# TUDelft

# A Framework for the On-the-fly Energy Calculation of BIM Models

Mengying Su / 25 January 2023



# Thesis Committee

Dr. ir. H. R. Schipper Dr. ir. J. L. Coenders Dr. R. M. J. Bokel Dr. ir. A. Rasooli

**Mengying Su** 





#### Context

NZEB / BENG

NTA 8800





#### **Table of Content**

- Research Background
- Literature Study
- Conceptual Design
- Tool Development
- Validation
- Discussion
- Conclusions
- Recommendations









# Research Background

#### Energy assessment methods

- Detailed energy simulation method
- Simple energy calculation method





## Research Background

#### Early design stage

- High impact
- Low cost of changes



Cost-influence curve (Feng et al. 2019)



#### **Problem Statement**

Energy optimizations often take place in the late design stage, when changes to buildings are costly, and the improvements are slight.

- Converting BIM models (automatically) is difficult.
- Manually creating energy models is time-consuming.
- Energy analysis requires special expertise.



#### **Research Question**

'How can energy performance be assessed in a very early design stage based on a preliminary BIM model while modifications to the design can be made on-the-fly?'



# Methodology

- Determine the preliminary framework
- Concetual design of the framework
- Implemention of the framework and demonstration
- Validation of case studies by Uniec 3









# Literature Study

#### **BIM to BEM Model Methods**

- IEF-based method
- BIM-API-based method
- Other methods



The workstation's left screen shows the CAD input, while the center shows the translated model, and the right contains BES output.

(Pratt et al. 2012)



#### Literature Study

Revit - Rhino.Inside. - Grasshopper

# Rhino.Inside









# **Conceptual Design**

#### The structure of the framework





#### **Scope Limitations**

#### NTA 8800 Indicators

- Energy demand indicator Ewe H+C;nd;ventsys=C1;
- Primary fossil energy indicator Ewe PTot;
- Share of renewable energy RER PrenTot

#### Application scope of GH script

- Residential buildings
- Single calculation zone





# **Data Input**

#### **Collecting Building Data**



General data flow of simulation engines (Maile et al. 2007)

| Walls       | Roofs    | Windows                  | Doors          | Floors    | Rooms    |
|-------------|----------|--------------------------|----------------|-----------|----------|
| Area        | Area     | Area                     | Area           | Area      | Area     |
| Rc value    | Rc value | Sill height              | Rc value       | Rc value  | N living |
| If exterior |          | Glazing type             | If transparent | Perimeter | N people |
| Orientation |          | If fixed                 | Orientation    |           |          |
|             |          | U-value                  |                |           |          |
|             |          | Orientation              |                |           |          |
|             |          | Shading reduction factor |                |           |          |



# **Energy Calculation**

#### Energy Requirement NTA 8800:

- Heat loss through transmission
- Heat loss through ventilation
- Internal Heat gain
- Heat gain by solar radiation









#### Workflow

**Tool Procedure** 





# **Preliminary Test**

A residential "Tiny house" for calculation





https://reisleven.nl/ikea-tiny-houses

# **Preliminary Test**

#### Tiny house







|            | Als/Ag     | 6.02                    | -     |
|------------|------------|-------------------------|-------|
|            | total area | 15.04                   | m²    |
|            | area       | 15.04                   | m²    |
| Floor      | perimeter  | 16.63                   | m     |
|            | Rc         | 4.91                    | m²K/W |
|            | U          | 0.20                    | W/m²K |
|            | Rc         | 4.12                    | m²K/W |
|            | U          | 0.24                    | W/m²K |
| Wall       | north_area | 22.50                   | m²    |
| vvaii      | south_area | 22.50                   | m²    |
|            | east_area  | 9.97                    | m²    |
|            | west_area  | 9.97                    | m²    |
|            | Rc         | 0.59 m <sup>2</sup> K/W | m²K/W |
| Door       | U          | 1.70 W/m²K              | W/m²K |
| DOOI       | ggl        | 0.00                    | -     |
|            | area       | 1.95                    | v     |
|            | U          | 3.69 W/m <sup>2</sup> K | W/m²K |
| Window A   | Rc         | 0.27 m <sup>2</sup> K/W | m²K/W |
| Williaow A | ggl        | 0.75                    | -     |
|            | area       | 0.56                    | m²    |
|            | U          | 3.10 W/m²K              | W/m²K |
| Window B   | Rc         | 0.32 m <sup>2</sup> K/W | m²K/W |
| WIIIGOW B  | ggl        | 0.75                    | -     |
|            | area       | 2.52                    | v     |
|            | U          | 3.10 W/m²K              | W/m²K |
| Window C   | Rc         | 0.32 m <sup>2</sup> K/W | m²K/W |
| willdow C  | ggl        | 0.75                    | -     |
|            | area       | 0.66                    | m²    |
|            | Rc         | 5.58 m²K/W              | m²K/W |
| Roof       | U          | 0.18                    | W/m²K |
|            | area       | 15.04                   | m²    |
|            |            |                         |       |



#### Implementation and script

















Month length and temperature





Tabel 17.1 — Lengte van de maand,  $t_{mi}$ , maandgemiddelde buitenluchttemperatuur,  $\vartheta_{e;avg;mi}$ , maandgemiddelde buitenluchttemperatuur voor zomernachtventilatie,  $\vartheta_{e;argII,mi}$ , maandgemiddelde windsnelheid,  $u_{site;mi}$ , en de maandgemiddelde temperatuur van de toevoerlucht vóór de WTW gedurende de periode dat er sprake is van koudeterugwinning via de WTW,  $\vartheta_{ODA;preh;WTWC;zi;mi}$ 

| Maand     | <b>t</b> mi | <b>∂</b> e;avg;mi | <b>∂</b> e;argll, <i>mi</i> | Usite;mi | $oldsymbol{artheta}_{	ext{ODA;preh;WTWC;zi;mi}}$ |  |
|-----------|-------------|-------------------|-----------------------------|----------|--------------------------------------------------|--|
|           | h           | °C                | °C                          | m/s      | °C                                               |  |
| Januari   | 744         | 2,61              | -                           | 3,04     | 0,00                                             |  |
| Februari  | 672         | 4,82              | 13,97                       | 4,15     | 0,00                                             |  |
| Maart     | 744         | 5,91              | 13,00                       | 2,99     | 0,00                                             |  |
| April     | 720         | 9,32              | 13,70                       | 3,06     | 0,00                                             |  |
| Mei       | 744         | 14,73             | 14,56                       | 2,97     | 25,63                                            |  |
| Juni      | 720         | 16,12             | 15,62                       | 2,78     | 27,49                                            |  |
| Juli      | 744         | 18,05             | 16,17                       | 2,63     | 26,34                                            |  |
| Augustus  | 744         | 18,48             | 16,90                       | 2,51     | 27,29                                            |  |
| September | 720         | 15,63             | 15,11                       | 2,71     | 25,30                                            |  |
| Oktober   | 744         | 10,40             | 15,04                       | 2,78     | 0,00                                             |  |
| November  | 720         | 7,99              | 13,43                       | 2,83     | 0,00                                             |  |
| December  | 744         | 4,00              | -                           | 2,83     | 0,00                                             |  |

































Energy calculations









Energy calculations







QCve

Energy calculations







Energy calculations







Processing results







## Uniec 3

Ewe from GH script: 171.19 kWh/m²

| Energi | Energieprestatie               |                                  |               |  |  |
|--------|--------------------------------|----------------------------------|---------------|--|--|
|        | indicator                      |                                  | resultaat     |  |  |
|        | energiebehoefte                | Ewe <sub>H+C;nd;ventsys=C1</sub> | 176,53 kWh/m² |  |  |
|        | primaire fossiele energie      | Ewe <sub>PTot</sub>              | 220,06 kWh/m² |  |  |
|        | aandeel hernieuwbare energie   | RER <sub>PrenTot</sub>           | 44,7 %        |  |  |
|        | hernieuwbare energie indicator | E <sub>wePRenTot</sub>           | 178,46 kWh/m² |  |  |
|        | temperatuuroverschrijding      | TO <sub>juli;max</sub>           | 2,95          |  |  |
|        | energielabel                   |                                  | С             |  |  |
|        | netto warmtebehoefte (EPV)     | E <sub>H;nd;net</sub>            | 206,46 kWh/m² |  |  |



## **Preliminary Test**

Results and the report

Energy assessment

Ewe (kWh/m^2)

171.19

Room area (m^2)

15.04

Floor Area (m^2) Perimeter (m) Rc (m^2K/W)
15.04 16.63 4.91

 Wall area S (m^2)
 Wall area W (m^2)
 Wall area N (m^2)
 Wall area E (m^2)
 Rc (m^2K/W)

 20.27
 9.97
 15.51
 9.31
 4.12

Door area (m^2) U (W/m^2K) 1.95 1.7

| Window orientation | Window type         | Area (m^2) | U (W/m^2K) | Sill height (m) | g_nl;n |
|--------------------|---------------------|------------|------------|-----------------|--------|
| north              | Casement Windows    | 2.52       | 3.1        | 0.9             | 0.75   |
| north              | Casement Windows    | 2.52       | 3.1        | 0.9             | 0.75   |
| east               | Double-Hung Windows | 0.66       | 3.1        | 1.8             | 0.75   |
| south              | Fixed Windows       | 0.56       | 3.69       | 1.5             | 0.75   |
| south              | Fixed Windows       | 0.56       | 3.69       | 1.5             | 0.75   |
| south              | Fixed Windows       | 0.56       | 3.69       | 1.5             | 0.75   |
| south              | Fixed Windows       | 0.56       | 3.69       | 1.5             | 0.75   |

Roof area (m^2) Rc (m^2K/W) 15.04 5.58



## **Results Analysis**





QH;internal

Month

150.00

145.00

140.00

(kg) 135.00 125.00 125.00 115.00

110.00 105.00 100.00



400

350

300

100



QH;solar

8

Month





10 11 12

Uniec 3

----GH script





# Case Study 1 - Dimensions

| Variants   | Ag (m²) | Total wall area (m²) |
|------------|---------|----------------------|
| Tiny house | 15.04   | 75.08                |
| Variant 1  | 242.44  | 329.16               |
| Variant 2  | 168.83  | 258.01               |

| Variants   | GH (kWh/m²) | Uniec 3 (kWh/m²) | Difference |
|------------|-------------|------------------|------------|
| Tiny house | 171.19      | 176.53           | -3.02%     |
| Variant 1  | 68.95       | 68.17            | 1.14%      |
| Variant 2  | 66.27       | 67.82            | -2.29%     |





# Case Study 2 – Physical Properties



Changes in the BENG1 value from changes in the value of Als/Ag (left) and window to wall ratio (right). (Kafaei 2021)



## Case Study 2 – Physical Properties

| Ewe (kWh/m^2) | Developed tool | Uniec 3 | Difference | Notes           |
|---------------|----------------|---------|------------|-----------------|
| Tiny house    | 171.19         | 176.53  | -3.02%     |                 |
| Variant 3     | 134.20         | 127.20  | 5.50%      | Window size / 2 |
| Variant 4     | 153.03         | 159.80  | -4.20%     | Window U / 2    |

| Als/Ag | BENG 1<br>Eis<br>[kWh/m²]   |  |
|--------|-----------------------------|--|
| ≤ 1,83 | ≤ 65                        |  |
| ≤ 3    | ≤ 55 + 30 * (Als/Ag - 1,5)  |  |
| > 3    | ≤ 100 + 30 * (Als/Ag - 3,0) |  |

https://zoek.officielebekendmakingen.nl/stb-2019-501.html

Als/Ag = 6.02 BENG 1 = 100 + 30 \* (6.02 – 3) = 190.6









### **Discussion**

'How can energy performance be assessed in a very early design stage based on a preliminary BIM model while modifications to the design can be made on-the-fly?'

- Results of case studies
- Framework limitations
- Significance









## **Conclusions**

#### **BIM-API-Grasshopper framework**

The framework improves the efficiency of energy design by making the energy assessment on-the-fly.

#### **Demonstration tool**

The developed GH script produces meaningful results for energy assessment in early design stage, despite the slight difference due to simplification.

#### **Practical applications**

The framework may be applied to assist architects in the early design stage for energy efficiency optimization.







### Recommendations

- Research on the development of the automation of energy optimization in the late stage.
- Comparison research on different energy calculation norms and methods using on-the-fly assessment tool.
- Research on developing interoperable software in different specializations, e.g., structural, lighting.



# Thank you for your attention

Mengying Su

