
Low-cost multi-core
on-chip learning

schemes
by

Zhaofeng Shen
to obtain the degree of Master of Science at the Delft University of Technology,

to be defended publicly on September 08, 2023.

Student number: 5404568
Project duration: November, 2022 - September, 2023
Thesis committee: Dr. Charlotte Frenkel TU Delft, supervisor

Prof. Dr. Kofi Makinwa TU Delft
Dr. Chang Gao TU Delft

Abstract

Nowadays, to reduce the dependence of devices on cloud servers, machine learning workloads are
required to process data on the edge. Furthermore, to improve adaptability to uncontrolled environ-
ments, there is a growing need for on-chip learning. Limitations in power and area for edge devices
have increased interest in low-cost neural network learning algorithms. However, as edge platforms
are increasingly multi-core, new techniques are required to deploy learning algorithms on multi-core
designs.

In this report, the performance of a low-cost multi-core on-chip learning platform with the local error
learning (LEL) algorithm is evaluated. First, we reviewed state-of-art learning algorithms designed to
solve the challenges of efficient neural network learning. We analyze these algorithms from the point of
view of performance, hardware overhead, scalability, and the possibility of multi-core implementation.
We propose a spatio-temporal learning framework for the combined use of LEL and e-prop. As a first
proof of concept, we aim first at demonstrating multi-core LEL learning for image classification. Next,
we constructed a software model suitable for multi-core on-chip driven by hardware requirements. With
the software model, we then implemented the corresponding hardware and deployed it on a system-
on-chip field programmable gate array (SoC FPGA) board to evaluate the performance. Results based
on the CIFAR-10 image classification dataset show that the hardware design can fully reproduce the
software runtime results. With a classification accuracy of 59.57% after batch-size-1 on-chip learning,
our design forms a stepping stone for the development of low-cost multi-core hardware that can adapt
online to its environment.

i

Contents

Abstract i

Nomenclature iv

1 Introduction 1
1.1 Background . 1
1.2 Challenges . 2

1.2.1 Learning algorithms . 2
1.2.2 Hardware . 3
1.2.3 Multi-core on-chip learning . 3

1.3 Contributions . 4
1.4 Thesis outline . 4

2 Literature review 6
2.1 Learning in artificial neural networks . 6

2.1.1 Spatial learning algorithms . 6
2.1.2 Temporal learning algorithms . 8

2.2 Comparison . 11
2.3 Learning with spikes . 13
2.4 Conclusions . 16

3 PyTorch model design 17
3.1 Quantization scheme . 17

3.1.1 Basic inference-oriented quantization . 17
3.1.2 Training-oriented scheme: WAGE . 18
3.1.3 Design of the quantization scheme . 19

3.2 Network architecture . 20
3.2.1 Basic layers and modules . 20
3.2.2 General network structure . 25

3.3 Neural architecture search (NAS) . 25
3.3.1 Number of fully-connected blocks . 25
3.3.2 Fully-connected layer setup . 25
3.3.3 Convolutional blocks setup . 27
3.3.4 Quantized network sweep . 29

3.4 Conclusions . 33

4 Hardware design 34
4.1 Submodule design . 34

4.1.1 Matmul submodule . 34
4.1.2 Local classifer (forward path) . 36
4.1.3 Local classifier (backward path) . 36
4.1.4 Convolutional layer . 37
4.1.5 Loss submodule . 38
4.1.6 Weight update submodule . 39
4.1.7 Linear feedback shift register submodule . 40
4.1.8 Cache X4 submodule . 41
4.1.9 Triout cache submodule . 42
4.1.10 Tree comparator submodule . 43
4.1.11 Classification submodule . 44

4.2 Core design . 45
4.2.1 Fully-connected core . 45

ii

Contents iii

4.2.2 Convolutional core . 48
4.3 Multi-core platform design . 50
4.4 Performance evaluation . 52

4.4.1 Test set accuracy . 52
4.4.2 Resource and timing . 53

5 Conclusions 55

References 56

Nomenclature

Abbreviations

Abbreviation Definition

ANN Artificial neural network
BP Backpropagation
BPTT Backpropagation through time
CNN Convolutional neural network
Conv Convolutional
DDTP Direct difference target propagation
DFA Direct feedback alignment
DNI Decoupled neural interface
DRAM Dynamic random-access memory
DRTP Direct random target projection
DTP Difference target propagation
DUT Device under test
EP Equilibrium propagation
FA Feedback alignment
FC Fully-connected
FIFO First-in-first-out
FPGA Field programmable gate array
FPTT Forward-propagation-through-time
IP Intellectual properties
LEL Local error learning
LFSR Linear feedback shift register
LIF Leaky integrate-and-fire
LUT Lookup table
FSM Finite state machine
MAC Multiply–accumulate
MSE Mean squared error
NAS Neural architecture search
OSTL Online spatio-temporal learning
PDF Probability density function
PL Programming logic
PRNG Pseudorandom number generator
PS Processing sytem
PTQ Post training quantization
QAT Quantization aware training
ReLU Rectified linear unit
RNN Recurrent neural network
RTRL Real-time recurrent learning
SELU Scaled exponential linear unit
SG Synthetic gradient
SGD Stochastic gradient descent
SNN Spiking neural network
SoC System-on-chip
SRM Spike response model
STE Straight through estimator
TP Target propagation

iv

Contents v

Abbreviation Definition

TTFS Time-to-first-spike

1
Introduction

This chapter provides an overview of the thesis project. First, the background of the project is pre-
sented. Then the challenges arising from this background are presented. The objectives of the project
to address these challenges are then listed, as well as the contributions of this project. Finally, an
outline of this report is presented.

1.1. Background
Neural networks are powerful machine learning tools, which can have competitive or even better per-
formance than humans on tasks like image classification [1] and the game of Go [2, 3]. However, this
requires a huge amount of computing power to achieve such performance. For example, to outperform
humans in the game of Go, AlphaGo Zero has improved from its several predecessors and still requires
about 1kW of power consumption (Figure 1.1) while, on the other side, the human brain only requires
20W on average.

Figure 1.1: Changes in AlphaGo power consumption as hardware as well as algorithms evolve [4]: Redder and darker colors
represent higher power consumption, bluer and lighter colors represent lower power consumption.

Moreover, deploying learning on edge devices is needed for use cases dealing with uncontrolled
environments without a cloud link, requiring online user adaptation, or where privacy is critical [5]. Be-
cause of tight power and area budgets, when migrating neural networks to edge devices, more energy-
efficiency-oriented neural network models and hardware are preferred. For example, neuromorphic
hardware based on emerging bio-plausible learning algorithms offers new avenues for low-cost learn-
ing at the edge [6, 7]. At the same time, this demand has brought several new challenges in both
learning algorithms and hardware.

1

1.2. Challenges 2

1.2. Challenges
In this section, we will describe how the energy efficiency of multi-core on-chip learning is limited by
the learning algorithm, and the main sources of overhead in hardware.

1.2.1. Learning algorithms
Here, we will refer to the error in the network as a credit [8] and discuss it in two categories. One is the
problem of spatial credit assignment for multilayer networks. This problem is generally solved by error
backpropagation (BP), due to its ability to propagate the error to each parameter in each layer of the
network through the application of the chain rule. In Figure 1.2, x is the data input, Wi are the weights

Figure 1.2: Error
backpropagation (BP). Adapted

from [9].

Figure 1.3: Weight symmetry.
Adapted from [10].

Figure 1.4: Update locking.
Adapted from [11].

of the different layers, yi are the outputs of the different layers, y∗ is the target, J is the loss funtion, e
is the error and i is the layer index. During learning, BP is able to propagate the credits from the loss
function to the parameters of all downstream layers. Its calculation to obtain the updated value of the
weight W1 can also be expressed mathematically as:

∂J

∂W1
=

∂J

∂y3

∂y3
∂y2

∂y2
∂y1

∂y1
∂W1

= eWT
3 WT

2 x

While BP can provide effective learning, its efficiency and bio-plausibility are limited by two main
reasons [5]:

• Weight symmetry: The issue that both forward and backward connections require to access
the same weights is called the ”weight transport” [10] or ”weight symmetry” [12], as highlighted
in figure 1.3. In hardware, this can lead to the use of complex memory access patterns and
architectures [5]. From a different perspective, this is also not bio-plausible for backpropagation
in the brain, as this would imply that synapses are bidirectional [8].

• Update locking: As the gradients of each layer are derived from the final loss by using the chain
rule, all the layers can only be updated after the forward and backward passes have been fully
completed. This problem is called ”update locking” [11]. In Figure 1.4, if we want to update W1,
we need to wait for all the calculations involved in the highlighted path to be completed. This
makes BP have two phases which require saving all layer activation values before the learning
phase is completed. And in a multilayer network, this coupling between layers can make the
learning process slow. This two-phase learning is also not bio-plausible.

As summarized in [14], for recurrent neural networks (RNNs), there is also the temporal credit
assignment. In Figure 1.5, we expand the RNN on a timeline and we can now propagate information
forward (right) or backward (left) in this dimension. Backpropagation through time (BPTT) propagates
credit backward in the temporal dimension by unrolling the network in time. As demonstrated in Figure
1.6, credits can be passed backwards through the highlighted path to the start of the time series to

1.2. Challenges 3

Figure 1.5: Unrolled recurrent neural network: x is the input sequence, y is the output sequence, Wi are the forward weight
matrices and Whi are the recurrent weight matrices. Adapted from [13].

updateW1. This corresponds to a backward method [14] and has a memory complexity of O(Tn) [15],
where T stands for the number of time steps and n for the number of neurons in one layer.

Real-time recurrent learning (RTRL) [16], on the other hand, enables online credit assignment by
propagating the necessary information forward, which corresponds to a forward method [14]. As shown
in Figure 1.7, if we want to update the weightW1 at time point 2, RTRL can bring the relevant information
from the previous time point to the current time point, thus completing the forward propagation of credits.
Only this method enables online learning [13], whose computational costs do not scale with the number
of time steps but will grow rapidly with the number of neurons. For example, RTRL has a memory
complexity of O(n3) [15]. BPTT thus scales poorly with long temporal depths, while RTRL scales
poorly with large network sizes.

Figure 1.6: Backpropagation through time.
Adapted from [13].

Figure 1.7: Real-time recurrent learning. Adapted
from [13].

1.2.2. Hardware
Edge devices have a tight power budget, especially for battery-powered devices [17]. As for the area
utilization and power consumption of the learning algorithms on the hardware, the main impact comes
from the following two aspects [18]:

• Memory overhead: In general, memory takes up most of the area on the chip, and memory
accesses introduce most of the power overhead [19, 20]. On-chip learning algorithms might in-
duce buffering overhead or additional parameters compared to the inference-only network, which
needs to be stored on-chip. Therefore, optimization of memory overhead is critical to edge de-
vices.

• Computational overhead: On-chip learning also requires more hardware computing power than
inference-only networks because of additional computation that will increase the power footprint.

1.2.3. Multi-core on-chip learning
In this project, we aim to implement a multi-core on-chip learning scheme in hardware, and in addition
to the challenges described above, there are other challenges in multi-core design. Here are two key
multicore designs that have their own strengths and weaknesses:

• Independent multi-core setup: The Figure 1.8 illustrates a multi-core design where each core
has an independent neural network, and to obtain classification results from the entire design,
we merge their respective outputs. This approach involves minimal data communication beyond
the core, and it can increase the throughput of the whole system. However, due to the limited
hardware resources, this design can be apparented to training multiple weak neural networks at
the same time, compared to a single strong model.

1.3. Contributions 4

• Layer-wise multi-core setup: Another multi-core design is illustrated in Figure 1.9 where a
single layer of computation is assigned to each core. By maintaining the original network size
and structure, this approach achieves optimal performance. Despite the benefits of this method,
it generates significant inter-core communication, including transferring layer activation values
and back-propagation errors. Furthermore, this approach is not useful for improving the system
throughput.

Therefore, in order to balance data communication and performance, we need an algorithm that allows
each core to focus on training locally without a significant degradation of performance.

Figure 1.8: Independent multi-core setup Figure 1.9: Layer-wise multi-core setup

1.3. Contributions
Based on the challenges of multi-core on-chip learning mentioned earlier, we decided to start with
learning algorithm research and formed the following objectives of the thesis project:

• Compare a variety of state-of-the-art learning algorithms for artificial neural networks (ANNs),
analyse their advantages over traditional BP in terms of challenges mentioned above, and select
one of them as the main research object for the project.

• Use machine learning frameworks to build a model suitable for performance evaluation and opti-
mize it for subsequent hardware implementation.

• Implement the model with multi-core hardware design, and deploy to the PYNQ-Z1 (XC7Z020)
field programmable gate array (FPGA) board for practical performance evaluation.

At the end of the project we were able to:

• Verify the feasibility of the chosen learning algorithm for learning with low-cost multi-core hardware
design.

• Propose improvements for the currently encountered problems and lay the foundation for future
work.

1.4. Thesis outline
Chapter 2 will demonstrate the literatrue review about state-of-the-art low-cost learning algorithms. The
first part will introduce algorithms designed for ANNs. The second part will compare these algorithms
and select the ones for further research based on our project goals. The third part will introduce some
learning algorithms that are applicable to spiking neural networks and discuss the new issues that arise
in this context. Finally, the conclusion for the literature review will be provided.

Chapter 3 will illustrate the process of constructing the required hardware model in software firstly.
The first part will begin by examining the employed quantization scheme. The second part will outline
the layers and general structure of the network. The third part will conduct a neural architecture search
to identify the network structure and quantization setup. Finally, the design of the neural network model
in hardware will be finalized.

1.4. Thesis outline 5

Chapter 4 will present the process of implementing and verifying the multi-core on-chip learning
hardware. First, the design of the main submodules of the hardware implementation and the corre-
sponding behavioral simulations are presented. Subsequently, the design of cores obtained using the
integration of these sub-modules and the corresponding behavioral simulations are presented. Then,
the design of a multi-core on-chip learning platform that instantiates multiple cores and the verification
methodology are presented. Finally, a performance evaluation of the design deployed to the FPGA is
performed.

Chapter 5 will summarize the work.

2
Literature review

The main content of the literature review chapter is the comparison and evaluation of state-of-the-art
low-cost learning algorithms. The ANN learning algorithms being evaluated will be presented first.
These learning algorithms are then compared and an algorithm is selected for subsequent research,
depending on the project objectives. In addition to ANNs, we will also present algorithms related to
spiking neural networks (SNNs). This is due to the fact that local learning algorithms are also more
bio-plausible, and many of neuromorphic hardware using bio-plausible learning algorithms implement
SNNs.

2.1. Learning in artificial neural networks
Several different learning schemes will be introduced in this section, but in general, there are two
main categories. The first category can solve the spatial credit assignment problem. Most of these
algorithms are designed for feedforward fully-connected networks and can solve at least one of the
weight symmetry and update locking problems. The second category can solve the temporal credit
assignment problem. Most of these algorithms are designed for recurrent neural networks and can
help reduce memory complexity and time complexity for online learning compared to BPTT [15].

2.1.1. Spatial learning algorithms
The baseline algorithm in this category is BP. Asmentioned in Section 1, this algorithm offers the highest
accuracy, but it is neither efficient nor bio-plausible due to the update locking and weight transport
problems.

Figure 2.1: Error backpropagation: W is the
weight matrix, x is the input, y is the layer output,

y∗ is the target and δ is the gradient [21].

Figure 2.2: Feedback alignment: B is a random
and fixed matrix [21].

6

2.1. Learning in artificial neural networks 7

Feedback alignment
To solve the weight symmetry problem, a learning algorithm called feedback alignment (FA) is intro-
duced in [22]. In the BP algorithm, shown in Figure 2.1, we have the weight symmetry problem as we
need to access the transpose of the weight matrix in the learning phase. In FA, they are replaced by
fixed random connectivity matrices B (Figure 2.2). In the learning phase, the information of B will flow
into W , change W and align it with BT [22]. This helps to resolve the weight symmetry problem with
no computational overhead compared to BP, at the expense of a resonable accuracy degradation on
small tasks [21].

Direct feedback alignment
In order to have a more bio-plausible learning algorithm, [23] proposes direct feedback alignment (DFA)
based on random feedback and non-reciprocal connections within the network. In Figure 2.3, gradients
in the hidden layers are obtained by directly providing the random projection of the output error to all
layers. Its accuracy is slightly worse than FA, but more importantly, it shows that learning is still possible
for small problems with a simplified feedback path.

Figure 2.3: Direct feedback alignment: B is a
random and fixed matrix [21].

Figure 2.4: Direct random target projection: B is a
random and fixed matrix [21].

Direct random target projection
Direct random target projection (DRTP) [21] is developed fromDFA, which further simplifies the gradient
calculation. As shown in Figure 2.4, except that the last layer will receive gradients from the loss
function, hidden layers will receive a local gradient calculated directly from the fixed random matrix and
the target vector which is a one-hot encoding of the classification labels.

This gives this algorithm a advantage on hardware in terms of both memory and computational
overhead, because it can solve both weight symmetry and update locking problems with only a layer-
wise random number selection. Accuracy is degraded compared to DFA, but still acceptable for small
problems.

Synthetic gradients
To solve the update locking problem, [11] proposed a concept called decoupled neural interfaces (DNI).
The idea is that each layer can get synthetic gradients (SG) from a layer-wise model, which can be
trained with error backpropagation, and the use of SG results in DNIs [24].

The network structure is shown in Figure 2.5. The updating rule of this learning algorithm is [11]:

Wi ←Wi − αδ̂i
∂yi
∂Wi

whereW is the weight matrix, α is the learning rate, i is the layer index, δ̂ is the synthetic error gradient
generated with δ̂ = Mi+1(yi). The layer output y is fed to the moduleM to compute the SGs in parallel,
and global BP is used to adjust the module so that the local SG approximates the true gradient [24].

This algorithm releases weight symmetry and update locking, although the local models still nned
to be trained by BP. But at the same time, the layer-wise loss calculation causes extra memory and
computational overhead. Another study [26] shows that DNI faces convergence issues and therefore
its performance cannot be guaranteed.

2.1. Learning in artificial neural networks 8

Figure 2.5: Synthetic gradients: M is the synthetic
gradients model. Adapted from [11].

Figure 2.6: Local error learning: M and K are two
matrices that can be fixed and random or learnable.

Adapted from [25].

Local error learning
Local error learning (LEL) [25] is another local learning algorithm, whose local errors are generated
with layer-wise local classifiers.

As shown in Figure 2.6, the class score will be generated with si = Biyi [25], where i is the layer
index, s is the score vector, B is a layer-wise classifier weight matrix and y is the layer output. Then
the local error will be generated with the class score and the true label of the input. The matrix K will
convert the local errors to gradients. The contents of the K matrix varies depending on the settings of
the B matrix. Their relationships are listed as follows:

• B is fixed and random, and K = BT . This is also the default setup for LEL. In this setup, there is
still the weight symmetry problem for the local classifier, but the local classifier does not have to
learn, so the computational and memory overheads remain low.

• B is fixed and random, but sign(K) = sign(BT) and K ̸= BT . In this setup, K is a sign-
concordant [12] weight matrix corresponding to B. It alleviates the problem of weight symmetry
for local classifiers and is also more bio-plausible. However, the K matrix introduces additional
memory overhead for storage and the network performance is worse than the first setup.

• B is trainable, and K = BT . Here the local classifiers are trainable and hence provide the best
performance. However it has a more severe weight symmetry problem, more memory footprint
and higher computational overhead than the previous two.

Similarly to SG, this method can also reduce the memory footprint. In terms of extra memory and
computational overhead, LEL is more efficient than SG. This is because in the default configuration,
the local classifiers do not need to be trained, whereas the layer-wise models in SG still need to be
learned through global BP.

Direct difference target propagation
Target propagation (TP) (Figure 2.7) and difference target propagation (DTP) (Figure 2.8) are two learn-
ing algorithms that backpropagate targets, rather than errors. TP requires the network to find the inverse
of each layer. In this way, each layer can be seen as an autoencoder, where the forward path repre-
sents the encoding part and the backward path represents the decoding part. But to accommodate
non-invertible networks, DTP is proposed, which uses difference correction to obtain the estimated
inverse [29], so that the reconstructed target will be propagated. Direct difference target propagation
(DDTP) [29] is built upon DTP and transmits the target from the output layer to each hidden layer
through one estimated inverse function, which is the matrix Q in Figure 2.9.

The weight symmetry is resolved by the estimated inverse function, but the network itself is still
update-locked. Therefore, this algorithm is not as fast and low-buffering-overhead as layer-decoupled
networks. Meanwhile, the learnable backward weight matrix introduces additional memory overhead.

2.1.2. Temporal learning algorithms
Two fundamental learning algorithms to solve the temporal credit assignment are BPTT and RTRL.
RTRL is an online learning algorithm, whose high memory and computational complexity are prohibitive

2.1. Learning in artificial neural networks 9

Figure 2.7: Target propagation:
B is a learnable matrix, h is the

layer output and ĥ is the
propagated target. Adapted from

[27].

Figure 2.8: Difference target
propagation: h̃ is the

reconstructed target. Adapted
from [28].

Figure 2.9: Direct difference
target propagation: Q is a
learnable matrix [29].

[30]. In order to be efficient and bio-plausible, the next few learning algorithms presented allow for online
learning, but with improvements compared to RTRL.

E-prop

Figure 2.10: e-prop: Lt
j is the learning signal, WO

jk is the output layer weight matrix, BO
jk is a

fixed and random matrix [30].

The learning rule and the loss calculation of e-prop for a recurrent network (Figure 2.10) are [30]:

WR
ji ←WR

ji − η
∑
t

(Lt
je

t
ji)

Lt
j =

∑
k

WO
jk(y

t
k − y∗,tk)

where t is the time step, WR
ji is the synaptic weight from neuron i to neuron j in the recurrent layer, Lt

j

is the top-down learning signal, k is the output neuron index, etji is the eligibility trace, y
∗,t
k is the target

and the WO
jk is a weight matrix from output layer.

Eligibility traces and learning signals are two concepts that make this algorithm to be more bio-
plausible. Eligibility traces show that synapses maintain traces of recent activity, which can induce

2.1. Learning in artificial neural networks 10

synaptic plasticity if it is closely followed by a top-down learning signal [31, 32]. And top-down learning
signals can be found in the brain under different forms which can be supported by neurotransmitters
such as dopamine and acetylcholine [33, 34, 35].

The eligibility trace can be computed fully in a forward manner, while the learning signal is approxi-
mated and available locally in time. The learning signal in e-prop is also designed for the situation where
every neuron is connected to the output, shown in Figure 2.10, which also means that this algorithm is
only suitable for single-layer recurrent neural networks.

The local-in-time learning signal makes the memory and computational complexity quite low. In
symmetric e-prop, theWO

jk is the transpose of the weight matrix for the output layer for higher accuracy.
In a more bio-plausible random e-prop, theWO

jk will be replaced by a fixed random matrix BO
jk, and the

weight symmetry problem can be solved.

Online spatio-temporal learning

Figure 2.11: Online spatio-temporal learning: etl is the eligibility trace and Lt
l is the learning signal [15].

Online spatio-temporal learning (OSTL) can be seen as a version of e-prop generalized to multilayer
learning. The gradient calculation used by OSTL is[15]:

dJ
dWl

=
∑
t

(Lt
le

t,Wl

l + R)

whereWl is the weight matrix, l is the layer number, et,Wl

l is the eligibility trace, Lt
l is the learning signal

and R is a residual term that contains non-local spatialtemporal information for different layers and time
steps, which is usually neglected. In Figure 2.11, each layer has an eligibility trace matrix for each
synapse and the learning signals will propagate from the output to the input.

Forward-propagation-through-time
The loss function of forward-propagation-through-time (FPTT) is [37]:

l(W) = lt(W)︸ ︷︷ ︸
intermediate loss

+
α

2
||W − W̄t −

1

2α
∇lt−1(Wt)||2︸ ︷︷ ︸

regularizer

where lt is the intermediate loss of step t, α is a hyper-parameter used to set the constraint of the
regularizer, W is the weight matrix and W̄ is the running average of previous W matrices, which can
be calculated by: W̄t+1 = 1

2 (W̄t+Wt+1)− 1
2α∇lt(Wt+1). To minimize the loss on existing data, the reg-

ularizer term α
2 ||W −W̄t− 1

2α∇lt−1(Wt)||2 is introduced. The dynamic loss function l can generate loss
according to the current intermediate loss and information from the past. By recording the mean value
of past weights, the regularizer can mitigate the impact of the variance of the current input on the final

2.2. Comparison 11

Figure 2.12: Backpropagation through time (left) and Forward-propagation through time (right) [36].

error and accelerate the learning speed. Just as Figure 2.12 shows, no gradients will backpropagate
through the temporal direction, and the W̄ is the information propagated forward over time.

With this design, although we need to keep an extra matrix for the average of past weights, the
memory complexity has still been reduced as an online learning algorithm. However, this also increases
computational overhead, since there are more parameter updates in each step.

2.2. Comparison
The comparison of algorithms that can solve spatial credit assignment problems is shown in Table 2.1.
For these algorithms, we want to focus on their ability to solve the weight symmetry and update locking
issues, and the resulting additional overhead in memory and computation. Due to DDTP having high
computational overhead, and SG suffering from a non-convergence problem, we exclude them. FA
and DFA are also not selected because they are update-locked. Solving the update locking problem
helps reduce layer-wise overheads and will also be beneficial to reduce inter-core communication.

Finally, only LEL and DRTP are left as they can solve both weight symmetry and update locking
issues. In terms of test results, LEL can provide better performance. If only sign-concordant layer-wise
matrices are applied, the accuracy will be 77.9% on CIFAR-10 [38] with a convolutional neural network
(CNN) that has 2 hidden convolutional layers and 1 hidden fully-connected layer. On the other hand,
the hardware implementation of DRTP will be much simpler, but it can only achieve 67.35% accuracy
on CIFAR-10 with a CNN that has 1 hidden convolutional layer and 2 fully-connected layers. DRTP is
more power efficient, but its performance is limited for convolutional layers due to the bottleneck effect
[5, 21]. We decided to choose LEL because it has better scalability.

The comparison of algorithms that can solve the temporal credit assignment problem is shown in
Table 2.2. Among them, we think e-prop is a better choice: compared to OSTL and FPTT, the accuracy
of e-prop is comparable, but with less memory and computational overhead.

Although e-prop has the disadvantage that it can only be applied to single-layer networks, we can
avoid this problem by combining it with LEL, and this also allows LEL to gain the ability to solve the
temporal credit assignment problem. Figure 2.13 illustrates a simple design where we can use the
output of RNN0 as the input of RNN1, resulting in a multi-layer architecture. Furthermore, the learning
signal in this design is applied only to the current RNN, thereby ensuring that the error generation
remains local. In each layer, the learning algorithm is still based on e-prop, while the entire learning
framework is more similar to LEL.

2.2. Comparison 12

Ta
bl
e
2.
1:

C
om

pa
ris
on

ta
bl
e
fo
rs
pa
tia
lc
re
di
ta
ss
ig
nm

en
ta
lg
or
ith
m
s

C
at
eg
or
ie
s

Ba
ck
pr
op
ag
at
io
n
of
er
ro
r

BP
FA

[2
2]

D
FA

[2
3]

D
R
TP

[2
1]

SG
[1
1]

LE
L
[2
5]

D
D
TP

[2
9]

W
ei
gh
t

sy
m
m
et
ry

re
so
lv
ed

7
3

3
3

3
3

3

U
pd
at
e
lo
ck
in
g

re
so
lv
ed

7
7

7
3

3
3

7

M
em

or
y

ov
er
he
ad

-
Ad

di
tio
na
l

la
ye
r-w

is
e

fix
ed

ra
nd
om

m
at
rix

Ad
di
tio
na
l

la
ye
r-w

is
e

fix
ed

ra
nd
om

m
at
rix

Ad
di
tio
na
l

la
ye
r-w

is
e

fix
ed

ra
nd
om

m
at
rix

Ad
di
tio
na
l

la
ye
r-w

is
e
er
ro
r

m
od
ul
e

Ad
di
tio
na
l

la
ye
r-w

is
e

cl
as
si
fie
r

Ad
di
tio
na
l

la
ye
r-w

is
e

le
ar
na
bl
e

m
at
rix

C
om

pu
ta
tio
na
l

ov
er
he
ad

-
-

-
-

Ad
di
tio
na
l

la
ye
r-w

is
e
lo
ss

ca
lc
ul
at
io
n
an
d

m
at
rix

m
ul
tip
lic
at
io
ns
.

Ad
di
tio
na
l

la
ye
r-w

is
e
lo
ss

ca
lc
ul
at
io
n
an
d

tw
o
lo
w
-

di
m
en
si
on
al

m
at
rix

m
ul
tip
lic
at
io
ns

O
ve
rh
ea
d
in

fe
ed
ba
ck

w
ei
gh
t

tra
in
in
g[
39
]

Sc
al
ab
ilit
y

-
10
-la
ye
r

C
N
N
on

C
IF
AR

-1
0

ha
s
51
.3
%

ac
cu
-

ra
cy
[2
5]

Tr
an
sf
or
m
er

on
W
ik
iT
ex
t-1
03

ha
s
52
.0

va
lid
at
io
n

pe
rp
le
xi
ty
[4
0]

5-
la
ye
rC

N
N

on
C
IF
AR

-1
0

ha
s
32
.6
5%

er
ro
r

R
es
N
et
-8
w
ith

4
de
co
up
le
d
po
in
ts

on
C
IF
AR

-1
0
ha
s

ab
ou
t2
0%

ac
cu
ra
cy
[2
6]

10
-la
ye
rC

N
N

w
ith

tra
in
ab
le

la
ye
rc
la
ss
ifi
er

on
C
IF
AR

-1
0

ha
s
82
.9
%

ac
cu
ra
cy

Le
N
et
on

C
IF
AR

-1
0
ha
s

76
.3
3%

ac
cu
ra
cy

2.3. Learning with spikes 13

Table 2.2: Comparison table for temporal credit assignment algorithms

Categories BPTT RTRL[16] E-prop[30] OSTL[15] FPTT[37]

Method for
temporal credit
assignment
problem1

Backward Forward Forward Forward Forward

Memory
complexity2

Tn n3 n2 n2 N/A

Time complexity2 Tn2 n4 n2 n2 N/A

Scalability

- - 3-layer
LSTM on
TIMIT has
21.24%
error

rate[15]

3-layer
LSTM on
TIMIT has
19.7%

error rate

Single layer
LSTM on
Sequential

CIFAR-10 has
71.03%
accuracy

Figure 2.13: Combination of LEL and e-prop

2.3. Learning with spikes
The algorithms just surveyed, are not only more efficient but also more bio-plausible, so they are typi-
cally implemented in neuromorphic hardware, based on SNNs. However, using a spiking representa-
tion introduces additional challenges:

Non-differentiability: There are many different neuron models [41, 42, 43, 44, 45]. In this section,
we will discuss the leaky integrate-and-fire (LIF) [41] and the spike response model (SRM) [43]. SRM
provides a general model for the neuron state, can be expressed as [46]:

u(t) =
∑

f
η(t− t(f))︸ ︷︷ ︸

refactory response

+

∫ ∞

0

κ(t− t̂, s)Iext(t− s)ds︸ ︷︷ ︸
synaptic response

+urest (2.1)

where u is the membrane potential, t is the time step, t(f) is the firing time step, η(t) is the refactory
kernel, s is the start time step of a current pulse, κ(t, s) is the spike response kernel, Iext(t) is the input
current and urest is the rest membrane potential. Here, the neuron state is equivalent to the membrane

1Definitions of the forward and backward methods come from [14]
2Derived for single-layer network with n neurons, T is the length of sequence, data from [15]

2.3. Learning with spikes 14

potential. The refactory core defines the behavior after output a pulse and the spike response core de-
fines the behavior after receiving an input pulse.The LIF is a special case of the SRMwith the Heaviside
step function as the synaptic response kernel [43]:

κ(t, s) =
Θ(s)

τ
exp(− s

τ
)Θ(t− s) (2.2)

where Θ(t) is the Heaviside step function, τ is the time constant. With η is set to generate burst,
an example voltage respone to a step current is shown in Figure 2.14. The challenge posed by the
use of spiking neurons is their non-differentiability. For example, in a LIF neuron, the derivative of
the Heaviside step function is required, but its value is non-zero only when the membrane potential is
equal to the firing threshold. This blocks gradients propagation, making the network unable to learn
effectively [14]. Therefore, there are a range of methods known as surrogate gradients to evade the
non-linearity problem, which are able to approximate the true gradient while retaining the properties for
numerical optimization.

Figure 2.14: The voltage response to a step current [46].

Spike coding: [47] demonstrates several coding schemes for spikes. Among them, the rate code
(Figure 2.15(a)) is commonly used to map from ANNs to SNNs [5]. This form of encoding is simple but
less energy-efficient, as each spike only contains amarginal amount of information [47]. Other encoding
schemes such as rank code (Figure 2.15(b)), time-to-first-spike (TTFS) code (Figure 2.15(c)), etc. can
improve the efficiency of information transmission, but encoding complexity increases as there is no
straightforward ANN-SNN mapping.

Figure 2.15: Coding examples [5].

The algorithms discussed earlier can be modified to train SNNs with rate-based coding, and some
studies demonstrate the effects of applying them to SNNs, such as [48, 36]. To solve the above problem,
the following algorithms are designed specifically for SNNs.

SLAYER
Spike layer error reassignment (SLAYER) [49] provides a general backpropagationmechanism that can
solve the neuron non-differentiability issue. Compared to BP, themain change it makes for SNN training
is to use the probability density function (PDF) of spiking state change for gradient generation. The PDF
obtained from statistics after the introduction of the random perturbations to membrane potential, which
shows the probability of a neuron producing a spiking state transition, i.e., changing from a spiking
state to a non-spiking state, or a non-spiking state to a spiking state, as the difference between u and
ϑ changes.

2.3. Learning with spikes 15

Figure 2.16: SLAYER: u is the membrane potential, ϑ is the firing threshold[49]

The PDF in Figure 2.16 helps to characterize threshold triggering while introducing bio-plausible
variability [50], so an exponential function is used to calculate the surrogate gradients. This algorithm
is based on BP and needs other techniques in section 2.1 for computation and memory efficiency.

DECOLLE
DECOLLE [51] is more like the LEL with fixed local classifiers, shown in Figure 2.17, and the layer-wise
true targets are replaced by predefined layer-wise pseudo-targets. It also uses surrogate gradients to
learn effectively in SNNs.

Figure 2.17: DECOLLE: Bi is the layer-wise fixed and random matrix, Y i is the layer ouput, Ŷ 1 is the layer-wise
pseudo target and surrogate gradients is used to generate the gradient flows in the dashed line [51].

Because of the dynamics of the spiking neuron itself, this algorithm can also solve the temporal
credit assignment problem and, because it is derived from LEL, weight symmetry and update locking
problems can be solved.

Time-to-first-spike learning
Time-to-first-spike learning [52] is designed for the TTFS coding scheme [53]. This coding scheme will
let the most significant feature be input to the network first, see Figure 2.18. Compared to the rate
code, TTFS has a significant advantage in information transmission efficiency because of the sparsity
of spikes [54]. The authors of [52] propose a learning algorithm based on BP, with a loss function that
generates errors in terms of time differences. However, encoding and decoding for TTFS are more
complex than those for the rate code [54], which causes a loss of efficiency due to the coding scheme.

2.4. Conclusions 16

Figure 2.18: Time-to-first-spike learning: Squares are inputs, and the darker the color, the earlier the spike enters
the network [52].

2.4. Conclusions
In this chapter, we investigated several state-of-art algorithms that offer low-cost learning schemes
compared to BP. In order to be able to solve the problem of spatial and temporal credit assignment at
the same time, we proposed a design that combines the use of e-prop and LEL. However, designing
such on-chip-learning hardware relying on multiple RNN cores is beyond the scope of this project.
Therefore, we prioritize the implementation and validation of the part that is applicable to multicore
learning, i.e., the LEL learning algorithm. At the same time, we would like to validate its capability on
complex datasets and the possibility of deploying it on edge devices, so we will use a simple CNN
design with LEL for CIFAR-10 image classification.

3
PyTorch model design

This chapter explains the construction and determination of the on-chip LEL neural network model
by neural architecture search (NAS). To begin, the applicable quantization scheme for the model will
be formulated. Next, the basic layer building blocks and structure of the model will be determined
according to the task and hardware constraints. Lastly, the final model will be determined via NAS.

3.1. Quantization scheme
FPGAs and ASICs for edge computing have limited logic and memory resources. Thus, floating-point
calculations and the storage of high-precision floating-point numbers have high power and area usage
costs [55]. As the model will be verified on the FPGA platform, a key modification is the application of
a quantization scheme to enable training with fixed-point numbers or integers. However, many popular
andmature quantization schemes nowadays are oriented towards inference-onlymodels [56], which we
will review first (Section 3.1.1). As this project requires research and design of a quantization scheme
specific to low-cost on-device training, training-oriented schemes, together with the custom proposed
approach, will be covered in Section 3.1.2 and 3.1.3, respectively.

3.1.1. Basic inference-oriented quantization
The PyTorch [57] machine learning framework supports two kinds of quantization schemes: post-
training quantization (PTQ) (Figure 3.1) and quantization-aware training (QAT) (Figure 3.2). PTQ quan-
tizes the 32-bit floating-point (FP32) weights and activations of a model to 8-bit integers (INT8) after
training. PTQ provides a simpler way to quantize models and is appropriate when retraining is not
desired. QAT, in contrast, applies fake quantization (fake_quant) function to weights and activations
during the training process, which can improve inference performance of the quantized model com-
pared to PTQ [58].

Figure 3.1: Diagram of PTQ training: Act. is the
abbreviation for activation. Adapted from [59]

Figure 3.2: Diagram of QAT training: FQ is the
fake_quant function. Adapted from [59]

17

3.1. Quantization scheme 18

The diagram of fake_quant is illustrated in Figure 3.3. During the inference phase (forward path),
the input value is multiplied with the quantization scale value n, which can be expressed as n ∼ 2k−1,
where k is the bit resolution, and is fine-tuned with runtime statistics in PyTorch. Following this, a
rounding function is applied, and the scale value n is then removed. This process allows the input value
to be transformed into a value that can be directly represented using the the chosen INT type (e.g., INT8
for 8-bit quantization). During the backpropagation phase (backward path), since the rounding function
is non-differentiable, a surrogate gradient is required for it. Here, the straight-through estimator (STE)
[60] is used. It can be simply expressed as fake_quant′ ≈ 1.

Figure 3.3: Diagram of fake_quant function: n is the quantization scale

Being applied after the training phase, PTQ is not suitable for on-chip learning. Regarding QAT,
although quantization is incorporated into the training process, the error and gradient values remain
unquantized to ensure accuracy, which is not adequate for on-chip learning either.

3.1.2. Training-oriented scheme: WAGE
The surveys [56, 61] list numerous quantization schemes, among which WAGE [62] goes beyond
inference-only schemes by quantizing not only weights and activations, but also errors, gradients, and
weight updates. As this meets our general requirements, we will further investigate it.

Quantization function: The basic quantization function of WAGE is as follows:

σ(k) = 2k−1, k ∈ N+

Q(x, k) = clip{(1
σ(k) · round[x · σ(k)]),−1 +

1
σ(k) , 1−

1
σ(k)}

(3.1)

where 1/σ is the uniform distance between discretized values, k is the bit resolution, x is the input
value, Q is the quantized value and clip is the saturation function to clamp the values to the range
[−1 + 1

σ(k) , 1 −
1

σ(k)]. The STE is applied in the backward phase in this function, that is Q′(x, k) ≈ 1.
The quantization function in WAGE is similar to the fake_quant used in QAT, but here σ is used as a
fixed scaling value with respect to bit resolution.

Weight initialization: The weight initialization in WAGE uses a modified Kaiming initialization
method [63], which can be formulated as:

W ∼ U(−L,+L), L = max{
√

6/nin, Lmin}, Lmin =
β

σ
(3.2)

where W is the weight matrix, U is the uniform distribution, L is the limit of the distribution, nin is the
input size of the layer and β is a constant larger than 1 to create overlaps between minimum step size
σ and L. Figure 3.4 illustrates the case where Lmin is not used, and the L of the distribution is smaller
than 1/σ. For instance, define a uniform distribution with L < 1/σ and 1/σ = 0.125. Then, in the case
without quantization, sampling from the uniform distribution gives the result in Figure 3.4(a). And with
quantization, one can obtain the result in Figure 3.4(b), where all values are 0. Thus the upper and
lower bounds of the uniform distribution should be larger than 1/σ.

This initialization method in Equation 3.2 takes into account this problem, and should therefore be
used instead of the PyTorch’s built-in initialization method.

Scaling factor: In addition to the fixed scaling value σ mentioned at Equation 3.1, an adjustable
scaling factor α is introduced in WAGE to transform the mapping range. Depending on the use case,
it takes different values.

3.1. Quantization scheme 19

Figure 3.4: Difference in sampling from uniform distribution: Red dashed lines show the position of −1/σ and 1/σ.
(a) Sampling result from uniform distribution with L < 1/σ and values are not quantized. (b) Sampling result from

the same uniform distribution and values are quantized.

When it is used to scale the activation, the quantization function can be expressed as:

QA(a) = Q(a/αA, kA) (3.3)

where a is the activation, kA is the bit resolution of the activation. The value of α at this point can be
calculated by:

Shift(x) = 2round(log2x) (3.4)
αA = max{Shift(Lmin/L), 1} (3.5)

This value can be used to mitigate the amplification problem, i.e. a larger variance of quantized weights
generated during weight initialization.

When it is applied to the error, the quantization function for the error can be expressed as:

QE(e) = Q(e/Shift(max{|e|}), kE) (3.6)

where e is the error, kE is the bit resolution of the error and |e| is the absolute value of error. This
method provides low-loss quantization for errors, but to obtain the maximum absolute value we still
need to observe the unquantized value, which is problematic for hardware implementation.

Weight update: Finally, for quantizing the gradients g in the weight update phase, authors used
the following method:

gs = η · g/Shift(max|g|) (3.7)

∆W = QG(gs) =
1

σ(kG)
· sgn(gs) · {⌊|gs|⌋+Bernoulli(|gs| − ⌊|gs|⌋)} (3.8)

where η is the learning rate, kG is the bit resolution of the gradient, sgn is the sign function, ⌊⌋ is the floor
function and Bernoulli is a function that samples from the Bernoulli distribution, in order to perform a
stochastic rounding of the gradient.

3.1.3. Design of the quantization scheme
For our quantisation scheme, we use WAGE’s design of the quantization function and weight initializa-
tion, which are Equation 3.1 and Equation 3.2, as they are feasible on hardware. For the other parts,
we will simplify the design.

We will retain the shift-based idea for the scaling factor used in the activation quantization, but
we will tune the value of α during NAS for maximum accuracy. We also aim to simplify the design in
WAGE for scaling factors used in error quantization. Therefore, in our quantization scheme they will
be replaced by tunable hyperparameters. Due to the short single-layer path for backpropagation of
error in LEL, the aforementioned amplification effect is less pronounced, so we can remove the scaling
factor for layer-to-layer error quantization, and only one scaling factor will be applied at the final loss of

3.2. Network architecture 20

local classifier. In gradient quantization, the scaling factor is also removed for simplicity. The design of
our quantization scheme can be summarized as follows, based on the above description:

QW (w) = Q(w, kW) (3.9)
QA(a) = Q(a/αA, kA) (3.10)
QG(g) = Q(g, kG) (3.11)

QE,Loss(e) = Q(Act′(eLoss ∗ αE), kE) (3.12)
QE(e) = Q(e, kE) (3.13)

where kW , kA, kG, kE are the bit resolution for the weights, activations, gradients, and errors, re-
spectively, αA, αE , αE are the scaling factors for activations and errors, Act′ is the derivative of the
nonlinear activation function of the final layer, QE,Loss is the quantized error from loss function and QE

is the quantized error between layers.
This stochastic rounding method is derived from [64] and is thought to avoid local minima and

overfitting [65]. However, in [58], it performs worse than the usual rounding scheme. Moreover, in
hardware implementations, extra hardware is needed to implement this functionality. Therefore, we
will not implement stochastic rounding in hardware. Thus, instead of stochastic rounding, stochastic
weight updates [66] are used here to simplify the weight update implementation on hardware. This
method can be formulated as follows:

pg = clip{gw · lr,−1,+1}
∆W = 1

σ(kW) · sgn(pg) · {Bernoulli(|pg|)} (3.14)

where gw is the gradient with respect to the weight, lr is a shift-based learning rate, pg is the update
probability. This weight update method differs from the conventional method in that the magnitude of
weight update is limited to either the minimum step size 1

σ(kW) or 0, with the update value taking one
of three options: {− 1

σ(kW) , 0,+
1

σ(kW)}. The sign of the weight update is determined by the sign of the
gradient with respect to weight, but the magnitude of the gradient is now considered as the probability
of the weights being updated.

3.2. Network architecture
The project objectives state our aim to construct a network suitable for CIFAR-10 image classification by
adjusting the network architecture to match the hardware conditions. This section provides a discussion
of the neural network layers that will be (or not be) used in our setup. The following layers and modules
required for LEL will be used to construct a neural network architecture that is ready for NAS.

3.2.1. Basic layers and modules
To perform the CIFAR-10 image classification task, it is common to employ convolutional neural net-
works (CNNs). This is because CNNs can utilize the known spatial structures present in natural images
through convolutional layers [67].

Convolutional layer: A key layer of a CNN is the convolutional layer, which performs a convolu-
tional operation on a two-dimensional input. The process of convolution layers can be regarded as
a convolution of two two-dimensional matrices, resulting in a new two-dimensional matrix. A simpli-
fied expression of this process is demonstrated below (to simplify the implementation, the bias term is
omitted): A0,0 A0,1 A0,2

A1,0 A1,1 A1,2

A2,0 A2,1 A2,2

 ∗ [K0,0 K0,1

K1,0 K1,1

]
=

[
O0,0 O0,1

O1,0 O1,1

]
(3.15)

where A is the input pixel, K is the convolution kernel weight, O is the output feature map pixel and ∗
is the convolution operator. We can express the calculation of each output of the above as:

Oi,j =
∑
a

∑
b

(Ai+a,j+b ·Ka,b) (3.16)

where i and j are the indices of the output feature map, a and b are the indices of the kernel weights
and · is the multiplication operator. The equation shows two important properties of convolution s[67]:

3.2. Network architecture 21

• Locality: When computing an output, the convolution kernel operates on only a small area of the
input image. As a result, the neural network can assign higher priority to the information contained
in the local regions of the image.

• Translation invariance: Shifting the first two columns of Equation 3.15 one column to the right
will move the result originally at position (0,0) to position (0,1) of the output feature map. This
enables the neural network to detect specific objects or structures across the input image.

The prior knowledge provided by convolution enables the neural network to understand the relationship
between local and global information in an image. This understanding helps the network process the
image efficiently and accurately to perform various tasks, including image classification and object
recognition. In addition to the above properties, in hardware, the number of parameters (i.e. kernel
weights) that need to be stored is small, thus leading to low overhead of memory accesses as well as
storage.

Figure 3.5: Conventional convolution: K is the convolution kernel and FM is the feature map

In PyTorch, the default convolutional layer performs the following operations as shown in Figure 3.5.
The three images located on the left side of Figure 3.5 represent the three channels of the input RGB
image for the convolutional layer. Each image undergoes convolution with three distinct convolutional
kernels, and their resulting outputs are summed and transferred to the feature map. To minimize the
required parameter storage and computation overheard on hardware and to simplify memory access
logic, instead of this standard convolution method, we will use depthwise convolutions.

As shown in Figure 3.6, the input channel image is directly convolved using a single convolution
kernel, and the results are go to independent feature maps. Summation of the results of different in-
put channels is not required. For the same number of output feature map channels, the parameter
storage requirements are one-third that of the previous design, and the amount of computation is simi-
larly reduced. This approach eliminates the ability to communicate between input channels within the
convolutional layer, thus compromising accuracy in exchange for lower memory and computational
overhead.This tradeoff will be analyzed quantitatively during NAS in Section 3.3.

Since the convolutional layer’s learning calculation is complex, the convolutional layer will not be
trained on hardware. The values of the convolution kernel will either be fixed randomly or pre-trained,
both of which will also be analyzed during NAS in Section 3.3

Pooling layer: A pooling layer is usually applied after a convolutional layer to reduce the feature
map size, and it serves the two purposes of mitigating convolutional layers sensitivity to location and
downsampling spatial representations [67]. Similar to the convolutional layer, it relies on a sliding win-
dow. However, unlike the convolutional layer, its window does not contain trainable values; it performs
an operation on the input values that can be observed within this window. Max pooling and average

3.2. Network architecture 22

Figure 3.6: Depthwise convolution

pooling layers are commonly used pooling layers. Max pooling (shown in Figure 3.7) finds the maxi-
mum value within the window, while average pooling averages the input values within the window. The
preferred pooling option will be determined during NAS in Section 3.3.

0 1

-3 5

7 -1

6 -11

2 11

-1 4

-1 0

-4 -7

11

7

0

Input feature map Output feature map

5

Figure 3.7: Max pooling: The maximum value in the purple box of the input feature map goes to the output feature
map.

Fully-connected layer: The fully-connected layer is the most basic layer of a neural network, which
can be expressed as the multiplication of two matrices (to simplify the implementation, the bias term is
removed): [

W0,0 W0,1 W0,2

W1,0 W1,1 W1,2

]
·

X0

X1

X2

 =

[
Y0

Y1

]
(3.17)

where W is the weight, X is the layer input and Y is the layer output. In contrast to the convolutional
layer, the number of parameters in a fully-connected layer is directly correlated with the input and
output size, resulting in significant hardware overhead due to memory usage. Thus, in this layer, our
aim is to reduce the number of weight parameters. Reducing the input and output dimensions of the
fully-connected layer will negatively impact performance. Beyond a reduction in the parameter count,
reducing the output dimensions will reduce the representation ability of the attached local classifier,
while reducing the input dimensions will negatively impact the sizing of the preceding convolutional

3.2. Network architecture 23

layer. Therefore, to minimize the parameter count while maintaining the same input and output size, a
parallel fully-connected layer structure is introduced.

Figure 3.8: Parallel fully-connected layer: FC is the fully-connected layer

The architecture is displayed in the dashed box in Figure 3.8. Here, one input is divided into four
smaller pieces, each of which is separately input to a fully-connected layer. The outputs of the four
fully-connected layers are then concatenated to form a single output that is fed to the next layer. This
approach significantly reduces the number of parameters (by a factor of four in this case) compared
to a single fully-connected layer. Additionally, the input and output sizes remain the same. The fully-
connected layer architecture will be determined in the NAS section.

Normalization layer: The batch normalization layer [68] is widely used in neural networks for image
classification for its ability to effectively improve network performance [67]. The leftmost subplot of
Figure 3.9 shows that the batch normalization layer calculates the mean and variance of feature maps
within a channel in a batch. The input feature maps are normalized based on the calculated mean and
variance. The normalization can be expressed as:

yfc =
x− µx√
σ2
x + ϵ

· γ + β (3.18)

where yfc is the output feature map of the fully-connected layer, x is the input feature map, µx is the
mean of the input feature map, σ2

x is the variance of the input feature map, ϵ is a value for numerical
stability, γ and β are two learnable parameters that can be assimilated to a weight and a bias. There are

Figure 3.9: Normalization methods: Each subplot is shows a feature map tensor. Blue parts
will be used to calculate the mean and variance. H and W is the feature map height and width,

C is the number of channels of the feature map and N is the batch size [69].

two significant issues with using normalization layers in our on-chip learning system. The first issue
is that on-chip learning will use an online learning method, i.e., stochastic gradient descent (SGD)
with batch size N=1. This results in the N-axis in Figure 3.9 not existing at all, making the batch

3.2. Network architecture 24

normalization layer meaningless. The second issue is the high computational complexity involved
in computing the mean, variance, and gradient of the normalization layer. Thus, we must abandon the
use of normalization layers in our model.

Interlayer nonlinear activation function: For nonlinear activation functions placed between differ-
ent network layers, a popular choice is the rectified linear unit (ReLU) [70]. It can be expressed simply
as:

yReLU = max(0, x) (3.19)

where yReLU is the ReLU function output. We will select this interlayer nonlinear activation function
because it is easy to implement on hardware and performs well on various tasks.

Output nonlinear activation function and loss function: In this case, the nonlinear activation
function is placed after the output layer, so we need to discuss it together with the loss function. For
classification tasks, a commonly used activation is softmax. Softmax is expressed as follows:

ysoftmax,j =
exp(xj)∑
k exp(xk)

(3.20)

where ysoftmax,j is the softmax function output for output neuron j. The function has the ability to
convert each output value from the output neurons into a probability for each class, where the sum of
the probabilities is always equal to 1. This is why it is effective for classification tasks. The cross-entropy
loss function can be derived by taking the logarithm of the softmax output values and subsequently
applying the negative log likelihood loss function. Although the use of the cross-entropy loss function
has shown to be effective, it involves costly computations on hardware such as division and exponential
operations. To avoid the computations related to logarithms and divisions, the combination of the hard
sigmoid function [71] and the mean squared error (MSE) function is employed instead.

Hard sigmoid is a piece-wise linear function with the same upper and lower bounds as the sigmoid
function, which can be expressed as:

yhs = clip{x+ L

2 · L
, 0,+L} =


0 if x < −L,
1 if x > L,

x+L
2·L otherwise

(3.21)

where yhs is the hard sigmoid function output and L is the limit. Usually, L is chosen equal to 1.
However, because we will use this layer in a quantized model, the network output values are scaled
compared to the floating-point values in the unquantized model. Therefore, we consider L as a tunable
hyperparameter, and its value will be fine-tuned in NAS. This nonlinear activation function is similar to
ReLU and easy to implement in hardware.

However, it also shares a similar problem with ReLU, which is the ”dying ReLU” problem [72]. If the
absolute value of the input is greater than the predefined value of L, the derivative of the corresponding
function evaluates to 0. Consequently, this input value cannot contribute to the training of the neural
network. Because of this, two types of hard sigmoid functions were defined in PyTorch. The first one
follows the original definition, and its derivative evaluates to 0 when the absolute value of the input is
larger then the limit L. The second type has a surrogate derivative, which evaluates to 1

2·L . The two
variants will be analyzed during NAS in Section 3.3.

The MSE function and its partial derivative to one ouput of the last nonlinear activation function can
be expressed as:

lossMSE =
1

n

n∑
i=1

(yi − y∗i)
2 (3.22)

∂lossMSE

∂yi
=

2

n
(yi − y∗i) (3.23)

where n is the number of class, y is the ouput of the last nonlinear activation function, y∗ is the target
label. Calculating the derivative of the MSE does not require any exponential operations. Additionally,
the division involved in the calculation has a constant value that can be merged into the scaling factor
of the loss required for quantization. Whether to include this division in the hardware design or not
depends on the value of the scaling factor, which will preferably be considered to power-of-2 values in
order to use shift operations.

3.3. Neural architecture search (NAS) 25

Optimization algorithm: Minibatch stochastic gradient descent (SGD) is one of the most widely
used optimization algorithms. Compared to gradient descent and online (i.e. batch-size-1) SGD, mini-
batch SGD is more efficient [67]. In our on-chip learning design, the batch size is limited to one, which
restricts the algorithm choice to online SGD, resulting in simpler hardware design. However, when us-
ing computers or computing clusters, a batch size of one will cause significantly longer training times,
as computation cannot be parallelized anymore. Therefore, in our NAS, we continue to use minibatch
SGD and only switch to online SGD for verification during the hardware implementation phase. Al-
though optimization algorithms like RMSProp [73] and Adam [74] enhance training efficiency, they
both require logged parameter history and additional computation, which makes them impractical for
hardware implementations.

Local classifier: The local classifier is amodule that LEL requires and functions as a fully-connected
layer with a loss function. We do not plan to use the parallel fully-connected layer for it because the fully-
connected layer here has only 10 outputs in total, corresponding to the number of CIFAR-10 classes.
As discussed in Section 2.1.1, the use of a trainable local classifier has resulted in improved perfor-
mance, however, it does not address the weight symmetry issue. So, fixed and random weights will be
used for this fully-connected layer in hardware.

3.2.2. General network structure
The general CNN model can be constructed by incorporating the necessary layers and modules. Fig-
ure 3.10 shows red and green layers which are specific designs required for LEL and BP, respectively.
This implies that they are mutually exclusive, hence only one of them can be present in a network.
Later in the test, we will compare the performance difference between LEL and BP using this setup.
The layers shown in the figure are placed within separate boxes and these boxes serve as the funda-
mental unit for modulation of network depth. The boxes containing convolutional and pooling layers
are named Convolution (Conv) blocks, while those including fully-connected layers are designated as
fully-connected (FC) blocks. This method enables easy computation of the number of cores and their
tasks during hardware design. The solid box represents mandatory components within the network,
while the dashed box can be adjusted based on NAS results. Being a CNN, the convolution layer and
pooling layer in Conv-B0, as well as the fully-connected layer in FC-B0 are compulsory.

3.3. Neural architecture search (NAS)
This section details the process of performing NAS to configure the final the neural network architecture.
The network structure will be established by simple tests to determine its depth and the layer config-
uration shown in Figure 3.10. Subsequently, the designed quantization scheme will be applied to the
network and, by sweeping, the quantization resolution and related hyperparameters will be determined.

3.3.1. Number of fully-connected blocks
It is shown in [25] that applying LEL imposes an upper limit on the number of layers in the network.
Exceeding this limit will not result in performance improvements using LEL. Thus, establishing the
upper limit of the number of layers is a crucial aspect of our design.

Experiment setup: The network configuration and setup are shown in Table 3.1. To evaluate the
upper limit of the model’s performance, the local classifiers in the model will have trainable weights,
their outputs will be passed to the cross-entropy loss function, and the Nesterov momentum will be
used. The results will be the average of the last three epochs of each of the three trials.

Results: Table 3.2 lists the training and test set performance of each network block. The first
FC block substantially improves performance (+2.7%) while the second and third FC blocks have no
significant impact on performance (+0.01% and -0.06%, respectively). In order to be able to validate
multi-core training in hardware as a proof of concept, the design with two FC blocks is nevertheless
chosen here.

3.3.2. Fully-connected layer setup
In the section 3.2, we explained the reasons for the parallel fully-connected layer design, and here we
compare it with the conventional FC design to choose the specific implementation in the FC block.

Experiment setup: Table 3.3 shows the two configurations used for this experiment. Both configu-
rations have an identical number of weights and thus an identical memory cost. This requires adapting

3.3. Neural architecture search (NAS) 26

Figure 3.10: General CNN block diagram: HS is the hard sigmoid function. Red and green layers are specific
designs required for LEL and BP. Solid boxes represent mandatory components within the network, the dashed

boxes represent adjustable components.

the hidden layer size and thus adapting the number of output features from the Conv-B1 block.
Results: In Table 3.4, we can see that accuracies from the single FC layer setup suffer from the

reduced hidden layer size. This phenomenon may be due to the degraded performance of the Conv-B1
through a smaller number of output features as well as smaller local classifiers. Using a larger hidden
size can lead to better performance for the same number of weights, so our model will use parallel
fully-connected layers.

3.3. Neural architecture search (NAS) 27

Table 3.1: Setup for the number of FC blocks experiment, inspired from [25]

Configured items Setup

Network depth 5 (2 Conv blocks, 3 FC blocks)
Hidden size between FC blocks 480
Convolutional blocks Trainable kernels
Local classifiers Trainable weights
Loss function Cross-entropy loss
Optimizer SGD with Nesterov momentum of 0.9
Batch size 100
Number of training epochs 40
Number of training trials 3

Table 3.2: Results for the number of FC blocks experiment, shown as the mean and standard deviation of accuracy over 3
trials and 3 epochs

Conv-B0 Conv-B1 FC-B0 FC-B1 FC-B2

Train set accu-
racy (%)

97.93 ± 0.11 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Test set accu-
racy (%)

67.03 ± 0.16 78.04 ± 0.27 80.73 ± 0.19 80.74 ± 0.18 80.69 ± 0.24

3.3.3. Convolutional blocks setup
Now that the FC blocks have been determined, we can turn our attention towards identifying a suitable
setup for the Conv blocks in the hardware. As Conv blocks do not need to be trained in hardware, our
focus will be on the following three aspects:

• Computational complexity: Different convolutional kernel size as well as step size, and different
hidden layer sizes affect the amount of computation, which can also be called as computational
complexity. High computational complexity leads to high power consumption as well as compu-
tation time, so in experiments, configurations should be chosen that have the lowest possible
computational complexity without significant performance degradation, by counting the number
of multiply–accumulate (MAC) operations.

• Input hidden size of the first FC block: The hidden size is directly related to the number of
weights in the FC blocks, and thus affects the energy consumption and area overhead of the
model on the hardware. Therefore we need to focus on the size of the feature map output by the
last Conv block, which determines the input hidden size of the first FC block.

• Implementation complexity: This project mainly validates the LEL learning algorithm, and the

Table 3.3: Setups for the FC layer setup experiment. Other parameters are as per Table 3.1

Configured items Setup for parallel FC layers
(PARA)

Setup for single FC layer (SIN-
GLE)

Network depth 4 (2 Conv blocks, 2 FC blocks) 4 (2 Conv blocks, 2 FC blocks)
FC layer setup 4 parallel fully-connected layers Single fully-connected layer
Hidden size between FC
blocks

480 240

Number of weights 57.6k 57.6k

3.3. Neural architecture search (NAS) 28

Table 3.4: Results for the FC layer setup experiment, shown as the mean and standard deviation of accuracy over 3 trials and
3 epochs

Conv-B0 Conv-B1 FC-B0 FC-B1

Train set accuracy (PARA) (%) 97.87 ± 0.10 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Test set accuracy (PARA) (%) 66.91 ± 0.19 77.84 ± 0.23 80.1 ± 0.22 80.10 ± 0.19
Train set accuracy (SINGLE) (%) 97.85 ± 0.14 99.96 ± 0.01 100.0 ± 0.0 100.0 ± 0.0
Test set accuracy (SINGLE) (%) 66.96 ± 0.21 76.31 ± 0.34 79.79 ± 0.24 79.69 ± 0.21

Conv blocks will not be trained in hardware. Therefore the hardware implementation of the Conv
blocks should be kept simple.

The aim of the experiment is to identify various configurations of convolutional and pooling layers that
meet these three aspects and deliver acceptable performance.

Experiment setup: Table 3.5 shows the basic configuration used for this experiment. The variable
parts in the Conv blocks are shown in Table 3.6.

Table 3.5: Setups for the Convolutional blocks setup experiment. Other parameters are as per Table 3.3

Configured items Setup

Network depth 1 or 2 Conv blocks with 2 FC blocks
Convolutional blocks Configurable as per Table 3.6
Number of training epochs 100
Number of training trials 1

Table 3.6: Configurable options in convolutional blocks

Variable options

Kernel size of convolutional and pooling layers
Kernel stride of convolutional and pooling layers
Number of output channels of convolutional layers
Depthwise convolution mode of convolutional layers
Type of pooling layers: max pooling or average pooling
Number of Conv blocks

In these experiments, the performance of the model is based solely on the output of the last FC block
and is averaged over the last 3 epochs. The network’s rough count of MAC operations and hidden size,
calculated by torchinfo [75], are recorded and utilized to determine the most efficient configuration.

Results: Table 3.7 lists the configurations tested, and Figure 3.11 shows the relationship between
performance and computational complexity (number of MAC operations) and hidden size correspond-
ing to each configuration. In terms of computational complexity and hidden size, Setup4 is the best
choice. However, we can find that it uses two Conv blocks. In comparison, Setup3 has a simpler de-
sign with only one convolutional layer and has a small performance gap (-0.53%), so it will be chosen
for hardware implementation.

We have finalized the CNN architecture and illustrated it in Figure 3.12. The dashed boxes displayed
in the figure illustrate the size of the data stream. As convolutional layers are not trainable on hardware,
there is no local classifier in the Conv block.

3.3. Neural architecture search (NAS) 29

Table 3.7: Shown experiment setups for Conv blocks setup: ”[]” lists configurations in different Conv blocks

Setup1 Setup2 Setup3 Setup4 Setup5 Setup6

Number of Conv
blocks

1 1 1 2 2 1

Kernel size of convo-
lutional layer(s)

5 3 3 [3,3] [5,5] 3

Kernel stride of con-
volutional layer(s)

1 1 1 [1,1] [1,1] 1

Number of output
channels of convolu-
tional layer(s)

12 12 24 [12,36] [9,36] 24

Depthwise convolu-
tion mode

3 3 3 3 3 7

Kernel size of pool-
ing layer(s)

2 3 3 [2,3] [3,3] 3

Kernel stride of pool-
ing layer(s)

2 2 3 [2,2] [2,2] 3

Type of pooling Max Max Max Max Max Max
Test set accuracy
(%)

65.01 66.06 68.55 69.08 70.55 69.92

Figure 3.11: Results for Conv blocks experiment

3.3.4. Quantized network sweep
After acquiring a suitable network, we can proceed to applying the quantization scheme to the network
and sweep to find the best combination of hyperparameters.

The diagram in Figure 3.13 illustrates the operations carried out during inference in the quantized
untrainable Conv block, and the bit resolution of all the data streams in this block. The weights are
written to memory with the quantized values during initialization, and are subsequently read out without
the need to apply the quantization function again.

Figures 3.14 and 3.15 illustrate the operations carried out in the quantized FC block during inference
and training, as well as the bit resolution of all the data streams within the block. As the data flow paths
and operations in FC block 1 are consistent with those of FC block 0, its block diagram is omitted in
Figure 3.14. The weights in the FC layers are also stored in a quantized format, which is preserved

3.3. Neural architecture search (NAS) 30

Figure 3.12: Finalized CNN architecture: The parallel FC structure in FC block 1 is omitted because it is the same
as in FC block 0.

Figure 3.13: Quantized Conv block (forward path): In and Out are the input and output data streams of current
dashed box. Green texts and purple texts show the bit width and contents of the data streams, respectively.

during the backward pass as the stochastic update module ensures that the minimum quantized step
is used to update the weights.

We conduct a parameter sweep to determine the optimal training hyperparameters for different
weight resolutions. By default, 8 bits are utilized for the resolution of activation, gradient, and error.
Bit-width sweeps for activations, gradients and errors are outside the scope of this thesis.

Experiment setup: Table 3.8 shows the four configurations used for this experiment. Each config-

3.3. Neural architecture search (NAS) 31

Fi
gu

re
3.
14
:Q

ua
nt
iz
ed

FC
bl
oc
k
(fo
rw
ar
d
pa
th
):
G
re
en

te
xt
s
an
d
pu
rp
le
te
xt
s
sh
ow

th
e
bi
tw

id
th
an
d
co
nt
en
ts
of
th
e
da
ta
st
re
am

s,
re
sp
ec
tiv
el
y.

Fi
gu

re
3.
15
:Q

ua
nt
iz
ed

FC
bl
oc
k
(b
ac
kw

ar
d
pa
th
):
G
re
en

te
xt
s
an
d
pu
rp
le
te
xt
s
sh
ow

th
e
bi
tw

id
th
an
d
co
nt
en
ts
of
th
e
da
ta
st
re
am

s,
re
sp
ec
tiv
el
y.

3.3. Neural architecture search (NAS) 32

uration is evaluated for performance at 5 different weight bit resolutions.

Table 3.8: Model setup for quantized network sweep. Other parameters are as Setup3 in Table 3.7

Configured items S1-Baseline S2-LEL S3-LEL S4-LEL

Learning algorithm BP LEL LEL LEL
Convolutional layer
weights

Trainable Trainable Fixed & pre-
trained

Fixed & random

Local classifier
weights

Not available Trainable Fixed & random Fixed & random

Output nonlinear ac-
tivation function

Hard sigmoid Hard sigmoid Hard sigmoid Hard sigmoid

Loss function MSE MSE MSE MSE
Optimizer Vanilla SGD Vanilla SGD Vanilla SGD Vanilla SGD

Table 3.9: System setup for quantized network sweep

Configured items Setup

Sweep parameters αA,Conv, αA,FC , αE and the hard
sigmoid derivative

Sweep metric Test set accuracy
Sweep agent WandB [76] sweep function
Sweep method ”Bayes” method [77]
Early stopping Enabled with ”hyperband” method

[78]
Number of sweeps on each setup Minimum 20
Number of training epochs for each
sweep

100

Number of training trials for each
sweep

1

Number of training epochs for final
performance evaluation

100

Number of training trials for final per-
formance evaluation

5

Table 3.9 shows the system configurations used for the parameter sweep. Because the output part
of the local classifier does not undergo quantization operations, there is no need to scale the activation
of the local classifier. Therefore, we do not incorporate the hypeparameter αA,LC in the sweep. The
”Bayes” sweep method and ”hyperband” early stopping method are used to accelerate the process of
the parameter sweep. However, it may also fail to find a suitable combination of parameters, so we
specify a lower limit on the number of parameter sweeps on each setup, but do not include an explicit
upper bound.

Once the hyperparameters have been selected by sweeping, a formal performance evaluation of
the quantized network will be performed. Five trials were made to train each setup model for 100
epochs. The ultimate outcome is obtained by averaging these five final results. The most appropriate
model for the hardware implementation will be chosen from among them.

Results: Figure 3.16 displays the performance of each model setup, paired with respective bit
resolution weights. The blue bars indicate the performance of the unquantized model, which serves as

3.4. Conclusions 33

the baseline for this experiment. It is observed that the performance of the quantized model decreases
as the weight resolution is reduced. The performance drops severely with 5-bit resolutions.

Upon comparison between the models using pre-trained convolutional kernels and random ones,
the model using pre-trained kernels exhibits better performance, so we will choose S3-LEL setup, es-
pecially as trainable local classifiers do not offer any significant accuray boost (see S2-LEL).

To minimize hardware footprint, we will select a resolution of 6 bits, which still offers a decent clas-
sification accuracy (64.47%) compared to its 5-bit counterpart (61.14%).

Therefore, the S3-LEL setup using 6-bit weights was selected as the model for hardware implemen-
tation. The hyperparameters and the configuration of hard sigmoid function are shown in Table 3.10.

Table 3.10: Configuration of hyperparameters and hard sigmoid function of the final model

Value or configuration

αA,Conv 2
αA,FC0

16
αA,FC1 8
αE 500
Hard sigmoid L=2, non-zero surrogate derivative

Figure 3.16: Results for quantized network sweep: FP is the floating-point model and QuantX denotes on X-bit
resolution model

3.4. Conclusions
This chapter provides a detailed description of how the PyTorch neural network model used in this
project was designed and configured. Following performance comparisons of various designs, config-
urations and hardware-oriented trade-offs, we have decided to utilize the network structure depicted in
Figure 3.12, the quantization scheme presented in Figures 3.13, 3.14 and 3.15, and the hyperparame-
ter configurations outlined in Table 3.10. The network is now prepared for hardware implementation.

4
Hardware design

This chapter explains how we implemented the PyTorch model in hardware. Firstly, we will explain the
implementation of the main hardware submodules. Next, we will explain the implementation of each
core in our multi-core platform. Subsequently, we will use these cores to develop our on-chip multi-core
learning platform. Finally, we deploy this platform to an FPGA and evaluate its performance.

In this chapter, hardware design is presented in a hierarchical bottom-up structure. Section 4.1
covers the design of submodules. Section 4.2 introduces the two cores designed by integrating the
sub-modules, for the FC block and Conv block, respectively. Section 4.3 describes the design that
integrates the core and applies it to the FPGA board.

4.1. Submodule design
This section presents the design of several important hardware submodules. These submodules are
used to perform computational or layer functions that implement the respective parts of our neural
network. Before presenting these submodules, we will introduce the environment used for behavioral
simulation and the block random-access memory (BRAM) design for on-chip data storage in this sec-
tion.

Simulation environment: We utilize cocotb [79] and Icarus Verilog [80] as the verification frame-
work and simulator for behavioral simulation, respectively. Writing a testbench with cocotb only requires
the use of Python. Cocotb interacts with the Icarus Verilog simulator to generate the device under test
(DUT) for behavioral simulation. Consequently, waveform files and corresponding port outputs are
generated. Application of this simulation environment significantly simplifies and expedites the design
workflow. Additionally, software libraries such as NumPy [81] or PyTorch can be included in the Python-
written testbench, which facilitates direct comparison of software and hardware implementations.

BRAM design: BRAM is a memory resource on the FPGA, so for various types of large matrices in
neural networks, such as weight matrices, storing data in BRAM avoids consuming the limited lookup
table (LUT) resources, which are basic FPGA building blocks that can be flexibly configured for logic
or storage. BRAM instances were generated using standard Xilinx templates.

4.1.1. Matmul submodule
The parallel fully-connected layer is the most significant component of the FC block. A small fully-
connected layer within a parallel fully-connected layer has a size of 600 input neurons by 480 output
neurons (as shown in Figure 3.12). It is costly to directly design dedicated MAC units for each output
neuron, so we use the time-divisionmultiplexing technique, where eachMAC unit will be reusedmultiple
times for different output neurons.

Figure 4.1 depicts the block diagram of the matmul module. The ”neuron” unit is composed of a
MAC unit, there are four of them in the design. The weight input port for this module has a width of 4*6
bits due to the presence of four computational units.

The purpose of each port is as follows:

• input (8bits): Only one 8-bit input data shared across neurons will be involved in the calculation
for each clock cycle.

34

4.1. Submodule design 35

Figure 4.1: Block diagram of matmul module: clock and reset signals are ignored.

• weight (4 ∗ 6bits): Since there are 4 MAC units, 4 6-bit weight values are available in each clock
cycle.

• instr (1bit): Enables the current module.
• αFC (3bits): This port will receive the activation scaling factor for the next FC core.
• αLC (3bits): Same purpose as αFC , but this activation scaling factor is for the local classifier in
the current core. Reserved for possible scaling requirements.

• valid_in (1bit): When input data is available, this signal will be set high, then the MAC units will
start computation.

• outputtoLC (4 ∗ 8bits): Calculation results from 4 MAC units. The values have been scaled with
αLC . The output from this port goes to the local classifier.

• outputtoFC (4 ∗ 8bits): Similar to the above one, but values from this port are scaled with αFC ,
and they go to the FC core.

• ReLUmask (4bits): It is used to indicate whether the original output value is greater than 0 and is
available for recording by external logic so that the derivative value of ReLU can be determined
during backpropagation. Each output value corresponds to a 1-bit value, making a total of 4 bits.

• valid_out (1bit): When the values of output ports are available, the signal is set high by the
current module.

The rounding operation in this module employs a truncation operation that rounds to the largest integer
less than or equal to the input value. In contrast to the previous quantized PyTorch model, which used
rounding to the nearest integer, the current design is simpler. The performance evalutaion will examine
the implications of this rounding operation. In order to maintain design consistency, any other module
involving rounding will also be using truncation.

Simulation setup: The steps of the simulation are as follows:

1. Use NumPy to generate a 600*4 random weight matrix and a 600*1 random input matrix. The
weight matrix values range from -31 to 31 and the input matrix values range from -127 to 127.

2. Iterate through the two matrices row by row and assign the values of each row to the weight port
and input port in each clock cycle. Enable both the instr and valid_in signals.

3. Once the two matrices have been iterated through, disable the valid_in signal. Then, wait for the
DUT to enable the valid_out signal.

4. Compare hardware results and the NumPy matrix multiplication results, and assert that they are
equal.

After completion, repeat the above process to simulate time-division multiplexing.
Results: A one-to-one correspondence between the software implementation and the hardware

implementation has been obtained. A total of 602 clock cycles are required from the start of data input
to the output of a set of valid data, i.e., from the rising edge of valid_in to the rising edge of valid_out.

4.1. Submodule design 36

4.1.2. Local classifer (forward path)
The subject component of the local classifier is a fully connected layer, but it only has 10 output neurons.
The most straightforward implementation here is to use 10 multiply-add computation units. Figure 4.2
illustrates that the design of this part is straightforward based on the elements introduced for the matmul
module (Section 4.1.1). This part features two input ports that are 4-bit wide: cur_state and nxt_state.
These are employed to signal the status of the core’s finite state machine, thereby determining output
validity.

Figure 4.2: Block diagram of local classifier (forward path)

4.1.3. Local classifier (backward path)
Since the weights in the local classifier are fixed, we only need to calculate the upstream derivative of
this part concerning the input during backpropagation, specifically, the ∂L

∂InLC
shown in Figure 3.15. We

will obtain the upstream derivative from the loss function module, and the Q′
A using the STE, thereby

making it unnecessary to compute them here. Thus, the primary concern of this implementation is the
calculation of the ∂OutLC

∂(InLC/αA,LC) part.

Figure 4.3: Design of local classifer (backward path): Different colors show different clock cycles

Figure 4.3 illustrates the weight access method, which is the same for the forward and backward
paths. We calculate the derivative of one input neuron in each clock cycle, as expressed with ∂Out

∂Ini
=∑10

o=0
∂L

∂Outo
·woi, where i is the input neuron index and o is the output neuron index. In order to complete

summation operation in 1 clock cycle, a pipelined tree adder is designed.
The purpose of each port in Figure 4.4 is as follows:

• error (10 ∗ 8bits): 10 error values from loss function go through this port.

4.1. Submodule design 37

Figure 4.4: Block diagram of tree adder: MUL is the multiplication operation, ADD is the addition operation, LX
Reg is the Xth pipeline register. Red names correspond to alternative port names when the tree adder is used for

convolutional layers.

• weight (10 ∗ 6bits): Corresponding to 10 error values, 10 LC weight values need to be provided
per clock cycle.

• instr (1bit): Enables the current module and pipelined registers.
• ReLU mask (1bit): In the inference process, if one output value of the fully-connected layer is less
than 0, then the gradient of the ReLU at the corresponding output neuron in the backpropagation
is 0. Therefore, when the value from the ReLU mask port is 0, MUL is disabled, thus skipping
the unnecessary calculation process.

• valid_in (1bit): When input data is available, this signal should be set high.
• output (8bits): Calculation result from the tree adder.
• valid_out (1bit): When the value of output port is available, the signal is set high by the current
module.

Simulation setup: The steps of the simulation are as follows:

1. Use NumPy to generate a 1*10 random error matrix and a 480*10 random weight matrix. The
error matrix values range from -127 to 127 and the weight matrix values range from -31 to 31.

2. Assign the values in the error matrix to the error port. Iterate through the weight matrix row by
row and assign the values of each row to the weight port in each clock cycle. Enable the instr,
ReLU mask and valid_in signals.

3. Continuously monitor the valid_out signal and record the outputs when it is set high by the DUT.
4. Once the weight matrix have been iterated through, disable the valid_in signal. Then, wait for

the DUT to disable the valid_out signal.
5. Compare hardware results and the NumPy matrix multiplication results, and assert that they are

equal.

Results: A one-to-one correspondence between the software implementation and the hardware
implementation has been obtained. A total of 486 clock cycles are required from the start of data input
to the output of last data, i.e., from the rising edge of valid_in to the falling edge of valid_out.

4.1.4. Convolutional layer
The computation performed in the convolutional layer window can be regarded as element-wise multi-
plication and summation between the elements of the feature map within the window and the elements
of convolutional weights. The tree adder in Section 4.1.3 can be used for this purpose.

In this case, the purpose of some of the ports in Figure 4.4 has been changed to the following:

• input (10 ∗ 8bits): Instead of 10 error values, the input now consists of 9 CIFAR-10 pixel values
with a value of zero.

4.1. Submodule design 38

• weight (10 ∗ 6bits): Instead of 10 weight values, the input now consists of 9 convolutional layer
kernel weight values with a value of zero.

• ReLU mask (1bit): This port permanently receives 1.

To accommodate the use of scaling factors, the tree adder module contains an additional 3-bit wide
αConv port in the current case.

4.1.5. Loss submodule
The loss submodule will integrate the hard sigmoid function and the MSE function, as shown in Figure
3.14, and compute the ∂L

∂OutLC
in Figure 3.15, which corresponds to the error. As the value of the loss

itself is not important for training, only the calculation of the loss derivative will be implemented.
After fusing the hard sigmoid function, the MSE, and the error scaling factor into the same equation,

the calculation in this module can be expressed as:

∂L

∂OutLC,i
=


y∗i if OutLC,i < −2,

y∗i − 1 if OutLC,i > 2,
(4·y∗

i −(OutLC,i+2))
4 otherwise

(4.1)

where i is the output neuron index of the fully-connected layer in the local classifier.

Figure 4.5: Block diagram of the loss module: ID is the index of the current part, CMP is the comparison
operation, SUB is the subtraction operation, SFT is the shift operation.

The module design is presented in the Figure 4.5.
The purpose of each port is as follows:

• true_label (4bits): The value of class label ranges from 0 to 9, 4 bits are needed to represent it.
• input (10∗23bits): According to Figure 3.14, the bit width of the output values from local classifier
is 8 + 6 + 9 = 23. The local classifier forward propagation outputs ten results at once, so here it
is 10*23-bit wide.

• instr (1bit): Used to enable the current module.
• αE (3bits): Although the scaling can be implemented directly by the hardware, the input port for
the scaling factor is reserved here for hardware configurability.

• output (10 ∗ 8bits): Individual 8-bit error values for each of the 10 inputs.

Simulation setup: The steps of the simulation are as follows:

1. Use PyTorch to generate a 1*10 random input matrix and a random class label value. The input
matrix values range from -12,288 to 12,288 and class label value ranges from 0 to 9.

2. Assign the values in the input matrix to the input port. Assign the class label value to the true_label
port. Enable the instr signal for 2 clock cycles and disable it afterwards.

3. After 3 clocks, get the error values from output port.
4. Use PyTorch to build software model-consistent setup of hard sigmoid function and MSE function.

4.1. Submodule design 39

5. Input the input matrix and class label to this software setup and get the results.
6. Compare software results and hardware results, and assert that they are equal.

Results: A one-to-one correspondence between the software implementation and the hardware
implementation has been obtained.

4.1.6. Weight update submodule
This module implements the weight stochastic update for the fully-connected layer (Figure 3.14). Ad-
ditionally, this module will calculate ∂OutFC

∂WFC
, which is also known as the gradient. Because the batch

size of the input data is 1 on our on-chip learning platform, the simplified computation of ∂OutFC

∂WFC
is as

follows: X0

X1

X2

 · [E0 E1

]
=

X0 · E0 X0 · E1

X1 · E0 X1 · E1

X2 · E0 X2 · E1

 (4.2)

where X is the activation, E is the error, which can be expressed as ∂L
∂OutFC

. This part involves mul-
tiplication operations only, without any addition as shown in the equation above. Therefore, a set of
gradient values can be produced at each clock cycle.

Figure 4.6: Block diagram of weight update module: ABS is the absolute value operation, MUX is the multiplexer

Figure 4.6 illustrates the design of the weight update module. In order to be able to share the data
channels with the matmul module and to simplify the data cache design, this module also has four sets
of computational units. The purpose of each port is as follows:

• weight_in (4∗6bits): This port shares the data channel with the weight port of the matmul module
and is therefore also 24 bits wide.

• input (8bits): This port shares the data channel with the input port of the matmul module and is
therefore also 8 bits wide.

• err (4 ∗ 8bits): This port receives four 8-bit error values, corresponding to the error values propa-
gated through each output neuron in backpropagation.

• lr_shift (3bits): The value goes through this port, and will determine the number of bits by which
the calculated probability value will be shifted to the right.

• rnd (4 ∗ 14bits): Random numbers input from an external source are used to decide whether or
not to update the weight values by comparing them with the calculated probability values.

• instr (1bit): Used to enable the current module.
• weight_out (4 ∗ 6bits): This port will output weight values that need to be written back to the
weights cache.

4.1. Submodule design 40

Simulation setup: The steps of the simulation are as follows:

1. Use NumPy to generate a 600*4 random weight matrix, a 1*4 random error matrix, a 600*1
random activation matrix and a 600*4 random number matrix. The weight matrix values range
from -31 to 31. Values in the error matrix and activation matrix range from -31 to 31. The random
number matrix values range from 0 to 16383.

2. Assign the error matrix to the err port. Iterate through the matrices row by row and assign the
values of each row to the weight_in port, input port and rnd port in each clock cycle. Enable the
instr signal.

3. After two clock cycles, start monitoring the weight_out port and collect the data.
4. Once all the matrices have been iterated through, disable the instr signal. Then after two clocks,

stop collecting data from weight_out port.
5. Calculate the updated weights utilizing the same logic as in the software model, but replace the

random part with the generated random number matrix.
6. Compare hardware results and the software results, and assert that they are equal.

Results: A one-to-one correspondence between the software implementation and the hardware imple-
mentation has been obtained.

4.1.7. Linear feedback shift register submodule
To generate random numbers for local classifier weights or random weight updates on hardware, a
PRNG needs to be designed. A straightforward pseudorandom number generator (PRNG) can be
implemented with a linear feedback shift register (LFSR). The LFSR can output only one bit per clock
cycle, whereas our weight update module requires a total of 56 bits per clock cycle. Using parallel
a LFSR structure would significantly increase the hardware overhead [82]. Therefore, this module
employs the unfolded LFSR algorithm described in [83, 82]. The method operates by unfolding the
data flow graph formed by the LFSR, appending multiple nodes to it, and obtaining the output value of
the original LFSR after a certain number of cycles from these nodes.

The length of the LFSR is set according to [84] to avoid correlations between weights of the same
output neuron, which leads to a LFSR length of 17.

Then we can take x17 + x3 +1 as the primitive polynomial, and the taps will be at position 3 and 17.
The diagram for the basic LFSR and the corresponding data flow graph is shown in Figure 4.7.

Figure 4.7: Basic LFSR diagram (above): numbers are the index of the state registers;
Data flow graph (below): Y is the output node, X is the XOR node, xa and xb are 2 input port of the XOR gate.

Delay units correspond to clock cycles.

The general design of the LFSR module is shown in Figure 4.8. The purpose of each port is as
follows:

• seed (17bits): The value received by this port can be used to set the initial state of the LFSR.
• instr (1bit): Used to enable the current module.

4.1. Submodule design 41

Figure 4.8: Block diagram of LFSR module

• prog (1bit): Used to set the initial state with value from seed port.
• out (out_width bits): The bit width of this port depends on the configuration at the time of instan-
tiation. The value output by the port is all the bits that were sequentially output by the original
LFSR in out_width clock cycles.

Simulation setup: In the simulation testbench for LFSR, we will use the Python library galois [85],
which is used to generate software reference LFSR output. The steps of the simulation are as follows:

1. Let Python generate a random value, which ranges in 0 to 217 − 1. Assign this value to the seed
port and set the prog signal to high. Use this value initialize the software LFSR from galois library,
too.

2. After one clock cycle, set the prog signal to low.
3. Set the en signal to high and run for one clock cycle. Get the random number from the out port.
4. Let the software LFSR genereate output bitstream for out_width steps.
5. Compare hardware results and the software results, and assert that they are equal.
6. Repeat the above three steps several times.

Results: For both 56-bit and 60-bit configurations, a one-to-one correspondence between the soft-
ware implementation and the hardware implementation has been obtained.

4.1.8. Cache X4 submodule
For storing activations, weights, and upstream gradients during backpropagation, caching is required.
Our design is to directly generate four small cache blocks, as there are four parallel FC layers, and
access one of them when in use.

Figure 4.9 shows the overall design of the cache X4 module. The design template officially provided
by Xillinx for BRAM was used directly for the design of each simple dual-port cache. As this module
will be applied to three scenarios, which will store matrices with different shapes, the bit-widths of the
address ports addr0 and addr1, and the data ports data_in0 and data_out1 are left generic in the figure.
The purpose of each port is as follows:

• addr0: The destination address for data writing.
• data_in0: Data will be written to the cache.
• addr1: The address for data reading.
• data_out1: Data read from cache.
• p_sel (2bits): The specified index of the cache block.
• wr_en (1bit): Used to enable the data writing.

An additional register is used in the output section of the module to enhance clock-to-out timing.
Simulation setup: The steps of the simulation are as follows:

4.1. Submodule design 42

Figure 4.9: Block diagram of cache X4 module

1. A 3-dimensional matrix containing random values will be generated using NumPy. The size of the
matrix is 4*input depth*input size. The input size is the number of values written to the module
within a single clock cycle, which depends on the scenario in which it is being applied.

2. Iterate through the matrix row by row and assign the values of each row to the data_in0 port in
each clock cycle. Here a row refers to a 1*input sizematrix. And depending on the block in which
it is selected, and the line number, specify the value of the p_sel port as well as the addr0 port.
Enable the wr_en signal.

3. Once the matrix has been iterated through, disable the wr_en signal. The contents of the cache
are then read by specifying the values of the addr1 port and the p_sel port.

4. Compare hardware readouts and values in original matrix, and assert that they are equal.

Results: For three application scenarios, a one-to-one correspondence between the software im-
plementation and the hardware implementation has been obtained.

4.1.9. Triout cache submodule
The convolutional layer or max pooling layer’s window requires to access the values of 3 columns in
3 rows of input data simultaneously. To reduce the number of cache accesses, we designed a cache
module consisting of three output ports. Each port corresponds to a row of data in a CIFAR-10 image
or a feature map. One port outputs the currently accessed row while the other two ports output the last
two accessed rows.

The design of the triout cache module is shown in Figure 4.10. The dashed section is used to store
the CIFAR-10 dataset and facilitate data selection from one of the channels of the input image, selected
through the value from cur_channel port. While storing the output feature map from the convolutional
layer, the design of our Conv core makes it unnecessary to store the contents of multiple channels, so
the dashed section is not needed. Because this module is used in different scenarios, the addr_in port
bit width is kept generic. The purpose of each port is as follows:

• addr_in: The destination address for data writing.
• data_in (8bit): Data will be written to the cache.
• wr_en (1bit): Enables the data writing.
• clr_opt (1bits): This signal should be set high when it is necessary to restore the values of three
output ports to the first three rows of the feature map in the current channel.

• pop_en (1bit): This signal should be set high when we want to get the next row of the feature
map.

• data_out0 (X ∗ 8bits), data_out1 (X ∗ 8bits) and data_out2 (X ∗ 8bits): data_out2 will output the
current row of the feature map and the remaining two ports will output the previous two rows.

4.1. Submodule design 43

Figure 4.10: Block diagram of triout cache module: X depends on the size of the feature map

• valid_out (1bit): When the values of three data_out port are available, the signal is set high by
current module.

• eof (1bit): This signal is set high when the feature map of the current channel has no next row to
fetch.

Simulation setup: We will only test the more complex activation cache configuration in this part.
In this case, the bit width of data_in port will be 4*8. The steps of the simulation are as follows:

1. Use NumPy to generate a 3*256*4 random feature map matrix. The 3 is the number of input
channels. The 4 is the number of values written to the module within a single clock cycle. The
matrix values range from -127 to 127. A copy of this matrix is then reshaped to be a 3*32*32
matrix, which will serve as a comparison reference for the output.

2. Iterate through the feature map matrix row by row and assign the values of each row to the input
port in each clock cycle. Here a row refers to a 1*4 matrix. Enable the wr_en signal.

3. Once the matrix have been iterated through, disable the wr_en signal. Enable the clr_opt signal
and wait for the valid_out signal to be high.

4. Compare hardware output and the first three rows in the reference matrix, and assert that they
are equal.

5. Enable pop_en signal for more than 32 clock cycles.
6. Compare hardware output and the last three rows in the reference matrix, and assert that they

are equal. The eof signal should be set high by the DUT.

Results: A one-to-one correspondence between the software implementation and the hardware
implementation has been obtained. 4 clock cycles are required from the start of output reset to get
available output data, i.e., from the falling edge of the clr_opt signal to the rising edge of valid_out
signal. 2 clock cycles are required from the start of request a new row to get available output data, i.e.,
from the rising edge of the pop_en signal to the rising edge of valid_out signal.

4.1.10. Tree comparator submodule
The main function of the max pooling layer in the Conv block is to identify the largest value within the
current window. In our model, a pooling window size of 3*3 is used, and a simple and straightforward
approach is to create a 9-input, 1-output comparator. Inspired by the tree adder in Figure 4.4, we will
design a pipelined tree comparator module.

The design of the tree comparator is shown in Figure 4.11. The purpose of each port is as follows:

• input (9 ∗ 8bits): The window size in the pooling layer is 3*3, so this module has nine inputs.
• instr (1bit): Used to enable the current module and pipelined registers.

4.1. Submodule design 44

Figure 4.11: Block diagram of tree comparator module

• valid_in (1bit): When input data is available, this signal should be set high.
• output (8bits): The output max value in nine inputs.
• valid_out (1bit): When the value of output port is available, the signal is set high by the current
module.

Simulation setup: The steps of the simulation are as follows:

1. Use NumPy to generate a 100*9 random feature map matrix. The matrix values range from -127
to 127.

2. Iterate through the matrix row by row and assign the values of each row to the input port in each
clock cycle. Enable both the instr and valid_in signals.

3. Continuously monitor the valid_out signal and record the outputs when it is set high by the DUT.
4. Once the matrix has been iterated through, disable the valid_in signal. Then, wait for the DUT

to disable the valid_out signal.
5. Compare hardware results and the maximum value obtained within each row using NumPy, and

assert that they are equal.

Results: A one-to-one correspondence between the software implementation and the hardware
implementation has been obtained. A total of 105 clock cycles are required from the start of data input
to the output of last data, i.e., from the rising edge of valid_in to the falling edge of valid_out.

4.1.11. Classification submodule
To output the classification result, we need a module that can identify the largest value and its index
from the 10 values outputted by the local classifiers in the FC core. In contrast to the high-throughput
requirement of the max pooling layer in the Conv block, this module will only be used once during
inference or training on a single input data, and it will not affect the other cores. As a result, this module
has a simple design. The design of the classification module is shown in Figure 4.12. The purpose of
each port is as follows:

• lc_out (10 ∗ 23bits): This port receives the output of 10 neurons from local classifiers in the FC
core.

• en (1bit): Enables the current module.
• max_lc_out (23bits): The output max value among ten inputs.
• class_num (4bits): The index of the output max value.
• classify_done (1bit): When the results are available, this signal will be set high by the current
module.

Simulation setup: The steps of the simulation are as follows:

4.2. Core design 45

Figure 4.12: Block diagram of classification module: Cnt is the counter

1. Use NumPy to generate a 1*10 random number matrix. The matrix values range from −222 + 1
and 222 − 1.

2. Assign this matrix to the lc_out port. Enable the en signal.
3. Get the max value from max_lc_out port and its corresponding index from class_num when the

classify_done is set high by the DUT.
4. Compare hardware output and the max value and its corresponding index by NumPy, and assert

that they are equal.

Results: A one-to-one correspondence between the software implementation and the hardware
implementation has been obtained. 9 clock cycles are required from the start to get the available
output, i.e., from the falling edge of the en signal and the rising edge of the classify_done signal.

4.2. Core design
We now have the necessary submodules to implement both the FC and Conv cores. First, we will
present the design of the FC core, which will implement the computation within the FC block. Next, we
will present the design of the Conv core, which will implement the computation within the Conv block.
Before describing the two core designs in detail, we will first describe the common interface for core
communication.

Core communication protocol: The final design will be implemented on Xilinx XC7Z020, which
is a system-on-chip (SoC) FPGA. It includes a dual-core ARM-cpu-based processing system (PS),
a programming logic (PL) and many interfaces [86]. To enhance the efficiency of CIFAR-10 dataset
reading, the dataset will be stored in the on-board dynamic random-access memory (DRAM), which
will then be accessed by the PS. On this SoC, an efficient approach to communicating between the
PS and PL is through the use of an AXI bus [86], which follows a 2-way handshake communication
protocol. Since our design requires only point-to-point transmission and no address is required, we
can refer to the simplest AXI-Stream protocol [87]. This protocol does not include address channels
for reading and writing. To maintain compatibility with this protocol, our own communication protocol
requires just one data channel, one ready signal and one valid signal.

The timing diagram is illustrated in Figure 4.13. Once data is ready, the transmitter sets the ”Stream
valid” signal high. When the receiver is ready to receive data, it sets the ”Stream ready” signal high.
Once both of ”Stream valid” and ”Stream ready” signals are set high, data transmission starts. The
timing of this design is identical to the AXI-Stream handshake mechanism, so that when only simple
data transfers are required, one end of the AXI-Stream bus can be connected to this interface.

4.2.1. Fully-connected core
This core implements the operations illustrated in Figure 3.14 and 3.15. The design of the FC core is
depicted in Figure 4.14.

4.2. Core design 46

clk

Data

Stream_valid

Stream_ready

Figure 4.13: Simple core communication timing diagram

Figure 4.14: Block diagram of FC core: FSM is the finite state machine (FSM) logic. Purple parts comprise the
input stream interface, while green parts comprise the output stream interface.

The FC core includes a set of stream input logic and a set of stream output logic, as follows:

• Stream input part: The weight port receives initial weights during initialization state, while the
data_in port receives feature maps during training or inference state. As these two states are
mutually exclusive, the input stream handshake logic is shared.

• Stream output part: The mm_data_out port outputs data from the parallel FC layer. Therefore,
the data on the mm_data_out port needs to be streamed, and it will be used with the output
stream handshake logic.

The model_cfg port will receive a 32-bit value which contains the configuration of the scaling factor as
well as the learning rate as shown in Figure 4.15. The configuration information is sent directly from
the PS to the PL via the AXI interface, which is configured to use a 32-bit data signal. Using a 32-bit
data signal to contain the configuration of only one core is not efficient, therefore, the configurations of
all three cores are included in this 32-bit value and bit shifted appropriately before assigning to port of
each core, so that each core receives the correct configuration.

02356891112141531

LCx_ALPHALRx_SHIFTEx_ALPHAAx+1_ALPHA

Figure 4.15: Bitfields of model_cfg for FC core: ”LCx_ALPHA” is the shift-based αA,LCx , ”LRx_SHIFT” is the
shift-based learning rate for core x, ”Ex_ALPHA” is the shift-based αEx , ”Ax+1_ALPHA” is the shift-based

αA,FCx+1
, and x is the index of the FC core.

The target port will receive the 4-bit target label for the loss module. The seeds port will receive two
17-bit width seeds for configuring the initial state of two LFSR modules in the core.

The core implements a FSM and will receive external instructions through the instr port and output

4.2. Core design 47

the current state through the layer_state port. The list of external instructions and their purposes are
listed as follows:

• I_IDLE: Keep cores in the idle state.
• I_INIT: Let cores get into the initialization state.
• I_TRAIN: Let cores get into the training-related states.
• I_INF: Let cores get into the inference-related states.
• I_STOP: Force cores out of the current state and into the idle state.

Figure 4.16 shows the state transition diagram corresponding to the finite state machine in the FC
core. The state corresponding to the solid circle will go to the specified next state based on external
instructions from the instr port, except for the I_STOP instruction, which in turn allows any state to be
transferred to the idle state.

LS_INIT

LS_IDLE

LS_LOAD LS_INF LS_LOSS

LS_FIN LS_BK

LS_WU

Figure 4.16: State transition diagram of FSM in FC core. For clarity, the state transition conditions are given in the
main text.

The list of FC core states and corresponding behaviors are listed as follows:

• LS_IDLE: This is the default state of the core. In this state, no calculations nor cache accesses
are performed. When the I_INIT instruction is given, the state is transferred to LS_INIT. When a
I_TRAIN or I_INF instruction is given, the state is transferred to LS_LOAD.

• LS_INIT: In this state, the weight cache of parallel fully-connected layer is initialized with the
values from the weight port. If there is no weight cache for the local classifier, the initial state of
the two LFSR modules will be initialized. Otherwise, only the initial state of the LFSR module for
the weight update module will be set, and the weight cache for the local classifier will be initilized.
After initialization, the state is automatically transferred to LS_IDLE.

• LS_LOAD: In this state, the activation cache is loaded with the feature map from the data_in
port. Simultaneously, the model configuration from the model_cfg port, and the true label from
the target port are read. Once the feature map is loaded, the state is automatically shifted to
LS_INF if the stream_out_ready signal is high. Otherwise, the core will wait until the receiver is
ready to receive the data.

• LS_INF: In this state, the matmul module and the computation logic for the local classifer forward
path are enabled. During the computation period, the activation cache, weight cache and LC
weight cache iteratively output their values. The mm_data_out port outputs data intermittently.
At the end of the computation, the result from the local classifier is available at the lc_data_out
port. When the I_TRAIN instruction is given, the state is transferred to LS_LOSS. When the I_INF
instruction is given, the state is transferred to LS_FIN, as the loss calculation is unnecessary in
our design during inference.

• LS_LOSS: In this state, the loss module is enabled, and ∂L
∂OutLC

will be calculated. Then, the
state is automatically transferred to LS_BK.

4.2. Core design 48

• LS_BK: In this state, the tree adder module is enabled. During the computation period, the LC
weight cache iteratively outputs the values, and the results of the tree adder is written to the
gradient cache. After the computaion is done, the state is automatically transferred to LS_WU.

• LS_WU: In this state, the weight update module is enabled. During the computation period, the
activation cache, weight cache, gradient cache and the LFSR module iteratively output the their
values. The updated weights are written back to the weight cache. After the weights are updated
completely, the state is automatically transferred to LS_FIN.

• LS_FIN: This state is similar to the LS_IDLE state, with the difference that it will transfer to the
LS_IDLE state when the instruction is not I_TRAIN or I_INF. This state is designed to allow
distinguishing between a run that has not started and a run that has ended.

As performing an exhaustive simulation of this standalone core is outside the scope of this work,
we verified the functionality of the FSM and ensured that the correct modules are enabled with proper
data access. The FC core will be validated within the full platform simulation setup in Section 4.4. The
number of clock cycles for every state can be found in Table 4.1.

Table 4.1: Number of clock cycles for FC core states

FC core FSM state Clock cycles

LS_INIT 72003
LS_LOAD 602
LS_INF 72608
LS_LOSS 1
LS_BK 489
LS_WU 72017
LS_FIN 1

4.2.2. Convolutional core
This core implements the operations illustrated in Figure 3.13. Figure 4.17 shows the design of the
Conv core, which also contains a set of stream input logic and a set of stream output logic:

• Stream input part: The data_in port receives CIFAR-10 images during training or inference state.
The input stream handshake logic will work with this port.

• Stream output part: The mp_data_out port will output the results from the max pooling layer.
The input stream handshake logic will work with this port.

Figure 4.17: Block diagram of Conv core: Inter. FM is abbreviation for intermediate feature map. Purple parts
comprise the input stream interface, while green parts comprise the output stream interface.

4.2. Core design 49

The model_cfg port remains 32-bit wide, as presented in Figure 4.18. However, it will only obtain one
scaling factor for use in the tree adder module.

02331

A0_ALPHA

Figure 4.18: Bitfields of model_cfg for Conv core: ”A_ALPHA” is the shift-based αA,FC0 for the first FC core.

Similar to the FC core, the FSM receives instructions from the instr port and outputs the current
state through the conv_state port. To ensure consistency in control methods for the multi-core platform,
the instruction set used here is identical to that of the FC core.

CS_IDLE

CS_LOAD CS_CONV

CS_FIN CS_POOL

Figure 4.19: State transition diagram of FSM in Conv core. For clarity, the state transition conditions are given in
the main text.

Figure 4.19 shows the state transition diagram corresponding to the finite state machine in the Conv
core. Since the contents of the convolutional kernel is hard-coded, no initialization state is included in
the FSM. Moreover, since the Conv core does not need to be trained, the FSM also does not contain
states related to loss computation and backpropagation. The list of Conv core states and corresponding
behaviors are listed as follows:

• CS_IDLE: This is the default state of the core. In this state, no calculations nor cache ac-
cesses are performed. When a I_TRAIN or I_INF instruction is given, the state is transferred
to CS_LOAD.

• CS_LOAD: In this state, the activation cache is loaded with the feature map from the data_in
port. Simultaneously, the model configuration from the model_cfg port is read. Once the feature
map is loaded, the state is automatically shifted to CS_CONV if the stream_out_ready signal is
high. Otherwise, the core will wait until the receiver is ready to receive the data.

• CS_CONV: In this state, the tree adder module is enabled. During the computation period, the
activation cache and weight cache output their values. The tree adder module’s output will be
stored in the intermediate feature map cache. To minimize the size of the intermediate feature
map cache, the state is transferred automatically to the CS_POOL state when a complete con-
volution is executed within an output channel.

• CS_POOL: In this state, the tree comparator module is enabled. During the computation period,
the intermediate feature map cache outputs the values. The ouput value will directly be transfered
through themp_data_out port. After completing the pooling operation on the current feature map,
there are two possible state transitions. If the current output channel is not the last channel, then
the FSM returns to theCS_CONV state and performs the convolution operation on the next output
channel. If the current output channel is already the last channel, then the FSM goes directly to
the CS_FIN state and ends the computations on the current input image.

• CS_FIN: This state is consistent with the LS_FIN state of the FC core and there will be no actual
computational operations.

Simulation setup: The Conv core, unlike the FC core, is smaller in size and does not contain logic
for training. This allows for full one-to-one hardware-to-software comparison tests. The steps of the
simulation are as follows:

4.3. Multi-core platform design 50

1. The software component calculation will be the first to run. Import an image from the PyTorch data
loader into the quantized Conv block. It should not be trainable and the pre-trained convolutional
kernel is loaded. Record the output matrix.

2. For the hardware simulation, the instr port is first assigned with the I_TRAIN or I_INF instruc-
tion. Once the stream_in_ready signal is high, the reshaped CIFAR-10 image is assigned to the
data_in port line by line, and the stream_in_valid signal is enabled. After running for a few clock
cycles, the stream_out_ready signal is then enabled by the testbench. Once the FSM leaves the
CS_LOAD state, checked via the conv_state port, the image should be loaded completely.

3. At the end of the hardware simulation on current image, the conv_state signal should giveCS_FIN
signal.

4. The output of the software model will be compared with that of the DUT. If they do not match,
an exception will be raised. The above steps will be repeated several times, following which the
waveform will be checked.

Results: A one-to-one correspondence between the software implementation and the hardware
implementation has been obtained. The number of clock cycles for all Conv core states except the
CS_IDLE state is shown in the Table 4.2.

Table 4.2: Number of clock cycles for Conv core states

Conv core FSM state Clock cycles

CS_LOAD 770
CS_CONV 995
CS_POOL 159
CS_FIN 1

4.3. Multi-core platform design
Now, all the cores as well as the classification module are in place, so we can build the multi-core plat-
form for FPGA deployment. Here, we will use both the Xilinx Vivado design suite and the Vitis software
platform, the former for synthesis of the hardware design, and the latter for hardware deployment, PS
software programming as well as SoC platform debugging.

Figure 4.20: Block diagram of the multi-core platform and the SoC FPGA system design

Figure 4.20 shows the multi-core platform and the entire system design on the SoC FPGA platform.
For the weight values required by the FC cores, as well as the CIFAR-10 dataset required for training,
we will export them from PyTorch and store in the SD card. As the PL has direct access to the external
DRAM, when the whole design is deployed on the FPGA board and booted, the ARM processor will

4.3. Multi-core platform design 51

move data from the SD card to the specified location in DRAM and subsequently start the multi-core
platform.

To enable the platform to communicate with the PS, the multi-core platform is designed with three
AXI interface modules, all of which are automatically generated using Vivado. Their respective uses
are shown below:

• AXI-Lite Interface (slave): This interface corresponds to the slave side of the AXI_GP port of the
PS. AXI_GP is a general-purpose AXI interface for the PS to exchange information with the PL,
which means that software executing on the ARM CPU will have access to the multi-core platform
through the AXI_GP port. The AXI-Lite protocol [88], a simplified version of the AXI protocol, is
used here.

• AXI-Lite Interface (master): This interface corresponds to the master side of the AXI DMA. AXI
DMA is the IP provided by Xilinx, which can help to access data in the DRAM. Compared to
implementing our own logic for accessing the DRAM, we can now specify only the base address
for DRAM access, and the number of bytes to access, to get the required data. This simplifies the
implementation in the multi-core platform. The relevant DRAM access information will be sent to
AXI DMA via the AXI-Lite protocol.

• AXI-Stream Interface (slave): This interface corresponds to the slave side of the AXI DMA. The
data fetched from RAM by the DMA will be sent from its AXI-Streammaster interface. So, in order
to receive data, this AXI-Stream slave interface is included in our multi-core platform.

Figure 4.21 shows the state transition diagram corresponding to the finite state machine in the PL
of the multi-core platform. The FSM will perform a state transition based on the instruction from the
PS. The instruction set is the same as the one listed in Section 4.2.1. The list of the multi-core platform
states and corresponding behaviors are listed as follows:

• PL_IDLE: Each core in this state receives the I_IDLE instruction. There will be no DRAM data
access.

• PL_INIT: Each core in this state receives the I_INIT instruction. The platform will access the
weights of FC cores stored in the DRAM and pass the values directly into the weight port of
FC cores. When both FC cores return to the LS_IDLE state, the platform state is automatically
transferred to the PL_IDLE state.

• PL_TRAIN: Each core in this state receives the I_TRAIN instruction. The platform will access the
images of the CIFAR-10 training set stored in the DRAM and pass the values to the data_in port
of the Conv core. The classify module will be enabled to output classification results. When all
the cores return to the CS_IDLE or LS_IDLE state, the platform state is automatically transferred
to the PL_IDLE state.

• PL_INF:Each core in this state receives the I_INF instruction. The platformwill access the images
of the CIFAR-10 test set stored in the DRAM and pass the values to the data_in port of the Conv
core. The rest of the operations are the same as in PL_TRAIN.

Just like the FSM in all cores, the I_STOP instruction from the PS enables the platform FSM to transfer
to the PL_IDLE state from any state, and the FSM will send the I_STOP instruction to all cores at the
same time.

Software design: The PS side is responsible for moving the data, controlling themulti-core platform
and collecting the results. The steps to be performed by the program running on the ARM core are as
follows:

1. Read the weights and the CIFAR-10 dataset from the SD card and write them to the specified
address in the DRAM.

2. Send the initialization instruction to the multicore platform. Meanwhile, the program waits for the
user to enter the model configuration and the number of training epochs.

3. Read the current state of the multi-core platform and wait for it to enter the PL_IDLE state.
4. Enter the loop. Calculate the learning rate based on the current epoch and incorporate the result

into the model configuration value. Send the value along with the training instructions to the
multi-core platform.

4.4. Performance evaluation 52

PL_IDLE

PL_INIT

PL_TRAINPL_INF

Figure 4.21: State transition diagram of FSM in multi-core platform. For clarity, the state transition conditions are
given in the main text.

5. Read the platform state once per second, and read the running status after a certain time interval,
or after the platform state returns to PL_IDLE. Print the training set results.

6. Send an inference command when the platform state is PL_IDLE, and wait for the test set results
in the same way as in step 5.

7. If the current epoch does not reach the set value, go back to step 4 and continue training. Other-
wise, the program is finished.

Similar to the simulation of the FC core part, we verified that the operationof the platform and state
transitions are correct, and therefore do not perform one-to-one hardware-to-software comparison tests.
The system-level operation will be verified at the implementation stage in Section 4.4.

Table 4.3 shows the number of clock cycles each core requires in a single iteration. One epoch
trained on five images takes 757162 clock cycles.

Table 4.3: Number of clock cycles for each core during training

Clock cycles

Conv core 28471
FC core 0 145718
FC core 1 30038

4.4. Performance evaluation
In this section, we will perform a complete performance evaluation of the hardware implementation.
First we will compare the test set accuracy of hardware implementations and software models. We will
then show some metrics of the hardware implementation on FPGA.

4.4.1. Test set accuracy
The results of the hardware will be compared with the results of the corresponding software model. In
order to compare the performance of the hardware and software, the following items are set to be the
same on hardware and software:

• The input order of the training set.
• The configuration of hyperparameters.
• The initial weights of all layers.

Thus, the difference between hardware and software lies in the way random numbers are generated.
Figure 4.22 shows the test set accuracy of the hardware and software for each of the 100 epochs

of the training process.

4.4. Performance evaluation 53

Figure 4.22: Performance comparison between FPGA and PyTorch implementations

Table 4.4: Test accuracy of different blocks in hardware and software

Test set accuracy
(hardware)

Test set accuracy (soft-
ware)

FC core (block) 0 60.54% 61.29%
FC core (block) 1 59.03% 59.33%

Table 4.4 shows the final test set accuracy for FC core 0 as well as FC core 1 for both hardware
and software. Data are derived from the average of the last 3 epochs.

We find that the performance of the hardware implementation is similar to that of the software
implementation, however the performance of the second FC core is significantly lower than that of the
first, for both hardware and software. In order to understand the possible reasons for this phenomenon,
we performed an additional software model test and comparison.

The hardware-matched software model is trained using a batch size of 100. The data shown in
Table 4.5 are averaged over the last three epochs of one trial. It can be seen that the performance of
both FC blocks is significantly higher than the results reported for a batch size of 1 in Table 4.4, and
that there is no significant difference between the performance of two blocks.

Table 4.5: Test accuracy of the FC cores of the hardware-identical model for a batch size of 100

Test set accuracy

FC block 0 65.29%
FC block 1 65.44%

Based on results from the test above, we can find that the possible reason to affect the performance
is the batch size during training.

4.4.2. Resource and timing
We used Vivado’s default synthesis and implementation strategy for the hardware generation. The
PL-side clock was set to a fixed 75 Mhz.

Resource overhead: Table 4.6 shows the resources of the multi-core platform. There are a total of
140 BRAM tiles on FPGA, and the table shows that 137.5 of them are already occupied, mainly due to
the footprint of the weight matrix of FC core 0. Due to the fact that the BRAM resources are exhausted,
part of the storage is realized directly by LUTs. Besides being used for storage, the main LUT overhead
comes from the matmul module, the adder tree module, and the triout cache.

4.4. Performance evaluation 54

Table 4.6: Resource overhead of the main modules

Modules Slice (Total slice re-
source consumption)

BRAM Tile (Total
BRAM resource con-
sumption)

Conv core 1188 (8.93%) 17 (12.14%)
FC core 0 1818 (13.67%) 99 (70.71%)
FC core 1 1500 (11.28%) 19 (13.57)
Multi-core platform 4868 (36.60%) 137.5 (98.21%)

Timing: Table 4.7 shows the timing of the entire implementation in PL. Combined with the clock
cycles in Table 4.3 , it is known that a complete training on a single image will take about 2 milliseconds,
and performing a complete training of one epoch will take about 1 minute and 40 seconds.

Table 4.7: Timing of all the implementations in PL

Clock signal fre-
quency (MHz)

Worst negative slack
(ns)

Worst hold slack (ns)

75 1.328 0.011

5
Conclusions

In this project, we first compared various state-of-the-art learning algorithms for ANNs and proposed an
general learning framework that incorporates LEL and e-prop for spatiotemporal. However, as a first
proof of concept, we decided to implement only the LEL learning algorithm on hardware and validate
the possibility of multi-core learning for the CIFAR-10 image classification task. We then designed
the quantization scheme as well as the building blocks suitable for the hardware and determined the
software model through neural architecture search and designed the hardware blocks accordingly. We
constructed our multi-core on-chip learning platform by integrating the submodules into separate cores.
After deploying the platform on a FPGA board, we evaluated its performance. At the end, we draw the
following conclusions about low-cost multicore on-chip learning:

1. LEL can solve the problem of update locking while mitigating the problem of weight symmetry
by generating layer-wise errors locally. This makes LEL suitable for low-cost multi-core on-chip
learning.

2. Through the design of the quantization scheme as well as the building blocks, we succeeded in
constructing an efficient CNN network. When using 6-bit weights and a pre-trained convolutional
kernel, it is able to have a test set accuracy of 64.47% with a storage overhead of about 2.07
megabits.

3. For the computation and storage requirements of the software model we have carried out targeted
module design as well as simulation verification. Finally, the multi-core on-chip learning platform
design deployed to a SoC FPGA can fully realize the learning function of the software model and
converge to similar learning results.

4. During the performance evaluation, the multi-core on-chip learning platform is able to produce
the expected performance in a complete training, demonstrating the feasibility of the LEL learn-
ing algorithm in hardware. On the other hand, the results also show that there is still room for
improvements of the current design for online learning as well as low-cost design.

Overall, this work forms a key stepping stone towards low-cost multi-core spatiotemporal learning on-
chip, so the natural next step is to include e-prop in the scheme.

55

References

[1] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 770–778.

[2] David Silver et al. “Mastering the game of Go with deep neural networks and tree search”. In:
nature 529.7587 (2016), pp. 484–489.

[3] David Silver et al. “Mastering the game of go without human knowledge”. In: nature 550.7676
(2017), pp. 354–359.

[4] David Silver and Demis Hassabis. AlphaGo Zero: Starting from scratch. Oct. 2017. URL: https:
//www.deepmind.com/blog/alphago-zero-starting-from-scratch.

[5] Charlotte Frenkel, David Bol, and Giacomo Indiveri. “Bottom-up and top-down neural processing
systems design: Neuromorphic intelligence as the convergence of natural and artificial intelli-
gence”. In: arXiv preprint arXiv:2106.01288 (2021).

[6] Jeongwoo Park, Juyun Lee, and Dongsuk Jeon. “A 65-nm Neuromorphic Image Classification
Processor With Energy-Efficient Training Through Direct Spike-Only Feedback”. In: IEEE Journal
of Solid-State Circuits 55.1 (2020), pp. 108–119. DOI: 10.1109/JSSC.2019.2942367.

[7] Charlotte Frenkel, Jean-Didier Legat, and David Bol. “A 28-nm Convolutional Neuromorphic Pro-
cessor Enabling Online Learning with Spike-Based Retinas”. In: 2020 IEEE International Sym-
posium on Circuits and Systems (ISCAS). 2020, pp. 1–5. DOI: 10.1109/ISCAS45731.2020.
9180440.

[8] Timothy P Lillicrap et al. “Backpropagation and the brain”. In: Nature Reviews Neuroscience 21.6
(2020), pp. 335–346.

[9] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representations by
back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536.

[10] Stephen Grossberg. “Competitive learning: From interactive activation to adaptive resonance”.
In: Cognitive Science 11.1 (1987), pp. 23–63. ISSN: 0364-0213. DOI: https://doi.org/10.
1016/S0364-0213(87)80025-3. URL: https://www.sciencedirect.com/science/article/
pii/S0364021387800253.

[11] Max Jaderberg et al. “Decoupled neural interfaces using synthetic gradients”. In: International
conference on machine learning. PMLR. 2017, pp. 1627–1635.

[12] Qianli Liao, Joel Leibo, and Tomaso Poggio. “How important is weight symmetry in backpropa-
gation?” In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 30. 2016.

[13] Owen Marschall, Kyunghyun Cho, and Cristina Savin. “A unified framework of online learning al-
gorithms for training recurrent neural networks”. In: Journal of machine learning research (2020).

[14] Emre O Neftci, HeshamMostafa, and Friedemann Zenke. “Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks”.
In: IEEE Signal Processing Magazine 36.6 (2019), pp. 51–63.

[15] Thomas Bohnstingl et al. “Online spatio-temporal learning in deep neural networks”. In: IEEE
Transactions on Neural Networks and Learning Systems (2022).

[16] Ronald J Williams and David Zipser. “A learning algorithm for continually running fully recurrent
neural networks”. In: Neural computation 1.2 (1989), pp. 270–280.

[17] Weisong Shi et al. “Edge Computing: Vision and Challenges”. In: IEEE Internet of Things Journal
3.5 (2016), pp. 637–646. DOI: 10.1109/JIOT.2016.2579198.

[18] Vivienne Sze et al. “Efficient processing of deep neural networks: A tutorial and survey”. In: Pro-
ceedings of the IEEE 105.12 (2017), pp. 2295–2329.

56

https://www.deepmind.com/blog/alphago-zero-starting-from-scratch
https://www.deepmind.com/blog/alphago-zero-starting-from-scratch
https://doi.org/10.1109/JSSC.2019.2942367
https://doi.org/10.1109/ISCAS45731.2020.9180440
https://doi.org/10.1109/ISCAS45731.2020.9180440
https://doi.org/https://doi.org/10.1016/S0364-0213(87)80025-3
https://doi.org/https://doi.org/10.1016/S0364-0213(87)80025-3
https://www.sciencedirect.com/science/article/pii/S0364021387800253
https://www.sciencedirect.com/science/article/pii/S0364021387800253
https://doi.org/10.1109/JIOT.2016.2579198

References 57

[19] Tianshi Chen et al. “DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous
Machine-Learning”. In: Proceedings of the 19th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ASPLOS ’14. Salt Lake City, Utah,
USA: Association for Computing Machinery, 2014, pp. 269–284. ISBN: 9781450323055. DOI:
10.1145/2541940.2541967. URL: https://doi- org.tudelft.idm.oclc.org/10.1145/
2541940.2541967.

[20] Shijin Zhang et al. “Cambricon-X: An accelerator for sparse neural networks”. In: 2016 49th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE. 2016, pp. 1–12.

[21] Charlotte Frenkel, Martin Lefebvre, and David Bol. “Learning Without Feedback: Fixed Random
Learning Signals Allow for Feedforward Training of Deep Neural Networks”. In: Frontiers in Neu-
roscience 15 (2021). ISSN: 1662-453X. DOI: 10.3389/fnins.2021.629892. URL: https://www.
frontiersin.org/articles/10.3389/fnins.2021.629892.

[22] Timothy P Lillicrap et al. “Random synaptic feedback weights support error backpropagation for
deep learning”. In: Nature communications 7.1 (2016), pp. 1–10.

[23] Arild Nøkland. “Direct feedback alignment provides learning in deep neural networks”. In: Ad-
vances in neural information processing systems 29 (2016).

[24] Wojciech Marian Czarnecki et al. “Understanding synthetic gradients and decoupled neural inter-
faces”. In: International Conference on Machine Learning. PMLR. 2017, pp. 904–912.

[25] Hesham Mostafa, Vishwajith Ramesh, and Gert Cauwenberghs. “Deep Supervised Learning Us-
ing Local Errors”. In: Frontiers in Neuroscience 12 (2018). ISSN: 1662-453X. DOI: 10.3389/
fnins.2018.00608. URL: https://www.frontiersin.org/articles/10.3389/fnins.2018.
00608.

[26] Zhouyuan Huo et al. “Decoupled Parallel Backpropagation with ConvergenceGuarantee”. In: Pro-
ceedings of the 35th International Conference on Machine Learning. Ed. by Jennifer Dy and An-
dreas Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, Oct. 2018, pp. 2098–
2106. URL: https://proceedings.mlr.press/v80/huo18a.html.

[27] Yoshua Bengio. “How auto-encoders could provide credit assignment in deep networks via target
propagation”. In: arXiv preprint arXiv:1407.7906 (2014).

[28] Dong-Hyun Lee et al. “Difference target propagation”. In: Joint european conference on machine
learning and knowledge discovery in databases. Springer. 2015, pp. 498–515.

[29] Alexander Meulemans et al. “A theoretical framework for target propagation”. In: Advances in
Neural Information Processing Systems 33 (2020), pp. 20024–20036.

[30] Guillaume Bellec et al. “A solution to the learning dilemma for recurrent networks of spiking neu-
rons”. In: Nature Communications 11.1 (July 2020), p. 3625. ISSN: 2041-1723. DOI: 10.1038/
s41467-020-17236-y. URL: https://doi.org/10.1038/s41467-020-17236-y.

[31] Sho Yagishita et al. “A critical time window for dopamine actions on the structural plasticity of
dendritic spines”. In: Science 345.6204 (2014), pp. 1616–1620.

[32] Wulfram Gerstner et al. “Eligibility traces and plasticity on behavioral time scales: experimental
support of neohebbian three-factor learning rules”. In: Frontiers in neural circuits 12 (2018), p. 53.

[33] Amirsaman Sajad, David C Godlove, and Jeffrey D Schall. “Cortical microcircuitry of performance
monitoring”. In: Nature neuroscience 22.2 (2019), pp. 265–274.

[34] Ben Engelhard et al. “Specialized coding of sensory, motor and cognitive variables in VTA dopamine
neurons”. In: Nature 570.7762 (2019), pp. 509–513.

[35] Jochen Roeper. “Dissecting the diversity of midbrain dopamine neurons”. In: Trends in neuro-
sciences 36.6 (2013), pp. 336–342.

[36] Bojian Yin, Federico Corradi, and Sander M Bohte. “Accurate online training of dynamical spiking
neural networks through Forward Propagation Through Time”. In: arXiv preprint arXiv:2112.11231
(2021).

[37] Anil Kag and Venkatesh Saligrama. “Training recurrent neural networks via forward propagation
through time”. In: International Conference on Machine Learning. PMLR. 2021, pp. 5189–5200.

https://doi.org/10.1145/2541940.2541967
https://doi-org.tudelft.idm.oclc.org/10.1145/2541940.2541967
https://doi-org.tudelft.idm.oclc.org/10.1145/2541940.2541967
https://doi.org/10.3389/fnins.2021.629892
https://www.frontiersin.org/articles/10.3389/fnins.2021.629892
https://www.frontiersin.org/articles/10.3389/fnins.2021.629892
https://doi.org/10.3389/fnins.2018.00608
https://doi.org/10.3389/fnins.2018.00608
https://www.frontiersin.org/articles/10.3389/fnins.2018.00608
https://www.frontiersin.org/articles/10.3389/fnins.2018.00608
https://proceedings.mlr.press/v80/huo18a.html
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1038/s41467-020-17236-y

References 58

[38] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from tiny images”.
In: (2009).

[39] Maxence M Ernoult et al. “Towards scaling difference target propagation by learning backprop
targets”. In: International Conference on Machine Learning. PMLR. 2022, pp. 5968–5987.

[40] Julien Launay et al. “Direct feedback alignment scales to modern deep learning tasks and archi-
tectures”. In: Advances in neural information processing systems 33 (2020), pp. 9346–9360.

[41] L. LAPIQUE. “Recherches quantitatives sur l’ excitation electrique des nerfs traitee comme une
polarization.” In: Journal of Physiology and Pathololgy 9 (1907), pp. 620–635.

[42] Alan L Hodgkin and Andrew F Huxley. “A quantitative description of membrane current and its
application to conduction and excitation in nerve”. In: The Journal of physiology 117.4 (1952),
p. 500.

[43] Wulfram Gerstner. “Time structure of the activity in neural network models”. In: Physical review
E 51.1 (1995), p. 738.

[44] Eugene M Izhikevich. “Simple model of spiking neurons”. In: IEEE Transactions on neural net-
works 14.6 (2003), pp. 1569–1572.

[45] Romain Brette and Wulfram Gerstner. “Adaptive exponential integrate-and-fire model as an ef-
fective description of neuronal activity”. In: Journal of neurophysiology 94.5 (2005), pp. 3637–
3642.

[46] Wulfram Gerstner et al. Neuronal dynamics: From single neurons to networks and models of
cognition. Cambridge University Press, 2014.

[47] Simon Thorpe, Arnaud Delorme, and Rufin Van Rullen. “Spike-based strategies for rapid pro-
cessing”. In: Neural networks 14.6-7 (2001), pp. 715–725.

[48] Emre O. Neftci et al. “Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep
Learning Machines”. In: Frontiers in Neuroscience 11 (2017). ISSN: 1662-453X. DOI: 10.3389/
fnins.2017.00324. URL: https://www.frontiersin.org/articles/10.3389/fnins.2017.
00324.

[49] Sumit B Shrestha and Garrick Orchard. “Slayer: Spike layer error reassignment in time”. In: Ad-
vances in neural information processing systems 31 (2018).

[50] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002.

[51] Jacques Kaiser, Hesham Mostafa, and Emre Neftci. “Synaptic Plasticity Dynamics for Deep Con-
tinuous Local Learning (DECOLLE)”. In: Frontiers in Neuroscience 14 (2020). ISSN: 1662-453X.
DOI: 10.3389/fnins.2020.00424. URL: https://www.frontiersin.org/articles/10.3389/
fnins.2020.00424.

[52] Julian Göltz et al. “Fast and energy-efficient neuromorphic deep learning with first-spike times”.
In: Nature machine intelligence 3.9 (2021), pp. 823–835.

[53] Bodo Rueckauer and Shih-Chii Liu. “Conversion of analog to spiking neural networks using
sparse temporal coding”. In: 2018 IEEE International Symposium on Circuits and Systems (IS-
CAS). 2018, pp. 1–5. DOI: 10.1109/ISCAS.2018.8351295.

[54] Seongsik Park et al. “T2FSNN: Deep spiking neural networks with time-to-first-spike coding”. In:
2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE. 2020, pp. 1–6.

[55] Yukuan Yang et al. “Training high-performance and large-scale deep neural networks with full
8-bit integers”. In: Neural Networks 125 (2020), pp. 70–82.

[56] Lei Deng et al. “Model compression and hardware acceleration for neural networks: A compre-
hensive survey”. In: Proceedings of the IEEE 108.4 (2020), pp. 485–532.

[57] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”.
In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach et al. Curran
Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.cc/paper/9015-pytorc
h-an-imperative-style-high-performance-deep-learning-library.pdf.

https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.3389/fnins.2017.00324
https://www.frontiersin.org/articles/10.3389/fnins.2017.00324
https://www.frontiersin.org/articles/10.3389/fnins.2017.00324
https://doi.org/10.3389/fnins.2020.00424
https://www.frontiersin.org/articles/10.3389/fnins.2020.00424
https://www.frontiersin.org/articles/10.3389/fnins.2020.00424
https://doi.org/10.1109/ISCAS.2018.8351295
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

References 59

[58] Raghuraman Krishnamoorthi. “Quantizing deep convolutional networks for efficient inference: A
whitepaper”. In: arXiv preprint arXiv:1806.08342 (2018).

[59] Quantization — PyTorch 2.0 documentation. URL: https://pytorch.org/docs/stable/quant
ization.html.

[60] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. “Estimating or propagating gradients
through stochastic neurons for conditional computation”. In: arXiv preprint arXiv:1308.3432 (2013).

[61] Tailin Liang et al. “Pruning and quantization for deep neural network acceleration: A survey”. In:
Neurocomputing 461 (2021), pp. 370–403.

[62] ShuangWu et al. “Training and inference with integers in deep neural networks”. In: arXiv preprint
arXiv:1802.04680 (2018).

[63] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification”. In: Proceedings of the IEEE international conference on computer vision. 2015,
pp. 1026–1034.

[64] Shuchang Zhou et al. “Dorefa-net: Training low bitwidth convolutional neural networks with low
bitwidth gradients”. In: arXiv preprint arXiv:1606.06160 (2016).

[65] Matteo Croci et al. “Stochastic rounding: implementation, error analysis and applications”. In:
Royal Society Open Science 9.3 (2022), p. 211631.

[66] Charlotte Frenkel and Giacomo Indiveri. “ReckOn: A 28nm sub-mm2 task-agnostic spiking recur-
rent neural network processor enabling on-chip learning over second-long timescales”. In: 2022
IEEE International Solid-State Circuits Conference (ISSCC). Vol. 65. IEEE. 2022, pp. 1–3.

[67] Aston Zhang et al. “Dive into Deep Learning”. In: arXiv preprint arXiv:2106.11342 (2021).
[68] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network training by

reducing internal covariate shift”. In: International conference on machine learning. pmlr. 2015,
pp. 448–456.

[69] Yuxin Wu and Kaiming He. “Group normalization”. In: Proceedings of the European conference
on computer vision (ECCV). 2018, pp. 3–19.

[70] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted boltzmann machines”.
In:Proceedings of the 27th international conference onmachine learning (ICML-10). 2010, pp. 807–
814.

[71] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “Binaryconnect: Training deep
neural networks with binary weights during propagations”. In: Advances in neural information
processing systems 28 (2015).

[72] Lu Lu et al. “Dying relu and initialization: Theory and numerical examples”. In: arXiv preprint
arXiv:1903.06733 (2019).

[73] Tijmen Tieleman, Geoffrey Hinton, et al. “Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude”. In: COURSERA: Neural networks for machine learning 4.2
(2012), pp. 26–31.

[74] Diederik P Kingma and Jimmy Ba. “Adam: Amethod for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

[75] Tyler Yep. torchinfo. Mar. 2020. URL: https://github.com/TylerYep/torchinfo.
[76] Lukas Biewald.Experiment TrackingwithWeights and Biases. Software available fromwandb.com.

2020. URL: https://www.wandb.com/.
[77] Stefan Falkner, Aaron Klein, and Frank Hutter. “BOHB: Robust and efficient hyperparameter op-

timization at scale”. In: International conference on machine learning. PMLR. 2018, pp. 1437–
1446.

[78] Lisha Li et al. “Hyperband: A novel bandit-based approach to hyperparameter optimization”. In:
The journal of machine learning research 18.1 (2017), pp. 6765–6816.

[79] Stuart Hodgson and Chris Higgs. cocotb. 2014. URL: https://www.cocotb.org/.

https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
https://github.com/TylerYep/torchinfo
https://www.wandb.com/
https://www.cocotb.org/

References 60

[80] StephenWilliams andMichael Baxter. “Icarus verilog: open-source verilog more than a year later”.
In: Linux Journal 2002.99 (2002), p. 3.

[81] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585 (2020), pp. 357–362.
DOI: 10.1038/s41586-020-2649-2.

[82] “High-speed parallel CRC implementation based on unfolding, pipelining, and retiming”. In: IEEE
Transactions on Circuits and Systems II: Express Briefs 53.10 (2006), pp. 1017–1021.

[83] Keshab K Parhi. VLSI digital signal processing systems: design and implementation. John Wiley
& Sons, 2007.

[84] Charlotte Frenkel, Jean-Didier Legat, and David Bol. “MorphIC: A 65-nm 738k-Synapse/mm ^2
quad-core binary-weight digital neuromorphic processor with stochastic spike-driven online learn-
ing”. In: IEEE transactions on biomedical circuits and systems 13.5 (2019), pp. 999–1010.

[85] Matt Hostetter. Galois: A performant NumPy extension for Galois fields. Nov. 2020. URL: https:
//github.com/mhostetter/galois.

[86] Xilinx. Zynq-7000 SoC Data Sheet: Overview (DS190). 2018. URL: https://docs.xilinx.com/
v/u/en-US/ds190-Zynq-7000-Overview.

[87] Arm Limited or its affiliates. AMBA AXI-Stream Protocol Specification. 2021. URL: https : / /
developer.arm.com/documentation/ihi0051/latest/.

[88] Arm Limited or its affiliates. AMBA AXI Protocol Specification. 2023. URL: https://developer.
arm.com/documentation/ihi0022/latest.

https://doi.org/10.1038/s41586-020-2649-2
https://github.com/mhostetter/galois
https://github.com/mhostetter/galois
https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview
https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview
https://developer.arm.com/documentation/ihi0051/latest/
https://developer.arm.com/documentation/ihi0051/latest/
https://developer.arm.com/documentation/ihi0022/latest
https://developer.arm.com/documentation/ihi0022/latest

	Abstract
	Nomenclature
	Introduction
	Background
	Challenges
	Learning algorithms
	Hardware
	Multi-core on-chip learning

	Contributions
	Thesis outline

	Literature review
	Learning in artificial neural networks
	Spatial learning algorithms
	Temporal learning algorithms

	Comparison
	Learning with spikes
	Conclusions

	PyTorch model design
	Quantization scheme
	Basic inference-oriented quantization
	Training-oriented scheme: WAGE
	Design of the quantization scheme

	Network architecture
	Basic layers and modules
	General network structure

	Neural architecture search (NAS)
	Number of fully-connected blocks
	Fully-connected layer setup
	Convolutional blocks setup
	Quantized network sweep

	Conclusions

	Hardware design
	Submodule design
	Matmul submodule
	Local classifer (forward path)
	Local classifier (backward path)
	Convolutional layer
	Loss submodule
	Weight update submodule
	Linear feedback shift register submodule
	Cache X4 submodule
	Triout cache submodule
	Tree comparator submodule
	Classification submodule

	Core design
	Fully-connected core
	Convolutional core

	Multi-core platform design
	Performance evaluation
	Test set accuracy
	Resource and timing

	Conclusions
	References

