utilizes the Fock and the PBE (GGA) exchange energy in a 1:3 ratio [60,
77].

Basis sets

To approximate the Kohn-Sham equation (Eq. 2.4), Kohn and Sham introduced the use of
one-electron orbitals [70, 78]. The wavefunction is parameterized into unknown molecular
orbitals that can be determined by the linear combination of known atomic orbitals (LCAO
theory) [78]. Basis sets are used to construct these molecular orbitals in such way that
computationally solvable algebraic equations are generated [78]:

M
¢ = Z CaXa (2.5)
a=1

In this equation ¢ stands for a molecular orbital, ¢, is the basis function (from 1 to M)
and yx, is the expansion coefficient [78]. Similar to the exchange correlation functionals,
hundreds of basis sets are available and applied aiming to balance chemical accuracy and
computational power [79]. Although using Slater type orbitals (STOs) [80] to construct
atomic orbitals would have been indicated from the solution of the Schrodinger equation
to the hydrogen atom, due to its limitations and the high computational effort required,
Gaussian type orbitals (GAOs) are most commonly used [78]. While choosing an appropri-
ate basis set, two significant errors may occur: the basis set incompleteness (BSIE) [81] and
superposition (BSSE) [82] errors [60]. The first error refers to the size of the basis set, basis
sets can be characterized based on the independent functions to construct a valence atomic
orbital [60]. Therefore we distinguish valence double, triple or quadruple zeta basis sets
[60]. The second error term stems from the non-covalent intermolecular interactions and
can be eliminated using correction terms [60]. A polarization function can be added to ba-
sis sets for further performance improvement as the primary basis set may not be adequate
to describe electron density distribution accurately [83]. For this study the Gaussian type
double zeta def2-SVPP basis set was utilized due to its general applicability and accurate
performance in TM complexes [84].

Dispersion corrections

The standard Kohn-Sham DFT theory does not take the London dispersion forces into
account [85]. However, when dealing with large molecules, such as TM complexes, these
forces have a significant impact on the total energy of the system and therefore a correction
term should be subtracted from the KS DFT energy [85]. The dispersion interaction energy
depends on the molecular distance by the following rate [86]:

Cs
Edispersion X _ﬁ (26)
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Where Cg stands for the dispersion coefficient and R the atomic distance [86]. In this study
the DFT-D3 dispersion correction [87] was used as it is providing an accurate representa-
tion of the dispersion energy for almost all elements of the periodic table including transi-
tion metals [86].

Potential energy surface

DFT is a widely applied tool to perform molecular geometry optimization [88, 89]. After
providing and initial geometry, by minimizing the potential energy gradient, the molec-
ular geometries belong to the local minima on the potential energy surface (PES) can be
obtained. To validate whether the found molecular structure is indeed a local minimum,
the Hessian matrix can be analyzed containing the second partial derivative of the poten-
tial energy. In case there is an imaginary frequency found, the structure is not the actual
local minima and it has to be recalculated with a slightly modified initial geometry pro-
vided. As performing these calculations is rather expensive [90], easily reachable minima
should be ensured by providing the sufficient initial molecular geometries.

2.2.3 (Semi-) empirical computational methods

While DFT calculations are often considered the most accurate computational method af-
fordable for the design of homogeneous catalysts, they demand significant computational
resources, making them very expensive on larger scales [21]. Thus, relying solely on DFT
calculations is not feasible for high-throughput screening of large molecules [21]. To ad-
dress this, several methods have been developed to strike a balance between chemical
accuracy and computational efficiency.

Force field methods

Force field methods (FF) are computationally significantly less demanding than DFT as
they rely on simple energy calculations to predict the structural and thermodynamic pa-
rameters of molecules [91]. The main advantages of FF methods lies in the fact that as
atoms (nuclei and electrons) and bonds are treated as fixed balls and strings, instead of
dealing with the Schrodinger equation, the Newtonian mechanics can be utilized [81].
Force field methods are reported to require the lowest CPU-time out of the commonly used
methods for TM complexes [92, 93]. A major challenge of the development of FF methods
are generating parameters based on the elements and bonding information [19]. Many FF
methods do not provide parameters for a broad range of elements and cannot be used for
transition metal complexes [40]. For the current study, the universal force field (UFF) was
applied as it is parameterised for all elements of the periodic table [94] and widely used
for TM complexes [19].
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GFNn-xTB methods

Another alternative tool for molecular modeling involves using quantum chemistry based
semiempirical tight-binding models, which offer relatively accurate results at reduced
computational costs [95]. The Geometry, Frequency, Noncovalent, eXtended Tight-Binding
(GEN-xTB) method was developed aiming to provide accurate results and universal ap-
plicability (atomic number = 1-86), including metals [96]. Despite many successful appli-
cations, the versions of GFN-xTB preceding the GFN2-xTB method struggled to describe
systems that are highly polar and involve strong hydrogen bonds [97]. To tackle this chal-
lenge, the GFN2-xTB was developed and designed to show accurate results for organic,
organometallic and biomolecules [97]. This low-cost quantum chemical method has shown
robust and accurate results from chemical space exploration and conformer searching [98].

2.24 Cheminformatics

To efficiently use data driven predictive models, descriptors should be calculated in a high-
throughput, automated manner [40]. Cheminformatics emerged as a significant field of in-
formatics and made impact not only on catalyst discovery, but also drug design, material
science or computational chemistry [99]. Cheminformatics intends to provide useful tools
for scientists to store, analyse, manipulate and manage the vast amount of chemical data
in an automated as systematic manner [40, 100]. Several computational packages are being
developed and optimized for various purposes: for instance molecular structure and reac-
tion representation, storage and use of chemical databases, descriptor calculations, similar
molecular characteristics search and identification, data visualisation or generation of new
structures [100, 101]. In the domain of homogeneous catalysis, main cheminformatics tools
include functions for molecular featurization, databases, conformer searching algorithms
and they often include ML techniques as well [102]. Most cheminformatic workflows are
integrated in Python and use the open-source RDKit [103] and OpenBabel [99] packages
as a backend [40]. These toolkits are primarily designed for handling organic molecules,
accepting various input formats, and including simple FF optimization tools [19].

Conformer searching

The quantification of catalyst properties is a major challenge in the field, as accurate rep-
resentation is linked to the success of the models [24, 104]. A main focus point of chemin-
formatics is to provide a tool for accurate representation of molecules [100]. The highest
level of representation (4D), instead of focusing on a static molecular geometry, includes
the whole conformer ensemble [40]. Several conformational parameters are essential to
describe the structural characteristics of the molecules such as conformational energies or
steric effects [23, 105]. In data-driven models for homogeneous catalyst design, there are
generally two approaches for including conformers. The first approach involves taking
only the most reasonable geometries into account. This selection is based on chemical intu-
ition introducing human bias, often leading to inaccurate representations [106] or ignoring
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all conformational effects [26]. The second approach is a broad exploration of conforma-
tional outcomes significantly raising computational costs [26]. Many conformer searching
tools are developed and utilized with diverse optimization goals, ranging from searching
for local minima to finding bioactive conformers [107]. The three main underlying ge-
ometry optimization methodologies of these conformer searching tools are empirical (FF),
semiempirical, and ML potential based [107]. ML based conformer searching tools, such
as auto3D use neural network potentials that are not yet parameterized for TM complexes
[108]. Both OpenBabel and RDKit can be utilized for conformer searching using different
FF methods such as UFF or MMFF [103, 109]. Generally force field methods are charac-
terized as fast speed and low computational power tools with questionable accuracy and
reliability [108]. Semiempirical methods on the other hand are reported to be more ac-
curate but requires more computational time [107, 108]. A widely applied semiempirical
tool, CREST (Conformer—rotamer sampling tool) is using GNFn-xTB tight-binding meth-
ods and therefore aims to find balance between high accuracy and low computational costs
[110]. Finding the appropriate conformer searching tool for TM complexes is still an active
area of research, as there is no definitive conclusion on the best performing method [93,
107].

2.2.5 Machine Learning in homogeneous catalysis

Artificial intelligence (Al) is one of the most rapidly developing domain of computer sci-
ence impacting numerous fields of chemistry including homogeneous catalyst design [19].
Several ML models are trained to provide accurate predictions of catalyst performance or
feature selection [6, 21] from white-box to black-box models [40]. An overview of general
ML techniques and their classification is represented in Figure 2.4 [40]. White box models

c-.:i._
l ! -‘=-'.§ |

RESULT-1 RESULT-2 RESULT-1 RESULT-2 RESULT-N

(Multi)linear regression Decision trees Principal component Support vector Random Forest
analysis regression

White-box Data science continuum Black-box
modelling modelling

Figure 2.4: Commonly used ML techniques of the data science continuum ranging from
white box to black box models. Image taken from [40].

are based on traditional statistical approaches identifying transparent correlations between
features and output labels with a clear model architecture [40, 111]. Black box models
on the other hand consist of multiple internal hidden non-linear functionalities, making
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them too complex for straightforward interpretation or analysis [112]. Therefore, while
white box models can be used to capture catalyst descriptor-performance relationships,
black box models provide higher accuracy in predictions [40]. Example of typical white
box models includes simple regressions models while the most commonly used black box
models are random forests or artificial neural networks [112]. Both white box and black
box algorithms can be classified into the three main groups of ML models: supervised,
unsupervised, and reinforcement learning [113]. The main characteristics and application
potentials of ML methods that are relevant in homogeneous catalysis are presented below.

Supervised learning

Supervised ML models are trained to provide accurate predictions of continuous (regres-
sion) or discrete (classification) output labels from certain predictors [113]. To build a su-
pervised model, the dataset has to contain both input features (descriptors, reaction pa-
rameters) and output values (activity, selectivity) [102]. Many of these techniques have
been successfully implemented to homogeneous catalyst design. Derek et al. investigated
the application of decision tree and linear regression models for reaction yield prediction
[114]. The ML model was trained using palladium catalyst descriptors to predict the per-
formance in Buchwald-Hartwig (C-N cross-coupling) amination of 4-methylaniline with
aryl halides [102, 114]. The random forest algorithm was reported to provide more ac-
curate performance with the root mean square error (RMSE) of 0.78 and the R? of 0.92
[114]. Enantioselectivity (AAG?) prediction by support vector regression was investigated
by Zahrt et al [115]. The ML model was applied on the formation reaction of selective N,S-
acetals using phosphoric acid catalysts and similarly led to highly accurate results [115].
Logistic regression models classifying catalysts into active and inactive categories based
on conversion rate also showed a high prediction accuracy of 0.95 [17]. In this case, the
model system included bisphosphine ligand-catalyzed hydroformylation reactions [17].
However, most models present many drawbacks and limitations such as their trans-
ferability, making them yet unsuitable for general application purposes [102, 116].

Unsupervised learning

Unsupervised ML algorithms aim to find general patterns and segments of a dataset with-
out explicitly providing output labels. Although most research in TM complexes is related
to supervised learning, different clustering and dimentionality reduction approaches are
often included in catalyst design workflows [102]. Feature dimentionality reduction tools
are developed due to the complexity of high-dimensional datasets aiming to find a hid-
den more simple structure and translate it to a low-dimensional space [117]. The most
common dimentionality reduction tools applied on a set of chemical descriptors are prin-
cipal component analysis (PCA) [17] and Uniform Manifold Approximation and Projection
(UMAP) [118, 119]. Clustering is an efficient way to classify the data into subgroups based
on certain similarities [120]. The most used clustering algorithm on descriptors for catalyst
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design is K-means clustering [118, 121]. Clustering based on the Root Mean Square Devi-
ation (RMSD) and the energy values is also commonly used in the field of bioinformatics
and protein discovery [122, 123].

Deep learning

Deep neural networks can be either supervised or unsupervised, aiming to mimic the be-
havior of biological neurons through several connected layers [124, 125]. Although the
application of deep learning techniques in chemistry is still limited, these methods are
gaining increasing attention in the field of life sciences [126, 127]. Transformer models
[128] provide a useful tool for various applications in chem- and bioinformatics, such as
molecular property prediction, generation, and optimization [127, 129]. These natural lan-
guage processing models can embed a sequence of input data, such as chemical SMILES
[45] or SELFIES [130] into latent space resulting into a sequential output [127, 129]. One of
the major success of transformer models is linked to protein structure prediction with an
AlphaFold model [131, 132]. In the domain of cheminformatics, the principal applications
are connected to organic chemistry. A chemical yield reaction predictive model was devel-
oped by Schwaller et al. using a BERT encoder transformer model [133] followed by a re-
gression step [134]. For atom-mapping -a mapping of the rearrangement of reactant atoms
to products during a chemical reaction [135]- an ALBERT model [136] was implemented
[137]. Both application examples used chemical SMILES as input data representation.



Computational methods

This chapter provides a comprehensive overview outlining the selected setting and config-
uration parameters for each computational method used. Section 3.1 describes the overall
workflow followed, while the subsequent sections dive into the specifics of each step in
the workflow.

3.1 Workflow

1, Input structure 2, Conformer search 3, Conformer pruning 6, Descriptors 7, Transformer model
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Figure 3.1: An overview of the general workflow of the research: The workflow begins
with a library of input catalyst structures. The next steps involve conformer searching
and pruning. A filtering approach then selects a subset of conformers to undergo DFT
optimization. Descriptors are calculated from both sets of conformers. Finally, a
transformer model is trained. Figure created using figures from [22, 99, 138, 139]

Figure 3.1 represents an overview of the workflow, illustrating the development of a
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Python script for searching and processing conformers. The input catalyst structures (step
1) were used to perform conformer searching via various conformer search engines (step
2): CREST [98], RDK:it [139] and OpenBabel [99]. In step 3, the obtained conformers were
pruned to eliminate molecules from the ensembles, which chirality changed during con-
former search. After selecting the best performing conformer searching method, a subset
of conformers was chosen (step 4) to undergo further geometry optimization through DFT
calculations (step 5). Note that during the development of the filtering algorithm, steps 4
and 5 were swapped: a subset of ensembles was selected for DFT optimization to serve
as input data for the filtering approach. In step 6, the conformer ensembles obtained were
subjected to descriptor calculation via the OBeLiX [40] computational workflow. Statistical
tools such as ANOVA [140] were used to analyze and evaluate the data. In the final step,
it was intended to use the obtained descriptor data to train a transformer model for accu-
rate catalyst performance predictions and conformer selection. However, this could not be
accomplished within the limited time-frame of the research.

Certain parts of the calculations required the power of supercomputers. CREST calcu-
lations were performed using the DelftBlue supercomputer [141], while the Snellius super-
computer [142] was utilized for DFT geometry optimization and single-point calculations.

3.2 Input structures

192 catalyst structures were used as the starting point of the project, each containing a
rhodium ion at its centre. The oxidation state of the Rh ion was +1 in all cases. A nor-
bornadiene (NBD) model substrate was bonded to the metal-centre to ensure a catalyst
geometry capable of accommodating the binding of the actual substrate. Catalyst struc-
tures with various commercially available and tested ligand families were investigated. A
comprehensive description of the catalyst structures is available in Appendix A.

The catalyst structures were initially represented using Cartesian coordinates in *.xyz
file format. To determine the most accurate representation for the conformer searching
engines under investigation, different input formats were also analyzed. A MDL MOL
v.2000 (*.mol) file was generated for each input structure using the ChemCraft 1.8 software
package [143]. RDKit mol objects and OpenBabel mol objects were created using the RDKit
and OpenBabel python packages.

3.3 Conformer searching and pruning

The conformer generation and evaluation process can be seen in Figure 3.2. Various soft-
ware packages were utilized to facilitate conformer generation, and the ensembles were
further pruned using the Morfeus package [144].
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Figure 3.2: Conformer searching workflow: All conformer searching approaches start
with an input structure (left). In the middle, the various packages and methods are
presented. Finally, the conformers are all collected in Morfeus for further pruning (right).

3.3.1 Conformer searching
CREST

The conformer-rotamer ensemble sampling tool (CREST) software [110, 145] version 2.12,
and XTB version 6.4.0 were used for conformer generation and exploration. CREST calcu-
lation were performed on all 192 Rh-based structures using Cartesian coordinates (*.xyz
file) as input geometries for conformer ensemble creation. The GFN2-xTB//GFN-FF hy-
brid potential was chosen for its accurate performance at reasonable computational costs
and universal applicability [146]. This approach utilizes the GFN-FF method for gener-
ating and optimizing conformational geometries, followed by a GNF2-xTB single point
calculation on the obtained conformers [138]. Due to the cationic nature of the Rh ion and
the lowest energy-state of the molecules, the charge and multiplicity were both set to 1.

The resulting CREST folder, containing the Cartesian coordinates of the conformers
and their corresponding energy values, was loaded into the Morfeus Python package for
further pruning and preprocessing.

RDKit and OpenBabel

The RDKit and OpenBabel conformer searching engines are by default integrated in the
Morfeus python package. Conformer ensembles can be generated from the correct input
format, such as chemical SMILES, RDKit, or OpenBabel mol objects. The UFF force field
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was chosen for its general applicability and broad coverage of chemical elements. For
OpenBabel, conformer searching using its genetic algorithm was also conducted.

The MACE python package [147] was also utilized for conformational exploration via
RDKit. MACE is an open-source python library developed to generate 3D structures in
a fully automated manner. Similar to Morfeus, MACE conformer generation is also per-
formed via RDKit-UFF, but additional parameters of bonds and angles applicable to TM
complexes are implemented [147]. For example, torsional angles that account for rotations
around dative bonds are included [147].

3.3.2 Conformer pruning

One of the advantageous built-in features of Morfeus is its capability of conformer prun-
ing based on various criteria: energy pruning, enantiomer pruning and Root Mean Square
Deviation (RMSD) pruning. The default settings were applied for all pruning algorithms.
These algorithms are not suitable for pruning conformers directly from *xyz file formats.
Therefore, for the ensembles obtained using CREST, an explicitly added connectivity ma-
trix was required, which was extracted from the MDL MOL file.

Energy pruning involves eliminating conformers above a certain energy threshold
based on their relative energy within the ensemble. Enantiomer pruning is applied when
the catalyst structure contains chiral atoms. By performing enantiomer pruning, conform-
ers with changed chirality from the original input structure can be eliminated. Morfeus
can also be utilized to select and eliminate duplicates due to its RMSD pruning function.
RMSD is commonly used to quantify the structural differences between two molecules.
The RMSD value of a conformer relative to another one can be calculated by the following
expression:

N

RMSDap = J %Z ((Aie = Bia)* + (Aiy = Byy)* + (Aiz — Bi.)?) 3.1)

i=1
Where A and B represent two conformer molecules, N is the number of atoms in each
molecule, and x, y, z are the Cartesian coordinates of the i-th atom in the molecules. The
overlap of two molecules is visually represented in Figure 3.3.

With the Morfeus RMSD pruning function, a matrix is calculated that contains the
RMSD values of every conformer relative to every other conformer in the ensemble. By
extracting the first column of this matrix, the RMSD values relative to the first (lowest
energy) conformer can be obtained.

Due to the limitations of the Morfeus RMSD pruning function, the RMSD Python pack-
age [148] was also used to compute the RMSD deviation between two molecules from * xyz
file formats. The main difference is that the RMSD Python package allows the utilization
of a reordering algorithm to align atoms in molecules that have undergone rotation during
conformer search, and it provides an option to exclude hydrogen atoms from the calcula-
tions. Both algorithms were used with their default settings.
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Figure 3.3: Overlapping two molecules for RMSD calculation.

3.4 DFT calculations

24 conformer ensembles were selected for further DFT geometry optimization. The en-
sembles were previously preprocessed to remove wrong enantiomers, and all conformers
in the ensembles served as initial input geometries for DFT calculations. DFT calcula-
tions were performed using Gaussian 16 C.0239 on the Snellius supercomputer. The PBEO-
D3(BJ)/def2-SVPP [149-151] level of theory was applied as it is reported to show accurate
results at relatively low computational effort for TM complexes [146, 152, 153]. After fre-
quency analysis via the Hessian matrix, the pyQRC python script [154, 155] (version 1.0.3)
was used for conformers with imaginary frequencies to provide new input geometries.
The new geometries were additionally optimized with the same computational parame-
ters.

DFT single point calculations were also performed on all of the conformers of the 192
obtained ensembles to compute electronic properties of the obtained conformers.

3.5 Filtering for DFT

One of the main challenges of this study was to find a subset of conformers to accu-
rately represent the ensemble. The workflow for investigating and evaluating different
approaches is represented in Figure 3.4.

In step 1, a training set of 9 different ensembles was chosen to undergo further DFT
optimization. A categorization approach (step 2) was utilized to mark the key conformers
serving as output labels for the model training and evaluation. By the categorical nature of
the targets, a classification problem was generated with the conformer parameters before
DFT refinement as predictors. In step 3, algorithms based on molecular descriptor selec-
tion and clustering were created to make accurate predictions on the conformers. Three
clustering methods were tested; K-means for its general applicability [156], K-medoids as
it takes data points as cluster centres [157] and Density Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) as it is primarily designed for data having higher amount
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Figure 3.4: Overview of the approach of conformer selection for further DFT geometry
optimization: In step 1, nine ensembles are chosen for DFT refinement. The true labels are
assigned in step 2. An algorithm is developed for label predictions in step 3. After that,
the algorithm is evaluated in step 4. An additional set of ensembles is used for validation,
and finally, the prediction algorithm is applied to the rest of the ensembles.

of noise [158]. For K-means and K-medoids models, the minimum number of clusters (k)
was set to 1. For DBSCAN, the minimum number of samples in a cluster parameter was set
to 2 and the distance to centroid parameter (¢) was further optimized based on the model
performance.

In step 4, the investigated methods were primarily evaluated by a confusion matrix. A
confusion matrix is a commonly used evaluation technique for ML classification models,
where binary categories are present [159]. The obtained prediction results are divided into
four subsets:

¢ True negative (TN): prediction model correctly predicted category 1

* False negative (FN): prediction model predicted category 1, although its true value
is category 2

* False positive (FP): prediction model predicted category 2, although its true value is
category 1

* True positive (TP): prediction model correctly predicted category 2

TN and TP are the subsets that represent correct predictions by the model, while FN
and FP are the subsets where the predicted category of the datapoints does not match
their true category. An imagine of the confusion matrix can be seen in Figure 3.5. Certain

fo TP TP TP+TN
parameters, such as precision (75 zp), recall (75775 ) and accuracy (7pmpiryry) are

commonly used for model assessment. However, in this study using the ZX ratio as a
model assessment parameter was more suitable. A model is considered to perform better
than another when this parameter is higher.
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Figure 3.5: Visual representation of a confusion matrix. The dataset is divided into 4
subgroups based on their true and predicted values.

In step 5, an additional set of 15 conformers, containing structures with ligands from
distinct ligand families was selected to undergo DFT refinement. This additional data
served as a tool to validate the universal application of the chosen algorithm across the
dataset. This algorithm was further optimized using the extended dataset including both
the training and validation sets (24 conformer ensemb]es) in step 6. The final step involved
applying the model to the remaining 168 conformer ensemb]es.

3.6 Descriptor calculation through OBeLiX

Calculating molecular descriptors was a key part of the study. To ensure the accurate repre-
sentation of relevant descriptors, a universal automated computational approach, OBeLiX
was used. With OBeLiX several steric, geometric and electronic descriptors can be obtained
from various input formats such as *.xyz file format, CREST output folder or DFT output
file (*.log file format). For conformer ensembles, the script calculates Boltzmann-averaged
descriptor values. The script was further modified to accommodate a Morfeus conformer
ensemble object as input and to provide the descriptor values for each individual con-
former as well as the Boltzmann averaged values. A total of 37 descriptors were obtained.
A detailed list of descriptors and their calculation method can be seen in Appendix B.

3.6.1 ANOVA

The obtained descriptors from calculations at different levels of theory were analyzed us-
ing a one way ANOVA test. The ANOVA test was performed handling the computational
chemical method as the independent variable and the descriptor values as the dependent
variable. Therefore an F-statistics and a p-value was calculated for each descriptor. The
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evaluation was conducted using a significance level of 0.05 meaning that there is 5% chance
that the null hypothesis (no substantial difference between the methods) is rejected while
true.



Results & Discussion

This chapter starts with the results and discussion of different conformer searching tools
that were investigated. Secondly, the correlations between the conformers from these tools
and DFT refinements were highlighted with the possible selection algorithms for further
DEFT optimization. Finally, a descriptor comparison of both techniques is also included.

4.1 Conformer searching

When investigating various conformer tools, the following criteria were chosen to focus
on:

¢ Automation: Is the investigated method able to generate conformers in a high-throughput

and automated manner, without the need for manual modification?

® Accuracy: Is the level of theory applied by the conformer searching engine suffi-
cient to provide accurate low-energy conformer geometries from the conformational
space?

¢ Reliability: Can conformers reliably generated using all different ligand structures?
Can the conformer searching tool be applied reliably across a large set of data con-
taining diverse ligand properties?

¢ Practical applicability: Are fast calculations feasible at reasonable computational
costs, or is extensive computational power required?

4.1.1 Input structure representation

One of the main purposes of this research was to find a dynamic representation of cat-
alyst structures for data-driven prediction models, making the use of an accurate input
representation critical. As mentioned in Section 2.1, due to the unique properties of TM
complexes, it is challenging to find a robust and automated way to capture their complex
stereochemistry, bond strengths, and orders. Therefore, before feeding the catalyst struc-
tures to the conformer searching engines, it is essential to ensure that the input data format

25
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accurately encodes the structural information. A study was conducted on various input
data formats relevant to TM complexes, highlighting the main advantages and disadvan-
tages of each molecular representation method. A summary of the key findings regarding
the benefits and drawbacks of these input formats is presented in Table 4.1.

Table 4.1: A summary of the advantages and drawbacks of the input formats investigated.

Input format
. . RDKit and Open-
* *
xyz file mol file Babel mol objects
. Contains  bonding | Contains bonding
Simple . . . .
Advantaces information information
vantag Can easily be gener- | Can  be  directly
Compact ated from an *xyz | used for conformer
file searching
Universally applied
. . Cannot be directly | Generation from
No bonding infor- .
. . used for conformer | *xyz file is often
Disadvantages | mation . .
searching unreliable
Cannot be directly | Manual generation
used for conformer | is often the most
searching reliable
*xyz file

The input data was initially stored in an *.xyz file format, which includes only the atomic
numbers, symbols, and their Cartesian (x,y,z) coordinates. This file format is simple, com-
pact and commonly used in chemistry. However, a primary limitation of this format is
its lack of information regarding bonding orders and atomic charges. Furthermore, the
Python packages utilized, which employ RDKit and OpenBabel as their backend, can only
initiate conformer search with either chemical SMILES or RDKit and OpenBabel molecu-
lar objects as inputs. Therefore, this format cannot be directly used to initiate conformer
searching with these engines. Although conformer searching can be performed via CREST
using this file format, an explicitly added connectivity matrix with bonding information
cannot be avoided for further pruning and preprocessing. Thus, an *.xyz file by itself is
not suitable as input for any of the conformer searching tools investigated in this study,
and further conversion is necessary.

RDKit and OpenBabel mol objects

An evident approach would be to utilize the appropriate input format of RDKit and Open-
Babel: either SMILES or RDKit/OpenBabel mol objects directly. While SMILES is a uni-
versally applied method to represent molecular structures, it has limitations when deal-
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ing with TM complexes and indicating their stereochemistry (Section 2.2.4). The SMILES
representation was hence disregarded, and RDKit/OpenBabel mol objects were further
investigated. In addition to their direct applicability for conformer searching algorithms,
another key advantage to mention is their capacity to store bonding and charge informa-
tion.

However, their main limitation lies in their generation from other representation for-
mats, such as an *.xyz file in the case of this study. Since there is no bonding information in
an *.xyz representation, these cheminformatic packages are expected to accurately identify
the bonding of the atoms. The database of TM complexes were used to test their conversion
accuracy from *.xyz files. The OpenBabel mol objects generated by the Openbabel package
were lacking crucial bonding information of the molecules. An example of the failed con-
version is presented in Figure 4.1, where both the actual bonding (a) and the bonding iden-
tified by OpenBabel (b) between the atoms of structure 1 (ligand: SL-J001-1) is depicted. It
can be observed that OpenBabel failed to recognize several bonds, highlighting its unre-
liable performance in structure generation. Although a more accurate conversion can be
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Figure 4.1: The original bonding of structure 1 (ligand: SL-J001-1) (a) and its OpenBabel
representation (b).

achieved using the RDKit Python package, the process still remained unreliable. As illus-
trated in Figure 4.2, RDKit could not accurately encode the correct bonding information
in certain cases. For instance, in the presented structure (structure 174, ligand: SL-J681-
1) a hydrogen atom is erroneously connected to both a phosphorus and a carbon atom
(b), instead of correctly identifying the phosphorus-carbon and hydrogen-carbon bonds
(a). Hence, relying solely on RKDit’s conversion of the current TM database could lead to
many errors and false structure representations.
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Figure 4.2: The original bonding of structure 174 (ligand: SL-J681-1) (a) and its RDKit
representation (b).

RDKit representation

MDL MOL file

None of the analyzed packages were able to automatically recognize the correct bonding
information of the examined catalyst structures from their *.xyz files. Therefore a manual
bond modification step is inevitable. Generating a *.mol file is a convenient tool for this.
A *mol file contains bonding information, and can be further converted to an OpenBabel
or RDKit mol object. Its convenience lies in its generation capability via the Chemcraft
program. Visual representation of the structures can be attained, facilitating an intuitive
way to identify incorrect bonds between the atoms. These bonds can manually removed or
added to the structure and the updated bonding information can be stored in a *.mol file.
In addition to the drawback of manual generation, another key limitation is the inability
to directly fed into the conformer searching engines. However, once correct bonding infor-
mation is stored, automatic conversion to both RDKit and OpenBabel mol objects becomes
feasible.

Therefore the following workflow was implemented: all 192 *.xyz files were converted
manually to *.mol files via the Chemcraft program. They were loaded to a Python script
for further conversion to RDKit and an Openbabel mol objects. This served as input for
RDKit and OpenBabel conformer searching scripts and was suitable for extracting bonding
information in the form of a connectivity matrix. CREST conformer searching was initiated
using *.xyz file format and pruned utilizing the connectivity matrix generated by RDKit.
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4.1.2 Conformer searching via RDKit

As mentioned in Section 3.3, MACE and Morfeus python packages were used to initiate
conformer search using the RDKit conformer searching engine. The generated RDKit mol
object was used as the input of the script, and the charge of the rhodium was modified
to 1. In the MACE script, the bonds of the metal centre were changed to dative. The
Morfeus script resulted into several warnings and errors during conformer search such
as rhodium in the current coordination (coordination number 4) cannot be recognized.
The script could not generate conformer ensembles from the input structures. The MACE
script successfully created complexes but most of the cases failed to set up the universal
force field. This occurred because during screening the molecule, and angle bend was iden-
tified as impossible and terminated the conformer searching program. However, in some
exceptional cases this error was avoided and conformer generation was successful. A pos-
sible explanation for this behaviour could be that the input Cartesian coordinates were
manually determined, potentially introducing slight deviations from the actual configura-
tion. Hence, a dataset containing the structure coordinates after further DFT refinement
was also explored. Nonetheless, the same error persisted. Thus RDKit was unsuitable for
generating conformers with the current settings and catalyst structures.

4.1.3 Conformer searching via OpenBabel

Another method investigated was OpenBabel conformer searching tool, implemented in
Morfeus. A script was created to use both the OpenBabel genetic algorithm and the univer-
sal force field. Consequently, both methods were evaluated. The input data format for the
conformer searching tools was an OpenBabel mol object. The genetic algorithm failed to
set up the stereochemistry of the stucture and did not yield any result. Meanwhile the UFF
method only produced one conformer each for each input catalyst structure. Therefore
once again, OpenBabel is found to be not suitable to be utilized for conformer searching
with the current configuration and settings.

414 Conformer searching via CREST

The Morfeus script was not suitable for initiating a conformer search via CREST, but the
obtained CREST folder could be explicitly added for further pruning. CREST conformer
searching successfully produced conformer ensembles for all 192 metal-ligand complexes.

However, in two of the cases, the obtained conformer structures did not maintain the
original bonding mode. Figure 4.3 illustrates the original structure (a) and the generated
CREST conformer (b) of structure 19 (ligand: SL-T002-2). This ferrocenylphosphine ligand
was observed to lose its original biphosphane characteristic and become hemilabile after
conformer searching with CREST. While one phosphorus donor maintained its bond with
the Rh ion, the other phosphorus detached and distanced itself from the metal centre.
Additionally, a carbon atom from the ferrocene moiety formed a new bond with the Rh,
preserving its original coordination. This led to a less bulky complex near the active site
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Figure 4.3: Structures of structure 19 before (a) and after (b) CREST calculations.

potentially influencing its catalytic performance. In contrast, the rest of the complexes
containing the same Taniaphos backbone retained their original bidentate bonding after
conformer searching via CREST.

Similar behaviour can be observed at the generated conformers of structure 186 (lig-
and: [(2R,3R)-4(9-Anthracenyl)-3-(1,1-dimethylethyl) -2,3-dihydro-1,3- benzoxaphosphol-
2-yl]pyridine); Figure 4.4 represents the original structure (a) and the CREST conformer
(b). This originally biphospane ligand consists of two symmetrical ligand parts with pyrim-
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Figure 4.4: Structures of structure 186 before (a) and after (b) CREST calculations.
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idine cycles in proximity to the metal-substrate contact. However, in the obtained con-
former, one of the P-Rh bond is absent, leading to the separation of the complex into two
distinct molecular fragments. To maintain its oxidation state, the Rh atom formed a bond
with the N atom from the pyrimidine heterocycle. The resulting complex positions one of
the anthracene rings near active site, potentially modifying the catalytic behaviour. Once
again, this behaviour appears unique to this specific case as it is not observed for any other
complexes with pyrimidine heterocycle.

Conformer pruning

Among the three built-in pruning options offered by Morfeus - energy pruning, RMSD
pruning, and enantiomer pruning as described in Section 3.3 - only enantiomer pruning
was utilized. As chiral ligands are often present in the complexes, enantiomer pruning
was implemented to eliminate conformers where the chirality of the ligand has changed.

The relative energies of the conformers compared to the lowest energy conformer of
the ensemble are provided by the CREST calculations and can be used to prune conform-
ers whose relative energy exceeds a certain threshold. However, these energies are cal-
culated using the semiempirical GFN2-xTB level of theory, which is lower than the DFT
level. Therefore, performing a pruning step based on these energy values carries the risk
of eliminating conformers that are deemed low-energy at a higher level of theory.

RMSD pruning is a useful tool for removing duplicates and similar structures from
the ensemble. However, more accurate calculations, such as DFT geometry optimization
could lead to additional structural differences. Therefore, this pruning step also carries the
risk of eliminating significant conformer geometries from the ensembles.

Conformer ensembles

The collection of the pruned conformer ensembles consisted of a total of 7024 conform-
ers, averaging 37 conformers per ensemble. A relatively high deviation was observed: the
smallest conformer ensembles contained only 1 conformer, while the largest ensemble con-
tained 807 conformers. Structure 8 (ligand: SL-J008-1), 144 (ligand:(S)-MorfPhos ) and 154
(ligand: SL-N009-2) each resulted in a single conformer, meanwhile the 807 conformers
were generated from structure 96 (ligand: (S,S5)-DIPSKEWPhos).

This observation is in line with the expectations for structure 144 and 96, illustrated in
Figure 4.5 (a) and (b) respectively. Structure 144 contains multiple rigid ring structures that
do not allow for rotations that could lead to different conformers. In contrast, structure 96
consists of a larger ligand with reduced steric hindrance between atoms. This allows atoms
to rotate freely without significant energy differences, making the ligand more flexible.

In the case of ligand 8 and 154 (Figure 4.6 (a) and (b) respectively) many trifluo-
romethyl groups are free to rotate over the C-C bonds (indicated by yellow arrows), re-
sulting in slightly different orientations of the F atoms. Therefore, it is surprising that
these rotational effects did not generate conformers. Additionally, structure 154 contains a
rotatable C-C bond that could change the orientation of carbon atoms (indicated by a blue
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Structure 144 Structure 96

Figure 4.5: Examples of conformers from ensembles 144 (a) and 96 (b). In the left corner,
the 2D drawing of their ligand is presented.
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Figure 4.6: Examples of conformers from ensembles 8 (a) and 154 (b). In the left corner,
the 2D drawing of their ligand is presented.

arrow). However, given that this group is located close to the model substrate, even slight
rotations could lead to significant energy changes. Since CREST considers conformers
within a 6 kcal/mol range, the energy increase may prevent this conformer from appear-
ing in the ensemble.
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Conformer and rotamers by CREST

A limitation of CREST for the current dataset was observed regarding to the classification
of conformers and rotamers by CREST. During the conformer search process, CREST stores
the generated conformer-rotamer ensemble (CRE). Since rotamers are considered ”degen-
erate forms of their respective conformers” [138], the final conformer ensemble generated
by CREST may not include many rotamers with identical energies. However, it is often
found that structures with substantial structural and energy deviations are still considered
rotamers of the same conformer and therefore do not appear in the conformer ensemble.
For example, the conformer ensemble of structure 154 contained only one conformer. In
the rotamer collection, another structure appears with an energy difference of around 8
kJ/mol and an RMSD of 2.25 A. The structural differences are shown in Figure 4.7 (a),
where the two rotamers are overlapped. Conversely, in the conformer ensemble of struc-
ture 96, conformers 11 and 12 shows an energy difference of less than 1 kJ/mol and an
RMSD of 0.70 A. The structures of conformers 11 and 12 are overlapped in Figure 4.7 (b).

structure 154 structure 96
rotamers conformers

Figure 4.7: Two rotamers of structure 154 (a) and conformer 11 and 12 of structure 96 (b).

It is important to note that since the conformer ensembles are generated at the GNF2-
xTB level of theory, it is possible that multiple conformers lay in the same energy minimum
at a higher level of theory. This can change the nature of the conformer ensembles. To
investigate this, further DFT refinement can be performed and analyzed.
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4.2 Filtering for DFT

After obtaining 7024 conformers by CREST calculations, it is clear that doing further DFT
geometry optimization for all conformers would consume an outstandingly high amount
of computational resources. To quantify this, standard billing units (SBUs) can be calcu-
lated. SBU is a standardized parameter used to track computational usage and normalize
computational costs [142]. An SBU is expressed by multiplying the number of used cores
by the number of computational hours [142]. As DFT geometry optimization for a single
complex uses 32 cores for approximately 48 hours, the SBUs charged for running all 7024
conformer calculations is around 11 million. As 1 SBU can be estimated to cost 1 euro cent,
the total cost would be 110,000 euros.

Therefore finding a way to reduce the resources consumed without losing significant
information is key for the study. This can be achieved by developing a method to select
a subset of conformers based on GFN2-xTB calculations that can accurately represent the
DFT-based conformer ensemble. The subset should include all conformers that are refined
to distinct DFT minima on the potential energy surface and exclude those that converge
to the same energy minimum. In order to choose and train a suitable selection algorithm,
it is necessary to establish a mapping between the conformers obtained through DFT and
CREST calculations.

During the method development (detailed in Section 3.5), a total of 24 ensembles were
selected for DFT optimization. These ensembles were chosen to include various ligand
families and characteristics, ensuring universal observations and no bias towards any par-
ticular ligand family. Structures 19 and 186 were excluded from this selection due to their
structural changes during CREST calculations, as described in Section 4.1.4. After DFT
calculations, imaginary frequencies were found in 19 conformers. As described in Section
3.5, these conformers underwent additional optimizations. While most of the imaginary
frequencies were successfully eliminated, 9 conformers still showed them. These conform-
ers were subsequently excluded from further analysis. The complexes from which these
conformers were derived showed large conformer ensembles (around 80 conformers per
ensemble), thereby reducing the risk of overlooking key conformers with this action. To
examine the behavior of these ensembles, the relative energies of the conformers obtained
at both levels of theory and the RMSD values to their corresponding geometries can be
analyzed.

4.2.1 Energy analysis

A mapping between DFT and GFN2-xTB can be achieved by analyzing the relative confor-
mational energies within the ensembles obtained by both quantum chemical calculations.
The relative energies in respect to conformer 1 (lowest GFN2-xTB energy conformer) of
both the DFT and CREST conformers were compared. Figure 4.8 illustrates these relative
energy plots for 4 conformer ensembles: ensemble 17 (a), ensemble 80 (b), ensemble 192 (c),
and ensemble 139 (d). The cyan-coloured dots indicate each conformer of the ensemble,
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marked in ascending order based on their CREST relative energy.

¥

124

10 4 ?
13
6 =
v

| g
04 4

GFN2-xTB energy relative to conformer 1 [kJ/mol]

o &30 o

-10 0 10 20
DFT energy relative to conformer 1 [kJ/mol]

2

30

25 A

20 1

o o «

15

104

. &

GFN2-xTB energy relative to conformer 1 [kj/mol]

: ?

-10 =5 5
DFT energy relative to conformer 1 [kJ/mol]

o

1‘0

o GFN2-xTB energy relative to conformer 1 [k}/mol]

N
v
s

GFN2-xTB energy relative to conformer 1 [kJ/mol]

o

N
v

N
o

-
[

—
o

v

o

N
o
s

-
v
s

-
o
s

v
s

o
s

v ¥
D
8
R N
DFT energy relative to conformer 1 [k)/mol]
59 @
¥

i
=20 -10 0 10

-30

DFT energy relative to conformer 1 [k)/mol]

Figure 4.8: DFT and GFN2-xTB energies relative to conformer 1 of ensemble 17 (a),

ensemble 80 (b), ensemble 192 (c) and ensemble 139 (d).

Local minima

As it can be seen in Figure 4.8, many conformers that were recognized as distinct energy

conformers by CREST (GFN2-xTB) converged to the same energy minimum after DFT op-

timization. As a result, significantly fewer conformers were distinguished by their energy

at the DFT level compared to the GFN2-xTB level. For example, ensemble 17 (Figure 4.8
(a)) included 25 conformers with distinct energy values according to CREST calculations,
but only 4 distinct energy minima were present at the DFT level. This trend was even more
pronounced for ensemble 80 (Figure 4.8 (b)), where the number of energy levels dropped
from 58 to just 3. Based on the 24 examined ensembles, the average of 23 conformers per

ensemble at the GFN2-xTB level was reduced to an average of 4 conformers per ensemble

at the DFT level.
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Lowest energy conformer

A difference is also observable in which conformer is ranked as the lowest energy con-
former in the ensemble by the two calculation methods. Since identifying the local minima
is often the goal of conformer searching tools, this serves as a relevant indicator of their
performance. By observing the energy plots in Figure 4.8, it is visible that conformer 1
(lowest energy by CREST) is rarely the lowest DFT energy conformer. To present a few
examples, in ensemble 139, conformer 58 has the lowest DFT energy within the ensemble,
holding an approximately 32 kJ/mol energy difference to conformer 1. However, con-
former 58 was identified to have approximately 21 k] /mol higher energy than conformer
1 via CREST. Another example is ligand 80, where conformer 29 is the lowest DFT energy
conformer. It has approximately 7 k] /mol lower DFT energy and 19 kJ /mol higher CREST
energy than conformer 1.

Energy ranges

After analyzing the relative energy plots, it is noticeable that the trend of discrete DFT en-
ergy classes created from the continuous CREST energy values does not appear for four
ensembles (ensembles 57, 110, 172, and 177). The CREST-DFT relative energy plots for
ensembles 172 and 110 are presented in Figure 4.9 (a) and (b) respectively. In these cases,
the energy values from both methods remain continuous, which could indicate the pres-
ence of more DFT local minima than in the rest of the ensembles. However, these energy
differences are very low, approximately 0.05 and 0.10 k]J/mol, respectively, which makes
the differences negligible. Thus, the conformers of these ensembles all converged into one
DFT minimum. Although in the case of ensemble 172, CREST calculations also resulted in
a relatively narrow energy range (around 6 kJ/mol), for ensemble 110, the CREST ensem-
ble still presents a large energy range (around 25 kJ/mol).
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Figure 4.9: DFT and GFN2-XTB energies relative to conformer 1 of ensemble 172 (a), and
ensemble 110 (b).

Nevertheless, in the case of ensemble 7, despite the narrow energy range of approxi-
mately 1 kJ/mol at the DFT level, discrete energy categories are still distinguishable. Fig-
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ure 4.10 (a) shows the CREST-DFT relative energy plot, demonstrating that the conformers
cluster into three distinct DFT energy values. To investigate whether actual structural dif-
ferences cause slight deviations in energy or if it is simply an artifact, conformers 6 and
12 were compared. The comparison in Figure 4.10 (b) reveals a slight positional differ-
ence in two methyl groups (indicated by black arrows). However, this structural variance
occurs away from the active site, potentially resulting in negligible impact on catalyst per-
formance.
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Figure 4.10: DFT and GFN2-xTB energy relative to conformer 1 of ensemble 7 (a),
structural overlap of conformer 6 and 12 from ensemble 7 (b).

No correlation between CREST and DFT energy ranges can be identified from these
results. On average, CREST ensembles show a higher energy difference than DFT ensem-
bles (approximately 19 kJ/mol and 13 kJ/mol, respectively). DFT calculations also show
a greater deviation (minimum: 0.01 kJ/mol, maximum: 44 kJ/mol) compared to CREST
(minimum: 6 kJ/mol, maximum: 25 kJ /mol).

4.2.2 RMSD analysis

CREST conformer structures

From the CREST-DFT energy plots discussed in Section 4.2.1, it is visible that conformers
converging to the same DFT minimum often have similar GFN2-xTB energy values. These
energy differences may be assigned to minor structural deviations. This phenomenon
could be utilized to identify and eliminate conformers generated by CREST that will land
in the same minimum after DFT refinement. The RMSD values in respect to conformer 1
were used to capture and analyze structural differences. Figure 4.11 illustrates the plots
of GNF2-xTB relative energy against the RMSD value to conformer 1 for the CREST struc-
tures.

In the plots of ensembles 7 and 17 (Figure 4.11 (a) and (b), respectively), clusters can be
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Figure 4.11: CREST relative energy - RMSD to conformer 1 plots of ensemble 7 (a),
ensemble 17 (b), ensemble 80 (c) and ensemble 108 (d).

identified. It is noticeable that there are certain conformers present in these ensembles with
very close energy and RMSD values. For instance, ensemble 7 shows six distinguishable
energy-RMSD clusters, with only one conformer not belonging to any cluster (conformer
6). While more individual points are noted for ensemble 17, clusters are still observable.
However, some ensembles show plots with higher noise, such as ensemble 80 and 108
(Figure 4.11 (c) and (d), respectively) where clusters cannot be as clearly separated and
identified.

DFT conformer structures

After DFT geometry optimization, many newly obtained DFT geometries are found to
be degenerate. Rotamers with equal energy levels are expected to show only very slight
structural variations. Once again, the RMSD values in respect to conformer 1 can be used
to quantify these structural differences. In Figure 4.12, the DFT relative energies are plotted
against the RMSD value to conformer 1 for the DFT structures of ensembles 80 (a) and 7
(b).

For ensemble 7, the observed energy-RMSD correlation aligns with expectations. While
not all degenerate geometries are identical, the rotamers exhibit minor RMSD differences
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Figure 4.12: DFT relative energy - RMSD to conformer 1 plots of ensemble 80 (a) and
ensemble 7 (b).

( 0.7 A). Ensemble 80, on the other hand, presents a more significant RMSD difference
between the geometries within the lowest energy DFT minimum. The two most distinct
degenerate geometries —conformer 1 and conformer 32— show an RMSD difference of
approximately 1.3 A. To investigate the source of these structural differences, the struc-
tures were overlaid as illustrated in Figure 4.13 and 4.14. Conformers 13, 26 and 32 were
selected to assess their structural deviations from conformer 1.

a)

r:;;r fe

%

conformers 1 and 13 conformers 1 and 26

Figure 4.13: Overlap of DFT geometries: (a) conformer 1 (molecule A) and conformer 13
(molecule B), and (b) conformer 1 (molecule A) and conformer 26 (molecule B).

According to Figure 4.12 (a), structure 13 exhibits no energy or RMSD difference rela-
tive to conformer 1. Consistent with this observation, Figure 4.13 (a) shows no structural
differences between these conformers. Conformer 26 was selected to represent structures
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with substantial energy and RMSD differences compared to the first conformer. Figure
4.13 (b) demonstrates a significant structural deviation in this case, aligning with expecta-
tions. The overlapped structures of conformers 1 and 32, which resulted in unexpectedly
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Figure 4.14: Overlap of DFT geometries: conformer 1 (molecule A) and conformer 13
(molecule B).

high RMSD deviations despite being degenerate, are presented in Figure 4.14. Visually,
very minor structural differences are observable, suggesting that the RMSD difference may
arise from the limitations of the calculation method. This is further confirmed by the fact
that RMSD is calculated according to Equation 3.1, making the atom numbers significant.
Since different initial (CREST) geometries rotated to the same DFT geometry, these rota-
tional effects cause atoms in identical positions to be treated separately. For example, in
conformer 32, the positions of two carbon atoms—atom 29 and atom 33—are swapped
compared to conformer 1, causing a false RMSD difference. After manually redistributing
the atom numbers and excluding hydrogen atoms from the calculations, an RMSD value
of 0.6 Ais obtained. This value is much more consistent with the structural differences
observed.

The RMSD Python package [148] was also investigated, as it allows reordering of atom
numbers in an automated way, resulting in an RMSD of 0.8 A. However, it should be noted
that this package uses *.xyz files for input, which do not include bonding information
between atoms.

4.2.3 Algorithm architecture

DFT geometry refinement changes the nature of the conformer ensemble as many CREST
conformers fall into the same local minimum on the DFT PES. Therefore, it is reasonable to
develop a method that can select conformers from the CREST ensemble to cover the whole
DFT ensemble. This subset of conformers should include at least one conformer from each
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DFT minimum, avoiding redundant conformers that converge into the same minimum.
This challenge was transformed into a classification problem as illustrated in Figure
4.15. Certain parameters of the CREST conformers were used as input features. Output

features labels classification
CREST | validate predict
‘ ) DFT local 1: keep conformer
(elnbisl s l=s minimum 0: drop conformer
parameter |

Figure 4.15: Classification problem using the CREST conformer parameters as input
features and the DFT local minimum values as output labels. Binary predictions are made
to either keep or eliminate conformers.

labels was assigned based on the local minima obtained by DFT calculations, indicated
in Figure 4.16. In these plots, the relative CREST and DFT energies of the conformers are
presented, and conformers are marked with different colours based on their DFT energy.
For ensemble 17 (Figure 4.16 (a)) 4, whereas for ensemble 80 (Figure 4.16 (b)) 3 DFT energy
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Figure 4.16: The identification of DFT local energy minima for ensemble 17 (a) and 80 (b)
is illustrated with their CREST-DFT relative energy plots. Conformers classified to the
same DFT minimum are indicated with the same colour.

minima were identified. To assign output labels, a dynamic threshold was utilized: the
DEFT energies were scaled with a mean of 0, and a standard deviation of 1. Conformers
with the scaled DFT energies within a 0.06 range were categorized as being in the same
energy minimum. The algorithms were therefore developed to identify patterns of input
parameters leading to a subset of conformers. As the nature of the algorithms was unsu-
pervised, output labels were used to evaluate of the accuracy of this subset.

After selecting a suitable algorithm, predictions can be made to each CREST ensemble.
Each conformer in the CREST ensemble will be classified as either kept in the selected
subset (1), or eliminated (0). Based on the conformer parameters used as input features,
two distinct algorithms were investigated.
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4.2.4 Feature selection
Chemical intuition

One approach was to capture the nature of the DFT ensemble using certain independent
CREST conformer properties, such as relative energy, RMSD difference, cone angle and
buried volume, illustrated in Figure 4.18. The relative energies and RSMD values were

parameters
] /GNFZ-xTB energy\
chemical s—electlon RMSD difference
intuition cone angle
\_ buried volume )

Figure 4.17: Selection criteria approach: CREST conformer parameters are chosen based
on chemical intuition.

mainly used to eliminate conformers from the ensemble, while the descriptor properties
aimed to capture conformers that will land in distinct DFT energy minimum.

Morfeus’ built-in tools were utilized to perform energy and RMSD pruning on the
CREST ensembles. Pruning based on the GFN2-xTB energy of the conformers may reduce
redundant conformers that would fall into the same minimum as other, lower energy con-
formers. RMSD pruning was performed to drop conformers with similar geometries, as
it is more probable that they are optimized by DFT to the same structure and therefore
energy minimum. However, after performing these pruning options, it was observed that
not all DFT minima are captured by the new subset of conformers in both the RMSD and
the energy pruning cases. Figure 4.18 (a) shows the GEN2-XTB - DFT energy plot of ensem-
ble 71, with the conformers eliminated by energy pruning marked in cyan. Figure 4.18 (b)
shows the GFN2-xTB - DFT energy plot of ensemble 7, where the conformers eliminated
by RMSD pruning are marked in cyan. In both cases, one DFT minimum was not captured.
However, in 8 out of the 9 tested ensembles, both method captured all DFT minima. An
alternative approach to eliminating conformers based on energy is to drop the conformers
with the highest n % of energy in the ensemble instead of using a universal threshold. This
approach was also tested.

To cover the whole DFT ensemble, these pruning functions should not eliminate key
conformers from the ensemble. Certain parameters could be used to capture conformer
structures that will likely land in different DFT minima and add them to the selected sub-
set. A method of determining distinct conformer geometries revolves around the geomet-
ric and steric descriptors of conformers within the ensemble. Prior research by Gensch et
al. [160] on monodentate ligands has represented the whole ensemble using the conform-
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Figure 4.18: DFT and GFN2-XTB energy relative to conformer 1 of ensemble 71 with
energy pruning (a), and ensemble 7 with RMSD pruning (b). Eliminated conformers are
indicated by cyan dots.

ers with the highest and lowest buried volume. Conformers with the minimum and max-
imum buried volume (with radius 4A) and cone angle were selected to remain in the new
subset. However, as illustrated in Figure 4.19, for some tested ensembles, these conform-
ers were still optimized into the same DFT minimum. In Figure 4.19 (a), the highest and
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Figure 4.19: DFT and GFN2-XTB energy relative to conformer 1 of ensemble 44 with
highest and lowest cone angle conformers (a), and ensemble 33 with highest and lowest
buried volume (at 4 A) (b). Conformers with the aforementioned descriptor properties are
highlighted in pink.

lowest cone angle conformers of ensemble 44 are marked in pink. After DFT refinement,
both of these conformers landed in the lowest DFT energy minimum. Similar observa-
tions can be made about the conformers with the minimum and maximum buried volume
of ensemble 33: as illustrated in Figure 4.19 (b), they are degenerate in the DFT ensemble.
In total, conformers with the highest and lowest cone angle and buried volume fall into
different DFT categories in 7 and 8 cases from the training set, respectively.
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The final method included a pruning function additionally including conformers with
the aforementioned descriptor properties in the new subset.

Clustering

As discussed in Section 4.2.2, many CREST conformers show very similar GNF2-xTB and
RMSD values. Figure 4.11 showed distinct energy-RMSD clusters within the conformer
ensembles. The hypothesis is that conformers with similar geometries and close energy
values will likely to be optimized to the same DFT local minimum. Therefore, instead of
considering the energy and RMSD values independently, their correlation was also utilized
to describe the DFT ensemble. This was achieved using a clustering algorithm as presented
in Figure 4.20. After identifying the conformer clusters, the conformer classification was

aon s 2 de N e
[dITIELC]

GNF2-xTB energy

+ clustering
RMSD dlffe.rence j algorithm
correlation

Figure 4.20: Clustering approach: the correlation of GN2-xTB - RMSD is used by
clustering algorithms.

as follows: conformers closest to the cluster centres, as well as individual points outside of
clusters, were included in the subset of selected conformers, while the rest were eliminated.

To choose a suitable clustering approach for this data, three clustering algorithms were
initially considered: K-means, K-medoids, and DBSCAN clustering. After an initial study,
it became clear that due to the nature of our data and the objective of the clustering method,
DBSCAN is the most beneficial to move forward with. K-medoids and K-means often re-
sulted in broader clusters, increasing the chance of potentially eliminating key conform-
ers from the ensemble. On the other hand, DBSCAN is designed to deal with data hav-
ing higher amount of noise, thus it only groups conformers into the same clusters if they
are actually close in RMSD and energy. An example of this behavior is shown in Figure
4.21, where K-medoids (a) and DBSCAN (b) algorithms were tested on the conformers of
ensemble 87. It is visible that the K-medoids method groups conformers 32-35 into one
cluster, while DBSCAN identified a cluster that only contains conformers 32, 33, and 35,
leaving 34 as an outlier. Although these conformers present a really close energy value,
the maximum RMSD difference within the K-medoids conformers is much higher than
the DBSCAN cluster (0.72 A and 0.30 A respectively). Since not losing any conformers that
converge into distinct DFT minima is crucial, it was decided to move forward with the
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Figure 4.21: RMSD-GFN2-xTB energy clustering of ensemble 87 via K-medoids (a) and
DBSCAN (b).

DBSCAN method.

4.2.5 Algorithm evaluation
Confusion matrix

Unlike typical classification problems, there is no 1:1 correspondence between the output
labels and the model predictions. The algorithms assign binary categories to conformers,
deciding whether to include or exclude each conformer in a subset. The output labels on
the other hand, indicate which DFT local minimum the conformer was refined into. The
DFT ensemble is accurately captured if at least one conformer from each energy minimum
is included in the predicted subset of conformers. Given that multiple conformers can con-
verge to the same energy minimum, this can be achieved by various combination of con-
formers. Hence, the implementation of the confusion matrix to evaluate the performance
of the algorithm is not straightforward. The following approach was used to determine
the parameters of the confusion matrix:

* True negative (TN): The number of conformers that are correctly eliminated by the
algorithm: their DFT minima are already represented by other conformers in the
predicted subset, making them redundant to cover the DFT ensemble.

¢ False negative (FN): The number of conformers that are incorrectly eliminated by
the algorithm: their DFT minima are not represented by other conformers in the
predicted subset, making them necessary to cover the DFT ensemble.

¢ False positive (FP): The number of conformers that are incorrectly included in the
predicted subset by the algorithm: their DFT minima are already represented by
other conformers, making them redundant to cover the DFT ensemble.
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* True positive (TP): The number of conformers that are correctly included in the pre-
dicted subset by the algorithm: their DFT minima are not represented by other con-
formers, making them necessary to cover the DFT ensemble.

Due to the specific nature of the problem, instead of using the commonly used param-
eters for assessment (such as precision, recall, and accuracy), it was decided to evaluate
the models based on their ZX ratio. In a well-performing model, the TN value is max-
imized (all redundant conformers are eliminated), while the FN value is minimized (no
DFT minimum is missed), resulting in a high L%’ ratio.

A practical example of analyzing algorithm performance through constructing a con-
fusion matrix is presented in Figure 4.22.

TRUE CLASS
Class 1 Class 2

True Positive False Positive

15 3 4

Class 1

101

©
PREDICTED CLASS

False Negative True Negative
(o} 10

GFN2-xTB energy relative to conformer 1 [kj/mol]

Class 2

o §

-5 0 5 10 15
DFT energy relative to conformer 1 [k)/mol]

Figure 4.22: An example of confusion matrix implementation: on the left, the plot of DFT
and GFN2-xTB energies relative to conformer 1 of ensemble 117 is displayed. On the
right, the constructed confusion matrix based on retained and eliminated conformers is
presented.

The retained (gold dots) and eliminated (cyan dots) conformers on the GFN2-xTB -
DFT energy plot of ensemble 117 is shown utilizing DBSCAN clustering (e = 0.2). As at
least one conformer from all DFT energy minima is captured, the TP equals the maximum
number of DFT minima (3) and FN is 0 (no minimum is missed). The model successfully
eliminated 10 conformers (TN). Since the model included a total of 7 conformers in the
predicted subset, and only 3 DFT local minima are present, 4 conformers from this subset
are redundant (FN).

Best performing algorithm

Since multiple algorithms were tested, the best-performing model was selected by compar-
ing the confusion matrices. After testing the initial 9 ensembles, most algorithms showed
very similar results. Therefore, an additional set of 15 ensembles was added for evalua-
tion. This validation set consisted of ensembles with different ligand families, allowing the
test of the algorithms” universal applicability for our Rh-based TM complexes. In Figure
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4.23, the total number of missed key conformers (FN) against the number of eliminated
redundant conformers (TN) is shown for all investigated methods based on the results of
all 24 ensembles.
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Figure 4.23: The total number of missed key conformers (FN) against the number of
eliminated redundant conformers (TN) for all approaches based on 24 ensembles.

Table 4.2: Values of used assessment parameters (FN, TN, FN /TN ratio) for all
investigated algorithms.

Algorithm FN |TN | I ratio
DBSCAN clustering € = 0.2 32 318 9.94
DBSCAN clustering € = 0.25 45 336 7.47
DBSCAN clustering € = 0.3 50 369 7.38
Energy pruning with descriptors 26 186 7.15
RMSD pruning with descriptors 40 299 7.48
Energy and RMSD pruning with descriptors 59 368 6.24
RMSD pruning with descriptors, conformers with 49 307 6.67
lowest 80% of energy

RMSD pruning with descriptors, conformers with 54 346 6.41
lowest 70% of energy

RMSD pruning with descriptors, conformers with 63 380 6.03
lowest 50% of energy

Table 4.2 shows that DBSCAN clustering with a distance to centroid parameter of 0.2
achieved the highest L& ratio of 9.94. This method successfully eliminated 318 redundant
conformers but missed 32 key conformers. In contrast, all other tested algorithms have ZX

FN
ratios ranging from 6 to 7.5.

Another point to note is that the evaluation did not bias any assessment parameter,
it treated the loss of a DFT minimum and the removal of a redundant conformer equally.
However, from a chemical perspective, capturing all DFT minima (minimize FN) might be
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more crucial than dropping all redundant conformers (maximize TN). Furthermore, since
the CREST ensemble contains significantly more conformers than the DFT ensemble, the
total number of redundant conformers is higher than the number of DFT minima. The clus-
tering method (e = 0.2) also performed well in terms of identifying DFT minima. Among
the methods investigated, only one method -energy pruning with descriptors- eliminated
fewer key conformers. However, this method was found to be less selective as it removed
132 fewer redundant conformers compared to clustering one.

4.2.6 Algorithm optimization

From the results in Table 4.2, it is evident that the choice of € significantly influences the
clustering model’s performance. Increasing e values from 0.2 to 0.25 and 0.3 resulted in a
decrease in the % ratio from 9.94 to 7.47 and 7.38, respectively. Consequently, further op-
timization of this parameter was done to determine the optimal value and achieve the best
clustering performance. In Figure 4.24, the number of eliminated redundant conformers is
plotted against the number of missed key conformers for each clustering algorithms with
different ¢, based on the 24 ensembles. A table containing the assessment parameters for all
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Figure 4.24: The total number of missed key conformers (FN) against the number of
eliminated redundant conformers (TN) all tested e values.

investigated e values can be found in Appendix D. Based on these values, the model with
e = 0.11 showed the highest FN/TN ratio of 22.5. This algorithm successfully eliminated
225 conformers while losing only 10 DFT minima. These DFT minima originated from
three DFT ensembles: ensemble 13, 149, and 172. After examining the DFT energy ranges
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of these ensembles, it became apparent that they fall within a very narrow energy range:
within less than 1 kJ /mol for ensembles 13 and 172 and within 4 kJ /mol for ensemble 149.
Due to the dynamic threshold applied to distinguish DFT minima, they appear as separate
DEFT energy conformers despite being degenerate. Therefore, the loss of these conformers
by the algorithm does not reflect an actual loss of DFT minima but rather arises from the
limitation of the model.

4.2.7 Transferability test

To ensure a universally applicable selection algorithm, the developed model (DBSCAN
clustering on GFN2-xTB-RMSD of CREST geometries with € = 0.11) was tested on a new
dataset [146]. This new dataset contained the same backbone structure (ligand and Rh
metal centre), but instead of using the precatalyst form with an NBD model substrate,
methyl 2-acetamidoacrylate substrate was attached to Rh. Based on the ligand-substrate
configurations, four different coordination modes are possible: two of them are more ster-
ically restricted, and two are less sterically restricted [146]. These coordination modes are
presented in Appendix C. Consequently, the algorithm was tested on 44 CREST ensembles
from 11 different ligands.

Compared to the original precatalyst dataset, three observation can be made. First,
the RMSD clusters based on the CREST geometries are less distinguishable. Second, many
CREST conformers converge to the same DFT minimum after DFT geometry optimization.
And finally, the applied clustering algorithm eliminated significantly less redundant con-
formers. An example of this behaviour is shown in Figure 4.25: (a) DBSCAN clustering is
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Figure 4.25: Ensemble 49 (substrate in minor 2 coordination): DBSCAN clustering on the
GFN2-xTB - RMSD plot (a) and DFT and GFN2-xTB energy relative to conformer 1 (b)
highlighting the eliminated conformers by magenta.

visualized on the GFN2-xTB - RMSD plot of ensemble 49 (minor 2 substrate coordination),
and (b) the GEN2-xTB - DFT energy plot, with the retained conformers marked in salmon
and the eliminated conformers marked in magenta. In this case, out of the 59 redundant
conformers, the algorithm only eliminated 23. The final comparison of the evaluation ma-
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Figure 4.26: Comparison of confusion matrices from DBSCAN clustering (¢ = 0.11 on
both the original dataset (left) and the test set (right).

trix obtained for both the original and the test dataset is shown in Figure 4.26 (a) and (b)
respectively. The original dataset shows a significantly higher £ ratio of 22.5 compared
to the L& ratio of 9 that is obtained for this test set. Another main performance indicator
to mention is the dropping ratio. Since the total number of redundant conformers dif-
fer from the two dataset, the % ratio would also serve as a useful assessment tool.
The ultimate goal is to drop all redundant conformers, therefore FP = 0, resulting in the
% = 1. In the original dataset, this ratio is 0.46, indicating that 46% of the redundant
conformers are recognized by the model. In the case of the test set, however, this ratio
dropped to 0.27, meaning that the model recognized 19% fewer redundant conformers.
Therefore, based on the current assessment parameters, better results are achieved on the
original dataset.

4.2.8 Application

The obtained algorithm (DBSCAN clustering with € = 0.11) was used to predict a subset
of conformer for DFT geometry optimization on all the 192 CREST conformer ensembles.
Out of the 7024 conformers, the method identified only 3796 for further DFT refinement.
By reducing the amount of calculations needed by around 46%, approximately 5 million
less SBUs are required for the calculations saving 50,000 euros on computational costs.

4.3 Descriptor calculation

The OBeLiX workflow was modified to calculate individual conformer descriptors for a
conformer ensemble. With both the CREST and DFT conformers obtained for 24 conformer
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ensembles, this resulted in CREST and DFT descriptors for a total of 665 conformers. The
steric and geometric descriptors were subjected to ANOVA to determine which descriptors
significantly differ based on the applied level of theory. Out of the 23 descriptors analyzed,
significant differences were observed in 7 cases.

Out of the four analyzed geometric descriptors, two were found to be significantly dif-
ferent based on the applied quantum chemical calculations. These were the two dihedral
angles between the hydrogen and carbon atoms of the NBD-metal donor atoms. The other
two geometric descriptors, the cone angle and the bite angle, did not show significant dif-
ferences based on the p-values obtained from the ANOVA test.

The set of steric descriptors contained six buried volume values: four were calculated
with the metal as the centre of the sphere, while two were calculated around the two donor
atoms of the ligand. Out of the four metal-centred buried volumes, three showed low p-
values and were therefore marked as significant: buried volumes with radii of 3.5 A 4A,
and 5 A. It is noteworthy that the buried volume with the highest examined radii (6 Aand
7A) did not show significant differences between the CREST and DFT ensembles. The
buried volumes around one of ligand donor atoms resulted in a low p-value and therefore
analyzed as significantly different between the GEN2-xTB and DFT levels of theory, while
the other one did not show a significant difference. The last descriptor that is marked
as significantly different based on the level of theory according the ANOVA is one of the
octants of buried volume at 3.5A. A full ANOVA table, including the F-statistics and p-
values for all analyzed descriptors, is available in Appendix E.

As it is especially observable from the buried volume results, most of the significantly
differing descriptors describe the catalyst around the metal centre. Since this is where the
substrate-metal contact takes place, the ANOVA analysis indicates that the differences be-
tween CREST and DFT calculations for these features are not negligible. However, it is
key to mention that the impact of the level of theory cannot be fully determined without
knowing the feature importance in the ML model. It is possible that the descriptors show-
ing significant differences based on the level of theory may not be important in the ML
model, and therefore, the level of theory might not have a significant impact.



Conclusion & Outlook

5.1 Conclusion

The aim of this study was to explore the possibility of capturing the dynamic behavior of
catalyst structures in data-driven predictive models using conformer ensembles. Various
approaches and methods were evaluated on a dataset consisting mainly of Rh-based TM
complexes with bidentate ligands. The main conclusions can be categorized into three sec-
tions as presented below: conclusions regarding the tested conformer searching tools, the
effects of DFT geometry optimization, and the developed algorithm to select conformers
for further DFT refinements.

Conformer searching

The evaluation of various conformer searching engines —CREST, RDKit, and OpenBa-
bel— on our TM dataset showed several key findings. None of these cheminformatics
programs were able to correctly recognize bonding information from the Cartesian coordi-
nates of the atoms, necessitating a manual bond modification step. The conformer search-
ing algorithms in RDKit and OpenBabel were found unsuitable for our purposes with
the current configurations. In contrast, the CREST conformer searching engine success-
fully generated conformer ensembles for all examined structures. However, a limitation
of CREST is found as conformers were often identified and stored as rotamers, hence do
not appear in the final conformer ensemble. Additionally, during the calculations, two
structures deviated from their original configuration, losing their biphosphane nature and
becoming hemilabile.

DFT geometry optimization

In total, 24 CREST conformer ensembles were subjected to further DFT geometry opti-
mization. After DFT refinement, many of the CREST conformers converged into the same
DEFT local minimum, leading to significantly fewer conformers in the DFT ensemble than
in the CREST ensemble. Furthermore, a limitation of the RMSD calculation algorithm of
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Morfeus was found, resulting in higher RMSD values between the conformer geometries
than the actual value. By analyzing the obtained descriptors with a one-way ANOVA test,
most geometric and steric descriptors did not show a significant difference based on the
applied level of theory.

Filtering approach

The final collection of conformer ensembles contained 7024 conformers, raising the costs of
DFT geometry optimization to around 110,000 euros. Multiple algorithms were tested to
identify a subset of conformers based on GFN2-xTB parameters that can accurately repre-
sent the entire DFT ensemble. These unsupervised algorithms used the parameters of the
CREST conformers to assign binary classes: include or eliminate conformer from the new
subset. The approaches mainly differed in the conformer parameters that were taken into
account as input features. After assessing the eliminated redundant conformers as well
as the missed DFT minima, the best performing model was found to be DBSCAN cluster-
ing (¢ = 0.11) on GFN2-xTB energy and RMSD of the conformer geometries. The model
successfully eliminated 46% of the redundant conformers. A dataset of 44 structures con-
taining methyl 2-acetamidoacrylate substrate with the same metal-ligand backbone was
used to test the transferability of the model. However, less accurate performance was ob-
served with only eliminating 27% of redundant conformers. The model missed 7% of the
total DFT minima of the ensembles. By applying the obtained classification approach to
the full dataset of 192 conformer ensembles, the costs for DFT calculations can be reduced
by 50,000 euros.

5.2 Outlook

The general approach of an automated catalyst design workflow can be completed in two
steps related to conformer searching, as illustrated in Figure 5.1.

After the initial digital representation of the input structure, a conformer searching
step can be implemented using CREST. The developed clustering algorithm can then be
utilized to select a subset of conformers for further DFT refinement. In this manner, the
featurization of the catalyst will not be based on a static molecule, but will consider the ge-
ometric and energetic differences between the conformers. This approach aims to produce
more accurate predictive models that better describe the correlation between the structure
and the catalytic performance. For smooth application of these steps, the following modi-
fications and improvements would be advantageous:

Automation

The current conformer searching tools are inadequate for these TM complexes without re-
quiring manual corrections. Ideally, a fully automated, high-throughput conformer search-
ing algorithm is desired. To achieve this, several improvements can be implemented, en-
hancing efficiency and reliability of the existing method.
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Input structure +

N Geometry optimization Featurization ML model Predictions
experimental data

Conformer search Clustering

Figure 5.1: Additional steps for a predictive model: conformer searching via CREST and
clustering for conformer filtering for DFT.

Firstly, a Python script should be developed to correct erroneous bonding information
from cheminformatics packages. Since RDKit showed better performance in bond recog-
nition than OpenBabel, it should be used to generate a mol object from an *xyz file. The
script would then screen atoms and detect incorrect bonds based on the atoms’ coordina-
tion numbers. By analyzing neighboring atoms’ coordinations, the script could accurately
identify and remove erroneous bonds, facilitating the conversion of *.xyz files into repre-
sentations with correct bonding details without additional chemical expertise.

Secondly, a script could be designed to screen the CREST conformer and rotamer lists
and access their relative energies. By reselecting conformers based on these energy dif-
ferences, it could address issues caused by CREST’s tendency to store conformers in the
romater list.

Finally, another script could be developed to recognize detached ligands. By setting a
distance threshold that two original molecules should not exceed after conformer search,
this script would flag cases where the structure of conformers significantly deviate from
the original structure.

Algorithm optimization

Several modifications can enhance the performance of the developed method. First of all,
the descriptors of conformers are currently stored in a large dataframe. However, storing
this data in a tensor offers several advantages. This multidimensional matrix would enable
more effective data manipulation and structured representation in a compact format that
is compatible with ML models.

Secondly, the conformer classification method can be further optimized by replacing
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the currently used dynamic energy threshold with a fixed one to distinguish conformers
based on their DFT minima. This change would address the current limitation that con-
formers within a very narrow energy range of the DFT ensemble are mistakenly identified
as distinct conformers in the DFT ensemble.

Furthermore, improving the RMSD algorithm could enhance the clustering accuracy,
as the current models either do not reorder atom numbers or do not consider bonding
information. A new script could be developed to reorder atoms by pairing atoms that are
closest in distance and share the same bonding information. This approach would help
ensure that atoms are correctly aligned before computing RMSD values.

Lastly, the current feature selection method relies on chemical intuition. Dimensional-
ity reduction tools such as PCA or UMAP could be applied to the complete set of param-
eters from CREST conformers, including RMSD and descriptors. This approach would
allow clustering in the PCA space that is based on the entire parameter set rather than just
xTB energy-RMSD relationships. This method allows could result in more robust, data-
driven insights based on a comprehensive dataset that would reduce the bias that stems
from relying solely on chemical intuition.

Transformer model

The final part of the study originally aimed to design and build a transformer model on
the data. The approach for applying this model to our problem is illustrated in Figure 5.2.
5.1. The model is designed to utilize the descriptors of the CREST conformers as input to

Input data:
Features from CREST Output labels:
conformers Experimental

AAGE

Assigning attention weights

Figure 5.2: An example of a transformer model architecture that could be used on the
combination of computational and experimental data. On the left (in blue): the conformer
descriptors obtained by CREST is used as input features. The middle part shows the
hidden layers where attention weights are assigned. On the right (in green) the
experimentally obtained enantioselectivity (AAG*) is utilized as output. The figure of the
transformer model is taken from [161].

predict experimental labels, select significant conformers, and identify important features.

The input data of CREST conformer descriptors was transformed into a sequential
format where all features of conformers within an ensemble were concatenated together
(Figure 5.3. All conformers underwent DFT single-point calculations to use more accu-
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ligand 1 Conformer Conformer Conformer Label
1 features 2 features 3 features

Ligand 2 Conformer Conformer Conformer Label
1 features 2 features 3 features

Ligand 3 Conformer Conformer Conformer Label
1 features 2 features 3 features

Ligand 4 Conformer Conformer 000000000 Label
1 features 2 features

Figure 5.3: Structure of input data: all conformer features of a structure are concatenated
into one line.

rate electronic descriptors. Due to the uneven number of conformers across the ensem-
bles, padding was applied to ensure uniformity. Each structure was experimentally tested
with five different substrates, this information was incorporated into the feature list using
one-hot encoding. The enantioselectivity was chosen as catalyst performance indicator pa-
rameter and therefore used as output label. To standardize the dataset, a standard scaling
procedure was applied to the descriptors, ensuring uniform data ranges with a mean of 0
and a standard deviation of 1. A three way data splitting was utilized: 70% training data
- 20% validation data - 10% test data. Unfortunately, due to the time limit of the project,
further steps were not completed. The planned architecture involved a BERT model, as
it was successfully applied in other fields of chemistry (Section 2.2.5). Hyperparameter
optimization would have been conducted using the validation set, and the test set was de-
signed for final performance evaluation. A main advantage of this approach is the ability
to select conformers within the ensembles that notably influence the catalyst performance
indicator (output label) by analyzing the attention weights assigned by the model.

Additionally, descriptors from the 24 ensembles subjected to DFT geometry optimiza-
tion could have been used for transfer learning. This approach would include the fine-
tuning of the pretrained BERT model on the DFT descriptors. By evaluating the prediction
accuracy, the the impact of DFT descriptors can be observed.
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A comprehensive list of the 192 investigated ligands can be found in Table A.1.

Table A.1: List of ligands

Ligand database

Ligand number Ligand name CAS Formula
L1 SL-]OOl-l 155806-35-2 C36H44F6P2
L2 SL-J002-1 155830-69-6 CaoHyoFeP,
L3 SL-J003-1 167416-28-6 CseHse e
L4 SL-J004-1 158923-09-2 CsgHusFePy
L5 SL-J005-1 184095-69-0 CyoHaoFePs
L6 SL-J006-1 292638-88-1 CaoHyoF12FePs
L7 SL-J007-1 360048-63-1 CyoHs6FeOr P
L8 SL-J008-1 166172-63-0 CyaHszcF12FePs
L9 SL-J009-1 158923-11-6 CsoHsoFePy
L10 SL-J011-1 246231-79-8 CsyHsgFgFeP,
L11 SL-J013-1 187733-50-2 CsgH52FeO2 Py
L12 SL-J212-1 849924-41-0 CogH3cFeOa Py
L13 SL-J404-1 851308-40-2 CugHysFePy
L14 SL-J418-1 849924-45-4 CusH52FeOr Py
L15 SL-J452-1 849924-73-8 C34H32FeO2 P
L16 SL-J502-1 223120-71-6 CsoHyoFeP,
L17 (R)-BINAM-P 74974-14-4 CyaH34No Py
L18 SL-J505-1 849924-76-1 CsqHysFePy
L19 SL-T002-2 914089-00-2 CysHezFeN Py
L20 SL-M001-1 174467-31-3 CsoHsoFeNo P
L21 SL-M003-1 494227-36-0  CeoHuaaFosFeNo Py
L22 SL-M004-1 494227-37-1  CesH74FeN2O4 Py
L23 SL-M009-1 793718-16-8 CooHecF'eNa P
L24 SL-T001-2 850444-36-9 CysHzgFeN Py

71



72

L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39
L40
L41
L42
L43
L44
L45
L46
L47
L48
L49
L50
L51
L52
L53
L54
L55
L56
L57
L58
L59
L60
L6l
Le62
Leé3
L64
L65

SL-W001-1
SL-W002-1
SL-W003-2
SL-W005-2
SL-W008-2
SL-W009-1
SL-F356-1
(R)-BINAP
(R)-BTFM-GarPhos
(R)-Tol-BINAP
(R)-Xyl-BINAP
(R)-H8-BINAP
(S)-SegPhos
(5)-Xyl-SegPhos
(S)-DTBM-SegPhos
(R)-C1-MeO-BIPHEP
SL-A109-1
SL-A120-1
SL-A107-1
SL-A108-2
SL-A102-2
SL-A121-1
SL-A104-1
(R)-GarPhos
(R)-Xyl-GarPhos
(R)-DTBM-GarPhos
(S)-iPr-BIPHEP
(R)-C3-TunePhos
(S,S)-iPr-BPE
(R,R,R)-SPIRAP
(R,R,S,S)-Duanl’hos
(R,R)-DiPamp
(R)-iPr-PHOX
SL-F131-1
(R)-Xyl-SDP
(S)-DM-MonoPhos
(R)-Ph-Monophos
(S)-NEt2-MonoPhos
(R,R,R)-Xyl-SKP
(R,R)-Ph-BPE
(5,5)-ChiraPhos

387868-06-6
388079-58-1
849925-19-5
849925-20-8
849925-22-0
894771-28-9
952586-19-5
76189-55-4
1365531-84-5
99646-28-3
137219-86-4
139139-86-9
210169-54-3
210169-57-6
210169-40-7
185913-97-7
352655-61-9
394248-45-4
352655-40-4
145214-59-1
133545-25-2
192138-05-9
256390-47-3
1365531-75-4
1365531-89-0
1365531-98-1
150971-43-0
301847-89-2
528854-34-4
NA
528814-26-8
55739-58-7
164858-78-0
899811-43-9
917377-75-4
185449-86-9
936010-61-6
252288-04-3
1429939-35-4
528565-79-9
64896-28-2

CusHzoF12FePs
CuoHssFePs
CuoHysFelPs

CsoHysF12FeO2 Py

CosHasFraFePs
CsoHs2FePs

CyoHs3Fea NP,y

CuHzo2 P
CugHogF2404 P2
CyusH40P,
CsoHyg P
CuuH40P,
C3sHog Oy Ps
Cu6HaaO4 Po
Cr4H10008 P2

C3sH30Cl202 P
Cr4H10406 P2
Cu6HagO2 Po

CroH100N4O2 P,
C30H2406 P
CaoHay0O2 Po
CroHgsO2P
Cs0H56014 P2
Ca0H3604P
C48H5204P2

C76H10808P2
C26H4002P2
C39H3202P2

C22H44P2
C43H3802P2
C24H32P2
C28H2802P2
C24H24NOP
C50H54Fe3N2P2
C49H50P2

C24H22NO2P
C34H26NO2P
C24H22NO2P
C52H5402P2

C34H36P2
CogHog Py
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L66
L67
L68
L69
L70
L71
L72
L73
L74
L75
L76
L77
L78
L79
L80
L81
L82
L83
L84
L85
L86
L87
L88
L89
L90
LIl
L92
L93
L94
L95
L96
L97
L98
L99

L100
L101
L102
L103
L104
L105

R,R)-Et-BPE
R)-QuinoxP
R,R)-Et-DuPhos
R,R)-Me-DuPhos
S)-PhanePhos
S)-Me-iPr-PHOX
SL-N003-2
(5)-NeoPHOX
(R,R)-Me-BoPhoz
(R)-Xyl-PhanePhos
(5,5)-f-Binaphane
(R,R)-BDPP
(R,R)-NorPhos
(R,S)-BPPFA
(R,R)-DIOP
(S)-Tol-tBu-PHOX
(

(

(

(

(

(

(

o~ o~ o~ o~ o~ o~

S,S)-DPE-Phos
S)-NMDPP
S,S)-BABIBOP
S,S,S,S)-Me-BABIBOP
S,5,5,5)-iPr-BABIBOP
R,R,R,R)-Me-BIBOP
R,R)-PPM
SL-A101-2
(S)-MeO-F12-BIPHEP
(R)-MeO-F16-BIPHEP
(R)-MeO-py-F12-BIPHEP
(R)-MeO-F20-BIPHEP
(R)-MeO-BFPy-BIPHEP
(5,5)-XylSKEWPhos
(S,S)-DIPSKEWPhos
SL-W022-1
catASium D(R)
(2R)-1-[(1S)-1-Aminoethyl]-2-
(diphenylphosphino)ferrocene
SL-W012-1
SL-W030-1
(S,5)-Et-FerroTANE
SL-W029-1
(S)-NMe2-MonoPhos
SL-F103-1

136705-62-9
866081-62-1
136705-64-1
147253-67-6
192463-40-4
1152313-76-2
163169-29-7
1199225-38-1
406680-94-2
325168-89-6
544461-38-3
96183-46-9
71042-55-2
74311-56-1
32305-98-9
218460-00-5
2119686-55-2
43077-29-8
2207601-04-3
2207601-10-1
2207601-12-3
1884680-48-1
77450-05-6
133545-16-1
116008-37-6
NA
NA
NA
NA
551950-92-6
NA
849925-29-7
99135-95-2
607389-84-4

565184-30-7
1854067-62-1
290347-66-9
1854067-50-7
157488-65-8
55700-44-2

C18H36P2
C18H28N2P2
C22H36P2
C18H28P2
C40H34P2
C26H28NOP
C28H28FeNOP
C22H28NOP
C37H35FeNP2
C48H50P2
C54H40FeP2
C29H30P2
C31H28P2
C38H37FeNP2
C31H320: P,
C27H30NOP
C38H3203P2
C22H29P
C22H2802P2
C24H3202P2
C28H4002P2
C38H4406P2
C29H29NP2
C38H3202P2
C38H20F1202P2
C42H24F1602P2
C38H24F12N402P2
C42H20F2002P2
C42H20F24N402P2
C37H46P2
C53H78P2
C44H48FeP2
C35H33NP2
C24H24FeNP

C38H44FeP2
C34H52FeP2
C24H36FeP2
C38H56FeP2
C22H18NO2P
C26H28FeNP
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L106
L107
L108
L109

L110

L111
L112
L113
L114
L115
L116
L117
L118
L119
L120
L121
L122
L123
L124

L125
L126
L127
L128
L129
L130
L131

L132
L133
L134
L135
L136
L137

R)-Xyl-P-Phos

442905-33-1

(
(S)-2-(Diphenylphosphinomethyl)pyrrolidin®0261-46-3
(

R)-ProPhos
(3R)-3-(1,1-Dimethylethyl)-2,3-
dihydro-4-(2-methoxyphenyl)-1,3-
benzoxaphosphole
(2S,3R)-2-[Bis(1,1-
dimethylethyl)phosphino]-3-(1,1-
dimethylethyl)-2,3-dihydro-4-methoxy-
1,3-benzoxaphosphole
(R,R)-BenzP*

SL-J216-1

(5,5)-1-Naphthyl-DiPamp

(S,R)-PPFA

SL-F173-1

(R)-Xyl-SDP Oxide
(R)-SITCP
(R,R,R)-Tol-SKP
(R,R)-BCPM
(R)-DiFluorPhos
(R,R)-Me-BPE
(R)-SynPhos
(R)-SIPhos
(3R,8R)-Tetrahydro-N,N,2,2-tetramethyl-
4,4 ,8,8-tetraphenyl-1,3-dioxolo[4,5-
e][1,3,2]dioxaphosphepin-6-amine
(R)-SDP

(R,R,R,R)-Ph-BIBOP
(R,S)-Ph-Bn-SIPHOX

(R,R)-iPr-BPF

(R)-Tol-SDP

(R)-DMM-GarPhos
8-[(8R)-3-(1,1-Dimethylethyl)-2,3-
dihydro-1,3-benzoxaphosphol-4-
yl]benzol[1,2-b:5,4-b’]difuran

(S)-PipPhos

(R)-An-PhanePhos

(S)-BINAPINE

(S)-H8-MonoPhos

(R,R)-Me-Ferrocelane
(R,R)-Et-Ferrocelane

67884-32-6
1338454-28-6

1215081-28-9

919778-41-9
849924-43-2
256469-70-2
55650-58-3
166172-70-9
1462321-89-6
856407-37-9
1429939-32-1
114751-47-2
503538-69-0
129648-07-3
445467-61-8
443965-14-8
213843-90-4

917377-74-3
2301856-53-9
2074610-05-0

849950-54-5

528521-87-1
1365531-93-6
1835717-07-1

284472-79-3
364732-86-5
528854-26-4
389130-06-7
540475-45-4
147762-89-8

C46H50N204P2
C17H20NP
C27H26P2
C18H2102P

C20H3402P2

Cl6H28P2
C40H44FeP2
C34H28P2
C26H28FeNP
C30H24F12FeNP
C49H500P2
C25H23P
C48H4602P2
C34H49NO2P2
C38H24F404P2
C14H28P2
C40H3204P2
C19H20NO2P
C33H34NO4P

C41H34P2
C34H3602P2
C39H34NOP
C30H48FeP2

C45H42P2
C52H6008P2

C21H2303P

C25H22NO2P
C44H4204P2
C52H48P2
C22H26NO2P
C22H32FeP2
C26H40FeP2
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L138
L139
L140

L141
L142

L143
L144
L145
L146
L147
1148
L149
L150
L151
L152
L153
L154
L155
L156

L157
L158
L159
L160
L161
L162
L163
L164
L165

L166

L167
L168

(5,5,5,5)-MeO-BIBOP
(R)-CTH-BINAM
(2R)-1-[(R)-Aminophenylmethyl]-2-
(diphenylphosphino)ferrocene
(1R,2S)-TaniaPhos-OH
2-[2-[(2R,5R)-2,5-Dimethyl-1-
phospholanyl]phenyl]-1,3-dioxolane
(R,R)-BPPM

(S)-MorfPhos
(R,R,R)-Ph-SKP
(SR)-N-PINAP
(R)-CTH-P-Phos
(R)-SIPHOS-PE
(R)-Tol-GarPhos

(R)-DTB-SpiroSAP-Ph

SL-N004-1

SL-N011-2

(5,5,5,5)-BIBOP

SL-N009-2

SL-J408-1
(2R,2R)-2,2-bis(diphenylphosphino)-1,1-
biferrocene

(R)-Cy-GarPhos
(R)-DTB-SpiroPAP-6-Me
Exo-4-Methoxyphenyl Kwon [2.2.1] Bi-
cyclic Phosphine
Endo-4-Methoxyphenyl Kwon [2.2.1] Bi-
cyclic Phosphine
(R,R)-(Diphenylphosphino)-
phenylbenzeneethanamine
(1R,2R)-2-(Diphenylphosphino)-2,3-
dihydro-1H-inden-1-amine
(S,5)-tBuPh-SKEWPhos
(R,R)-(S,S)-PhTRAP

(R)-BINAPhane
(1R)-8-(Diphenylphosphino)-1,2,3,4-
tetrahydro-1-naphthalenamine
(R,R)-iPr-DuPhos
(3R)-4-[2,6-Bis(1-methylethoxy)phenyl]-
3-(1,1-dimethylethyl)-2,3-dihydro-1,3-
benzoxaphosphole

1202033-19-9
208248-67-3
498580-48-6

851308-43-5
1044256-04-3

72598-03-9
185449-81-4
1360823-43-3
1173836-08-2
221012-82-4
500997-69-3
1365531-81-2
1809609-38-8
1226898-27-6
950201-43-1
1202033-17-7
706814-27-9
950982-69-1
136274-57-2

2829282-18-8
1298133-26-2
1975180-37-0
1883493-01-3
1091606-68-6
1091606-70-0
911415-22-0
137096-37-8
253311-88-5

960128-64-7

136705-65-2
1338454-38-8

C24H3204P2
C44H42N2P2
C29H26FeNP

C41H34FeOP2
C15H2102P

C34H37NO2P2
C24H20NO3P
C44H3802P2

C38H30N3P
C38H34N204P2
C33H32NO2P
C44H4404P2
C53H66NPS

C29H30FeNOP

C36H32FeNOP
C22H2802P2

C32H24F12FeNOP
C44H48FeP2
C44H36Fe2P2

C40H6004P2
C52H65N2P
C19H22NO3PS
C19H22NO3PS
C26H24NP
C21H20NP
C45H62P2
C48H44Fe2P2
C50H36P2

C22H22NP

C26H44P2
C23H3103P



76

L169
L170
L171
L172
L173

L174
L175
L176
L177
L178
L179
L180
L181
L182
L183
L184
L185

L186

L187
L188

L189

L190

L191
L192

SL-M002-1

(S)-DTBM-BINAP
(5,5,5,5)-Et-BABIBOP
(R,R,R,R)-WingPhos
2-[(25,35)-3-(1,1-Dimethylethyl)-
2,3-dihydro-4-methoxy-1,3-
benzoxaphosphol-2-yl]pyridine
SL-J681-1

(S,Sp)-p-Tol-TaniaPhos
(R,Rp)-2-Furyl-TaniaPhos
(R)-DM-MorfPhos

(R)-C2-TunePhos

(R)-QUINAP

SL-J015-1

SL-J403-1

SL-J425-1

(R,R)-CyPP

(R,R)-MeO-BoQPhos
2-[(2R,3R)-4-(2,6-Dimethoxyphenyl)-
3-(1,1-dimethylethyl)-2,3-dihydro-
1,3-benzoxaphosphol-2-yl]-6-
methoxypyridine
2-[(2R,3R)-4-(9-Anthracenyl)-3-(1,1-
dimethylethyl)-2,3-dihydro-1,3-
benzoxaphosphol-2-yl]pyridine
(S)-SunPhos
(1R)-1-[Bis[3,5-bis(1,1-dimethylethyl)-4-
methoxyphenyl]phosphino]-2-[(1R)-1-
(dicyclohexylphosphino)ethyl]ferrocene
(1R4R)-1,4-dimethyl-1,4-
butanediylbis(diphenylphosphine)
(2R,3R)-4-(9-Anthracenyl)-3-(1,1-
dimethylethyl)-2,3-dihydro-2-(1-
methylethyl)-1,3-benzoxaphosphole
(S,5)-XantPhos
(3R)-3-(1,1-Dimethylethyl)-4-(2,6-
diphenoxyphenyl)-2,3-dihydro-1,3-
benzoxaphosphole

494227-35-9
541502-07-2
2415751-83-4
1884680-45-8
2565792-52-9

1221745-90-9
NA
NA
864529-90-8
301847-88-1
149341-34-4
649559-65-9
166172-60-7
849924-49-8
70774-28-6
1542796-16-6
2565792-77-8

1542796-14-4

765312-54-7
1453803-83-2

142494-67-5

1891002-60-0

2119686-35-8
1441830-74-5

C52H74FeN2P2
C80H10404r2
C26H3602P2
C50H4402P2
C17H20NO2P

C28H32FeOP2
C47H47FeNP2
C35H31FeNO4P2
C27H26NO2P
C38H3002P2
C31H22NP
C36H36FeO2P2
C40H28F12FeP2
C44H48FeO2P2
C32H34P2
C18H22NO3P
C25H28NO4P

C30H26NOP

C42H3604P2
C54H80FeO2P2

C30H32P2

C28H290P

C41H3603P2
C29H2703P




Descriptors

A comprehensive list of the utilized steric, geometric and electronic descriptors can be

found in Table B.1.

Table B.1: List of descriptors

7A

Descriptor Category | Description
cone angle geometric | cone angle of metal-ligand, ignores NBD
buried volume Rh . buried volume at metal centre with radius 6 A, ig-
6A steric nores NBD
. . | bite angle between donor max - metal centre -
bite angle geometric )
donor min
quadrant of 3.5 A buried volume orientated such
NE quad steric that average of position of donors define Z-axis
and donor max defines the XZ plane, ignores NBD
quadrant of 3.5 A buried volume orientated such
SE quad steric that average of position of donors define Z-axis
and donor max defines the XZ plane, ignores NBD
buried volume Rh . buried volume at metal centre with radius 4 A, ig-
4A steric nores NBD
quadrant of 3.5 A buried volume orientated such
NW quad steric that average of position of donors define Z-axis
and donor max defines the XZ plane, ignores NBD
buried volume . buried volume at donor min with radius 3.5 A, ig-
donor min steric nores NBD
dihedral angle 2 geometric dihedral angle between H-C central of NBD-
metal-donor
buried volume Rh steric buried volume at metal centre with radius 7 4, ig-

nores NBD
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dihedral angle 1

buried

donor max

volume
buried volume Rh
5A

buried volume Rh

3.5A

SW quad

-,+,- octant

+,+,- octant

+,-,+ octant

+,-,- octant

-,-,~ octant

+,+,+ octant

-,-,+ octant

-,+,+ octant

HOMO LUMO gap

gfn2 xtb

nucleofugality gfn2

xtb

nucleophilicity gfn2
xtb

geometric
steric
steric

steric

steric

steric

steric

steric

steric

steric

steric

steric

steric

electronic
electronic

electronic

dihedral angle between H-C central of NBD-
metal-donor

buried volume at donor max with radius 3.5 4, ig-
nores NBD

buried volume at metal centre with radius 5 4, ig-
nores NBD

buried volume at metal centre with radius 3.5 A4,
ignores NBD

quadrant of 3.5 A buried volume orientated such
that average of position of donors define Z-axis
and donor max defines the XZ plane, ignores NBD
octant of 3.5 A buried volume orientated such that
average of position of donors define Z-axis and
donor max defines the XZ plane, ignores NBD
Octant of 3.5 A buried volume orientated such that
average of position of donors define Z-axis and
donor max defines the XZ plane, ignores NBD
octant of 3.5 A buried volume orientated such that
average of position of donors define Z-axis and
donor max defines the XZ plane, ignores NBD
octant of 3.5 A buried volume orientated such that
average of position of donors define Z-axis and
donor max defines the XZ plane, ignores NBD
octant of 3.5 A buried volume orientated such that
average of position of donors define Z-axis and
donor max defines the XZ plane, ignores NBD
octant of 3.5 A buried volume orientated such that
average of position of donors define Z-axis and
donor max defines the XZ plane, ignores NBD
octant of 3.5 A buried volume orientated such that
average of position of donors define Z-axis and
donor max defines the XZ plane, ignores NBD
octant of 3.5 A buried volume orientated such that
average of position of donors define Z-axis and
donor max defines the XZ plane, ignores NBD
HOMO LUMO gap calculated via single point
GFN2-xTB

nucleofugality

nucleophilicity
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ea gfn2 xtb
dispersion p int Rh
gfn2 xtb
electrofugality gfn2
xtb

distance pi bond 2

distance pi bond 1

sasa gfn2 xtb
dipole gfn2 xtb
dispersion p int
donor min gfn2 xtb
dispersion p int
donor max gfn2 xtb
ip gfn2 xtb
electrophilicity gfn2

xtb

electronic

electronic

electronic

electronic

electronic
electronic

electronic

electronic
electronic

electronic

electron affinity

electrofugality

distance of C=C NBD pi bond that coordinates to
metal centre

distance of C=C NBD pi bond that coordinates to
metal centre

solvent accessible surface area

Debye dipole moment

p int dispersion descriptor on donor min

p int dispersion descriptor on donor max
ionization potential

electrophilicity




Minor and major substrate
coordination

Figure C.1 illustrates the four possible coordinations of methyl 2-acetamidoacrylate sub-
strate to the metal-ligand complex [146].

0

/OYILH)\
0
Blocked Open
R,\m.l:ﬁ; L-Rh-S major 1 L-Rh-S major 2
P~ —P\

Rz R, Open | Blocked o

\°J‘\{rN\'/
o} o
2 g
H o

L.-Rh-S minor 1 L-Rh-S minor 2

Figure C.1: Major 1, major 2, minor 1, and minor 2 potential coordinations of the methyl
2-acetamidoacrylate substrate to the metal-ligand complex. Image taken from [146].
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Assessment parameters for ¢

The obtained assessment parameters for utilizing DBSCAN with different e values can be
found in Table D.1.

Table D.1: Assessment parameters for e

e |FN | TN | FN/TN

0.1 | 10 | 206 20.6
0.11 | 10 | 225 22.5
012 | 14 | 244 174
0.13 | 16 | 256 16.0
0.14 | 17 | 265 15.6
0.15 | 19 | 275 14.5
0.16 | 23 | 286 124
0.17 | 25 | 298 11.9
0.18 | 29 | 303 10.4
0.19 | 31 | 315 10.1
020 | 32 | 317 9.9
021 | 32 | 321 10.0
022 | 36 | 324 9.0
0.23 | 38 | 327 8.6
0.24 | 42 | 333 7.9
0.25 | 45 | 336 7.5
0.26 | 46 | 345 7.5
0.27 | 45 | 354 7.9
0.28 | 46 | 359 7.8
0.29 | 48 | 364 7.6
0.30 | 50 | 367 7.3
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ANOVA test on steric and
geometric descriptors

The results of the ANOVA test on steric and geometric descriptors are presented in Table

E.1.

Table E.1: Results of ANOVA test on steric and geometric descriptors

Descriptor F-statistic p-value
cone angle 1.828753397 | 0.177038886
buried volume Rh 6A 1.592676775 | 0.207679469
bite angle 0.627925759 | 0.428586891
NE quad 0.051780275 | 0.820110184
-,~,+ octant 0.724126302 | 0.395302846
SE quad 0.007123389 | 0.932780493
buried volume Rh 4A 11.69286453 | 0.000691909
-,+,+ octant 1.136624739 | 0.287009741
NW quad 0.153997934 | 0.694952716
buried volume donor min | 5.208492775 | 0.023001177
dihedral angle 2 10.55158115 | 0.001258905
buried volume Rh 7A 0.118368761 | 0.730991267
dihedral angle 1 5.734888507 | 0.017090451
buried volume donor max | 1.32235219 | 0.250857388
buried volume Rh 5A 5.205407744 | 0.023041487
buried volume Rh 3.5A 17.82528672 0.00003

SW quad 0.06209379 | 0.077932811
-,+,- octant 3.123509991 | 0.077932811
+,+,- octant 0.006684279 | 0.934880494

+,-,+ octant 0.165663627 | 0.6842125
+,-,- octant 2.46201837 | 0.117419516
-,-~ octant 1.669628539 | 0.197054296
+,+,+ octant 6.120438503 | 0.013776909




Use of generative Al tools

During this thesis I have used 2 generative Al tools: ChatGPT and Canva Al image genera-
tor. ChatGPT was mainly used for writing assistance and easily programming purpouses,
while the image of the cover page was taken from Canva. Since Canva was only used for
that one image, I will focus on describing the use of ChatGPT in this chapter.

F1 Writing assistance

I never asked ChatGPT to write or rewrite sections for my thesis. However, I did used
ChatGPT to help me improve my writing. I usually provided my sentences and asked
ChatGPT to comment on the grammar and readability of it. ChatGPT gave me recommen-
dation of different wording and corrected my grammar. I often found these recommenda-
tions and feedback very valuable and implemented them in my text, a few examples are
presented below.

This algorithm was further optimized using the extended dataset
comprising both the training and validation sets (24 conformer
ensembles) in step 6 --- can you change comprising here to
something else (a synonym)?

Sure, here's a revised version using a synonym for “comprising™:

“This algorithm was further optimized using the extended dataset, which includes both the training

and validation sets (24 conformer ensembles), in step 6."

Figure F.1: T often used ChatGPT to provide me synonyms. I provided the full sentence,
so ChatGPT can understand the context. I was making sure that the new word or
expression does not change the overall language style I am using.
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F.2. Coding assistance 84

In computational chemistry, where multiple nuclei and electron

systems are present the expanded form is as follows for M nuclei and
N electrons \cite{magyar, guide}: --- is there a comma missing here?

Yes, there should be a comma added for correct punctuation:

“In computational chemistry, where multiple nuclei and electron systems are present, the expanded

form is as follows for M nuclei and N electrons \cite{magyar, guide}."

This correction helps to separate the introductory clause “In computational chemistry, where
multiple nuclei and electron systems are present” from the main clause that follows, providing clarity
and readability.

Figure F.2: T often asked ChatGPT to correct the grammar of my sentences.

F2 Coding assistance

Overall, I barely used any generative Al tools for my code, as I enjoy writing my own code.
Only ChatGPT was used for very easy coding tasks, that mainly required the usage of a
single function. An example is provided below.

i have a dataframe called dft_df, can you insert a column named
“relative energy” which takes the value of the column “E* and
substract the “E" of the first row?

&) Certainly! You can achieve this using pandas in Python. Here's how you can do it:

python (P Copy code

pandas pd

dft_df[ ] = dft_df['E'] - dft_df['F'].iloc[o]

print(dft_df)

Figure F.3: I often used ChatGPT to handle easy coding tasks.

I did not find ChatGPT suitable to handle more complicated programming tasks and
I noticed an overall decrease in ChatGPT’s coding ability during my thesis. Therefore, for
the second part of my thesis I did not use ChatGPT’s coding assistance anymore.
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