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Jensen—Shannon Distance-Based Filter and
Unsupervised Evaluation Metrics for
Polarimetric Weather Radar Processing

Cheng Chen™, Christine M. H. Unal, and Albert C. P. Oude Nijhuis

Abstract— An effective filtering technique is required for
rainfall rate measurement by weather radar. A Jensen—Shannon
distance (JSD)-based thresholding filter is proposed to mitigate
nonmeteorological signals, either in clear air or rain situations.
This algorithm classifies range-Doppler bins into two classes,
hydrometeors and nonhydrometeors, based on spectral polari-
metric variable features. The result is a mask to be applied
on the spectrograms. The variable selected here is the spectral
co-polar correlation coefficient, available in dual-polarization
and full polarimetric radars. The algorithm first does global
thresholding by finding an optimized threshold value based on
the averaged clear-air spectral polarimetric variable distribution.
Next, classical filtering steps are carried out like a ground clutter
notch filter around 0 ms~!, a mathematical morphology to fill
gaps in the hydrometeor areas, and a removal of narrow Doppler
power spectra. The second part of this article is the assessment of
filtering techniques without ground truth. An assessment without
ground truth is useful to select optimal algorithm configurations
from a large solution space. Criteria of good filtering are defined
both in the spectral and time domain. Based on those criteria,
subjective and objective unsupervised evaluation metrics are
derived, with a focus on the objective ones. Data, including
clear air and rain collected from a full polarimetric Doppler
X-band radar in the urban area, are used. With the proposed
unsupervised evaluation metrics, the JSD-based thresholding
filter is compared to two spectral polarimetric filters. Overall,
the JSD-based filter performs very well considering both the
subjective and the objective evaluation metrics.

Index Terms— Adaptive thresholding, dual-polarization weat-
her radar, spectral polarimetric filtering of nonhydrometeors,
unsupervised evaluation metrics.

I. INTRODUCTION

UROPE'’s cities are facing increased risks due to severe

precipitation driven by climate change combined with
rapid urbanization and population growth [1]. Monitoring
rainfall in the city at street level is an efficient way to
improve urban weather resilience. The temporal and spatial
resolutions of rainfall data required for urban applications
exceed those needed for rural catchments. Nonetheless, current
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monitoring systems are not adapted and often inaccurate at city
scale, making such rainfall information ineffective for urban
applications [2]. With X-band radars, the study of rainfall
mechanisms at high resolution can be performed on a regional
scale. Yet, the accurate estimation of rainfall data in real time
in dense urban areas using this sensor is challenging due to
clutter [2].

Clutter can be decomposed into two types: stationary and
nonstationary. The stationary clutter is termed ground clutter
and is located at the 0-ms~! Doppler velocity with variable
spectral widths. A classical technique uses a notch filter cen-
tered at 0 ms~!. To strengthen this technique, the Clutter Envi-
ronment Analysis using Adaptive Processing (CLEAN-AP),
which is based on the autocorrelation spectral density, was
proposed [3] to meet the Next Generation Weather Radar
(NEXRAD) clutter mitigation requirements. Good perfor-
mance is obtained in terms of ground clutter mitigation and
reduction in the variance of weather radar variables. However,
the nonstationary clutter, which is located at variable Doppler
velocity bins, stays. Therefore, methodologies, exploring the
use of spectral polarimetry only [4], [5] or combined with
fuzzy logic [6] or image processing techniques [7], [8],
were proposed to reduce both stationary and nonstationary
clutter and mitigate noise. The combination with fuzzy logic
or image processing was added for low elevation angle
atmospheric/weather radar measurements.

Using spectral polarimetry filtering, this article first focuses
on urban clutter (stationary and nonstationary) and noise
reduction, using the data of the Rijnmond radar in Rotterdam.
The techniques proposed in this article are meant to be
implemented in other X-band radars as well: MESEWI on
the campus of the Delft University of Technology (urban
area) and IDRA in Cabauw (polder area). These three X-band
radars are integrated within the National Ruisdael Observatory,
a research infrastructure to study atmospheric processes at
different spatial and temporal scales linking data and models
for climate change, weather, and air quality predictions. The
major steps of the clutter and noise mitigation, alternatively
labeled as “nonmeteorological echoes mitigation,” are made in
the range-Doppler domain. The strength of spectral polarimet-
ric processing is that it can remove nonmeteorological echoes
in the Doppler domain, while they overlap with precipitation
in the time domain. In addition, weak precipitation can be
retained because of a decrease in the noise level in the
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Example of PPI plots of the radar reflectivity from the Rijnmond radar: (a) raw data and (b) and (c) use the OBSpol filtering method [8] with

different fixed thresholds on the spectral co-polar correlation coefficient (0.90 spco-threshold and 0.95 spc.-threshold, respectively).

spectral domain. Some of the mentioned spectral polarimetric
filtering methods are based on radar variable thresholding such
as the spectral linear depolarization ratio [5], [7], [8] and the
spectral co-polar correlation coefficient [4], [8].

Global thresholding plays an essential role in the reduction
of nonmeteorological echoes. Such methods are based on
thresholding with a fixed value, which provides fast processing
for real-time applications. However, they may not be robust.
As concluded from [9, p. 517], when polarimetric variables
are used for classification, their magnitudes differ for various
situations.

Let us now consider the following three plan position
indicators (PPIs) in Fig. 1. The first PPI represents raw data
of precipitation, which are not filtered and thus still contain
clutter and noise. With the choice of a threshold of 0.95
[Fig. 1(c)] for the spectral co-polar correlation coefficient,
a significant amount of precipitation disappears while being
preserved for a threshold choice of 0.90 [Fig. 1(b)]. What is
the meaning of these values, 0.90 and 0.95? This threshold
choice depends on so many factors, such as the type of radar,
the radar environment, the processing, and the signal-to-noise
ratio (SNR). This article proposes a new spectral polarimetric
filtering technique with a focus on the methodology and not
on the actual threshold values.

Coming back to Fig. 1, we can probably say that a threshold
of 0.90 [Fig. 1(b)] is better than a threshold of 0.95 [Fig. 1(c)]
based on a subjective evaluation. However, assessment criteria
should be developed to quantitatively compare filtered PPIs
or spectrograms without ground truth. This is the second
objective of this article: evaluation by metrics without ground
truth.

There are no common standards for filtering assessment in
the mentioned references where spectral polarimetric process-
ing is used, which makes it challenging to define objective
evaluation metrics. In addition, the used assessment meth-
ods may not be suitable for testing large amounts of data
(spectrograms and PPIs for at least several days). It is chal-
lenging to always generate ground-truth data. This is the key
issue: nonhydrometeor mitigation evaluation without ground
truth.

Some assessment studies are done in the field of image
segmentation, but those methods still need to be validated

for range-Doppler spectrograms. Another solution considers
time-series data corresponding to weather signal free of clutter
contamination, which can be added with that of clutter signal
obtained in clear-air conditions [10], [11]. This solution allows
the analysis of bias of radar variable estimates, which are
involved in rainfall rate estimators. For the Rijnmond radar,
it is possible to obtain IQ data of clear air without hydrometeor
presence. However, rain data with the certainty to measure
no clutter cannot be acquired at low elevation angles in an
urban environment with a limited maximum range. In addition,
such a methodology or external validation using a network
of rain gauges and/or disdrometers is only achievable for
a very small set of radar and algorithm configurations and
sufficient collection of data. This is due to the nature of
the raw weather radar 1Q data. Their amount is very large
and hard to store and process for many different parameters
for a long period. Nonetheless, a long period is required to
obtain sufficient statistics for a valid comparison. If we have
weather radar processing algorithms that have a very large
solution space of configurations (combination of parameters
and different algorithms), it becomes very challenging to use
assessment adding hydrometeor and clutter data or external
validation for so many parameters. We need thus to signifi-
cantly reduce the solution space of radar processing algorithms
first.

For this objective, image segmentation assessment criteria
will be explored. They allow a first evaluation of filtering
techniques in the range-Doppler domain. With this approach,
a reduced set of techniques and possible configurations can be
obtained and finally assessed using the analysis of radar vari-
able bias and/or quantitative precipitation estimation (QPE)
validation techniques.

This article is structured as follows: Section II introduces
the data used in this article, the specifications of the radar, and
an overview of the default Rijnmond radar filtering algorithm,
presently implemented in the radar real-time processing. The
construction of the new filtering algorithm is presented in
Section III. In Section IV, the unsupervised evaluation metrics
to assess filtering techniques are explained. Section V assesses
the performance of three different filters and their results
are discussed in Section VI. Finally, Section VII draws the
conclusions.
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TABLE I
RIJINMOND RADAR SPECIFICATIONS

Max.transmitted power 43 dBm
Attenuation (power reduction) Automatic
Transmitted polarisation Hor V
Received polarisation H+V
Central frequency 9.325 GHz
Sampling rate 10 MHz
Number of samples 3050
Sweep time 305 ps
Number of range bins 1525
Bandwidth 7.5 MHz
Range resolution 0.02 km
Maximum range 30.5 km
Number of Doppler bins 512
Doppler resolution 0.0515 ms—!
Maximum Doppler velocity (ATSR) | 13.18 ms™—!
Dwell time 0.31s

II. RADAR SPECIFICATIONS AND DATASET

A. Specifications of Rijnmond Radar

Table I lists the specifications of the Rijnmond radar
dataset that is used in this article. This frequency-modulated
continuous-wave (FMCW) radar operates at X-band with a
central frequency of 9.325 GHz. It is a full polarimetric radar
with an alternate transmission simultaneous reception (ATSR)
polarimetric configuration. Its default rotation speed is 6.0°
s~!, so a whole PPI measurement needs 1 min.

The high range resolution of 20 m is appropriate for
urban applications. The maximum Doppler velocity equals
26.36 ms~!. However, because horizontal and vertical polar-
ization are alternated in transmission, the time between two
consecutive samples with the same polarization becomes larger
by a factor of 2, which decreases the maximum Doppler veloc-
ity by a factor of 2, thus 13.18 ms~!. With 512 samples for
the Doppler processing, a high Doppler velocity resolution of
5.15 cm/s is obtained, which offers possibilities in mitigating
noise and urban clutter using spectral processing.

B. Dataset

The dataset is classified in two scenarios, namely, clear air
and rain. The clear air refers to all the signals from nonhy-
drometeors and noise. The clear-air dataset contains two PPIs.
The first PPI (reference) is used to develop the algorithm
and the second PPI is considered for performance testing
by different filtering techniques. Every rain case consists of
one PPI. These different rain cases are selected to include
light, moderate, and heavy precipitation with little, moderate,
or heavy clutter. All of them are going to be used for obtaining
the results of the objective evaluation metrics in Section V.

Table II lists the start and end measurement time and
characteristics of each PPI. The clear-air case consists of
two PPIs. The term “variable rain” indicates that the PPI
contains light, moderate, and heavy rain. These input data
have the same radar specifications (Table I) except for the
transmit power/ receiver gain reduction and elevation angle.
In the case of automatic signal attenuation, the attenuation is
increased on-the-fly to reduce signal saturation issues. A radar
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ray that is suffering from saturation can be recognized by a
radar ray line with very high reflectivity [see, e.g., Fig. 1(a)].

C. Default Rijnmond Filtering

Presently, the filtering for noise and clutter mitigation is
carried out in the range-Doppler domain. It consists of a
narrow notch filter centered around 0 ms~! (ground clutter
suppression) and spectral polarimetric filtering with fixed
thresholds. Furthermore, a spectral noise clipping technique
is implemented. It keeps the Doppler bins related to a spectral
power at least 3 dB above the spectral noise level (noise
suppression). Finally, Doppler spectra containing less than 2%
of valid Doppler bins are discarded. Therefore, it is expected to
retain the Doppler bins related to precipitation. Consequently,
the standard radar moments and polarimetric variables can
be calculated. This filtering technique is presently applied for
three X-band radars in The Netherlands: the Rijnmond radar
at Rotterdam, MESEWTI at the TU Delft campus, and IDRA
at Cabauw.

IIT. JENSEN—SHANNON DISTANCE-BASED
THRESHOLDING FILTER

A. Spectral Polarimetric Variables

The complex spectrogram Sxy is used in the calculation
of spectral polarimetric variables, with X and Y being the
polarization in reception and transmission, respectively [12].
The corresponding spectral reflectivity is defined as

sZxy(r,0) = Cxy - |Sxy(r,0)|* - r* = Cxy - Pxy(r,0) - r*
(1)

where Cxy represents a constant depending on the polariza-
tions, r is the range, v is the Doppler velocity, and Pxy (r, v) is
the received power for each range-Doppler bin.

The following four spectral polarimetric variables, sZpg,
ngg, SLB\R/, Speo are defined based on Sxy and sZyy:

Zon.0) = 101 (25200 "
sLER(r, ) = 101ogy, (%) (3)
sLYy (r,v) = 101ogy, (%) “)

[(Siia(r, 0) Sy (1, 0))| )

$eo(r, v) =
V(S )P ) (18w 0) )

where () is the 2-D averaging on consecutive range-Doppler
pixels.

In this work, the 2-D averaging for the cross correlation
calculation is done by using a square averaging kernel n; x ny
with a kernel of size n; = 7. The choice of n; = 7 leads
to a better estimate of the variables for filtering (more aver-
aged/smoothed) at the cost of the Doppler velocity resolution.
This will only impact the classification mask in the filtering
technique. Note that the estimation of the time-domain vari-
ables, such as reflectivity factor and co-polar correlation coeffi-
cient, is not impacted, as for such calculations, no (additional)
averaging is performed in the range-Doppler domain.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 15,2022 at 07:13:12 UTC from IEEE Xplore. Restrictions apply.
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TABLE II
INPUT DATA
Scenario Clear Air Rain
Case ID 0 1 2 3 4 5 6
Start time 2020-02-05 2020-02-04 2020-06-17 2020-09-23 2020-09-25 2020-09-26 2020-10-06
15:45:55 13:09:20 20:23:39 18:33:14 19:14:07 23:54:20 11:21:19
End time 2020-02-05 2020-02-04 2020-06-17 2020-09-23 2020-09-25 2020-09-26 2020-10-06
15:47:56 13:10:21 20:24:40 18:34:15 19:15:07 23:55:20 11:22:18
Characteristics | much clutter | light rain variable rain | variable rain | variable rain | light rain heavy rain
saturation much clutter | little clutter large cell much clutter | sparse small cells
Clear Air Rain Saturation
s ZHH o ~0 20 0 20 40 . 1o 20 0 B B . 10 20 o B a0
SPco * " " "’ "’ v * " " "’ "’ v " " " "’ ’ v
SZDR N 30 20 10 o 10 20 30 N 30 20 10 o 10 20 30 N 30 20 10 o 10 20 30

Fig. 2.
are thus range-Doppler bins with hydrometeors and nonhydrometeors.

B. Empirical Probability Functions of the Spectral
Polarimetric Variables

When filtering techniques based on thresholding are
designed, normalized histograms or equivalently empirical
probability functions are investigated for different situations
such as clear air, rain, and saturation.

Examples of saturation at some azimuthal directions
(southeast) are shown in Fig. 1(a): a large signal, which is
most likely caused by radio frequency interference (RFI),
is measured by the FMCW radar. Because of the Fourier
transform processing to get the backscattered power versus
range, which is inherent to the FMCW radar, there is spectral
leakage in all the range bins. Large power values are converted
to reflectivity values using the weather equation [see (1)].
Because of the multiplication by r2, the reflectivity values
related to RFI increase with range.

Fig. 2 shows the examples of normalized histograms of the
four spectral polarimetric variables for three different cases

Histograms of four spectral polarimetric variables from three different situations. The full raw spectrogram is considered. In the case of rain, there

(clear air, rain, and saturation). The values of s Zyy, s Zpr, and
s Lpr vary between —50 and 50 dB with a bin width of 1 dB.
The values of sp., vary between 0 and 1 with a bin width
of 0.01. Each histogram relates to one raw spectrogram, which
represents one PPI ray. In the case of rain presence, the spectral
co-polar correlation coefficient probability function becomes
bimodal, which is an interesting feature. All the range-Doppler
bins are included in the histogram. For the rain case, there
are thus spectra of rain, clutter, and noise but no saturation.
Therefore, sp., histogram contains a significant amount of low
values. In the case of saturation, the histograms are shifted for
the spectral reflectivity, s Zyy, and for the linear depolarization
ratios, toward larger and smaller values, respectively. This is
not the case for sp., and sZpr distributions, which allows
to group clear air and saturation together as nonhydrometeor
echoes. Next, a mathematical formulation, which uses proba-
bility functions, is used to design a new spectral polarimetric
filter and assessment criteria to compare filters.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 15,2022 at 07:13:12 UTC from IEEE Xplore. Restrictions apply.
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C. Shannon’s Entropy

Information entropy or Shannon’s entropy [13] is defined
as the average logarithm of the inverse of probability. There
are many interpretations of information entropy depending on
its application. Here, it is used as measuring the number of
states of a system. A large number of states, n, lead to high
entropy, H. In the spectral polarimetric image context, the
random variable X denotes one of the spectral polarimetric
variables with P.(X = x;) being its probability when having
the value x;, which is the ith possible value of X. This is
mathematically formulated as

n 1
H(X) =) P(x;)log, —— (6)
; > P(x;)
P(x;) = Pr(X = x;) )
X € {sZDR, ngg, SLE}\{, spco} (8)

where the same discretization as for the histograms is used.

The fundamental properties of Shannon’s entropy that will
be used here are [14] given as follows.

1) H(X) is a convex function and H(X) > 0.

2) H(X) reaches its maximum value, H (X)max = log,(n),
when P(x;) = P(x;) = --- = P(x,) = 1/n (the
number of values for the spectral polarimetric variable
is large and the distribution of values is uniform).

3) H(X) reaches its minimum, H (X)m, = 0, when there
is only one value possible for the spectral polarimetric
variable.

4) For two statistical independent random variables X
and Y, we have H(X,Y)=H(X)+ H(Y).

According to Properties 2 and 3, Shannon’s entropy can
be considered as a function of the distribution of a spectral
polarimetric variable. This distribution or probability den-
sity function is estimated using the normalized histogram of
spectral polarimetric variables. The properties of Shannon’s
entropy function are used to build assessment criteria for
filtering in Section IV.

D. Jensen—Shannon Distance

Jensen—Shannon distance (JSD) is an entropy-based para-
meter, which is used to compare the similarity or discrepancy
between distributions. Relatively low JSD values indicate
similarity and thus less discrepancy between different distri-
butions and vice versa. JSD is defined as the square root of
Jensen—Shannon divergence [15]

1 1
ISD(P[|Q) = \/EDKL(P”M) +5Dx(QIIM) )

P(x)

Di(PIM) = S P(x) log ( ) (10)
KL );V 2 M(x)
0(x)

DL (QIM) = O(x)log (—> (11)
KL ; 2 M(x)

M:%@+Q) (12)

where P and Q are two different probability functions, M is
the pointwise mean of P and Q, and Dgj is defined as the
Kullback-Leibler divergence.

5117018

The advantage of using the Jensen—Shannon divergence in
comparison to other metrics for similarity between distribu-
tions is that it is finite and symmetric [16].

E. Selection of the Spectral Polarimetric Variable

A sensitivity test is conducted to find the most sensitive
polarimetric spectrogram to the presence of hydrometeors. For
this purpose, the JSD is used to assess the difference between
two distributions, clear air and rain. The JSD is estimated for
four spectral polarimetric variable distributions (s Zpg, s LEE,
ngg, and sp¢,), where the distribution with rain included is
compared to a clear-air reference distribution. The spectral
polarimetric distribution of clear air (P, (X)) is obtained from
the averaged distribution of a full PPI

2
- 1
Paa(X) = — > Pua(X, ) (13)
nr a=0
X € {SZDR’ SLSE’SLBK’SPCO} (14)
a € [0,2r] (15)

where P, (X, @) is the distribution of one spectral polarimetric
variable X at azimuth angle o and n, is the total number of
radar rays per PPIL.

Fig. 3(a) shows the results of JSD between polarimetric
spectrogram histograms with rain included and the averaged
clear-air reference for a complete PPI. This figure demon-
strates that sp., has the highest sensitivity for the presence
of rain. The fact that sp., has the highest sensitivity from
these variables is also consistent with characteristic change of
distribution shape when rain appears, going from a monomodal
to bimodal distribution in Fig. 2. For the other three variables,
no distinct sensitivity is found. With respect to the raw PPI of
rain [Fig. 3(b)], the JSD of sp., has a positive correlation
with the rain areas. For example, when the radar ray is
around 100°, both the JSD and the nonfiltered reflectivity
decrease dramatically indicating the absence of rain.

F. Filter Description

A new filtering technique is proposed in this research, which
uses a clear-air spectral-polarimetric-variable distribution as
input. The filter is applied to range-Doppler data. Fig. 4
shows all the steps of this filtering method. The first step
consists of spectral polarimetric filtering using an optimized
Speo threshold value for each spectrogram. Then, the default
Rijnmond notch filter is implemented to mitigate the ground
clutter. Similar to the OBSpol filter, missing precipitation
range-Doppler bins are reconstructed by mathematical mor-
phology processing using the closing operator [8]. Finally,
when the percentage of hydrometeor Doppler bins is very
low, no data are attributed to the range bin. The following
paragraphs dive into details of step 1, which is the innovative
part, and this filtering technique is demonstrated for rain, clear-
air, and saturated cases.

The first step removes most of the nonhydrometeors
by giving a suitable threshold value. As concluded from
Section III-E, sp., is chosen to be the polarimetric spectro-
gram for thresholding. A square kernel (7 x 7) is used for

Authorized licensed use limited to: TU Delft Library. Downloaded on September 15,2022 at 07:13:12 UTC from IEEE Xplore. Restrictions apply.
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(a) JSD of different spectral polarimetric variables versus azimuth for rain case 2, which is represented by its nonfiltered reflectivity PPI in (b). Low

values of JSD indicate similarity of the spectral polarimetric variable distribution with the corresponding reference mean clear-air distribution.

Step 1: Adaptive spectral polarimetric filtering

Y

Step 2: Removing ground clutter by notch filter

v

Step 3: Reconstruct missing precipitation

Y

Step 4: Removing narrow Doppler power spectra

Fig. 4. JSD-based filtering algorithm.

the averaging in the estimation of sp., [see (5)]. After the
threshold value is determined, a binary mask (M*’«(r,v)) is
created

1, if SPco > Topt

SPco —
M (r,v)_{o, otherwise (16)

where T refers to the optimized threshold value of spc,, 1 is
the label for hydrometeors, and 0 is for nonhydrometeors. The
threshold 7o is determined for each spectrogram.

The critical part of this step is to determine the magnitude of
speo for thresholding. The optimized threshold magnitude T
is determined by the sp.,-distribution similarity and disparity
between an input spectrogram and the averaged distribution
of clear-air echo (Pga(spco)). The nonhydrometeor part of a
spectrogram is similar to the spectrogram of clear-air echoes.
As a result, the sp,-distribution of the nonhydrometeors
is similar to the sp.,-distribution of clear air. In addition,
there is a disparity of this distribution between hydrometeors
and clear air. Those similarities and disparities are measured
by JSD

JSDU = JSD(P(SPCO)MJ/’CO:OHPcla(spco)) (17)
JSDH = JSD(P(SPCO)MWC“:I ||Pcla(spco)) (18)
JSDp = JSDy — JSDy (19)

where JSDy denotes the JSD between the sp.,-distribution
of the nonhydrometeor part of an input spectrogram
(P(speo)msro—o) and the averaged sp.,-distribution of clear-
air echo (P.a(speo)). Also, JSDy is the JSD between the
Speo distribution of the hydrometeor part (P(spco)pseco=1)
and Py, (spc0)~

As the binary mask is a function of the threshold 7" and
JSD is a function of the mask, the JSD corresponds to a
function of 7. We expect that the extracted nonhydrometeor
Speo-distribution is similar to the clear-air echo one and thus
leads to a small JSDy. Similarly, a discrepancy between the
distributions of the extracted hydrometeor part and the clear-air
echo one leads to a large JSDy. Therefore, the optimized
threshold value Tqp is selected when the difference (JSDp)
between the disparity (JSDy) and similarity (JSDy) reaches
the maximum.

The algorithm finds a suitable threshold value, T, by max-
imizing the JSD difference (JSDp). As input to the algorithm,
a suitable range of sp., threshold values is given, based on
[9, p. 517]. Thus, the default lower bound of this range, T,
is set to be 0.8 and the maximum is 1. The increment, dT,
is a variable affecting the tolerance of the result as well as the
operation time, so it depends on the user’s demand. In this
work, a value of 0.01 is chosen for d7. Examples of this
algorithm implementation on rain and clear-air spectrograms
are shown next.

1) Rain Case: As can be seen in Fig. 5, both JSDy and
JSDy increase monotonically with the sp., threshold value
(T) for a rain spectrogram. A higher 7' contributes to adding
more potential hydrometeor pixels to the nonhydrometeor
group. Meanwhile, the hydrometeor pixels are tending to be
purely hydrometeors. Therefore, larger T results in a decrease
of similarity between the nonhydrometeor part of this input
spectrogram and the clear-air echo spectrogram of reference
(larger JSDy). Also, the hydrometeor group sp..-distribution
has substantially more disparity with the reference clear-air
echo distribution.

2) Clear Air (Including Saturation): Fig. 5 shows an
example of JSDy, JSDy and JSDjp profiles for a clear-air
spectrogram (including saturation). Clear air and satura-
tion have similar spectral co-polar correlation coefficient
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JSDy, JSDy, and JSDp profiles versus spco threshold for 7oy determination. The left figures relate to a spectrogram with partial rain, and the

right figures correspond to clear air (including saturation) only. For this rain spectrogram, the optimal value is Ty, = 0.91. For the clear-air spectrogram, the
optimal value is Tope = 1.00. (a) Rain JSDy profile. (b) Clear-air JSDy profile. (¢) Rain JSDy profile. (d) Clear-air JSDy profile. (¢) Rain JSDp profile.

(f) Clear-air JSDp profile.

distributions (see Fig. 2) and lead to the same results in terms
of JSDy, JSDy, and JSDp. As the characteristics of an input
spectrogram are initially unknown, an input spectrogram is
treated as a spectrogram with hydrometeors by the algorithm.
As T increases, the JSDy values have the same tendency as a
rain spectrogram. However, the similarity is high between the
tested nonhydrometeor part and the reference clear-air spec-
trogram (very low values of JSDy). For JSDy, the minimum
is reached when the whole spectrogram is labeled as nonhy-
drometeors (T = 1). At the same time, JSDp has reached
its maximum. Therefore, a clear-air (with/without saturation
included) spectrogram is totally filtered by this algorithm.

IV. How TO EVALUATE A FILTER
WITHOUT GROUND TRUTH?

Unsupervised evaluation metrics from image segmentation
are used in this article for the first assessment of filtering

without ground truth. With this methodology, the optimization
of filtering parameters can be performed. As a start, assessment
criteria should be defined. Without such assessment criteria,
it is hard to determine whether a filter performs well or not
when designing and testing different filters. The filtering of
nonhydrometeors occurs in the range-Doppler domain. There-
fore, criteria of good segmentation are defined in the spectral
domain. However, residual nonhydrometeor range-Doppler
bins may stay after this mitigation leading to badly estimated
radar moments data at some ranges, which may be misinter-
preted as rain. Consequently, it is necessary to define assess-
ment criteria for good segmentation in the time domain as
well.

To assess the filtering techniques, equivalently on the seg-
mented spectrogram, subjective and objective evaluations are
used. The difference between them consists of whether having
human evaluation involved or not.
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A. Assessment Criteria in the Spectral Domain

For image segmentation, widely used assessment criteria
exist [17]. These general image segmentation criteria are
adapted for the application of nonhydrometeor filtering in the
radar spectral domain. Using the assumption of range-Doppler
continuity of precipitation and the specificity of polarimetric
spectrograms, the image segmentation criteria are defined as
follows.

1) Segmented hydrometeor and nonhydrometeor regions
should be uniform and homogeneous concerning their
spectral polarimetric features (e.g., intensity).

2) Boundaries between hydrometeors and nonhydrometeors
should not be ragged and should be spatially accurate.

3) Hydrometeor region interiors should be without holes
and with a spatial connection.

B. Assessment Criteria in the Time Domain

The above criteria are all for spectrogram images, which
provide a radar variable versus range and Doppler velocity at
a specific azimuth or time. However, the final representation of
weather radar data, such as PPI, is in the time domain instead
of the spectral domain. Here, the integrated variable is given
versus range at a specific azimuth or time. The time-domain
reflectivity (Zyy) at each range bin results from the summation
on spectral bins. Therefore, if a few range-Doppler bins exist at
one range, this will result in one echo bin in the time domain.
Even with a high performance of the filters in clear-air echo
suppression in the spectral domain, some PPI rays may thus
still contain unwanted signals in the time domain.

Assuming that rain bins are continuous, regardless of the
spectral or time domain, isolated unconnected echo bins are
accordingly considered as badly filtered. Furthermore, it can
be assumed that Zypy values lower than 0 dBZ and larger
than 70 dBZ can be classified as nonhydrometeors [9]. The
relatively low occurrence of such echoes in range bins is an
indicator of good filtering. Examples of isolated unconnected

Examples of three types of unwanted echoes (nonhydrometeors) in a badly filtered PPI of reflectivity.

echoes, both for weak and strong reflection, are shown in
Fig. 6. Therefore, the following three criteria in the time
domain are formulated.
1) All echo bins should be removed in the time domain
when they relate to clear-air echoes.
2) The number of nonhydrometeor echoes should be zero
or minimal.
3) The number of nonconnected echoes should be zero or
minimal.

C. Subjective Evaluation

The application of subjective evaluation methods is limited.
The segmented results are qualitatively assessed by human
evaluation: for example, by only looking at a filtered spectro-
gram or PPI. Due to the necessary human intervention, this
method is time-consuming when the dataset is large and thus
excludes real-time assessment.

D. Objective Evaluation

Objective evaluation methods are those without human
evaluation [18]. From previous studies [7], [8], typically, the
used objective evaluation method is the supervised evaluation,
which compares the segmented results with given ground-truth
data. With radar-based precipitation spectrograms, there is no
reference to ground-truth pixels. In addition, artificially gener-
ating such reference data is challenging [8] and subjective to
errors. Such methods that use artificial reference data evaluate
a segmented image by a set of characteristics as desired by
humans [18]. Unsupervised methods are thus necessary to
develop.

Unsupervised methods matching the criteria in
Sections IV-A and IV-B are introduced in the following.
Each objective evaluation method will be matched with
each criterion. S and T refer to spectral and time domains,
respectively, and the accompanying number relates to the
criterion order. For example, S-1 means the number 1 criterion
in the spectral domain.
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TABLE IIT
OVERVIEW OF THE USED FILTER PARAMETERS
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Filter Technique

Rijnmond Default Filter

OBSpol Filter

JSD based Filter

for hydrometeor

Thresholding condition

Spco > 0.95

Spco > 0.95

SPco > Topt

Other empirical param-

Noise clipping threshold: 3 dB

Structural element radius: 3

eters
Minimum Doppler bin ratio: 2% Hydrometeor objects number: 8 Minimum Doppler bin ratio: 2%
Notch filter width: 0.2 m s~1 Non-stationary ~clutter Doppler | Notch filter width: 0.2 m s—1
width: 42 cm s~ 1
Prerequisite Noise power measurement None Clear air echo database.

Two segmentation concepts will be used in this section:
oversegmentation and undersegmentation. An oversegmented
object has all its pixels correctly labeled, but it misses pixels,
which are grouped in other objects. The undersegmented
object has its pixels with correct and incorrect labels, which
means that a part of its pixels should belong to other objects.

1) Uniformity Measurement (Criterion S-1):

1) Method: Criterion S-1 states that the segmented areas

should be uniform with their own characteristics, such as
the distribution of spectral polarimetric variables. More
uniformity within an object is an indication of less
contamination of unwanted echoes inside. The region
Shannon’s entropy H, [19] is used to assess the unifor-
mity within each region and is defined as

. 1
H,(R,X) = ; P(xi)log, = (20)
where H,(R, X) denotes the region entropy for the
region R, X represents the assessed spectral polarimetric
variable, and n is the number of probability function
bins P(x;). The region entropy has been validated in
studies and has shown good performance in classifying
different objects in one image [18].
Here, we consider two types of regions, hydrometeors
and nonhydrometeors, for which the expected region
entropy H, [19] is defined by summing each region
entropy H, multiplied by the weight proportional to the
pixel numbers of that area S;

2
SA
H, = —L ) H,(R; 21
;(&) o(R;)) 1)
R; € {Rc, Ry} (22)
Sj S {Sc,SH} (23)
S = Nrange X NDoppler (24)

where R represents the label of the segmented regions
and S is the area or pixel numbers of the region. The sub-
scripts C and H of R; and S; denote nonhydrometeor
(clutter) and hydrometeor, respectively. S; is the total
area of the whole range-Doppler spectrogram, which
corresponds to the total pixel number. H, represents the
expected entropy across all regions, and its definition is
based on Property 4 of Shannon’s entropy.

A low entropy value corresponds to a limited number
of spectral polarimetric variable values in the segmented
region (Properties 2 and 3 of Shannon’s entropy) [14].

2)

A low entropy value is thus an indicator of uniformity
for the spectral polarimetric variable that is considered.
A larger entropy value refers to partial regions contam-
inated with pixels from unwanted echoes. As concluded
from Section III-E, the distribution of sp., has the most
sensitivity to the presence of rain in the spectrogram.
Therefore, sp., is the spectral parameter to be chosen
for the uniformity measurement.

As lower entropy values are considered better, the
assessment only with H, may prefer solely overseg-
mented objects. This is the rationale to use H,, which,
by definition, involves the entropy of all the considered
classes. However, the uniformity measurement by the
expected region entropy has also limitations. The area
of nonhydrometeor objects may be much larger than
the rain objects. In that case, the regional entropy from
nonhydrometeors (H,(Rc)) may be dominant in the
expected region entropy result (H,) and thus decrease
the impact of the hydrometeor part (H,(Rp)).
Hlustration: Figs. 7-9 show the relations between a
segmented co-polar correlation coefficient spectrogram,
its distribution, its region entropy (H,), and its expected
region entropy (H,) using two segmented results.
Fig. 7(a) shows the raw polarimetric spectrogram chosen
for segmentation. Two label masks [Fig. 7(b) and (c)]
result from two different methods, OBSpol and JSD
filters. Details of the filters are given in Table III.
Figs. 8 and 9 show the uniformity measurement for
these two masks. Although a fixed threshold for spco
is used (fixed for mask A and retrieved for mask B),
lower/higher values of sp,, are found in hydrome-
teor and nonhydrometeor histograms because of the
mathematical morphological pixel reconstruction. Fig. 8
shows the sp., histograms and spectrograms of extracted
hydrometeors and nonhydrometeors by mask A. On the
one hand, the extracted hydrometeor area by mask A in
Fig. 8(b) contains nonhydrometeor pixels that are ground
clutter around 0 ms~! or have low sp., values along
the boundary of hydrometeor regions. This results in a
Speo distribution with a long left tail in Fig. 8(d) and
large H,(Rpy, Spco). The segmented hydrometeor area
by mask B [Fig. 9(b)] does not show nonhydrometeor
pixels but lost some hydrometeor pixels. On the other
hand, the segmented nonhydrometeor area by mask A
[Fig. 8(a)] does not contain hydrometeor pixels, while
the segmented one by mask B [Fig. 9(a)] shows pixels
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Data correspond to Fig. 1(a) (rain case 1) at the azimuth 82.51°. (a) Raw spectral co-polar correlation coefficient. (b) Mask A (Filter OBSpol).
(¢c) Mask B (Filter JSD).

with relatively high sp., values, which are potentially
representing hydrometeors.

Summarizing, the segmented hydrometeor region by
mask A suffers from undersegmentation (contains non-
hydrometeor pixels) and the nonhydrometeor area is
oversegmented. This is contrary to the result of mask B
with an oversegmented hydrometeor and underseg-
mented nonhydrometeor regions. Their contamination
levels are measured by H,. For both masks, the regional
entropy value is dominated by the large contribution of
noise (part of nonhydrometeors) with a large area in the
range-Doppler domain and a wide sp., distribution.
Because the ground truth is not known, we cannot say
whether H, = 6.108 (mask A) or 6.051 (mask B)
is a good or bad value. It is a metric to relatively
measure segmentation results, which shows the overall
segmentation result and can thus overlook some local
segmentation details. Therefore, using only this metric
is not sufficient and more metrics should be developed.

2) Boundary Contrast (Criterion S-2):
1) Method: A local assessment based on Shannon’s entropy

is derived, to obtain a measure for boundary contrast.
The first step is to find the spectrogram, which has
a sharp boundary between the rain objects and non-
hydrometeors. The boundary to distinguish rain from
nonhydrometeors should exhibit a sharp change of
smoothness: the rain object is smooth, while the nonhy-
drometeor area at the rain boundaries is typically noisy
that translates into a large entropy. Based on subjective
evaluation, sZpg is a suitable polarimetric spectrogram
to consider.

How to define a boundary in a range-Doppler spec-
trogram? We want to calculate the entropy gradient
through the boundary between the two objects. A high
entropy gradient corresponds to a sudden change. For the
rain object, we define the inner line as the pixel series
with one-unit pixel width along the boundary inside the
rain object. The outer line is the pixel series along the
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Fig. 8. Result of the segmentation of the co-polar correlation coefficient spectrogram by mask A. The regional entropy H, equals 6.108. (a) spco: extracted
nonhydrometeors by mask A. (b) speo: extracted hydrometeors by mask A. (c) spc, distribution of nonhydrometeors (H,(Rc, spco) = 6.192). (d) spco
distribution of hydrometeors (H,(Rx, Spco) = 5.727).

2)

boundary inside the nonhydrometeor object side.
The expected entropy of each line is then defined as

L;
4 1

H,(L;,sZpr) = ; P(x;) log, FTen (25)

L; € {Lin, Lout} (26)

where L is the pixel number of each line. The entropy
gradient is the difference

H, = H, (Lout) — H, (Lin)- (27)

There are two cases when the entropy gradient is
lower, namely, oversegmented and undersegmented rain
objects. In these cases, the boundary locates within the
rain object or the nonhydrometeors, which leads to the
inner and outer line to be in one object only. Con-
sequently, the entropy gradient through the segmented
boundary is small and points out a bad segmentation.
Hllustration: Fig. 10 shows an example schematic of
boundary contrast with pixel labeling: the top left is a
9 x 5 image that is part of the sZpgr on the right. The
labeling of the inner and outer line region is shown.
We can see those pixels from the outer line region having
large variations in the s Zpg values, while the inner line
pixels are more uniform (smoother).

3) Connectivity Measurement (Criterion S-3):

1y

Method: Connectivity is defined by the ratio of the inner
line pixel numbers, S;, to the total pixel number of

the hydrometeor objects, Sy. The inner line pixel is
defined as the pixel with at least one neighbor pixel
having a different label. If the connectivity is close
to 1, this implies that the hydrometeor objects lose their
spatial connectivity—more labeled hydrometeor pixels
are isolated with neighboring nonhydrometeor pixels.
The value of C ranges from 0 to 1

_SL

C=—.
Su

(28)

2) Illustration: Fig. 11 shows two exemplary masks with
different connectivities and their corresponding inner
lines. All white or black pixels are connected in the
first label mask [Fig. 11(a)] without any hole inside,
so its connectivity value C is low. In the second mask
[Fig. 11(c)], there are some holes within the object, so its
connectivity value (C) is large.

4) Removal Percentage (Criterion T-1): A removal percent-
age (Ryy) is defined for each PPI ray. It is the key factor
to nonhydrometeor filtering assessment in the case of clear-
air measurement. Here, a qualitative ground truth is needed
because no hydrometeor signal should be present in the PPI
measurement. According to the first criterion in the time
domain, a high removal percentage suggests a strong nonhy-
drometeor removing ability since all the signals in the clear-air
are related to nonhydrometeors. The removal percentage is
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Fig. 9. Result of the segmentation of the co-polar correlation coefficient spectrogram by mask B. The regional entropy H, equals 6.051. (a) spco: extracted
nonhydrometeors by mask B. (b) spco: extracted hydrometeors by mask B. (¢) spc, distribution of nonhydrometeors (H,(Rc,spco) = 6.298). (d) spco
distribution of hydrometeors (H,(Ry, $pco) = 3.539).
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Fig. 10. Example schematic of boundary contrast. (Right) Spectral differential reflectivity in dB is shown with (Left) zoomed panel to illustrate the boundary
contrast with pixel labeling.
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(c) @

Fig. 11. Demonstration of connectivity measurement. (a) Mask 1
(C = 0.146). (b) Inner line of Mask 1. (¢c) Mask 2 (C = 0.703). (d) Inner
line of Mask 2.

defined as
N,

er =
Nrange

(29)

where N, denotes the number of echo bins in a radar ray and
Nrange 1s the total number of radar resolution volumes in the
whole ray.

5) Weak and Strong Echo Ratio (Criterion T-2): The fol-
lowing defined factor relates to very low and high equivalent
reflectivity factor values that are still present in the PPI ray
after the filtering. These values are expected to correspond
to nonhydrometeors. In particular, a PPI ray with reflectivity
values above 70 dBZ may indicate saturation. The ratio related
to the amount of weak and strong echoes in the whole radar
ray is defined as

Nus
Nrange

Rys = (30)
where Ny denotes the number of echo bins whose Zyy is
lower than 0 dBZ or larger than 70 dBZ.

6) Isolated Unconnected Echo Bin Ratio (Criterion T-3):
According to the third criterion, a large number of isolated
unconnected echo bins is considered as a bad filtering result.
Here, we define the isolated unconnected echo bin ratio (Ry,)
as

Ngu
Nrange

Ry = (€29)
where Ny, denotes the number of isolated unconnected range
bins in the considered ray.

Summarizing, criteria T-1-T-3 relate to the evaluation of one
ray in the PPI and criteria S-1-S-3 relate to the assessment of
the corresponding polarimetric spectrograms, sp¢, Or S ZpR.

V. RESULTS

Subjective and objective methods are used to assess three
filtering techniques, namely, the default Rijnmond filter

5117018

(Section II-C) and JSD-based and OBSpol filter [8]. A sum-
mary of their parameters is given in Table III. Different scenar-
ios given in Table II, clear-air echo and rain cases, are tested.
For the evaluation result of each case and filter, one full PPI
consisting of 196 rays is considered. The subjective method
consists of plotting and visually assessing the filtered PPI.
In the case of objective methods, the use of assessing variables
depends on the tested scenarios. For example, considering
clear air, the removal percentage, R.,, is the appropriate
assessing variable to test the filtering performance. Because
of the lack of ground-truth data, objective evaluation variables
in the spectral domain (H,, H;, C) can only give a relative
assessment, which is, however, very useful for comparing
different filters. The optimized results of these three spectral
domain assessment variables can only be obtained with the
ground truth. On the other hand, all time-domain evaluations
(R, Rws, and Rg,) can show an absolute assessment as we
expect that the value of 0 is the best. One PPI has 196 rays,
so every study case provides 196 test results by each filter for
all assessment variables. The distribution of each assessment
variable is visualized by a boxplot [20]. When analyzing the
boxplot, the median (Q, or the 50th percentile), interquartile
range (IQR), and potential outliers (goy) are considered. The
IQR is defined as

IQR = Q3 — 0

where Q3 and Q) denote the 75th percentile and 25th per-
centile, respectively. Outliers (gou) are those values that fulfill
the conditions

Gout € {qlqg > O3+ 1.5 x IQR}
Jout € {qlg < Q1 — 1.5 x IQR}

where g denotes any value of one assessment variable among
the 196 results for clear air (one test case) and 196 x 6 for
rain (six test cases). Both IQR and number of potential
outliers characterize the performance of the different filtering
techniques.

(32)

(33)
(34)

A. Subjective Evaluation

The subjective evaluation method is used according to
the criteria for time-domain radar profiles in Section IV-B.
Besides, some radar rays suffer from saturation, so the ability
of removing those saturation radar rays should also be consid-
ered. Figs. 12 and 13 show the raw data and filtered reflectivity
results for two rain cases. Overall, all filters succeed in remov-
ing radar rays with saturation. Filter JSD retains the most radar
bins with precipitation. Coming back to case 1, the optimized
threshold, Ty, of the spectral co-polar correlation coefficient
(JSD-based filter) is plotted versus azimuth in Fig. 14. These
values of 7o explain that the fixed threshold of 0.95 is too
high for this event and why so many precipitation bins are
discarded by the default Rijnmond and OBSpol filter.

B. Objective Evaluation

1) Clear-Air Case: For the clear-air case evaluation, just
the removal percentage (R) in the time domain is consid-
ered. Fig. 15 shows the boxplots quantifying the statistical
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Fig. 12. Reflectivity PPIs (raw and filtered) for rain case 1. (a) Raw PPL (b) PPI using the default Rijnmond filter. (c) PPI using the JSD-based filter. (d) PPI
using the OBSpol filter.
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Fig. 13. Reflectivity PPIs (raw and filtered) for rain case 4. (a) Raw PPL (b) PPI using the default Rijnmond filter. (c) PPI using the JSD-based filter. (d) PPI
using the OBSpol filter.
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Fig. 14.  Optimized threshold (Top) value as function of azimuth [for the
PPI in case 1, Fig. 12(c)].
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Fig. 15. Removal percentage results for the three filtering techniques. This
parameter is only relevant for clear-air assessment.

performance of the three filters in removing nonhydrometeors.
JSD and OBSpol filters can filter most of the clear-air echoes.
Nonetheless, Filter JSD has the best performance because few
outliers remain in the distribution. This result can be expected
because JSD has as input a mean distribution of clear air.
Consequently, if the clear-air distribution is quite stable in
time and space, this is an efficient way to remove clear-air
echoes.

2) Rain Cases Evaluation: Except for the removal percent-
age assessment, all evaluation methods in the spectral and
time domain are considered and applied to all rain cases
from Table II.

1) Spectral Domain Evaluation Results: Fig. 16 shows the

regional entropy H, distribution of the three filters. Filter
JSD has the lowest median and a larger portion of
radar rays distributed in lower H,. The distributions
of the other two filters are comparable. A lower H,
value suggests less contamination of unwanted echoes,
either in the hydrometeor part or in the nonhydrom-
eteor region. Therefore, filter JSD performs better in
the classification with regard to the other two filters.
However, the magnitude of H, resulting from the three
filters is comparable. This is due to the fact that H,
is dominated by H,(R¢) for each spectrogram. Coming
back to Fig. 7, H,(Ry) of mask A is much larger than
that of mask B, as the segmented hydrometeor region
by mask A is more contaminated than that of mask B.
Nonetheless, their nonhydrometeor regions show a simi-
lar level of uniformity, leading to comparable H, values
due to the large weight of the nonhydrometeor part.
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For the boundary contrast (H;) and spectral connectiv-
ity (C) assessment in Figs. 17 and 18, Filter JSD takes
the highest values, while the performance between the
other two filters is still similar. Higher H; values show
that the boundary position between hydrometeors and
nonhydrometeors is more spatially correct, and higher
C values refer to poorer connectivity. Because the JSD
filter retains more precipitation, also weak precipitation
in the form of isolated range-Doppler bins passes the
filter, which increases the connectivity.

Summarizing, comparing the three filters, the JSD-based
filter has better performances in terms of regional unifor-
mity for hydrometeors and nonhydrometeors and bound-
ary position between hydrometeor and nonhydrometeor
areas. Nonetheless, it keeps a bit more isolated hydrom-
eteor regions in the spectrograms.

Time-Domain Evaluation Results: For the time-domain
evaluation, the three filters perform well and rather
similar in terms of removal of weak and strong echoes
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(a) Ratio of weak and strong echoes results. (b) Ratio of isolated unconnected
bins results.

[Rys in Fig. 19(a)]. The values of this assessment para-
meter are very low with a median value of about 0.0025,
and thus, 0.25% of weak and strong echoes are left in the
PPI. Filter OBSpol has more radar rays with high Ry,
than the other two filters. Although the Ry, values are
very low, the performance difference becomes larger for
the time-domain connectivity, Ry, in Fig. 19(b), where
the JSD filter has the most isolated unconnected echo
bins and OBSpol filter the least. Ry, is highly correlated
with the spectral domain connectivity measurement, C.
Summarizing, the JSD-based filter performs a bit less
in terms of weak and strong echoes as well as isolated
range bins removal. This is the price to pay for keeping
as much precipitation as possible while mitigating a
large quantity of nonhydrometeors.

VI. DISCUSSION

In this section, we summarize and discuss the three filter
performances from the subjective and objective evaluation
results given in Section V.

As shown in Figs. 12 and 13, all three filters succeed in
removing radar bins with saturation issues, which suggests
that sp., = 0.95 is sufficient for tackling this problem.
However, sp.,, = 0.95 is not enough to remove all unwanted
echoes in the clear-air case and may discard precipitation areas
in the rain cases. The default Rijnmond filter retains more
clear-air radar bins than the other two filters (Fig. 15) since
both the JSD and OBSpol filters benefit from morphological
image processing. The JSD filter performs even better than
the OBSpol filter because the JSD filter makes use of the spco
distribution of clear air. In terms of clear-air echoes, it means
that this distribution is rather stable.
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for the JSD filtering.

In the rain case results, the default Rijnmond filter and
OBSpol filter perform similarly considering either the subjec-
tive or objective results. Better results of regional entropy, H,,
and boundary contrast, H,, verify that the JSD filter provides
an improved separation between hydrometeors and nonhy-
drometeors in the spectrograms. One possible drawback of
the Filter JSD is to keep narrow Doppler spectra or wider
gaps in the spectra, which increases the connectivity para-
meter, both in the spectral and time domain. Overall, the
JSD filter keeps more precipitation bins than the other two
filters. Looking at the PPI of Fig. 12, we clearly see that
a significant part of the precipitation with high reflectivity
values is recovered while applying the JSD filter. Fig. 14,
which relates to Fig. 12(c), shows that most of the threshold
values are lower than 0.95. The same recovery happens in
Fig. 13 for precipitation behind the largest reflectivity rain,
where the values of spectral co-polar correlation coefficient are
decreased because of the lowering in SNR due to attenuation.
Such a precipitation recovery is mainly due to the fact that the
JSD filter uses optimized threshold values. Again, providing a
fixed threshold value for a radar measurement is somewhat
tricky because the threshold depends on so many things,
such as radar system, processing, measured hydrometeors
(rain, melting layer, and so on), SNR, and environment
around the radar. In this article, it is shown that adaptive
thresholding within reasonable boundaries overcomes this
issue.

One possible limitation of the JSD filter is the prerequisite
of clear-air echo database. From February to October 2020,
the same reference PPI of clear-air echo was used for the first
tests of the JSD filter. However, the time variability of the
clear-air echo database should be examined. The measurement
of the raw data PPI is simple and the acquisition of the spectral
co-polar correlation coefficient histrogram is straightforward.
In the case of a radar network, a clear-air echo database is
necessary for each radar.

One concern with the upgrade to the JSD filtering technique
is whether the radar moments, such as reflectivity, are affected.
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Fig. 20 shows a scatter density plot of the reflectivity with
the JSD filter versus the original reflectivity using the default
Rijnmond filter. This plot shows that an upgrade to the JSD
filter does not change the estimation of the radar reflectivity
for the majority of the radar range bins. Only for a minor
portion of the range bins (e.g. clutter bins), the estimation is
changed. The high reflectivity pixels, suspected to be clutter
pixels, range from 55 to nearly 70 dBZ and appear in the
scatter density plot for the default Rijnmond filter. These high
reflectivity pixels are significantly reduced using the JSD filter
and, as a result of this filter, range from 20 to 40 dBZ. This
scatter plot also shows that the chosen case studies have a
wide variety in reflectivity values (0-50 dBZ), which proves
that sufficient statistics have been collected for a first good
evaluation of the JSD filter.

VII. CONCLUSION

This article proposes a new filtering technique to extract
hydrometeors and new unsupervised evaluation methods to
assess filtering technique performance. This new filtering
technique makes use of spectral polarimetry. Because of its
bimodal distribution in the range-Doppler spectrogram when
hydrometeors are present, the spectral co-polar correlation
coefficient, sp.o, is selected. First, global thresholding is per-
formed by an optimized threshold value, which is determined
from the comparison of sp., distribution of the input spectro-
gram with the averaged sp., distribution of clear-air echoes.
The methodology uses the JSD, which compares the similarity
and discrepancy between distributions. After thresholding,
a binary mask classifying hydrometeors and nonhydrometeors
is obtained and the following steps are conducted sequentially
to improve this classification result: notch filtering at 0 ms~",
mathematical morphological processing, and narrow Doppler
spectra filtering.

The new unsupervised evaluation metrics are derived from
insights from emerging image segmentation techniques. For
example, spectral polarimetric pixel labeling is similar to
image segmentation. Before designing evaluation metrics,
six criteria are defined in two domains, spectral and time,
which are involved in the weather radar data processing
pipeline. Accordingly, six unsupervised evaluation metrics are
developed.

The performance of the new filter was compared with two
other filters. Results show filtering improvement with the new
filter both for clear-air and rain cases. Consequently, these
new ideas are being implemented in the real-time software
SkyTorque, which is used for three X-band radars (Rijnmond,
MESEWI, and IDRA).

The discussed metrics allow a first assessment of filtering
techniques in the range-Doppler and time domain. Conse-
quently, several techniques with different parameterizations
can be investigated in the context of urban clutter. This results
in the preselection of one or a group of filtering techniques.
The proposed methodology does not replace radar variable bias
analysis using clutter data and rain data free of clutter and/or
a QPE validation technique such as the validation of weather
radar data with rain gauges, which has still to be carried out
afterward.
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This research was performed in the context of X-band radars
having high spatial resolution and a limited maximum range.
It would be worthwhile to investigate the proposed method-
ology for S- or C-band weather radars with large resolution
volumes and maximum ranges. In addition, a high Doppler
resolution was used, where 512 time samples were collected
for Doppler processing. This number can be decreased by
a factor of 2 while achieving the same performance. It is
clear that spectral processing takes advantages of high Doppler
resolution to disentangle in the time-domain signal, hydrome-
teors, clutter, and noise. Therefore, there is a tradeoff between
fast-scanning weather radars with a low Doppler resolution
and weather radars with a high Doppler resolution (scanning
slower).
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