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FEATURE ARTICLE: 3D Printing 

Interactive Partitioning  
of 3D Models into 
Printable Parts 

This article presents an easy, flexible and interactive 

tool for partitioning a 3D model, which is larger than 

3D-printer's working volume, into printable parts in an 

intuitive way. Our tool is based on the elegant 

partitioning optimization framework Chopper. Our tool 

aims at improving Chopper by providing users three 

easy-to-use interactive operations: no-go region 

painting, cutting plane specification and components 

reunion. With these operations, we show that (1) 

exhaustive search in the BSP tree—the most time-

consuming step in Chopper—can be avoided, (2) 

more flexible geometric configurations can be provided, (3) user's design intention is 

considered naturally and efficiently, and customized 3D partitioning results can be 

obtained. We test our tool on a wide range of 3D models and observe promising results. 

A preliminary user study also demonstrates its effectiveness and efficiency. 

3D printing, also known as additive manufacturing, has been widely studied in the manufactur-
ing industry. As desktop 3D printers have become mature, more and more people enjoy using 
this awesome invention to print their daily life 3D models. Desktop 3D printers usually have the 
limited size of a 3D model at which one can print. This limitation drives the research of 3D-
printing-based model partitioning. The desired solution involves partitioning the large 3D model 
into small parts that can fit into the working volume of the printer. Then these small parts can 
easily be assembled with the help of connectors, screws, glue or self-interlocking. 

There exist a number of 3D-printing-driven model partitioning methods, by considering diverse 
properties such as printing volume,1,2 structureness and assemblability,3 packing and space sav-
ing, aesthetics, self-support and connectivity,4,5 and so on. A representative work is the Chop-
per,1 which is an elegant optimization framework that incorporates many partitioning properties 
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into an objective function. Chopper is fully automatic. However, its partitioning results heavily 
depend on the weights in the objective function and users frequently have to adjust these weights 
by trial and error. For each trial, Chopper is also time-consuming due to the exhaustive searching 
in a binary space partitioning (BSP) tree. See Figures 1 and 8 for some examples. Furthermore, 
as fully automatic methods, all of the above methods do not take users' design intentions into ac-
count and therefore cannot produce customized partitioning results. 

 

Figure 1. The output of Chopper is sensitive to the weights of the objective function. The default 
setting (Equation 2) produces good partitioning on the Bunny model, however, it leads to poor 
results on the Hand model, where all fingers are over-segmented. Our method is not sensitive to 
different weights. With a few simple interactions from users, it can provide good partitioning quickly. 
(a) Chopper with default weights : 10 parts, 287 sec. (b) Our method: 7 parts, 119 sec., including 
interaction. (c) Chopper with default weights: 16 parts, 375 sec. (d) Our method: 12 parts, 173 sec., 
including interaction. 

In this paper, we propose an interactive tool, aiming at improving Chopper by three algorithms 
based on BSP tree generation and manipulation: 1) constrained tree generation, 2) tree-splitting 
and 3) sub-tree merging, each of which leads to a simple and intuitive interactive operation, 
namely, no-go region specification, clipping plane specification and component reunion. With 
little user interactions, we show that exhaustive search in the BSP tree—the most time-consum-
ing step in Chopper—can be avoided. As a result, our method enables real-time interaction and 
updating the partition of 3D models with complex geometry and topology. Moreover, by ena-
bling customized partitioning, it can produce more flexible geometric configurations that are not 
available to Chopper (see Figure 2).  

 

Figure 2. Our method can provide more flexible, better partitioning results than Chopper.1 The size 
of the minimum enclosing bounding box of the human model is 21cm × 45cm × 7cm, whereas the 
3D printer's working volume is only 18cm × 17cm × 16cm. (a) the front and back views of Chopper's 
partitioning results with 17 parts, taking more than three minutes in an automatic setting. (b) 
Leftmost: with our method, users start with specifying a cutting plane, which leads to three disjoint 
closed cutting curves on the input model. Middle-left: our method merges the undesired parts using 
the components reunion operator. Middle: partitioning with two more cutting planes. Middle-right: 
painting the salient region (red region in the face) where no cuts can go through. Rightmost: with 
the constrained tree generation algorithm, our method produces only 12 parts in less than one 
minute (including interaction and running the constrained partitioning algorithm).  

Our interactive tool is easy to use. Instead of the full manual partitioning by applying existing 
CAD modeling/CSG tools, our tool works in either automatic or interactive mode, or a mix of 
both. For example, our tool can make use of an initial partitioning automatically generated from 
Chopper, and then users can simply and quickly modify a few cutting planes (leafs in the BSP 
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tree) in the semi-automatic mode. Thanks to the high interaction performance, our tool can up-
date the partitioning result immediately. Users can repeat this procedure until obtaining a satis-
factory result. We tested our interactive tool on a wide range of 3D models and observed 
promising results. A preliminary user study also demonstrates its effectiveness and efficiency. 

RELATED WORK 
As an active field, 3D segmentation has been studied extensively in the last decade. Many meth-
ods have been proposed to segment a 3D model into meaningful parts, providing semantic infor-
mation about the model for shape understanding and recognition.6,11,12 However, most existing 
methods are not suitable for 3D printing, since they do not address some critical issues, such as 
printing time, supporting material, printer volume, assemblability, structure soundness, aesthet-
ics, etc. 

Given a limited printing volume, one has to decompose a large 3D model into smaller printable 
subparts. Decomposing polyhedra into convex parts or even approximately is a well-known chal-
lenging problem in computational geometry. In manufacturing industry, Medellin and col-
leagues7 proposed a regular-grid-based decomposition designed for both rapid prototyping and 
assembly. A drawback of this method is that it always adds but never subtracts 3D units to solve 
potential manufacturing problems and then it leads to too large 3D units. Hao and colleagues8 
decomposed a large complex model into simpler 3D parts by using curvature-based partitioning.  

A pyramid is a shape that has a flat base with the remaining boundary forming a height function 
over the base. Pyramidal shapes are optimal for 3D printing since they do not need any support-
ing structures. Hu and colleagues10 proposed an elegant method for approximate pyramidal shape 
decomposition using a clustering scheme. Luo and colleagues1 proposed the Chopper, which op-
timizes a number of desired 3D printing criteria in an elegant framework. In addition to consider-
ing a single decomposed subpart that fits the printer volume, some researchers had considered 
the problem of packing multiple parts into the printing volume. Recently, Chen and colleagues4 
and Yao and colleagues5 proposed optimization methods to address both the segmentation and 
packing issues. 

To the best of our knowledge, none of the existing methods incorporate users’ inputs into model 
partitioning to reflect users’ special intention. The interactive tool proposed in this paper aims at 
addressing this issue. 

PRELIMINARY ON CHOPPER 
Chopper1 partitions a 3D model using a set of cutting planes, which are determined by an ex-
haustive search of all possible combinations of candidate planes and evaluated by an objective 
function. It adopts a BSP tree to represent the set of cutting planes. 

Candidate planes. A plane is represented by a 2-tuple ( )ijπ ,i jd= n , where in  is the plane normal 

and jd  is the offset. Chopper chooses a planar normal from a set { }iN = n , which are 129 uni-

formly distributed points on a unit sphere, determined by the vertices of a thrice-subdivided reg-

ular octahedron. The plane offsets { }jd  are sampled uniformly at intervals of 0.5 cm over the 

range within which the planes intersect the model, for each in . 

Objective functions. For a BSP tree τ, Chopper defines six objective functions for the number of 
parts partf , efficient utilization of the printing volume utilf , connector feasibility connectorf , struc-

tural soundness by finite element analysis structuref  and by avoidance to introducing fragile parts 

fragilityf , aesthetics by seam unobtrusiveness seamf  and by symmetry symmetryf . Then it minimizes 

the combined objective function 

( ) ( )k k
k

f w fτ τ=                                                                                     (1) 
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where kw  are non-negative weights. Chopper is fully automatic. However, its results heavily de-

pend on the weights. Luo and colleagues1 suggested the following weights: 

partw 1, 0.05, 1, 1, 0.1, 0.25util connector fragility seam symmetryw w w w w= = = = = =       (2) 

Beam search. Chopper uses a beam search to partition the model. Starting with an empty BSP 
tree, at each step, Chopper extends the BSP trees from the previous step by adding one more cut-
ting plane and the beam search selects the most promising BSP trees (evaluated by Equation 1) 
so far. The maximum number of BSP selections at each step is the beam width b and Chopper 
uses b = 4. The search terminates when all leafs in BSP trees can be fit in the target printing vol-
ume. The best BSP tree (having the minimal score in Equation 1) is the solution. 

OUR INTERACTIVE METHOD 
We introduce three simple, intuitive interaction operations into Chopper. With them, a user can 
indicate some constraints, specify a particular cutting plane and merge two subparts. To incorpo-
rate users' input constraints in an interactive environment, we present a simple yet efficient con-
strained tree generation algorithm to quickly update the BSP trees. Given a particular cutting 
plane specified by a user according to some design intention, the BSP tree maintained by the sys-
tem is quickly updated by a tree-splitting algorithm. The planar cuts indicated by a BSP tree can 
only achieve some limited geometric configurations. We provide an interactive component reun-
ion operation with a sub-tree merging algorithm so that more flexible geometric configurations 
can be obtained. Experiments and the user study show that a user can use our interactive tool to 
obtain customized, user satisfied 3D printable partitioning in a short time. 

Throughout this paper, we use the terms of the leaf node in a BSP tree and its corresponding sub-
part in a 3D model interchangeably. 

Three interactive operations 
To allow a user to input his/her design intention simply and intuitively, we propose three interac-
tive operations as follows. 

No-go region painting with the aid of stress analysis. In a preprocessing step, our method ana-
lyzes the stress distribution of the model using the finite element method. During interaction, the 
stress analysis is visualized with a color map and a user can paint on the object surface with 
strokes. A scribble-like interface is used for painting since it is intuitive and requires no exper-
tise. Our method computes the minimum bounding boxes of each disjoint painted region if its 
volume is less than the printer volume. Cutting planes on the model surface are not allowed to 
pass through the painted regions and we call them no-go regions. Two design intentions can be 
reflected by no-go regions (see Figure 3a): the first is the aesthetically salient regions that can be 
user customized; and the second is the structurally fragile regions. This interactive operation is 
realized by Algorithm 1.  

Noting that Chopper1 also allows the user to specify regions to avoid cutting through, our 
method has two major differences on no-go region specification. First, our method treats three 
interactive operations as an integrated framework in an interactive system. Second, Chopper 
computes a penalty for running the seam through painted regions and it evaluates the cost of the 
seam on a cut as the normalized integral of penalty along the seam. Due to the other objective 
functions, unobtrusiveness objective function weight and painted region dimensions, Chopper 
cannot strictly guarantee that painted regions would always be avoided by cuts. 
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Figure 3. (a) Two types of no-go regions: one is for user-customized, aesthetically salient regions 
and the other is for structurally fragile regions. (b) The result in our method by running Algorithm 1 
with constraints of no-go regions. The minimum enclosing bounding box of the whole model is 
19.65cm × 39.69cm × 19.26cm and the printer volume is 18cm × 18cm × 18cm. The number of 
parts in the final partitioning result is 10. 

Cutting plane specification. A user can simply draw free-hand strokes to partition the model at 
the desired locations. Our method fits a cutting plane to the set of points in the stroke by princi-
pal component analysis (PCA) and performs the cut in real-time interaction. During the interac-
tive partitioning, our method only considers the visible parts (the user has an option on the GUI 
to show/hide any sub-parts). If the fitted plane intersects any visible part, our method partitions 
that part and add sub-parts to the BSP tree. See Figure 4 for an example. This interactive opera-
tion is realized by Algorithm 2. 

 

Algorithm 1. Constrained tree generation. 
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Component reunion. Planar cuts by unbounded planes can sometime prevent desired partitions. 
For example, any cutting plane partitions the neck of the Kitty model will inevitably cut the mid-
dle of the tail part simultaneously. Component reunion is an operation in which a user can merge 
two adjacent parts into one part. Together with the cutting plane specification, flexible geometric 
configurations can be obtained. For example, if a user wants to cut the Kitten model into three 
parts (head, body and tail), he/she can first cut the head from its body, then cut the tail from the 
head and the body, and finally reunite the two sub-parts of the tails together (Figure 6). This in-
teractive operation is realized by Algorithm 3. 

Constrained tree generation 
Our method works either in an automatic mode or in a semi-automatic mode. A BSP tree is 
called unprintable if either (1) it is empty or (2) there exists one leaf node whose volume is 
larger than the printer volume or there exist a cutting plane passing through no-go regions; other-
wise it is printable. In semi-automatic mode, a user can specify a few constraints and we propose 
an algorithm (Algorithm 1) that outputs a constrained optimized printable BSP tree compatible 
with no-go region constraints. The other constraints are handled in Algorithms 2 and 3. 

Algorithm 1 is a constrained tree generation algorithm, whose input can be either empty (for au-
tomatic mode) or an unprintable BSP tree with no-go regions (for semi-automatic mode). Note 
that the input unprintable BSP tree can result from some interactive operations. Given an initial 
unprintable BSP tree, Algorithm 1 first examines whether each cutting plane in this tree inter-
sects no-go regions or not. If a cutting plane violates this nonintersection constraint, it is re-
moved from the tree by merging two corresponding sub-trees. We examine all possible situations 
of sub-tree merging in a BSP tree and classify them into three configurations. We present these 
configurations and the sub-tree merging algorithms later in this article Secondly, Algorithm 1 
uses a constrained beam search to partition the non-printable leaf nodes in a pool of BSP trees 
using cutting planes. The set of candidate planes P are the same as those in Chopper. The search 
space P is further constrained by no-go regions. 

Algorithm 1 has a linear complexity O(b|τ||R||P|), where |τ| is the number of leaf nodes in τ, |R| 
and |P| are the cardinality of R and P respectively. There are three key differences between our 
constrained tree generation and the Chopper's beam search. The first is that our method merges 
the neighboring leaf nodes (i.e., neighboring subparts) whose boundary (i.e., the cutting line) vi-
olate the no-go regions and maintain a value binary tree by local updating. The second is that the 
no-go regions help to quickly filter a large number of unnecessary candidate planes in P before 
performing the time-consuming intersection and cutting operations. The third is that rather than 
choosing all top b ranked BSP trees in newBSPs, we randomly pick up a BSP tree into newBSPs. 
We observe that this operation improves the performance of local beam search in Chopper that 
frequently suffers from a lack of diversity, since all the top b ranked BSP trees can quickly be-
come concentrated in a narrow region in the search space. The latter two differences Algorithm 1 
performs in real time for user interaction in our practice. 

BSP tree splitting with user-specified cutting planes 
It is often desired by users to partition a model at some places that have functional or semantic 
meaning. Sometimes these places (e.g., the waist and arms of the Armadillo model in Figure 4 
and the human model in Figure 2b) are error-prone by automatically detection using low-level 
geometric features. In our method, a user can interactively specify a cutting plane by drawing a 
free-hand stroke. It is worth noting that a user does not need to use both no-go regions and cut-
ting plane specifications. If a user has some experiences to specify good initial cutting planes, 
no-go regions are no longer needed. On the other hand, if a novice user only has some fuzzy re-
quirements on salient regions to be preserved, she/he can use no-go regions alone in the semi-
automatic mode for partitioning. 
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Figure 4. Cutting the waist and arms of the Armadillo model to obtain a clear semantic 
segmentation. The final result in our method is obtained by running the BSP tree splitting with a 
user-specified cutting plane, as in Algorithm 2. (a) Cutting at the waist of the Armadillo model. (b) 
More cutting at arms. (c) Final result. 

For specifying a cutting plane, a user can rotate the model until a best viewpoint is reached. By 
fixing this viewpoint, the user draw a freehand stroke and a straight line is fit with stroke points 
by a least-squares method. A cutting plane is determined which passes through the fitting line 
and is perpendicular to the screen plane. Then the BSP tree τ maintained by our method is up-
dated by adding this cutting plane. The pseudo-codes are presented in Algorithm 2. Note that the 
input BSP tree in Algorithm 2 may be empty and the model partitioning by a single plane may 
lead to an unprintable BSP tree. In this case, Algorithm 1 (with an empty set of no-go regions) is 
applied to obtain a printable model partitioning. 

 

Algorithm 2. BSP tree splitting with a user-specified cutting plane. 
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The user-specified plane may also cut a printable leaf node in the input BSP tree and sometimes 
result in very small subparts. We further optimize the BSP tree by considering possible merge of 
leaf nodes. Two leaf nodes in a BSP tree are called mergeable if (1) they share a common bound-
ary cutting plane not specified by users and (2) the merged node has a printable volume. Then 
we recursively merge all mergeable nodes and for merging each pair of mergeable nodes a new 
BSP tree is generated by Algorithm 3 in Section 4.4. Finally. we chose the highest ranked BSP 
tree from the pool of newly generated BSP trees. 

A linear scan of all leaf nodes in a BSP tree τ can identify all the mergeable nodes. The leaf 
nodes of a tree built from merged nodes can be further merged. Let n be the number of leaf 
nodes in τ. There are at most O(logn) hierarchical mergeable nodes. Then Algorithm 2 has the 
worst-case time complexity of O(nlogn). In all our experimental tests, Algorithm 2 runs in real 
time for user interaction by observing that there are only O(1) hierarchical mergeable nodes in 
real models, leading to a linear empirical time complexity. 

Flexible geometric configurations by component reunion 
operations 
If a 3D model has complex geometry or has a complex topology of high genus, a cutting plane 
may intersect the 3D model with more than one disjoint closed curve (e.g., the cutting at the 
waist of the human model in Figure 2(b)). Then some desired partitioning may not be accessible 
by a BSP tree built from the top-down manner in Chopper in which two parts are separated by a 
cutting plane at each step. One more example is shown in Figure 5, in which a cutting plane at 
the neck of the Kitten model will inevitably cut the tail into two parts and Chopper can never re-
cover the whole tail part. 

 

Figure 5. With the component reunion function, our method can provide the partitioning geometric 
configuration containing the whole tail part. (a) A cutting plane at the neck of the Kitten model will 
inevitably cut the tail into two parts. Chopper can never recover the whole tail part. (b) A cutting 
plane separates the head and tail. (c) A cutting plane separates the body and tail. (d) Reuniting the 
two parts of the tail in our method. 

Our method supports to merge two neighboring subparts into one by a simple components reun-
ion operation (Figure 2d). The core to this component reunion operation is a merging algorithm. 
A key observation is that to merge two parts (represented by leafs in the BSP tree) which are 
physically adjacent, there are only three configurations in BSP tree: 
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Figure 6. There are three different configurations in Algorithm 3. Case I: Siblings of both nodes to 
be merged are leaf nodes. Case II: The sibling of one node to be merged is a leaf node and the 
sibling of the other is a non-leaf node. Case III: Siblings of both nodes to be merged are non-leaf 
nodes. 

• Case I: Siblings of both nodes to be merged are leaf nodes (Figure 6, Case I). 
• Case II: The sibling of one node to be merged is a leaf node and the sibling of the other 

is a non-leaf node (Figure 6, Case II). 
• Case III: Siblings of both nodes to be merged are non-leaf nodes (Figure 6, Case II). 

The detailed operations for merging two leaf-nodes in each of these three cases include 1) as-
signing one leaf-node to another leaf-node’s parent and 2) reducing the sub-tree of the node that 
has been merged into others. During the merging, to simplify the implementation, we prefer to 
merge the leaf-node the sibling of which is a leaf-node into the one whose sibling is a non-leaf-
node. 
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Algorithm 3. Sub-tree merging. 

The pseudo-codes of components reunion operation are presented in Algorithm 3. Since there are 
only three cases in merging two neighboring subparts, it is easy to check that Algorithm 3 guar-
antees to output a binary tree with the time complexity O(1). Accordingly, we can always trav-
erse the resulted tree recursively in depth-first fashion, which plays an important role in 
Algorithms 1 and 2. It is worth noting that, although the merged tree is always binary, merging 
deviate resulted binary tree from the basic definition of BSP tree in which convexity exists by 
nature and that satisfies the assemblability objective by its construction. To deal with possible 
assemblability issue, we analyzed all printable pieces on the Gaussian map for assemblability by 
the common regions of half-spaces according to the motion restrictions formulated in [9]. If 
merging two neighboring subparts results in a binary tree that cannot pass the assemblability 
check, we reject this merging operation and try another merging. In terms of implementation, our 
merging operation needs store multiple, disjoint cutting plane segments at some nodes in the 
merged tree. Fortunately, the Chopper’s objective function (1) is still applicable, given that all 
leaf nodes pass the assemblability check. 

As a short summary, the components reunion operation in our method provides more flexible 
geometric configurations than those in Chopper. Two examples are shown in Figure 2b and Fig-
ure 5. 
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Figure 7. Some partitioning results by users with a few interactions using our proposed tool. For 
each model, the user's partitioning result and its printed parts are shown. The model volumes are 
3Holes (8066.9cm3), Armadillo (2288.82cm3), Bull (2281.62cm3), Bunny (6003.38cm3), 
Cheburashka (3288.39cm3), Chinese_Lion (6001.62cm3), Cow (3277.76cm3), Dinosaur 
(1299.09cm3), Elephant (2232.42cm3), FanDisk (5726.12cm3), Fertility (3195.51cm3), Kitten 
(6581.03cm3), LionHead (4257.72cm3), Monster (7330.87cm3), Toy (4594.35cm3), and the printer 
volume is 18.0cm × 17.0cm × 16.0cm. 

EXPERIMENTS AND USER STUDY 
We have implemented the proposed interactive tool in C++ and tested it on a PC with an Intel i7-
860 CPU (2.80GHz) and 8GB RAM. Users can easily and quickly obtain a desired partitioning 
of a large model fitting into a 3D printer's volume by a few interactions using our tool. Partition-
ing examples generated by users are shown in Figures 7 and 9, in which the volumes of models 
range from 1299.09 cm3 to 8066.9 cm3. The volume of 3D printer used in our test is 18.0cm × 
17.0cm × 16.0cm. 

The experiments and user study consist of two parts. First, we made a qualitative comparison 
between our method and Chopper.1 Ten participants who were all college students (three females 
and seven males) and had common computer skills were invited. They were instructed to read 
built-in help for clear understanding of the interactive operations in our method. Note that Chop-
per is fully automatic and there is no need to manually operate it. Six large 3D models were pro-
vided and each participant was requested to partition using our method. We recorded the time it 
took for them to complete their operations (including both interactive operations and the running 
time of applying Algorithms 1-3)  

Table 1 summarizes the users’ performance we collected in the user study. The table shows the 
partitioning time of each model for each participant using our method. As a comparison, the run-
ning time of Chopper is also presented in Table 1. The results showed that our method (1-3 
minutes for partitioning a model) is more efficient than Chopper (3-6 minutes for partitioning a 

48July/August 2018 www.computer.org/cga

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:48:44 UTC from IEEE Xplore.  Restrictions apply. 



  

 IEEE COMPUTER GRAPHICS AND APPLICATIONS 

model) by using less partitioning time. This is because Chopper evaluated all possible partitions 
(even those invalid partitions) by an exhaustive search of all possible combinations of candidate 
planes, while with user's interaction in our method, the user specified constraints (either no-go 
regions or specific cutting plane) greatly reduced the search space. Furthermore, after partition-
ing, all participants evaluated that the partitioning results obtained in our method are better than 
those in Chopper, since our method efficiently incorporates user's intention. 

Table 1. The partitioning time of six models by each of ten users using our interactive method. As a 
comparison, the partitioning time of Chopper is also presented. All running times were measured in 

seconds and were collected on a PC with an Intel I7-860 CPU (2.80GHz) and 8GB RAM. 

Models 

Running time in seconds 

Chop-
per 

Our Interactive Method 

User 
1 

User 
2 

User 
3 

User 
4 

User 
5 

User 
6 

User 
7 

User 
8 

User 
9 

User 
10 

Elk 327 70 70 92 50 101 125 83 128 99 112 

Cheburashka 245 81 73 85 60 69 89 98 102 77 104 

Cow 203 86 94 70 76 121 115 91 78 85 125 

Bunny 287 133 92 140 72 140 147 89 115 158 174 

Monster 357 91 79 132 80 135 90 102 78 87 134 

Hand 295 77 89 90 115 126 70 101 81 70 135 

Note that the partitioning results by Chopper heavily depend on the weights (Equation) in the 
objective function (Figure 1). By imposing users’ constraints, our method is not sensitive to dif-
ferent weights. One example is shown in Figure 8. 

 

Figure 8. Left: for the bunny model, the partitioning results by Chopper heavily depend on the 
weights (Equation 1) in the objective function. Right: Given user specified no-go regions and a 
cutting plane, our method outputs similar partitioning results for different weights. The weights are 

( )partw , , , , ,util fragility symmetry connector seamw w w w w . 
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Second, we evaluated and compared our method with the Chopper1 and a state-of-the-art level 
set method,5 quantitatively and qualitatively. Note that the level set method5 consists of two 
parts: 

• an initial mesh surface segmentation: we implemented the shape diameter segmentation 
which is one of recommended automatic mesh segmentations by Yao and colleagues,5 
and 

• an iterative, constrained variational optimization. 

Both parts are time-consuming. Six models, Elk, Cheburashka, Cow, Monster, Bunny and Hand, 
were partitioned into printable pieces using three methods, Chopper and the level set method and 
our method. The partitioning results of six models, as well as the number of partitioning pieces 
and running time, are summarized in Figure 9. These results showed that with a few user interac-
tions, our method can obtain fewer pieces of printable components and less performance time 
than Chopper and the level set method. Note that compared with the model partitioning by 
curved surfaces as in the work of Yao and colleagues,5 an advantage of model partitioning by 
cutting planes is that connectors can be easily placed on the cross sections. 

 

Figure 9. Some partitioning results obtained by our method, Chopper and the level set method. The 
performance time in our method includes all interaction time and the time running Algorithms 1-3. 
The time for the level set method includes two parts: an initial shape diameter mesh segmentation 
plus an iterative constrained variational optimization. The model volumes are Elk (5832cm3), 
Monster (7330.87cm3), Cheburashka (3288.39cm3), Bunny (6003.38cm3), Cow (3277.76cm3), 
Hand (3668cm3), and the printer volume is 18.0cm × 17.0cm × 16.0cm. The printed Elk models are 
shown in Figure 10. 
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Figure 10. The printed Elk models partitioned by our method, Chopper, and the level set method. 

All ten participants in the first user study watched the partitioning results of six models (shown 
in Figure 9) by three methods (ours, Chopper, level set method) in computer as well as the 
printed physical models (Figure 10). Then each participant was asked to compare and rank these 
partitioning results by choosing one mark from five levels: excellent (5), good (4), fair (3), bad 
(2), very bad (1). Finally they filled a questionnaire with Yes/No choices. 

The average rank of each partitioning result evaluated by ten participants was summarized in Ta-
ble 2. The results showed that the subjective ranks of partitioning results obtained by our method 
were consistently higher than the subjective ranks of results obtained by Chopper and the level 
set method.  

Table 2. The average subjective ranks from ten participants for the partitioning results of six models 
shown in Figure 9 using three methods (our method, Chopper, the level set method). 

Model 
name 

Average subjective rank 

Our method Chopper Level set method 

Elk 4.5 3.0 3.7 

Cheburashka 4.4 2.0 4.2 

Cow 4.6 3.1 4.0 

Bunny 4.5 3.4 3.8 

Monster 4.0 2.4 3.8 

Hand 4.8 2.5 3.8 

Overall 4.5 2.7 3.9 
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The post-test questionnaire filed by participants evaluated three characteristics of our method. 
Each characteristic had five questions. A Yes answer to each question gave one score and then 
the full score to each characteristic is five. The three characteristics and their average scores by 
participants are as follows. 

Usefulness. The five questions are: (1) Does it give more control to the user over the partitioning 
process? (2) Does it make the partitioning process easier? (3) Does it save time? (4) Does it meet 
the needs of 3D-model partitioning? (5) Does it have everything that you would expect it to do? 
The average score given by participants is 4.4. 

Ease of use. The five questions are: (1) Is it easy to use? (2) Is it user friendly? (3) Does it re-
quire the fewest steps possible to accomplish partition? (4) Is it flexible? (5) Can you use it with-
out noticing any inconsistencies? The average score given by participants is 4.2. 

Satisfaction. The five questions are: (1) Have you learned to use it quickly? (2) Have you easily 
remembered how to use it? (3) Have you quickly became skillful with it? (4) Are you satisfied 
with it? (5) Does it work the way you want? The average score given by participants is 4.2. 

The above results show that our method can offer a simple and easy-to-use interactive tool for 
3D-printing-oriented model partitioning to users. 

CONCLUSION 
We presented an efficient interactive tool to partition large 3D models into components that fit 
into the volume of a given 3D printer. Three interaction operations, i.e., no-go region painting, 
cutting plane specification and stitching, are realized, based on three algorithms, including (1) 
constrained tree generation, (2) tree-splitting and (3) sub-tree merging. These interaction opera-
tions are simple and intuitive to use. With the help of these operations, users can efficiently parti-
tion large models into smaller printable components in good quality. Experiments and a 
preliminary user study have been conducted to verify the functionality of our interactive tool. 
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