

Delft University of Technology

Interactive Partitioning of 3D Models into Printable Parts

Jadoon, Aamir Khan ; Wu, Chenming ; Liu, Yong-Jin; He, Ying; Wang, Charlie C.L.

DOI
10.1109/MCG.2018.042731658
Publication date
2018
Document Version
Final published version
Published in
IEEE Computer Graphics and Applications

Citation (APA)
Jadoon, A. K., Wu, C., Liu, Y.-J., He, Y., & Wang, C. C. L. (2018). Interactive Partitioning of 3D Models into
Printable Parts. IEEE Computer Graphics and Applications, 38(4), 38-53.
https://doi.org/10.1109/MCG.2018.042731658

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MCG.2018.042731658
https://doi.org/10.1109/MCG.2018.042731658

FEATURE ARTICLE: 3D Printing

Interactive Partitioning
of 3D Models into
Printable Parts

This article presents an easy, flexible and interactive

tool for partitioning a 3D model, which is larger than

3D-printer's working volume, into printable parts in an

intuitive way. Our tool is based on the elegant

partitioning optimization framework Chopper. Our tool

aims at improving Chopper by providing users three

easy-to-use interactive operations: no-go region

painting, cutting plane specification and components

reunion. With these operations, we show that (1)

exhaustive search in the BSP tree—the most time-

consuming step in Chopper—can be avoided, (2)

more flexible geometric configurations can be provided, (3) user's design intention is

considered naturally and efficiently, and customized 3D partitioning results can be

obtained. We test our tool on a wide range of 3D models and observe promising results.

A preliminary user study also demonstrates its effectiveness and efficiency.

3D printing, also known as additive manufacturing, has been widely studied in the manufactur-
ing industry. As desktop 3D printers have become mature, more and more people enjoy using
this awesome invention to print their daily life 3D models. Desktop 3D printers usually have the
limited size of a 3D model at which one can print. This limitation drives the research of 3D-
printing-based model partitioning. The desired solution involves partitioning the large 3D model
into small parts that can fit into the working volume of the printer. Then these small parts can
easily be assembled with the help of connectors, screws, glue or self-interlocking.

There exist a number of 3D-printing-driven model partitioning methods, by considering diverse
properties such as printing volume,1,2 structureness and assemblability,3 packing and space sav-
ing, aesthetics, self-support and connectivity,4,5 and so on. A representative work is the Chop-
per,1 which is an elegant optimization framework that incorporates many partitioning properties

Aamir Khan Jadoon
Tsinghua University

Chenming Wu
Tsinghua University

Yong-Jin Liu
Tsinghua University

Ying He
Nanyang Technological
University

Charlie C.L. Wang

Delft University of
Technology

38
IEEE Computer Graphics and Applications Published by the IEEE Computer Society

0272-1716/18/$33.00 ©2018 IEEEJuly/August 2018

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore. Restrictions apply.

 IEEE COMPUTER GRAPHICS AND APPLICATIONS

into an objective function. Chopper is fully automatic. However, its partitioning results heavily
depend on the weights in the objective function and users frequently have to adjust these weights
by trial and error. For each trial, Chopper is also time-consuming due to the exhaustive searching
in a binary space partitioning (BSP) tree. See Figures 1 and 8 for some examples. Furthermore,
as fully automatic methods, all of the above methods do not take users' design intentions into ac-
count and therefore cannot produce customized partitioning results.

Figure 1. The output of Chopper is sensitive to the weights of the objective function. The default
setting (Equation 2) produces good partitioning on the Bunny model, however, it leads to poor
results on the Hand model, where all fingers are over-segmented. Our method is not sensitive to
different weights. With a few simple interactions from users, it can provide good partitioning quickly.
(a) Chopper with default weights : 10 parts, 287 sec. (b) Our method: 7 parts, 119 sec., including
interaction. (c) Chopper with default weights: 16 parts, 375 sec. (d) Our method: 12 parts, 173 sec.,
including interaction.

In this paper, we propose an interactive tool, aiming at improving Chopper by three algorithms
based on BSP tree generation and manipulation: 1) constrained tree generation, 2) tree-splitting
and 3) sub-tree merging, each of which leads to a simple and intuitive interactive operation,
namely, no-go region specification, clipping plane specification and component reunion. With
little user interactions, we show that exhaustive search in the BSP tree—the most time-consum-
ing step in Chopper—can be avoided. As a result, our method enables real-time interaction and
updating the partition of 3D models with complex geometry and topology. Moreover, by ena-
bling customized partitioning, it can produce more flexible geometric configurations that are not
available to Chopper (see Figure 2).

Figure 2. Our method can provide more flexible, better partitioning results than Chopper.1 The size
of the minimum enclosing bounding box of the human model is 21cm × 45cm × 7cm, whereas the
3D printer's working volume is only 18cm × 17cm × 16cm. (a) the front and back views of Chopper's
partitioning results with 17 parts, taking more than three minutes in an automatic setting. (b)
Leftmost: with our method, users start with specifying a cutting plane, which leads to three disjoint
closed cutting curves on the input model. Middle-left: our method merges the undesired parts using
the components reunion operator. Middle: partitioning with two more cutting planes. Middle-right:
painting the salient region (red region in the face) where no cuts can go through. Rightmost: with
the constrained tree generation algorithm, our method produces only 12 parts in less than one
minute (including interaction and running the constrained partitioning algorithm).

Our interactive tool is easy to use. Instead of the full manual partitioning by applying existing
CAD modeling/CSG tools, our tool works in either automatic or interactive mode, or a mix of
both. For example, our tool can make use of an initial partitioning automatically generated from
Chopper, and then users can simply and quickly modify a few cutting planes (leafs in the BSP

39July/August 2018 www.computer.org/cga

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore. Restrictions apply.

 INTERACTION TECHNIQUES

tree) in the semi-automatic mode. Thanks to the high interaction performance, our tool can up-
date the partitioning result immediately. Users can repeat this procedure until obtaining a satis-
factory result. We tested our interactive tool on a wide range of 3D models and observed
promising results. A preliminary user study also demonstrates its effectiveness and efficiency.

RELATED WORK
As an active field, 3D segmentation has been studied extensively in the last decade. Many meth-
ods have been proposed to segment a 3D model into meaningful parts, providing semantic infor-
mation about the model for shape understanding and recognition.6,11,12 However, most existing
methods are not suitable for 3D printing, since they do not address some critical issues, such as
printing time, supporting material, printer volume, assemblability, structure soundness, aesthet-
ics, etc.

Given a limited printing volume, one has to decompose a large 3D model into smaller printable
subparts. Decomposing polyhedra into convex parts or even approximately is a well-known chal-
lenging problem in computational geometry. In manufacturing industry, Medellin and col-
leagues7 proposed a regular-grid-based decomposition designed for both rapid prototyping and
assembly. A drawback of this method is that it always adds but never subtracts 3D units to solve
potential manufacturing problems and then it leads to too large 3D units. Hao and colleagues8
decomposed a large complex model into simpler 3D parts by using curvature-based partitioning.

A pyramid is a shape that has a flat base with the remaining boundary forming a height function
over the base. Pyramidal shapes are optimal for 3D printing since they do not need any support-
ing structures. Hu and colleagues10 proposed an elegant method for approximate pyramidal shape
decomposition using a clustering scheme. Luo and colleagues1 proposed the Chopper, which op-
timizes a number of desired 3D printing criteria in an elegant framework. In addition to consider-
ing a single decomposed subpart that fits the printer volume, some researchers had considered
the problem of packing multiple parts into the printing volume. Recently, Chen and colleagues4
and Yao and colleagues5 proposed optimization methods to address both the segmentation and
packing issues.

To the best of our knowledge, none of the existing methods incorporate users’ inputs into model
partitioning to reflect users’ special intention. The interactive tool proposed in this paper aims at
addressing this issue.

PRELIMINARY ON CHOPPER
Chopper1 partitions a 3D model using a set of cutting planes, which are determined by an ex-
haustive search of all possible combinations of candidate planes and evaluated by an objective
function. It adopts a BSP tree to represent the set of cutting planes.

Candidate planes. A plane is represented by a 2-tuple ()ijπ ,i jd= n , where in is the plane normal

and jd is the offset. Chopper chooses a planar normal from a set { }iN = n , which are 129 uni-

formly distributed points on a unit sphere, determined by the vertices of a thrice-subdivided reg-

ular octahedron. The plane offsets { }jd are sampled uniformly at intervals of 0.5 cm over the

range within which the planes intersect the model, for each in .

Objective functions. For a BSP tree τ, Chopper defines six objective functions for the number of
parts partf , efficient utilization of the printing volume utilf , connector feasibility connectorf , struc-

tural soundness by finite element analysis structuref and by avoidance to introducing fragile parts

fragilityf , aesthetics by seam unobtrusiveness seamf and by symmetry symmetryf . Then it minimizes

the combined objective function

() ()k k
k

f w fτ τ= (1)

40July/August 2018 www.computer.org/cga

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore. Restrictions apply.

 IEEE COMPUTER GRAPHICS AND APPLICATIONS

where kw are non-negative weights. Chopper is fully automatic. However, its results heavily de-

pend on the weights. Luo and colleagues1 suggested the following weights:

partw 1, 0.05, 1, 1, 0.1, 0.25util connector fragility seam symmetryw w w w w= = = = = = (2)

Beam search. Chopper uses a beam search to partition the model. Starting with an empty BSP
tree, at each step, Chopper extends the BSP trees from the previous step by adding one more cut-
ting plane and the beam search selects the most promising BSP trees (evaluated by Equation 1)
so far. The maximum number of BSP selections at each step is the beam width b and Chopper
uses b = 4. The search terminates when all leafs in BSP trees can be fit in the target printing vol-
ume. The best BSP tree (having the minimal score in Equation 1) is the solution.

OUR INTERACTIVE METHOD
We introduce three simple, intuitive interaction operations into Chopper. With them, a user can
indicate some constraints, specify a particular cutting plane and merge two subparts. To incorpo-
rate users' input constraints in an interactive environment, we present a simple yet efficient con-
strained tree generation algorithm to quickly update the BSP trees. Given a particular cutting
plane specified by a user according to some design intention, the BSP tree maintained by the sys-
tem is quickly updated by a tree-splitting algorithm. The planar cuts indicated by a BSP tree can
only achieve some limited geometric configurations. We provide an interactive component reun-
ion operation with a sub-tree merging algorithm so that more flexible geometric configurations
can be obtained. Experiments and the user study show that a user can use our interactive tool to
obtain customized, user satisfied 3D printable partitioning in a short time.

Throughout this paper, we use the terms of the leaf node in a BSP tree and its corresponding sub-
part in a 3D model interchangeably.

Three interactive operations
To allow a user to input his/her design intention simply and intuitively, we propose three interac-
tive operations as follows.

No-go region painting with the aid of stress analysis. In a preprocessing step, our method ana-
lyzes the stress distribution of the model using the finite element method. During interaction, the
stress analysis is visualized with a color map and a user can paint on the object surface with
strokes. A scribble-like interface is used for painting since it is intuitive and requires no exper-
tise. Our method computes the minimum bounding boxes of each disjoint painted region if its
volume is less than the printer volume. Cutting planes on the model surface are not allowed to
pass through the painted regions and we call them no-go regions. Two design intentions can be
reflected by no-go regions (see Figure 3a): the first is the aesthetically salient regions that can be
user customized; and the second is the structurally fragile regions. This interactive operation is
realized by Algorithm 1.

Noting that Chopper1 also allows the user to specify regions to avoid cutting through, our
method has two major differences on no-go region specification. First, our method treats three
interactive operations as an integrated framework in an interactive system. Second, Chopper
computes a penalty for running the seam through painted regions and it evaluates the cost of the
seam on a cut as the normalized integral of penalty along the seam. Due to the other objective
functions, unobtrusiveness objective function weight and painted region dimensions, Chopper
cannot strictly guarantee that painted regions would always be avoided by cuts.

41July/August 2018 www.computer.org/cga

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore. Restrictions apply.

 INTERACTION TECHNIQUES

Figure 3. (a) Two types of no-go regions: one is for user-customized, aesthetically salient regions
and the other is for structurally fragile regions. (b) The result in our method by running Algorithm 1
with constraints of no-go regions. The minimum enclosing bounding box of the whole model is
19.65cm × 39.69cm × 19.26cm and the printer volume is 18cm × 18cm × 18cm. The number of
parts in the final partitioning result is 10.

Cutting plane specification. A user can simply draw free-hand strokes to partition the model at
the desired locations. Our method fits a cutting plane to the set of points in the stroke by princi-
pal component analysis (PCA) and performs the cut in real-time interaction. During the interac-
tive partitioning, our method only considers the visible parts (the user has an option on the GUI
to show/hide any sub-parts). If the fitted plane intersects any visible part, our method partitions
that part and add sub-parts to the BSP tree. See Figure 4 for an example. This interactive opera-
tion is realized by Algorithm 2.

Algorithm 1. Constrained tree generation.

42July/August 2018 www.computer.org/cga

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore. Restrictions apply.

 IEEE COMPUTER GRAPHICS AND APPLICATIONS

Component reunion. Planar cuts by unbounded planes can sometime prevent desired partitions.
For example, any cutting plane partitions the neck of the Kitty model will inevitably cut the mid-
dle of the tail part simultaneously. Component reunion is an operation in which a user can merge
two adjacent parts into one part. Together with the cutting plane specification, flexible geometric
configurations can be obtained. For example, if a user wants to cut the Kitten model into three
parts (head, body and tail), he/she can first cut the head from its body, then cut the tail from the
head and the body, and finally reunite the two sub-parts of the tails together (Figure 6). This in-
teractive operation is realized by Algorithm 3.

Constrained tree generation
Our method works either in an automatic mode or in a semi-automatic mode. A BSP tree is
called unprintable if either (1) it is empty or (2) there exists one leaf node whose volume is
larger than the printer volume or there exist a cutting plane passing through no-go regions; other-
wise it is printable. In semi-automatic mode, a user can specify a few constraints and we propose
an algorithm (Algorithm 1) that outputs a constrained optimized printable BSP tree compatible
with no-go region constraints. The other constraints are handled in Algorithms 2 and 3.

Algorithm 1 is a constrained tree generation algorithm, whose input can be either empty (for au-
tomatic mode) or an unprintable BSP tree with no-go regions (for semi-automatic mode). Note
that the input unprintable BSP tree can result from some interactive operations. Given an initial
unprintable BSP tree, Algorithm 1 first examines whether each cutting plane in this tree inter-
sects no-go regions or not. If a cutting plane violates this nonintersection constraint, it is re-
moved from the tree by merging two corresponding sub-trees. We examine all possible situations
of sub-tree merging in a BSP tree and classify them into three configurations. We present these
configurations and the sub-tree merging algorithms later in this article Secondly, Algorithm 1
uses a constrained beam search to partition the non-printable leaf nodes in a pool of BSP trees
using cutting planes. The set of candidate planes P are the same as those in Chopper. The search
space P is further constrained by no-go regions.

Algorithm 1 has a linear complexity O(b|τ||R||P|), where |τ| is the number of leaf nodes in τ, |R|
and |P| are the cardinality of R and P respectively. There are three key differences between our
constrained tree generation and the Chopper's beam search. The first is that our method merges
the neighboring leaf nodes (i.e., neighboring subparts) whose boundary (i.e., the cutting line) vi-
olate the no-go regions and maintain a value binary tree by local updating. The second is that the
no-go regions help to quickly filter a large number of unnecessary candidate planes in P before
performing the time-consuming intersection and cutting operations. The third is that rather than
choosing all top b ranked BSP trees in newBSPs, we randomly pick up a BSP tree into newBSPs.
We observe that this operation improves the performance of local beam search in Chopper that
frequently suffers from a lack of diversity, since all the top b ranked BSP trees can quickly be-
come concentrated in a narrow region in the search space. The latter two differences Algorithm 1
performs in real time for user interaction in our practice.

BSP tree splitting with user-specified cutting planes
It is often desired by users to partition a model at some places that have functional or semantic
meaning. Sometimes these places (e.g., the waist and arms of the Armadillo model in Figure 4
and the human model in Figure 2b) are error-prone by automatically detection using low-level
geometric features. In our method, a user can interactively specify a cutting plane by drawing a
free-hand stroke. It is worth noting that a user does not need to use both no-go regions and cut-
ting plane specifications. If a user has some experiences to specify good initial cutting planes,
no-go regions are no longer needed. On the other hand, if a novice user only has some fuzzy re-
quirements on salient regions to be preserved, she/he can use no-go regions alone in the semi-
automatic mode for partitioning.

43July/August 2018 www.computer.org/cga

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore. Restrictions apply.

 INTERACTION TECHNIQUES

Figure 4. Cutting the waist and arms of the Armadillo model to obtain a clear semantic
segmentation. The final result in our method is obtained by running the BSP tree splitting with a
user-specified cutting plane, as in Algorithm 2. (a) Cutting at the waist of the Armadillo model. (b)
More cutting at arms. (c) Final result.

For specifying a cutting plane, a user can rotate the model until a best viewpoint is reached. By
fixing this viewpoint, the user draw a freehand stroke and a straight line is fit with stroke points
by a least-squares method. A cutting plane is determined which passes through the fitting line
and is perpendicular to the screen plane. Then the BSP tree τ maintained by our method is up-
dated by adding this cutting plane. The pseudo-codes are presented in Algorithm 2. Note that the
input BSP tree in Algorithm 2 may be empty and the model partitioning by a single plane may
lead to an unprintable BSP tree. In this case, Algorithm 1 (with an empty set of no-go regions) is
applied to obtain a printable model partitioning.

Algorithm 2. BSP tree splitting with a user-specified cutting plane.

44July/August 2018 www.computer.org/cga

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore. Restrictions apply.

 IEEE COMPUTER GRAPHICS AND APPLICATIONS

The user-specified plane may also cut a printable leaf node in the input BSP tree and sometimes
result in very small subparts. We further optimize the BSP tree by considering possible merge of
leaf nodes. Two leaf nodes in a BSP tree are called mergeable if (1) they share a common bound-
ary cutting plane not specified by users and (2) the merged node has a printable volume. Then
we recursively merge all mergeable nodes and for merging each pair of mergeable nodes a new
BSP tree is generated by Algorithm 3 in Section 4.4. Finally. we chose the highest ranked BSP
tree from the pool of newly generated BSP trees.

A linear scan of all leaf nodes in a BSP tree τ can identify all the mergeable nodes. The leaf
nodes of a tree built from merged nodes can be further merged. Let n be the number of leaf
nodes in τ. There are at most O(logn) hierarchical mergeable nodes. Then Algorithm 2 has the
worst-case time complexity of O(nlogn). In all our experimental tests, Algorithm 2 runs in real
time for user interaction by observing that there are only O(1) hierarchical mergeable nodes in
real models, leading to a linear empirical time complexity.

Flexible geometric configurations by component reunion
operations
If a 3D model has complex geometry or has a complex topology of high genus, a cutting plane
may intersect the 3D model with more than one disjoint closed curve (e.g., the cutting at the
waist of the human model in Figure 2(b)). Then some desired partitioning may not be accessible
by a BSP tree built from the top-down manner in Chopper in which two parts are separated by a
cutting plane at each step. One more example is shown in Figure 5, in which a cutting plane at
the neck of the Kitten model will inevitably cut the tail into two parts and Chopper can never re-
cover the whole tail part.

Figure 5. With the component reunion function, our method can provide the partitioning geometric
configuration containing the whole tail part. (a) A cutting plane at the neck of the Kitten model will
inevitably cut the tail into two parts. Chopper can never recover the whole tail part. (b) A cutting
plane separates the head and tail. (c) A cutting plane separates the body and tail. (d) Reuniting the
two parts of the tail in our method.

Our method supports to merge two neighboring subparts into one by a simple components reun-
ion operation (Figure 2d). The core to this component reunion operation is a merging algorithm.
A key observation is that to merge two parts (represented by leafs in the BSP tree) which are
physically adjacent, there are only three configurations in BSP tree:

45July/August 2018 www.computer.org/cga

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore. Restrictions apply.

 INTERACTION TECHNIQUES

A

B C

D E 6 F

1 G H 94 5

7 82 3

Level 1

Level 0

Level 2

Level 3

Level 4

A

B C

D E 6 F

1 G H 94 5

7 82 3

Level 1

Level 0

Level 2

Level 3

Level 4

A

C

6U7 F

8 9

Level 1

Level 0

Level 2

Level 3

A

B C

D E F

1 2 93U4 5

Level 1

Level 0

Level 2

Level 3

A

B C

D E 6 F

1 G H 94 5

7 82 3

Level 1

Level 0

Level 2

Level 3

Level 4

A

Level 1

Level 0

Level 2

Level 3

6

H

7 8

B

D E

1 G 4 5

2 3

B C

E 6 FG

H 1U94 5

7 8

2 3

Case III: merge nodes 1 and 9

Case II: merge nodes 6 and 7

Case I: merge nodes 3 and 4

Level 4

Level 4

Level 4

Figure 6. There are three different configurations in Algorithm 3. Case I: Siblings of both nodes to
be merged are leaf nodes. Case II: The sibling of one node to be merged is a leaf node and the
sibling of the other is a non-leaf node. Case III: Siblings of both nodes to be merged are non-leaf
nodes.

• Case I: Siblings of both nodes to be merged are leaf nodes (Figure 6, Case I).
• Case II: The sibling of one node to be merged is a leaf node and the sibling of the other

is a non-leaf node (Figure 6, Case II).
• Case III: Siblings of both nodes to be merged are non-leaf nodes (Figure 6, Case II).

The detailed operations for merging two leaf-nodes in each of these three cases include 1) as-
signing one leaf-node to another leaf-node’s parent and 2) reducing the sub-tree of the node that
has been merged into others. During the merging, to simplify the implementation, we prefer to
merge the leaf-node the sibling of which is a leaf-node into the one whose sibling is a non-leaf-
node.

46July/August 2018 www.computer.org/cga

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore. Restrictions apply.

 IEEE COMPUTER GRAPHICS AND APPLICATIONS

Algorithm 3. Sub-tree merging.

The pseudo-codes of components reunion operation are presented in Algorithm 3. Since there are
only three cases in merging two neighboring subparts, it is easy to check that Algorithm 3 guar-
antees to output a binary tree with the time complexity O(1). Accordingly, we can always trav-
erse the resulted tree recursively in depth-first fashion, which plays an important role in
Algorithms 1 and 2. It is worth noting that, although the merged tree is always binary, merging
deviate resulted binary tree from the basic definition of BSP tree in which convexity exists by
nature and that satisfies the assemblability objective by its construction. To deal with possible
assemblability issue, we analyzed all printable pieces on the Gaussian map for assemblability by
the common regions of half-spaces according to the motion restrictions formulated in [9]. If
merging two neighboring subparts results in a binary tree that cannot pass the assemblability
check, we reject this merging operation and try another merging. In terms of implementation, our
merging operation needs store multiple, disjoint cutting plane segments at some nodes in the
merged tree. Fortunately, the Chopper’s objective function (1) is still applicable, given that all
leaf nodes pass the assemblability check.

As a short summary, the components reunion operation in our method provides more flexible
geometric configurations than those in Chopper. Two examples are shown in Figure 2b and Fig-
ure 5.

47July/August 2018 www.computer.org/cga

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore. Restrictions apply.

 INTERACTION TECHNIQUES

Figure 7. Some partitioning results by users with a few interactions using our proposed tool. For
each model, the user's partitioning result and its printed parts are shown. The model volumes are
3Holes (8066.9cm3), Armadillo (2288.82cm3), Bull (2281.62cm3), Bunny (6003.38cm3),
Cheburashka (3288.39cm3), Chinese_Lion (6001.62cm3), Cow (3277.76cm3), Dinosaur
(1299.09cm3), Elephant (2232.42cm3), FanDisk (5726.12cm3), Fertility (3195.51cm3), Kitten
(6581.03cm3), LionHead (4257.72cm3), Monster (7330.87cm3), Toy (4594.35cm3), and the printer
volume is 18.0cm × 17.0cm × 16.0cm.

EXPERIMENTS AND USER STUDY
We have implemented the proposed interactive tool in C++ and tested it on a PC with an Intel i7-
860 CPU (2.80GHz) and 8GB RAM. Users can easily and quickly obtain a desired partitioning
of a large model fitting into a 3D printer's volume by a few interactions using our tool. Partition-
ing examples generated by users are shown in Figures 7 and 9, in which the volumes of models
range from 1299.09 cm3 to 8066.9 cm3. The volume of 3D printer used in our test is 18.0cm ×
17.0cm × 16.0cm.

The experiments and user study consist of two parts. First, we made a qualitative comparison
between our method and Chopper.1 Ten participants who were all college students (three females
and seven males) and had common computer skills were invited. They were instructed to read
built-in help for clear understanding of the interactive operations in our method. Note that Chop-
per is fully automatic and there is no need to manually operate it. Six large 3D models were pro-
vided and each participant was requested to partition using our method. We recorded the time it
took for them to complete their operations (including both interactive operations and the running
time of applying Algorithms 1-3)

Table 1 summarizes the users’ performance we collected in the user study. The table shows the
partitioning time of each model for each participant using our method. As a comparison, the run-
ning time of Chopper is also presented in Table 1. The results showed that our method (1-3
minutes for partitioning a model) is more efficient than Chopper (3-6 minutes for partitioning a

48July/August 2018 www.computer.org/cga

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore. Restrictions apply.

 IEEE COMPUTER GRAPHICS AND APPLICATIONS

model) by using less partitioning time. This is because Chopper evaluated all possible partitions
(even those invalid partitions) by an exhaustive search of all possible combinations of candidate
planes, while with user's interaction in our method, the user specified constraints (either no-go
regions or specific cutting plane) greatly reduced the search space. Furthermore, after partition-
ing, all participants evaluated that the partitioning results obtained in our method are better than
those in Chopper, since our method efficiently incorporates user's intention.

Table 1. The partitioning time of six models by each of ten users using our interactive method. As a
comparison, the partitioning time of Chopper is also presented. All running times were measured in

seconds and were collected on a PC with an Intel I7-860 CPU (2.80GHz) and 8GB RAM.

Models

Running time in seconds

Chop-
per

Our Interactive Method

User
1

User
2

User
3

User
4

User
5

User
6

User
7

User
8

User
9

User
10

Elk 327 70 70 92 50 101 125 83 128 99 112

Cheburashka 245 81 73 85 60 69 89 98 102 77 104

Cow 203 86 94 70 76 121 115 91 78 85 125

Bunny 287 133 92 140 72 140 147 89 115 158 174

Monster 357 91 79 132 80 135 90 102 78 87 134

Hand 295 77 89 90 115 126 70 101 81 70 135

Note that the partitioning results by Chopper heavily depend on the weights (Equation) in the
objective function (Figure 1). By imposing users’ constraints, our method is not sensitive to dif-
ferent weights. One example is shown in Figure 8.

Figure 8. Left: for the bunny model, the partitioning results by Chopper heavily depend on the
weights (Equation 1) in the objective function. Right: Given user specified no-go regions and a
cutting plane, our method outputs similar partitioning results for different weights. The weights are

()partw , , , , ,util fragility symmetry connector seamw w w w w .

49July/August 2018 www.computer.org/cga

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore. Restrictions apply.

 INTERACTION TECHNIQUES

Second, we evaluated and compared our method with the Chopper1 and a state-of-the-art level
set method,5 quantitatively and qualitatively. Note that the level set method5 consists of two
parts:

• an initial mesh surface segmentation: we implemented the shape diameter segmentation
which is one of recommended automatic mesh segmentations by Yao and colleagues,5
and

• an iterative, constrained variational optimization.

Both parts are time-consuming. Six models, Elk, Cheburashka, Cow, Monster, Bunny and Hand,
were partitioned into printable pieces using three methods, Chopper and the level set method and
our method. The partitioning results of six models, as well as the number of partitioning pieces
and running time, are summarized in Figure 9. These results showed that with a few user interac-
tions, our method can obtain fewer pieces of printable components and less performance time
than Chopper and the level set method. Note that compared with the model partitioning by
curved surfaces as in the work of Yao and colleagues,5 an advantage of model partitioning by
cutting planes is that connectors can be easily placed on the cross sections.

Figure 9. Some partitioning results obtained by our method, Chopper and the level set method. The
performance time in our method includes all interaction time and the time running Algorithms 1-3.
The time for the level set method includes two parts: an initial shape diameter mesh segmentation
plus an iterative constrained variational optimization. The model volumes are Elk (5832cm3),
Monster (7330.87cm3), Cheburashka (3288.39cm3), Bunny (6003.38cm3), Cow (3277.76cm3),
Hand (3668cm3), and the printer volume is 18.0cm × 17.0cm × 16.0cm. The printed Elk models are
shown in Figure 10.

50July/August 2018 www.computer.org/cga

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore. Restrictions apply.

 IEEE COMPUTER GRAPHICS AND APPLICATIONS

Figure 10. The printed Elk models partitioned by our method, Chopper, and the level set method.

All ten participants in the first user study watched the partitioning results of six models (shown
in Figure 9) by three methods (ours, Chopper, level set method) in computer as well as the
printed physical models (Figure 10). Then each participant was asked to compare and rank these
partitioning results by choosing one mark from five levels: excellent (5), good (4), fair (3), bad
(2), very bad (1). Finally they filled a questionnaire with Yes/No choices.

The average rank of each partitioning result evaluated by ten participants was summarized in Ta-
ble 2. The results showed that the subjective ranks of partitioning results obtained by our method
were consistently higher than the subjective ranks of results obtained by Chopper and the level
set method.

Table 2. The average subjective ranks from ten participants for the partitioning results of six models
shown in Figure 9 using three methods (our method, Chopper, the level set method).

Model
name

Average subjective rank

Our method Chopper Level set method

Elk 4.5 3.0 3.7

Cheburashka 4.4 2.0 4.2

Cow 4.6 3.1 4.0

Bunny 4.5 3.4 3.8

Monster 4.0 2.4 3.8

Hand 4.8 2.5 3.8

Overall 4.5 2.7 3.9

51July/August 2018 www.computer.org/cga

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore. Restrictions apply.

 INTERACTION TECHNIQUES

The post-test questionnaire filed by participants evaluated three characteristics of our method.
Each characteristic had five questions. A Yes answer to each question gave one score and then
the full score to each characteristic is five. The three characteristics and their average scores by
participants are as follows.

Usefulness. The five questions are: (1) Does it give more control to the user over the partitioning
process? (2) Does it make the partitioning process easier? (3) Does it save time? (4) Does it meet
the needs of 3D-model partitioning? (5) Does it have everything that you would expect it to do?
The average score given by participants is 4.4.

Ease of use. The five questions are: (1) Is it easy to use? (2) Is it user friendly? (3) Does it re-
quire the fewest steps possible to accomplish partition? (4) Is it flexible? (5) Can you use it with-
out noticing any inconsistencies? The average score given by participants is 4.2.

Satisfaction. The five questions are: (1) Have you learned to use it quickly? (2) Have you easily
remembered how to use it? (3) Have you quickly became skillful with it? (4) Are you satisfied
with it? (5) Does it work the way you want? The average score given by participants is 4.2.

The above results show that our method can offer a simple and easy-to-use interactive tool for
3D-printing-oriented model partitioning to users.

CONCLUSION
We presented an efficient interactive tool to partition large 3D models into components that fit
into the volume of a given 3D printer. Three interaction operations, i.e., no-go region painting,
cutting plane specification and stitching, are realized, based on three algorithms, including (1)
constrained tree generation, (2) tree-splitting and (3) sub-tree merging. These interaction opera-
tions are simple and intuitive to use. With the help of these operations, users can efficiently parti-
tion large models into smaller printable components in good quality. Experiments and a
preliminary user study have been conducted to verify the functionality of our interactive tool.

ACKNOWLEDGEMENTS
A.K. Jadoon and C. Wu contributed equally to this paper. Y.-J. Liu is the corresponding au-
thor. Models used in this paper are courtesy of Stanford University and AIM@SHAPE
Shape Repository. This work was partially supported by the National Key Research and De-
velopment Plan (2016YFB1001202), the Natural Science Foundation of China (61432003,
61322206, 61272228, 61661130156), Hong Kong RGC GRF Grant (CUHK/14207414) and
the Royal Society-Newton Advanced Fellowship.

REFERENCES
1. L. Luo et al., “Chopper: Partitioning models into 3D-printable parts,” ACM

Transactions on Graphics, vol. 31, no. 6, 2012, p. 129:1.
2. J. Vanek et al., “Packmerger: A 3D print volume optimizer,” Computer Graphics

Forum, vol. 33, no. 6, 2014, pp. 322–332.
3. Q. Zhou, J. Panetta, and D. Zorin, “Worst-case structural analysis,” ACM Transactions

on Graphics, vol. 32, no. 4, 2013, p. 137:1.
4. X. Chen et al., “Dapper: decompose-and-pack for 3D printing,” ACM Transactions on

Graphics, vol. 34, no. 6, 2015, p. 213:1.
5. M. Yao et al., “Level-set-based partitioning and packing optimization of a printable

model,” ACM Transactions on Graphics, vol. 34, no. 6, 2015, p. 214:1.
6. Z. Xie et al., “3D shape segmentation and labeling via extreme learning machine,”

Computer Graphics Forum, vol. 33, no. 5, 2014, pp. 85–95.

52July/August 2018 www.computer.org/cga

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore. Restrictions apply.

 IEEE COMPUTER GRAPHICS AND APPLICATIONS

7. H. Medellin et al., “Automatic subdivision and refinement of large components for
rapid prototyping production,” Journal of Computing and Information Science in
Engineering, vol. 7, no. 3, 2007, pp. 249–258.

8. J. Hao, L. Fang, and R.E. Williams, “An efficient curvature-based partitioning of
large-scale STL models,” Rapid Prototyping Journal, vol. 17, no. 2, 2011, pp. 116–
127.

9. X. Zhang et al., “Computing stable contact interface for customized surgical jigs,”
IEEE International Conference on Robotics and Automation (ICRA 15), 2015, pp.
6160–6166.

10. R. Hu et al., “Approximate pyramidal shape decomposition,” ACM Transactions on
Graphics, vol. 33, no. 6, 2014, p. 213:1.

11. T.A. Funkhouser et al., “Modeling by example,” ACM Transactions on Graphics, vol.
23, no. 3, 2004, pp. 652–663.

12. Y. Lee et al., “Intelligent Mesh Scissoring Using 3D Snakes,” Proceedings of the 12th
Pacific Conference on Computer Graphics and Applications (PG 04), 2004, pp. 279–
287.

ABOUT THE AUTHORS
Aamir Khan Jadoon is a master’s student in advanced computing at Tsinghua University,
Beijing, China. He received a BSc degree in computer science from the University of Pesh-
awar and MSc in computer science from Quaid-e-Azam University, Islamabad Pakistan. He
is also a software analyst and programmer with over 10 years of industry experience occu-
pying a number of seniority and leadership positions. His main research interests include
computer graphics, geometric modeling and processing, interactive techniques and virtual
reality. Contact him at qinl14@mails.tsinghua.edu.cn.

Chenming Wu is a master’s student with TNList in the Department of Computer Science
and Technology at Tsinghua University. He received his B.Eng. degree from Beijing Uni-
versity of Technology. His research interests include 3D printing and computer graphics.
Contact him at wcm15@mails.tsinghua.edu.cn.

Yong-Jin Liu received a BEng from Tianjin University and a PhD from the Hong Kong
University of Science and Technology. He is currently an associate professor TNList in the
Department of Computer Science and Technology at Tsinghua University. His research in-
terests include computational geometry, computer graphics and computer-aided design. He
is a senior member of the IEEE and a member of ACM. Contact him at liuyongjin@tsing-
hua.edu.cn.

Ying He received BS and MS degrees in electrical engineering from Tsinghua University
and a PhD in computer science from Stony Brook University. He is an associate professor
in the School of Computer Engineering at Nanyang Technological University. He is inter-
ested in the problems that require geometric computing and analysis. Contact him at
YHe@ntu.edu.sg.

Charlie C.L. Wang received a BEng in mechatronics engineering from the Huazhong Uni-
versity of Science and Technology, and MPhil and PhD degrees in mechanical engineering
from The Hong Kong University of Science and Technology. He is now a professor and
Chair of Advanced Manufacturing, in the Department of Design Engineering at Delft Uni-
versity of Technology. He is a Fellow of the American Society of Mechanical Engineers
and a senior member of IEEE. Contact him at c.c.wang@tudelft.nl.

53July/August 2018 www.computer.org/cga

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore. Restrictions apply.

